
Swap Distance
Manuel Eberl

January 23, 2026

Given two lists that are permutations of one another, the swap distance
(also known as the Kendall tau distance) is the minimum number of swap
operations of adjacent elements required to make the two lists the same.

Equivalently, the swap distance of two finite linear orders � and E is the
number of disagreements of the two orders, i.e. of pairs (x, y) such that x ≺ y
and y C x.

This article defines these two notions of swap distance as well as their
equivalence under the obvious isomorphism between lists and linear orders
given by interpreting a list as a ranking of elements in descending order.

An efficient O(n log n) algorithm to compute the swap distance is also
provided via the connection to the number of inversions of a list, for which
an efficient algorithm is already available in the AFP.

1

Contents
1 The swap distance 3

1.1 Preliminaries . 3
1.2 The swap distance of two linear orders . 4
1.3 The swap distance of two lists . 7
1.4 The relationship between swap distance and inversions 8
1.5 Swapping adjacent list elements . 9
1.6 Swapping non-adjacent list elements . 11
1.7 Swap distance as minimal number of adjacent swaps to make two lists equal 11

2

1 The swap distance
theory Swap-Distance

imports Rankings.Rankings List-Inversions.List-Inversions
begin

The swap distance (also known as the Kendall tau distance) of two finite linear orders
R, S is the number of pairs (x, y) such that (x, y) ∈ R and (y, x) ∈ S.
By using the obvious correspondence between finite linear orders and lists of fixed length,
the notion is transferred to lists. In this case, an alternative interpretation of the swap
distance is as the smallest number of swaps of adjacent elements one can perform in
order to make one list match the other one.
The swap distance is strongly related to the number of inversions of a list of linearly-
ordered elements: if we rename the elements from 1 to n such that the first list becomes
[1, . . . , n], the swap distance is exactly the number of inversions in the second list.
This correspondence can be used to compute the swap distance in O(n log n) time using
the merge sort inversion count algorithm (which is available in the AFP).

1.1 Preliminaries
primrec find-index-aux :: nat ⇒ (′a ⇒ bool) ⇒ ′a list ⇒ nat where

find-index-aux acc P [] = acc
| find-index-aux acc P (x # xs) = (if P x then acc else find-index-aux (acc+1) P xs)

lemma find-index-aux-correct: find-index-aux acc P xs = find-index P xs + acc
〈proof 〉

lemma find-index-aux-code [code]: find-index P xs = find-index-aux 0 P xs
〈proof 〉

lemma inversions-map:
fixes xs :: ′a :: linorder list
assumes strict-mono-on (set xs) f
shows inversions (map f xs) = inversions xs
〈proof 〉

lemma inversion-number-map:
fixes xs :: ′a :: linorder list
assumes strict-mono-on (set xs) f
shows inversion-number (map f xs) = inversion-number xs
〈proof 〉

lemma inversion-number-Cons:
inversion-number (x # xs) = length (filter (λy. y < x) xs) + inversion-number xs
〈proof 〉

3

fun (in preorder) inversion-number-between-sorted-aux :: nat ⇒ ′a list ⇒ ′a list ⇒ nat where
inversion-number-between-sorted-aux acc [] ys = acc
| inversion-number-between-sorted-aux acc xs [] = acc
| inversion-number-between-sorted-aux acc (x # xs) (y # ys) =

(if ¬less y x then
inversion-number-between-sorted-aux acc xs (y # ys)

else
inversion-number-between-sorted-aux (acc + length (x # xs)) (x # xs) ys)

lemma inversion-number-between-sorted-aux-correct:
inversion-number-between-sorted-aux acc xs ys = acc + inversion-number-between-sorted xs ys
〈proof 〉

lemma inversion-number-between-sorted-code [code]:
inversion-number-between-sorted xs ys = inversion-number-between-sorted-aux 0 xs ys
〈proof 〉

1.2 The swap distance of two linear orders

We first define the set of “discrepancies” between the two orders.
definition swap-dist-relation-aux :: (′a ⇒ ′a ⇒ bool) ⇒ (′a ⇒ ′a ⇒ bool) ⇒ (′a × ′a) set
where

swap-dist-relation-aux R1 R2 = {(x,y). R1 x y ∧ ¬R1 y x ∧ R2 y x ∧ ¬R2 x y}

On a linear order, the following simpler definition holds.
lemma swap-dist-relation-aux-def-linorder :

assumes linorder-on A R1 linorder-on A R2
shows swap-dist-relation-aux R1 R2 = {(x,y). R1 x y ∧ ¬R2 x y}
〈proof 〉

lemma swap-dist-relation-aux-same [simp]: swap-dist-relation-aux R R = {}
〈proof 〉

lemma swap-dist-relation-aux-commute: swap-dist-relation-aux R1 R2 = prod.swap ‘ swap-dist-relation-aux
R2 R1
〈proof 〉

lemma swap-dist-relation-aux-commute ′: bij-betw prod.swap (swap-dist-relation-aux R1 R2) (swap-dist-relation-aux
R2 R1)
〈proof 〉

lemma swap-dist-relation-aux-dual:
swap-dist-relation-aux R1 R2 = prod.swap ‘ swap-dist-relation-aux (λx y. R1 y x) (λx y. R2 y

x)
〈proof 〉

lemma swap-dist-relation-aux-triangle:

4

assumes linorder-on A R1 linorder-on A R2 linorder-on A R3
shows swap-dist-relation-aux R1 R3 ⊆ swap-dist-relation-aux R1 R2 ∪ swap-dist-relation-aux

R2 R3
〈proof 〉

lemma finite-swap-dist-relation-aux:
assumes linorder-on A R1 finite A linorder-on B R2 finite B
shows finite (swap-dist-relation-aux R1 R2)
〈proof 〉

lemma split-Bex-pair-iff : (∃ z∈A. P z) ←→ (∃ x y. (x, y) ∈ A ∧ P (x, y))
〈proof 〉

lemma swap-dist-relation-aux-comap-relation:
assumes inj-on f A linorder-on A R linorder-on A S
shows swap-dist-relation-aux (comap-relation f R) (comap-relation f S) = map-prod f f ‘

swap-dist-relation-aux R S
(is ?lhs = ?rhs)

〈proof 〉

lemma swap-dist-relation-aux-restrict-subset:
swap-dist-relation-aux (restrict-relation A R) (restrict-relation A S) ⊆
swap-dist-relation-aux R S
〈proof 〉

The swap distance is then simply the number of such discrepancies.
definition swap-dist-relation :: (′a ⇒ ′a ⇒ bool) ⇒ (′a ⇒ ′a ⇒ bool) ⇒ nat where

swap-dist-relation R1 R2 = card (swap-dist-relation-aux R1 R2)

lemma swap-dist-relation-same [simp]: swap-dist-relation R R = 0
〈proof 〉

lemma swap-dist-relation-commute: swap-dist-relation R1 R2 = swap-dist-relation R2 R1
〈proof 〉

lemma swap-dist-relation-dual:
swap-dist-relation R1 R2 = swap-dist-relation (λx y. R1 y x) (λx y. R2 y x)
〈proof 〉

lemma swap-dist-relation-triangle:
assumes linorder-on A R1 linorder-on A R2 linorder-on A R3 finite A
shows swap-dist-relation R1 R3 ≤ swap-dist-relation R1 R2 + swap-dist-relation R2 R3
〈proof 〉

lemma swap-dist-relation-aux-empty-iff :
assumes linorder-on A R linorder-on A S
shows swap-dist-relation-aux R S = {} ←→ R = S
〈proof 〉

5

lemma swap-dist-relation-eq-0-iff :
assumes linorder-on A R linorder-on A S finite A
shows swap-dist-relation R S = 0 ←→ R = S
〈proof 〉

lemma swap-dist-relation-comap-relation:
assumes inj-on f A linorder-on A R linorder-on A S
shows swap-dist-relation (comap-relation f R) (comap-relation f S) = swap-dist-relation R S
〈proof 〉

lemma swap-dist-relation-le:
assumes preorder-on A R1 preorder-on A R2 finite A
shows swap-dist-relation R1 R2 ≤ (card A) choose 2
〈proof 〉

The swap distance reaches its maximum of n(n− 1)/2 if and only if the two orders are
inverse to each other.
lemma swap-dist-relation-inverse:

assumes linorder-on A R finite A
shows swap-dist-relation R (λx y. R y x) = (card A) choose 2
〈proof 〉

lemma swap-dist-relation-maximal-imp-inverse:
assumes preorder-on A R1 preorder-on A R2 finite A
assumes swap-dist-relation R1 R2 ≥ (card A) choose 2
shows R2 = (λy x. R1 x y)
〈proof 〉

lemma swap-dist-relation-maximal-iff-inverse:
assumes linorder-on A R1 linorder-on A R2 finite A
shows swap-dist-relation R1 R2 = (card A) choose 2 ←→ R2 = (λy x . R1 x y)
〈proof 〉

lemma swap-dist-relation-restrict:
assumes linorder-on B R linorder-on B S finite B
shows swap-dist-relation (restrict-relation A R) (restrict-relation A S) ≤

swap-dist-relation R S
〈proof 〉

If the restriction of two relations to some set A has the same swap distance as the full
relations, the two relations must agree everywhere except inside A.
lemma swap-dist-relation-restrict-eq-imp-eq:

fixes R S A B
assumes linorder-on A R linorder-on A S finite A
defines R ′ ≡ restrict-relation B R
defines S ′ ≡ restrict-relation B S
assumes swap-dist-relation R ′ S ′ ≥ swap-dist-relation R S

6

assumes xy: x /∈ B ∨ y /∈ B
shows R x y ←→ S x y
〈proof 〉

1.3 The swap distance of two lists

The swap distance of two lists is defined as the swap distance of the relations they
correspond to when interpreting them as rankings of “biggest” to “smallest”.
definition swap-dist :: ′a list ⇒ ′a list ⇒ nat where

swap-dist xs ys =
(if distinct xs ∧ distinct ys ∧ set xs = set ys
then swap-dist-relation (of-ranking xs) (of-ranking ys) else 0)

lemma swap-dist-le: swap-dist xs ys ≤ (length xs) choose 2
〈proof 〉

lemma swap-dist-same [simp]: swap-dist xs xs = 0
〈proof 〉

lemma swap-dist-commute: swap-dist xs ys = swap-dist ys xs
〈proof 〉

lemma swap-dist-rev [simp]: swap-dist (rev xs) (rev ys) = swap-dist xs ys
〈proof 〉

lemma swap-dist-rev-left: swap-dist (rev xs) ys = swap-dist xs (rev ys)
〈proof 〉

lemma swap-dist-triangle:
assumes set xs = set ys distinct ys
shows swap-dist xs zs ≤ swap-dist xs ys + swap-dist ys zs
〈proof 〉

lemma swap-dist-eq-0-iff :
assumes distinct xs distinct ys set xs = set ys
shows swap-dist xs ys = 0 ←→ xs = ys
〈proof 〉

lemma swap-dist-pos-iff :
assumes distinct xs distinct ys set xs = set ys
shows swap-dist xs ys > 0 ←→ xs 6= ys
〈proof 〉

lemma swap-dist-map:
assumes inj-on f (set xs ∪ set ys)
shows swap-dist (map f xs) (map f ys) = swap-dist xs ys
〈proof 〉

The swap distance reaches its maximum of n(n − 1)/2 iff the two lists are reverses of

7

one another.
lemma swap-dist-rev-same:

assumes distinct xs
shows swap-dist xs (rev xs) = (length xs) choose 2
〈proof 〉

lemma swap-dist-maximalD:
assumes set xs = set ys distinct xs distinct ys
assumes swap-dist xs ys ≥ (length xs) choose 2
shows ys = rev xs
〈proof 〉

lemma swap-dist-maximal-iff :
assumes set xs = set ys distinct xs distinct ys
shows swap-dist xs ys = (length xs) choose 2 ←→ ys = rev xs
〈proof 〉

lemma swap-dist-append-left:
assumes distinct zs
assumes set zs ∩ set xs = {} set zs ∩ set ys = {}
shows swap-dist (zs @ xs) (zs @ ys) = swap-dist xs ys
〈proof 〉

lemma swap-dist-append-right:
assumes distinct zs
assumes set zs ∩ set xs = {} set zs ∩ set ys = {}
shows swap-dist (xs @ zs) (ys @ zs) = swap-dist xs ys
〈proof 〉

lemma swap-dist-Cons-same:
assumes z /∈ set xs ∪ set ys
shows swap-dist (z # xs) (z # ys) = swap-dist xs ys
〈proof 〉

lemma swap-dist-swap-first:
assumes distinct (x # y # xs)
shows swap-dist (x # y # xs) (y # x # xs) = 1
〈proof 〉

1.4 The relationship between swap distance and inversions

The swap distance between a list xs containing the numbers 0, . . . , n − 1 and the list
[0, . . . , n− 1] is exactly the number of inversions of xs.
lemma swap-dist-zero-upt-n:

assumes mset xs = mset-set {0 ..<n}
shows swap-dist [0 ..<n] xs = inversion-number xs
〈proof 〉

8

Hence, computing the swap distance of two arbitrary lists can be reduced to computing
the number of inversions of a list by renaming all the elements such that the first list
becomes [0, . . . , n− 1].
lemma swap-dist-conv-inversion-number :

assumes distinct: distinct xs distinct ys and set-eq: set xs = set ys
shows swap-dist xs ys = inversion-number (map (index xs) ys)
〈proof 〉

lemma swap-dist-code ′ [code]:
swap-dist xs ys =

(if distinct xs ∧ distinct ys ∧ set xs = set ys then
inversion-number (map (index xs) ys) else 0)

〈proof 〉

1.5 Swapping adjacent list elements
definition swap-adj-list :: nat ⇒ ′a list ⇒ ′a list where

swap-adj-list i xs = (if Suc i < length xs then xs[i := xs ! Suc i, Suc i := xs ! i] else xs)

lemma length-swap-adj-list [simp]: length (swap-adj-list i xs) = length xs
〈proof 〉

lemma distinct-swap-adj-list-iff [simp]:
distinct (swap-adj-list i xs) ←→ distinct xs
〈proof 〉

lemma mset-swap-adj-list [simp]:
mset (swap-adj-list i xs) = mset xs
〈proof 〉

lemma set-swap-adj-list [simp]:
set (swap-adj-list i xs) = set xs
〈proof 〉

lemma swap-adj-list-append-left:
assumes i ≥ length xs
shows swap-adj-list i (xs @ ys) = xs @ swap-adj-list (i − length xs) ys
〈proof 〉

lemma swap-adj-list-Cons:
assumes i > 0
shows swap-adj-list i (x # xs) = x # swap-adj-list (i − 1) xs
〈proof 〉

lemma swap-adj-list-append-right:
assumes Suc i < length xs
shows swap-adj-list i (xs @ ys) = swap-adj-list i xs @ ys
〈proof 〉

9

lemma swap-dist-swap-adj-list:
assumes Suc i < length xs distinct xs
shows swap-dist xs (swap-adj-list i xs) = 1
〈proof 〉

fun swap-adjs-list :: nat list ⇒ ′a list ⇒ ′a list where
swap-adjs-list [] xs = xs
| swap-adjs-list (i # is) xs = swap-adjs-list is (swap-adj-list i xs)

lemma length-swap-adjs-list [simp]: length (swap-adjs-list is xs) = length xs
〈proof 〉

lemma distinct-swap-adjs-list-iff [simp]:
distinct (swap-adjs-list is xs) ←→ distinct xs
〈proof 〉

lemma mset-swap-adjs-list [simp]:
mset (swap-adjs-list is xs) = mset xs
〈proof 〉

lemma set-swap-adjs-list-list [simp]:
set (swap-adjs-list is xs) = set xs
〈proof 〉

lemma swap-adjs-list-append:
swap-adjs-list (is @ js) xs = swap-adjs-list js (swap-adjs-list is xs)
〈proof 〉

lemma swap-adjs-list-append-left:
assumes ∀ i∈set is. i ≥ length xs
shows swap-adjs-list is (xs @ ys) = xs @ swap-adjs-list (map (λi. i − length xs) is) ys
〈proof 〉

lemma swap-adjs-list-Cons:
assumes 0 /∈ set is
shows swap-adjs-list is (x # xs) = x # swap-adjs-list (map (λi. i − 1) is) xs
〈proof 〉

lemma swap-adjs-list-append-right:
assumes ∀ i∈set is. Suc i < length xs
shows swap-adjs-list is (xs @ ys) = swap-adjs-list is xs @ ys
〈proof 〉

Swapping two adjacent elements either increases or decreases the swap distance by 1,
depending on the orientation of the swapped pair in the other relation.
lemma swap-dist-relation-of-ranking-swap:

assumes distinct (xs @ x # y # ys)
shows swap-dist-relation R (of-ranking (xs @ x # y # ys)) + (if y ≺[R] x then 1 else 0) =

swap-dist-relation R (of-ranking (xs @ y # x # ys)) + (if x ≺[R] y then 1 else 0)

10

〈proof 〉

1.6 Swapping non-adjacent list elements

If x and y are two not necessarily adjacent elements that are “in the wrong order”,
swapping them always strictly decreases the swap distance.
lemma swap-dist-relation-swap-less:

assumes linorder-on A R finite A
assumes xy: R x y
assumes distinct: distinct (xs @ x # ys @ y # zs)
assumes subset: set (xs @ x # ys @ y # zs) = A
shows swap-dist-relation R (of-ranking (xs @ x # ys @ y # zs)) >

swap-dist-relation R (of-ranking (xs @ y # ys @ x # zs))
〈proof 〉

lemma swap-dist-relation-swap-less ′:
assumes xy: R (ys ! i) (ys ! j) ←→ i < j
assumes R: finite-linorder-on A R
assumes distinct: distinct ys set ys = A
assumes ij: i < length ys j < length ys i 6= j
shows swap-dist-relation R (of-ranking ys) >

swap-dist-relation R (of-ranking (ys[i := ys ! j, j := ys ! i]))
〈proof 〉

The following formulation for lists is probably the nicest one.
lemma swap-dist-swap-less:

assumes xy: of-ranking xs (ys ! i) (ys ! j) ←→ i < j
assumes distinct: distinct xs distinct ys set xs = set ys
assumes ij: i < length ys j < length ys i 6= j
shows swap-dist xs ys > swap-dist xs (ys[i := ys ! j, j := ys ! i])
〈proof 〉

1.7 Swap distance as minimal number of adjacent swaps to make two lists
equal

The swap distance between the original list and the list obtained after swapping adjacent
elements n times is at most n.
lemma swap-dist-swap-adjs-list:

assumes distinct xs
shows swap-dist xs (swap-adjs-list is xs) ≤ length is
〈proof 〉

Phrased in another way, any sequence of adjacent swaps that makes two lists the same
must have a length at least as big as the swap distance of the two lists.
theorem swap-dist-minimal:

assumes distinct xs
assumes ∀ i∈set is. Suc i < length xs

11

assumes swap-adjs-list is xs = ys
shows length is ≥ swap-dist xs ys
〈proof 〉

Next, we will show that this lower bound is sharp, i.e. there exists a sequence of swaps
that makes the two lists the same whose length is exactly the swap distance.
To this end, we derive an algorithm to compute a sequence of swaps whose effect is
equivalent to the permutation [0, 1, . . . , n− 1] 7→ [i0, i1, . . . , in−1].
We first define the following function, which returns a list of swaps that pulls the i-th
element of a list to the front, i.e. it corresponds to the permutation [0, 1, . . . , n − 1] 7→
[i, 0, 1, . . . , i− 1, i+ 1, . . . , n− 1].
definition pull-to-front-swaps :: nat ⇒ nat list where

pull-to-front-swaps i = rev [0 ..<i]

lemma length-pull-to-front-swaps [simp]: length (pull-to-front-swaps i) = i
〈proof 〉

lemma set-pull-to-front-swaps [simp]: set (pull-to-front-swaps i) = {0 ..<i}
〈proof 〉

lemma pull-to-front-swaps-0 [simp]: pull-to-front-swaps 0 = []
and pull-to-front-swaps-Suc: pull-to-front-swaps (Suc i) = i # pull-to-front-swaps i
〈proof 〉

lemma swap-adjs-list-pull-to-front:
assumes i < length xs
shows swap-adjs-list (pull-to-front-swaps i) xs = (xs ! i) # take i xs @ drop (Suc i) xs
〈proof 〉

We now simply perform the “pull to front” operation so that the first element is the
desired one. We then do the same thing again for the remaining n − 1 indices (shifted
accordingly) etc. until we reach the end of the index list.
This corresponds to a variant of selection sort that only uses adjacent swaps, or it can
also be seen as a kind of reversal of insertion sort.
fun swaps-of-perm :: nat list ⇒ nat list where

swaps-of-perm [] = []
| swaps-of-perm (i # is) =

pull-to-front-swaps i @ map Suc (swaps-of-perm (map (λj. if j ≥ i then j − 1 else j) is))

lemma set-swaps-of-perm-subset: set (swaps-of-perm is) ⊆ (
⋃

i∈set is. {0 ..<i})
〈proof 〉

lemma swap-adjs-list-swaps-of-perm-aux:
fixes i :: nat
assumes mset (i # is) = mset-set {0 ..<n}
shows mset (map (λj. if i ≤ j then j − 1 else j) is) = mset-set {0 ..<n − 1}
〈proof 〉

12

The following result shows that the list of swaps returned by swaps-of-perm indeed have
the desired effect.
lemma swap-adjs-list-swaps-of-perm:

assumes mset is = mset-set {0 ..<length xs}
shows swap-adjs-list (swaps-of-perm is) xs = map (λi. xs ! i) is
〈proof 〉

The number of swaps returned by swaps-of-perm is exactly the number of inversions in
the input list (i.e. of the index permutation described by it).
lemma length-swaps-of-perm:

assumes mset is = mset-set {0 ..<length is}
shows length (swaps-of-perm is) = inversion-number is
〈proof 〉

Finally, we use the above to give a list of swap operations that map one list to another.
The number of swap operations produced by this is exactly the swap distance of the two
lists.
definition swaps-of-perm ′ :: ′a list ⇒ ′a list ⇒ nat list where

swaps-of-perm ′ xs ys = swaps-of-perm (map (index xs) ys)

theorem swaps-of-perm ′:
assumes distinct xs distinct ys set xs = set ys
shows ∀ i∈set (swaps-of-perm ′ xs ys). Suc i < length xs

swap-adjs-list (swaps-of-perm ′ xs ys) xs = ys
length (swaps-of-perm ′ xs ys) = swap-dist xs ys

〈proof 〉

Finally, we can derive the alternative characterisation of the swap distance.
lemma swap-dist-altdef :

assumes distinct xs distinct ys set xs = set ys
shows swap-dist xs ys = (INF is∈{is. swap-adjs-list is xs = ys}. length is)
〈proof 〉

end

References

[1] A. Belov and J. Marques-Silva. Muser2: An efficient MUS extractor. J. Satisf.
Boolean Model. Comput., 8(3/4):123–128, 2012.

[2] A. Biere, M. Fleury, and M. Heisinger. CaDiCaL, Kissat, Paracooba entering the
SAT Competition 2021. In T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, editors, Proc. of SAT Competition 2021 – Solver and Benchmark
Descriptions, volume B-2021-1 of Department of Computer Science Report Series B,
pages 10–13. University of Helsinki, 2021.

13

[3] P. Lammich. The GRAT tool chain – efficient (UN)SAT certificate checking with
formal correctness guarantees. In S. Gaspers and T. Walsh, editors, Theory and Ap-
plications of Satisfiability Testing – SAT 2017, Proceedings, volume 10491 of Lecture
Notes in Computer Science, pages 457–463. Springer, 2017.

[4] N. Wetzler, M. Heule, and W. A. H. Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In C. Sinz and U. Egly, editors, Theory and Applica-
tions of Satisfiability Testing – SAT 2014, Proceedings, volume 8561 of Lecture Notes
in Computer Science, pages 422–429. Springer, 2014.

14

	The swap distance
	Preliminaries
	The swap distance of two linear orders
	The swap distance of two lists
	The relationship between swap distance and inversions
	Swapping adjacent list elements
	Swapping non-adjacent list elements
	Swap distance as minimal number of adjacent swaps to make two lists equal

