The Surprise Paradox

Joachim Breitner
Programming Paradigms Group
Karlsruhe Institute for Technology
breitner@kit.edu

13. September 2023

Zusammenfassung

In 1964, Fitch showed that the paradox of the surprise hanging can be resolved by showing that the judges verdict is inconsistent. His formalization builds on Gödels coding of provability.

In this theory, we reproduce his proof in Isabelle, building on Paulsons formalisation of Gödels incompleteness theorems.

Inhaltsverzeichnis

1 Excluded or 2
2 Formulas with variables 2
3 Fitch's proof 4
4 Substitution, quoting and V-quoting 5

```
theory Surprise-Paradox
imports
    Incompleteness.Goedel-I
    Incompleteness.Pseudo-Coding
begin
```

The Surprise Paradox comes in a few variations, one being the following:

A judge sentences a felon to death by hanging, to be executed at noon the next week, Monday to Friday. As an extra punishment, the judge does not disclose the day of the hanging and promises the felon that it will come at a surprise.

The felon, probably a logician, then concludes that he cannot be hanged on Friday, as by then it would not longer be a surprise. Using this fact and similar reasoning, he cannot be hanged on

Thursday, and so on. He reaches the conclusion that he cannot be hanged at all, and contently returns to his cell.
Wednesday, at noon, the hangman comes to the very surprised felon, and executes him.

Obviously, something is wrong here: Does the felon reason wrongly? It looks about right. Or is the judge lying? But his prediction became true!
It is an interesting exercise to try to phrase the Surprise Paradox in a rigorous manner, and see this might clarify things.
In 1964, Frederic Fitch suggested a formulation that refines the notion of "surprise" as "cannot be proven from the given assumptions" [1]. To formulate that, we need propositions that reference their own provability, so just as Fitch builds on Gödel's work, we build on Paulson's formalisation of Gödel's incompleteness theorems in Isabelle [2].

1 Excluded or

Although the proof goes through with regular disjunction, Fitch phrases the judge's proposition using exclusive or, so we add syntax for that.

```
abbreviation Xor :: fm =>fm=>fm(infix XOR 120)
where Xor A B \equiv(AOR B)AND ((Neg A)OR (Neg B))
```


2 Formulas with variables

In Paulson's formalisation of terms and formulas, only terms carry variables. This is sufficient for his purposes, because the proposition that is being diagonalised needs itself as a parameter to $P f P:: t m \Rightarrow f m$, which does take a term (which happens to be a quoted formula).
In order to stay close to Fitch, we need the diagonalised proposition to occur deeper in a quotation of a few logical conjunctions. Therefore, we build a small theory of formulas with variables ("holed" formulas). These support substituting a formula for a variable, this substitution commutes with quotation, and closed holed formulas can be converted to regular formulas. In our application, we do not need holes under an quantifier, which greatly simplifies things here. In particular, we can use datatype and fun.

```
datatype \(h f m=\)
    HVar name
    | HFm fm
    | HDisj hfm hfm (infixr HOR 130)
    | HNeg hfm
abbreviation HImp :: hfm \(\Rightarrow h f m \Rightarrow h f m\) (infixr HIMP 125)
```

```
    where \(H \operatorname{Imp} A B \equiv H D i s j(H N e g A) B\)
definition HConj :: \(\mathrm{hfm} \Rightarrow \mathrm{hfm} \Rightarrow \mathrm{hfm} \quad\) (infixr \(H A N D\) 135)
    where HConj \(A B \equiv H N e g(H D i s j(H N e g A)(H N e g B))\)
abbreviation HXor :: \(h f m \Rightarrow h f m \Rightarrow h f m\) (infix \(H X O R\) 120)
    where HXor \(A B \equiv(A H O R B) H A N D(H N e g A H O R H N e g ~ B)\)
fun subst-hfm :: hfm \(\Rightarrow\) name \(\Rightarrow f m \Rightarrow h f m\left(-{ }^{\prime}(-:::=-1)[1000,0,0] 200\right)\)
    where
        (HVar name) \((i::=x)=(\) if \(i=\) name then HFm \(x\) else HVar name \()\)
    \(\mid(H D i s j A B)(i:::=x)=H D i s j(A(i::=x))(B(i:::=x))\)
    \(\mid(H N e g A)(i:::=x)=\operatorname{HNeg}(A(i:::=x))\)
    | \((\) HFm \(A)(i:::=x)=H F m A\)
lemma subst-hfml-Conj[simp]:
    \((\) HConj A B \()(i:::=x)=H C o n j ~(A(i::=x))(B(i:::=x))\)
unfolding HConj-def by simp
instantiation hfm :: quot
begin
fun quot-hfm :: hfm \(\Rightarrow t m\)
    where
        quot-hfm (HVar name \()=(\) Var name \()\)
    | quot-hfm (HFm A) \(=\) «A»
| quot-hfm (HDisj A B) = HPair (HTuple 3) (HPair (quot-hfm A) (quot-hfm B))
| quot-hfm (HNeg A) \(=\) HPair (HTuple 4) (quot-hfm A)
```


instance ..

```
end
lemma subst-quot-hfm[simp]: subst \(i « P » « A »=« A(i::=P) »\)
by (induction A) auto
fun \(h f m\)-to-fm :: hfm \(\Rightarrow f m\)
where
hfm-to-fm (HVar name) \(=\) undefined
|hfm-to-fm (HFm A) \(=A\)
|hfm-to-fm (HDisj A B) \(=\) Disj (hfm-to-fm A) (hfm-to-fm B)
|hfm-to-fm (HNeg A) \(=\) Neg (hfm-to-fm A)
lemma hfm-to-fm-Conj[simp]:
hfm-to-fm (HConj A B) \(=\) Conj \((\) hfm-to-fm A) \((\) hfm-to-fm B)
unfolding HConj-def Conj-def by simp
fun closed-hfm :: hfm \(\Rightarrow\) bool
where
closed-hfm (HVar name) \(\longleftrightarrow\) False
| closed-hfm (HFm A) \(\longleftrightarrow\) True
```

```
| closed-hfm (HDisj A B)\longleftrightarrow closed-hfm A ^ closed-hfm B
| closed-hfm (HNeg A) \longleftrightarrowclosed-hfm A
lemma closed-hfm-Conj[simp]:
    closed-hfm (HConj A B) \longleftrightarrow closed-hfm A ^ closed-hfm B
unfolding HConj-def by simp
lemma quot-closed-hfm[simp]: closed-hfm A\Longrightarrow «A»= «hfm-to-fm A»
    by (induction A) (auto simp add: quot-fm-def)
declare quot-hfm.simps[simp del]
```


3 Fitch's proof

For simplicity, Fitch (and we) restrict the week to two days. Propositions Q_{1} and Q_{2} represent the propositions that the hanging occurs on the first resp. the second day, but these can obviously be any propositions.

```
context
    fixes }\mp@subsup{Q}{1}{}:: fm and \mp@subsup{Q}{2}{}:: f
    assumes Q-closed: supp }\mp@subsup{Q}{1}{}={}\mathrm{ supp }\mp@subsup{Q}{2}{}={
begin
```

In order to define the judge's proposition, which is self-referential, we apply the usual trick of defining a proposition with a variable, and then using Gödel's diagonalisation lemma.

```
definition \(H\) :: \(f m\) where
    \(H=Q_{1} A N D\) Neg (PfP «HVar X0 HIMP HFm \(\left.Q_{1} »\right)\) XOR
    \(Q_{2} A N D\) Neg (PfP «HVar X0 HAND HNeg (HFm \(\left.Q_{1}\right)\) HIMP (HFm \(\left.Q_{2}\right)\) »)
definition \(P\) where \(P=(S O M E P .\{ \} \vdash P \operatorname{IFF} H(X 0::=« P »))\)
lemma \(P^{\prime}:\{ \} \vdash P \operatorname{IFF} H(X 0::=« P »)\)
proof-
    from diagonal[where \(\alpha=H\) and \(i=X 0]\)
    obtain \(\delta\) where \(\} \vdash \delta \operatorname{IFF} H(X 0::=« \delta »)\).
    thus ?thesis unfolding \(P\)-def by (rule someI)
qed
```

From now on, the lemmas are named after their number in Fitch's paper, and correspond to his statements pleasingly closely.

```
lemma 7: \(\} \vdash P\) IFF
    ( \(Q_{1}\) AND Neg (PfP «P IMP \(\left.Q_{1} »\right) X O R\)
        \(Q_{2} A N D \operatorname{Neg}\left(P f P « P A N D\right.\) Neg \(\left.\left.Q_{1} I M P Q_{2} »\right)\right)\)
    using \(P^{\prime}\) unfolding \(H\)-def
    by (simp add: Q-closed forget-subst-fm[unfolded fresh-def])
lemmas 7-E = 7[THEN thin0, THEN Iff-MP-left', OF Conj-E, OF thin2]
```

```
    lemmas propositional-calculus =
    AssumeH Neg-I Imp-I Conj-E Disj-E ExFalso[OF Neg-E]
    ExFalso[OF rotate2, OF Neg-E] ExFalso[OF rotate3, OF Neg-E]
    lemma 8: {}\vdash(P AND Neg Q1)IMP Q Q
    by (intro propositional-calculus 7-E)
    lemma 10:{}\vdashPfP《(PAND Neg Q Q IMP Q Q "
    using }8\mathrm{ by (rule proved-imp-proved-PfP)
    lemmas 10-I = 10[THEN thin0]
    lemma 11: {}\vdashP IMP Q 
    by (intro propositional-calculus 7-E 10-I)
    lemma 12: {}\vdashPfP《P IMP Q & 
    using 11 by (rule proved-imp-proved-PfP)
lemmas 12-I = 12[THEN thin0]
lemma 13: {}\vdashNeg P
    by (intro propositional-calculus 7-E 10-I 12-I)
end
```


4 Substitution，quoting and V－quoting

In the end，we did not need the lemma at the end of this section，but it may be useful to others．

```
lemma trans-tm-forgets:atom' set is \sharp* t \Longrightarrow trans-tm is t= trans-tm [] t
    by (induct t rule: tm.induct)
        (auto simp: lookup-notin fresh-star-def fresh-at-base)
lemma vquot-dbtm-fresh: atom' V \sharp*t\Longrightarrow vquot-dbtm V t = quot-dbtm t
    by (nominal-induct t rule:dbtm.strong-induct)
        (auto simp add: fresh-star-def fresh-at-base)
lemma subst-vquot-dbtm-trans-tm[simp]:
    atom i\sharpis \Longrightarrowatom'set is \sharp* t\Longrightarrow
        subst i «t» (vquot-dbtm {i} (trans-tm is t')) =
        quot-dbtm (trans-tm is (subst it t'))
    by (nominal-induct t' avoiding: is it rule: tm.strong-induct)
        (auto simp add: quot-tm-def lookup-notin fresh-imp-notin-env
                        vquot-dbtm-fresh lookup-fresh
                intro: trans-tm-forgets[symmetric])
lemma subst-vquot-dbtm-trans-fm[simp]:
    atom i\sharpis\Longrightarrowatom'set is \sharp*t\Longrightarrow
        subst i《t»(vquot-dbfm {i} (trans-fm is A)) =
        quot-dbfm (trans-fm is (subst-fm A i t))
    by (nominal-induct A avoiding: is it rule: fm.strong-induct)
```

(auto simp add: quot-fm-def fresh-Cons)

```
lemma subst-vquot[simp]:
    subst \(i\) «t» \(\lfloor A\rfloor\{i\}=« A(i::=t) »\)
    by (nominal-induct A avoiding: it rule: fm.strong-induct)
    (auto simp add: vquot-fm-def quot-fm-def fresh-Cons)
end
```


Literatur

[1] F. B. Fitch. A goedelized formulation of the prediction paradox. American Philosophical Quarterly, 1(2):161-164, 1964.
[2] L. C. Paulson. Gödel's incompleteness theorems. Archive of Formal Proofs, Nov. 2013. http://isa-afp.org/entries/Incompleteness.shtml, Formal proof development.

