
Symmetric Polynomials

Manuel Eberl

March 17, 2025

Abstract

A symmetric polynomial is a polynomial in variables X1, . . . , Xn

that does not discriminate between its variables, i. e. it is invariant
under any permutation of them. These polynomials are important in
the study of the relationship between the coefficients of a univariate
polynomial and its roots in its algebraic closure.

This article provides a definition of symmetric polynomials and the
elementary symmetric polynomials e1, . . . , en and proofs of their basic
properties, including three notable ones:

• Vieta’s formula, which gives an explicit expression for the k-th
coefficient of a univariate monic polynomial in terms of its roots
x1, . . . , xn, namely ck = (−1)n−ken−k(x1, . . . , xn).

• Second, the Fundamental Theorem of Symmetric Polynomials,
which states that any symmetric polynomial is itself a uniquely
determined polynomial combination of the elementary symmetric
polynomials.

• Third, as a corollary of the previous two, that given a polynomial
over some ring R, any symmetric polynomial combination of its
roots is also in R even when the roots are not.

Both the symmetry property itself and the witness for the Fundamental
Theorem are executable.

1



Contents
1 Vieta’s Formulas 3

1.1 Auxiliary material . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Main proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Symmetric Polynomials 7
2.1 Auxiliary facts . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Subrings and ring homomorphisms . . . . . . . . . . . . . . . 9
2.3 Various facts about multivariate polynomials . . . . . . . . . 11
2.4 Restricting a monomial to a subset of variables . . . . . . . . 18
2.5 Mapping over a polynomial . . . . . . . . . . . . . . . . . . . 19
2.6 The leading monomial and leading coefficient . . . . . . . . . 21
2.7 Turning a set of variables into a monomial . . . . . . . . . . . 27
2.8 Permuting the variables of a polynomial . . . . . . . . . . . . 28
2.9 Symmetric polynomials . . . . . . . . . . . . . . . . . . . . . 35
2.10 The elementary symmetric polynomials . . . . . . . . . . . . 39
2.11 Induction on the leading monomial . . . . . . . . . . . . . . . 45
2.12 The fundamental theorem of symmetric polynomials . . . . . 47
2.13 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.14 A recursive characterisation of symmetry . . . . . . . . . . . 63
2.15 Symmetric functions of roots of a univariate polynomial . . . 65

3 Executable Operations for Symmetric Polynomials 68

2



1 Vieta’s Formulas
theory Vieta
imports

HOL−Library.FuncSet
HOL−Computational-Algebra.Computational-Algebra

begin

1.1 Auxiliary material
lemma card-vimage-inter :

assumes inj: inj-on f A and subset: X ⊆ f ‘ A
shows card (f −‘ X ∩ A) = card X

proof −
have card (f −‘ X ∩ A) = card (f ‘ (f −‘ X ∩ A))

by (subst card-image) (auto intro!: inj-on-subset[OF inj])
also have f ‘ (f −‘ X ∩ A) = X

using assms by auto
finally show ?thesis .

qed

lemma bij-betw-image-fixed-card-subset:
assumes inj-on f A
shows bij-betw (λX . f ‘ X) {X . X ⊆ A ∧ card X = k} {X . X ⊆ f ‘ A ∧ card

X = k}
using assms inj-on-subset[OF assms]
by (intro bij-betwI [of - - - λX . f −‘ X ∩ A]) (auto simp: card-image card-vimage-inter)

lemma image-image-fixed-card-subset:
assumes inj-on f A
shows (λX . f ‘ X) ‘ {X . X ⊆ A ∧ card X = k} = {X . X ⊆ f ‘ A ∧ card X =

k}
using bij-betw-imp-surj-on[OF bij-betw-image-fixed-card-subset[OF assms, of k]]

.

lemma prod-uminus: (
∏

x∈A. −f x :: ′a :: comm-ring-1 ) = (−1 ) ^ card A ∗
(
∏

x∈A. f x)
by (induction A rule: infinite-finite-induct) (auto simp: algebra-simps)

theorem prod-sum-PiE :
fixes f :: ′a ⇒ ′b ⇒ ′c :: comm-semiring-1
assumes finite: finite A and finite:

∧
x. x ∈ A =⇒ finite (B x)

shows (
∏

x∈A.
∑

y∈B x. f x y) = (
∑

g∈PiE A B.
∏

x∈A. f x (g x))
using assms

proof (induction A rule: finite-induct)
case empty
thus ?case by auto

next
case (insert x A)
have (

∑
g∈PiE (insert x A) B.

∏
x∈insert x A. f x (g x)) =

3



(
∑

g∈PiE (insert x A) B. f x (g x) ∗ (
∏

x ′∈A. f x ′ (g x ′)))
using insert by simp

also have (λg.
∏

x ′∈A. f x ′ (g x ′)) = (λg.
∏

x ′∈A. f x ′ (if x ′ = x then undefined
else g x ′))

using insert by (intro ext prod.cong) auto
also have (

∑
g∈PiE (insert x A) B. f x (g x) ∗ . . . g) =

(
∑

(y,g)∈B x × PiE A B. f x y ∗ (
∏

x ′∈A. f x ′ (g x ′)))
using insert.prems insert.hyps
by (intro sum.reindex-bij-witness[of - λ(y,g). g(x := y) λg. (g x, g(x := unde-

fined))])
(auto simp: PiE-def extensional-def )

also have . . . = (
∑

y∈B x.
∑

g∈PiE A B. f x y ∗ (
∏

x ′∈A. f x ′ (g x ′)))
by (subst sum.cartesian-product) auto

also have . . . = (
∑

y∈B x. f x y) ∗ (
∑

g∈PiE A B.
∏

x ′∈A. f x ′ (g x ′))
using insert by (subst sum.swap) (simp add: sum-distrib-left sum-distrib-right)

also have (
∑

g∈PiE A B.
∏

x ′∈A. f x ′ (g x ′)) = (
∏

x∈A.
∑

y∈B x. f x y)
using insert.prems by (intro insert.IH [symmetric]) auto

also have (
∑

y∈B x. f x y) ∗ . . . = (
∏

x∈insert x A.
∑

y∈B x. f x y)
using insert.hyps by simp

finally show ?case ..
qed

corollary prod-add:
fixes f1 f2 :: ′a ⇒ ′c :: comm-semiring-1
assumes finite: finite A
shows (

∏
x∈A. f1 x + f2 x) = (

∑
X∈Pow A. (

∏
x∈X . f1 x) ∗ (

∏
x∈A−X . f2

x))
proof −

have (
∏

x∈A. f1 x + f2 x) = (
∑

g∈A →E UNIV .
∏

x∈A. if g x then f1 x else
f2 x)

using prod-sum-PiE [of A λ-. UNIV :: bool set λx y. if y then f1 x else f2 x]
assms

by (simp-all add: UNIV-bool add-ac)
also have . . . = (

∑
X∈Pow A.

∏
x∈A. if x ∈ X then f1 x else f2 x)

by (intro sum.reindex-bij-witness
[of - λX x . if x ∈ A then x ∈ X else undefined λP. {x∈A. P x}]) auto

also have . . . = (
∑

X∈Pow A. (
∏

x∈X . f1 x) ∗ (
∏

x∈A−X . f2 x))
proof (intro sum.cong refl, goal-cases)

case (1 X)
let ?f = λx. if x ∈ X then f1 x else f2 x
have prod f1 X ∗ prod f2 (A − X) = prod ?f X ∗ prod ?f (A − X)

by (intro arg-cong2 [of - - - - (∗)] prod.cong) auto
also have . . . = prod ?f (X ∪ (A − X))

using 1 by (subst prod.union-disjoint) (auto intro: finite-subset[OF - finite])
also have X ∪ (A − X) = A using 1 by auto
finally show ?case ..

qed
finally show ?thesis .

qed

4



corollary prod-diff1 :
fixes f1 f2 :: ′a ⇒ ′c :: comm-ring-1
assumes finite: finite A
shows (

∏
x∈A. f1 x − f2 x) = (

∑
X∈Pow A. (−1 ) ^ card X ∗ (

∏
x∈X . f2 x)

∗ (
∏

x∈A−X . f1 x))
proof −

have (
∏

x∈A. f1 x − f2 x) = (
∏

x∈A. −f2 x + f1 x)
by simp

also have . . . = (
∑

X∈Pow A. (
∏

x∈X . − f2 x) ∗ prod f1 (A − X))
by (rule prod-add) fact+

also have . . . = (
∑

X∈Pow A. (−1 ) ^ card X ∗ (
∏

x∈X . f2 x) ∗ prod f1 (A −
X))

by (simp add: prod-uminus)
finally show ?thesis .

qed

corollary prod-diff2 :
fixes f1 f2 :: ′a ⇒ ′c :: comm-ring-1
assumes finite: finite A
shows (

∏
x∈A. f1 x − f2 x) = (

∑
X∈Pow A. (−1 ) ^ (card A − card X) ∗

(
∏

x∈X . f1 x) ∗ (
∏

x∈A−X . f2 x))
proof −

have (
∏

x∈A. f1 x − f2 x) = (
∏

x∈A. f1 x + (−f2 x))
by simp

also have . . . = (
∑

X∈Pow A. (
∏

x∈X . f1 x) ∗ (
∏

x∈A−X . −f2 x))
by (rule prod-add) fact+

also have . . . = (
∑

X∈Pow A. (−1 ) ^ card (A − X) ∗ (
∏

x∈X . f1 x) ∗
(
∏

x∈A−X . f2 x))
by (simp add: prod-uminus mult-ac)

also have . . . = (
∑

X∈Pow A. (−1 ) ^ (card A − card X) ∗ (
∏

x∈X . f1 x) ∗
(
∏

x∈A−X . f2 x))
using finite-subset[OF - assms] by (intro sum.cong refl, subst card-Diff-subset)

auto
finally show ?thesis .

qed

1.2 Main proofs

Our goal is to determine the coefficients of some fully factored polynomial
p(X) = c(X − x1) . . . (X − xn) in terms of the xi. It is clear that it is
sufficient to consider monic polynomials (i.e. c = 1), since the general case
follows easily from this one.
We start off by expanding the product over the linear factors:
lemma poly-from-roots:

fixes f :: ′a ⇒ ′b :: comm-ring-1 assumes fin: finite A
shows (

∏
x∈A. [:−f x, 1 :]) = (

∑
X∈Pow A. monom ((−1 ) ^ card X ∗ (

∏
x∈X .

f x)) (card (A − X)))

5



proof −
have (

∏
x∈A. [:−f x, 1 :]) = (

∏
x∈A. [:0 , 1 :] − [:f x:])

by simp
also have . . . = (

∑
X∈Pow A. (−1 ) ^ card X ∗ (

∏
x∈X . [:f x:]) ∗ monom 1

(card (A − X)))
using fin by (subst prod-diff1 ) (auto simp: monom-altdef mult-ac)

also have . . . = (
∑

X∈Pow A. monom ((−1 ) ^ card X ∗ (
∏

x∈X . f x)) (card
(A − X)))

proof (intro sum.cong refl, goal-cases)
case (1 X)
have (−1 :: ′b poly) ^ card X = [:(−1 ) ^ card X :]

by (induction X rule: infinite-finite-induct) (auto simp: one-pCons alge-
bra-simps)

moreover have (
∏

x∈X . [:f x:]) = [:
∏

x∈X . f x:]
by (induction X rule: infinite-finite-induct) auto

ultimately show ?case by (simp add: smult-monom)
qed
finally show ?thesis .

qed

Comparing coefficients yields Vieta’s formula:
theorem coeff-poly-from-roots:

fixes f :: ′a ⇒ ′b :: comm-ring-1
assumes fin: finite A and k: k ≤ card A
shows coeff (

∏
x∈A. [:−f x, 1 :]) k =

(−1 ) ^ (card A − k) ∗ (
∑

X | X ⊆ A ∧ card X = card A − k. (
∏

x∈X .
f x))
proof −

have (
∏

x∈A. [:−f x, 1 :]) = (
∑

X∈Pow A. monom ((−1 ) ^ card X ∗ (
∏

x∈X .
f x)) (card (A − X)))

by (intro poly-from-roots fin)
also have coeff . . . k = (

∑
X | X ⊆ A ∧ card X = card A − k. (−1 ) ^ (card

A − k) ∗ (
∏

x∈X . f x))
unfolding coeff-sum coeff-monom using finite-subset[OF - fin] k card-mono[OF

fin]
by (intro sum.mono-neutral-cong-right) (auto simp: card-Diff-subset)

also have . . . = (−1 ) ^ (card A − k) ∗ (
∑

X | X ⊆ A ∧ card X = card A − k.
(
∏

x∈X . f x))
by (simp add: sum-distrib-left)

finally show ?thesis .
qed

If the roots are all distinct, we can get the following alternative representa-
tion:
corollary coeff-poly-from-roots ′:

fixes f :: ′a ⇒ ′b :: comm-ring-1
assumes fin: finite A and inj: inj-on f A and k: k ≤ card A
shows coeff (

∏
x∈A. [:−f x, 1 :]) k =

(−1 ) ^ (card A − k) ∗ (
∑

X | X ⊆ f ‘ A ∧ card X = card A − k.
∏

X)

6



proof −
have coeff (

∏
x∈A. [:−f x, 1 :]) k =

(−1 ) ^ (card A − k) ∗ (
∑

X | X ⊆ A ∧ card X = card A − k. (
∏

x∈X . f
x))

by (intro coeff-poly-from-roots assms)
also have (

∑
X | X ⊆ A ∧ card X = card A − k. (

∏
x∈X . f x)) =

(
∑

X | X ⊆ A ∧ card X = card A − k.
∏

(f‘X))
by (intro sum.cong refl, subst prod.reindex) (auto intro: inj-on-subset[OF inj])

also have . . . = (
∑

X ∈ (λX . f‘X) ‘ {X . X ⊆ A ∧ card X = card A − k}.
∏

X)
by (subst sum.reindex) (auto intro!: inj-on-image inj-on-subset[OF inj])

also have (λX . f ‘ X) ‘ {X . X ⊆ A ∧ card X = card A − k} = {X . X ⊆ f ‘ A
∧ card X = card A − k}

by (intro image-image-fixed-card-subset inj)
finally show ?thesis .

qed

end

2 Symmetric Polynomials
theory Symmetric-Polynomials
imports

Vieta
Polynomials.More-MPoly-Type
HOL−Combinatorics.Permutations

begin

2.1 Auxiliary facts

An infinite set has infinitely many infinite subsets.
lemma infinite-infinite-subsets:

assumes infinite A
shows infinite {X . X ⊆ A ∧ infinite X}

proof −
have ∀ k. ∃X . X ⊆ A ∧ infinite X ∧ card (A − X) = k for k :: nat
proof

fix k :: nat obtain Y where finite Y card Y = k Y ⊆ A
using infinite-arbitrarily-large[of A k] assms by auto

moreover from this have A − (A − Y ) = Y by auto
ultimately show ∃X . X ⊆ A ∧ infinite X ∧ card (A − X) = k

using assms by (intro exI [of - A − Y ]) auto
qed
from choice[OF this] obtain f

where f :
∧

k. f k ⊆ A ∧ infinite (f k) ∧ card (A − f k) = k by blast
have k = l if f k = f l for k l
proof (rule ccontr)

assume k 6= l
hence card (A − f k) 6= card (A − f l)

7



using f [of k] f [of l] by auto
with ‹f k = f l› show False by simp

qed
hence inj f by (auto intro: injI )
moreover have range f ⊆ {X . X ⊆ A ∧ infinite X}

using f by auto
ultimately show ?thesis

by (subst infinite-iff-countable-subset) auto
qed

An infinite set contains infinitely many finite subsets of any fixed nonzero
cardinality.
lemma infinite-card-subsets:

assumes infinite A k > 0
shows infinite {X . X ⊆ A ∧ finite X ∧ card X = k}

proof −
obtain B where B: B ⊆ A finite B card B = k − 1

using infinite-arbitrarily-large[OF assms(1 ), of k − 1 ] by blast
define f where f = (λx. insert x B)
have f ‘ (A − B) ⊆ {X . X ⊆ A ∧ finite X ∧ card X = k}

using assms B by (auto simp: f-def )
moreover have inj-on f (A − B)

by (auto intro!: inj-onI simp: f-def )
hence infinite (f ‘ (A − B))

using assms B by (subst finite-image-iff ) auto
ultimately show ?thesis

by (rule infinite-super)
qed

lemma comp-bij-eq-iff :
assumes bij f
shows g ◦ f = h ◦ f ←→ g = h

proof
assume ∗: g ◦ f = h ◦ f
show g = h
proof

fix x
obtain y where [simp]: x = f y using bij-is-surj[OF assms] by auto
have (g ◦ f ) y = (h ◦ f ) y by (simp only: ∗)
thus g x = h x by simp

qed
qed auto

lemma sum-list-replicate [simp]:
sum-list (replicate n x) = of-nat n ∗ (x :: ′a :: semiring-1 )
by (induction n) (auto simp: algebra-simps)

lemma ex-subset-of-card:
assumes finite A card A ≥ k

8



shows ∃B. B ⊆ A ∧ card B = k
using assms

proof (induction arbitrary: k rule: finite-induct)
case empty
thus ?case by auto

next
case (insert x A k)
show ?case
proof (cases k = 0 )

case True
thus ?thesis by (intro exI [of - {}]) auto

next
case False
from insert have ∃B⊆A. card B = k − 1 by (intro insert.IH ) auto
then obtain B where B: B ⊆ A card B = k − 1 by auto
with insert have [simp]: x /∈ B by auto
have insert x B ⊆ insert x A

using B insert by auto
moreover have card (insert x B) = k

using insert B finite-subset[of B A] False by (subst card.insert-remove) auto
ultimately show ?thesis by blast

qed
qed

lemma length-sorted-list-of-set [simp]: length (sorted-list-of-set A) = card A
using distinct-card[of sorted-list-of-set A] by (cases finite A) simp-all

lemma upt-add-eq-append ′: i ≤ j =⇒ j ≤ k =⇒ [i..<k] = [i..<j] @ [j..<k]
using upt-add-eq-append[of i j k − j] by simp

2.2 Subrings and ring homomorphisms
locale ring-closed =

fixes A :: ′a :: comm-ring-1 set
assumes zero-closed [simp]: 0 ∈ A
assumes one-closed [simp]: 1 ∈ A
assumes add-closed [simp]: x ∈ A =⇒ y ∈ A =⇒ (x + y) ∈ A
assumes mult-closed [simp]: x ∈ A =⇒ y ∈ A =⇒ (x ∗ y) ∈ A
assumes uminus-closed [simp]: x ∈ A =⇒ −x ∈ A

begin

lemma minus-closed [simp]: x ∈ A =⇒ y ∈ A =⇒ x − y ∈ A
using add-closed[of x −y] uminus-closed[of y] by auto

lemma sum-closed [intro]: (
∧

x. x ∈ X =⇒ f x ∈ A) =⇒ sum f X ∈ A
by (induction X rule: infinite-finite-induct) auto

lemma power-closed [intro]: x ∈ A =⇒ x ^ n ∈ A
by (induction n) auto

9



lemma Sum-any-closed [intro]: (
∧

x. f x ∈ A) =⇒ Sum-any f ∈ A
unfolding Sum-any.expand-set by (rule sum-closed)

lemma prod-closed [intro]: (
∧

x. x ∈ X =⇒ f x ∈ A) =⇒ prod f X ∈ A
by (induction X rule: infinite-finite-induct) auto

lemma Prod-any-closed [intro]: (
∧

x. f x ∈ A) =⇒ Prod-any f ∈ A
unfolding Prod-any.expand-set by (rule prod-closed)

lemma prod-fun-closed [intro]: (
∧

x. f x ∈ A) =⇒ (
∧

x. g x ∈ A) =⇒ prod-fun f g
x ∈ A

by (auto simp: prod-fun-def when-def intro!: Sum-any-closed mult-closed)

lemma of-nat-closed [simp, intro]: of-nat n ∈ A
by (induction n) auto

lemma of-int-closed [simp, intro]: of-int n ∈ A
by (induction n) auto

end

locale ring-homomorphism =
fixes f :: ′a :: comm-ring-1 ⇒ ′b :: comm-ring-1
assumes add[simp]: f (x + y) = f x + f y
assumes uminus[simp]: f (−x) = −f x
assumes mult[simp]: f (x ∗ y) = f x ∗ f y
assumes zero[simp]: f 0 = 0
assumes one [simp]: f 1 = 1

begin

lemma diff [simp]: f (x − y) = f x − f y
using add[of x −y] by (simp del: add)

lemma power [simp]: f (x ^ n) = f x ^ n
by (induction n) auto

lemma sum [simp]: f (sum g A) = (
∑

x∈A. f (g x))
by (induction A rule: infinite-finite-induct) auto

lemma prod [simp]: f (prod g A) = (
∏

x∈A. f (g x))
by (induction A rule: infinite-finite-induct) auto

end

lemma ring-homomorphism-id [intro]: ring-homomorphism id
by standard auto

lemma ring-homomorphism-id ′ [intro]: ring-homomorphism (λx. x)

10



by standard auto

lemma ring-homomorphism-of-int [intro]: ring-homomorphism of-int
by standard auto

2.3 Various facts about multivariate polynomials
lemma poly-mapping-nat-ge-0 [simp]: (m :: nat ⇒0 nat) ≥ 0
proof (cases m = 0 )

case False
hence Poly-Mapping.lookup m 6= Poly-Mapping.lookup 0 by transfer auto
hence ∃ k. Poly-Mapping.lookup m k 6= 0 by (auto simp: fun-eq-iff )
from LeastI-ex[OF this] Least-le[of λk. Poly-Mapping.lookup m k 6= 0 ] show

?thesis
by (force simp: less-eq-poly-mapping-def less-fun-def )

qed auto

lemma poly-mapping-nat-le-0 [simp]: (m :: nat ⇒0 nat) ≤ 0 ←→ m = 0
unfolding less-eq-poly-mapping-def poly-mapping-eq-iff less-fun-def by auto

lemma of-nat-diff-poly-mapping-nat:
assumes m ≥ n
shows of-nat (m − n) = (of-nat m − of-nat n :: ′a :: monoid-add ⇒0 nat)
by (auto intro!: poly-mapping-eqI simp: lookup-of-nat lookup-minus when-def )

lemma mpoly-coeff-transfer [transfer-rule]:
rel-fun cr-mpoly (=) poly-mapping.lookup MPoly-Type.coeff
unfolding MPoly-Type.coeff-def by transfer-prover

lemma mapping-of-sum: (
∑

x∈A. mapping-of (f x)) = mapping-of (sum f A)
by (induction A rule: infinite-finite-induct) (auto simp: plus-mpoly.rep-eq zero-mpoly.rep-eq)

lemma mapping-of-eq-0-iff [simp]: mapping-of p = 0 ←→ p = 0
by transfer auto

lemma Sum-any-mapping-of : Sum-any (λx. mapping-of (f x)) = mapping-of (Sum-any
f )

by (simp add: Sum-any.expand-set mapping-of-sum)

lemma Sum-any-parametric-cr-mpoly [transfer-rule]:
(rel-fun (rel-fun (=) cr-mpoly) cr-mpoly) Sum-any Sum-any
by (auto simp: rel-fun-def cr-mpoly-def Sum-any-mapping-of )

lemma lookup-mult-of-nat [simp]: lookup (of-nat n ∗ m) k = n ∗ lookup m k
proof −

have of-nat n ∗ m = (
∑

i<n. m) by simp
also have lookup . . . k = (

∑
i<n. lookup m k)

by (simp only: lookup-sum)
also have . . . = n ∗ lookup m k

11



by simp
finally show ?thesis .

qed

lemma mpoly-eqI :
assumes

∧
mon. MPoly-Type.coeff p mon = MPoly-Type.coeff q mon

shows p = q
using assms by (transfer , transfer) (auto simp: fun-eq-iff )

lemma coeff-mpoly-times:
MPoly-Type.coeff (p ∗ q) mon = prod-fun (MPoly-Type.coeff p) (MPoly-Type.coeff

q) mon
by (transfer ′, transfer ′) auto

lemma (in ring-closed) coeff-mult-closed [intro]:
(
∧

x. coeff p x ∈ A) =⇒ (
∧

x. coeff q x ∈ A) =⇒ coeff (p ∗ q) x ∈ A
by (auto simp: coeff-mpoly-times prod-fun-closed)

lemma coeff-notin-vars:
assumes ¬(keys m ⊆ vars p)
shows coeff p m = 0
using assms unfolding vars-def by transfer ′ (auto simp: in-keys-iff )

lemma finite-coeff-support [intro]: finite {m. coeff p m 6= 0}
by transfer simp

lemma insertion-altdef :
insertion f p = Sum-any (λm. coeff p m ∗ Prod-any (λi. f i ^ lookup m i))
by (transfer ′, transfer ′) (simp add: insertion-fun-def )

lemma mpoly-coeff-uminus [simp]: coeff (−p) m = −coeff p m
by transfer auto

lemma Sum-any-uminus: Sum-any (λx. −f x :: ′a :: ab-group-add) = −Sum-any f
by (simp add: Sum-any.expand-set sum-negf )

lemma insertion-uminus [simp]: insertion f (−p :: ′a :: comm-ring-1 mpoly) =
−insertion f p

by (simp add: insertion-altdef Sum-any-uminus)

lemma Sum-any-lookup: finite {x. g x 6= 0} =⇒ Sum-any (λx. lookup (g x) y) =
lookup (Sum-any g) y

by (auto simp: Sum-any.expand-set lookup-sum intro!: sum.mono-neutral-left)

lemma Sum-any-diff :
assumes finite {x. f x 6= 0}
assumes finite {x. g x 6= 0}
shows Sum-any (λx. f x − g x :: ′a :: ab-group-add) = Sum-any f − Sum-any

g

12



proof −
have {x. f x − g x 6= 0} ⊆ {x. f x 6= 0} ∪ {x. g x 6= 0} by auto
moreover have finite ({x. f x 6= 0} ∪ {x. g x 6= 0})

by (subst finite-Un) (insert assms, auto)
ultimately have finite {x. f x − g x 6= 0}

by (rule finite-subset)
with assms show ?thesis

by (simp add: algebra-simps Sum-any.distrib [symmetric])
qed

lemma insertion-diff :
insertion f (p − q :: ′a :: comm-ring-1 mpoly) = insertion f p − insertion f q

proof (transfer , transfer)
fix f :: nat ⇒ ′a and p q :: (nat ⇒0 nat) ⇒ ′a
assume fin: finite {x. p x 6= 0} finite {x. q x 6= 0}
have insertion-fun f (λx. p x − q x) =

(
∑

m. p m ∗ (
∏

v. f v ^ lookup m v) − q m ∗ (
∏

v. f v ^ lookup m v))
by (simp add: insertion-fun-def algebra-simps Sum-any-diff )

also have . . . = (
∑

m. p m ∗ (
∏

v. f v ^ lookup m v)) − (
∑

m. q m ∗ (
∏

v. f v
^ lookup m v))

by (subst Sum-any-diff ) (auto intro: finite-subset[OF - fin(1 )] finite-subset[OF
- fin(2 )])

also have . . . = insertion-fun f p − insertion-fun f q
by (simp add: insertion-fun-def )

finally show insertion-fun f (λx. p x − q x) = . . . .
qed

lemma insertion-power : insertion f (p ^ n) = insertion f p ^ n
by (induction n) (simp-all add: insertion-mult)

lemma insertion-sum: insertion f (sum g A) = (
∑

x∈A. insertion f (g x))
by (induction A rule: infinite-finite-induct) (auto simp: insertion-add)

lemma insertion-prod: insertion f (prod g A) = (
∏

x∈A. insertion f (g x))
by (induction A rule: infinite-finite-induct) (auto simp: insertion-mult)

lemma coeff-Var : coeff (Var i) m = (1 when m = Poly-Mapping.single i 1 )
by transfer ′ (auto simp: Var0-def lookup-single when-def )

lemma vars-Var : vars (Var i :: ′a :: {one,zero} mpoly) = (if (0 :: ′a) = 1 then {}
else {i})

unfolding vars-def by (auto simp: Var .rep-eq Var0-def )

lemma insertion-Var [simp]: insertion f (Var i) = f i
proof −

have insertion f (Var i) = (
∑

m. (1 when m = Poly-Mapping.single i 1 ) ∗
(
∏

i. f i ^ lookup m i))
by (simp add: insertion-altdef coeff-Var)

also have . . . = (
∏

j. f j ^ lookup (Poly-Mapping.single i 1 ) j)

13



by (subst Sum-any.expand-superset[of {Poly-Mapping.single i 1}]) (auto simp:
when-def )

also have . . . = f i
by (subst Prod-any.expand-superset[of {i}]) (auto simp: when-def lookup-single)

finally show ?thesis .
qed

lemma insertion-Sum-any:
assumes finite {x. g x 6= 0}
shows insertion f (Sum-any g) = Sum-any (λx. insertion f (g x))
unfolding Sum-any.expand-set insertion-sum
by (intro sum.mono-neutral-right) (auto intro!: finite-subset[OF - assms])

lemma keys-diff-subset:
keys (f − g) ⊆ keys f ∪ keys g
by transfer auto

lemma keys-empty-iff [simp]: keys p = {} ←→ p = 0
by transfer auto

lemma mpoly-coeff-0 [simp]: MPoly-Type.coeff 0 m = 0
by transfer auto

lemma lookup-1 : lookup 1 m = (if m = 0 then 1 else 0 )
by transfer (simp add: when-def )

lemma mpoly-coeff-1 : MPoly-Type.coeff 1 m = (if m = 0 then 1 else 0 )
by (simp add: MPoly-Type.coeff-def one-mpoly.rep-eq lookup-1 )

lemma lookup-Const0: lookup (Const0 c) m = (if m = 0 then c else 0 )
unfolding Const0-def by (simp add: lookup-single when-def )

lemma mpoly-coeff-Const: MPoly-Type.coeff (Const c) m = (if m = 0 then c else
0 )

by (simp add: MPoly-Type.coeff-def Const.rep-eq lookup-Const0)

lemma coeff-smult [simp]: coeff (smult c p) m = (c :: ′a :: mult-zero) ∗ coeff p m
by transfer (auto simp: map-lookup)

lemma in-keys-mapI : x ∈ keys m =⇒ f (lookup m x) 6= 0 =⇒ x ∈ keys (Poly-Mapping.map
f m)

by transfer auto

lemma keys-uminus [simp]: keys (−m) = keys m
by transfer auto

lemma vars-uminus [simp]: vars (−p) = vars p
unfolding vars-def by transfer ′ auto

14



lemma vars-smult: vars (smult c p) ⊆ vars p
unfolding vars-def by (transfer ′, transfer ′) auto

lemma vars-0 [simp]: vars 0 = {}
unfolding vars-def by transfer ′ simp

lemma vars-1 [simp]: vars 1 = {}
unfolding vars-def by transfer ′ simp

lemma vars-sum: vars (sum f A) ⊆ (
⋃

x∈A. vars (f x))
using vars-add by (induction A rule: infinite-finite-induct) auto

lemma vars-prod: vars (prod f A) ⊆ (
⋃

x∈A. vars (f x))
using vars-mult by (induction A rule: infinite-finite-induct) auto

lemma vars-Sum-any: vars (Sum-any h) ⊆ (
⋃

i. vars (h i))
unfolding Sum-any.expand-set by (intro order .trans[OF vars-sum]) auto

lemma vars-Prod-any: vars (Prod-any h) ⊆ (
⋃

i. vars (h i))
unfolding Prod-any.expand-set by (intro order .trans[OF vars-prod]) auto

lemma vars-power : vars (p ^ n) ⊆ vars p
using vars-mult by (induction n) auto

lemma vars-diff : vars (p1 − p2 ) ⊆ vars p1 ∪ vars p2
unfolding vars-def

proof transfer ′

fix p1 p2 :: (nat ⇒0 nat) ⇒0
′a

show
⋃

(keys ‘ keys (p1 − p2 )) ⊆
⋃
(keys ‘ (keys p1 )) ∪

⋃
(keys ‘ (keys p2 ))

using keys-diff-subset[of p1 p2 ] by (auto simp flip: not-in-keys-iff-lookup-eq-zero)
qed

lemma insertion-smult [simp]: insertion f (smult c p) = c ∗ insertion f p
unfolding insertion-altdef
by (subst Sum-any-right-distrib)

(auto intro: finite-subset[OF - finite-coeff-support[of p]] simp: mult.assoc)

lemma coeff-add [simp]: coeff (p + q) m = coeff p m + coeff q m
by transfer ′ (simp add: lookup-add)

lemma coeff-diff [simp]: coeff (p − q) m = coeff p m − coeff q m
by transfer ′ (simp add: lookup-minus)

lemma insertion-monom [simp]:
insertion f (monom m c) = c ∗ Prod-any (λx. f x ^ lookup m x)

proof −
have insertion f (monom m c) =

(
∑

m ′. (c when m = m ′) ∗ (
∏

v. f v ^ lookup m ′ v))
by (simp add: insertion-def insertion-aux-def insertion-fun-def lookup-single)

15



also have . . . = c ∗ (
∏

v. f v ^ lookup m v)
by (subst Sum-any.expand-superset[of {m}]) (auto simp: when-def )

finally show ?thesis .
qed

lemma insertion-aux-Const0 [simp]: insertion-aux f (Const0 c) = c
proof −

have insertion-aux f (Const0 c) = (
∑

m. (c when m = 0 ) ∗ (
∏

v. f v ^ lookup
m v))

by (simp add: Const0-def insertion-aux-def insertion-fun-def lookup-single)
also have . . . = (

∑
m∈{0}. (c when m = 0 ) ∗ (

∏
v. f v ^ lookup m v))

by (intro Sum-any.expand-superset) (auto simp: when-def )
also have . . . = c by simp
finally show ?thesis .

qed

lemma insertion-Const [simp]: insertion f (Const c) = c
by (simp add: insertion-def Const.rep-eq)

lemma coeffs-0 [simp]: coeffs 0 = {}
by transfer auto

lemma coeffs-1 [simp]: coeffs 1 = {1}
by transfer auto

lemma coeffs-Const: coeffs (Const c) = (if c = 0 then {} else {c})
unfolding Const-def Const0-def by transfer ′ auto

lemma coeffs-subset: coeffs (Const c) ⊆ {c}
by (auto simp: coeffs-Const)

lemma keys-Const0: keys (Const0 c) = (if c = 0 then {} else {0})
unfolding Const0-def by transfer ′ auto

lemma vars-Const [simp]: vars (Const c) = {}
unfolding vars-def by transfer ′ (auto simp: keys-Const0)

lemma prod-fun-compose-bij:
assumes bij f and f :

∧
x y. f (x + y) = f x + f y

shows prod-fun m1 m2 (f x) = prod-fun (m1 ◦ f ) (m2 ◦ f ) x
proof −

have [simp]: f x = f y ←→ x = y for x y
using ‹bij f › by (auto dest!: bij-is-inj inj-onD)

have prod-fun (m1 ◦ f ) (m2 ◦ f ) x =
Sum-any ((λl. m1 l ∗ Sum-any ((λq. m2 q when f x = l + q) ◦ f )) ◦ f )

by (simp add: prod-fun-def f (1 ) [symmetric] o-def )
also have . . . = Sum-any ((λl. m1 l ∗ Sum-any ((λq. m2 q when f x = l + q))))

by (simp only: Sum-any.reindex-cong[OF assms(1 ) refl, symmetric])
also have . . . = prod-fun m1 m2 (f x)

16



by (simp add: prod-fun-def )
finally show ?thesis ..

qed

lemma add-nat-poly-mapping-zero-iff [simp]:
(a + b :: ′a ⇒0 nat) = 0 ←→ a = 0 ∧ b = 0
by transfer (auto simp: fun-eq-iff )

lemma prod-fun-nat-0 :
fixes f g :: ( ′a ⇒0 nat) ⇒ ′b::semiring-0
shows prod-fun f g 0 = f 0 ∗ g 0

proof −
have prod-fun f g 0 = (

∑
l. f l ∗ (

∑
q. g q when 0 = l + q))

unfolding prod-fun-def ..
also have (λl.

∑
q. g q when 0 = l + q) = (λl.

∑
q∈{0}. g q when 0 = l + q)

by (intro ext Sum-any.expand-superset) (auto simp: when-def )
also have (

∑
l. f l ∗ . . . l) = (

∑
l∈{0}. f l ∗ . . . l)

by (intro ext Sum-any.expand-superset) (auto simp: when-def )
finally show ?thesis by simp

qed

lemma mpoly-coeff-times-0 : coeff (p ∗ q) 0 = coeff p 0 ∗ coeff q 0
by (simp add: coeff-mpoly-times prod-fun-nat-0 )

lemma mpoly-coeff-prod-0 : coeff (
∏

x∈A. f x) 0 = (
∏

x∈A. coeff (f x) 0 )
by (induction A rule: infinite-finite-induct) (auto simp: mpoly-coeff-times-0 mpoly-coeff-1 )

lemma mpoly-coeff-power-0 : coeff (p ^ n) 0 = coeff p 0 ^ n
by (induction n) (auto simp: mpoly-coeff-times-0 mpoly-coeff-1 )

lemma prod-fun-max:
fixes f g :: ′a::{linorder , ordered-cancel-comm-monoid-add} ⇒ ′b::semiring-0
assumes zero:

∧
m. m > a =⇒ f m = 0

∧
m. m > b =⇒ g m = 0

assumes fin: finite {m. f m 6= 0} finite {m. g m 6= 0}
shows prod-fun f g (a + b) = f a ∗ g b

proof −
note fin ′ = finite-subset[OF - fin(1 )] finite-subset[OF - fin(2 )]
have prod-fun f g (a + b) = (

∑
l. f l ∗ (

∑
q. g q when a + b = l + q))

by (simp add: prod-fun-def Sum-any-right-distrib)
also have . . . = (

∑
l.
∑

q. f l ∗ g q when a + b = l + q)
by (subst Sum-any-right-distrib) (auto intro!: Sum-any.cong fin ′(2 ) simp: when-def )

also {
fix l q assume lq: a + b = l + q (a, b) 6= (l, q) and nz: f l ∗ g q 6= 0
from nz and zero have l ≤ a q ≤ b by (auto intro: leI )
moreover from this and lq(2 ) have l < a ∨ q < b by auto
ultimately have l + q < a + b

by (auto intro: add-less-le-mono add-le-less-mono)
with lq(1 ) have False by simp

}

17



hence (
∑

l.
∑

q. f l ∗ g q when a + b = l + q) = (
∑

l.
∑

q. f l ∗ g q when (a,
b) = (l, q))

by (intro Sum-any.cong refl) (auto simp: when-def )
also have . . . = (

∑
(l,q). f l ∗ g q when (a, b) = (l, q))

by (intro Sum-any.cartesian-product[of {(a, b)}]) auto
also have . . . = (

∑
(l,q)∈{(a,b)}. f l ∗ g q when (a, b) = (l, q))

by (intro Sum-any.expand-superset) auto
also have . . . = f a ∗ g b by simp
finally show ?thesis .

qed

lemma prod-fun-gt-max-eq-zero:
fixes f g :: ′a::{linorder , ordered-cancel-comm-monoid-add} ⇒ ′b::semiring-0
assumes m > a + b
assumes zero:

∧
m. m > a =⇒ f m = 0

∧
m. m > b =⇒ g m = 0

assumes fin: finite {m. f m 6= 0} finite {m. g m 6= 0}
shows prod-fun f g m = 0

proof −
note fin ′ = finite-subset[OF - fin(1 )] finite-subset[OF - fin(2 )]
have prod-fun f g m = (

∑
l. f l ∗ (

∑
q. g q when m = l + q))

by (simp add: prod-fun-def Sum-any-right-distrib)
also have . . . = (

∑
l.
∑

q. f l ∗ g q when m = l + q)
by (subst Sum-any-right-distrib) (auto intro!: Sum-any.cong fin ′(2 ) simp: when-def )

also {
fix l q assume lq: m = l + q and nz: f l ∗ g q 6= 0
from nz and zero have l ≤ a q ≤ b by (auto intro: leI )
hence l + q ≤ a + b by (intro add-mono)
also have . . . < m by fact
finally have l + q < m .

}
hence (

∑
l.
∑

q. f l ∗ g q when m = l + q) = (
∑

l.
∑

q. f l ∗ g q when False)
by (intro Sum-any.cong refl) (auto simp: when-def )

also have . . . = 0 by simp
finally show ?thesis .

qed

2.4 Restricting a monomial to a subset of variables
lift-definition restrictpm :: ′a set ⇒ ( ′a ⇒0

′b :: zero) ⇒ ( ′a ⇒0
′b) is

λA f x. if x ∈ A then f x else 0
by (erule finite-subset[rotated]) auto

lemma lookup-restrictpm: lookup (restrictpm A m) x = (if x ∈ A then lookup m x
else 0 )

by transfer auto

lemma lookup-restrictpm-in [simp]: x ∈ A =⇒ lookup (restrictpm A m) x = lookup
m x

and lookup-restrict-pm-not-in [simp]: x /∈ A =⇒ lookup (restrictpm A m) x = 0

18



by (simp-all add: lookup-restrictpm)

lemma keys-restrictpm [simp]: keys (restrictpm A m) = keys m ∩ A
by transfer auto

lemma restrictpm-add: restrictpm X (m1 + m2 ) = restrictpm X m1 + restrictpm
X m2

by transfer auto

lemma restrictpm-id [simp]: keys m ⊆ X =⇒ restrictpm X m = m
by transfer (auto simp: fun-eq-iff )

lemma restrictpm-orthogonal [simp]: keys m ⊆ −X =⇒ restrictpm X m = 0
by transfer (auto simp: fun-eq-iff )

lemma restrictpm-add-disjoint:
X ∩ Y = {} =⇒ restrictpm X m + restrictpm Y m = restrictpm (X ∪ Y ) m
by transfer (auto simp: fun-eq-iff )

lemma restrictpm-add-complements:
restrictpm X m + restrictpm (−X) m = m restrictpm (−X) m + restrictpm X

m = m
by (subst restrictpm-add-disjoint; force)+

2.5 Mapping over a polynomial
lift-definition map-mpoly :: ( ′a :: zero ⇒ ′b :: zero) ⇒ ′a mpoly ⇒ ′b mpoly is
λ(f :: ′a ⇒ ′b) (p :: (nat ⇒0 nat) ⇒0

′a). Poly-Mapping.map f p .

lift-definition mapm-mpoly :: ((nat ⇒0 nat)⇒ ′a :: zero ⇒ ′b :: zero)⇒ ′a mpoly
⇒ ′b mpoly is
λ(f :: (nat ⇒0 nat) ⇒ ′a ⇒ ′b) (p :: (nat ⇒0 nat) ⇒0

′a).
Poly-Mapping.mapp f p .

lemma poly-mapping-map-conv-mapp: Poly-Mapping.map f = Poly-Mapping.mapp
(λ-. f )

by (auto simp: Poly-Mapping.mapp-def Poly-Mapping.map-def map-fun-def
o-def fun-eq-iff when-def in-keys-iff cong: if-cong)

lemma map-mpoly-conv-mapm-mpoly: map-mpoly f = mapm-mpoly (λ-. f )
by transfer ′ (auto simp: poly-mapping-map-conv-mapp)

lemma map-mpoly-comp: f 0 = 0 =⇒ map-mpoly f (map-mpoly g p) = map-mpoly
(f ◦ g) p

by (transfer ′, transfer ′) (auto simp: when-def fun-eq-iff )

lemma mapp-mapp:
(
∧

x. f x 0 = 0 ) =⇒ Poly-Mapping.mapp f (Poly-Mapping.mapp g m) =
Poly-Mapping.mapp (λx y. f x (g x y)) m

19



by transfer ′ (auto simp: fun-eq-iff lookup-mapp in-keys-iff )

lemma mapm-mpoly-comp:
(
∧

x. f x 0 = 0 ) =⇒ mapm-mpoly f (mapm-mpoly g p) = mapm-mpoly (λm c. f
m (g m c)) p

by transfer ′ (simp add: mapp-mapp)

lemma coeff-map-mpoly:
coeff (map-mpoly f p) m = (if coeff p m = 0 then 0 else f (coeff p m))
by (transfer , transfer) auto

lemma coeff-map-mpoly ′ [simp]: f 0 = 0 =⇒ coeff (map-mpoly f p) m = f (coeff
p m)

by (subst coeff-map-mpoly) auto

lemma coeff-mapm-mpoly: coeff (mapm-mpoly f p) m = (if coeff p m = 0 then 0
else f m (coeff p m))

by (transfer , transfer ′) (auto simp: in-keys-iff )

lemma coeff-mapm-mpoly ′ [simp]: (
∧

m. f m 0 = 0 ) =⇒ coeff (mapm-mpoly f p)
m = f m (coeff p m)

by (subst coeff-mapm-mpoly) auto

lemma vars-map-mpoly-subset: vars (map-mpoly f p) ⊆ vars p
unfolding vars-def by (transfer ′, transfer ′) (auto simp: map-mpoly.rep-eq)

lemma coeff-sum [simp]: coeff (sum f A) m = (
∑

x∈A. coeff (f x) m)
by (induction A rule: infinite-finite-induct) auto

lemma coeff-Sum-any: finite {x. f x 6= 0} =⇒ coeff (Sum-any f ) m = Sum-any
(λx. coeff (f x) m)

by (auto simp add: Sum-any.expand-set intro!: sum.mono-neutral-right)

lemma Sum-any-zeroI : (
∧

x. f x = 0 ) =⇒ Sum-any f = 0
by (auto simp: Sum-any.expand-set)

lemma insertion-Prod-any:
finite {x. g x 6= 1} =⇒ insertion f (Prod-any g) = Prod-any (λx. insertion f (g

x))
by (auto simp: Prod-any.expand-set insertion-prod intro!: prod.mono-neutral-right)

lemma insertion-insertion:
insertion g (insertion k p) =

insertion (λx. insertion g (k x)) (map-mpoly (insertion g) p) (is ?lhs = ?rhs)
proof −

have insertion g (insertion k p) =
(
∑

x. insertion g (coeff p x) ∗ insertion g (
∏

i. k i ^ lookup x i))
unfolding insertion-altdef [of k p]
by (subst insertion-Sum-any)

20



(auto intro: finite-subset[OF - finite-coeff-support[of p]] simp: insertion-mult)
also have . . . = (

∑
x. insertion g (coeff p x) ∗ (

∏
i. insertion g (k i) ^ lookup

x i))
proof (intro Sum-any.cong)

fix x show insertion g (coeff p x) ∗ insertion g (
∏

i. k i ^ lookup x i) =
insertion g (coeff p x) ∗ (

∏
i. insertion g (k i) ^ lookup x i)

by (subst insertion-Prod-any)
(auto simp: insertion-power intro!: finite-subset[OF - finite-lookup[of x]]

Nat.gr0I )
qed
also have . . . = insertion (λx. insertion g (k x)) (map-mpoly (insertion g) p)

unfolding insertion-altdef [of - map-mpoly f p for f ] by auto
finally show ?thesis .

qed

lemma insertion-substitute-linear :
insertion (λi. c i ∗ f i) p =

insertion f (mapm-mpoly (λm d. Prod-any (λi. c i ^ lookup m i) ∗ d) p)
unfolding insertion-altdef

proof (intro Sum-any.cong, goal-cases)
case (1 m)
have coeff (mapm-mpoly (λm. (∗) (

∏
i. c i ^ lookup m i)) p) m ∗ (

∏
i. f i ^

lookup m i) =
MPoly-Type.coeff p m ∗ ((

∏
i. c i ^ lookup m i) ∗ (

∏
i. f i ^ lookup m i))

by (simp add: mult-ac)
also have (

∏
i. c i ^ lookup m i) ∗ (

∏
i. f i ^ lookup m i) =

(
∏

i. (c i ∗ f i) ^ lookup m i)
by (subst Prod-any.distrib [symmetric])

(auto simp: power-mult-distrib intro!: finite-subset[OF - finite-lookup[of m]]
Nat.gr0I )

finally show ?case by simp
qed

lemma vars-mapm-mpoly-subset: vars (mapm-mpoly f p) ⊆ vars p
unfolding vars-def using keys-mapp-subset[of f ] by (auto simp: mapm-mpoly.rep-eq)

lemma map-mpoly-cong:
assumes

∧
m. f (coeff p m) = g (coeff p m) p = q

shows map-mpoly f p = map-mpoly g q
using assms by (intro mpoly-eqI ) (auto simp: coeff-map-mpoly)

2.6 The leading monomial and leading coefficient

The leading monomial of a multivariate polynomial is the one with the
largest monomial w. r. t. the monomial ordering induced by the standard
variable ordering. The leading coefficient is the coefficient of the leading
monomial.
As a convention, the leading monomial of the zero polynomial is defined to

21



be the same as that of any non-constant zero polynomial, i. e. the monomial
X0

1 . . . X
0
n.

lift-definition lead-monom :: ′a :: zero mpoly ⇒ (nat ⇒0 nat) is
λf :: (nat ⇒0 nat) ⇒0

′a. Max (insert 0 (keys f )) .

lemma lead-monom-geI [intro]:
assumes coeff p m 6= 0
shows m ≤ lead-monom p
using assms by (auto simp: lead-monom-def coeff-def in-keys-iff )

lemma coeff-gt-lead-monom-zero [simp]:
assumes m > lead-monom p
shows coeff p m = 0
using lead-monom-geI [of p m] assms by force

lemma lead-monom-nonzero-eq:
assumes p 6= 0
shows lead-monom p = Max (keys (mapping-of p))
using assms by transfer (simp add: max-def )

lemma lead-monom-0 [simp]: lead-monom 0 = 0
by (simp add: lead-monom-def zero-mpoly.rep-eq)

lemma lead-monom-1 [simp]: lead-monom 1 = 0
by (simp add: lead-monom-def one-mpoly.rep-eq)

lemma lead-monom-Const [simp]: lead-monom (Const c) = 0
by (simp add: lead-monom-def Const.rep-eq Const0-def )

lemma lead-monom-uminus [simp]: lead-monom (−p) = lead-monom p
by (simp add: lead-monom-def uminus-mpoly.rep-eq)

lemma keys-mult-const [simp]:
fixes c :: ′a :: {semiring-0 , semiring-no-zero-divisors}
assumes c 6= 0
shows keys (Poly-Mapping.map ((∗) c) p) = keys p
using assms by transfer auto

lemma lead-monom-eq-0-iff : lead-monom p = 0 ←→ vars p = {}
unfolding vars-def by transfer ′ (auto simp: Max-eq-iff )

lemma lead-monom-monom: lead-monom (monom m c) = (if c = 0 then 0 else
m)

by (auto simp add: lead-monom-def monom.rep-eq Const0-def max-def )

lemma lead-monom-monom ′ [simp]: c 6= 0 =⇒ lead-monom (monom m c) = m
by (simp add: lead-monom-monom)

lemma lead-monom-numeral [simp]: lead-monom (numeral n) = 0

22



unfolding monom-numeral[symmetric] by (subst lead-monom-monom) auto

lemma lead-monom-add: lead-monom (p + q) ≤ max (lead-monom p) (lead-monom
q)
proof transfer

fix p q :: (nat ⇒0 nat) ⇒0
′a

show Max (insert 0 (keys (p + q))) ≤ max (Max (insert 0 (keys p))) (Max
(insert 0 (keys q)))

proof (rule Max.boundedI )
fix m assume m: m ∈ insert 0 (keys (p + q))
thus m ≤ max (Max (insert 0 (keys p))) (Max (insert 0 (keys q)))
proof

assume m ∈ keys (p + q)
with keys-add[of p q] have m ∈ keys p ∨ m ∈ keys q

by (auto simp: in-keys-iff plus-poly-mapping.rep-eq)
thus ?thesis by (auto simp: le-max-iff-disj)

qed auto
qed auto

qed

lemma lead-monom-diff : lead-monom (p − q) ≤ max (lead-monom p) (lead-monom
q)
proof transfer

fix p q :: (nat ⇒0 nat) ⇒0
′a

show Max (insert 0 (keys (p − q))) ≤ max (Max (insert 0 (keys p))) (Max
(insert 0 (keys q)))

proof (rule Max.boundedI )
fix m assume m: m ∈ insert 0 (keys (p − q))
thus m ≤ max (Max (insert 0 (keys p))) (Max (insert 0 (keys q)))
proof

assume m ∈ keys (p − q)
with keys-diff-subset[of p q] have m ∈ keys p ∨ m ∈ keys q by auto
thus ?thesis by (auto simp: le-max-iff-disj)

qed auto
qed auto

qed

definition lead-coeff where lead-coeff p = coeff p (lead-monom p)

lemma vars-empty-iff : vars p = {} ←→ p = Const (lead-coeff p)
proof

assume vars p = {}
hence [simp]: lead-monom p = 0

by (simp add: lead-monom-eq-0-iff )
have [simp]: mon 6= 0 ←→ (mon > (0 :: nat ⇒0 nat)) for mon

by (auto simp: order .strict-iff-order)
thus p = Const (lead-coeff p)

by (intro mpoly-eqI ) (auto simp: mpoly-coeff-Const lead-coeff-def )

23



next
assume p = Const (lead-coeff p)
also have vars . . . = {} by simp
finally show vars p = {} .

qed

lemma lead-coeff-0 [simp]: lead-coeff 0 = 0
by (simp add: lead-coeff-def )

lemma lead-coeff-1 [simp]: lead-coeff 1 = 1
by (simp add: lead-coeff-def mpoly-coeff-1 )

lemma lead-coeff-Const [simp]: lead-coeff (Const c) = c
by (simp add: lead-coeff-def mpoly-coeff-Const)

lemma lead-coeff-monom [simp]: lead-coeff (monom p c) = c
by (simp add: lead-coeff-def coeff-monom when-def lead-monom-monom)

lemma lead-coeff-nonzero [simp]: p 6= 0 =⇒ lead-coeff p 6= 0
unfolding lead-coeff-def lead-monom-def
by (cases keys (mapping-of p) = {}) (auto simp: coeff-def max-def )

lemma
fixes c :: ′a :: semiring-0
assumes c ∗ lead-coeff p 6= 0
shows lead-monom-smult [simp]: lead-monom (smult c p) = lead-monom p

and lead-coeff-smult [simp]: lead-coeff (smult c p) = c ∗ lead-coeff p
proof −

from assms have ∗: keys (mapping-of p) 6= {}
by auto

from assms have coeff (MPoly-Type.smult c p) (lead-monom p) 6= 0
by (simp add: lead-coeff-def )

hence smult-nz: MPoly-Type.smult c p 6= 0 by (auto simp del: coeff-smult)
with assms have ∗∗: keys (mapping-of (smult c p)) 6= {}

by simp

have Max (keys (mapping-of (smult c p))) = Max (keys (mapping-of p))
proof (safe intro!: antisym Max.coboundedI )

have lookup (mapping-of p) (Max (keys (mapping-of p))) = lead-coeff p
using ∗ by (simp add: lead-coeff-def lead-monom-def max-def coeff-def )

with assms show Max (keys (mapping-of p)) ∈ keys (mapping-of (smult c p))
using ∗ by (auto simp: smult.rep-eq intro!: in-keys-mapI )

from smult-nz have lead-coeff (smult c p) 6= 0
by (intro lead-coeff-nonzero) auto

hence coeff p (Max (keys (mapping-of (smult c p)))) 6= 0
using assms ∗ ∗∗ by (auto simp: lead-coeff-def lead-monom-def max-def )

thus Max (keys (mapping-of (smult c p))) ∈ keys (mapping-of p)
by (auto simp: smult.rep-eq coeff-def in-keys-iff )

qed auto

24



with ∗ ∗∗ show lead-monom (smult c p) = lead-monom p
by (simp add: lead-monom-def max-def )

thus lead-coeff (smult c p) = c ∗ lead-coeff p
by (simp add: lead-coeff-def )

qed

lemma lead-coeff-mult-aux:
coeff (p ∗ q) (lead-monom p + lead-monom q) = lead-coeff p ∗ lead-coeff q

proof (cases p = 0 ∨ q = 0 )
case False
define a b where a = lead-monom p and b = lead-monom q
have coeff (p ∗ q) (a + b) = coeff p a ∗ coeff q b

unfolding coeff-mpoly-times
by (rule prod-fun-max) (insert False, auto simp: a-def b-def )

thus ?thesis by (simp add: a-def b-def lead-coeff-def )
qed auto

lemma lead-monom-mult-le: lead-monom (p ∗ q) ≤ lead-monom p + lead-monom
q
proof (cases p ∗ q = 0 )

case False
show ?thesis
proof (intro leI notI )

assume lead-monom p + lead-monom q < lead-monom (p ∗ q)
hence lead-coeff (p ∗ q) = 0

unfolding lead-coeff-def coeff-mpoly-times by (rule prod-fun-gt-max-eq-zero)
auto

with False show False by simp
qed

qed auto

lemma lead-monom-mult:
assumes lead-coeff p ∗ lead-coeff q 6= 0
shows lead-monom (p ∗ q) = lead-monom p + lead-monom q
by (intro antisym lead-monom-mult-le lead-monom-geI )

(insert assms, auto simp: lead-coeff-mult-aux)

lemma lead-coeff-mult:
assumes lead-coeff p ∗ lead-coeff q 6= 0
shows lead-coeff (p ∗ q) = lead-coeff p ∗ lead-coeff q
using assms by (simp add: lead-monom-mult lead-coeff-mult-aux lead-coeff-def )

lemma keys-lead-monom-subset: keys (lead-monom p) ⊆ vars p
proof (cases p = 0 )

case False
hence lead-coeff p 6= 0 by simp
hence coeff p (lead-monom p) 6= 0 unfolding lead-coeff-def .
thus ?thesis unfolding vars-def by transfer ′ (auto simp: max-def in-keys-iff )

qed auto

25



lemma
assumes (

∏
i∈A. lead-coeff (f i)) 6= 0

shows lead-monom-prod: lead-monom (
∏

i∈A. f i) = (
∑

i∈A. lead-monom (f
i)) (is ?th1 )

and lead-coeff-prod: lead-coeff (
∏

i∈A. f i) = (
∏

i∈A. lead-coeff (f i)) (is
?th2 )
proof −

have ?th1 ∧ ?th2 using assms
proof (induction A rule: infinite-finite-induct)

case (insert x A)
from insert have nz: lead-coeff (f x) 6= 0 (

∏
i∈A. lead-coeff (f i)) 6= 0 by

auto
note IH = insert.IH [OF this(2 )]
from insert have nz ′: lead-coeff (f x) ∗ lead-coeff (

∏
i∈A. f i) 6= 0

by (subst IH ) auto
from insert.prems insert.hyps nz nz ′ show ?case

by (auto simp: lead-monom-mult lead-coeff-mult IH )
qed auto
thus ?th1 ?th2 by blast+

qed

lemma lead-monom-sum-le: (
∧

x. x ∈ X =⇒ lead-monom (h x) ≤ ub) =⇒ lead-monom
(sum h X) ≤ ub
by (induction X rule: infinite-finite-induct) (auto intro!: order .trans[OF lead-monom-add])

The leading monomial of a sum where the leading monomial the summands
are distinct is simply the maximum of the leading monomials.
lemma lead-monom-sum:

assumes inj-on (lead-monom ◦ h) X and finite X and X 6= {} and
∧

x. x ∈ X
=⇒ h x 6= 0

defines m ≡ Max ((lead-monom ◦ h) ‘ X)
shows lead-monom (

∑
x∈X . h x) = m

proof (rule antisym)
show lead-monom (sum h X) ≤ m unfolding m-def using assms

by (intro lead-monom-sum-le Max-ge finite-imageI ) auto
next

from assms have m ∈ (lead-monom ◦ h) ‘ X
unfolding m-def by (intro Max-in finite-imageI ) auto

then obtain x where x: x ∈ X m = lead-monom (h x) by auto
have coeff (

∑
x∈X . h x) m = (

∑
x∈X . coeff (h x) m)

by simp
also have . . . = (

∑
x∈{x}. coeff (h x) m)

proof (intro sum.mono-neutral-right ballI )
fix y assume y: y ∈ X − {x}
hence (lead-monom ◦ h) y ≤ m

using assms unfolding m-def by (intro Max-ge finite-imageI ) auto
moreover have (lead-monom ◦ h) y 6= (lead-monom ◦ h) x

using ‹x ∈ X› y inj-onD[OF assms(1 ), of x y] by auto

26



ultimately have lead-monom (h y) < m
using x by auto

thus coeff (h y) m = 0 by simp
qed (insert x assms, auto)
also have . . . = coeff (h x) m by simp
also have . . . = lead-coeff (h x) using x by (simp add: lead-coeff-def )
also have . . . 6= 0 using assms x by auto
finally show lead-monom (sum h X) ≥ m by (intro lead-monom-geI )

qed

lemma lead-coeff-eq-0-iff [simp]: lead-coeff p = 0 ←→ p = 0
by (cases p = 0 ) auto

lemma
fixes f :: - ⇒ ′a :: semidom mpoly
assumes

∧
i. i ∈ A =⇒ f i 6= 0

shows lead-monom-prod ′ [simp]: lead-monom (
∏

i∈A. f i) = (
∑

i∈A. lead-monom
(f i)) (is ?th1 )

and lead-coeff-prod ′ [simp]: lead-coeff (
∏

i∈A. f i) = (
∏

i∈A. lead-coeff (f i))
(is ?th2 )
proof −

from assms have (
∏

i∈A. lead-coeff (f i)) 6= 0
by (cases finite A) auto

thus ?th1 ?th2 by (simp-all add: lead-monom-prod lead-coeff-prod)
qed

lemma
fixes p :: ′a :: comm-semiring-1 mpoly
assumes lead-coeff p ^ n 6= 0
shows lead-monom-power : lead-monom (p ^ n) = of-nat n ∗ lead-monom p
and lead-coeff-power : lead-coeff (p ^ n) = lead-coeff p ^ n
using assms lead-monom-prod[of λ-. p {..<n}] lead-coeff-prod[of λ-. p {..<n}]
by simp-all

lemma
fixes p :: ′a :: semidom mpoly
assumes p 6= 0
shows lead-monom-power ′ [simp]: lead-monom (p ^ n) = of-nat n ∗ lead-monom

p
and lead-coeff-power ′ [simp]: lead-coeff (p ^ n) = lead-coeff p ^ n
using assms lead-monom-prod ′[of {..<n} λ-. p] lead-coeff-prod ′[of {..<n} λ-. p]
by simp-all

2.7 Turning a set of variables into a monomial

Given a finite set {X1, . . . , Xn} of variables, the following is the monomial
X1 . . . Xn:
lift-definition monom-of-set :: nat set ⇒ (nat ⇒0 nat) is
λX x. if finite X ∧ x ∈ X then 1 else 0

27



by auto

lemma lookup-monom-of-set:
Poly-Mapping.lookup (monom-of-set X) i = (if finite X ∧ i ∈ X then 1 else 0 )
by transfer auto

lemma lookup-monom-of-set-1 [simp]:
finite X =⇒ i ∈ X =⇒ Poly-Mapping.lookup (monom-of-set X) i = 1

and lookup-monom-of-set-0 [simp]:
i /∈ X =⇒ Poly-Mapping.lookup (monom-of-set X) i = 0

by (simp-all add: lookup-monom-of-set)

lemma keys-monom-of-set: keys (monom-of-set X) = (if finite X then X else {})
by transfer auto

lemma keys-monom-of-set-finite [simp]: finite X =⇒ keys (monom-of-set X) = X
by (simp add: keys-monom-of-set)

lemma monom-of-set-eq-iff [simp]: finite X =⇒ finite Y =⇒ monom-of-set X =
monom-of-set Y ←→ X = Y

by transfer (auto simp: fun-eq-iff )

lemma monom-of-set-empty [simp]: monom-of-set {} = 0
by transfer auto

lemma monom-of-set-eq-zero-iff [simp]: monom-of-set X = 0 ←→ infinite X ∨ X
= {}

by transfer (auto simp: fun-eq-iff )

lemma zero-eq-monom-of-set-iff [simp]: 0 = monom-of-set X ←→ infinite X ∨ X
= {}

by transfer (auto simp: fun-eq-iff )

2.8 Permuting the variables of a polynomial

Next, we define the operation of permuting the variables of a monomial and
polynomial.
lift-definition permutep :: ( ′a ⇒ ′a) ⇒ ( ′a ⇒0

′b) ⇒ ( ′a ⇒0
′b :: zero) is

λf p. if bij f then p ◦ f else p
proof −

fix f :: ′a ⇒ ′a and g :: ′a ⇒ ′b
assume ∗: finite {x. g x 6= 0}
show finite {x. (if bij f then g ◦ f else g) x 6= 0}
proof (cases bij f )

case True
with ∗ have finite (f −‘ {x. g x 6= 0})

by (intro finite-vimageI ) (auto dest: bij-is-inj)
with True show ?thesis by auto

qed (use ∗ in auto)

28



qed

lift-definition mpoly-map-vars :: (nat ⇒ nat) ⇒ ′a :: zero mpoly ⇒ ′a mpoly is
λf p. permutep (permutep f ) p .

lemma keys-permutep: bij f =⇒ keys (permutep f m) = f −‘ keys m
by transfer auto

lemma permutep-id ′′ [simp]: permutep id = id
by transfer ′ (auto simp: fun-eq-iff )

lemma permutep-id ′′′ [simp]: permutep (λx. x) = id
by transfer ′ (auto simp: fun-eq-iff )

lemma permutep-0 [simp]: permutep f 0 = 0
by transfer auto

lemma permutep-single:
bij f =⇒ permutep f (Poly-Mapping.single a b) = Poly-Mapping.single (inv-into

UNIV f a) b
by transfer (auto simp: fun-eq-iff when-def inv-f-f surj-f-inv-f bij-is-inj bij-is-surj)

lemma mpoly-map-vars-id [simp]: mpoly-map-vars id = id
by transfer auto

lemma mpoly-map-vars-id ′ [simp]: mpoly-map-vars (λx. x) = id
by transfer auto

lemma lookup-permutep:
Poly-Mapping.lookup (permutep f m) x = (if bij f then Poly-Mapping.lookup m (f

x) else Poly-Mapping.lookup m x)
by transfer auto

lemma inj-permutep [intro]: inj (permutep (f :: ′a ⇒ ′a) :: - ⇒ ′a ⇒0
′b :: zero)

unfolding inj-def
proof (transfer , safe)

fix f :: ′a ⇒ ′a and x y :: ′a ⇒ ′b
assume eq: (if bij f then x ◦ f else x) = (if bij f then y ◦ f else y)
show x = y
proof (cases bij f )

case True
show ?thesis
proof

fix t :: ′a
from ‹bij f › obtain s where t = f s

by (auto dest!: bij-is-surj)
with eq and True show x t = y t

by (auto simp: fun-eq-iff )
qed

29



qed (use eq in auto)
qed

lemma surj-permutep [intro]: surj (permutep (f :: ′a ⇒ ′a) :: - ⇒ ′a ⇒0
′b :: zero)

unfolding surj-def
proof (transfer , safe)

fix f :: ′a ⇒ ′a and y :: ′a ⇒ ′b
assume fin: finite {t. y t 6= 0}
show ∃ x∈{f . finite {x. f x 6= 0}}. y = (if bij f then x ◦ f else x)
proof (cases bij f )

case True
with fin have finite (the-inv f −‘ {t. y t 6= 0})

by (intro finite-vimageI ) (auto simp: bij-is-inj bij-betw-the-inv-into)
moreover have y ◦ the-inv f ◦ f = y

using True by (simp add: fun-eq-iff the-inv-f-f bij-is-inj)
ultimately show ?thesis by (intro bexI [of - y ◦ the-inv f ]) (auto simp: True)

qed (use fin in auto)
qed

lemma bij-permutep [intro]: bij (permutep f )
using inj-permutep[of f ] surj-permutep[of f ] by (simp add: bij-def )

lemma mpoly-map-vars-map-mpoly:
mpoly-map-vars f (map-mpoly g p) = map-mpoly g (mpoly-map-vars f p)
by (transfer ′, transfer ′) (auto simp: fun-eq-iff )

lemma coeff-mpoly-map-vars:
fixes f :: nat ⇒ nat and p :: ′a :: zero mpoly
assumes bij f
shows MPoly-Type.coeff (mpoly-map-vars f p) mon =

MPoly-Type.coeff p (permutep f mon)
using assms by transfer ′ (simp add: lookup-permutep bij-permutep)

lemma permutep-monom-of-set:
assumes bij f
shows permutep f (monom-of-set A) = monom-of-set (f −‘ A)
using assms by transfer (auto simp: fun-eq-iff bij-is-inj finite-vimage-iff )

lemma permutep-comp: bij f =⇒ bij g =⇒ permutep (f ◦ g) = permutep g ◦
permutep f

by transfer ′ (auto simp: fun-eq-iff bij-comp)

lemma permutep-comp ′: bij f =⇒ bij g =⇒ permutep (f ◦ g) mon = permutep g
(permutep f mon)

by transfer (auto simp: fun-eq-iff bij-comp)

lemma mpoly-map-vars-comp:
bij f =⇒ bij g =⇒ mpoly-map-vars f (mpoly-map-vars g p) = mpoly-map-vars (f
◦ g) p

30



by transfer (auto simp: bij-permutep permutep-comp)

lemma permutep-id [simp]: permutep id mon = mon
by transfer auto

lemma permutep-id ′ [simp]: permutep (λx. x) mon = mon
by transfer auto

lemma inv-permutep [simp]:
fixes f :: ′a ⇒ ′a
assumes bij f
shows inv-into UNIV (permutep f ) = permutep (inv-into UNIV f )

proof
fix m :: ′a ⇒0

′b
show inv-into UNIV (permutep f ) m = permutep (inv-into UNIV f ) m

using permutep-comp ′[of inv-into UNIV f f m] assms inj-iff [of f ]
by (intro inv-f-eq) (auto simp: bij-imp-bij-inv bij-is-inj)

qed

lemma mpoly-map-vars-monom:
bij f =⇒ mpoly-map-vars f (monom m c) = monom (permutep (inv-into UNIV

f ) m) c
by transfer ′ (simp add: permutep-single bij-permutep)

lemma vars-mpoly-map-vars:
fixes f :: nat ⇒ nat and p :: ′a :: zero mpoly
assumes bij f
shows vars (mpoly-map-vars f p) = f ‘ vars p
using assms unfolding vars-def

proof transfer ′

fix f :: nat ⇒ nat and p :: (nat ⇒0 nat) ⇒0
′a

assume f : bij f
have eq: f (inv-into UNIV f x) = x for x

using f by (subst surj-f-inv-f [of f ]) (auto simp: bij-is-surj)
show

⋃
(keys ‘ keys (permutep (permutep f ) p)) = f ‘

⋃
(keys ‘ keys p)

proof safe
fix m x assume mx: m ∈ keys (permutep (permutep f ) p) x ∈ keys m
from mx have permutep f m ∈ keys p

by (auto simp: keys-permutep bij-permutep f )
with mx have f (inv-into UNIV f x) ∈ f ‘ (

⋃
m∈keys p. keys m)

by (intro imageI ) (auto intro!: bexI [of - permutep f m] simp: keys-permutep f
eq)

with eq show x ∈ f ‘ (
⋃

m∈keys p. keys m) by simp
next

fix m x assume mx: m ∈ keys p x ∈ keys m
from mx have permutep id m ∈ keys p by simp
also have id = inv-into UNIV f ◦ f using f by (intro ext) (auto simp: bij-is-inj

inv-f-f )
also have permutep . . . m = permutep f (permutep (inv-into UNIV f ) m)

31



by (simp add: permutep-comp f bij-imp-bij-inv)
finally have ∗∗: permutep f (permutep (inv-into UNIV f ) m) ∈ keys p .
moreover from f mx have f x ∈ keys (permutep (inv-into UNIV f ) m)

by (auto simp: keys-permutep bij-imp-bij-inv inv-f-f bij-is-inj)
ultimately show f x ∈

⋃
(keys ‘ keys (permutep (permutep f ) p)) using f

by (auto simp: keys-permutep bij-permutep)
qed

qed

lemma permutep-eq-monom-of-set-iff [simp]:
assumes bij f
shows permutep f mon = monom-of-set A ←→ mon = monom-of-set (f ‘ A)

proof
assume eq: permutep f mon = monom-of-set A
have permutep (inv-into UNIV f ) (permutep f mon) = monom-of-set (inv-into

UNIV f −‘ A)
using assms by (simp add: eq bij-imp-bij-inv assms permutep-monom-of-set)

also have inv-into UNIV f −‘ A = f ‘ A
using assms by (force simp: bij-is-surj image-iff inv-f-f bij-is-inj surj-f-inv-f )

also have permutep (inv-into UNIV f ) (permutep f mon) = permutep (f ◦ inv-into
UNIV f ) mon

using assms by (simp add: permutep-comp bij-imp-bij-inv)
also have f ◦ inv-into UNIV f = id

by (subst surj-iff [symmetric]) (insert assms, auto simp: bij-is-surj)
finally show mon = monom-of-set (f ‘ A) by simp

qed (insert assms, auto simp: permutep-monom-of-set inj-vimage-image-eq bij-is-inj)

lemma permutep-monom-of-set-permutes [simp]:
assumes π permutes A
shows permutep π (monom-of-set A) = monom-of-set A
using assms
by transfer (auto simp: if-splits fun-eq-iff permutes-in-image)

lemma mpoly-map-vars-0 [simp]: mpoly-map-vars f 0 = 0
by (transfer , transfer ′) (simp add: o-def )

lemma permutep-eq-0-iff [simp]: permutep f m = 0 ←→ m = 0
proof transfer

fix f :: ′a ⇒ ′a and m :: ′a ⇒ ′b assume finite {x. m x 6= 0}
show ((if bij f then m ◦ f else m) = (λk. 0 )) = (m = (λk. 0 ))
proof (cases bij f )

case True
hence (∀ x. m (f x) = 0 ) ←→ (∀ x. m x = 0 )

using bij-iff [of f ] by metis
with True show ?thesis by (auto simp: fun-eq-iff )

qed (auto simp: fun-eq-iff )
qed

lemma mpoly-map-vars-1 [simp]: mpoly-map-vars f 1 = 1

32



by (transfer , transfer ′) (auto simp: o-def fun-eq-iff when-def )

lemma permutep-Const0 [simp]: (
∧

x. f x = 0 ←→ x = 0 ) =⇒ permutep f (Const0
c) = Const0 c

unfolding Const0-def by transfer ′ (auto simp: when-def fun-eq-iff )

lemma permutep-add [simp]: permutep f (m1 + m2 ) = permutep f m1 + permutep
f m2

unfolding Const0-def by transfer ′ (auto simp: when-def fun-eq-iff )

lemma permutep-diff [simp]: permutep f (m1 − m2 ) = permutep f m1 − permutep
f m2

unfolding Const0-def by transfer ′ (auto simp: when-def fun-eq-iff )

lemma permutep-uminus [simp]: permutep f (−m) = −permutep f m
unfolding Const0-def by transfer ′ (auto simp: when-def fun-eq-iff )

lemma permutep-mult [simp]:
(
∧

x y. f (x + y) = f x + f y) =⇒ permutep f (m1 ∗ m2 ) = permutep f m1 ∗
permutep f m2
unfolding Const0-def by transfer ′ (auto simp: when-def fun-eq-iff prod-fun-compose-bij)

lemma mpoly-map-vars-Const [simp]: mpoly-map-vars f (Const c) = Const c
by transfer (auto simp: o-def fun-eq-iff when-def )

lemma mpoly-map-vars-add [simp]: mpoly-map-vars f (p + q) = mpoly-map-vars
f p + mpoly-map-vars f q

by transfer simp

lemma mpoly-map-vars-diff [simp]: mpoly-map-vars f (p − q) = mpoly-map-vars
f p − mpoly-map-vars f q

by transfer simp

lemma mpoly-map-vars-uminus [simp]: mpoly-map-vars f (−p) = −mpoly-map-vars
f p

by transfer simp

lemma permutep-smult:
permutep (permutep f ) (Poly-Mapping.map ((∗) c) p) =

Poly-Mapping.map ((∗) c) (permutep (permutep f ) p)
by transfer ′ (auto split: if-splits simp: fun-eq-iff )

lemma mpoly-map-vars-smult [simp]: mpoly-map-vars f (smult c p) = smult c
(mpoly-map-vars f p)

by transfer (simp add: permutep-smult)

lemma mpoly-map-vars-mult [simp]: mpoly-map-vars f (p ∗ q) = mpoly-map-vars
f p ∗ mpoly-map-vars f q

by transfer simp

33



lemma mpoly-map-vars-sum [simp]: mpoly-map-vars f (sum g A) = (
∑

x∈A. mpoly-map-vars
f (g x))

by (induction A rule: infinite-finite-induct) auto

lemma mpoly-map-vars-prod [simp]: mpoly-map-vars f (prod g A) = (
∏

x∈A.
mpoly-map-vars f (g x))

by (induction A rule: infinite-finite-induct) auto

lemma mpoly-map-vars-eq-0-iff [simp]: mpoly-map-vars f p = 0 ←→ p = 0
by transfer auto

lemma permutep-eq-iff [simp]: permutep f p = permutep f q ←→ p = q
by transfer (auto simp: comp-bij-eq-iff )

lemma mpoly-map-vars-Sum-any [simp]:
mpoly-map-vars f (Sum-any g) = Sum-any (λx. mpoly-map-vars f (g x))
by (simp add: Sum-any.expand-set)

lemma mpoly-map-vars-power [simp]: mpoly-map-vars f (p ^ n) = mpoly-map-vars
f p ^ n

by (induction n) auto

lemma mpoly-map-vars-monom-single [simp]:
assumes bij f
shows mpoly-map-vars f (monom (Poly-Mapping.single i n) c) =

monom (Poly-Mapping.single (f i) n) c
using assms by (simp add: mpoly-map-vars-monom permutep-single bij-imp-bij-inv

inv-inv-eq)

lemma insertion-mpoly-map-vars:
assumes bij f
shows insertion g (mpoly-map-vars f p) = insertion (g ◦ f ) p

proof −
have insertion g (mpoly-map-vars f p) =

(
∑

m. coeff p (permutep f m) ∗ (
∏

i. g i ^ lookup m i))
using assms by (simp add: insertion-altdef coeff-mpoly-map-vars)

also have . . . = Sum-any (λm. coeff p (permutep f m) ∗
Prod-any (λi. g (f i) ^ lookup m (f i)))

by (intro Sum-any.cong arg-cong[where ?f = λy. x ∗ y for x]
Prod-any.reindex-cong[OF assms]) (auto simp: o-def )

also have . . . = Sum-any (λm. coeff p m ∗ (
∏

i. g (f i) ^ lookup m i))
by (intro Sum-any.reindex-cong [OF bij-permutep[of f ], symmetric])

(auto simp: o-def lookup-permutep assms)
also have . . . = insertion (g ◦ f ) p

by (simp add: insertion-altdef )
finally show ?thesis .

qed

34



lemma permutep-cong:
assumes f permutes (−keys p) g permutes (−keys p) p = q
shows permutep f p = permutep g q

proof (intro poly-mapping-eqI )
fix k :: ′a
show lookup (permutep f p) k = lookup (permutep g q) k
proof (cases k ∈ keys p)

case False
with assms have f k /∈ keys p g k /∈ keys p

using permutes-in-image[of - −keys p k] by auto
thus ?thesis using assms by (auto simp: lookup-permutep permutes-bij in-keys-iff )

qed (insert assms, auto simp: lookup-permutep permutes-bij permutes-not-in)
qed

lemma mpoly-map-vars-cong:
assumes f permutes (−vars p) g permutes (−vars q) p = q
shows mpoly-map-vars f p = mpoly-map-vars g (q :: ′a :: zero mpoly)

proof (intro mpoly-eqI )
fix mon :: nat ⇒0 nat
show coeff (mpoly-map-vars f p) mon = coeff (mpoly-map-vars g q) mon
proof (cases keys mon ⊆ vars p)

case True
with assms have permutep f mon = permutep g mon

by (intro permutep-cong assms(1 ,2 )[THEN permutes-subset]) auto
thus ?thesis using assms by (simp add: coeff-mpoly-map-vars permutes-bij)

next
case False
hence ¬(keys mon ⊆ f ‘ vars q) ¬(keys mon ⊆ g ‘ vars q)

using assms by (auto simp: subset-iff permutes-not-in)
thus ?thesis using assms

by (subst (1 2 ) coeff-notin-vars)
(auto simp: coeff-notin-vars vars-mpoly-map-vars permutes-bij)

qed
qed

2.9 Symmetric polynomials

A polynomial is symmetric on a set of variables if it is invariant under any
permutation of that set.
definition symmetric-mpoly :: nat set ⇒ ′a :: zero mpoly ⇒ bool where

symmetric-mpoly A p = (∀π. π permutes A −→ mpoly-map-vars π p = p)

lemma symmetric-mpoly-empty [simp, intro]: symmetric-mpoly {} p
by (simp add: symmetric-mpoly-def )

A polynomial is trivially symmetric on any set of variables that do not occur
in it.
lemma symmetric-mpoly-orthogonal:

35



assumes vars p ∩ A = {}
shows symmetric-mpoly A p
unfolding symmetric-mpoly-def

proof safe
fix π assume π: π permutes A
with assms have π x = x if x ∈ vars p for x

using that permutes-not-in[of π A x ] by auto
from assms have mpoly-map-vars π p = mpoly-map-vars id p

by (intro mpoly-map-vars-cong permutes-subset[OF π] permutes-id) auto
also have . . . = p by simp
finally show mpoly-map-vars π p = p .

qed

lemma symmetric-mpoly-monom [intro]:
assumes keys m ∩ A = {}
shows symmetric-mpoly A (monom m c)
using assms vars-monom-subset[of m c] by (intro symmetric-mpoly-orthogonal)

auto

lemma symmetric-mpoly-subset:
assumes symmetric-mpoly A p B ⊆ A
shows symmetric-mpoly B p
unfolding symmetric-mpoly-def

proof safe
fix π assume π permutes B
with assms have π permutes A using permutes-subset by blast
with assms show mpoly-map-vars π p = p

by (auto simp: symmetric-mpoly-def )
qed

If a polynomial is symmetric over some set of variables, that set must either
be a subset of the variables occurring in the polynomial or disjoint from it.
lemma symmetric-mpoly-imp-orthogonal-or-subset:

assumes symmetric-mpoly A p
shows vars p ∩ A = {} ∨ A ⊆ vars p

proof (rule ccontr)
assume ¬(vars p ∩ A = {} ∨ A ⊆ vars p)
then obtain x y where xy: x ∈ vars p ∩ A y ∈ A − vars p by auto
define π where π = transpose x y
from xy have π: π permutes A

unfolding π-def by (intro permutes-swap-id) auto
from xy have y ∈ π ‘ vars p by (auto simp: π-def transpose-def )
also from π have π ‘ vars p = vars (mpoly-map-vars π p)

by (auto simp: vars-mpoly-map-vars permutes-bij)
also have mpoly-map-vars π p = p

using assms π by (simp add: symmetric-mpoly-def )
finally show False using xy by auto

qed

36



Symmetric polynomials are closed under ring operations.
lemma symmetric-mpoly-add [intro]:

symmetric-mpoly A p =⇒ symmetric-mpoly A q =⇒ symmetric-mpoly A (p + q)
unfolding symmetric-mpoly-def by simp

lemma symmetric-mpoly-diff [intro]:
symmetric-mpoly A p =⇒ symmetric-mpoly A q =⇒ symmetric-mpoly A (p − q)
unfolding symmetric-mpoly-def by simp

lemma symmetric-mpoly-uminus [intro]: symmetric-mpoly A p =⇒ symmetric-mpoly
A (−p)

unfolding symmetric-mpoly-def by simp

lemma symmetric-mpoly-uminus-iff [simp]: symmetric-mpoly A (−p) ←→ sym-
metric-mpoly A p

unfolding symmetric-mpoly-def by simp

lemma symmetric-mpoly-smult [intro]: symmetric-mpoly A p =⇒ symmetric-mpoly
A (smult c p)

unfolding symmetric-mpoly-def by simp

lemma symmetric-mpoly-mult [intro]:
symmetric-mpoly A p =⇒ symmetric-mpoly A q =⇒ symmetric-mpoly A (p ∗ q)
unfolding symmetric-mpoly-def by simp

lemma symmetric-mpoly-0 [simp, intro]: symmetric-mpoly A 0
and symmetric-mpoly-1 [simp, intro]: symmetric-mpoly A 1
and symmetric-mpoly-Const [simp, intro]: symmetric-mpoly A (Const c)
by (simp-all add: symmetric-mpoly-def )

lemma symmetric-mpoly-power [intro]:
symmetric-mpoly A p =⇒ symmetric-mpoly A (p ^ n)
by (induction n) (auto intro!: symmetric-mpoly-mult)

lemma symmetric-mpoly-sum [intro]:
(
∧

i. i ∈ B =⇒ symmetric-mpoly A (f i)) =⇒ symmetric-mpoly A (sum f B)
by (induction B rule: infinite-finite-induct) (auto intro!: symmetric-mpoly-add)

lemma symmetric-mpoly-prod [intro]:
(
∧

i. i ∈ B =⇒ symmetric-mpoly A (f i)) =⇒ symmetric-mpoly A (prod f B)
by (induction B rule: infinite-finite-induct) (auto intro!: symmetric-mpoly-mult)

An symmetric sum or product over polynomials yields a symmetric polyno-
mial:
lemma symmetric-mpoly-symmetric-sum:

assumes g permutes X
assumes

∧
x π. x ∈ X =⇒ π permutes A =⇒ mpoly-map-vars π (f x) = f (g x)

shows symmetric-mpoly A (
∑

x∈X . f x)
unfolding symmetric-mpoly-def

37



proof safe
fix π assume π: π permutes A
have mpoly-map-vars π (sum f X) = (

∑
x∈X . mpoly-map-vars π (f x))

by simp
also have . . . = (

∑
x∈X . f (g x))

by (intro sum.cong assms π refl)
also have . . . = (

∑
x∈g‘X . f x)

using assms by (subst sum.reindex) (auto simp: permutes-inj-on)
also have g ‘ X = X

using assms by (simp add: permutes-image)
finally show mpoly-map-vars π (sum f X) = sum f X .

qed

lemma symmetric-mpoly-symmetric-prod:
assumes g permutes X
assumes

∧
x π. x ∈ X =⇒ π permutes A =⇒ mpoly-map-vars π (f x) = f (g x)

shows symmetric-mpoly A (
∏

x∈X . f x)
unfolding symmetric-mpoly-def

proof safe
fix π assume π: π permutes A
have mpoly-map-vars π (prod f X) = (

∏
x∈X . mpoly-map-vars π (f x))

by simp
also have . . . = (

∏
x∈X . f (g x))

by (intro prod.cong assms π refl)
also have . . . = (

∏
x∈g‘X . f x)

using assms by (subst prod.reindex) (auto simp: permutes-inj-on)
also have g ‘ X = X

using assms by (simp add: permutes-image)
finally show mpoly-map-vars π (prod f X) = prod f X .

qed

If p is a polynomial that is symmetric on some subset of variables A, then for
the leading monomial of p, the exponents of these variables are decreasing
w. r. t. the variable ordering.
theorem lookup-lead-monom-decreasing:

assumes symmetric-mpoly A p
defines m ≡ lead-monom p
assumes i ∈ A j ∈ A i ≤ j
shows lookup m i ≥ lookup m j

proof (cases p = 0 )
case [simp]: False
show ?thesis
proof (intro leI notI )

assume less: lookup m i < lookup m j
define π where π = transpose i j
from assms have π: π permutes A

unfolding π-def by (intro permutes-swap-id) auto
have [simp]: π ◦ π = id π i = j π j = i

∧
k. k 6= i =⇒ k 6= j =⇒ π k = k

by (auto simp: π-def Fun.swap-def fun-eq-iff )

38



have 0 6= lead-coeff p by simp
also have lead-coeff p = MPoly-Type.coeff (mpoly-map-vars π p) (permutep π

m)
using π by (simp add: lead-coeff-def m-def coeff-mpoly-map-vars

permutes-bij permutep-comp ′ [symmetric])
also have mpoly-map-vars π p = p

using π assms by (simp add: symmetric-mpoly-def )
finally have permutep π m ≤ m by (auto simp: m-def )

moreover have lookup m i < lookup (permutep π m) i
and (∀ k<i. lookup m k = lookup (permutep π m) k)

using assms π less by (auto simp: lookup-permutep permutes-bij)
hence m < permutep π m

by (auto simp: less-poly-mapping-def less-fun-def )
ultimately show False by simp

qed
qed (auto simp: m-def )

2.10 The elementary symmetric polynomials

The k-th elementary symmetric polynomial for a finite set of variables A,
with k ranging between 1 and |A|, is the sum of the product of all subsets
of A with cardinality k:
lift-definition sym-mpoly-aux :: nat set ⇒ nat ⇒ (nat ⇒0 nat)⇒0

′a :: {zero-neq-one}
is
λX k mon. if finite X ∧ (∃Y . Y ⊆ X ∧ card Y = k ∧ mon = monom-of-set Y )

then 1 else 0
proof −

fix k :: nat and X :: nat set
show finite {x. (if finite X ∧ (∃Y⊆X . card Y = k ∧ x = monom-of-set Y ) then

1 else 0 ) 6=
(0 :: ′a)} (is finite ?A)

proof (cases finite X)
case True
have ?A ⊆ monom-of-set ‘ Pow X by auto
moreover from True have finite (monom-of-set ‘ Pow X) by simp
ultimately show ?thesis by (rule finite-subset)

qed auto
qed

lemma lookup-sym-mpoly-aux:
Poly-Mapping.lookup (sym-mpoly-aux X k) mon =

(if finite X ∧ (∃Y . Y ⊆ X ∧ card Y = k ∧ mon = monom-of-set Y ) then 1
else 0 )

by transfer ′ simp

lemma lookup-sym-mpoly-aux-monom-of-set [simp]:
assumes finite X Y ⊆ X card Y = k

39



shows Poly-Mapping.lookup (sym-mpoly-aux X k) (monom-of-set Y ) = 1
using assms by (auto simp: lookup-sym-mpoly-aux)

lemma keys-sym-mpoly-aux: m ∈ keys (sym-mpoly-aux A k) =⇒ keys m ⊆ A
by transfer ′ (auto split: if-splits simp: keys-monom-of-set)

lift-definition sym-mpoly :: nat set ⇒ nat ⇒ ′a :: {zero-neq-one} mpoly is
sym-mpoly-aux .

lemma vars-sym-mpoly-subset: vars (sym-mpoly A k) ⊆ A
using keys-sym-mpoly-aux by (auto simp: vars-def sym-mpoly.rep-eq)

lemma coeff-sym-mpoly:
MPoly-Type.coeff (sym-mpoly X k) mon =

(if finite X ∧ (∃Y . Y ⊆ X ∧ card Y = k ∧ mon = monom-of-set Y ) then 1
else 0 )

by transfer ′ (simp add: lookup-sym-mpoly-aux)

lemma sym-mpoly-infinite: ¬finite A =⇒ sym-mpoly A k = 0
by (transfer , transfer) auto

lemma sym-mpoly-altdef : sym-mpoly A k = (
∑

X | X ⊆ A ∧ card X = k. monom
(monom-of-set X) 1 )
proof (cases finite A)

case False
hence ∗: infinite {X . X ⊆ A ∧ infinite X}

by (rule infinite-infinite-subsets)
have infinite {X . X ⊆ A ∧ card X = 0}

by (rule infinite-super [OF - ∗]) auto
moreover have ∗∗: infinite {X . X ⊆ A ∧ finite X ∧ card X = k} if k 6= 0

using that infinite-card-subsets[of A k] False by auto
have infinite {X . X ⊆ A ∧ card X = k} if k 6= 0

by (rule infinite-super [OF - ∗∗[OF that]]) auto
ultimately show ?thesis using False

by (cases k = 0 ) (simp-all add: sym-mpoly-infinite)
next

case True
show ?thesis
proof (intro mpoly-eqI , goal-cases)

case (1 m)
show ?case
proof (cases ∃X . X ⊆ A ∧ card X = k ∧ m = monom-of-set X)

case False
thus ?thesis by (auto simp: coeff-sym-mpoly coeff-sum coeff-monom)

next
case True
then obtain X where X : X ⊆ A card X = k m = monom-of-set X

by blast
have coeff (

∑
X | X ⊆ A ∧ card X = k.

40



monom (monom-of-set X) 1 ) m = (
∑

X∈{X}. 1 ) unfolding coeff-sum
proof (intro sum.mono-neutral-cong-right ballI )

fix Y assume Y : Y ∈ {X . X ⊆ A ∧ card X = k} − {X}
hence X = Y if monom-of-set X = monom-of-set Y

using that finite-subset[OF X(1 )] finite-subset[of Y A] ‹finite A› by auto
thus coeff (monom (monom-of-set Y ) 1 ) m = 0

using X Y by (auto simp: coeff-monom when-def )
qed (insert X ‹finite A›, auto simp: coeff-monom)
thus ?thesis using ‹finite A› by (auto simp: coeff-sym-mpoly coeff-sum co-

eff-monom)
qed

qed
qed

lemma coeff-sym-mpoly-monom-of-set [simp]:
assumes finite X Y ⊆ X card Y = k
shows MPoly-Type.coeff (sym-mpoly X k) (monom-of-set Y ) = 1
using assms by (auto simp: coeff-sym-mpoly)

lemma coeff-sym-mpoly-0 : coeff (sym-mpoly X k) 0 = (if finite X ∧ k = 0 then 1
else 0 )
proof −

consider finite X k = 0 | finite X k 6= 0 | infinite X by blast
thus ?thesis
proof cases

assume finite X k = 0
hence coeff (sym-mpoly X k) (monom-of-set {}) = 1

by (subst coeff-sym-mpoly-monom-of-set) auto
thus ?thesis unfolding monom-of-set-empty using ‹finite X› ‹k = 0 › by simp

next
assume finite X k 6= 0
hence ¬(∃Y . finite Y ∧ Y ⊆ X ∧ card Y = k ∧ monom-of-set Y = 0 )

by auto
thus ?thesis using ‹k 6= 0 ›

by (auto simp: coeff-sym-mpoly)
next

assume infinite X
thus ?thesis by (simp add: coeff-sym-mpoly)

qed
qed

lemma symmetric-sym-mpoly [intro]:
assumes A ⊆ B
shows symmetric-mpoly A (sym-mpoly B k :: ′a :: zero-neq-one mpoly)
unfolding symmetric-mpoly-def

proof (safe intro!: mpoly-eqI )
fix π and mon :: nat ⇒0 nat assume π: π permutes A
from π have π ′: π permutes B by (rule permutes-subset) fact
from π have MPoly-Type.coeff (mpoly-map-vars π (sym-mpoly B k :: ′a mpoly))

41



mon =
MPoly-Type.coeff (sym-mpoly B k :: ′a mpoly) (permutep π mon)

by (simp add: coeff-mpoly-map-vars permutes-bij)
also have . . . = 1 ←→ MPoly-Type.coeff (sym-mpoly B k :: ′a mpoly) mon = 1
(is ?lhs = 1 ←→ ?rhs = 1 )

proof
assume ?rhs = 1

then obtain Y where finite B and Y : Y ⊆ B card Y = k mon = monom-of-set
Y

by (auto simp: coeff-sym-mpoly split: if-splits)
with π ′ have π −‘ Y ⊆ B card (π −‘ Y ) = k permutep π mon = monom-of-set

(π −‘ Y )
by (auto simp: permutes-in-image card-vimage-inj permutep-monom-of-set

permutes-bij permutes-inj permutes-surj)
thus ?lhs = 1 using ‹finite B› by (auto simp: coeff-sym-mpoly)

next
assume ?lhs = 1
then obtain Y where finite B and Y : Y ⊆ B card Y = k permutep π mon

= monom-of-set Y
by (auto simp: coeff-sym-mpoly split: if-splits)

from Y (1 ) have inj-on π Y using inj-on-subset[of π UNIV Y ] π ′

by (auto simp: permutes-inj)
with Y π ′ have π ‘ Y ⊆ B card (π ‘ Y ) = k mon = monom-of-set (π ‘ Y )

by (auto simp: permutes-in-image card-image permutep-monom-of-set
permutes-bij permutes-inj permutes-surj)

thus ?rhs = 1 using ‹finite B› by (auto simp: coeff-sym-mpoly)
qed
hence ?lhs = ?rhs

by (auto simp: coeff-sym-mpoly split: if-splits)
finally show MPoly-Type.coeff (mpoly-map-vars π (sym-mpoly B k :: ′a mpoly))

mon =
MPoly-Type.coeff (sym-mpoly B k :: ′a mpoly) mon .

qed

lemma insertion-sym-mpoly:
assumes finite X
shows insertion f (sym-mpoly X k) = (

∑
Y | Y ⊆ X ∧ card Y = k. prod f Y )

using assms
proof (transfer , transfer)

fix f :: nat ⇒ ′a and k :: nat and X :: nat set
assume X : finite X
have insertion-fun f (λmon.

if finite X ∧ (∃Y⊆X . card Y = k ∧ mon = monom-of-set Y ) then 1
else 0 ) =

(
∑

m. (
∏

v. f v ^ poly-mapping.lookup m v) when (∃Y⊆X . card Y = k ∧
m = monom-of-set Y ))

by (auto simp add: insertion-fun-def X when-def intro!: Sum-any.cong)
also have . . . = (

∑
m | ∃Y∈Pow X . card Y = k ∧ m = monom-of-set Y . (

∏
v.

f v ^ poly-mapping.lookup m v) when (∃Y⊆X . card Y = k ∧ m = monom-of-set

42



Y ))
by (rule Sum-any.expand-superset) (use X in auto)

also have . . . = (
∑

m | ∃Y∈Pow X . card Y = k ∧ m = monom-of-set Y . (
∏

v.
f v ^ poly-mapping.lookup m v))

by (intro sum.cong) (auto simp: when-def )
also have . . . = (

∑
Y | Y ⊆ X ∧ card Y = k. (

∏
v. f v ^ poly-mapping.lookup

(monom-of-set Y ) v))
by (rule sum.reindex-bij-witness[of - monom-of-set keys]) (auto simp: finite-subset[OF

- X ])
also have . . . = (

∑
Y | Y ⊆ X ∧ card Y = k.

∏
v∈Y . f v)

proof (intro sum.cong when-cong refl, goal-cases)
case (1 Y )
hence finite Y by (auto dest: finite-subset[OF - X ])
with 1 have (

∏
v. f v ^ poly-mapping.lookup (monom-of-set Y ) v) =

(
∏

v::nat. if v ∈ Y then f v else 1 )
by (intro Prod-any.cong) (auto simp: lookup-monom-of-set)

also have . . . = (
∏

v∈Y . f v)
by (rule Prod-any.conditionalize [symmetric]) fact+

finally show ?case .
qed
finally show insertion-fun f

(λmon. if finite X ∧ (∃Y⊆X . card Y = k ∧ mon = monom-of-set
Y ) then 1 else 0 ) =

(
∑

Y | Y ⊆ X ∧ card Y = k. prod f Y ) .
qed

lemma sym-mpoly-nz [simp]:
assumes finite A k ≤ card A
shows sym-mpoly A k 6= (0 :: ′a :: zero-neq-one mpoly)

proof −
from assms obtain B where B: B ⊆ A card B = k

using ex-subset-of-card by blast
with assms have coeff (sym-mpoly A k :: ′a mpoly) (monom-of-set B) = 1

by (intro coeff-sym-mpoly-monom-of-set)
thus ?thesis by auto

qed

lemma coeff-sym-mpoly-0-or-1 : coeff (sym-mpoly A k) m ∈ {0 , 1}
by (transfer , transfer) auto

lemma lead-coeff-sym-mpoly [simp]:
assumes finite A k ≤ card A
shows lead-coeff (sym-mpoly A k) = 1

proof −
from assms have lead-coeff (sym-mpoly A k) 6= 0 by simp
thus ?thesis using coeff-sym-mpoly-0-or-1 [of A k lead-monom (sym-mpoly A k)]

unfolding lead-coeff-def by blast
qed

43



lemma lead-monom-sym-mpoly:
assumes sorted xs distinct xs k ≤ length xs
shows lead-monom (sym-mpoly (set xs) k :: ′a :: zero-neq-one mpoly) =

monom-of-set (set (take k xs)) (is lead-monom ?p = -)
proof −

let ?m = lead-monom ?p
have sym: symmetric-mpoly (set xs) (sym-mpoly (set xs) k)

by (intro symmetric-sym-mpoly) auto
from assms have [simp]: card (set xs) = length xs

by (subst distinct-card) auto
from assms have lead-coeff ?p = 1

by (subst lead-coeff-sym-mpoly) auto
then obtain X where X : X ⊆ set xs card X = k ?m = monom-of-set X
unfolding lead-coeff-def by (subst (asm) coeff-sym-mpoly) (auto split: if-splits)

define ys where ys = map (λx. if x ∈ X then 1 else 0 :: nat) xs
have [simp]: length ys = length xs by (simp add: ys-def )

have ys-altdef : ys = map (lookup ?m) xs
unfolding ys-def using X finite-subset[OF X(1 )]
by (intro map-cong) (auto simp: lookup-monom-of-set)

define i where i = Min (insert (length xs) {i. i < length xs ∧ ys ! i = 0})
have i ≤ length xs by (auto simp: i-def )
have in-X : xs ! j ∈ X if j < i for j

using that unfolding i-def by (auto simp: ys-def )
have not-in-X : xs ! j /∈ X if i ≤ j j < length xs for j
proof −

have ne: {i. i < length xs ∧ ys ! i = 0} 6= {}
proof

assume [simp]: {i. i < length xs ∧ ys ! i = 0} = {}
from that show False by (simp add: i-def )

qed
hence Min {i. i < length xs ∧ ys ! i = 0} ∈ {i. i < length xs ∧ ys ! i = 0}

using that by (intro Min-in) auto
also have Min {i. i < length xs ∧ ys ! i = 0} = i

unfolding i-def using ne by (subst Min-insert) (auto simp: min-def )
finally have i: ys ! i = 0 i < length xs by simp-all

have lookup ?m (xs ! j) ≤ lookup ?m (xs ! i) using that assms
by (intro lookup-lead-monom-decreasing[OF sym])

(auto intro!: sorted-nth-mono simp: set-conv-nth)
also have . . . = 0 using i by (simp add: ys-altdef )

finally show ?thesis using that X finite-subset[OF X(1 )] by (auto simp:
lookup-monom-of-set)

qed

from X have k = card X
by simp

also have X = (λi. xs ! i) ‘ {i. i < length xs ∧ xs ! i ∈ X}

44



using X by (auto simp: set-conv-nth)
also have card . . . = (

∑
i | i < length xs ∧ xs ! i ∈ X . 1 )

using assms by (subst card-image) (auto intro!: inj-on-nth)
also have . . . = (

∑
i | i < length xs. if xs ! i ∈ X then 1 else 0 )

by (intro sum.mono-neutral-cong-left) auto
also have . . . = sum-list ys

by (auto simp: sum-list-sum-nth ys-def intro!: sum.cong)
also have ys = take i ys @ drop i ys by simp
also have sum-list . . . = sum-list (take i ys) + sum-list (drop i ys)

by (subst sum-list-append) auto
also have take i ys = replicate i 1 using ‹i ≤ length xs› in-X

by (intro replicate-eqI ) (auto simp: ys-def set-conv-nth)
also have sum-list . . . = i by simp
also have drop i ys = replicate (length ys − i) 0 using ‹i ≤ length xs› not-in-X

by (intro replicate-eqI ) (auto simp: ys-def set-conv-nth)
also have sum-list . . . = 0 by simp
finally have i = k by simp

have X = set (filter (λx. x ∈ X) xs)
using X by auto

also have xs = take i xs @ drop i xs by simp
also note filter-append
also have filter (λx. x ∈ X) (take i xs) = take i xs

using in-X by (intro filter-True) (auto simp: set-conv-nth)
also have filter (λx. x ∈ X) (drop i xs) = []

using not-in-X by (intro filter-False) (auto simp: set-conv-nth)
finally have X = set (take i xs) by simp
with ‹i = k› and X show ?thesis by simp

qed

2.11 Induction on the leading monomial

We show that the monomial ordering for a fixed set of variables is well-
founded, so we can perform induction on the leading monomial of a polyno-
mial.
definition monom-less-on where

monom-less-on A = {(m1 , m2 ). m1 < m2 ∧ keys m1 ⊆ A ∧ keys m2 ⊆ A}

lemma wf-monom-less-on:
assumes finite A
shows wf (monom-less-on A :: ((nat ⇒0

′b :: {zero, wellorder}) × -) set)
proof (rule wf-subset)

define n where n = Suc (Max (insert 0 A))
have less-n: k < n if k ∈ A for k

using that assms by (auto simp: n-def less-Suc-eq-le Max-ge-iff )

define f :: (nat ⇒0
′b) ⇒ ′b list where f = (λm. map (lookup m) [0 ..<n])

show wf (inv-image (lexn {(x,y). x < y} n) f )

45



by (intro wf-inv-image wf-lexn wellorder-class.wf )
show monom-less-on A ⊆ inv-image (lexn {(x, y). x < y} n) f
proof safe

fix m1 m2 :: nat ⇒0
′b assume (m1 , m2 ) ∈ monom-less-on A

hence m12 : m1 < m2 keys m1 ⊆ A keys m2 ⊆ A
by (auto simp: monom-less-on-def )

then obtain k where k: lookup m1 k < lookup m2 k ∀ i<k. lookup m1 i =
lookup m2 i

by (auto simp: less-poly-mapping-def less-fun-def )
have ¬(lookup m1 k = 0 ∧ lookup m2 k = 0 )
proof (intro notI )

assume lookup m1 k = 0 ∧ lookup m2 k = 0
hence [simp]: lookup m1 k = 0 lookup m2 k = 0 by blast+
from k(1 ) show False by simp

qed
hence k ∈ A using m12 by (auto simp: in-keys-iff )
hence k < n by (simp add: less-n)

define as where as = map (lookup m1 ) [0 ..<k]
define bs1 where bs1 = map (lookup m1 ) [Suc k..<n]
define bs2 where bs2 = map (lookup m2 ) [Suc k..<n]
have decomp: [0 ..<n] = [0 ..<k] @ [k] @ drop (Suc k) [0 ..<n]

using ‹k < n› by (simp flip: upt-conv-Cons upt-add-eq-append ′)
have [simp]: length as = k length bs1 = n − Suc k length bs2 = n − Suc k

by (simp-all add: as-def bs1-def bs2-def )

have f m1 = as @ [lookup m1 k] @ bs1 unfolding f-def
by (subst decomp) (simp add: as-def bs1-def )

moreover have f m2 = as @ [lookup m2 k] @ bs2 unfolding f-def
using k by (subst decomp) (simp add: as-def bs2-def )

ultimately show (m1 , m2 ) ∈ inv-image (lexn {(x,y). x < y} n) f
using k(1 ) ‹k < n› unfolding lexn-conv by fastforce

qed
qed

lemma lead-monom-induct [consumes 2 , case-names less]:
fixes p :: ′a :: zero mpoly
assumes fin: finite A and vars: vars p ⊆ A
assumes IH :

∧
p. vars p ⊆ A =⇒

(
∧

p ′. vars p ′ ⊆ A =⇒ lead-monom p ′ < lead-monom p =⇒ P p ′)
=⇒ P p

shows P p
using assms(2 )

proof (induct m ≡ lead-monom p arbitrary: p rule: wf-induct-rule[OF wf-monom-less-on[OF
fin]])

case (1 p)
show ?case
proof (rule IH )

fix p ′ :: ′a mpoly assume ∗: vars p ′ ⊆ A lead-monom p ′ < lead-monom p

46



show P p ′

by (rule 1 ) (insert ∗ 1 .prems keys-lead-monom-subset, auto simp: monom-less-on-def )
qed (insert 1 , auto)

qed

lemma lead-monom-induct ′ [case-names less]:
fixes p :: ′a :: zero mpoly
assumes IH :

∧
p. (

∧
p ′. vars p ′ ⊆ vars p =⇒ lead-monom p ′ < lead-monom p

=⇒ P p ′) =⇒ P p
shows P p

proof −
have finite (vars p) vars p ⊆ vars p by (auto simp: vars-finite)
thus ?thesis

by (induction rule: lead-monom-induct) (use IH in blast)
qed

2.12 The fundamental theorem of symmetric polynomials
lemma lead-coeff-sym-mpoly-powerprod:

assumes finite A
∧

x. x ∈ X =⇒ f x ∈ {1 ..card A}
shows lead-coeff (

∏
x∈X . sym-mpoly A (f (x:: ′a)) ^ g x) = 1

proof −
have eq: lead-coeff (sym-mpoly A (f x) ^ g x :: ′b mpoly) = 1 if x ∈ X for x

using that assms by (subst lead-coeff-power) (auto simp: lead-coeff-sym-mpoly
assms)

hence (
∏

x∈X . lead-coeff (sym-mpoly A (f x) ^ g x :: ′b mpoly)) = (
∏

x∈X . 1 )
by (intro prod.cong eq refl)

also have . . . = 1 by simp
finally have eq ′: (

∏
x∈X . lead-coeff (sym-mpoly A (f x) ^ g x :: ′b mpoly)) = 1

.
show ?thesis by (subst lead-coeff-prod) (auto simp: eq eq ′)

qed

context
fixes A :: nat set and xs n f and decr :: ′a :: comm-ring-1 mpoly ⇒ bool
defines xs ≡ sorted-list-of-set A
defines n ≡ card A
defines f ≡ (λi. if i < n then xs ! i else 0 )
defines decr ≡ (λp. ∀ i∈A. ∀ j∈A. i ≤ j −→

lookup (lead-monom p) i ≥ lookup (lead-monom p) j)
begin

The computation of the witness for the fundamental theorem works like this:
Given some polynomial p (that is assumed to be symmetric in the variables
in A), we inspect its leading monomial, which is of the form cXi1

1 . . . Xnin
where the A = {X1, . . . , Xn}, c contains only variables not in A, and the
sequence ij is decreasing. The latter holds because p is symmetric.
Now, we form the polynomial q := cei1−i2

1 ei2−i3
2 . . . einn , which has the same

leading term as p. Then p− q has a smaller leading monomial, so by induc-

47



tion, we can assume it to be of the required form and obtain a witness for
p− q.
Now, we only need to add cY i1−i2

1 . . . Y in
n to that witness and we obtain a

witness for p.
definition fund-sym-step-coeff :: ′a mpoly ⇒ ′a mpoly where

fund-sym-step-coeff p = monom (restrictpm (−A) (lead-monom p)) (lead-coeff p)

definition fund-sym-step-monom :: ′a mpoly ⇒ (nat ⇒0 nat) where
fund-sym-step-monom p = (

let g = (λi. if i < n then lookup (lead-monom p) (f i) else 0 )
in (

∑
i<n. Poly-Mapping.single (Suc i) (g i − g (Suc i))))

definition fund-sym-step-poly :: ′a mpoly ⇒ ′a mpoly where
fund-sym-step-poly p = (

let g = (λi. if i < n then lookup (lead-monom p) (f i) else 0 )
in fund-sym-step-coeff p ∗ (

∏
i<n. sym-mpoly A (Suc i) ^ (g i − g (Suc i))))

The following function computes the witness, with the convention that it
returns a constant polynomial if the input was not symmetric:
function (domintros) fund-sym-poly-wit :: ′a :: comm-ring-1 mpoly ⇒ ′a mpoly
mpoly where

fund-sym-poly-wit p =
(if ¬symmetric-mpoly A p ∨ lead-monom p = 0 ∨ vars p ∩ A = {} then Const

p else
fund-sym-poly-wit (p − fund-sym-step-poly p) +
monom (fund-sym-step-monom p) (fund-sym-step-coeff p))

by auto

lemma coeff-fund-sym-step-coeff : coeff (fund-sym-step-coeff p) m ∈ {lead-coeff p,
0}

by (auto simp: fund-sym-step-coeff-def coeff-monom when-def )

lemma vars-fund-sym-step-coeff : vars (fund-sym-step-coeff p) ⊆ vars p − A
unfolding fund-sym-step-coeff-def using keys-lead-monom-subset[of p]
by (intro order .trans[OF vars-monom-subset]) auto

lemma keys-fund-sym-step-monom: keys (fund-sym-step-monom p) ⊆ {1 ..n}
unfolding fund-sym-step-monom-def Let-def
by (intro order .trans[OF keys-sum] UN-least, subst keys-single) auto

lemma coeff-fund-sym-step-poly:
assumes C : ∀m. coeff p m ∈ C and ring-closed C
shows coeff (fund-sym-step-poly p) m ∈ C

proof −
interpret ring-closed C by fact
have ∗:

∧
m. coeff (p ^ x) m ∈ C if

∧
m. coeff p m ∈ C for p x

using that by (induction x)
(auto simp: coeff-mpoly-times mpoly-coeff-1 intro!: prod-fun-closed)

48



have ∗∗:
∧

m. coeff (prod f X) m ∈ C if
∧

i m. i ∈ X =⇒ coeff (f i) m ∈ C
for X and f :: nat ⇒ -
using that by (induction X rule: infinite-finite-induct)

(auto simp: coeff-mpoly-times mpoly-coeff-1 intro!: prod-fun-closed)
show ?thesis using C
unfolding fund-sym-step-poly-def Let-def fund-sym-step-coeff-def coeff-mpoly-times
by (intro prod-fun-closed)
(auto simp: coeff-monom when-def lead-coeff-def coeff-sym-mpoly intro!: ∗ ∗∗)

qed

We now show various relevant properties of the subtracted polynomial:

1. Its leading term is the same as that of the input polynomial.

2. It contains now new variables.

3. It is symmetric in the variables in A.

lemma fund-sym-step-poly:
shows finite A =⇒ p 6= 0 =⇒ decr p =⇒ lead-monom (fund-sym-step-poly p)

= lead-monom p
and finite A =⇒ p 6= 0 =⇒ decr p =⇒ lead-coeff (fund-sym-step-poly p) =

lead-coeff p
and finite A =⇒ p 6= 0 =⇒ decr p =⇒ fund-sym-step-poly p =

fund-sym-step-coeff p ∗ (
∏

x. sym-mpoly A x ^ lookup (fund-sym-step-monom
p) x)

and vars (fund-sym-step-poly p) ⊆ vars p ∪ A
and symmetric-mpoly A (fund-sym-step-poly p)

proof −
define g where g = (λi. if i < n then lookup (lead-monom p) (f i) else 0 )
define q where q = (

∏
i<n. sym-mpoly A (Suc i) ^ (g i − g (Suc i)) :: ′a

mpoly)
define c where c = monom (restrictpm (−A) (lead-monom p)) (lead-coeff p)
have [simp]: fund-sym-step-poly p = c ∗ q

by (simp add: fund-sym-step-poly-def fund-sym-step-coeff-def c-def q-def f-def
g-def )

have vars (c ∗ q) ⊆ vars p ∪ A
using keys-lead-monom-subset[of p]

vars-monom-subset[of restrictpm (−A) (lead-monom p) lead-coeff p]
unfolding c-def q-def
by (intro order .trans[OF vars-mult] order .trans[OF vars-prod] order .trans[OF

vars-power ]
Un-least UN-least order .trans[OF vars-sym-mpoly-subset]) auto

thus vars (fund-sym-step-poly p) ⊆ vars p ∪ A
by simp

have symmetric-mpoly A (c ∗ q) unfolding c-def q-def
by (intro symmetric-mpoly-mult symmetric-mpoly-monom symmetric-mpoly-prod

symmetric-mpoly-power symmetric-sym-mpoly) auto

49



thus symmetric-mpoly A (fund-sym-step-poly p) by simp

assume finite: finite A and [simp]: p 6= 0 and decr p
have set xs = A distinct xs and [simp]: length xs = n

using finite by (auto simp: xs-def n-def )
have [simp]: lead-coeff c = lead-coeff p lead-monom c = restrictpm (− A) (lead-monom

p)
by (simp-all add: c-def lead-monom-monom)

hence f-range [simp]: f i ∈ A if i < n for i
using that ‹set xs = A› by (auto simp: f-def set-conv-nth)

have sorted xs by (simp add: xs-def )
hence f-mono: f i ≤ f j if i ≤ j j < n for i j using that

by (auto simp: f-def n-def intro: sorted-nth-mono)
hence g-mono: g i ≥ g j if i ≤ j for i j

unfolding g-def using that using ‹decr p› by (auto simp: decr-def )

have ∗: (
∏

i<n. lead-coeff (sym-mpoly A (Suc i) ^ (g i − g (Suc i)) :: ′a mpoly))
=

(
∏

i<card A. 1 )
using ‹finite A› by (intro prod.cong) (auto simp: n-def lead-coeff-power)

hence lead-coeff q = (
∏

i<n. lead-coeff (sym-mpoly A (Suc i) ^ (g i − g (Suc
i)) :: ′a mpoly))

by (simp add: lead-coeff-prod lead-coeff-power n-def q-def )
also have . . . = (

∏
i<n. 1 )

using ‹finite A› by (intro prod.cong) (auto simp: lead-coeff-power n-def )
finally have [simp]: lead-coeff q = 1 by simp

have lead-monom q = (
∑

i<n. lead-monom (sym-mpoly A (Suc i) ^ (g i − g
(Suc i)) :: ′a mpoly))

using ∗ by (simp add: q-def lead-monom-prod lead-coeff-power n-def )
also have . . . = (

∑
i<n. of-nat (g i − g (Suc i)) ∗ lead-monom (sym-mpoly A

(Suc i) :: ′a mpoly))
using ‹finite A› by (intro sum.cong) (auto simp: lead-monom-power n-def )

also have . . . = (
∑

i<n. of-nat (g i − g (Suc i)) ∗ monom-of-set (set (take
(Suc i) xs)))

proof (intro sum.cong refl, goal-cases)
case (1 i)
have lead-monom (sym-mpoly A (Suc i) :: ′a mpoly) =

lead-monom (sym-mpoly (set xs) (Suc i) :: ′a mpoly)
by (simp add: ‹set xs = A›)

also from 1 have . . . = monom-of-set (set (take (Suc i) xs))
by (subst lead-monom-sym-mpoly) (auto simp: xs-def n-def )

finally show ?case by simp
qed
finally have lead-monom-q:

lead-monom q = (
∑

i<n. of-nat (g i − g (Suc i)) ∗ monom-of-set (set (take
(Suc i) xs))) .

have lead-monom (c ∗ q) = lead-monom c + lead-monom q

50



by (simp add: lead-monom-mult)
also have . . . = lead-monom p (is ?S = -)
proof (intro poly-mapping-eqI )

fix i :: nat
show lookup (lead-monom c + lead-monom q) i = lookup (lead-monom p) i
proof (cases i ∈ A)

case False
hence lookup (lead-monom c + lead-monom q) i = lookup (lead-monom p) i

+
(
∑

j<n. (g j − g (Suc j)) ∗ lookup (monom-of-set (set (take (Suc j)
xs))) i)

(is - = - + ?S) by (simp add: lookup-add lead-monom-q lookup-sum)
also from False have ?S = 0

by (intro sum.neutral) (auto simp: lookup-monom-of-set ‹set xs = A› dest!:
in-set-takeD)

finally show ?thesis by simp
next

case True
with ‹set xs = A› obtain m where m: i = xs ! m m < n

by (auto simp: set-conv-nth)
have lookup (lead-monom c + lead-monom q) i =

(
∑

j<n. (g j − g (Suc j)) ∗ lookup (monom-of-set (set (take (Suc j)
xs))) i)

using True by (simp add: lookup-add lookup-sum lead-monom-q)
also have . . . = (

∑
j | j < n ∧ i ∈ set (take (Suc j) xs). g j − g (Suc j))

by (intro sum.mono-neutral-cong-right) auto
also have {j. j < n ∧ i ∈ set (take (Suc j) xs)} = {m..<n}

using m ‹distinct xs› by (force simp: set-conv-nth nth-eq-iff-index-eq)
also have (

∑
j∈. . . . g j − g (Suc j)) = (

∑
j∈. . . . g j) − (

∑
j∈. . . . g (Suc

j))
by (subst sum-subtractf-nat) (auto intro!: g-mono)

also have (
∑

j∈{m..<n}. g (Suc j)) = (
∑

j∈{m<..n}. g j)
by (intro sum.reindex-bij-witness[of - λj. j − 1 Suc]) auto

also have . . . = (
∑

j∈{m<..<n}. g j)
by (intro sum.mono-neutral-right) (auto simp: g-def )

also have (
∑

j∈{m..<n}. g j) − . . . = (
∑

j∈{m..<n}−{m<..<n}. g j)
by (intro sum-diff-nat [symmetric]) auto

also have {m..<n}−{m<..<n} = {m} using m by auto
also have (

∑
j∈. . . . g j) = lookup (lead-monom p) i

using m by (auto simp: g-def not-less le-Suc-eq f-def )
finally show ?thesis .

qed
qed
finally show lead-monom (fund-sym-step-poly p) = lead-monom p by simp
show lead-coeff (fund-sym-step-poly p) = lead-coeff p

by (simp add: lead-coeff-mult)

have ∗: lookup (fund-sym-step-monom p) k = (if k ∈ {1 ..n} then g (k − 1 ) − g
k else 0 ) for k

51



proof −
have lookup (fund-sym-step-monom p) k =

(
∑

x∈(if k ∈ {1 ..n} then {k − 1} else {}). g (k − 1 ) − g k)
unfolding fund-sym-step-monom-def lookup-sum Let-def
by (intro sum.mono-neutral-cong-right)

(auto simp: g-def lookup-single when-def split: if-splits)
thus ?thesis by simp

qed
hence (

∏
x. sym-mpoly A x ^ lookup (fund-sym-step-monom p) x :: ′a mpoly) =

(
∏

x∈{1 ..n}. sym-mpoly A x ^ lookup (fund-sym-step-monom p) x)
by (intro Prod-any.expand-superset) auto

also have . . . = (
∏

x<n. sym-mpoly A (Suc x) ^ lookup (fund-sym-step-monom
p) (Suc x))

by (intro prod.reindex-bij-witness[of - Suc λi. i − 1 ]) auto
also have . . . = q

unfolding q-def by (intro prod.cong) (auto simp: ∗)
finally show fund-sym-step-poly p =

fund-sym-step-coeff p ∗ (
∏

x. sym-mpoly A x ^ lookup (fund-sym-step-monom
p) x)

by (simp add: c-def q-def f-def g-def fund-sym-step-monom-def fund-sym-step-coeff-def )
qed

If the input is well-formed, a single step of the procedure always decreases
the leading monomial.
lemma lead-monom-fund-sym-step-poly-less:

assumes finite A and lead-monom p 6= 0 and decr p
shows lead-monom (p − fund-sym-step-poly p) < lead-monom p

proof (cases p = fund-sym-step-poly p)
case True
thus ?thesis using assms by (auto simp: order .strict-iff-order)

next
case False
from assms have [simp]: p 6= 0 by auto
let ?q = fund-sym-step-poly p and ?m = lead-monom p
have coeff (p − ?q) ?m = 0

using fund-sym-step-poly[of p] assms by (simp add: lead-coeff-def )
moreover have lead-coeff (p − ?q) 6= 0 using False by auto
ultimately have lead-monom (p − ?q) 6= ?m

unfolding lead-coeff-def by auto
moreover have lead-monom (p − ?q) ≤ ?m

using fund-sym-step-poly[of p] assms
by (intro order .trans[OF lead-monom-diff ] max.boundedI ) auto

ultimately show ?thesis by (auto simp: order .strict-iff-order)
qed

Finally, we prove that the witness is indeed well-defined for all inputs.
lemma fund-sym-poly-wit-dom-aux:

assumes finite B vars p ⊆ B A ⊆ B
shows fund-sym-poly-wit-dom p

52



using assms(1−3 )
proof (induction p rule: lead-monom-induct)

case (less p)
have [simp]: finite A by (rule finite-subset[of - B]) fact+
show ?case
proof (cases lead-monom p = 0 ∨ ¬symmetric-mpoly A p)

case False
hence [simp]: p 6= 0 by auto
note decr = lookup-lead-monom-decreasing[of A p]
have vars (p − fund-sym-step-poly p) ⊆ B

using fund-sym-step-poly[of p] decr False less.prems less.hyps ‹A ⊆ B›
by (intro order .trans[OF vars-diff ]) auto

hence fund-sym-poly-wit-dom (p − local.fund-sym-step-poly p)
using False less.prems less.hyps decr
by (intro less.IH fund-sym-step-poly symmetric-mpoly-diff

lead-monom-fund-sym-step-poly-less) (auto simp: decr-def )
thus ?thesis using fund-sym-poly-wit.domintros by blast

qed (auto intro: fund-sym-poly-wit.domintros)
qed

lemma fund-sym-poly-wit-dom [intro]: fund-sym-poly-wit-dom p
proof −

consider ¬symmetric-mpoly A p | vars p ∩ A = {} | symmetric-mpoly A p A
⊆ vars p

using symmetric-mpoly-imp-orthogonal-or-subset[of A p] by blast
thus ?thesis
proof cases

assume symmetric-mpoly A p A ⊆ vars p
thus ?thesis using fund-sym-poly-wit-dom-aux[of vars p p] by (auto simp:

vars-finite)
qed (auto intro: fund-sym-poly-wit.domintros)

qed

termination fund-sym-poly-wit
by (intro allI fund-sym-poly-wit-dom)

Next, we prove that our witness indeed fulfils all the properties stated by
the fundamental theorem:

1. If the original polynomial was in R[X1, . . . , Xn, . . . , Xm] where the X1

to Xn are the symmetric variables, then the witness is a polynomial
in R[Xn+1, . . . , Xm][Y1, . . . , Yn]. This means that its coefficients are
polynomials in the variables of the original polynomial, minus the sym-
metric ones, and the (new and independent) variables of the witness
polynomial range from 1 to n.

2. Substituting the i-th symmetric polynomial ei(X1, . . . , Xn) for the Yi
variable for every i yields the original polynomial.

53



3. The coefficient ring R need not be the entire type; if the coefficients
of the original polynomial are in some subring, then the coefficients of
the coefficients of the witness also do.

lemma fund-sym-poly-wit-coeffs-aux:
assumes finite B vars p ⊆ B symmetric-mpoly A p A ⊆ B
shows vars (coeff (fund-sym-poly-wit p) m) ⊆ B − A
using assms

proof (induction p rule: fund-sym-poly-wit.induct)
case (1 p)
show ?case
proof (cases lead-monom p = 0 ∨ vars p ∩ A = {})

case False
have vars (p − fund-sym-step-poly p) ⊆ B

using 1 .prems fund-sym-step-poly[of p] by (intro order .trans[OF vars-diff ])
auto

with 1 False have vars (coeff (fund-sym-poly-wit (p − fund-sym-step-poly p))
m) ⊆ B − A

by (intro 1 symmetric-mpoly-diff fund-sym-step-poly) auto
hence vars (coeff (fund-sym-poly-wit (p − fund-sym-step-poly p) +

monom (fund-sym-step-monom p) (fund-sym-step-coeff p)) m) ⊆ B −
A

unfolding coeff-add coeff-monom using vars-fund-sym-step-coeff [of p] 1 .prems
by (intro order .trans[OF vars-add] Un-least order .trans[OF vars-monom-subset])

(auto simp: when-def )
thus ?thesis using 1 .prems False unfolding fund-sym-poly-wit.simps[of p] by

simp
qed (insert 1 .prems,

auto simp: fund-sym-poly-wit.simps[of p] mpoly-coeff-Const lead-monom-eq-0-iff )
qed

lemma fund-sym-poly-wit-coeffs:
assumes symmetric-mpoly A p
shows vars (coeff (fund-sym-poly-wit p) m) ⊆ vars p − A

proof (cases A ⊆ vars p)
case True
with fund-sym-poly-wit-coeffs-aux[of vars p p m] assms

show ?thesis by (auto simp: vars-finite)
next

case False
hence vars p ∩ A = {}

using symmetric-mpoly-imp-orthogonal-or-subset[OF assms] by auto
thus ?thesis by (auto simp: fund-sym-poly-wit.simps[of p] mpoly-coeff-Const)

qed

lemma fund-sym-poly-wit-vars: vars (fund-sym-poly-wit p) ⊆ {1 ..n}
proof (cases symmetric-mpoly A p ∧ A ⊆ vars p)

case True
define B where B = vars p

54



have finite B vars p ⊆ B symmetric-mpoly A p A ⊆ B
using True unfolding B-def by (auto simp: vars-finite)

thus ?thesis
proof (induction p rule: fund-sym-poly-wit.induct)

case (1 p)
show ?case
proof (cases lead-monom p = 0 ∨ vars p ∩ A = {})

case False
have vars (p − fund-sym-step-poly p) ⊆ B

using 1 .prems fund-sym-step-poly[of p] by (intro order .trans[OF vars-diff ])
auto

hence vars (local.fund-sym-poly-wit (p − local.fund-sym-step-poly p)) ⊆ {1 ..n}
using False 1 .prems

by (intro 1 symmetric-mpoly-diff fund-sym-step-poly) (auto simp: lead-monom-eq-0-iff )
hence vars (fund-sym-poly-wit (p − fund-sym-step-poly p) +

monom (fund-sym-step-monom p) (local.fund-sym-step-coeff p)) ⊆ {1 ..n}
by (intro order .trans[OF vars-add] Un-least order .trans[OF vars-monom-subset]

keys-fund-sym-step-monom) auto
thus ?thesis using 1 .prems False unfolding fund-sym-poly-wit.simps[of p]

by simp
qed (insert 1 .prems,

auto simp: fund-sym-poly-wit.simps[of p] mpoly-coeff-Const lead-monom-eq-0-iff )
qed

next
case False
then consider ¬symmetric-mpoly A p | symmetric-mpoly A p vars p ∩ A = {}

using symmetric-mpoly-imp-orthogonal-or-subset[of A p] by auto
thus ?thesis

by cases (auto simp: fund-sym-poly-wit.simps[of p])
qed

lemma fund-sym-poly-wit-insertion-aux:
assumes finite B vars p ⊆ B symmetric-mpoly A p A ⊆ B
shows insertion (sym-mpoly A) (fund-sym-poly-wit p) = p
using assms

proof (induction p rule: fund-sym-poly-wit.induct)
case (1 p)
from 1 .prems have decr p

using lookup-lead-monom-decreasing[of A p] by (auto simp: decr-def )
show ?case
proof (cases lead-monom p = 0 ∨ vars p ∩ A = {})

case False
have vars (p − fund-sym-step-poly p) ⊆ B

using 1 .prems fund-sym-step-poly[of p] by (intro order .trans[OF vars-diff ])
auto

hence insertion (sym-mpoly A) (fund-sym-poly-wit (p − fund-sym-step-poly p))
=

p − fund-sym-step-poly p using 1 False
by (intro 1 symmetric-mpoly-diff fund-sym-step-poly) auto

55



moreover have fund-sym-step-poly p =
fund-sym-step-coeff p ∗ (

∏
x. sym-mpoly A x ^ lookup

(fund-sym-step-monom p) x)
using 1 .prems finite-subset[of A B] False ‹decr p› by (intro fund-sym-step-poly)

auto
ultimately show ?thesis

unfolding fund-sym-poly-wit.simps[of p] by (auto simp: insertion-add)
qed (auto simp: fund-sym-poly-wit.simps[of p])

qed

lemma fund-sym-poly-wit-insertion:
assumes symmetric-mpoly A p
shows insertion (sym-mpoly A) (fund-sym-poly-wit p) = p

proof (cases A ⊆ vars p)
case False
hence vars p ∩ A = {}

using symmetric-mpoly-imp-orthogonal-or-subset[OF assms] by auto
thus ?thesis

by (auto simp: fund-sym-poly-wit.simps[of p])
next

case True
with fund-sym-poly-wit-insertion-aux[of vars p p] assms show ?thesis

by (auto simp: vars-finite)
qed

lemma fund-sym-poly-wit-coeff :
assumes ∀m. coeff p m ∈ C ring-closed C
shows ∀m m ′. coeff (coeff (fund-sym-poly-wit p) m) m ′ ∈ C
using assms(1 )

proof (induction p rule: fund-sym-poly-wit.induct)
case (1 p)
interpret ring-closed C by fact
show ?case
proof (cases ¬symmetric-mpoly A p ∨ lead-monom p = 0 ∨ vars p ∩ A = {})

case True
thus ?thesis using 1 .prems

by (auto simp: fund-sym-poly-wit.simps[of p] mpoly-coeff-Const)
next

case False
have ∗: ∀m m ′. coeff (coeff (fund-sym-poly-wit (p − fund-sym-step-poly p)) m)

m ′ ∈ C
using False 1 .prems assms coeff-fund-sym-step-poly [of p] by (intro 1 ) auto

show ?thesis
proof (intro allI , goal-cases)

case (1 m m ′)
thus ?case using ∗ False coeff-fund-sym-step-coeff [of p m ′] 1 .prems

by (auto simp: fund-sym-poly-wit.simps[of p] coeff-monom lead-coeff-def
when-def )

qed

56



qed
qed

2.13 Uniqueness

Next, we show that the polynomial representation of a symmetric polynomial
in terms of the elementary symmetric polynomials not only exists, but is
unique.
The key property here is that products of powers of elementary symmetric
polynomials uniquely determine the exponent vectors, i. e. if e1, . . . , en are
the elementary symmetric polynomials, a = (a1, . . . , an) and b = (b1, . . . , bn)
are vectors of natural numbers, then:

ea11 . . . eann = eb11 . . . ebnn ←→ a = b

We show this now.
lemma lead-monom-sym-mpoly-prod:

assumes finite A
shows lead-monom (

∏
i = 1 ..n. sym-mpoly A i ^ h i :: ′a mpoly) =

(
∑

i = 1 ..n. of-nat (h i) ∗ lead-monom (sym-mpoly A i :: ′a mpoly))
proof −

have (
∏

i=1 ..n. lead-coeff (sym-mpoly A i ^ h i :: ′a mpoly)) = 1
using assms unfolding n-def by (intro prod.neutral allI ) (auto simp: lead-coeff-power)

hence lead-monom (
∏

i=1 ..n. sym-mpoly A i ^ h i :: ′a mpoly) =
(
∑

i=1 ..n. lead-monom (sym-mpoly A i ^ h i :: ′a mpoly))
by (subst lead-monom-prod) auto

also have . . . = (
∑

i=1 ..n. of-nat (h i) ∗ lead-monom (sym-mpoly A i :: ′a
mpoly))

by (intro sum.cong refl, subst lead-monom-power)
(auto simp: lead-coeff-power assms n-def )

finally show ?thesis .
qed

lemma lead-monom-sym-mpoly-prod-notin:
assumes finite A k /∈ A
shows lookup (lead-monom (

∏
i=1 ..n. sym-mpoly A i ^ h i :: ′a mpoly)) k = 0

proof −
have xs: set xs = A distinct xs sorted xs and [simp]: length xs = n

using assms by (auto simp: xs-def n-def )
have lead-monom (

∏
i = 1 ..n. sym-mpoly A i ^ h i :: ′a mpoly) =

(
∑

i = 1 ..n. of-nat (h i) ∗ lead-monom (sym-mpoly (set xs) i :: ′a mpoly))
by (subst lead-monom-sym-mpoly-prod) (use xs assms in auto)

also have lookup . . . k = 0 unfolding lookup-sum
by (intro sum.neutral ballI , subst lead-monom-sym-mpoly)
(insert xs assms, auto simp: xs lead-monom-sym-mpoly lookup-monom-of-set

set-conv-nth)
finally show ?thesis .

qed

57



lemma lead-monom-sym-mpoly-prod-in:
assumes finite A k < n
shows lookup (lead-monom (

∏
i=1 ..n. sym-mpoly A i ^ h i :: ′a mpoly)) (xs !

k) =
(
∑

i=k+1 ..n. h i)
proof −

have xs: set xs = A distinct xs sorted xs and [simp]: length xs = n
using assms by (auto simp: xs-def n-def )

have lead-monom (
∏

i = 1 ..n. sym-mpoly A i ^ h i :: ′a mpoly) =
(
∑

i = 1 ..n. of-nat (h i) ∗ lead-monom (sym-mpoly (set xs) i :: ′a
mpoly))

by (subst lead-monom-sym-mpoly-prod) (use xs assms in simp-all)
also have . . . = (

∑
i=1 ..n. of-nat (h i) ∗ monom-of-set (set (take i xs)))

using xs by (intro sum.cong refl, subst lead-monom-sym-mpoly) auto
also have lookup . . . (xs ! k) = (

∑
i | i ∈ {1 ..n} ∧ xs ! k ∈ set (take i xs). h i)

unfolding lookup-sum lookup-monom-of-set by (intro sum.mono-neutral-cong-right)
auto

also have {i. i ∈ {1 ..n} ∧ xs ! k ∈ set (take i xs)} = {k+1 ..n}
proof (intro equalityI subsetI )

fix i assume i: i ∈ {k+1 ..n}
hence take i xs ! k = xs ! k k < n k < i using assms

by auto
with i show i ∈ {i. i ∈ {1 ..n} ∧ xs ! k ∈ set (take i xs)}

by (force simp: set-conv-nth)
qed (insert assms xs, auto simp: set-conv-nth Suc-le-eq nth-eq-iff-index-eq)
finally show ?thesis .

qed

lemma lead-monom-sym-poly-powerprod-inj:
assumes lead-monom (

∏
i. sym-mpoly A i ^ lookup m1 i :: ′a mpoly) =

lead-monom (
∏

i. sym-mpoly A i ^ lookup m2 i :: ′a mpoly)
assumes finite A keys m1 ⊆ {1 ..n} keys m2 ⊆ {1 ..n}
shows m1 = m2

proof (rule poly-mapping-eqI )
fix k :: nat
have xs: set xs = A distinct xs sorted xs and [simp]: length xs = n

using assms by (auto simp: xs-def n-def )

from assms(3 ,4 ) have ∗: i ∈ {1 ..n} if lookup m1 i 6= 0 ∨ lookup m2 i 6= 0 for
i

using that by (auto simp: subset-iff in-keys-iff )
have ∗∗: (

∏
i. sym-mpoly A i ^ lookup m i :: ′a mpoly) =

(
∏

i=1 ..n. sym-mpoly A i ^ lookup m i :: ′a mpoly) if m ∈ {m1 , m2}
for m

using that ∗ by (intro Prod-any.expand-superset subsetI ∗ ) (auto intro!:
Nat.gr0I )

have ∗∗∗: lead-monom (
∏

i=1 ..n. sym-mpoly A i ^ lookup m1 i :: ′a mpoly) =
lead-monom (

∏
i=1 ..n. sym-mpoly A i ^ lookup m2 i :: ′a mpoly)

58



using assms by (simp add: ∗∗ )

have sum-eq: sum (lookup m1 ) {Suc k..n} = sum (lookup m2 ) {Suc k..n} if k
< n for k

using arg-cong[OF ∗∗∗, of λm. lookup m (xs ! k)] ‹finite A› that
by (subst (asm) (1 2 ) lead-monom-sym-mpoly-prod-in) auto

show lookup m1 k = lookup m2 k
proof (cases k ∈ {1 ..n})

case False
hence lookup m1 k = 0 lookup m2 k = 0 using assms by (auto simp: in-keys-iff )
thus ?thesis by simp

next
case True
thus ?thesis
proof (induction n − k arbitrary: k rule: less-induct)

case (less l)
have sum (lookup m1 ) {Suc (l − 1 )..n} = sum (lookup m2 ) {Suc (l − 1 )..n}

using less by (intro sum-eq) auto
also have {Suc (l − 1 )..n} = insert l {Suc l..n}

using less by auto
also have sum (lookup m1 ) . . . = lookup m1 l + (

∑
i=Suc l..n. lookup m1 i)

by (subst sum.insert) auto
also have (

∑
i=Suc l..n. lookup m1 i) = (

∑
i=Suc l..n. lookup m2 i)

by (intro sum.cong less) auto
also have sum (lookup m2 ) (insert l {Suc l..n}) = lookup m2 l + (

∑
i=Suc

l..n. lookup m2 i)
by (subst sum.insert) auto

finally show lookup m1 l = lookup m2 l by simp
qed

qed
qed

We now show uniqueness by first showing that the zero polynomial has a
unique representation. We fix some polynomial p with p(e1, . . . , en) = 0 and
then show, by contradiction, that p = 0.
We have

p(e1, . . . , en) =
∑

ca1,...,ane
a1
1 . . . eann

and due to the injectivity of products of powers of elementary symmetric
polynomials, the leading term of that sum is precisely the leading term of
the summand with the biggest leading monomial, since summands cannot
cancel each other.
However, we also know that p(e1, . . . , en) = 0, so it follows that all summands
must have leading term 0, and it is then easy to see that they must all be
identically 0.
lemma sym-mpoly-representation-unique-aux:

fixes p :: ′a mpoly mpoly

59



assumes finite A insertion (sym-mpoly A) p = 0∧
m. vars (coeff p m) ∩ A = {} vars p ⊆ {1 ..n}

shows p = 0
proof (rule ccontr)

assume p: p 6= 0
have xs: set xs = A distinct xs sorted xs and [simp]: length xs = n

using assms by (auto simp: xs-def n-def )
define h where h = (λm. coeff p m ∗ (

∏
i. sym-mpoly A i ^ lookup m i))

define M where M = {m. coeff p m 6= 0}
define maxm where maxm = Max ((lead-monom ◦ h) ‘ M )
have finite M

by (auto intro!: finite-subset[OF - finite-coeff-support[of p]] simp: h-def M-def )
have keys-subset: keys m ⊆ {1 ..n} if coeff p m 6= 0 for m

using that assms coeff-notin-vars[of m p] by blast

have lead-coeff : lead-coeff (h m) = lead-coeff (coeff p m) (is ?th1 )
and lead-monom: lead-monom (h m) = lead-monom (coeff p m) +

lead-monom (
∏

i. sym-mpoly A i ^ lookup m i :: ′a mpoly) (is
?th2 )

if [simp]: coeff p m 6= 0 for m
proof −

have (
∏

i. sym-mpoly A i ^ lookup m i :: ′a mpoly) =
(
∏

i | lookup m i 6= 0 . sym-mpoly A i ^ lookup m i :: ′a mpoly)
by (intro Prod-any.expand-superset) (auto intro!: Nat.gr0I )

also have lead-coeff . . . = 1
using assms keys-subset[of m]
by (intro lead-coeff-sym-mpoly-powerprod) (auto simp: in-keys-iff subset-iff

n-def )
finally have eq: lead-coeff (

∏
i. sym-mpoly A i ^ lookup m i :: ′a mpoly) = 1 .

thus ?th1 unfolding h-def using ‹coeff p m 6= 0 › by (subst lead-coeff-mult)
auto

show ?th2 unfolding h-def by (subst lead-monom-mult) (auto simp: eq)
qed

have insertion (sym-mpoly A) p = (
∑

m∈M . h m)
unfolding insertion-altdef h-def M-def by (intro Sum-any.expand-superset)

auto
also have lead-monom . . . = maxm

unfolding maxm-def
proof (rule lead-monom-sum)

from p obtain m where coeff p m 6= 0
using mpoly-eqI [of p 0 ] by auto

hence m ∈ M
using ‹coeff p m 6= 0 › lead-coeff [of m] by (auto simp: M-def )

thus M 6= {} by auto
next

have restrict-lead-monom:
restrictpm A (lead-monom (h m)) =

lead-monom (
∏

i. sym-mpoly A i ^ lookup m i :: ′a mpoly)

60



if [simp]: coeff p m 6= 0 for m
proof −

have restrictpm A (lead-monom (h m)) =
restrictpm A (lead-monom (coeff p m)) +

restrictpm A (lead-monom (
∏

i. sym-mpoly A i ^ lookup m i :: ′a mpoly))
by (auto simp: lead-monom restrictpm-add)

also have restrictpm A (lead-monom (coeff p m)) = 0
using assms by (intro restrictpm-orthogonal order .trans[OF keys-lead-monom-subset])

auto
also have restrictpm A (lead-monom (

∏
i. sym-mpoly A i ^ lookup m i :: ′a

mpoly)) =
lead-monom (

∏
i. sym-mpoly A i ^ lookup m i :: ′a mpoly)

by (intro restrictpm-id order .trans[OF keys-lead-monom-subset]
order .trans[OF vars-Prod-any] UN-least order .trans[OF vars-power ]
vars-sym-mpoly-subset)

finally show ?thesis by simp
qed
show inj-on (lead-monom ◦ h) M
proof

fix m1 m2 assume m12 : m1 ∈ M m2 ∈ M (lead-monom ◦ h) m1 =
(lead-monom ◦ h) m2

hence [simp]: coeff p m1 6= 0 coeff p m2 6= 0 by (auto simp: M-def h-def )
have restrictpm A (lead-monom (h m1 )) = restrictpm A (lead-monom (h

m2 ))
using m12 by simp

hence lead-monom (
∏

i. sym-mpoly A i ^ lookup m1 i :: ′a mpoly) =
lead-monom (

∏
i. sym-mpoly A i ^ lookup m2 i :: ′a mpoly)

by (simp add: restrict-lead-monom)
thus m1 = m2

by (rule lead-monom-sym-poly-powerprod-inj)
(use ‹finite A› keys-subset[of m1 ] keys-subset[of m2 ] in auto)

qed
next

fix m assume m ∈ M
hence lead-coeff (h m) = lead-coeff (coeff p m)

by (simp add: lead-coeff M-def )
with ‹m ∈ M › show h m 6= 0 by (auto simp: M-def )

qed fact+
finally have maxm = 0 by (simp add: assms)

have only-zero: m = 0 if m ∈ M for m
proof −

from that have nz [simp]: coeff p m 6= 0 by (auto simp: M-def h-def )
from that have (lead-monom ◦ h) m ≤ maxm
using ‹finite M › unfolding maxm-def by (intro Max-ge imageI finite-imageI )

with ‹maxm = 0 › have [simp]: lead-monom (h m) = 0 by simp
have lookup-nzD: k ∈ {1 ..n} if lookup m k 6= 0 for k

using keys-subset[of m] that by (auto simp: in-keys-iff subset-iff )

61



have lead-monom (coeff p m) + 0 ≤ lead-monom (h m)
unfolding lead-monom[OF nz] by (intro add-left-mono) auto

also have . . . = 0 by simp
finally have lead-monom-0 : lead-monom (coeff p m) = 0 by simp

have sum (lookup m) {1 ..n} = 0
proof (rule ccontr)

assume sum (lookup m) {1 ..n} 6= 0
hence sum (lookup m) {1 ..n} > 0 by presburger
have 0 6= lead-coeff (MPoly-Type.coeff p m)

by auto
also have lead-coeff (MPoly-Type.coeff p m) = lead-coeff (h m)

by (simp add: lead-coeff )
also have lead-coeff (h m) = coeff (h m) 0

by (simp add: lead-coeff-def )
also have . . . = coeff (coeff p m) 0 ∗ coeff (

∏
i. sym-mpoly A i ^ lookup m

i) 0
by (simp add: h-def mpoly-coeff-times-0 )

also have (
∏

i. sym-mpoly A i ^ lookup m i) = (
∏

i=1 ..n. sym-mpoly A i ^
lookup m i)

by (intro Prod-any.expand-superset subsetI lookup-nzD) (auto intro!: Nat.gr0I )
also have coeff . . . 0 = (

∏
i=1 ..n. 0 ^ lookup m i)

unfolding mpoly-coeff-prod-0 mpoly-coeff-power-0
by (intro prod.cong) (auto simp: coeff-sym-mpoly-0 )

also have . . . = 0 ^ (
∑

i=1 ..n. lookup m i)
by (simp add: power-sum)

also have . . . = 0
using zero-power [OF ‹sum (lookup m) {1 ..n} > 0 ›] by simp

finally show False by auto
qed
hence lookup m k = 0 for k

using keys-subset[of m] by (cases k ∈ {1 ..n}) (auto simp: in-keys-iff )
thus m = 0 by (intro poly-mapping-eqI ) auto

qed

have 0 = insertion (sym-mpoly A) p
using assms by simp

also have insertion (sym-mpoly A) p = (
∑

m∈M . h m)
by fact

also have . . . = (
∑

m∈{0}. h m)
using only-zero by (intro sum.mono-neutral-left) (auto simp: h-def M-def )

also have . . . = coeff p 0
by (simp add: h-def )

finally have 0 /∈ M by (auto simp: M-def )
with only-zero have M = {} by auto
hence p = 0 by (intro mpoly-eqI ) (auto simp: M-def )
with ‹p 6= 0 › show False by contradiction

qed

The general uniqueness theorem now follows easily. This essentially shows

62



that the substitution Yi 7→ ei(X1, . . . , Xn) is an isomorphism between the
ring R[Y1, . . . , Yn] and the ring R[X1, . . . , Xn]

Sn of symmetric polynomials.
theorem sym-mpoly-representation-unique:

fixes p :: ′a mpoly mpoly
assumes finite A

insertion (sym-mpoly A) p = insertion (sym-mpoly A) q∧
m. vars (coeff p m) ∩ A = {}

∧
m. vars (coeff q m) ∩ A = {}

vars p ⊆ {1 ..n} vars q ⊆ {1 ..n}
shows p = q

proof −
have p − q = 0
proof (rule sym-mpoly-representation-unique-aux)

fix m show vars (coeff (p − q) m) ∩ A = {}
using vars-diff [of coeff p m coeff q m] assms(3 ,4 )[of m] by auto

qed (insert assms vars-diff [of p q], auto simp: insertion-diff )
thus ?thesis by simp

qed

theorem eq-fund-sym-poly-witI :
fixes p :: ′a mpoly and q :: ′a mpoly mpoly
assumes finite A symmetric-mpoly A p

insertion (sym-mpoly A) q = p∧
m. vars (coeff q m) ∩ A = {}

vars q ⊆ {1 ..n}
shows q = fund-sym-poly-wit p
using fund-sym-poly-wit-insertion[of p] fund-sym-poly-wit-vars[of p]

fund-sym-poly-wit-coeffs[of p]
by (intro sym-mpoly-representation-unique)

(insert assms, auto simp: fund-sym-poly-wit-insertion)

2.14 A recursive characterisation of symmetry

In a similar spirit to the proof of the fundamental theorem, we obtain a nice
recursive and executable characterisation of symmetry.

function (domintros) check-symmetric-mpoly where
check-symmetric-mpoly p ←→

(vars p ∩ A = {} ∨
A ⊆ vars p ∧ decr p ∧ check-symmetric-mpoly (p − fund-sym-step-poly p))

by auto

lemma check-symmetric-mpoly-dom-aux:
assumes finite B vars p ⊆ B A ⊆ B
shows check-symmetric-mpoly-dom p
using assms(1−3 )

proof (induction p rule: lead-monom-induct)
case (less p)
have [simp]: finite A by (rule finite-subset[of - B]) fact+

63



show ?case
proof (cases lead-monom p = 0 ∨ ¬decr p)

case False
hence [simp]: p 6= 0 by auto
have vars (p − fund-sym-step-poly p) ⊆ B

using fund-sym-step-poly[of p] False less.prems less.hyps ‹A ⊆ B›
by (intro order .trans[OF vars-diff ]) auto

hence check-symmetric-mpoly-dom (p − local.fund-sym-step-poly p)
using False less.prems less.hyps
by (intro less.IH fund-sym-step-poly symmetric-mpoly-diff

lead-monom-fund-sym-step-poly-less) (auto simp: decr-def )
thus ?thesis using check-symmetric-mpoly.domintros by blast

qed (auto intro: check-symmetric-mpoly.domintros simp: lead-monom-eq-0-iff )
qed

lemma check-symmetric-mpoly-dom [intro]: check-symmetric-mpoly-dom p
proof −

show ?thesis
proof (cases A ⊆ vars p)

assume A ⊆ vars p
thus ?thesis using check-symmetric-mpoly-dom-aux[of vars p p] by (auto simp:

vars-finite)
qed (auto intro: check-symmetric-mpoly.domintros)

qed

termination check-symmetric-mpoly
by (intro allI check-symmetric-mpoly-dom)

lemmas [simp del] = check-symmetric-mpoly.simps

lemma check-symmetric-mpoly-correct: check-symmetric-mpoly p←→ symmetric-mpoly
A p
proof (induction p rule: check-symmetric-mpoly.induct)

case (1 p)
have symmetric-mpoly A (p − fund-sym-step-poly p) ←→ symmetric-mpoly A p

(is ?lhs = ?rhs)
proof

assume ?rhs
thus ?lhs by (intro symmetric-mpoly-diff fund-sym-step-poly)

next
assume ?lhs
hence symmetric-mpoly A (p − fund-sym-step-poly p + fund-sym-step-poly p)

by (intro symmetric-mpoly-add fund-sym-step-poly)
thus ?rhs by simp

qed
moreover have decr p if symmetric-mpoly A p

using lookup-lead-monom-decreasing[of A p] that by (auto simp: decr-def )
ultimately show check-symmetric-mpoly p ←→ symmetric-mpoly A p

using 1 symmetric-mpoly-imp-orthogonal-or-subset[of A p]

64



by (auto simp: Let-def check-symmetric-mpoly.simps[of p] intro: symmetric-mpoly-orthogonal)
qed

end

2.15 Symmetric functions of roots of a univariate polynomial

Consider a factored polynomial

p(X) = cnX
n + cn−1X

n−1 + . . .+ c1X + c0 = (X − x1) . . . (X − xn) .

where cn is a unit.
Then any symmetric polynomial expression q(x1, . . . , xn) in the roots xi can
be written as a polynomial expression q′(c0, . . . , cn−1) in the ci.
Moreover, if the coefficients of q and the inverse of cn all lie in some subring,
the coefficients of q′ do as well.
context

fixes C :: ′b :: comm-ring-1 set
and A :: nat set
and root :: nat ⇒ ′a :: comm-ring-1
and l :: ′a ⇒ ′b
and q :: ′b mpoly
and n :: nat

defines n ≡ card A
assumes C : ring-closed C ∀m. coeff q m ∈ C
assumes l: ring-homomorphism l
assumes finite: finite A
assumes sym: symmetric-mpoly A q and vars: vars q ⊆ A

begin

interpretation ring-closed C by fact
interpretation ring-homomorphism l by fact

theorem symmetric-poly-of-roots-conv-poly-of-coeffs:
assumes c: cinv ∗ l c = 1 cinv ∈ C
assumes p = Polynomial.smult c (

∏
i∈A. [:−root i, 1 :])

obtains q ′ where vars q ′ ⊆ {0 ..<n}
and

∧
m. coeff q ′ m ∈ C

and insertion (l ◦ poly.coeff p) q ′ = insertion (l ◦ root) q
proof −

define q ′ where q ′ = fund-sym-poly-wit A q
define q ′′ where q ′′ =

mapm-mpoly (λm x. (
∏

i. (cinv ∗ l (− 1 ) ^ i) ^ lookup m i) ∗ insertion (λ-.
0 ) x) q ′

define reindex where reindex = (λi. if i ≤ n then n − i else i)
have bij reindex

by (intro bij-betwI [of reindex - - reindex]) (auto simp: reindex-def )
have vars q ′ ⊆ {1 ..n} unfolding q ′-def n-def by (intro fund-sym-poly-wit-vars)

65



hence vars q ′′ ⊆ {1 ..n}
unfolding q ′′-def using vars-mapm-mpoly-subset by auto

have insertion (l ◦ root) (insertion (sym-mpoly A) q ′) =
insertion (λn. insertion (l ◦ root) (sym-mpoly A n))
(map-mpoly (insertion (l ◦ root)) q ′)

by (rule insertion-insertion)
also have insertion (sym-mpoly A) q ′ = q

unfolding q ′-def by (intro fund-sym-poly-wit-insertion sym)
also have insertion (λi. insertion (l ◦ root) (sym-mpoly A i))

(map-mpoly (insertion (l ◦ root)) q ′) =
insertion (λi. cinv ∗ l ((− 1 ) ^ i) ∗ l (poly.coeff p (n − i)))
(map-mpoly (insertion (l ◦ root)) q ′)

proof (intro insertion-irrelevant-vars, goal-cases)
case (1 i)
hence i ∈ vars q ′ using vars-map-mpoly-subset by auto
also have . . . ⊆ {1 ..n} unfolding q ′-def n-def

by (intro fund-sym-poly-wit-vars)
finally have i: i ∈ {1 ..n} .
have insertion (l ◦ root) (sym-mpoly A i) =

l (
∑

Y | Y ⊆ A ∧ card Y = i. prod root Y )
using ‹finite A› by (simp add: insertion-sym-mpoly)

also have . . . = cinv ∗ l (c ∗ (
∑

Y | Y ⊆ A ∧ card Y = i. prod root Y ))
unfolding mult mult.assoc[symmetric] ‹cinv ∗ l c = 1 › by simp

also have c ∗ (
∑

Y | Y ⊆ A ∧ card Y = i. prod root Y ) = ((−1 ) ^ i ∗
poly.coeff p (n − i))

using coeff-poly-from-roots[of A n − i root] i assms finite
by (auto simp: n-def minus-one-power-iff )

finally show ?case by (simp add: o-def )
qed
also have map-mpoly (insertion (l ◦ root)) q ′ = map-mpoly (insertion (λ-. 0 ))

q ′

using fund-sym-poly-wit-coeffs[OF sym] vars
by (intro map-mpoly-cong insertion-irrelevant-vars) (auto simp: q ′-def )

also have insertion (λi. cinv ∗ l ((− 1 ) ^ i) ∗ l (poly.coeff p (n − i))) . . . =
insertion (λi. l (poly.coeff p (n − i))) q ′′

unfolding insertion-substitute-linear map-mpoly-conv-mapm-mpoly q ′′-def
by (subst mapm-mpoly-comp) auto

also have . . . = insertion (l ◦ poly.coeff p) (mpoly-map-vars reindex q ′′)
using ‹bij reindex› and ‹vars q ′′ ⊆ {1 ..n}›
by (subst insertion-mpoly-map-vars)

(auto simp: o-def reindex-def intro!: insertion-irrelevant-vars)
finally have insertion (l ◦ root) q =

insertion (l ◦ poly.coeff p) (mpoly-map-vars reindex q ′′) .

moreover have coeff (mpoly-map-vars reindex q ′′) m ∈ C for m
unfolding q ′′-def q ′-def using ‹bij reindex› fund-sym-poly-wit-coeff [of q C A]

C ‹cinv ∈ C ›
by (auto simp: coeff-mpoly-map-vars

66



intro!: mult-closed Prod-any-closed power-closed Sum-any-closed)
moreover have vars (mpoly-map-vars reindex q ′′) ⊆ {0 ..<n}

using ‹bij reindex› and ‹vars q ′′ ⊆ {1 ..n}›
by (subst vars-mpoly-map-vars) (auto simp: reindex-def subset-iff )+

ultimately show ?thesis using that[of mpoly-map-vars reindex q ′′] by auto
qed

corollary symmetric-poly-of-roots-conv-poly-of-coeffs-monic:
assumes p = (

∏
i∈A. [:−root i, 1 :])

obtains q ′ where vars q ′ ⊆ {0 ..<n}
and

∧
m. coeff q ′ m ∈ C

and insertion (l ◦ poly.coeff p) q ′ = insertion (l ◦ root) q
proof −

obtain q ′ where vars q ′ ⊆ {0 ..<n}
and

∧
m. coeff q ′ m ∈ C

and insertion (l ◦ poly.coeff p) q ′ = insertion (l ◦ root) q
by (rule symmetric-poly-of-roots-conv-poly-of-coeffs[of 1 1 p])

(use assms in auto)
thus ?thesis by (intro that[of q ′]) auto

qed

As a corollary, we obtain the following: Let R,S be rings with R ⊆ S.
Consider a polynomial p ∈ R[X] whose leading coefficient c is a unit in R and
that has a full set of roots x1, . . . , xn ∈ S, i. e. p(X) = c(X−x1) . . . (X−xn).
Let q ∈ R[X1, . . . , Xn] be some symmetric polynomial expression in the
roots. Then q(x1, . . . , xn) ∈ R.
A typical use case is R = Q and S = C, i. e. any symmetric polynomial
expression with rational coefficients in the roots of a rational polynomial is
again rational. Similarly, any symmetric polynomial expression with integer
coefficients in the roots of a monic integer polynomial is agan an integer.
This is remarkable, since the roots themselves are usually not rational (pos-
sibly not even real). This particular fact is a key ingredient used in the
standard proof that π is transcendental.
corollary symmetric-poly-of-roots-in-subring:

assumes cinv ∗ l c = 1 cinv ∈ C
assumes p = Polynomial.smult c (

∏
i∈A. [:−root i, 1 :])

assumes ∀ i. l (poly.coeff p i) ∈ C
shows insertion (λx. l (root x)) q ∈ C

proof −
obtain q ′

where q ′: vars q ′ ⊆ {0 ..<n}
∧

m. coeff q ′ m ∈ C
insertion (l ◦ poly.coeff p) q ′ = insertion (l ◦ root) q

by (rule symmetric-poly-of-roots-conv-poly-of-coeffs[of cinv c p])
(use assms in simp-all)

have insertion (l ◦ poly.coeff p) q ′ ∈ C using C assms unfolding insertion-altdef
by (intro Sum-any-closed mult-closed q ′ Prod-any-closed power-closed) auto

also have insertion (l ◦ poly.coeff p) q ′ = insertion (l ◦ root) q by fact

67



finally show ?thesis by (simp add: o-def )
qed

corollary symmetric-poly-of-roots-in-subring-monic:
assumes p = (

∏
i∈A. [:−root i, 1 :])

assumes ∀ i. l (poly.coeff p i) ∈ C
shows insertion (λx. l (root x)) q ∈ C

proof −
interpret ring-closed C by fact
interpret ring-homomorphism l by fact
show ?thesis

by (rule symmetric-poly-of-roots-in-subring[of 1 1 p]) (use assms in auto)
qed

end

end

3 Executable Operations for Symmetric Polyno-
mials

theory Symmetric-Polynomials-Code
imports Symmetric-Polynomials Polynomials.MPoly-Type-Class-FMap

begin

Lastly, we shall provide some code equations to get executable code for
operations related to symmetric polynomials, including, most notably, the
fundamental theorem of symmetric polynomials and the recursive symmetry
check.
lemma Ball-subset-right:

assumes T ⊆ S ∀ x∈S−T . P x
shows (∀ x∈S . P x) = (∀ x∈T . P x)
using assms by auto

lemma compute-less-pp[code]:
xs < (ys :: ′a :: linorder ⇒0

′b :: {zero, linorder}) ←→
(∃ i∈keys xs ∪ keys ys. lookup xs i < lookup ys i ∧
(∀ j∈keys xs ∪ keys ys. j < i −→ lookup xs j = lookup ys j))

proof transfer
fix f g :: ′a ⇒ ′b
let ?dom = {i. f i 6= 0} ∪ {i. g i 6= 0}
have less-fun f g ←→ (∃ k. f k < g k ∧ (∀ k ′<k. f k ′ = g k ′))

unfolding less-fun-def ..
also have . . . ←→ (∃ i. f i < g i ∧ (i ∈ ?dom ∧ (∀ j∈?dom. j < i −→ f j = g

j)))
proof (intro iff-exI conj-cong refl)

fix k assume f k < g k

68



hence k: k ∈ ?dom by auto
have (∀ k ′<k. f k ′ = g k ′) = (∀ k ′∈{..<k}. f k ′ = g k ′)

by auto
also have . . . ←→ (∀ j∈({k. f k 6= 0} ∪ {k. g k 6= 0}) ∩ {..<k}. f j = g j)

by (intro Ball-subset-right) auto
also have . . . ←→ (∀ j∈({k. f k 6= 0} ∪ {k. g k 6= 0}). j < k −→ f j = g j)

by auto
finally show (∀ k ′<k. f k ′ = g k ′) ←→ k ∈ ?dom ∧ (∀ j∈?dom. j < k −→ f j

= g j)
using k by simp

qed
also have . . . ←→ (∃ i∈?dom. f i < g i ∧ (∀ j∈?dom. j < i −→ f j = g j))

by (simp add: Bex-def conj-ac)
finally show less-fun f g ←→ (∃ i∈?dom. f i < g i ∧ (∀ j∈?dom. j < i −→ f j

= g j)) .
qed

lemma compute-le-pp[code]:
xs ≤ ys ←→ xs = ys ∨ xs < (ys :: - ⇒0 -)
by (auto simp: order .order-iff-strict)

lemma vars-code [code]:
vars (MPoly p) = (

⋃
m∈keys p. keys m)

unfolding vars-def by transfer ′ simp

lemma mpoly-coeff-code [code]: coeff (MPoly p) = lookup p
by transfer ′ simp

lemma sym-mpoly-code [code]:
sym-mpoly (set xs) k = (

∑
X∈Set.filter (λX . card X = k) (Pow (set xs)). monom

(monom-of-set X) 1 )
by (simp add: sym-mpoly-altdef Set.filter-def )

lemma monom-of-set-code [code]:
monom-of-set (set xs) = Pm-fmap (fmap-of-list (map (λx. (x, 1 )) xs))
(is ?lhs = ?rhs)

proof (intro poly-mapping-eqI )
fix k
show lookup ?lhs k = lookup ?rhs k

by (induction xs) (auto simp: lookup-monom-of-set fmlookup-default-def )
qed

lemma restrictpm-code [code]:
restrictpm A (Pm-fmap m) = Pm-fmap (fmrestrict-set A m)
by (intro poly-mapping-eqI ) (auto simp: lookup-restrictpm fmlookup-default-def )

lemmas [code] = check-symmetric-mpoly-correct [symmetric]

notepad

69



begin
define X Y Z :: int mpoly where X = Var 1 Y = Var 2 Z = Var 3
define e1 e2 :: int mpoly mpoly where e1 = Var 1 e2 = Var 2
have sym-mpoly {1 , 2 , 3} 2 = X ∗ Y + X ∗ Z + Y ∗ Z

unfolding X-Y-Z-def by eval
have symmetric-mpoly {1 , 2} (X ^ 3 + Y ^ 3 )

unfolding X-Y-Z-def by eval
have fund-sym-poly-wit {1 , 2} (X ^ 3 + Y ^ 3 ) = e1 ^ 3 − 3 ∗ e1 ∗ e2

unfolding X-Y-Z-def e1-e2-def by eval
end

end

References

[1] B. Blum-Smith and S. Coskey. The fundamental theorem on symmetric
polynomials: History’s first whiff of Galois theory. 48, 01 2013.

70


	Vieta's Formulas
	Auxiliary material
	Main proofs

	Symmetric Polynomials
	Auxiliary facts
	Subrings and ring homomorphisms
	Various facts about multivariate polynomials
	Restricting a monomial to a subset of variables
	Mapping over a polynomial
	The leading monomial and leading coefficient
	Turning a set of variables into a monomial
	Permuting the variables of a polynomial
	Symmetric polynomials
	The elementary symmetric polynomials
	Induction on the leading monomial
	The fundamental theorem of symmetric polynomials
	Uniqueness
	A recursive characterisation of symmetry
	Symmetric functions of roots of a univariate polynomial

	Executable Operations for Symmetric Polynomials

