Swap Distance

Manuel Eberl

January 23, 2026

Given two lists that are permutations of one another, the swap distance
(also known as the Kendall tau distance) is the minimum number of swap
operations of adjacent elements required to make the two lists the same.

Equivalently, the swap distance of two finite linear orders =< and < is the
number of disagreements of the two orders, i.e. of pairs (z,y) such that z < y
and y < z.

This article defines these two notions of swap distance as well as their
equivalence under the obvious isomorphism between lists and linear orders
given by interpreting a list as a ranking of elements in descending order.

An efficient O(nlogn) algorithm to compute the swap distance is also
provided via the connection to the number of inversions of a list, for which
an efficient algorithm is already available in the AFP.

Contents

1 The swap distance 3
1.1 Preliminaries e 3
1.2 The swap distance of two linear orders 4
1.3 The swap distance of two lists L L. 11
1.4 The relationship between swap distance and inversions 15
1.5 Swapping adjacent list elements oL 17
1.6 Swapping non-adjacent list elements 20
1.7 Swap distance as minimal number of adjacent swaps to make two lists equal 24

1 The swap distance

theory Swap-Distance
imports Rankings. Rankings List-Inversions.List-Inversions
begin

The swap distance (also known as the Kendall tau distance) of two finite linear orders
R, S is the number of pairs (x,y) such that (z,y) € R and (y,z) € S.

By using the obvious correspondence between finite linear orders and lists of fixed length,
the notion is transferred to lists. In this case, an alternative interpretation of the swap
distance is as the smallest number of swaps of adjacent elements one can perform in
order to make one list match the other one.

The swap distance is strongly related to the number of inversions of a list of linearly-
ordered elements: if we rename the elements from 1 to n such that the first list becomes
[1,...,n], the swap distance is exactly the number of inversions in the second list.

This correspondence can be used to compute the swap distance in O(nlogn) time using
the merge sort inversion count algorithm (which is available in the AFP).

1.1 Preliminaries

primrec find-indez-auz :: nat = ('a = bool) = 'a list = nat where
find-indez-auz acc P[] = acc
| find-indez-auzx acc P (x # xzs) = (if P x then acc else find-indez-auzr (acc+1) P zs)

lemma find-indez-aux-correct: find-indez-aur acc P xs = find-index P zs + acc
by (induction xs arbitrary: acc) simp-all

lemma find-indez-auz-code [code]: find-index P xs = find-index-auz 0 P xs
by (simp add: find-index-auz-correct)

lemma inversions-map:
fixes s :: ‘a :: linorder list
assumes strict-mono-on (set xs) f
shows inversions (map f xs) = inversions s
proof —
have f-less-iff: fr < fy+— < yifx € set xs y € set xs for z y
using strict-mono-onD[OF assms, of x y| strict-mono-onD|OF assms, of y z] that
by (metis not-less-iff-gr-or-eq order-less-imp-not-less)
show ?thesis
unfolding inversions-altdef by (auto simp: f-less-iff)
qed

lemma inversion-number-map:
fixes zs :: ‘a :: linorder list
assumes strict-mono-on (set xs) f
shows inversion-number (map f xs) = inversion-number xs

using inversions-map|OF assms] by (simp add: inversion-number-def)

lemma inversion-number-Cons:
inversion-number (z # xs) = length (filter (\y. y < x) xs) + inversion-number s
proof —
have inversion-number (z # xs) = inversion-number ([z] @ zs)
by simp
also have ... = inversion-number xs + inversion-number-between [z] xs
by (subst inversion-number-append) simp-all
also have inversion-number-between [z] zs =
card {(i, j). i = 0 N j < length xzs N zs ! j < [z] ! i}
by (simp add: inversion-number-between-def inversions-between-def)
also have {(¢,j). i=0 ANj<lengthazs Nas!j<|[z]!i} =
(M. (0, 9) “{j. j <lengthzs N xs ! j < z}

by auto

also have card ... = card {j. j < length zs AN zs | j < z}
by (rule card-image) (auto simp: inj-on-def)

also have ... = length (filter (\y. y < z) xs)

by (subst length-filter-conv-card) auto
finally show ?thesis
by simp
qed

fun (in preorder) inversion-number-between-sorted-auz :: nat = 'a list = 'a list = nat where
inversion-number-between-sorted-aux acc [| ys = acc
| inversion-number-between-sorted-auzr acc xs [| = acc
| inversion-number-between-sorted-auz acc (z # xs) (y # ys) =
(if —less y x then
inversion-number-between-sorted-aux acc xs (y # ys)
else
inversion-number-between-sorted-auz (acc + length (x # xs)) (z # xs) ys)

lemma inversion-number-between-sorted-auz-correct:
inversion-number-between-sorted-auzr acc xs ys = acc + inversion-number-between-sorted xs ys
by (induction acc xs ys rule: inversion-number-between-sorted-auz.induct) simp-all

lemma inversion-number-between-sorted-code [code]:
inversion-number-between-sorted xs ys = inversion-number-between-sorted-auz 0 xs ys
by (simp add: inversion-number-between-sorted-auz-correct)

1.2 The swap distance of two linear orders

We first define the set of “discrepancies” between the two orders.

definition swap-dist-relation-auz = ('a = 'a = bool) = (‘a = 'a = bool) = ('a x 'a) set
where
swap-dist-relation-aux R1 R2 = {(z,y). Rz y AN —-Rlyxz AN R2yx A -R2zy}

On a linear order, the following simpler definition holds.

lemma swap-dist-relation-auz-def-linorder:
assumes linorder-on A R1 linorder-on A R2
shows swap-dist-relation-aux R1 R2 = {(z,y). R1 zy N =R2 z y}
proof —
interpret R1: linorder-on A R1 by fact
interpret R2: linorder-on A R2 by fact
show ?thesis unfolding swap-dist-relation-auz-def
using R1.antisymmetric R1.total R2.antisymmetric R2.total
R1.refl R2.refl R1.not-outside R2.not-outside by metis
qed

lemma swap-dist-relation-aux-same [simpl: swap-dist-relation-aux R R = {}
by (auto simp: swap-dist-relation-auz-def)

lemma swap-dist-relation-auz-commute: swap-dist-relation-aur R1 R2 = prod.swap ‘ swap-dist-relation-aux
R2 R1
by (auto simp: swap-dist-relation-auz-def)

lemma swap-dist-relation-auz-commute’: bij-betw prod.swap (swap-dist-relation-aux R1 R2) (swap-dist-relation-auz

R2 R1)
by (rule bij-betwl[of - - - prod.swap]) (auto simp: swap-dist-relation-aux-def)

lemma swap-dist-relation-auz-dual:
swap-dist-relation-aux R1 R2 = prod.swap ‘ swap-dist-relation-aux Az y. R1 yz) (Axy. R2y
z)

unfolding swap-dist-relation-auz-def by auto

lemma swap-dist-relation-auz-triangle:
assumes linorder-on A R1 linorder-on A R2 linorder-on A RS
shows swap-dist-relation-aur R1 R3 C swap-dist-relation-auz R1 R2 U swap-dist-relation-auz
R2 R3
proof —
interpret R1: linorder-on A R1 by fact
interpret R2: linorder-on A R2 by fact
interpret R3: linorder-on A R3 by fact
show ?thesis
unfolding swap-dist-relation-auz-def
using R1.not-outside(1,2) R2.total R2.antisymmetric by fast
qed

lemma finite-swap-dist-relation-auz:
assumes linorder-on A R1 finite A linorder-on B R2 finite B
shows finite (swap-dist-relation-auz R1 R2)
proof (rule finite-subset)
interpret R1: linorder-on A R1 by fact
interpret R2: linorder-on B R2 by fact
show swap-dist-relation-auz R1 R2 C A x B
using R1.not-outside R2.not-outside unfolding swap-dist-relation-auz-def by blast

qged (use assms in auto)

lemma split-Bez-pair-iff: (32€A. P 2) +— (Jzy. (z,y) € AN P (z, y))
by auto

lemma swap-dist-relation-auz-comap-relation:

assumes inj-on f A linorder-on A R linorder-on A S

shows swap-dist-relation-auz (comap-relation f R) (comap-relation f S) = map-prod f f *
swap-dist-relation-aur R S

(is ?lhs = %rhs)

proof —

interpret R: linorder-on A R by fact

interpret S: linorder-on A S by fact

have (z, y) € ?lhs +— (z, y) € ?rhsfor z y

unfolding swap-dist-relation-auzx-def comap-relation-def map-prod-def image-iff case-prod-unfold

split-Bex-pair-iff mem-Collect-eq fst-conv snd-conv prod.inject
using inj-onD[OF assms(1)] R.not-outside S.not-outside by smt
thus ?thesis
by force
qed

lemma swap-dist-relation-auz-restrict-subset:
swap-dist-relation-aux (restrict-relation A R) (restrict-relation A S) C
swap-dist-relation-auxr R S
unfolding swap-dist-relation-auz-def restrict-relation-def by blast

The swap distance is then simply the number of such discrepancies.

definition swap-dist-relation :: ('a = 'a = bool) = ('a = 'a = bool) = nat where
swap-dist-relation R1 R2 = card (swap-dist-relation-aux R1 R2)

lemma swap-dist-relation-same [simp]: swap-dist-relation R R = 0
by (simp add: swap-dist-relation-def)

lemma swap-dist-relation-commute: swap-dist-relation R1 R2 = swap-dist-relation R2 R1
using bij-betw-same-card[OF swap-dist-relation-aux-commute’[of R1 R2]]
by (simp add: swap-dist-relation-def)

lemma swap-dist-relation-dual:
swap-dist-relation R1 R2 = swap-dist-relation (Az y. R1 yz) (Axy. R2 y x)
unfolding swap-dist-relation-def
by (subst swap-dist-relation-auz-dual, subst card-image) auto

lemma swap-dist-relation-triangle:

assumes linorder-on A R1 linorder-on A R2 linorder-on A R3 finite A

shows swap-dist-relation R1 R3 < swap-dist-relation R1 R2 + swap-dist-relation R2 R3
proof —

interpret R1: linorder-on A R1 by fact

interpret R2: linorder-on A R2 by fact

interpret R3: linorder-on A R3 by fact

have swap-dist-relation R1 R8 = card (swap-dist-relation-auz R1 R3)
by (simp add: swap-dist-relation-def)
also {
have swap-dist-relation-aur R1 R3 C swap-dist-relation-auxr R1 R2 U swap-dist-relation-aux
R2 R3S
by (rule swap-dist-relation-aux-triangle) fact+
moreover have finite (swap-dist-relation-aux R1 R2) finite (swap-dist-relation-aur R2 R3)
using finite-swap-dist-relation-aux assms by blast+
ultimately have card (swap-dist-relation-auz R1 R3) < card (swap-dist-relation-aux R1 R2
U swap-dist-relation-auz R2 RS3)
by (intro card-mono) auto
}

also have card (swap-dist-relation-aux R1 R2 U swap-dist-relation-aux R2 R3) <
card (swap-dist-relation-aux R1 R2) + card (swap-dist-relation-aur R2 R3)
by (rule card-Un-le)
also have ... = swap-dist-relation R1 R2 + swap-dist-relation R2 R3
by (simp add: swap-dist-relation-def)
finally show ?thesis .
qed

lemma swap-dist-relation-auz-empty-iff:

assumes linorder-on A R linorder-on A S

shows swap-dist-relation-auz R S = {} +— R =S
proof (rule iffI)

fixzy:'a

assume x: swap-dist-relation-aux R S = {}

interpret R: linorder-on A R by fact

interpret S: linorder-on A S by fact

show R = S
proof (intro ext)
fix zy

from x have ~-RzyV RyzV - SyzV Szy-RyxV RzyVvV-SzyVvV Syz
unfolding swap-dist-relation-auz-def by blast+

thus Rzy<+— Szy
using R.total[of z y] S.totallof © y] R.not-outside[of x y| S.not-outside|of = y]

R.antisymmetriclof x y| S.antisymmetriclof x y)
by metis
qged
qed auto

lemma swap-dist-relation-eq-0-iff:
assumes linorder-on A R linorder-on A S finite A
shows swap-dist-relation R S = 0 +— R =5
unfolding swap-dist-relation-def
using swap-dist-relation-auz-empty-iff [OF assms(1,2)] finite-swap-dist-relation-auz[OF assms(1,3,2,3)]
by (metis card-eq-0-iff)

lemma swap-dist-relation-comap-relation:
assumes inj-on f A linorder-on A R linorder-on A S
shows swap-dist-relation (comap-relation f R) (comap-relation f S) = swap-dist-relation R S
proof —
interpret R: linorder-on A R by fact
interpret S: linorder-on A S by fact
have swap-dist-relation (comap-relation f R) (comap-relation f S) = card (map-prod f f ¢
swap-dist-relation-aux R S)
using assms by (simp add: swap-dist-relation-def swap-dist-relation-auz-comap-relation)
also have ... = swap-dist-relation R S
unfolding swap-dist-relation-def
proof (rule card-image)
show inj-on (map-prod f f) (swap-dist-relation-aux R S)
proof (rule inj-on-subset)
show inj-on (map-prod f f) (A x A)
using assms(1) by (auto simp: inj-on-def)
show swap-dist-relation-aux R S C A x A
unfolding swap-dist-relation-auz-def using R.not-outside S.not-outside by blast
qed
qged
finally show ?thesis .
qed

lemma swap-dist-relation-le:
assumes preorder-on A R1 preorder-on A R2 finite A
shows swap-dist-relation R1 R2 < (card A) choose 2
proof —
interpret RI1: preorder-on A R1 by fact
interpret R2: preorder-on A R2 by fact
have swap-dist-relation R1 R2 = card (swap-dist-relation-auz R1 R2)
by (simp add: swap-dist-relation-def)
also have card (swap-dist-relation-auz R1 R2) =
card (Mz,y). {z,y}) ¢ swap-dist-relation-aux R1 R2)
by (rule card-image [symmetric])
(auto simp: inj-on-def swap-dist-relation-aux-def doubleton-eq-iff)
also have ... < card {X. X C AN card X = 2}
by (rule card-mono)
(use <finite Ay R1.not-outside R2.not-outside
in <auto simp: swap-dist-relation-auz-def card-insert-if»)
also have ... = (card A) choose 2
by (rule n-subsets) fact
finally show ?thesis .
qed

The swap distance reaches its maximum of n(n — 1)/2 if and only if the two orders are
inverse to each other.

lemma swap-dist-relation-inverse:
assumes linorder-on A R finite A

shows swap-dist-relation R (Az y. R y) = (card A) choose 2
proof —
interpret R: linorder-on A R by fact
have card (swap-dist-relation-auz R (Az y. R y ©)) =
card (M=, y). {z, y}) ‘ swap-dist-relation-auxr R (A\x y. R y x))
by (subst card-image) (auto simp: inj-on-def doubleton-eq-iff swap-dist-relation-auz-def)
also have (A(z, y). {z, y}) swap-dist-relation-auz R (A\z y. R y z) =
{X. X C AN card X = 2}
using R.total R.not-outside R.antisymmetric
by (fastforce simp: swap-dist-relation-auz-def card-insert-if image-iff card-2-iff doubleton-eq-iff)
also have card ... = (card A) choose 2
by (rule n-subsets) fact
finally show ?thesis
by (simp add: swap-dist-relation-def)
qed

lemma swap-dist-relation-mazximal-imp-inverse:
assumes preorder-on A R1 preorder-on A R2 finite A
assumes swap-dist-relation R1 R2 > (card A) choose 2
shows R2 = (Ayz. R1zy)

proof —
interpret R1: preorder-on A R1 by fact
interpret R2: preorder-on A R2 by fact

have x: (A(z,y). {z,y}) ¢ swap-dist-relation-auz R1 R2 = {X. X C A A card X = 2}
proof (rule card-subset-eq)
show finite {X. X C A A card X = 2}
using assms(3) by simp
show (A(z, y). {z, y}) ¢ swap-dist-relation-auz R1 R2 C {X. X C A A card X = 2}
using R1.not-outside R2.not-outside by (auto simp: swap-dist-relation-aux-def card-insert-if)
have card ((M(z, y). {z, y}) ¢ swap-dist-relation-aux R1 R2) = swap-dist-relation R1 R2
unfolding swap-dist-relation-def
by (rule card-image) (auto simp: inj-on-def swap-dist-relation-auz-def doubleton-eq-iff)

also have ... = (card A) choose 2
using swap-dist-relation-le[OF assms(1—3)] assms(4) by linarith
also have ... = card {X. X C A A card X = 2}

by (rule n-subsets [symmetric]) fact
finally show card ((M(z, y). {z, y}) ¢ swap-dist-relation-aux R1 R2) =
card {X. X C AN card X = 2} .
qged

show ?thesis
proof (intro ext)
fixzy:'a
show R2yz <+— Rlzy
proof (casesz € ANy € ANz #y)
case Fulse
thus ?thesis
using R1.refl R2.refl R1.not-outside R2.not-outside by auto

next
case True
hence {z, y} € {X. X C A A card X = 2}
by auto
also note x [symmetric]
finally show ?thesis
using True by (auto simp: swap-dist-relation-auz-def doubleton-eq-iff)
qed
qged
qed

lemma swap-dist-relation-mazimal-iff-inverse:

assumes linorder-on A R1 linorder-on A R2 finite A

shows swap-dist-relation R1 R2 = (card A) choose 2 +— R2 = (Ay z. R1 z y)
proof —

interpret R1: linorder-on A R1 by fact

interpret R2: linorder-on A R2 by fact

note preorder = R1.preorder-on-axioms R2.preorder-on-azxioms

show ?thesis

using swap-dist-relation-inverse[OF assms(1,3)] swap-dist-relation-le] OF preorder(1,2) assms(3)]

swap-dist-relation-mazimal-imp-inverse[OF preorder(1,2) assms(3)]
by metis

qed

lemma swap-dist-relation-restrict:

assumes linorder-on B R linorder-on B S finite B

shows swap-dist-relation (restrict-relation A R) (restrict-relation A S) <

swap-dist-relation R S

unfolding swap-dist-relation-def
proof (rule card-mono)

interpret R: linorder-on B R by fact

interpret S: linorder-on B S by fact

show finite (swap-dist-relation-auz R S)

by (rule finite-subset[of - B x B])
(use <finite B> R.not-outside S.not-outside in <auto simp: swap-dist-relation-auz-def»)

qed (use swap-dist-relation-auz-restrict-subset[of A R S| in auto)

If the restriction of two relations to some set A has the same swap distance as the full
relations, the two relations must agree everywhere except inside A.

lemma swap-dist-relation-restrict-eq-imp-eq:
fixes RS A B
assumes linorder-on A R linorder-on A S finite A
defines R’ = restrict-relation B R
defines S’ = restrict-relation B S
assumes swap-dist-relation R’ S’ > swap-dist-relation R S
assumes zy: ¢ ¢ BV y ¢ B
shows Rzy<+— Szy
proof —

10

have swap-dist-relation-auzr R’ S’ = swap-dist-relation-aux R S
proof (rule card-subset-eq)
show finite (swap-dist-relation-auz R S)
by (rule finite-swap-dist-relation-auz|OF assms(1,3,2,3)])
show swap-dist-relation-auz R’ S’ C swap-dist-relation-auz R S
unfolding R’-def S’-def by (rule swap-dist-relation-auz-restrict-subset)
have swap-dist-relation R’ S’ < swap-dist-relation R S
unfolding R’-def S’-def by (rule swap-dist-relation-restrict{OF assms(1,2,3)])
with assms have swap-dist-relation R’ S’ = swap-dist-relation R S
by linarith
thus card (swap-dist-relation-aux R’ S") = card (swap-dist-relation-auz R S)
by (simp add: swap-dist-relation-def)
qged
hence *: (a, b) € swap-dist-relation-auz R’ S’ +— (a, b) € swap-dist-relation-auz R S for a
b
by force
interpret R: linorder-on A R by fact
interpret S: linorder-on A S by fact
show ?thesis
using zy *[of z y| *[of y z] R.not-outside[of z y] S.not-outside|[of = y]
R.total[of x y] S.total[of z y] R.antisymmetriclof x y] S.antisymmetriclof y|
unfolding swap-dist-relation-auz-def R’-def S'-def restrict-relation-def mem-Collect-eq prod.case
by metis
qed

1.3 The swap distance of two lists

The swap distance of two lists is defined as the swap distance of the relations they
correspond to when interpreting them as rankings of “biggest” to “smallest”.

definition swap-dist :: 'a list = 'a list = nat where
swap-dist s ys =
(if distinct xs N distinct ys A set xs = set ys
then swap-dist-relation (of-ranking zs) (of-ranking ys) else 0)

lemma swap-dist-le: swap-dist zs ys < (length zs) choose 2
proof (cases set xs = set ys A distinct xs A distinct ys)
case True
hence length s = length ys
using distinct-card by metis
interpret zs: linorder-on set xs of-ranking xs
by (rule linorder-of-ranking) (use True in auto)
interpret ys: linorder-on set zs of-ranking ys
by (rule linorder-of-ranking) (use True in auto)
show ?thesis
using swap-dist-relation-le[OF xs.preorder-on-azioms ys.preorder-on-azioms| True
<length xs = length ys» by (auto simp: swap-dist-def distinct-card)
qed (auto simp: swap-dist-def)

lemma swap-dist-same [simp]: swap-dist xs s = 0

11

by (auto simp: swap-dist-def)

lemma swap-dist-commute: swap-dist xs ys = swap-dist ys s
by (simp add: swap-dist-def swap-dist-relation-commute)

lemma swap-dist-rev [simp]: swap-dist (rev xs) (rev ys) = swap-dist zs ys
proof (cases distinct xs N distinct ys A\ set xs = set ys)
case True
show ?thesis
using True swap-dist-relation-dual[of of-ranking xs of-ranking ys]
by (simp add: of-ranking-rev[abs-def] swap-dist-def)
qed (auto simp: swap-dist-def)

lemma swap-dist-rev-left: swap-dist (rev zs) ys = swap-dist xs (rev ys)
using swap-dist-rev by (metis rev-rev-ident)

lemma swap-dist-triangle:
assumes set xs = set ys distinct ys
shows swap-dist zs zs < swap-dist zs ys + swap-dist ys zs
using swap-dist-relation-triangle[of set zs of-ranking zs of-ranking ys of-ranking zs| assms
unfolding swap-dist-def by (simp add: linorder-of-ranking)

lemma swap-dist-eq-0-iff:
assumes distinct xs distinct ys set s = set ys
shows swap-dist xs ys = 0 <— xs = ys
proof —
have swap-dist xs ys = 0 <— swap-dist-relation (of-ranking zs) (of-ranking ys) = 0
using assms by (auto simp: swap-dist-def)
also have ... +— s = ys
using assms by (metis List.finite-set linorder-of-ranking ranking-of-ranking swap-dist-relation-eq-0-iff)
finally show ?thesis .
qed

lemma swap-dist-pos-iff:
assumes distinct xs distinct ys set s = set ys
shows swap-dist xs ys > 0 «— s #* ys
using swap-dist-eq-0-iff[OF assms| by linarith

lemma swap-dist-map:
assumes inj-on [(set s U set ys)
shows swap-dist (map f xs) (map f ys) = swap-dist xs ys
proof (cases set xs = set ys A distinct xs A distinct ys)
case True
define A where A = set s
have inj: inj-on f A
using assms True unfolding A-def by simp
have linorder: linorder-on A (of-ranking xs) linorder-on A (of-ranking ys)
unfolding A-def using True by (simp-all add: linorder-of-ranking)
have swap-dist (map f xs) (map fys) =

12

swap-dist-relation (comap-relation f (of-ranking xs)) (comap-relation f (of-ranking ys))
by (use inj True in <auto simp: swap-dist-def distinct-map of-ranking-map A-def>)
also have ... = swap-dist zs ys
by (subst swap-dist-relation-comap-relation| OF inj linorder])
(use True in <auto simp: swap-dist-def»)
finally show ?thesis .
next
case Fulse
have inj: inj-on f (set xs) inj-on f (set ys)
by (rule inj-on-subset[OF assms(1)]; simp; fail)+
show ?thesis using inj False inj-on-Un-image-eq-iff [OF assms]
by (auto simp: swap-dist-def distinct-map)
qed

The swap distance reaches its maximum of n(n — 1)/2 iff the two lists are reverses of
one another.

lemma swap-dist-rev-same:
assumes distinct xs
shows swap-dist zs (rev zs) = (length xs) choose 2
proof —
have swap-dist xs (rev xs) = swap-dist-relation (of-ranking xs) (Az y. of-ranking zs y x)
using assms by (simp add: swap-dist-def of-ranking-rev [abs-def])
also have ... = (length xs) choose 2
by (subst swap-dist-relation-inverselwhere A = set xs])
(use assms in <simp-all add: linorder-of-ranking distinct-card))
finally show ?thesis .
qed

lemma swap-dist-maximalD:
assumes set xs = set ys distinct xs distinct ys
assumes swap-dist xs ys > (length xzs) choose 2
shows ys = rev ws
proof —
interpret zs: linorder-on set xs of-ranking xs
by (rule linorder-of-ranking) (use assms in auto)
interpret ys: linorder-on set zs of-ranking ys
by (rule linorder-of-ranking) (use assms in auto)
have length xs = length ys
using assms by (metis distinct-card)
have of-ranking ys = (Az y. of-ranking xs y x)
using assms <length s = length ys»
by (intro swap-dist-relation-mazimal-imp-inverse[where A = set xs))
(use zs.preorder-on-azioms ys.preorder-on-azioms in <simp-all add: swap-dist-def dis-
tinct-cardy)
also have ... = of-ranking (rev zs)
by (simp add: fun-eq-iff)
finally have ranking (of-ranking ys) = ranking (of-ranking (rev xs))
by (rule arg-cong)
thus ?thesis

13

using assms by (subst (asm) (1 2) ranking-of-ranking) auto
qed

lemma swap-dist-mazximal-iff:
assumes set s = set ys distinct xs distinct ys
shows swap-dist zs ys = (length xs) choose 2 «— ys = rev s
using assms swap-dist-maximalD]OF assms| swap-dist-le[of xs ys] swap-dist-rev-same by metis

lemma swap-dist-append-left:
assumes distinct zs
assumes set zs N set s = {} set zs N set ys = {}
shows swap-dist (zs @ zs) (zs Q ys) = swap-dist xs ys
proof (cases distinct xs A distinct ys A\ set xs = set ys)
case Fulse
thus ?thesis using assms
by (auto simp: swap-dist-def)
next
case True
have swap-dist-relation-aux (of-ranking (zs @ xs)) (of-ranking (zs @ ys)) =
swap-dist-relation-aux (of-ranking zs) (of-ranking ys)
unfolding swap-dist-relation-auz-def of-ranking-append
using assms True of-ranking-imp-in-set|of zs] of-ranking-imp-in-set[of zs]
by blast
thus ?thesis
using True assms by (simp add: swap-dist-def swap-dist-relation-def)
qed

lemma swap-dist-append-right:
assumes distinct zs
assumes set zs N set s = {} set zs N set ys = {}
shows swap-dist (zs Q zs) (ys Q zs) = swap-dist s ys
proof (cases distinct xs A distinct ys N\ set xs = set ys)
case Fulse
thus ?thesis using assms
by (auto simp add: swap-dist-def Int-commute)
next
case True
have swap-dist-relation-auz (of-ranking (xs @Q zs)) (of-ranking (ys Q zs)) =
swap-dist-relation-aux (of-ranking zs) (of-ranking ys)
unfolding swap-dist-relation-auz-def of-ranking-append
using assms True of-ranking-imp-in-set[of zs| of-ranking-imp-in-set|of zs]
by blast
thus ?thesis
using True assms by (simp add: swap-dist-def swap-dist-relation-def Int-commute)
qed

lemma swap-dist-Cons-same:
assumes z ¢ set zs U set ys

14

shows swap-dist (z # xs) (z # ys) = swap-dist zs ys
using swap-dist-append-left[of [z] xs ys] assms by simp

lemma swap-dist-swap-first:
assumes distinct (x # y # xs)
shows swap-dist (x # y # xs) (y # x # xs) = 1
proof —
have swap-dist (z # y # xs) (y # © # zs) =
card (swap-dist-relation-auz (of-ranking (z # y # xs)) (of-ranking (y # x # xs)))
using assms by (simp add: swap-dist-def swap-dist-relation-def insert-commute)
also have swap-dist-relation-auz (of-ranking (z # y # zs)) (of-ranking (y # = # xs)) =
{(y,2)}
using assms of-ranking-imp-in-set|of zs] by (auto simp: swap-dist-relation-aux-def of-ranking-Cons)
finally show ?thesis
by simp
qed

1.4 The relationship between swap distance and inversions

The swap distance between a list zs containing the numbers 0,...,n — 1 and the list
[0,...,n — 1] is exactly the number of inversions of zs.

lemma swap-dist-zero-upt-n:
assumes mset s = mset-set {0..<n}
shows swap-dist [0..<n] zs = inversion-number zs
proof —
define A where A = {zye{..<n}x{..<n}. fst zy > snd zy A snd zy <[of-ranking zs] fst zy}
define B where B = {jje{..<n}x{..<n}. fst ij < snd ij A zs ! fst ij > xs | snd ij}
define f where f = (A\i. xs ! 7)

have distinct: distinct s
using assms by (metis finite-atLeastLess Than mset-eq-mset-set-imp-distinct)

have set-zs: set zs = {0..<n}
using assms by (metis mset-eq-setD mset-upt set-upt)

have length-xs: length s = n
using assms by (metis diff-zero length-upt mset-eq-length mset-upt)

have swap-dist ([0..<n]) zs = swap-dist-relation (of-ranking ([0..<n])) (of-ranking xs)
unfolding swap-dist-def using distinct set-xs by simp

also have ... = card (swap-dist-relation-auz (of-ranking ([0..<n))) (of-ranking xs))
unfolding swap-dist-relation-def ..

also have swap-dist-relation-auz (of-ranking ([0..<n])) (of-ranking zs) = A
unfolding A-def swap-dist-relation-auz-def of-ranking-zero-upt-nat strongly-preferred-def by

auto
finally have swap-dist ([0..<n]) zs = card A .

also have bij-betw (map-prod f f) B A

unfolding inversions-altdef case-prod-unfold A-def B-def
proof (rule bij-betw-Collect, goal-cases)

case !

have bij-betw f {..<n} (set xs)

15

unfolding f-def by (rule bij-betw-nth) (use distinct in <simp-all add: length-xs»)
hence bij-betw f {..<n} {..<n}
by (simp add: set-xs atLeastOLessThan)
show bij-betw (map-prod f f) ({..<n} x {..<n}) ({..<n} x {..<n})
by (rule bij-betw-map-prod) fact+
next
case (2 zy)
thus ?case
using distinct
by (auto simp: strongly-preferred-of-ranking-nth-iff f-def length-zs set-xs)
qed
hence card B = card A
by (rule bij-betw-same-card)
hence card A = card B ..
also have card B = inversion-number xs
unfolding inversion-number-def inversions-altdef B-def
by (rule arg-conglof - - card]) (auto simp: set-xs length-zs)
finally show ?thesis .
qed

Hence, computing the swap distance of two arbitrary lists can be reduced to computing
the number of inversions of a list by renaming all the elements such that the first list
becomes [0, ...,n — 1].

lemma swap-dist-conv-inversion-number:
assumes distinct: distinct xs distinct ys and set-eq: set xs = set ys
shows swap-dist zs ys = inversion-number (map (index xs) ys)
proof —
have length ©s = length ys
using distinct set-eq by (metis distinct-card)
define n where n = length xs
have n = length ys
using <length rs = length ys> unfolding n-def by simp

define f where f = index xs
have inj: inj-on f (set xs)
unfolding f-def using inj-on-indez|of zs] by simp

have swap-dist zs ys = swap-dist (map f xs) (map f ys)

by (rule swap-dist-map [symmetric]) (use set-eq inj in simp-all)
also have map f xs = [0..<n] unfolding f-def n-def

by (rule map-indez-self) fact+
also have swap-dist [0..<n] (map f ys) = inversion-number (map f ys)
proof (rule swap-dist-zero-upt-n)

show mset (map f ys) = mset-set {0..<n}

by (metis <map fxs = [0..<n|> distinct(1,2) mset-map mset-set-set mset-upt set-eq)

qged
finally show ?thesis

by (simp add: f-def)

qed

16

lemma swap-dist-code’ [code]:
swap-dist xs ys =
(if distinct xs A distinct ys N set xs = set ys then
inversion-number (map (index xs) ys) else 0)
proof (cases distinct xs N distinct ys N\ set xs = set ys)
case Fulse
thus ?thesis
by (auto simp: swap-dist-def)
next
case True
thus ?thesis
by (subst swap-dist-conv-inversion-number) auto
qed

1.5 Swapping adjacent list elements

definition swap-adj-list :: nat = 'a list = 'a list where
swap-adj-list i xs = (if Suc i < length zs then xs[i := zs | Suc i, Suc i :== xs | 7] else xs)

lemma length-swap-adj-list [simp]: length (swap-adj-list i xs) = length xs
by (simp add: swap-adj-list-def)

lemma distinct-swap-adj-list-iff [simp):
distinct (swap-adj-list i xs) «— distinct s
by (simp add: swap-adj-list-def)

lemma mset-swap-adj-list [simp):
mset (swap-adj-list ¢ xs) = mset xs
by (simp add: swap-adj-list-def mset-update)

lemma set-swap-adj-list [simp]:
set (swap-adj-list i xs) = set xs
by (simp add: swap-adj-list-def)

lemma swap-adj-list-append-left:
assumes i > length xs
shows swap-adj-list i (zs Q ys) = zs @ swap-adj-list (i — length zs) ys
using assms by (auto simp: swap-adj-list-def list-update-append nth-append Suc-diff-le)

lemma swap-adj-list-Cons:
assumes 7 > ()
shows swap-adj-list i (x # zs) = x # swap-adj-list (i — 1) xs
using swap-adj-list-append-left[of [z] i xs] assms by simp

lemma swap-adj-list-append-right:
assumes Suc i < length zs
shows swap-adj-list i (xs Q ys) = swap-adj-list { zs Q ys
using assms by (auto simp: swap-adj-list-def list-update-append nth-append)

17

lemma swap-dist-swap-adj-list:
assumes Suc i < length zs distinct xs
shows swap-dist zs (swap-adj-list i zs) = 1
proof —
define z y where z = zs ! i and y = zs ! Suc ¢
define ys zs where ys = take i xs and zs = drop (i+2) zs
have length ys = i
using assms(1) by (simp add: ys-def)
have 1: zs = ys Q z # y # zs
unfolding z-def y-def ys-def zs-def using assms(1) by (simp add: Cons-nth-drop-Suc)
have 2: swap-adj-list i xs = ys Q y # © # zs
by (simp add: swap-adj-list-def 1 list-update-append <length ys = i> nth-append)
have swap-dist xs (swap-adj-list i xs) =
swap-dist (ys @ x # y # 2s) (ys Q y # x # 2s)
by (subst 1, subst 2) (rule refl)
also have ... = 1
using assms by (simp add: 1 swap-dist-swap-first swap-dist-append-left)
finally show ?thesis .
qed

fun swap-adjs-list :: nat list = 'a list = 'a list where
swap-adjs-list [| s = xs
| swap-adjs-list (i # is) xs = swap-adjs-list is (swap-adj-list i xs)

lemma length-swap-adjs-list [simp]: length (swap-adjs-list is xs) = length xs
by (induction is arbitrary: zs) simp-all

lemma distinct-swap-adjs-list-iff [simp]:
distinct (swap-adjs-list is xs) <— distinct xs
by (induction is arbitrary: xs) (auto simp: swap-adj-list-def)

lemma mset-swap-adjs-list [simp):
mset (swap-adjs-list is xs) = mset xs
by (induction is arbitrary: xs) (auto simp: swap-adj-list-def mset-update)

lemma set-swap-adjs-list-list [simp]:
set (swap-adjs-list is xs) = set s
by (induction is arbitrary: zs) (auto simp: swap-adj-list-def mset-update)

lemma swap-adjs-list-append:
swap-adjs-list (is Q js) zs = swap-adjs-list js (swap-adjs-list is xs)
by (induction is arbitrary: zs) simp-all

lemma swap-adjs-list-append-left:
assumes Y i€set is. © > length zs
shows swap-adjs-list is (xs Q ys) = zs Q swap-adjs-list (map (Ai. i — length xs) is) ys
using assms by (induction is arbitrary: ys) (simp-all add: swap-adj-list-append-left)

18

lemma swap-adjs-list-Cons:
assumes 0 ¢ set is
shows swap-adjs-list is (x # xs) = x # swap-adjs-list (map (Ni. i — 1) is) zs
proof —
have Vieset is. Suc 0 < i
using assms by (auto simp: Suc-le-eq introl: Nat.grol)
thus ?thesis
using swap-adjs-list-append-left|of is [z] zs] by simp
qed

lemma swap-adjs-list-append-right:
assumes YV i€set is. Suc i < length xs
shows swap-adjs-list is (xs Q ys) = swap-adjs-list is xs Q ys
using assms by (induction is arbitrary: zs) (simp-all add: swap-adj-list-append-right)

Swapping two adjacent elements either increases or decreases the swap distance by 1,
depending on the orientation of the swapped pair in the other relation.

lemma swap-dist-relation-of-ranking-swap:
assumes distinct (zs Q © # y # ys)
shows swap-dist-relation R (of-ranking (zs Q@ x # y # ys)) + (if y <[R] x then 1 else 0) =
swap-dist-relation R (of-ranking (zs @ y # z # ys)) + (if x <[R] y then 1 else 0)
proof —
have swap-dist-relation-auz R (of-ranking (zs @ x # y # ys)) U (if y <[R] z then {(y,z)} else

{H =
swap-dist-relation-aux R (of-ranking (zs Q y # = # ys)) U (if # <[R] y then {(z,y)} else
{H

(is ?lhs = %rhs)
using assms
by (auto simp: swap-dist-relation-auz-def of-ranking-append of-ranking-Cons strongly-preferred-def
dest: of-ranking-imp-in-set)
moreover have card ?lhs = card (swap-dist-relation-aux R (of-ranking (xs @ = # y # ys)))
+ (if y <[R] z then 1 else 0)
proof (subst card-Un-disjoint)
show finite (swap-dist-relation-auz R (of-ranking (zs @ z # y # ys)))
proof (rule finite-subset)
show swap-dist-relation-aux R (of-ranking (zs Q x # y # ys)) C
set (xs @ x # y # ys) X set (xs Q z # y # ys)
unfolding swap-dist-relation-auz-def using of-ranking-imp-in-set[of (zs Q = # y # ys)]
by blast
ged auto
qed (auto simp: swap-dist-relation-auz-def of-ranking-append of-ranking-Cons)
moreover have card ?rhs = card (swap-dist-relation-aux R (of-ranking (zs Q y # z # ys)))
+ (if z <[R] y then 1 else 0)
proof (subst card-Un-disjoint)
show finite (swap-dist-relation-auz R (of-ranking (zs Q y # = # ys)))
proof (rule finite-subset)
show swap-dist-relation-aux R (of-ranking (zs Q y # x # ys)) C
set (xzs @ y # x # ys) X set (zs Q y # x # ys)
unfolding swap-dist-relation-auz-def using of-ranking-imp-in-set[of (zs Q y # x # ys)]

19

by blast
ged auto
qed (auto simp: swap-dist-relation-auz-def of-ranking-append of-ranking-Cons)
ultimately show ?thesis
unfolding swap-dist-relation-def by metis
qed

1.6 Swapping non-adjacent list elements

If z and y are two not necessarily adjacent elements that are “in the wrong order”,
swapping them always strictly decreases the swap distance.

lemma swap-dist-relation-swap-less:
assumes linorder-on A R finite A
assumes zy: Rz y
assumes distinct: distinct (xs Q x # ys Q y # zs)
assumes subset: set (xs Q z # ys Q y # 25) = A
shows swap-dist-relation R (of-ranking (zs Q z # ys Q y # zs)) >
swap-dist-relation R (of-ranking (zs @ y # ys Q z # 2s))
proof —
interpret R: linorder-on A R by fact
from distinct have [simp|: © £ yy # ©
by auto
have yz: -y <[R] =
using zy R.antisymmetric[of x y] by auto

define f where f = (A\zs. swap-dist-relation-auz R (of-ranking xs))
have fin: finite (f zs) for zs
by (rule finite-subset[of - set xs X set xs])
(auto simp: f-def swap-dist-relation-auz-def dest: of-ranking-imp-in-set)

have f-eq: fzs = {(z, y). © <[R] y A = >[of-ranking zs] y} for zs
unfolding f-def swap-dist-relation-auz-def by (auto simp: strongly-preferred-def)
have distinct xs distinct ys distinct zs
using distinct by auto
hence *: a <[of-ranking xzs] b +— a # b A of-ranking zs a b
a <[of-ranking ys] b +— a # b A of-ranking ys a b
a <[of-ranking zs] b +— a # b A of-ranking zs a b for a b
by (metis linorder-of-ranking linorder-on-def order-on.antisymmetric
strongly-preferred-def)+
have sx: a <[R]| b<—a#bARabforabd
using R.antisymmetric R.total unfolding strongly-preferred-def by blast

define [hs where
lhs =f (s Qaz # ys Qy # zs) U {(y,0) |[b. RybAbe setysy U{(a,z) [a. Raz A a€
set (y#ys)})

define rhs where
rhs = f (zs @ y # ys Q@ z # 2zs) U ({(x,b) |[b. Rz b A b€ setys} U{(a,y) |a. Ray A a €
set (v#£ys)})

20

have lhs = rhs
proof —
have (a, b) € lhs <— (a, b) € rhs for a b
proof —
have (a, b) € lhs<— (a, b)) e f (s Qur # ysQy# z5) VRabAN ((a=yA(b=z VD
€ set ys)) V (a € set ys A b = x))
unfolding lhs-def using subset by auto
alsohave ... +— (g, b)) e f(zsQyH# ysQu # 25) VRabA ((a=2zAN(b=yVbEe
set ys)) V (a € set ys A b = y))
using distinct subset unfolding f-eq
by (force simp: of-ranking-strongly-preferred- Cons-iff of-ranking-strongly-preferred-append-iff

eq-commute not-strongly-preferred-of-ranking-iff * *x)
also have ... «— (a, b) € rhs
unfolding rhs-def using subset yr by auto
finally show (a, b) € lhs <— (a, b) € Ths .
qed
thus ?thesis
by auto
qged

define di where dI = card {a. Ray A R ya A a € set ys}
define d2 where d2 = card {a. Rxa A Ray A a € set ys}

have card lhs = card (f (zs Q@ z # ys @ y # 2s)) +
card ({(y,b) |b. Ry b A be setys} U{(ax)|a. Rax A ac set (y#ys)})
unfolding (hs-def
by (intro card-Un-disjoint fin)
(auto simp: f-def swap-dist-relation-auz-def of-ranking-Cons of-ranking-append
dest: of-ranking-imp-in-set)
also have card ({(y,b) [b. Ry b A b€ set ys} U {(a,x) [a. R ax A a € set (y#ys)}) =
card {(y,b) |b. Ry b A b € set ys} + card {(a,z) |a. R a z A a € set (y#ys)}
using distinct by (intro card-Un-disjoint) auto
also have {(y,b) |b. Ry b A b € set ys} = (Ab. (y,b)) “{b. RybA b€ setys}
by auto
also have card ... = card {b. Ry b A b € set ys}
by (rule card-image) (auto simp: inj-on-def)
also have {(a,z) |a. R a z A a € set (y#ys)} = (Aa. (a,z)) “{a. R az A a € set (y#ys)}
by auto
also have card ... = card {a. R ax A a € set (y#ys)}
by (rule card-image) (auto simp: inj-on-def)
also have {a. R az A a € set (y#ys)} = {a. Rax A a € set ys}
using yz by auto
finally have 1:
card lhs =
card (f (zs Q z # ys Q y # 2s)) + card {a. Raz N a € set ys} + card {b. RybAbe
set ys}
by (simp only: add-ac)

21

have card rhs = card (f (zs @ y # ys Q z # zs5)) +
card ({(z,0) |b. Rz b A b€ setys} U{(a,y) |a. Ray A a € set (z#ys)})
unfolding rhs-def
by (intro card-Un-disjoint fin)
(auto simp: f-def swap-dist-relation-auz-def of-ranking-Cons of-ranking-append
dest: of-ranking-imp-in-set)
also have card ({(z,b) [b. Rz b A b€ set ys} U {(a,y) |a. R ay A a € set (z#ys)}) =
card ({(z,b) |b. Rz b A b € set ys}) + card ({(a,y) |a. R ay A a € set (z#ys)})
using distinct by (intro card-Un-disjoint) auto
also have {(z,b) [b. Rz b A b € set ys} = (Ab. (z,0)) “{b. Rz b A b€ setys}
by auto
also have card ... = card {b. Rz b A b € set ys}
by (rule card-image) (auto simp: inj-on-def)
also have {(a,y) |a. R a y N a € set (x#ys)} = (Aa. (a,y)) ‘{a. Ray A a € set (zys)}
by auto
also have card ... = card {a. R a y N\ a € set (z#ys)}
by (rule card-image) (auto simp: inj-on-def)
also have {a. Ra y A a € set (z#ys)} ={a. Ray A a € set ys} U {z}
using zy by auto
also have card ... = card {a. Ray A a € set ys} + 1
using distinct by (subst card-Un-disjoint) auto

finally have 2:
card ths =
card (f (zs Q y # ys Q © # z5)) + card {a. Ray A a € set ys} + card {b. Rz b A b€
set ys} + 1
by (simp only: add-ac)

have 3: card {a. R ax A a € set ys} < card {a. R ay A a € set ys}
by (rule card-mono) (use zy R.trans in auto)

have 4: card {b. Ry b A b € set ys} < card {b. Rz b A b € set ys}
by (rule card-mono) (use zy R.trans in auto)

have int (card lhs) = int (card rhs)
using <lhs = rhs)» by (rule arg-cong)

hence int (card lhs) — card {a. R a x A a € set ys} — card {b. Ry b A b € set ys} >

int (card ths) — card {a. R ay A a € set ys} — card {b. Rz b A b € set ys}

using 3 4 by linarith

hence card (f (zs @ z # ys Q y # 2s)) > card (f (zs Q y # ys Q z # 25))
unfolding 1 2 by simp

thus ?thesis
unfolding f-def swap-dist-relation-def by simp

qed

lemma swap-dist-relation-swap-less”:
assumes zy: R (ys ') (ys!j) «— i <j
assumes R: finite-linorder-on A R
assumes distinct: distinct ys set ys = A
assumes ij: i < length ys j < length ys ¢ # j

22

shows swap-dist-relation R (of-ranking ys) >
swap-dist-relation R (of-ranking (ys[i :== ys ! 4, j := ys 1 1]))
using ij zy
proof (induction i j rule: linorder-wlog)
case (le i j)
hence i < j
by linarith
interpret R: finite-linorder-on A R
by fact
define ys! ys2 ys3 where ys! = take i ys
and ys2 = take (j — ¢ — 1) (drop (i+1) ys) and ys3 = drop (j+1) ys
have [simp]: length ys1 = i length ys2 = j — i — 1 length ys3 = length ys — j — 1
using le by (simp-all add: ys1-def ys2-def ys3-def)
define y y’ where y = ys! iand y' = ys ! j

have ys-eq: ys = ysl Q y # ys2 Q y' # ys3
apply (subst id-take-nth-drop|of i])
subgoal by (use le in simp)
apply (subst id-take-nth-droplof j — i — 1 drop (Suc i) ys])
apply (use le in <simp-all add: ys1-def ys2-def ys3-def y-def y'-def»)
done

have swap-dist-relation R (of-ranking (ys1 Q y # ys2 @Q y' # ys3)) >
swap-dist-relation R (of-ranking (ys1 @ y’' # ys2 Q y # ys3))
proof (rule swap-dist-relation-swap-less)
show linorder-on A R ..
show R y y’
unfolding y-def y’-def using le by auto
show distinct (ys1 Q y # ys2 Q y' # ys3)
using distinct unfolding ys-eq by simp
show set (ys1 Q@ y # ys2 Q y' # ys3) = A
using distinct unfolding ys-eq by simp
qed auto
also have ysl Q y # ys2 Q y' # ys3 = ys
using ys-eq by simp
also have ys1 @ y' # ys2 Q y # ys8 = ys[i := y', j :=]
by (subst ys-eq) (use le <i < j» in <auto simp: list-update-append split: nat.splitsy)
finally show ?Zcase
unfolding swap-dist-def y-def y'-def using distinct by simp
next
case (sym i j)
interpret R: finite-linorder-on A R
by fact
have swap-dist-relation R (of-ranking (ys[j := ys ! i, i := ys 1 j])) <
swap-dist-relation R (of-ranking ys)
proof (rule sym.IH)
show R (ys!j) (ys! i) «— (j < 9)
using sym.prems distinct R.antisymmetric R.total’
by (metis less-imp-le-nat linorder-not-le nat-neq-iff nth-eq-iff-index-eq nth-mem)

23

qed (use sym.prems in auto)
thus “case
using sym.prems by (simp add: list-update-swap)
qed

The following formulation for lists is probably the nicest one.

lemma swap-dist-swap-less:
assumes zy: of-ranking zs (ys ! i) (ys ! j) «— i < j
assumes distinct: distinct xs distinct ys set rs = set ys
assumes ij: i < length ys j < length ys i # j
shows swap-dist xs ys > swap-dist xs (ys[i := ys ! 4, j := ys ! q])
proof —
have swap-dist-relation (of-ranking zs) (of-ranking ys) >
swap-dist-relation (of-ranking zs) (of-ranking (ys[i := ys ! j, j := ys ! i]))
by (rule swap-dist-relation-swap-less’[where A = set xs])
(use assms in <auto intro: finite-linorder-of-ranking»)
thus ?thesis
using distinct by (simp add: swap-dist-def)
qed

1.7 Swap distance as minimal number of adjacent swaps to make two lists
equal

The swap distance between the original list and the list obtained after swapping adjacent
elements n times is at most n.

lemma swap-dist-swap-adjs-list:
assumes distinct s
shows swap-dist zs (swap-adjs-list is xs) < length is
using assms
proof (induction is arbitrary: xs)
case (Cons i is xs)
define ys where ys = swap-adj-list i xs
have swap-dist xs (swap-adjs-list (i#is) zs) =
swap-dist xs (swap-adjs-list is ys)
by (simp add: ys-def)
also have ... < swap-dist xs ys + swap-dist ys (swap-adjs-list is ys)
by (rule swap-dist-triangle) (use Cons.prems in <simp-all add: ys-def»)
also have swap-dist xs ys < 1
proof (cases Suc i < length zs)
case True
hence swap-dist zs ys = 1
unfolding ys-def by (intro swap-dist-swap-adj-list) (use Cons.prems in auto)
thus ?thesis
by simp
qed (auto simp: ys-def swap-adj-list-def)
also have swap-dist ys (swap-adjs-list is ys) < length is
by (rule Cons.IH) (use Cons.prems in <auto simp: ys-def>)
finally show ?case

24

by simp
qed simp-all

Phrased in another way, any sequence of adjacent swaps that makes two lists the same
must have a length at least as big as the swap distance of the two lists.

theorem swap-dist-minimal:
assumes distinct s
assumes VY i€set is. Suc i < length xs
assumes swap-adjs-list is xs = ys
shows length is > swap-dist zs ys
using swap-dist-swap-adjs-list[of xs is] assms by blast

Next, we will show that this lower bound is sharp, i.e. there exists a sequence of swaps
that makes the two lists the same whose length is exactly the swap distance.

To this end, we derive an algorithm to compute a sequence of swaps whose effect is
equivalent to the permutation [0,1,...,n — 1] + [ig, 1, ..., 9n—1].

We first define the following function, which returns a list of swaps that pulls the i-th
element of a list to the front, i.e. it corresponds to the permutation [0,1,...,n — 1] —
[(,0,1,....i—1,i4+1,...,n—1].

definition pull-to-front-swaps :: nat = nat list where
pull-to-front-swaps i = rev [0..<i]

lemma length-pull-to-front-swaps [simp]: length (pull-to-front-swaps i) = i
by (simp add: pull-to-front-swaps-def)

lemma set-pull-to-front-swaps [simp]: set (pull-to-front-swaps i) = {0..<i}
by (simp add: pull-to-front-swaps-def)

lemma pull-to-front-swaps-0 [simpl: pull-to-front-swaps 0 = |]
and pull-to-front-swaps-Suc: pull-to-front-swaps (Suc i) = i # pull-to-front-swaps i
by (simp-all add: pull-to-front-swaps-def)

lemma swap-adjs-list-pull-to-front:
assumes i < length xs
shows swap-adjs-list (pull-to-front-swaps i) xs = (xs | ©) # take i xs Q drop (Suc i) xs
using assms
proof (induction i arbitrary: s)
case (
have zs = xs ! 0 # drop (Suc 0) zs
using 0 by (cases zs) auto
thus “case by simp
next
case (Suc i s)
define z y where z = zs ! ¢ and y = xs ! Suc ¢
define ys zs where ys = take i s and zs = drop (i+2) zs
have [simp]: length ys = i
using Suc.prems by (simp add: ys-def)
have zs-eq: xs = ys Q x # y # zs

25

unfolding z-def y-def ys-def zs-def using Suc.prems by (simp add: Cons-nth-drop-Suc)

have swap-adjs-list (pull-to-front-swaps (Suc ©)) xs =
y # ys @ drop (Suc i) (zs[i := y, Suc i := z]) using Suc.prems

by (simp add: pull-to-front-swaps-Suc swap-adj-list-def Suc.IH x-def y-def ys-def zs-def)
also have drop (Suc i) (zs[i :== y, Suc i := z]) = = # zs

by (simp add: zs-eq list-update-append)
also have y # ys Q z # zs = xs | Suc i # take (Suc i) zs @ drop (Suc (Suc 7)) s

by (simp add: zs-eq nth-append)
finally show ?Zcase .

qed

We now simply perform the “pull to front” operation so that the first element is the
desired one. We then do the same thing again for the remaining n — 1 indices (shifted
accordingly) etc. until we reach the end of the index list.

This corresponds to a variant of selection sort that only uses adjacent swaps, or it can
also be seen as a kind of reversal of insertion sort.

fun swaps-of-perm :: nat list = nat list where
swaps-of-perm [| = |]
| swaps-of-perm (i # is) =
pull-to-front-swaps i @ map Suc (swaps-of-perm (map (Nj. if § > i then j — 1 else j) is))

lemma set-swaps-of-perm-subset: set (swaps-of-perm is) C (|Ji€set is. {0..<i})
by (induction is rule: swaps-of-perm.induct; fastforce)

lemma swap-adjs-list-swaps-of-perm-auz:

fixes i :: nat

assumes mset (i # is) = mset-set {0..<n}

shows mset (map (Aj. if i < jthen j — 1 else j) is) = mset-set {0..<n — 1}
proof —

define is! where is! = filter-mset (N\j. i < j) (mset is)

define is2 where is2 = filter-mset (\j. =(i < j)) (mset is)

have i €# mset (i # is)

by simp

also have mset (i # is) = mset-set {0..<n}
by fact

finally have i: i < n
by simp

have mset-set {0..<n} = mset (i # is)
using assms by simp

also have ... = add-mset i (mset is)
by simp

finally have mset is = mset-set {0..<n} — {#i#}
by simp

also have ... = mset-set ({0..<n} — {i})

by (subst mset-set-Diff) (use i in auto)
finally have mset-is: mset is = mset-set ({0..<n} — {i}) .

26

have mset (map (N\j. if i < j then j — 1 else j) is) =
{#if i < jthenj — 1 else j. j €# mset is#}
by simp
also have mset is = is1 + is2
unfolding isi-def is2-def by (rule multiset-partition)
also have {#if { < jthenj — 1 else j. j € isl + is2#} =
{#j — 1. €# is1#} + {#j. j €# is2#} unfolding image-mset-union
by (intro arg-cong2lof - - - - (+)] image-mset-cong) (auto simp: isl-def is2-def)
also have {#j — 1. je# isl#} = {#j — 1 .j €# mset-set {z. e < n Az #iNi<z}#}
unfolding isI-def by (simp add: mset-is)
also have ... = mset-set (Aj. j— 1) ‘{z.z<nANz#iNi<uz})
by (intro image-mset-mset-set) (auto simp: inj-on-def)
also have {z. z < n ANz #iANi<z}={i<.<n}
by auto
also have bij-betw (Nj. j — 1) {i<..<n} {i.<n — 1}
by (rule bij-betwl|of - - - Xi. i+1]) auto
hence (\j. j — 1) ‘{i<.<n} = {i.<n — 1}
by (simp add: bij-betw-def)
also have {#j. j €# is2#} = mset-set {z. . <n Az #iN- i<z}
by (simp add: is2-def mset-is)
also have {z. z < n Az #iAN-i<z}={.<i}
using ¢ by auto
also have mset-set {i..<n — 1} + mset-set {..<i} =
mset-set ({i.<n — 1} U {..<i})
by (rule mset-set-Union [symmetric]) auto
also have {i.<n — 1} U {.<i} = {0..<n — 1}
using ¢ by auto
finally show ?thesis .
qed

The following result shows that the list of swaps returned by swaps-of-perm indeed have
the desired effect.

lemma swap-adjs-list-swaps-of-perm:
assumes mset is = mset-set {0..<length zs}
shows swap-adjs-list (swaps-of-perm is) xs = map (Ni. zs ! @) is
using assms
proof (induction is arbitrary: zs rule: swaps-of-perm.induct)
case (1 zs)
thus Zcase
by (simp add: mset-set-empty-iff)
next
case (2 i is xs)
define is’ where is’ = map (Aj. if i < jthen j — 1 else j) is
have i: i < length s
proof —
have i €# mset (i # is)
by simp
also have mset (i # is) = mset-set {0..<length zs}

27

by fact
finally show ?thesis
by simp
qed
have distinct (i # 1is)
using 2.prems by (metis distinct-upt mset-eq-imp-distinct-iff mset-upt)

have swap-adjs-list (swaps-of-perm (i # is)) xs =
swap-adjs-list (map Suc (swaps-of-perm is’))
(swap-adjs-list (pull-to-front-swaps i) xs)
by (simp add: swap-adjs-list-append is’-def)
also have swap-adjs-list (pull-to-front-swaps i) xs = xs | i # take i xs Q drop (Suc i) xs
by (subst swap-adjs-list-pull-to-front) (use i in auto)
also have swap-adjs-list (map Suc (swaps-of-perm is’)) ... =
xs | i # swap-adjs-list (swaps-of-perm is’) (take i xs Q drop (Suc i) zs)
by (subst swap-adjs-list-Cons) (simp-all add: o-def)
also have swap-adjs-list (swaps-of-perm is’) (take i xs Q drop (Suc i) xs) =
map ((!) (take i zs @ drop (Suc 7) zs)) is’
unfolding is’-def
proof (rule 2.IH)
have mset (map (Aj. if i < jthen j — 1 else j) is) =
mset-set {0..<length s — 1}
by (rule swap-adjs-list-swaps-of-perm-auz) (use 2.prems in simp-all)
also have length zs — 1 = length (take i xs @Q drop (Suc i) xs)
using i by simp
finally show mset (map (Aj. if i < jthen j — 1 else j) is) =
mset-set {0..<length (take i xs @ drop (Suc) zs)} .
qed
also have zs ! i # map ((!) (take i xs Q drop (Suc i) xs)) is’ = map ((!) zs) (i # is)
by (rule nth-equalityl)
(use i «distinct (i # is)
in «force simp: is’-def o-def nth-append nth-Cons set-conv-nth split: nat.splits)+
finally show ?Zcase .
qed

The number of swaps returned by swaps-of-perm is exactly the number of inversions in
the input list (i.e. of the index permutation described by it).

lemma length-swaps-of-perm:
assumes mset is = mset-set {0..<length is}
shows length (swaps-of-perm is) = inversion-number is
using assms
proof (induction is rule: swaps-of-perm.induct)
case (2 1 1s)
define n where n = length is
define is’ where is’ = map (Aj. if i < jthen j — 1 else j) is
have mset is' = mset-set {0..<Suc (length is)—1}
unfolding is’-def by (rule swap-adjs-list-swaps-of-perm-auzx) (use 2.prems in simp-all)
also have Suc (length is) — 1 = length (map (Aj. if ¢ < j then j — 1 else j) is)
by simp

28

finally have is”: mset is’ = mset-set {0..<...} .

have i: i < n
proof —
have i €# mset (i # is)
by simp
also have mset (i # is) = mset-set {0..n}
unfolding n-def using 2.prems by (simp add: atLeastLess ThanSuc-atLeastAtMost)
finally show ?thesis
by simp
qed

have mset-set {0..n} = mset (i # is)
using 2.prems by (simp add: n-def atLeastLess ThanSuc-atLeastAtMost)

also have ... = add-mset i (mset is)
by simp

finally have mset is = mset-set {0..n} — {#i#}
by simp

also have ... = mset-set ({0..n} — {i})

by (subst mset-set-Diff) (use i in auto)
finally have mset-is: mset is = mset-set ({0..n} — {i}) .

have set-is: set is = {0..n} — {i}

proof —
have set is = set-mset (mset is)
by simp
also have ... = {0..n} — {i}

by (subst mset-is) simp-all
finally show ?thesis .
qed

have length (swaps-of-perm (i # is)) = i + length (swaps-of-perm is’)
by (simp add: is’-def)
also have length (swaps-of-perm is’) = inversion-number is’
using is’ unfolding is’-def by (rule 2.IH)
also have inversion-number is’ = inversion-number is unfolding is’-def
by (rule inversion-number-map) (auto intro!: strict-mono-onl simp: set-is split: if-splits)
finally have 1: length (swaps-of-perm (i # is)) = i + inversion-number is
by simp

have inversion-number (i # is) = length (filter (\y. y < i) is) + inversion-number is
by (simp add: is’-def inversion-number-Cons)
also have length (filter (Ay. y < i) is) = size (filter-mset (Ay. y < i) (mset is))
by (metis mset-filter size-mset)
alsohave ... =card {z. x < n Az #i Nz <i}
by (subst mset-is) simp
also have {z. z < n Az #iANzx<i}={0.<i}
using ¢ by auto
also have card ... =1

29

by simp
finally have 2: inversion-number (i # is) = i + inversion-number is .

show ?Zcase
using 1 2 by metis
qed simp-all

Finally, we use the above to give a list of swap operations that map one list to another.
The number of swap operations produced by this is exactly the swap distance of the two
lists.

definition swaps-of-perm’ :: 'a list = 'a list = nat list where
swaps-of-perm’ xs ys = swaps-of-perm (map (index xs) ys)

theorem swaps-of-perm”:
assumes distinct xs distinct ys set xs = set ys
shows Vi€set (swaps-of-perm’ xs ys). Suc i < length xs
swap-adjs-list (swaps-of-perm’ xs ys) xs = ys
length (swaps-of-perm’ xs ys) = swap-dist s ys
proof —
have length-eq: length s = length ys
using assms by (metis distinct-card)
have mset-eq: mset xs = mset ys
using assms by (simp add: set-eq-iff-mset-eq-distinct)

have mset-eq”: image-mset (index xs) (mset ys) = mset-set {0..<length zs}
by (metis assms(1) map-indez-self mset-eq mset-map mset-upt)

have swap-adjs-list (swaps-of-perm’ zs ys) xs = map ((!) zs) (map (index xs) ys)
unfolding swaps-of-perm’-def
by (rule swap-adjs-list-swaps-of-perm) (simp add: mset-eq”)
also have ... = map id ys
unfolding map-map by (intro map-cong) (simp-all add: assms)
finally show swap-adjs-list (swaps-of-perm’ zs ys) xs = ys
by simp

have set (swaps-of-perm’ zs ys) C (|J i€set (map (index xs) ys). {0..<i})
unfolding swaps-of-perm’-def by (rule set-swaps-of-perm-subset)
also have set (map (index xs) ys) = {0..<length zs}
by (simp add: assms(1,3) index-image)
also have (|Jie{0..<length zs}. {0..<i}) C {i. Suc i < length zs}
by auto
finally show Vic€set (swaps-of-perm’ xs ys). Suc i < length s
by blast

have length (swaps-of-perm’ xs ys) = inversion-number (map (index xs) ys)
unfolding swaps-of-perm’-def by (rule length-swaps-of-perm) (simp-all add: mset-eq’ length-eq)
also have ... = swap-dist zs ys
using assms by (simp add: swap-dist-conv-inversion-number)
finally show length (swaps-of-perm’ zs ys) = swap-dist xs ys .

30

qed

Finally, we can derive the alternative characterisation of the swap distance.

lemma swap-dist-altdef:
assumes distinct xs distinct ys set s = set ys
shows swap-dist xs ys = (INF isc{is. swap-adjs-list is xs = ys}. length is)
proof (rule antisym)
show swap-dist zs ys < (INF is€{is. swap-adjs-list is xs = ys}. length is)
proof (rule cINF-greatest)

show {is. swap-adjs-list is zs = ys} # {}

using swaps-of-perm’[OF assms] by auto

show swap-dist zs ys < length is if is € {is. swap-adjs-list is xs = ys} for is

using that assms(1) swap-dist-swap-adjs-list by auto

qed
next
have (INF is€{is. swap-adjs-list is xs = ys}. length is) < length (swaps-of-perm’ s ys)

by (rule cINF-lower) (use swaps-of-perm/[OF assms] in auto)

also have ... = swap-dist zs ys

using swaps-of-perm/[OF assms| by simp

finally show swap-dist xs ys > (INF is€{is. swap-adjs-list is xs = ys}. length is) .
qed

end

References

1]
2]

A. Belov and J. Marques-Silva. Muser2: An efficient MUS extractor. J. Satisf.
Boolean Model. Comput., 8(3/4):123-128, 2012.

A. Biere, M. Fleury, and M. Heisinger. CaDiCal, Kissat, Paracooba entering the
SAT Competition 2021. In T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Jarvisalo,
and M. Suda, editors, Proc. of SAT Competition 2021 — Solver and Benchmark
Descriptions, volume B-2021-1 of Department of Computer Science Report Series B,
pages 10-13. University of Helsinki, 2021.

P. Lammich. The GRAT tool chain — efficient (UN)SAT certificate checking with
formal correctness guarantees. In S. Gaspers and T. Walsh, editors, Theory and Ap-
plications of Satisfiability Testing — SAT 2017, Proceedings, volume 10491 of Lecture
Notes in Computer Science, pages 457-463. Springer, 2017.

N. Wetzler, M. Heule, and W. A. H. Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In C. Sinz and U. Egly, editors, Theory and Applica-
tions of Satisfiability Testing — SAT 201/, Proceedings, volume 8561 of Lecture Notes
in Computer Science, pages 422-429. Springer, 2014.

31

	The swap distance
	Preliminaries
	The swap distance of two linear orders
	The swap distance of two lists
	The relationship between swap distance and inversions
	Swapping adjacent list elements
	Swapping non-adjacent list elements
	Swap distance as minimal number of adjacent swaps to make two lists equal

