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Abstract

We develop finitely additive probability logic and prove a theorem of Patrick
Suppes that asserts that Ψ ` φ in classical propositional logic if and only if
(
∑
ψ ← Ψ. 1−Pψ) ≥ 1−Pφ holds for all probabilities P. We also provide a

novel dual form of Suppes’ Theorem, which holds that (
∑
φ← Φ. Pφ) ≤ Pψ

for all probabilities P if and only (
∨
Φ) ` ψ and all of the formulae in Φ are

logically exclusive from one another. Our proofs use Maximally Consistent
Sets, and as a consequence, we obtain two collapse theorems. In particular,
we show (

∑
φ ← Φ. Pφ) ≥ Pψ holds for all probabilities P if and only if

(
∑
φ← Φ. δ φ) ≥ δ ψ holds for all binary-valued probabilities δ, along with

the dual assertion that (
∑
φ ← Φ. Pφ) ≤ Pψ holds for all probabilities P

if and only if (
∑
φ← Φ. δ φ) ≤ δ ψ holds for all binary-valued probabilities

δ.
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Chapter 1

Probability Logic

theory Probability-Logic
imports

Propositional-Logic-Class.Classical-Connectives
HOL.Real
HOL−Library.Countable

begin

unbundle no funcset-syntax

1.1 Definition of Probability Logic

Probability logic is defined in terms of an operator over classical logic obey-
ing certain postulates. Scholars often credit George Boole for first conceiving
this kind of formulation [1]. Theodore Hailperin in particular has written
extensively on this subject [6, 7, 8].

The presentation below roughly follows Kolmogorov’s axiomatization [10]. A
key difference is that we only require finite additivity, rather than countable
additivity. Finite additivity is also defined in terms of implication (→).
class probability-logic = classical-logic +

fixes P :: ′a ⇒ real
assumes probability-non-negative: P ϕ ≥ 0
assumes probability-unity: ` ϕ =⇒ P ϕ = 1
assumes probability-implicational-additivity:
` ϕ → ψ → ⊥ =⇒ P ((ϕ → ⊥) → ψ) = P ϕ + P ψ

A similar axiomatization may be credited to Rescher [11, pg. 185]. However,
our formulation has fewer axioms. While Rescher assumes ` ϕ ↔ ψ =⇒ P
ϕ = P ψ, we show this is a lemma in §1.4.
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1.2 Why Finite Additivity?

In this section we touch on why we have chosen to employ finite additiv-
ity in our axiomatization of probability-logic and deviate from conventional
probability theory.

Conventional probability obeys an axiom known as countable additivity. Tra-
ditionally it states if S is a countable set of sets which are pairwise disjoint,
then the limit

∑
s ∈ S . P s exists and P (

⋃
S) = (

∑
s ∈ S . P s). This

is more powerful than our finite additivity axiom ` ϕ → ψ → ⊥ =⇒ P ((ϕ
→ ⊥) → ψ) = P ϕ + P ψ.

However, we argue that demanding countable additivity is not practical.

Historically, the statisticians Bruno de Finetti and Leonard Savage gave
the most well known critiques. In [2] de Finetti shows various properties
which are true for countably additive probability measures may not hold
for finitely additive measures. Savage [12], on the other hand, develops
probability based on choices prizes in lotteries.

We instead argue that if we demand countable additivity, then certain prop-
erties of real world software would no longer be formally verifiable as we
demonstrate here. In particular, it prohibits conventional recursive data
structures for defining propositions. Our argument is derivative of one given
by Giangiacomo Gerla [5, Section 3].

By taking equivalence classes modulo λϕ ψ. ` ϕ ↔ ψ, any classical logic
instance gives rise to a Boolean algebra known as a Lindenbaum Algebra. In
the case of ′a classical-propositional-formula this Boolean algebra algebra is
both countable and atomless. A theorem of Horn and Tarski [9, Theorem
3.2] asserts there can be no countably additive Pr for a countable atomless
Boolean algebra.

The above argument is not intended as a blanket refutation of conven-
tional probability theory. It is simply an impossibility result with respect
to software implementations of probability logic. Plenty of classic results
in probability rely on countable additivity. A nice example, formalized in
Isabelle/HOL, is Bouffon’s needle [3].

1.3 Basic Properties of Probability Logic
lemma (in probability-logic) probability-additivity:

assumes ` ∼ (ϕ u ψ)
shows P (ϕ t ψ) = P ϕ + P ψ
using

assms
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unfolding
conjunction-def
disjunction-def
negation-def

by (simp add: probability-implicational-additivity)

lemma (in probability-logic) probability-alternate-additivity:
assumes ` ϕ → ψ → ⊥
shows P (ϕ t ψ) = P ϕ + P ψ
using assms
by (metis

probability-additivity
double-negation-converse
modus-ponens
conjunction-def
negation-def )

lemma (in probability-logic) complementation:
P (∼ ϕ) = 1 − P ϕ
by (metis

probability-alternate-additivity
probability-unity
bivalence
negation-elimination
add.commute
add-diff-cancel-left ′)

lemma (in probability-logic) unity-upper-bound:
P ϕ ≤ 1
by (metis

(no-types)
diff-ge-0-iff-ge
probability-non-negative
complementation)

1.4 Alternate Definition of Probability Logic

There is an alternate axiomatization of probability logic, due to Brian Gaines
[4, pg. 159, postulates P7, P8, and P8] and independently formulated by
Brian Weatherson [14]. As Weatherson notes, this axiomatization is suited
to formulating intuitionistic probability logic. In the case where the under-
lying logic is classical the Gaines/Weatherson axiomatization is equivalent
to the traditional Kolmogorov axiomatization from §1.1.
class gaines-weatherson-probability = classical-logic +

fixes P :: ′a ⇒ real
assumes gaines-weatherson-thesis:
P > = 1
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assumes gaines-weatherson-antithesis:
P ⊥ = 0

assumes gaines-weatherson-monotonicity:
` ϕ → ψ =⇒ P ϕ ≤ P ψ

assumes gaines-weatherson-sum-rule:
P ϕ + P ψ = P (ϕ u ψ) + P (ϕ t ψ)

sublocale gaines-weatherson-probability ⊆ probability-logic
proof

fix ϕ
have ` ⊥ → ϕ

by (simp add: ex-falso-quodlibet)
thus 0 ≤ P ϕ

using
gaines-weatherson-antithesis
gaines-weatherson-monotonicity

by fastforce
next

fix ϕ
assume ` ϕ
thus P ϕ = 1

by (metis
gaines-weatherson-thesis
gaines-weatherson-monotonicity
eq-iff
axiom-k
ex-falso-quodlibet
modus-ponens
verum-def )

next
fix ϕ ψ
assume ` ϕ → ψ → ⊥
hence ` ∼ (ϕ u ψ)

by (simp add: conjunction-def negation-def )
thus P ((ϕ → ⊥) → ψ) = P ϕ + P ψ

by (metis
add.commute
add.right-neutral
eq-iff
disjunction-def
ex-falso-quodlibet
negation-def
gaines-weatherson-antithesis
gaines-weatherson-monotonicity
gaines-weatherson-sum-rule)

qed

lemma (in probability-logic) monotonicity:
` ϕ → ψ =⇒ P ϕ ≤ P ψ
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proof −
assume ` ϕ → ψ
hence ` ∼ (ϕ u ∼ ψ)

unfolding negation-def conjunction-def
by (metis

conjunction-def
exclusion-contrapositive-equivalence
negation-def
weak-biconditional-weaken)

hence P (ϕ t ∼ ψ) = P ϕ + P (∼ ψ)
by (simp add: probability-additivity)

hence P ϕ + P (∼ ψ) ≤ 1
by (metis unity-upper-bound)

hence P ϕ + 1 − P ψ ≤ 1
by (simp add: complementation)

thus ?thesis by linarith
qed

lemma (in probability-logic) biconditional-equivalence:
` ϕ ↔ ψ =⇒ P ϕ = P ψ
by (meson

eq-iff
modus-ponens
biconditional-left-elimination
biconditional-right-elimination
monotonicity)

lemma (in probability-logic) sum-rule:
P (ϕ t ψ) + P (ϕ u ψ) = P ϕ + P ψ

proof −
have ` (ϕ t ψ) ↔ (ϕ t ψ \ (ϕ u ψ))
proof −

have ∀ M. M |=prop (〈ϕ〉 t 〈ψ〉) ↔ (〈ϕ〉 t 〈ψ〉 \ (〈ϕ〉 u 〈ψ〉))
unfolding

classical-logic-class.subtraction-def
classical-logic-class.negation-def
classical-logic-class.biconditional-def
classical-logic-class.conjunction-def
classical-logic-class.disjunction-def

by simp
hence ` (| (〈ϕ〉 t 〈ψ〉) ↔ (〈ϕ〉 t 〈ψ〉 \ (〈ϕ〉 u 〈ψ〉)) |)

using propositional-semantics by blast
thus ?thesis by simp

qed
moreover have ` ϕ → (ψ \ (ϕ u ψ)) → ⊥
proof −

have ∀ M. M |=prop 〈ϕ〉 → (〈ψ〉 \ (〈ϕ〉 u 〈ψ〉)) → ⊥
unfolding

classical-logic-class.subtraction-def
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classical-logic-class.negation-def
classical-logic-class.biconditional-def
classical-logic-class.conjunction-def
classical-logic-class.disjunction-def

by simp
hence ` (| 〈ϕ〉 → (〈ψ〉 \ (〈ϕ〉 u 〈ψ〉)) → ⊥ |)

using propositional-semantics by blast
thus ?thesis by simp

qed
hence P (ϕ t ψ) = P ϕ + P (ψ \ (ϕ u ψ))

using
probability-alternate-additivity
biconditional-equivalence
calculation

by auto
moreover have ` ψ ↔ (ψ \ (ϕ u ψ) t (ϕ u ψ))
proof −

have ∀ M. M |=prop 〈ψ〉 ↔ (〈ψ〉 \ (〈ϕ〉 u 〈ψ〉) t (〈ϕ〉 u 〈ψ〉))
unfolding

classical-logic-class.subtraction-def
classical-logic-class.negation-def
classical-logic-class.biconditional-def
classical-logic-class.conjunction-def
classical-logic-class.disjunction-def

by auto
hence ` (| 〈ψ〉 ↔ (〈ψ〉 \ (〈ϕ〉 u 〈ψ〉) t (〈ϕ〉 u 〈ψ〉)) |)

using propositional-semantics by
blast

thus ?thesis by simp
qed
moreover have ` (ψ \ (ϕ u ψ)) → (ϕ u ψ) → ⊥

unfolding
subtraction-def
negation-def
conjunction-def

using
conjunction-def
conjunction-right-elimination

by auto
hence P ψ = P (ψ \ (ϕ u ψ)) + P (ϕ u ψ)

using
probability-alternate-additivity
biconditional-equivalence
calculation

by auto
ultimately show ?thesis

by simp
qed
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sublocale probability-logic ⊆ gaines-weatherson-probability
proof

show P > = 1
by (simp add: probability-unity)

next
show P ⊥ = 0

by (metis
add-cancel-left-right
probability-additivity
ex-falso-quodlibet
probability-unity
bivalence
conjunction-right-elimination
negation-def )

next
fix ϕ ψ
assume ` ϕ → ψ
thus P ϕ ≤ P ψ

using monotonicity
by auto

next
fix ϕ ψ
show P ϕ + P ψ = P (ϕ u ψ) + P (ϕ t ψ)

by (metis sum-rule add.commute)
qed

sublocale probability-logic ⊆ consistent-classical-logic
proof

show ¬ ` ⊥ using probability-unity gaines-weatherson-antithesis by auto
qed

lemma (in probability-logic) subtraction-identity:
P (ϕ \ ψ) = P ϕ − P (ϕ u ψ)

proof −
have ` ϕ ↔ ((ϕ \ ψ) t (ϕ u ψ))
proof −

have ∀ M. M |=prop 〈ϕ〉 ↔ ((〈ϕ〉 \ 〈ψ〉) t (〈ϕ〉 u 〈ψ〉))
unfolding

classical-logic-class.subtraction-def
classical-logic-class.negation-def
classical-logic-class.biconditional-def
classical-logic-class.conjunction-def
classical-logic-class.disjunction-def

by (simp, blast)
hence ` (| 〈ϕ〉 ↔ ((〈ϕ〉 \ 〈ψ〉) t (〈ϕ〉 u 〈ψ〉)) |)

using propositional-semantics by blast
thus ?thesis by simp

qed
hence P ϕ = P ((ϕ \ ψ) t (ϕ u ψ))
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using biconditional-equivalence
by simp

moreover have ` ∼((ϕ \ ψ) u (ϕ u ψ))
proof −

have ∀ M. M |=prop ∼((〈ϕ〉 \ 〈ψ〉) u (〈ϕ〉 u 〈ψ〉))
unfolding

classical-logic-class.subtraction-def
classical-logic-class.negation-def
classical-logic-class.conjunction-def
classical-logic-class.disjunction-def

by simp
hence ` (| ∼((〈ϕ〉 \ 〈ψ〉) u (〈ϕ〉 u 〈ψ〉)) |)

using propositional-semantics by blast
thus ?thesis by simp

qed
ultimately show ?thesis

using probability-additivity
by auto

qed

1.5 Basic Probability Logic Inequality Results
lemma (in probability-logic) disjunction-sum-inequality:
P (ϕ t ψ) ≤ P ϕ + P ψ

proof −
have P (ϕ t ψ) + P (ϕ u ψ) = P ϕ + P ψ

0 ≤ P (ϕ u ψ)
by (simp add: sum-rule, simp add: probability-non-negative)

thus ?thesis by linarith
qed

lemma (in probability-logic)
arbitrary-disjunction-list-summation-inequality:
P (

⊔
Φ) ≤ (

∑
ϕ←Φ. P ϕ)

proof (induct Φ)
case Nil
then show ?case by (simp add: gaines-weatherson-antithesis)

next
case (Cons ϕ Φ)
have P (

⊔
(ϕ # Φ)) ≤ P ϕ + P (

⊔
Φ)

using disjunction-sum-inequality
by simp

with Cons have P (
⊔

(ϕ # Φ)) ≤ P ϕ + (
∑
ϕ←Φ. P ϕ) by linarith

then show ?case by simp
qed

lemma (in probability-logic) implication-list-summation-inequality:
assumes ` ϕ →

⊔
Ψ

shows P ϕ ≤ (
∑
ψ←Ψ. P ψ)
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using
assms
arbitrary-disjunction-list-summation-inequality
monotonicity
order-trans

by blast

lemma (in probability-logic) arbitrary-disjunction-set-summation-inequality:
P (

⊔
Φ) ≤ (

∑
ϕ ∈ set Φ. P ϕ)

by (metis
arbitrary-disjunction-list-summation-inequality
arbitrary-disjunction-remdups
biconditional-equivalence
sum.set-conv-list)

lemma (in probability-logic) implication-set-summation-inequality:
assumes ` ϕ →

⊔
Ψ

shows P ϕ ≤ (
∑
ψ ∈ set Ψ. P ψ)

using
assms
arbitrary-disjunction-set-summation-inequality
monotonicity
order-trans

by blast

1.6 Dirac Measures

Before presenting Dirac measures in probability logic, we first give the set
of all functions satisfying probability logic.
definition (in classical-logic) probabilities :: ( ′a ⇒ real) set

where probabilities =
{P. class.probability-logic (λ ϕ. ` ϕ) (→) ⊥ P }

Traditionally, a Dirac measure is a function δx where δx S = 1 if x ∈ S and
δx S = 0 otherwise. This means that Dirac measures correspond to special
ultrafilters on their underlying σ-algebra which are closed under countable
unions.

Probability logic, as discussed in §1.2, may not have countable joins in its
underlying logic. In the setting of probability logic, Dirac measures are
simple probability functions that are either 0 or 1.
definition (in classical-logic) dirac-measures :: ( ′a ⇒ real) set

where dirac-measures =
{ P. class.probability-logic (λ ϕ. ` ϕ) (→) ⊥ P

∧ (∀ x. P x = 0 ∨ P x = 1 ) }

lemma (in classical-logic) dirac-measures-subset:
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dirac-measures ⊆ probabilities
unfolding

probabilities-def
dirac-measures-def

by fastforce

Maximally consistent sets correspond to Dirac measures. One direction of
this correspondence is established below.
lemma (in classical-logic) MCS-dirac-measure:

assumes MCS Ω
shows (λ χ. if χ∈Ω then (1 :: real) else 0 ) ∈ dirac-measures
(is ?P ∈ dirac-measures)

proof −
have class.probability-logic (λ ϕ. ` ϕ) (→) ⊥ ?P
proof (standard, simp,

meson
assms
formula-maximally-consistent-set-def-reflection
maximally-consistent-set-def
set-deduction-weaken)

fix ϕ ψ
assume ` ϕ → ψ → ⊥
hence ϕ u ψ /∈ Ω

by (metis
assms
formula-consistent-def
formula-maximally-consistent-set-def-def
maximally-consistent-set-def
conjunction-def
set-deduction-modus-ponens
set-deduction-reflection
set-deduction-weaken)

hence ϕ /∈ Ω ∨ ψ /∈ Ω
using

assms
formula-maximally-consistent-set-def-reflection
maximally-consistent-set-def
conjunction-set-deduction-equivalence

by meson
have ϕ t ψ ∈ Ω = (ϕ ∈ Ω ∨ ψ ∈ Ω)

by (metis
‹ϕ u ψ /∈ Ω›
assms
formula-maximally-consistent-set-def-implication
maximally-consistent-set-def
conjunction-def
disjunction-def )

have ?P (ϕ t ψ) = ?P ϕ + ?P ψ
proof (cases ϕ t ψ ∈ Ω)
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case True
hence ♦: 1 = ?P (ϕ t ψ) by simp
show ?thesis
proof (cases ϕ ∈ Ω)

case True
hence ψ /∈ Ω

using ‹ϕ /∈ Ω ∨ ψ /∈ Ω›
by blast

have ?P (ϕ t ψ) = (1 ::real) using ♦ by simp
also have ... = 1 + (0 ::real) by linarith
also have ... = ?P ϕ + ?P ψ

using ‹ψ /∈ Ω› ‹ϕ ∈ Ω› by simp
finally show ?thesis .

next
case False
hence ψ ∈ Ω

using ‹ϕ t ψ ∈ Ω› ‹(ϕ t ψ ∈ Ω) = (ϕ ∈ Ω ∨ ψ ∈ Ω)›
by blast

have ?P (ϕ t ψ) = (1 ::real) using ♦ by simp
also have ... = (0 ::real) + 1 by linarith
also have ... = ?P ϕ + ?P ψ

using ‹ψ ∈ Ω› ‹ϕ /∈ Ω› by simp
finally show ?thesis .

qed
next

case False
moreover from this have ϕ /∈ Ω ψ /∈ Ω

using ‹(ϕ t ψ ∈ Ω) = (ϕ ∈ Ω ∨ ψ ∈ Ω)› by blast+
ultimately show ?thesis by simp

qed
thus ?P ((ϕ → ⊥) → ψ) = ?P ϕ + ?P ψ

unfolding disjunction-def .
qed
thus ?thesis

unfolding dirac-measures-def
by simp

qed

unbundle funcset-syntax

end
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Chapter 2

Suppes’ Theorem

theory Suppes-Theorem
imports Probability-Logic

begin

unbundle no funcset-syntax

An elementary completeness theorem for inequalities for probability logic is
due to Patrick Suppes [13].

A consequence of this Suppes’ theorem is an elementary form of collapse,
which asserts that inequalities for probabilities are logically equivalent to
the more restricted class of Dirac measures as defined in §1.6.

2.1 Suppes’ List Theorem

We first establish Suppes’ theorem for lists of propositions. This is done by
establishing our first completeness theorem using Dirac measures.

First, we use the result from §1.5 that shows ` ϕ →
⊔

Ψ implies P ϕ ≤
(
∑
ψ←Ψ. P ψ). This can be understood as a soundness result.

To show completeness, assume ¬ ` ϕ→
⊔

Ψ. From this obtain a maximally
consistent Ω such that ϕ →

⊔
Ψ /∈ Ω. We then define δ χ = (if χ ∈ Ω

then 1 else 0 ) and show δ is a Dirac measure such that δ ϕ ≤ (
∑
ψ←Ψ. δ

ψ).
lemma (in classical-logic) dirac-list-summation-completeness:
(∀ δ ∈ dirac-measures. δ ϕ ≤ (

∑
ψ←Ψ. δ ψ)) = ` ϕ →

⊔
Ψ

proof −
{

fix δ :: ′a ⇒ real
assume δ ∈ dirac-measures
from this interpret probability-logic (λ ϕ. ` ϕ) (→) ⊥ δ

unfolding dirac-measures-def
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by auto
assume ` ϕ →

⊔
Ψ

hence δ ϕ ≤ (
∑
ψ←Ψ. δ ψ)

using implication-list-summation-inequality
by auto

}
moreover {

assume ¬ ` ϕ →
⊔

Ψ
from this obtain Ω where Ω:

MCS Ω
ϕ ∈ Ω⊔

Ψ /∈ Ω
by (meson

insert-subset
formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension
formula-maximally-consistent-set-def-def
set-deduction-base-theory
set-deduction-reflection
set-deduction-theorem)

hence∀ ψ ∈ set Ψ. ψ /∈ Ω
using arbitrary-disjunction-exclusion-MCS by blast

define δ where δ = (λ χ . if χ∈Ω then (1 :: real) else 0 )
from ‹∀ ψ ∈ set Ψ. ψ /∈ Ω› have (

∑
ψ←Ψ. δ ψ) = 0

unfolding δ-def
by (induct Ψ, simp, simp)

hence ¬ δ ϕ ≤ (
∑
ψ←Ψ. δ ψ)

unfolding δ-def
by (simp add: Ω(2 ))

hence
∃ δ ∈ dirac-measures. ¬ (δ ϕ ≤ (

∑
ψ←Ψ. δ ψ))

unfolding δ-def
using Ω(1 ) MCS-dirac-measure by auto

}
ultimately show ?thesis by blast

qed

theorem (in classical-logic) list-summation-completeness:
(∀ P ∈ probabilities. P ϕ ≤ (

∑
ψ←Ψ. P ψ)) = ` ϕ →

⊔
Ψ

(is ?lhs = ?rhs)
proof

assume ?lhs
hence ∀ δ ∈ dirac-measures. δ ϕ ≤ (

∑
ψ←Ψ. δ ψ)

unfolding dirac-measures-def probabilities-def
by blast

thus ?rhs
using dirac-list-summation-completeness by blast

next
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assume ?rhs
show ?lhs
proof

fix P :: ′a ⇒ real
assume P ∈ probabilities
from this interpret probability-logic (λ ϕ. ` ϕ) (→) ⊥ P

unfolding probabilities-def
by auto

show P ϕ ≤ (
∑
ψ←Ψ. P ψ)

using ‹?rhs› implication-list-summation-inequality
by simp

qed
qed

The collapse theorem asserts that to prove an inequalities for all probabilities
in probability logic, one only needs to consider the case of functions which
take on values of 0 or 1.
lemma (in classical-logic) suppes-collapse:
(∀ P ∈ probabilities. P ϕ ≤ (

∑
ψ←Ψ. P ψ))

= (∀ δ ∈ dirac-measures. δ ϕ ≤ (
∑
ψ←Ψ. δ ψ))

by (simp add:
dirac-list-summation-completeness
list-summation-completeness)

lemma (in classical-logic) probability-member-neg:
fixes P
assumes P ∈ probabilities
shows P (∼ ϕ) = 1 − P ϕ

proof −
from assms interpret probability-logic (λ ϕ. ` ϕ) (→) ⊥ P

unfolding probabilities-def
by auto

show ?thesis
by (simp add: complementation)

qed

Suppes’ theorem has a philosophical interpretation. It asserts that if Ψ :`
ϕ, then our uncertainty in ϕ is bounded above by our uncertainty in Ψ.
Here the uncertainty in the proposition ϕ is 1 − P ϕ. Our uncertainty in
Ψ, on the other hand, is

∑
ψ←Ψ. 1 − P ψ.

theorem (in classical-logic) suppes-list-theorem:
Ψ :` ϕ = (∀ P ∈ probabilities. (

∑
ψ←Ψ. 1 − P ψ) ≥ 1 − P ϕ)

proof −
have
Ψ :` ϕ = (∀ P ∈ probabilities. (

∑
ψ ← ∼ Ψ. P ψ) ≥ P (∼ ϕ))

using
list-summation-completeness
weak-biconditional-weaken

15



contra-list-curry-uncurry
list-deduction-def

by blast
moreover have
∀ P ∈ probabilities. (

∑
ψ ← (∼ Ψ). P ψ) = (

∑
ψ ← Ψ. P (∼ ψ))

by (induct Ψ, auto)
ultimately show ?thesis

using probability-member-neg
by (induct Ψ, simp+)

qed

2.2 Suppes’ Set Theorem

Suppes theorem also obtains for sets.
lemma (in classical-logic) dirac-set-summation-completeness:
(∀ δ ∈ dirac-measures. δ ϕ ≤ (

∑
ψ∈ set Ψ. δ ψ)) = ` ϕ →

⊔
Ψ

by (metis
dirac-list-summation-completeness
modus-ponens
arbitrary-disjunction-remdups
biconditional-left-elimination
biconditional-right-elimination
hypothetical-syllogism
sum.set-conv-list)

theorem (in classical-logic) set-summation-completeness:
(∀ δ ∈ probabilities. δ ϕ ≤ (

∑
ψ∈ set Ψ. δ ψ)) = ` ϕ →

⊔
Ψ

by (metis
dirac-list-summation-completeness
dirac-set-summation-completeness
list-summation-completeness
sum.set-conv-list)

lemma (in classical-logic) suppes-set-collapse:
(∀ P ∈ probabilities. P ϕ ≤ (

∑
ψ ∈ set Ψ. P ψ))

= (∀ δ ∈ dirac-measures. δ ϕ ≤ (
∑
ψ ∈ set Ψ. δ ψ))

by (simp add:
dirac-set-summation-completeness
set-summation-completeness)

In our formulation of logic, there is not reason that ∼ a = ∼ b while a 6= b.
As a consequence the Suppes theorem for sets presented below is different
than the one given in §2.1.
theorem (in classical-logic) suppes-set-theorem:
Ψ :` ϕ

= (∀ P ∈ probabilities. (
∑
ψ ∈ set (∼ Ψ). P ψ) ≥ 1 − P ϕ)

proof −
have Ψ :` ϕ
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= (∀ P ∈ probabilities. (
∑
ψ ∈ set (∼ Ψ). P ψ) ≥ P (∼ ϕ))

using
contra-list-curry-uncurry
list-deduction-def
set-summation-completeness
weak-biconditional-weaken

by blast
thus ?thesis

using probability-member-neg
by (induct Ψ, auto)

qed

2.3 Converse Suppes’ Theorem

A formulation of the converse of Suppes’ theorem obtains for lists/sets of
logically disjoint propositions.
lemma (in probability-logic) exclusive-sum-list-identity:

assumes `
∐

Φ
shows P (

⊔
Φ) = (

∑
ϕ←Φ. P ϕ)

using assms
proof (induct Φ)

case Nil
then show ?case

by (simp add: gaines-weatherson-antithesis)
next

case (Cons ϕ Φ)
assume `

∐
(ϕ # Φ)

hence ` ∼ (ϕ u
⊔

Φ) `
∐

Φ by simp+
hence P (

⊔
(ϕ # Φ)) = P ϕ + P (

⊔
Φ)

P (
⊔

Φ) = (
∑
ϕ←Φ. P ϕ)

using Cons.hyps probability-additivity by auto
hence P (

⊔
(ϕ # Φ)) = P ϕ + (

∑
ϕ←Φ. P ϕ) by auto

thus ?case by simp
qed

lemma sum-list-monotone:
fixes f :: ′a ⇒ real
assumes ∀ x. f x ≥ 0

and set Φ ⊆ set Ψ
and distinct Φ

shows (
∑
ϕ←Φ. f ϕ) ≤ (

∑
ψ←Ψ. f ψ)

using assms
proof −

assume ∀ x. f x ≥ 0
have ∀Φ. set Φ ⊆ set Ψ

−→ distinct Φ
−→ (

∑
ϕ←Φ. f ϕ) ≤ (

∑
ψ←Ψ. f ψ)

proof (induct Ψ)
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case Nil
then show ?case by simp

next
case (Cons ψ Ψ)
{

fix Φ
assume set Φ ⊆ set (ψ # Ψ)

and distinct Φ
have (

∑
ϕ←Φ. f ϕ) ≤ (

∑
ψ ′←(ψ # Ψ). f ψ ′)

proof −
{

assume ψ /∈ set Φ
with ‹set Φ ⊆ set (ψ # Ψ)› have set Φ ⊆ set Ψ by auto
hence (

∑
ϕ←Φ. f ϕ) ≤ (

∑
ψ←Ψ. f ψ)

using Cons.hyps ‹distinct Φ› by auto
moreover have f ψ ≥ 0 using ‹∀ x. f x ≥ 0 › by metis
ultimately have ?thesis by simp

}
moreover
{

assume ψ ∈ set Φ
hence set Φ = insert ψ (set (removeAll ψ Φ))

by auto
with ‹set Φ ⊆ set (ψ # Ψ)› have set (removeAll ψ Φ) ⊆ set Ψ

by (metis
insert-subset
list.simps(15 )
set-removeAll
subset-insert-iff )

moreover from ‹distinct Φ› have distinct (removeAll ψ Φ)
by (meson distinct-removeAll)

ultimately have (
∑
ϕ←(removeAll ψ Φ). f ϕ) ≤ (

∑
ψ←Ψ. f ψ)

using Cons.hyps
by simp

moreover from ‹ψ ∈ set Φ› ‹distinct Φ›
have (

∑
ϕ←Φ. f ϕ) = f ψ + (

∑
ϕ←(removeAll ψ Φ). f ϕ)

using distinct-remove1-removeAll sum-list-map-remove1
by fastforce

ultimately have ?thesis using ‹∀ x. f x ≥ 0 ›
by simp

}
ultimately show ?thesis by blast

qed
}
thus ?case by blast

qed
moreover assume set Φ ⊆ set Ψ and distinct Φ
ultimately show ?thesis by blast

qed
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lemma count-remove-all-sum-list:
fixes f :: ′a ⇒ real
shows real (count-list xs x) ∗ f x + (

∑
x ′←(removeAll x xs). f x ′)

= (
∑

x←xs. f x)
by (induct xs, simp, simp, metis combine-common-factor mult-cancel-right1 )

lemma (in classical-logic) dirac-exclusive-implication-completeness:
(∀ δ ∈ dirac-measures. (

∑
ϕ←Φ. δ ϕ) ≤ δ ψ) = (`

∐
Φ ∧ `

⊔
Φ → ψ)

proof −
{

fix δ
assume δ ∈ dirac-measures
from this interpret probability-logic (λ ϕ. ` ϕ) (→) ⊥ δ

unfolding dirac-measures-def
by simp

assume `
∐

Φ `
⊔

Φ → ψ
hence (

∑
ϕ←Φ. δ ϕ) ≤ δ ψ

using exclusive-sum-list-identity monotonicity by fastforce
}
moreover
{

assume ¬ `
∐

Φ
hence (∃ ϕ ∈ set Φ. ∃ ψ ∈ set Φ.

ϕ 6= ψ ∧ ¬ ` ∼ (ϕ u ψ)) ∨ (∃ ϕ ∈ duplicates Φ. ¬ ` ∼ ϕ)
using exclusive-equivalence set-deduction-base-theory by blast

hence ¬ (∀ δ ∈ dirac-measures. (
∑
ϕ←Φ. δ ϕ) ≤ δ ψ)

proof (elim disjE)
assume ∃ ϕ ∈ set Φ. ∃ χ ∈ set Φ. ϕ 6= χ ∧ ¬ ` ∼ (ϕ u χ)
from this obtain ϕ and χ

where ϕχ-properties:
ϕ ∈ set Φ
χ ∈ set Φ
ϕ 6= χ
¬ ` ∼ (ϕ u χ)

by blast
from this obtain Ω where Ω: MCS Ω ∼ (ϕ u χ) /∈ Ω

by (meson
insert-subset
formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension
formula-maximally-consistent-set-def-def
set-deduction-base-theory
set-deduction-reflection
set-deduction-theorem)

let ?δ = λ χ. if χ∈Ω then (1 :: real) else 0
from Ω have ϕ ∈ Ω χ ∈ Ω

by (metis
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formula-maximally-consistent-set-def-implication
maximally-consistent-set-def
conjunction-def
negation-def )+

with ϕχ-properties have
(
∑
ϕ←[ϕ, χ]. ?δ ϕ) = 2

set [ϕ, χ] ⊆ set Φ
distinct [ϕ, χ]
∀ϕ. ?δ ϕ ≥ 0

by simp+
hence (

∑
ϕ←Φ. ?δ ϕ) ≥ 2 using sum-list-monotone by metis

hence ¬ (
∑
ϕ←Φ. ?δ ϕ) ≤ ?δ (ψ) by auto

thus ?thesis
using Ω(1 ) MCS-dirac-measure
by auto

next
assume ∃ ϕ ∈ duplicates Φ. ¬ ` ∼ ϕ
from this obtain ϕ where ϕ: ϕ ∈ duplicates Φ ¬ ` ∼ ϕ

using
exclusive-equivalence [where Γ={}]
set-deduction-base-theory

by blast
from ϕ obtain Ω where Ω: MCS Ω ∼ ϕ /∈ Ω

by (meson
insert-subset
formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension
formula-maximally-consistent-set-def-def
set-deduction-base-theory
set-deduction-reflection
set-deduction-theorem)

hence ϕ ∈ Ω
using negation-def by auto

let ?δ = λ χ. if χ∈Ω then (1 :: real) else 0
from ϕ have count-list Φ ϕ ≥ 2

using duplicates-alt-def [where xs=Φ]
by blast

hence real (count-list Φ ϕ) ∗ ?δ ϕ ≥ 2 using ‹ϕ ∈ Ω› by simp
moreover
{

fix Ψ
have (

∑
ϕ←Ψ. ?δ ϕ) ≥ 0 by (induct Ψ, simp, simp)

}
moreover have (0 ::real)

≤ (
∑

a←removeAll ϕ Φ. if a ∈ Ω then 1 else 0 )
using ‹

∧
Ψ. 0 ≤ (

∑
ϕ←Ψ. if ϕ ∈ Ω then 1 else 0 )›

by presburger
ultimately have real (count-list Φ ϕ) ∗ ?δ ϕ
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+ (
∑

ϕ ← (removeAll ϕ Φ). ?δ ϕ) ≥ 2
using ‹2 ≤ real (count-list Φ ϕ) ∗ (if ϕ ∈ Ω then 1 else 0 )›
by linarith

hence (
∑
ϕ←Φ. ?δ ϕ) ≥ 2 by (metis count-remove-all-sum-list)

hence ¬ (
∑
ϕ←Φ. ?δ ϕ) ≤ ?δ (ψ) by auto

thus ?thesis
using Ω(1 ) MCS-dirac-measure
by auto

qed
}
moreover
{

assume ¬ `
⊔

Φ → ψ
from this obtain Ω ϕ

where
Ω: MCS Ω
and ψ: ψ /∈ Ω
and ϕ: ϕ ∈ set Φ ϕ ∈ Ω

by (meson
insert-subset
formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension
formula-maximally-consistent-set-def-def
arbitrary-disjunction-exclusion-MCS
set-deduction-base-theory
set-deduction-reflection
set-deduction-theorem)

let ?δ = λ χ. if χ∈Ω then (1 :: real) else 0
from ϕ have (

∑
ϕ←Φ. ?δ ϕ) ≥ 1

proof (induct Φ)
case Nil
then show ?case by simp

next
case (Cons ϕ ′ Φ)
obtain f :: real list ⇒ real where f :
∀ rs. f rs ∈ set rs ∧ ¬ 0 ≤ f rs ∨ 0 ≤ sum-list rs
using sum-list-nonneg by metis

moreover have f (map ?δ Φ) /∈ set (map ?δ Φ) ∨ 0 ≤ f (map ?δ Φ)
by fastforce

ultimately show ?case
by (simp, metis Cons.hyps Cons.prems(1 ) ϕ(2 ) set-ConsD)

qed
hence ¬ (

∑
ϕ←Φ. ?δ ϕ) ≤ ?δ (ψ) using ψ by auto

hence ¬ (∀ δ ∈ dirac-measures. (
∑
ϕ←Φ. δ ϕ) ≤ δ ψ)

using Ω(1 ) MCS-dirac-measure
by auto

}
ultimately show ?thesis by blast
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qed

theorem (in classical-logic) exclusive-implication-completeness:
(∀ P ∈ probabilities. (

∑
ϕ←Φ. P ϕ) ≤ P ψ) = (`

∐
Φ ∧ `

⊔
Φ → ψ)

(is ?lhs = ?rhs)
proof

assume ?lhs
thus ?rhs

by (meson
dirac-exclusive-implication-completeness
dirac-measures-subset
subset-eq)

next
assume ?rhs
show ?lhs
proof

fix P :: ′a ⇒ real
assume P ∈ probabilities
from this interpret probability-logic (λ ϕ. ` ϕ) (→) ⊥ P

unfolding probabilities-def
by simp

show (
∑
ϕ←Φ. P ϕ) ≤ P ψ

using
‹?rhs›
exclusive-sum-list-identity
monotonicity

by fastforce
qed

qed

lemma (in classical-logic) dirac-inequality-completeness:
(∀ δ ∈ dirac-measures. δ ϕ ≤ δ ψ) = ` ϕ → ψ

proof −
have `

∐
[ϕ]

by (simp add: conjunction-right-elimination negation-def )
hence (`

∐
[ϕ] ∧ `

⊔
[ϕ] → ψ) = ` ϕ → ψ

by (metis
arbitrary-disjunction.simps(1 )
arbitrary-disjunction.simps(2 )
disjunction-def implication-equivalence
negation-def
weak-biconditional-weaken)

thus ?thesis
using dirac-exclusive-implication-completeness [where Φ=[ϕ]]
by auto

qed
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2.4 Implication Inequality Completeness

The following theorem establishes the converse of ` ϕ → ψ =⇒ P ϕ ≤ P
ψ, which was proved in §1.4.
theorem (in classical-logic) implication-inequality-completeness:
(∀ P ∈ probabilities. P ϕ ≤ P ψ) = ` ϕ → ψ

proof −
have `

∐
[ϕ]

by (simp add: conjunction-right-elimination negation-def )
hence (`

∐
[ϕ] ∧ `

⊔
[ϕ] → ψ) = ` ϕ → ψ

by (metis
arbitrary-disjunction.simps(1 )
arbitrary-disjunction.simps(2 )
disjunction-def implication-equivalence
negation-def
weak-biconditional-weaken)

thus ?thesis
using exclusive-implication-completeness [where Φ=[ϕ]]
by simp

qed

2.5 Characterizing Logical Exclusiveness In Prob-
ability Logic

Finally, we can say that P (
⊔

Φ) = (
∑
ϕ←Φ. P ϕ) if and only if the

propositions in Φ are mutually exclusive (i.e. `
∐

Φ). This result also
obtains for sets.
lemma (in classical-logic) dirac-exclusive-list-summation-completeness:
(∀ δ ∈ dirac-measures. δ (

⊔
Φ) = (

∑
ϕ←Φ. δ ϕ)) = `

∐
Φ

by (metis
antisym-conv
dirac-exclusive-implication-completeness
dirac-list-summation-completeness
trivial-implication)

theorem (in classical-logic) exclusive-list-summation-completeness:
(∀ P ∈ probabilities. P (

⊔
Φ) = (

∑
ϕ←Φ. P ϕ)) = `

∐
Φ

by (metis
antisym-conv
exclusive-implication-completeness
list-summation-completeness
trivial-implication)

lemma (in classical-logic) dirac-exclusive-set-summation-completeness:
(∀ δ ∈ dirac-measures. δ (

⊔
Φ) = (

∑
ϕ ∈ set Φ. δ ϕ))

= `
∐

(remdups Φ)
by (metis
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(mono-tags)
eq-iff
dirac-exclusive-implication-completeness
dirac-set-summation-completeness
trivial-implication
set-remdups
sum.set-conv-list eq-iff
dirac-exclusive-implication-completeness
dirac-set-summation-completeness
trivial-implication
set-remdups
sum.set-conv-list
antisym-conv)

theorem (in classical-logic) exclusive-set-summation-completeness:
(∀ P ∈ probabilities.

P (
⊔

Φ) = (
∑
ϕ ∈ set Φ. P ϕ)) = `

∐
(remdups Φ)

by (metis
(mono-tags, opaque-lifting)
antisym-conv
exclusive-list-summation-completeness
exclusive-implication-completeness
implication-inequality-completeness
set-summation-completeness
order .refl
sum.set-conv-list)

lemma (in probability-logic) exclusive-list-set-inequality:
assumes `

∐
Φ

shows (
∑
ϕ←Φ. P ϕ) = (

∑
ϕ∈set Φ. P ϕ)

proof −
have distinct (remdups Φ) using distinct-remdups by auto
hence duplicates (remdups Φ) = {}

by (induct Φ, simp+)
moreover have set (remdups Φ) = set Φ

by (induct Φ, simp, simp add: insert-absorb)
moreover have (∀ϕ ∈ duplicates Φ. ` ∼ ϕ)

∧ (∀ ϕ ∈ set Φ. ∀ ψ ∈ set Φ. (ϕ 6= ψ) −→ ` ∼ (ϕ u ψ))
using

assms
exclusive-elimination1
exclusive-elimination2
set-deduction-base-theory

by blast
ultimately have
(∀ϕ∈duplicates (remdups Φ). ` ∼ ϕ)
∧ (∀ ϕ ∈ set (remdups Φ). ∀ ψ ∈ set (remdups Φ).

(ϕ 6= ψ) −→ ` ∼ (ϕ u ψ))
by auto
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hence `
∐

(remdups Φ)
by (meson exclusive-equivalence set-deduction-base-theory)

hence (
∑
ϕ∈set Φ. P ϕ) = P (

⊔
Φ)

by (metis
arbitrary-disjunction-remdups
biconditional-equivalence
exclusive-sum-list-identity
sum.set-conv-list)

moreover have (
∑
ϕ←Φ. P ϕ) = P (

⊔
Φ)

by (simp add: assms exclusive-sum-list-identity)
ultimately show ?thesis by metis

qed

unbundle funcset-syntax

end
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