
The Surprise Paradox

Joachim Breitner
Programming Paradigms Group

Karlsruhe Institute for Technology
breitner@kit.edu

17. März 2025

Zusammenfassung

In 1964, Fitch showed that the paradox of the surprise hanging
can be resolved by showing that the judges verdict is inconsistent. His
formalization builds on Gödels coding of provability.

In this theory, we reproduce his proof in Isabelle, building on Paul-
sons formalisation of Gödels incompleteness theorems.

Inhaltsverzeichnis
1 Excluded or 2

2 Formulas with variables 2

3 Fitch’s proof 4

4 Substitution, quoting and V-quoting 5

theory Surprise-Paradox
imports

Incompleteness.Goedel-I
Incompleteness.Pseudo-Coding

begin

The Surprise Paradox comes in a few variations, one being the following:

A judge sentences a felon to death by hanging, to be executed at
noon the next week, Monday to Friday. As an extra punishment,
the judge does not disclose the day of the hanging and promises
the felon that it will come at a surprise.
The felon, probably a logician, then concludes that he cannot be
hanged on Friday, as by then it would not longer be a surprise.
Using this fact and similar reasoning, he cannot be hanged on

1

breitner@kit.edu


Thursday, and so on. He reaches the conclusion that he cannot
be hanged at all, and contently returns to his cell.
Wednesday, at noon, the hangman comes to the very surprised
felon, and executes him.

Obviously, something is wrong here: Does the felon reason wrongly? It looks
about right. Or is the judge lying? But his prediction became true!
It is an interesting exercise to try to phrase the Surprise Paradox in a rigo-
rous manner, and see this might clarify things.
In 1964, Frederic Fitch suggested a formulation that refines the notion of
“surprise” as “cannot be proven from the given assumptions” [1]. To for-
mulate that, we need propositions that reference their own provability, so
just as Fitch builds on Gödel’s work, we build on Paulson’s formalisation of
Gödel’s incompleteness theorems in Isabelle [2].

1 Excluded or

Although the proof goes through with regular disjunction, Fitch phrases the
judge’s proposition using exclusive or, so we add syntax for that.
abbreviation Xor :: fm ⇒ fm ⇒ fm (infix ‹XOR› 120 )
where Xor A B ≡ (A OR B) AND ((Neg A) OR (Neg B))

2 Formulas with variables

In Paulson’s formalisation of terms and formulas, only terms carry variables.
This is sufficient for his purposes, because the proposition that is being
diagonalised needs itself as a parameter to PfP, which does take a term
(which happens to be a quoted formula).
In order to stay close to Fitch, we need the diagonalised proposition to oc-
cur deeper in a quotation of a few logical conjunctions. Therefore, we build
a small theory of formulas with variables (“holed” formulas). These sup-
port substituting a formula for a variable, this substitution commutes with
quotation, and closed holed formulas can be converted to regular formulas.
In our application, we do not need holes under an quantifier, which greatly
simplifies things here. In particular, we can use datatype and fun.
datatype hfm =

HVar name
| HFm fm
| HDisj hfm hfm (infixr ‹HOR› 130 )
| HNeg hfm

abbreviation HImp :: hfm ⇒ hfm ⇒ hfm (infixr ‹HIMP› 125 )

2



where HImp A B ≡ HDisj (HNeg A) B

definition HConj :: hfm ⇒ hfm ⇒ hfm (infixr ‹HAND› 135 )
where HConj A B ≡ HNeg (HDisj (HNeg A) (HNeg B))

abbreviation HXor :: hfm ⇒ hfm ⇒ hfm (infix ‹HXOR› 120 )
where HXor A B ≡ (A HOR B) HAND (HNeg A HOR HNeg B)

fun subst-hfm :: hfm ⇒ name ⇒ fm ⇒ hfm (‹- ′(-:::=- ′)› [1000 , 0 , 0 ] 200 )
where
(HVar name)(i:::=x) = (if i = name then HFm x else HVar name)
| (HDisj A B)(i:::=x) = HDisj (A(i:::=x)) (B(i:::=x))
| (HNeg A)(i:::=x) = HNeg (A(i:::=x))
| (HFm A)(i:::=x) = HFm A

lemma subst-hfml-Conj[simp]:
(HConj A B)(i:::=x) = HConj (A(i:::=x)) (B(i:::=x))

unfolding HConj-def by simp

instantiation hfm :: quot
begin
fun quot-hfm :: hfm ⇒ tm

where
quot-hfm (HVar name) = (Var name)
| quot-hfm (HFm A) = «A»
| quot-hfm (HDisj A B) = HPair (HTuple 3 ) (HPair (quot-hfm A) (quot-hfm B))
| quot-hfm (HNeg A) = HPair (HTuple 4 ) (quot-hfm A)

instance ..
end

lemma subst-quot-hfm[simp]: subst i «P» «A» = «A(i:::=P)»
by (induction A) auto

fun hfm-to-fm :: hfm ⇒ fm
where
hfm-to-fm (HVar name) = undefined
| hfm-to-fm (HFm A) = A
| hfm-to-fm (HDisj A B) = Disj (hfm-to-fm A) (hfm-to-fm B)
| hfm-to-fm (HNeg A) = Neg (hfm-to-fm A)

lemma hfm-to-fm-Conj[simp]:
hfm-to-fm (HConj A B) = Conj (hfm-to-fm A) (hfm-to-fm B)

unfolding HConj-def Conj-def by simp

fun closed-hfm :: hfm ⇒ bool
where
closed-hfm (HVar name) ←→ False
| closed-hfm (HFm A) ←→ True

3



| closed-hfm (HDisj A B) ←→ closed-hfm A ∧ closed-hfm B
| closed-hfm (HNeg A) ←→ closed-hfm A

lemma closed-hfm-Conj[simp]:
closed-hfm (HConj A B) ←→ closed-hfm A ∧ closed-hfm B

unfolding HConj-def by simp

lemma quot-closed-hfm[simp]: closed-hfm A =⇒ «A» = «hfm-to-fm A»
by (induction A) (auto simp add: quot-fm-def )

declare quot-hfm.simps[simp del]

3 Fitch’s proof

For simplicity, Fitch (and we) restrict the week to two days. Propositions
Q1 and Q2 represent the propositions that the hanging occurs on the first
resp. the second day, but these can obviously be any propositions.
context

fixes Q1 :: fm and Q2 :: fm
assumes Q-closed: supp Q1 = {} supp Q2 = {}

begin

In order to define the judge’s proposition, which is self-referential, we apply
the usual trick of defining a proposition with a variable, and then using
Gödel’s diagonalisation lemma.

definition H :: fm where
H = Q1 AND Neg (PfP «HVar X0 HIMP HFm Q1») XOR
Q2 AND Neg (PfP «HVar X0 HAND HNeg (HFm Q1) HIMP (HFm Q2)»)

definition P where P = (SOME P. {} ` P IFF H (X0 ::= «P»))

lemma P ′: {} ` P IFF H (X0 ::= «P»)
proof−

from diagonal[where α = H and i = X0 ]
obtain δ where {} ` δ IFF H (X0 ::= «δ»).
thus ?thesis unfolding P-def by (rule someI )

qed

From now on, the lemmas are named after their number in Fitch’s paper,
and correspond to his statements pleasingly closely.

lemma 7 : {} ` P IFF
(Q1 AND Neg (PfP «P IMP Q1») XOR
Q2 AND Neg (PfP «P AND Neg Q1 IMP Q2»))

using P ′ unfolding H-def
by (simp add: Q-closed forget-subst-fm[unfolded fresh-def ])

lemmas 7-E = 7 [THEN thin0 , THEN Iff-MP-left ′, OF Conj-E , OF thin2 ]

4



lemmas propositional-calculus =
AssumeH Neg-I Imp-I Conj-E Disj-E ExFalso[OF Neg-E ]
ExFalso[OF rotate2 , OF Neg-E ] ExFalso[OF rotate3 , OF Neg-E ]

lemma 8 : {} ` (P AND Neg Q1) IMP Q2

by (intro propositional-calculus 7-E)

lemma 10 : {} ` PfP «(P AND Neg Q1) IMP Q2»
using 8 by (rule proved-imp-proved-PfP)

lemmas 10-I = 10 [THEN thin0 ]

lemma 11 : {} ` P IMP Q1

by (intro propositional-calculus 7-E 10-I )

lemma 12 : {} ` PfP «P IMP Q1»
using 11 by (rule proved-imp-proved-PfP)

lemmas 12-I = 12 [THEN thin0 ]

lemma 13 : {} ` Neg P
by (intro propositional-calculus 7-E 10-I 12-I )

end

4 Substitution, quoting and V-quoting

In the end, we did not need the lemma at the end of this section, but it may
be useful to others.
lemma trans-tm-forgets: atom ‘ set is ]∗ t =⇒ trans-tm is t = trans-tm [] t

by (induct t rule: tm.induct)
(auto simp: lookup-notin fresh-star-def fresh-at-base)

lemma vquot-dbtm-fresh: atom ‘ V ]∗ t =⇒ vquot-dbtm V t = quot-dbtm t
by (nominal-induct t rule: dbtm.strong-induct)

(auto simp add: fresh-star-def fresh-at-base)

lemma subst-vquot-dbtm-trans-tm[simp]:
atom i ] is =⇒ atom ‘ set is ]∗ t =⇒
subst i «t» (vquot-dbtm {i} (trans-tm is t ′)) =
quot-dbtm (trans-tm is (subst i t t ′))

by (nominal-induct t ′ avoiding: is i t rule: tm.strong-induct)
(auto simp add: quot-tm-def lookup-notin fresh-imp-notin-env

vquot-dbtm-fresh lookup-fresh
intro: trans-tm-forgets[symmetric])

lemma subst-vquot-dbtm-trans-fm[simp]:
atom i ] is =⇒ atom ‘ set is ]∗ t =⇒
subst i «t» (vquot-dbfm {i} (trans-fm is A)) =
quot-dbfm (trans-fm is (subst-fm A i t))

by (nominal-induct A avoiding: is i t rule: fm.strong-induct)

5



(auto simp add: quot-fm-def fresh-Cons)

lemma subst-vquot[simp]:
subst i «t» bAc{i} = «A(i ::= t)»
by (nominal-induct A avoiding: i t rule: fm.strong-induct)

(auto simp add: vquot-fm-def quot-fm-def fresh-Cons)

end

Literatur

[1] F. B. Fitch. A goedelized formulation of the prediction paradox. Ame-
rican Philosophical Quarterly, 1(2):161–164, 1964.

[2] L. C. Paulson. Gödel’s incompleteness theorems. Archive of Formal Pro-
ofs, Nov. 2013. http://isa-afp.org/entries/Incompleteness.shtml, Formal
proof development.

6

http://isa-afp.org/entries/Incompleteness.shtml

	Excluded or
	Formulas with variables
	Fitch's proof
	Substitution, quoting and V-quoting

