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Abstract

We develop finitely additive probability logic and prove a theorem of Patrick
Suppes that asserts that Ψ ` φ in classical propositional logic if and only if
(
∑
ψ ← Ψ. 1−Pψ) ≥ 1−Pφ holds for all probabilities P. We also provide a

novel dual form of Suppes’ Theorem, which holds that (
∑
φ← Φ. Pφ) ≤ Pψ

for all probabilities P if and only (
∨
Φ) ` ψ and all of the formulae in Φ are

logically exclusive from one another. Our proofs use Maximally Consistent
Sets, and as a consequence, we obtain two collapse theorems. In particular,
we show (

∑
φ ← Φ. Pφ) ≥ Pψ holds for all probabilities P if and only if

(
∑
φ← Φ. δ φ) ≥ δ ψ holds for all binary-valued probabilities δ, along with

the dual assertion that (
∑
φ ← Φ. Pφ) ≤ Pψ holds for all probabilities P

if and only if (
∑
φ← Φ. δ φ) ≤ δ ψ holds for all binary-valued probabilities

δ.
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Chapter 1

Probability Logic

theory Probability-Logic
imports

Propositional-Logic-Class.Classical-Connectives
HOL.Real
HOL−Library.Countable

begin

unbundle no funcset-syntax

1.1 Definition of Probability Logic

Probability logic is defined in terms of an operator over classical logic obey-
ing certain postulates. Scholars often credit George Boole for first conceiving
this kind of formulation [1]. Theodore Hailperin in particular has written
extensively on this subject [6, 7, 8].

The presentation below roughly follows Kolmogorov’s axiomatization [10]. A
key difference is that we only require finite additivity, rather than countable
additivity. Finite additivity is also defined in terms of implication (→).
class probability-logic = classical-logic +

fixes P :: ′a ⇒ real
assumes probability-non-negative: P ϕ ≥ 0
assumes probability-unity: ` ϕ =⇒ P ϕ = 1
assumes probability-implicational-additivity:
` ϕ → ψ → ⊥ =⇒ P ((ϕ → ⊥) → ψ) = P ϕ + P ψ

A similar axiomatization may be credited to Rescher [11, pg. 185]. However,
our formulation has fewer axioms. While Rescher assumes ` ϕ ↔ ψ =⇒ P
ϕ = P ψ, we show this is a lemma in §1.4.
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1.2 Why Finite Additivity?

In this section we touch on why we have chosen to employ finite additiv-
ity in our axiomatization of probability-logic and deviate from conventional
probability theory.

Conventional probability obeys an axiom known as countable additivity. Tra-
ditionally it states if S is a countable set of sets which are pairwise disjoint,
then the limit

∑
s ∈ S . P s exists and P (

⋃
S) = (

∑
s ∈ S . P s). This

is more powerful than our finite additivity axiom ` ϕ → ψ → ⊥ =⇒ P ((ϕ
→ ⊥) → ψ) = P ϕ + P ψ.

However, we argue that demanding countable additivity is not practical.

Historically, the statisticians Bruno de Finetti and Leonard Savage gave
the most well known critiques. In [2] de Finetti shows various properties
which are true for countably additive probability measures may not hold
for finitely additive measures. Savage [12], on the other hand, develops
probability based on choices prizes in lotteries.

We instead argue that if we demand countable additivity, then certain prop-
erties of real world software would no longer be formally verifiable as we
demonstrate here. In particular, it prohibits conventional recursive data
structures for defining propositions. Our argument is derivative of one given
by Giangiacomo Gerla [5, Section 3].

By taking equivalence classes modulo λϕ ψ. ` ϕ ↔ ψ, any classical logic
instance gives rise to a Boolean algebra known as a Lindenbaum Algebra. In
the case of ′a classical-propositional-formula this Boolean algebra algebra is
both countable and atomless. A theorem of Horn and Tarski [9, Theorem
3.2] asserts there can be no countably additive Pr for a countable atomless
Boolean algebra.

The above argument is not intended as a blanket refutation of conven-
tional probability theory. It is simply an impossibility result with respect
to software implementations of probability logic. Plenty of classic results
in probability rely on countable additivity. A nice example, formalized in
Isabelle/HOL, is Bouffon’s needle [3].

1.3 Basic Properties of Probability Logic
lemma (in probability-logic) probability-additivity:

assumes ` ∼ (ϕ u ψ)
shows P (ϕ t ψ) = P ϕ + P ψ
〈proof 〉
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lemma (in probability-logic) probability-alternate-additivity:
assumes ` ϕ → ψ → ⊥
shows P (ϕ t ψ) = P ϕ + P ψ
〈proof 〉

lemma (in probability-logic) complementation:
P (∼ ϕ) = 1 − P ϕ
〈proof 〉

lemma (in probability-logic) unity-upper-bound:
P ϕ ≤ 1
〈proof 〉

1.4 Alternate Definition of Probability Logic

There is an alternate axiomatization of probability logic, due to Brian Gaines
[4, pg. 159, postulates P7, P8, and P8] and independently formulated by
Brian Weatherson [14]. As Weatherson notes, this axiomatization is suited
to formulating intuitionistic probability logic. In the case where the under-
lying logic is classical the Gaines/Weatherson axiomatization is equivalent
to the traditional Kolmogorov axiomatization from §1.1.
class gaines-weatherson-probability = classical-logic +

fixes P :: ′a ⇒ real
assumes gaines-weatherson-thesis:
P > = 1

assumes gaines-weatherson-antithesis:
P ⊥ = 0

assumes gaines-weatherson-monotonicity:
` ϕ → ψ =⇒ P ϕ ≤ P ψ

assumes gaines-weatherson-sum-rule:
P ϕ + P ψ = P (ϕ u ψ) + P (ϕ t ψ)

sublocale gaines-weatherson-probability ⊆ probability-logic
〈proof 〉

lemma (in probability-logic) monotonicity:
` ϕ → ψ =⇒ P ϕ ≤ P ψ
〈proof 〉

lemma (in probability-logic) biconditional-equivalence:
` ϕ ↔ ψ =⇒ P ϕ = P ψ
〈proof 〉

lemma (in probability-logic) sum-rule:
P (ϕ t ψ) + P (ϕ u ψ) = P ϕ + P ψ
〈proof 〉
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sublocale probability-logic ⊆ gaines-weatherson-probability
〈proof 〉

sublocale probability-logic ⊆ consistent-classical-logic
〈proof 〉

lemma (in probability-logic) subtraction-identity:
P (ϕ \ ψ) = P ϕ − P (ϕ u ψ)
〈proof 〉

1.5 Basic Probability Logic Inequality Results
lemma (in probability-logic) disjunction-sum-inequality:
P (ϕ t ψ) ≤ P ϕ + P ψ
〈proof 〉

lemma (in probability-logic)
arbitrary-disjunction-list-summation-inequality:
P (

⊔
Φ) ≤ (

∑
ϕ←Φ. P ϕ)

〈proof 〉

lemma (in probability-logic) implication-list-summation-inequality:
assumes ` ϕ →

⊔
Ψ

shows P ϕ ≤ (
∑
ψ←Ψ. P ψ)

〈proof 〉

lemma (in probability-logic) arbitrary-disjunction-set-summation-inequality:
P (

⊔
Φ) ≤ (

∑
ϕ ∈ set Φ. P ϕ)

〈proof 〉

lemma (in probability-logic) implication-set-summation-inequality:
assumes ` ϕ →

⊔
Ψ

shows P ϕ ≤ (
∑
ψ ∈ set Ψ. P ψ)

〈proof 〉

1.6 Dirac Measures

Before presenting Dirac measures in probability logic, we first give the set
of all functions satisfying probability logic.
definition (in classical-logic) probabilities :: ( ′a ⇒ real) set

where probabilities =
{P. class.probability-logic (λ ϕ. ` ϕ) (→) ⊥ P }

Traditionally, a Dirac measure is a function δx where δx S = 1 if x ∈ S and
δx S = 0 otherwise. This means that Dirac measures correspond to special
ultrafilters on their underlying σ-algebra which are closed under countable
unions.
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Probability logic, as discussed in §1.2, may not have countable joins in its
underlying logic. In the setting of probability logic, Dirac measures are
simple probability functions that are either 0 or 1.
definition (in classical-logic) dirac-measures :: ( ′a ⇒ real) set

where dirac-measures =
{ P. class.probability-logic (λ ϕ. ` ϕ) (→) ⊥ P

∧ (∀ x. P x = 0 ∨ P x = 1 ) }

lemma (in classical-logic) dirac-measures-subset:
dirac-measures ⊆ probabilities
〈proof 〉

Maximally consistent sets correspond to Dirac measures. One direction of
this correspondence is established below.
lemma (in classical-logic) MCS-dirac-measure:

assumes MCS Ω
shows (λ χ. if χ∈Ω then (1 :: real) else 0 ) ∈ dirac-measures
(is ?P ∈ dirac-measures)

〈proof 〉

unbundle funcset-syntax

end
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Chapter 2

Suppes’ Theorem

theory Suppes-Theorem
imports Probability-Logic

begin

unbundle no funcset-syntax

An elementary completeness theorem for inequalities for probability logic is
due to Patrick Suppes [13].

A consequence of this Suppes’ theorem is an elementary form of collapse,
which asserts that inequalities for probabilities are logically equivalent to
the more restricted class of Dirac measures as defined in §1.6.

2.1 Suppes’ List Theorem

We first establish Suppes’ theorem for lists of propositions. This is done by
establishing our first completeness theorem using Dirac measures.

First, we use the result from §1.5 that shows ` ϕ →
⊔

Ψ implies P ϕ ≤
(
∑
ψ←Ψ. P ψ). This can be understood as a soundness result.

To show completeness, assume ¬ ` ϕ→
⊔

Ψ. From this obtain a maximally
consistent Ω such that ϕ →

⊔
Ψ /∈ Ω. We then define δ χ = (if χ ∈ Ω

then 1 else 0 ) and show δ is a Dirac measure such that δ ϕ ≤ (
∑
ψ←Ψ. δ

ψ).
lemma (in classical-logic) dirac-list-summation-completeness:
(∀ δ ∈ dirac-measures. δ ϕ ≤ (

∑
ψ←Ψ. δ ψ)) = ` ϕ →

⊔
Ψ

〈proof 〉

theorem (in classical-logic) list-summation-completeness:
(∀ P ∈ probabilities. P ϕ ≤ (

∑
ψ←Ψ. P ψ)) = ` ϕ →

⊔
Ψ

(is ?lhs = ?rhs)
〈proof 〉
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The collapse theorem asserts that to prove an inequalities for all probabilities
in probability logic, one only needs to consider the case of functions which
take on values of 0 or 1.
lemma (in classical-logic) suppes-collapse:
(∀ P ∈ probabilities. P ϕ ≤ (

∑
ψ←Ψ. P ψ))

= (∀ δ ∈ dirac-measures. δ ϕ ≤ (
∑
ψ←Ψ. δ ψ))

〈proof 〉

lemma (in classical-logic) probability-member-neg:
fixes P
assumes P ∈ probabilities
shows P (∼ ϕ) = 1 − P ϕ
〈proof 〉

Suppes’ theorem has a philosophical interpretation. It asserts that if Ψ :`
ϕ, then our uncertainty in ϕ is bounded above by our uncertainty in Ψ.
Here the uncertainty in the proposition ϕ is 1 − P ϕ. Our uncertainty in
Ψ, on the other hand, is

∑
ψ←Ψ. 1 − P ψ.

theorem (in classical-logic) suppes-list-theorem:
Ψ :` ϕ = (∀ P ∈ probabilities. (

∑
ψ←Ψ. 1 − P ψ) ≥ 1 − P ϕ)

〈proof 〉

2.2 Suppes’ Set Theorem

Suppes theorem also obtains for sets.
lemma (in classical-logic) dirac-set-summation-completeness:
(∀ δ ∈ dirac-measures. δ ϕ ≤ (

∑
ψ∈ set Ψ. δ ψ)) = ` ϕ →

⊔
Ψ

〈proof 〉

theorem (in classical-logic) set-summation-completeness:
(∀ δ ∈ probabilities. δ ϕ ≤ (

∑
ψ∈ set Ψ. δ ψ)) = ` ϕ →

⊔
Ψ

〈proof 〉

lemma (in classical-logic) suppes-set-collapse:
(∀ P ∈ probabilities. P ϕ ≤ (

∑
ψ ∈ set Ψ. P ψ))

= (∀ δ ∈ dirac-measures. δ ϕ ≤ (
∑
ψ ∈ set Ψ. δ ψ))

〈proof 〉

In our formulation of logic, there is not reason that ∼ a = ∼ b while a 6= b.
As a consequence the Suppes theorem for sets presented below is different
than the one given in §2.1.
theorem (in classical-logic) suppes-set-theorem:
Ψ :` ϕ

= (∀ P ∈ probabilities. (
∑
ψ ∈ set (∼ Ψ). P ψ) ≥ 1 − P ϕ)

〈proof 〉
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2.3 Converse Suppes’ Theorem

A formulation of the converse of Suppes’ theorem obtains for lists/sets of
logically disjoint propositions.
lemma (in probability-logic) exclusive-sum-list-identity:

assumes `
∐

Φ
shows P (

⊔
Φ) = (

∑
ϕ←Φ. P ϕ)

〈proof 〉

lemma sum-list-monotone:
fixes f :: ′a ⇒ real
assumes ∀ x. f x ≥ 0

and set Φ ⊆ set Ψ
and distinct Φ

shows (
∑
ϕ←Φ. f ϕ) ≤ (

∑
ψ←Ψ. f ψ)

〈proof 〉

lemma count-remove-all-sum-list:
fixes f :: ′a ⇒ real
shows real (count-list xs x) ∗ f x + (

∑
x ′←(removeAll x xs). f x ′)

= (
∑

x←xs. f x)
〈proof 〉

lemma (in classical-logic) dirac-exclusive-implication-completeness:
(∀ δ ∈ dirac-measures. (

∑
ϕ←Φ. δ ϕ) ≤ δ ψ) = (`

∐
Φ ∧ `

⊔
Φ → ψ)

〈proof 〉

theorem (in classical-logic) exclusive-implication-completeness:
(∀ P ∈ probabilities. (

∑
ϕ←Φ. P ϕ) ≤ P ψ) = (`

∐
Φ ∧ `

⊔
Φ → ψ)

(is ?lhs = ?rhs)
〈proof 〉

lemma (in classical-logic) dirac-inequality-completeness:
(∀ δ ∈ dirac-measures. δ ϕ ≤ δ ψ) = ` ϕ → ψ
〈proof 〉

2.4 Implication Inequality Completeness

The following theorem establishes the converse of ` ϕ → ψ =⇒ P ϕ ≤ P
ψ, which was proved in §1.4.
theorem (in classical-logic) implication-inequality-completeness:
(∀ P ∈ probabilities. P ϕ ≤ P ψ) = ` ϕ → ψ
〈proof 〉
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2.5 Characterizing Logical Exclusiveness In Prob-
ability Logic

Finally, we can say that P (
⊔

Φ) = (
∑
ϕ←Φ. P ϕ) if and only if the

propositions in Φ are mutually exclusive (i.e. `
∐

Φ). This result also
obtains for sets.
lemma (in classical-logic) dirac-exclusive-list-summation-completeness:
(∀ δ ∈ dirac-measures. δ (

⊔
Φ) = (

∑
ϕ←Φ. δ ϕ)) = `

∐
Φ

〈proof 〉

theorem (in classical-logic) exclusive-list-summation-completeness:
(∀ P ∈ probabilities. P (

⊔
Φ) = (

∑
ϕ←Φ. P ϕ)) = `

∐
Φ

〈proof 〉

lemma (in classical-logic) dirac-exclusive-set-summation-completeness:
(∀ δ ∈ dirac-measures. δ (

⊔
Φ) = (

∑
ϕ ∈ set Φ. δ ϕ))

= `
∐

(remdups Φ)
〈proof 〉

theorem (in classical-logic) exclusive-set-summation-completeness:
(∀ P ∈ probabilities.

P (
⊔

Φ) = (
∑
ϕ ∈ set Φ. P ϕ)) = `

∐
(remdups Φ)

〈proof 〉

lemma (in probability-logic) exclusive-list-set-inequality:
assumes `

∐
Φ

shows (
∑
ϕ←Φ. P ϕ) = (

∑
ϕ∈set Φ. P ϕ)

〈proof 〉

unbundle funcset-syntax

end
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