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Abstract

We provide a formalization in Isabelle/Isar of (a variant of) the su-
perposition calculus [1, 4], together with formal proofs of soundness and
refutational completeness (w.r.t. the usual redundancy criteria based
on clause ordering). This version of the calculus uses all the standard
restrictions of the superposition rules, together with the following re-
finement, inspired by the basic superposition calculus [2, 3]: each clause
is associated with a set of terms which are assumed to be in normal
form – thus any application of the replacement rule on these terms is
blocked. The set is initially empty and terms may be added or removed
at each inference step. The set of terms that are assumed to be in nor-
mal form includes any term introduced by previous unifiers as well as
any term occurring in the parent clauses at a position that is smaller
(according to some given ordering on positions) than a previously re-
placed term. This restriction is slightly weaker than that of the basic
superposition calculus (since it is based on terms instead of positions),
but it has the advantage that the irreducible terms may be propagated
through the inferences (under appropriate conditions), even if they do
not occur in the parent clauses. The standard superposition calculus
corresponds to the case where the set of irreducible terms is always
empty. The term representation and unification algorithm are taken
from the theory Unification.thy provided in Isabelle.
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1 Preliminaries
theory multisets-continued

imports Main HOL−Library.Multiset

begin

1.1 Multisets

We use the Multiset theory provided in Isabelle. We prove some additional
(mostly trivial) lemmata.
lemma mset-set-inclusion:

assumes finite E2
assumes E1 ⊂ E2
shows mset-set E1 ⊂# (mset-set E2 )

proof (rule ccontr)
let ?s1 = mset-set E1
let ?s2 = mset-set E2
assume ¬ ?s1 ⊂# ?s2
from assms(1 ) and assms(2 ) have finite E1 using finite-subset less-imp-le by

auto
from ‹¬ ?s1 ⊂# ?s2 › obtain x where (count ?s1 x > count ?s2 x) using

subseteq-mset-def [of ?s1 ?s2 ]
by (metis assms(1 ) assms(2 ) finite-set-mset-mset-set finite-subset less-imp-le

less-le not-le-imp-less subset-mset.le-less)
from this have count ?s1 x > 0 by linarith
from this and ‹finite E1 › have count ?s1 x = 1 and x ∈ E1 using sub-

seteq-mset-def by auto
from this and assms(2 ) have x ∈ E2 by auto
from this and ‹finite E2 › have count ?s2 x = 1 by auto
from this and ‹count ?s1 x = 1 › and ‹(count ?s1 x > count ?s2 x)› show False

by auto
qed

lemma mset-ordering-addition:
assumes A = B + C
shows B ⊆# A
using assms by simp

lemma equal-image-mset:
assumes ∀ x ∈ E . (f x) = (g x)
shows {# (f x). x ∈# (mset-set E) #} = {# (g x). x ∈# (mset-set E) #}

by (meson assms count-eq-zero-iff count-mset-set(3 ) image-mset-cong)

lemma multiset-order-inclusion:
assumes E ⊂# F
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assumes trans r
shows (E ,F) ∈ (mult r)

proof −
let ?G = F−E
from assms(1 ) have F = E +?G

by (simp add: subset-mset.add-diff-inverse subset-mset-def )
from this assms(1 ) have ?G 6= {#}

by fastforce
have E = E + {#} by auto
from this ‹F = E +?G› ‹?G 6= {#}› assms(2 ) show ?thesis using one-step-implies-mult

[of ?G {#} r E ] by auto
qed

lemma multiset-order-inclusion-eq:
assumes E ⊆# F
assumes trans r
shows E = F ∨ (E ,F) ∈ (mult r)

proof (cases)
assume E = F
then show ?thesis by auto

next
assume E 6= F
from this and assms(1 ) have E ⊂# F by auto
from this assms(2 ) and multiset-order-inclusion show ?thesis by auto

qed

lemma image-mset-ordering:
assumes M1 = {# (f1 u). u ∈# L #}
assumes M2 = {# (f2 u). u ∈# L #}
assumes ∀ u. (u ∈# L −→ (((f1 u), (f2 u)) ∈ r ∨ (f1 u) = (f2 u)))
assumes ∃ u. (u ∈# L ∧ ((f1 u), (f2 u)) ∈ r)
assumes irrefl r
shows ( (M1 ,M2 ) ∈ (mult r) )

proof −
let ?L ′ = {# u ∈# L. (f1 u) = (f2 u) #}
let ?L ′′ = {# u ∈# L. (f1 u) 6= (f2 u) #}
have L = ?L ′ + ?L ′′ by (simp)
from assms(3 ) have ∀ u. (u ∈# ?L ′′ −→ ((f1 u),(f2 u)) ∈ r) by auto
let ?M1 ′ = {# (f1 u). u ∈# ?L ′ #}
let ?M2 ′ = {# (f2 u). u ∈# ?L ′ #}
have ?M1 ′ = ?M2 ′

by (metis (mono-tags, lifting) mem-Collect-eq multiset.map-cong0 set-mset-filter)

let ?M1 ′′ = {# (f1 u). u ∈# ?L ′′ #}
let ?M2 ′′ = {# (f2 u). u ∈# ?L ′′ #}
from ‹L = ?L ′ + ?L ′′› have M1 = ?M1 ′ + ?M1 ′′ by (metis assms(1 ) im-

age-mset-union)
from ‹L = ?L ′ + ?L ′′› have M2 = ?M2 ′ + ?M2 ′′ by (metis assms(2 ) im-

age-mset-union)
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have dom: (∀ k ∈ set-mset ?M1 ′′. ∃ j ∈ set-mset ?M2 ′′. (k, j) ∈ r)
proof

fix k assume k ∈ set-mset ?M1 ′′

from this obtain u where k = (f1 u) and u ∈# ?L ′′ by auto
from ‹u ∈# ?L ′′› have (f2 u) ∈# ?M2 ′′ by simp
from ‹∀ u. (u ∈# ?L ′′ −→ ((f1 u),(f2 u)) ∈ r)› and ‹u ∈# ?L ′′›

have ((f1 u),(f2 u)) ∈ r by auto
from this and ‹k = (f1 u)› and ‹(f2 u) ∈ set-mset ?M2 ′′›

show ∃ j ∈ set-mset ?M2 ′′. (k, j) ∈ r by auto
qed
have ?L ′′ 6= {#}
proof −

from assms(4 ) obtain u where u ∈# L and ( (f1 u),(f2 u) ) ∈ r by auto
from assms(5 ) ‹( (f1 u),(f2 u) ) ∈ r› have ( (f1 u) 6= (f2 u) )

unfolding irrefl-def by fastforce
from ‹u ∈# L› ‹( (f1 u) 6= (f2 u) )› have u ∈# ?L ′′ by auto
from this show ?thesis by force

qed
from this have ?M2 ′′ 6= {#} by auto
from this and dom and ‹M1 = ?M1 ′+ ?M1 ′′› ‹M2 = ?M2 ′+ ?M2 ′′› ‹?M1 ′=?M2 ′›

show (M1 ,M2 ) ∈ (mult r) by (simp add: one-step-implies-mult)
qed

lemma image-mset-ordering-eq:
assumes M1 = {# (f1 u). u ∈# L #}
assumes M2 = {# (f2 u). u ∈# L #}
assumes ∀ u. (u ∈# L −→ (((f1 u), (f2 u)) ∈ r ∨ (f1 u) = (f2 u)))
shows (M1 = M2 ) ∨ ( (M1 ,M2 ) ∈ (mult r) )

proof (cases)
assume M1 = M2 then show ?thesis by auto
next assume M1 6= M2
let ?L ′ = {# u ∈# L. (f1 u) = (f2 u) #}
let ?L ′′ = {# u ∈# L. (f1 u) 6= (f2 u) #}
have L = ?L ′ + ?L ′′ by (simp)
from assms(3 ) have ∀ u. (u ∈# ?L ′′ −→ ((f1 u),(f2 u)) ∈ r) by auto
let ?M1 ′ = {# (f1 u). u ∈# ?L ′ #}
let ?M2 ′ = {# (f2 u). u ∈# ?L ′ #}
have ?M1 ′ = ?M2 ′

by (metis (mono-tags, lifting) mem-Collect-eq multiset.map-cong0 set-mset-filter)
let ?M1 ′′ = {# (f1 u). u ∈# ?L ′′ #}
let ?M2 ′′ = {# (f2 u). u ∈# ?L ′′ #}
from ‹L = ?L ′ + ?L ′′› have M1 = ?M1 ′ + ?M1 ′′ by (metis assms(1 ) im-

age-mset-union)
from ‹L = ?L ′ + ?L ′′› have M2 = ?M2 ′ + ?M2 ′′ by (metis assms(2 ) im-

age-mset-union)
have dom: (∀ k ∈ set-mset ?M1 ′′. ∃ j ∈ set-mset ?M2 ′′. (k, j) ∈ r)
proof

fix k assume k ∈ set-mset ?M1 ′′
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from this obtain u where k = (f1 u) and u ∈# ?L ′′ by auto
from ‹u ∈# ?L ′′› have (f2 u) ∈# ?M2 ′′ by simp
from ‹∀ u. (u ∈# ?L ′′ −→ ((f1 u),(f2 u)) ∈ r)› and ‹u ∈# ?L ′′›

have ((f1 u),(f2 u)) ∈ r by auto
from this and ‹k = (f1 u)› and ‹(f2 u) ∈ set-mset ?M2 ′′›

show ∃ j ∈ set-mset ?M2 ′′. (k, j) ∈ r by auto
qed
from ‹M1 6= M2 › have ?M2 ′′ 6= {#}

using ‹M1 = image-mset f1 {# u ∈# L. f1 u = f2 u#} + image-mset f1 {#
u ∈# L. f1 u 6= f2 u#}› ‹M2 = image-mset f2 {# u ∈# L. f1 u = f2 u#} +
image-mset f2 {# u ∈# L. f1 u 6= f2 u#}› ‹image-mset f1 {# u ∈# L. f1 u = f2
u#} = image-mset f2 {# u ∈# L. f1 u = f2 u#}› by auto
from this and dom and ‹M1 = ?M1 ′+ ?M1 ′′› ‹M2 = ?M2 ′+ ?M2 ′′› ‹?M1 ′=?M2 ′›

have (M1 ,M2 ) ∈ (mult r) by (simp add: one-step-implies-mult)
from this show ?thesis by auto

qed

lemma mult1-def-lemma :
assumes M = M0 + {#a#} ∧ N = M0 + K ∧ (∀ b. b ∈# K −→ (b, a) ∈ r)
shows (N ,M ) ∈ (mult1 r)

proof −
from assms(1 ) show ?thesis using mult1-def [of r ] by auto

qed

lemma mset-ordering-add1 :
assumes (E1 ,E2 ) ∈ (mult r)
shows (E1 ,E2 + {# a #}) ∈ (mult r)

proof −
have i: (E2 ,E2 + {# a #}) ∈ (mult1 r) using mult1-def-lemma [of E2 + {#

a #} E2 a E2 {#} r ]
by auto

have i: (E2 ,E2 + {# a #}) ∈ (mult1 r) using mult1-def-lemma [of E2 + {#
a #} E2 a E2 {#} r ]

by auto
from assms(1 ) have (E1 ,E2 ) ∈ (mult1 r)+ using mult-def by auto
from this and i have (E1 ,E2 + {# a #}) ∈ (mult1 r)+ by auto
then show ?thesis using mult-def by auto

qed

lemma mset-ordering-singleton:
assumes ∀ x. (x ∈# E1 −→ (x,a) ∈ r)
shows (E1 , {# a #}) ∈ (mult r)

proof −
let ?K = E1
let ?M0 = {#}
have i: E1 = ?M0 + ?K by auto
have ii: {# a #} = ?M0 + {# a #} by auto
from assms(1 ) have iii: ∀ x. (x ∈# ?K −→ (x,a) ∈ r) by auto
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from i and ii and iii show ?thesis using mult1-def-lemma [of {# a #} ?M0
a E1 ?K r ] mult-def by auto
qed

lemma monotonic-fun-mult1 :
assumes

∧
t s. ((t,s) ∈ r =⇒ ((f t), (f s)) ∈ r)

assumes (E1 ,E2 ) ∈ (mult1 r)
shows ({# (f x). x ∈# E1 #},{# (f x). x ∈# E2 #}) ∈ (mult1 r)

proof −
let ?E1 = {# (f x). x ∈# E1 #}
let ?E2 = {# (f x). x ∈# E2 #}
from assms(2 ) obtain M0 a K where E2 = M0 + {#a#} and E1 = M0 +

K and (∀ b. b ∈# K −→ (b, a) ∈ r)
unfolding mult1-def [of r ] by auto

let ?K = {# (f x). x ∈# K #}
let ?M0 = {# (f x). x ∈# M0 #}
from ‹E2 = M0 + {#a#}› have ?E2 = ?M0 + {# (f a) #} by simp
from ‹E1 = M0 + K › have ?E1 = ?M0 + ?K by simp
have (∀ b. b ∈# ?K −→ (b, (f a)) ∈ r)
proof ((rule allI ),(rule impI ))

fix b assume b ∈# ?K
from ‹b ∈# ?K › obtain b ′ where b = (f b ′) and b ′ ∈# K

by (auto simp: insert-DiffM2 msed-map-invR union-single-eq-member)
from ‹b ′ ∈# K › and ‹(∀ b. b ∈# K −→ (b, a) ∈ r)› have (b ′,a) ∈ r by auto
from assms(1 ) and this and ‹b = (f b ′)› show (b, (f a)) ∈ r by auto

qed
from ‹?E1 = ?M0 + ?K › and ‹?E2 = ?M0 + {# (f a) #}› and ‹(∀ b. b ∈#

?K −→ (b, (f a)) ∈ r)›
show (?E1 ,?E2 ) ∈ (mult1 r) by (metis mult1-def-lemma)

qed

lemma monotonic-fun-mult:
assumes

∧
t s. ((t,s) ∈ r =⇒ ((f t), (f s)) ∈ r)

assumes (E1 ,E2 ) ∈ (mult r)
shows ({# (f x). x ∈# E1 #},{# (f x). x ∈# E2 #}) ∈ (mult r)

proof −
let ?E1 = {# (f x). x ∈# E1 #}
let ?E2 = {# (f x). x ∈# E2 #}
let ?P = λx. (?E1 ,{# (f y). y ∈# x #}) ∈ (mult r)
show ?thesis
proof (rule trancl-induct [of E1 E2 (mult1 r) ?P])
from assms(1 ) show (E1 , E2 ) ∈ (mult1 r)+ using assms(2 ) mult-def by blast

next
fix x assume (E1 , x) ∈ mult1 r
have (image-mset f E1 , image-mset f x) ∈ mult1 r

by (simp add: ‹(E1 , x) ∈ mult1 r› assms(1 ) monotonic-fun-mult1 )
from this show (image-mset f E1 , image-mset f x) ∈ mult r by (simp add:

mult-def )
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next
fix x z assume (E1 , x) ∈ (mult1 r)+
(x, z) ∈ mult1 r and (image-mset f E1 , image-mset f x) ∈ mult r

from ‹(x, z) ∈ mult1 r› have (image-mset f x, image-mset f z) ∈ mult1 r
by (simp add: assms(1 ) monotonic-fun-mult1 )

from this and ‹(image-mset f E1 , image-mset f x) ∈ mult r›
show (image-mset f E1 , image-mset f z) ∈ mult r
using mult-def trancl.trancl-into-trancl by fastforce

qed
qed

lemma mset-set-insert-eq:
assumes finite E
shows mset-set (E ∪ { x }) ⊆# mset-set E + {# x #}

proof (rule ccontr)
assume ¬ ?thesis
from this obtain y where (count (mset-set (E ∪ { x })) y)
> (count (mset-set E + {# x #}) y)
by (meson leI subseteq-mset-def )

from assms(1 ) have finite (E ∪ { x }) by auto
have (count (mset-set E + {# x #}) y) = (count (mset-set E) y) + (count {#

x #} y) by auto
have x 6= y
proof

assume x = y
then have y ∈ E ∪ { x } by auto
from ‹finite (E ∪ { x })› this have (count (mset-set (E ∪ { x })) y) = 1

using count-mset-set(1 ) by auto
from this and ‹(count (mset-set (E ∪ { x })) y) > (count (mset-set E + {#

x #}) y)› have
(count (mset-set E + {# x #}) y) = 0 by auto

from ‹(count (mset-set E + {# x #}) y) = 0 › have count {# x #} y = 0
by auto

from ‹x = y› have count {# x #} y = 1 using count-mset-set by auto
from this and ‹count {# x #} y = 0 › show False by auto

qed
have y /∈ E
proof

assume y ∈ E
then have y ∈ E ∪ { x } by auto
from ‹finite (E ∪ { x })› this have (count (mset-set (E ∪ { x })) y) = 1

using count-mset-set(1 ) by auto
from this and ‹(count (mset-set (E ∪ { x })) y) > (count (mset-set E + {#

x #}) y)› have
(count (mset-set E + {# x #}) y) = 0 by auto

from ‹(count (mset-set E + {# x #}) y) = 0 › have count (mset-set E) y =
0 by (simp split: if-splits)

from ‹y ∈ E› ‹finite E› have count (mset-set E) y = 1 using count-mset-set(1 )
by auto
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from this and ‹count (mset-set E) y = 0 › show False by auto
qed
from this and ‹x 6= y› have y /∈ E ∪ { x } by auto
from this have (count (mset-set (E ∪ { x })) y) = 0 by auto
from this and ‹(count (mset-set (E ∪ { x })) y)
> (count (mset-set E + {# x #}) y)› show False by auto

qed

lemma mset-set-insert:
assumes x /∈ E
assumes finite E
shows mset-set (E ∪ { x }) = mset-set E + {# x #}

proof (rule ccontr)
assume ¬ ?thesis
from this obtain y where (count (mset-set (E ∪ { x })) y)
6= (count (mset-set E + {# x #}) y) by (meson multiset-eqI )

have (count (mset-set E + {# x #}) y) = (count (mset-set E) y) + (count {#
x #} y) by auto

from assms(2 ) have finite (E ∪ { x }) by auto
have x 6= y
proof

assume x = y
then have y ∈ E ∪ { x } by auto
from ‹finite (E ∪ { x })› this have (count (mset-set (E ∪ { x })) y) = 1

using count-mset-set(1 ) by auto
from ‹x = y› have count {# x #} y = 1 using count-mset-set by auto
from ‹x = y› ‹x /∈ E› have (count (mset-set E) y) = 0 using count-mset-set

by auto
from ‹count {# x #} y = 1 › ‹(count (mset-set E) y) = 0 ›

‹(count (mset-set E + {# x #}) y) = (count (mset-set E) y) + (count {# x
#} y)›

have (count (mset-set E + {# x #}) y) = 1 by auto
from this and ‹(count (mset-set (E ∪ { x })) y) = 1 › and ‹(count (mset-set

(E ∪ { x })) y)
6= (count (mset-set E + {# x #}) y)› show False by auto

qed
from ‹x 6= y› have count {# x #} y = 0 using count-mset-set by auto
have y /∈ E
proof

assume y ∈ E
then have y ∈ E ∪ { x } by auto
from ‹finite (E ∪ { x })› this have (count (mset-set (E ∪ { x })) y) = 1

using count-mset-set(1 ) by auto
from assms(2 ) ‹y ∈ E› have (count (mset-set E) y) = 1 using count-mset-set

by auto
from ‹count {# x #} y = 0 › ‹(count (mset-set E) y) = 1 ›

‹(count (mset-set E + {# x #}) y) = (count (mset-set E) y) + (count {# x
#} y)›

have (count (mset-set E + {# x #}) y) = 1 by auto
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from this and ‹(count (mset-set (E ∪ { x })) y) = 1 › and ‹(count (mset-set
(E ∪ { x })) y)
6= (count (mset-set E + {# x #}) y)› show False by auto

qed
from this and ‹x 6= y› have y /∈ E ∪ { x } by auto
from this have (count (mset-set (E ∪ { x })) y) = 0 by auto
from ‹y /∈ E› have (count (mset-set E) y) = 0 using count-mset-set by auto
from ‹count {# x #} y = 0 › ‹(count (mset-set E) y) = 0 ›

‹(count (mset-set E + {# x #}) y) = (count (mset-set E) y) + (count {# x
#} y)›

have (count (mset-set E + {# x #}) y) = 0 by auto
from this and ‹(count (mset-set (E ∪ { x })) y) = 0 › and ‹(count (mset-set

(E ∪ { x })) y)
6= (count (mset-set E + {# x #}) y)› show False by auto

qed

lemma mset-image-comp:
shows {# (f x). x ∈# {# (g x). x ∈# E #} #} = {# (f (g x)). x ∈# E #}
by (simp add: image-mset.compositionality comp-def )

lemma mset-set-mset-image:
shows

∧
E . card E = N =⇒ finite E =⇒ mset-set (g ‘ E) ⊆# {# (g x). x ∈#

mset-set (E) #}
proof (induction N )

case 0
assume card E = 0
assume finite E
from this and ‹card E = 0 › have E = {} by auto
then show mset-set (g ‘ E) ⊆# {# (g x). x ∈# mset-set (E) #} by auto

next
case (Suc N )

assume card E = (Suc N )
assume finite E
from this and ‹card E = (Suc N )› have E 6= {} by auto
from this obtain x where x ∈ E by auto
let ?E = E − { x }
from ‹finite E› ‹card E = (Suc N )› and ‹x ∈ E› have card ?E = N by auto
from ‹finite E› have finite ?E by auto
from this and Suc.IH [of ?E ] and ‹card ?E = N ›

have ind: mset-set (g ‘ ?E) ⊆# {# (g x). x ∈# mset-set (?E) #} by force
from ‹x ∈ E› have E = ?E ∪ { x } by auto
have x /∈ ?E by auto
from ‹finite ?E› ‹E = ?E ∪ { x }› and ‹x /∈ ?E› have mset-set (?E ∪ { x })

= mset-set ?E + {# x #}
using mset-set-insert [of x ?E ] by auto

from this have
{# (g x). x ∈# mset-set (?E ∪ { x }) #} = {# (g x). x ∈# mset-set ?E #}

+ {# (g x) #}
by auto
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have (g ‘ (?E ∪ { x }) = (g ‘ ?E) ∪ { g x }) by auto
from this have i: mset-set (g ‘ (?E ∪ { x })) = mset-set ( (g ‘ ?E) ∪ { g x }

) by auto
from ‹finite ?E› have finite (g ‘ ?E) by auto
from this have mset-set ( (g ‘ ?E) ∪ { g x } ) ⊆# mset-set (g ‘ ?E) + {# (g

x) #}
using mset-set-insert-eq [of (g ‘ ?E) (g x) ] by meson

from this i have ii: mset-set (g ‘ (?E ∪ { x })) ⊆# mset-set (g ‘ ?E) + {#
(g x) #} by auto

from ind have mset-set (g ‘ ?E) + {# (g x) #} ⊆# {# (g x). x ∈# mset-set
(?E) #} + {# (g x) #}

using Multiset.subset-mset.add-right-mono by metis
from this and ii have mset-set (g ‘ (?E ∪ { x })) ⊆# {# (g x). x ∈# mset-set

(?E) #} + {# (g x) #}
using subset-mset.trans [of mset-set (g ‘ (?E ∪ { x })) ] by metis

from this and ‹E = ?E ∪ { x }› ‹{# (g x). x ∈# mset-set (?E ∪ { x }) #}
= {# (g x). x ∈# mset-set ?E #} + {# (g x) #}›

show mset-set (g ‘ E) ⊆# {# (g x). x ∈# mset-set E #}
by metis

qed

lemma split-mset-set:
assumes C = C1 ∪ C2
assumes C1 ∩ C2 = {}
assumes finite C1
assumes finite C2
shows (mset-set C ) = (mset-set C1 ) + (mset-set C2 )

proof (rule ccontr)
assume (mset-set C ) 6= (mset-set C1 ) + (mset-set C2 )
then obtain x where count (mset-set C ) x 6= count ((mset-set C1 ) + (mset-set

C2 )) x
by (meson multiset-eqI )

from assms(3 ) assms(4 ) assms(1 ) have finite C by auto

have count ((mset-set C1 ) + (mset-set C2 )) x = (count (mset-set C1 ) x) +
(count (mset-set C2 ) x)

by auto
from this and ‹count (mset-set C ) x 6= count ((mset-set C1 ) + (mset-set C2 ))

x› have
count (mset-set C ) x 6= (count (mset-set C1 ) x) + (count (mset-set C2 ) x) by

auto
have x ∈ C1 ∨ x ∈ C2
proof (rule ccontr)

assume ¬ (x ∈ C1 ∨ x ∈ C2 )
then have x /∈ C1 and x /∈ C2 by auto
from assms(1 ) ‹x /∈ C1 › and ‹x /∈ C2 › have x /∈ C by auto
from ‹x /∈ C1 › have (count (mset-set C1 ) x) = 0 by auto
from ‹x /∈ C2 › have (count (mset-set C2 ) x) = 0 by auto
from ‹x /∈ C › have (count (mset-set C ) x) = 0 by auto

11



from ‹(count (mset-set C1 ) x) = 0 › ‹(count (mset-set C2 ) x) = 0 ›
‹(count (mset-set C ) x) = 0 ›
‹count (mset-set C ) x 6= (count (mset-set C1 ) x) + (count (mset-set C2 ) x)›
show False by auto

qed

have (x /∈ C1 ∨ x ∈ C2 )
proof (rule ccontr)

assume ¬ (x /∈ C1 ∨ x ∈ C2 )
then have x ∈ C1 and x /∈ C2 by auto
from assms(1 ) ‹x ∈ C1 › have x ∈ C by auto
from assms(3 ) ‹x ∈ C1 › have (count (mset-set C1 ) x) = 1 by auto
from ‹x /∈ C2 › have (count (mset-set C2 ) x) = 0 by auto
from assms(3 ) assms(4 ) assms(1 ) have finite C by auto
from ‹finite C › ‹x ∈ C › have (count (mset-set C ) x) = 1 by auto
from ‹(count (mset-set C1 ) x) = 1 › ‹(count (mset-set C2 ) x) = 0 ›

‹(count (mset-set C ) x) = 1 ›
‹count (mset-set C ) x 6= (count (mset-set C1 ) x) + (count (mset-set C2 ) x)›
show False by auto

qed
have (x /∈ C2 ∨ x ∈ C1 )
proof (rule ccontr)

assume ¬ (x /∈ C2 ∨ x ∈ C1 )
then have x ∈ C2 and x /∈ C1 by auto
from assms(1 ) ‹x ∈ C2 › have x ∈ C by auto
from assms(4 ) ‹x ∈ C2 › have (count (mset-set C2 ) x) = 1 by auto
from ‹x /∈ C1 › have (count (mset-set C1 ) x) = 0 by auto
from ‹finite C › ‹x ∈ C › have (count (mset-set C ) x) = 1 by auto
from ‹(count (mset-set C2 ) x) = 1 › ‹(count (mset-set C1 ) x) = 0 ›

‹(count (mset-set C ) x) = 1 ›
‹count (mset-set C ) x 6= (count (mset-set C1 ) x) + (count (mset-set C2 ) x)›
show False by auto

qed
from ‹x ∈ C1 ∨ x ∈ C2 › ‹(x /∈ C1 ∨ x ∈ C2 )› ‹(x /∈ C2 ∨ x ∈ C1 )›

have x ∈ C1 ∧ x ∈ C2 by blast
from this and assms(2 ) show False by auto

qed

lemma image-mset-thm:
assumes E = {# (f x). x ∈# E ′ #}
assumes x ∈# E
shows ∃ y. ((y ∈# E ′) ∧ x = (f y))

using assms by auto

lemma split-image-mset:
assumes M = M1 + M2
shows {# (f x). x ∈# M #} = {# (f x). x ∈# M1 #} + {# (f x). x ∈# M2

#}
by (simp add: assms)
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end
theory well-founded-continued

imports Main

begin

1.2 Well-Founded Sets

Most useful lemmata are already proven in the Well_Founded theory avail-
able in Isabelle. We only establish a few convenient results for constructing
well-founded sets and relations.
lemma measure-wf :

assumes wf (r :: ( ′a × ′a) set)
assumes r ′ = { (x,y). ((m x),(m y)) ∈ r }
shows wf r ′

proof −
have (∀Q:: ′b set. ∀ x:: ′b. x∈Q −→ (∃ z∈Q. ∀ y. (y,z)∈ r ′ −−> y /∈Q))
proof ((rule allI )+,(rule impI ))

fix Q:: ′b set fix x:: ′b assume x∈Q
let ?Q ′ = (m ‘ Q)
from ‹x ∈ Q› have Q ′-not-empty: m x ∈ ?Q ′ by auto
from assms(1 ) and Q ′-not-empty obtain z ′ where z ′ ∈ ?Q ′ and z ′min: ∀ y.

(y,z ′)∈ r
−→ y /∈?Q ′ using wf-eq-minimal [of r ] by blast

from ‹z ′ ∈ ?Q ′› obtain z where z ′ = (m z) and z ∈ Q by auto
have ∀ y. (y,z)∈ r ′ −→ y /∈Q
proof ((rule allI ),(rule impI ))

fix y assume (y,z)∈ r ′

from assms(2 ) and this and ‹z ′ = (m z)› have ((m y),z ′) ∈ r by auto
from this and z ′min have (m y) /∈ ?Q ′ by auto
then show y /∈Q by auto

qed
from this and ‹z ∈ Q› show (∃ z∈Q. ∀ y. (y,z)∈ r ′ −−> y /∈Q) by auto

qed
then show ?thesis using wf-eq-minimal by auto

qed

lemma finite-proj-wf :
assumes finite E
assumes x ∈ E
assumes acyclic r
shows (∃ y. y ∈ E ∧ (∀ z. (z, y) ∈ r −→ z /∈ E))

proof −
let ?r = { (u,v). (u ∈ E ∧ v ∈ E ∧ (u,v) ∈ r) }
from assms(1 ) have finite (E × E) by auto
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have ?r ⊆ (E × E) by auto
have ?r ⊆ r by auto
from ‹?r ⊆ (E × E)› and ‹finite (E × E)› have finite ?r using finite-subset

by auto
from assms(3 ) and ‹?r ⊆ r› have acyclic ?r unfolding acyclic-def using

trancl-mono by blast
from ‹acyclic ?r› ‹finite ?r› have wf ?r using finite-acyclic-wf by auto
from this assms(2 ) obtain y where y ∈ E and i:

∧
z. (z, y) ∈ ?r =⇒ z /∈ E

using wfE-min [of ?r x E ] by blast
have ∀ z. (z, y) ∈ r −→ z /∈ E
proof (rule allI ,rule impI )

fix z assume (z,y) ∈ r
show z /∈ E
proof

assume z ∈ E
from this and ‹y ∈ E› and ‹(z,y) ∈ r› have (z,y) ∈ ?r by auto
from this and i [of z] and ‹z ∈ E› show False by auto

qed
qed
from this and ‹y ∈ E› show ?thesis by auto

qed

end
theory terms

imports HOL−ex.Unification

begin

2 Terms
2.1 Basic Syntax

We use the same term representation as in the Unification theory provided
in Isabelle. Terms are represented by binary trees built on variables and
constant symbols.
fun is-a-variable
where
(is-a-variable (Var x)) = True |
(is-a-variable (Const x)) = False |
(is-a-variable (Comb x y)) = False

fun is-a-constant
where
(is-a-constant (Var x)) = False |
(is-a-constant (Const x)) = True |
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(is-a-constant (Comb x y)) = False

fun is-compound
where
(is-compound (Var x)) = False |
(is-compound (Const x)) = False |
(is-compound (Comb x y)) = True

definition ground-term :: ′a trm ⇒ bool
where
(ground-term t) = (vars-of t = {})

lemma constants-are-not-variables :
assumes is-a-constant x
shows ¬ (is-a-variable x)

by (metis assms is-a-constant.elims(2 ) is-a-variable.elims(2 ) trm.distinct(2 ))

lemma constants-are-ground :
assumes is-a-constant x
shows ground-term x

proof −
from assms obtain y where x = (Const y) using is-a-constant.elims(2 ) by

auto
then show ?thesis by (simp add: ground-term-def )

qed

2.2 Positions

We define the notion of a position together with functions to access to sub-
terms and replace them. We establish some basic properties of these func-
tions.

Since terms are binary trees, positions are sequences of binary digits.
datatype indices = Left | Right

type-synonym position = indices list

fun left-app
where left-app x = Left # x

fun right-app
where right-app x = Right # x

definition strict-prefix
where

strict-prefix p q = (∃ r . (r 6= []) ∧ (q = (append p r)))

fun subterm :: ′a trm ⇒ position ⇒ ′a trm ⇒ bool
where
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(subterm T [] S) = (T = S) |
(subterm (Var v) (first # next) S) = False |
(subterm (Const c) (first # next) S) = False |
(subterm (Comb x y) (Left # next) S) = (subterm x next S) |
(subterm (Comb x y) (Right # next) S) = (subterm y next S)

definition occurs-in :: ′a trm ⇒ ′a trm ⇒ bool
where

occurs-in t s = (∃ p. subterm s p t)

definition position-in :: position ⇒ ′a trm ⇒ bool
where

position-in p s = (∃ t. subterm s p t)

fun subterms-of
where

subterms-of t = { s. (occurs-in s t) }

fun proper-subterms-of
where

proper-subterms-of t = { s. ∃ p. (p 6= Nil ∧ (subterm t p s)) }

fun pos-of
where

pos-of t = { p. (position-in p t) }

fun replace-subterm ::
′a trm ⇒ position ⇒ ′a trm ⇒ ′a trm ⇒ bool
where
(replace-subterm T [] u S) = (S = u) |
(replace-subterm (Var x) (first # next) u S) = False |
(replace-subterm (Const c) (first # next) u S) = False |
(replace-subterm (Comb x y) (Left # next) u S) =
(∃S1 . (replace-subterm x next u S1 ) ∧ (S = Comb S1 y)) |

(replace-subterm (Comb x y) (Right # next) u S) =
(∃S2 . (replace-subterm y next u S2 ) ∧ (S = Comb x S2 ))

lemma replace-subterm-is-a-function:
shows

∧
t u v. subterm t p u =⇒ ∃ s. replace-subterm t p v s

proof (induction p,auto)
next case (Cons i q)

from ‹subterm t (Cons i q) u› obtain t1 t2 where t = (Comb t1 t2 )
using subterm.elims(2 ) by blast

have i = Right ∨ i = Left using indices.exhaust by auto
then show ?case
proof

assume i = Right
from this and ‹t = (Comb t1 t2 )› and ‹subterm t (Cons i q) u› have subterm

t2 q u by auto
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from this obtain s where replace-subterm t2 q v s using Cons.IH [of t2 u]
by auto

from this and ‹t = (Comb t1 t2 )› and ‹i = Right› have replace-subterm t
(Cons i q) v (Comb t1 s)

by auto
from this show ?case by auto

next assume i = Left
from this and ‹t = (Comb t1 t2 )› and ‹subterm t (Cons i q) u› have subterm

t1 q u by auto
from this obtain s where replace-subterm t1 q v s using Cons.IH [of t1 u]

by auto
from this and ‹t = (Comb t1 t2 )› and ‹i = Left› have replace-subterm t

(Cons i q) v (Comb s t2 )
by auto

from this show ?case by auto
qed

qed

We prove some useful lemmata concerning the set of variables or subterms
occurring in a term.
lemma root-subterm:

shows t ∈ (subterms-of t)
by (metis mem-Collect-eq occurs-in-def subterm.simps(1 ) subterms-of .simps)

lemma root-position:
shows Nil ∈ (pos-of t)

by (metis mem-Collect-eq subterm.simps(1 ) position-in-def pos-of .simps)

lemma subterms-of-an-atomic-term:
assumes is-a-variable t ∨ is-a-constant t
shows subterms-of t = { t }

proof
show subterms-of t ⊆ { t }
proof

fix x assume x ∈ subterms-of t
then have occurs-in x t by auto
then have ∃ p. (subterm t p x) unfolding occurs-in-def by auto
from this and assms have x = t
by (metis is-a-constant.simps(3 ) is-a-variable.simps(3 ) subterm.elims(2 ))

thus x ∈ { t } by auto
qed

next
show { t } ⊆ subterms-of t
proof

fix x assume x ∈ { t }
then show x ∈ subterms-of t using root-subterm by auto

qed
qed
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lemma positions-of-an-atomic-term:
assumes is-a-variable t ∨ is-a-constant t
shows pos-of t = { Nil }

proof
show pos-of t ⊆ { Nil }
proof

fix x assume x ∈ pos-of t
then have position-in x t by auto
then have ∃ s. (subterm t x s) unfolding position-in-def by auto
from this and assms have x = Nil
by (metis is-a-constant.simps(3 ) is-a-variable.simps(3 ) subterm.elims(2 ))

thus x ∈ { Nil } by auto
qed

next
show { Nil } ⊆ pos-of t
proof

fix x :: indices list assume x ∈ { Nil }
then show x ∈ pos-of t using root-position by auto

qed
qed

lemma subterm-of-a-subterm-is-a-subterm :
assumes subterm u q v
shows

∧
t. subterm t p u =⇒ subterm t (append p q) v

proof (induction p)
case Nil

show ?case using Nil.prems assms by auto
next case (Cons i p ′)

from ‹subterm t (Cons i p ′) u› obtain t1 t2 where t = (Comb t1 t2 )
using subterm.elims(2 ) by blast

have i = Right ∨ i = Left using indices.exhaust by auto
then show ?case
proof

assume i = Right
from this and ‹subterm t (Cons i p ′) u› and ‹t = (Comb t1 t2 )›

have subterm t2 p ′ u by auto
from this have subterm t2 (append p ′ q) v by (simp add: Cons.IH )
from this and ‹t = (Comb t1 t2 )› and ‹i = Right› show subterm t (append

(Cons i p ′) q) v
by simp

next assume i = Left
from this and ‹subterm t (Cons i p ′) u› and ‹t = (Comb t1 t2 )›

have subterm t1 p ′ u by auto
from this have subterm t1 (append p ′ q) v by (simp add: Cons.IH )
from this and ‹t = (Comb t1 t2 )› and ‹i = Left› show subterm t (append

(Cons i p ′) q) v
by simp

qed
qed
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lemma occur-in-subterm:
assumes occurs-in u t
assumes occurs-in t s
shows occurs-in u s

by (meson assms(1 ) assms(2 ) occurs-in-def subterm-of-a-subterm-is-a-subterm)

lemma vars-of-subterm :
assumes x ∈ vars-of s
shows

∧
t. subterm t p s =⇒ x ∈ vars-of t

proof (induction p)
case Nil

show ?case using Nil.prems assms by auto
next case (Cons i p ′)

from ‹subterm t (Cons i p ′) s› obtain t1 t2 where t = (Comb t1 t2 )
using subterm.elims(2 ) by blast

have i = Right ∨ i = Left using indices.exhaust by auto
then show ?case
proof

assume i = Right
from this and ‹subterm t (Cons i p ′) s› and ‹t = (Comb t1 t2 )›

have subterm t2 p ′ s by auto
from this have x ∈ vars-of t2 by (simp add: Cons.IH )
from this and ‹t = (Comb t1 t2 )› and ‹i = Right› show ?case

by simp
next assume i = Left

from this and ‹subterm t (Cons i p ′) s› and ‹t = (Comb t1 t2 )›
have subterm t1 p ′ s by auto

from this have x ∈ vars-of t1 by (simp add: Cons.IH )
from this and ‹t = (Comb t1 t2 )› and ‹i = Left› show ?case

by simp
qed

qed

lemma vars-subterm :
assumes subterm t p s
shows vars-of s ⊆ vars-of t

by (meson assms subsetI vars-of-subterm)

lemma vars-subterms-of :
assumes s ∈ subterms-of t
shows vars-of s ⊆ vars-of t

using assms occurs-in-def vars-subterm by fastforce

lemma subterms-of-a-non-atomic-term:
shows subterms-of (Comb t1 t2 ) = (subterms-of t1 ) ∪ (subterms-of t2 ) ∪ {

(Comb t1 t2 ) }
proof
show subterms-of (Comb t1 t2 ) ⊆ (subterms-of t1 ) ∪ (subterms-of t2 ) ∪ { (Comb
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t1 t2 ) }
proof

fix x assume x ∈ (subterms-of (Comb t1 t2 ))
then have occurs-in x (Comb t1 t2 ) by auto
then obtain p where subterm (Comb t1 t2 ) p x unfolding occurs-in-def by

auto
have p = [] ∨ (∃ i q. p = i #q) using neq-Nil-conv by blast
then show x ∈ (subterms-of t1 ) ∪ (subterms-of t2 ) ∪ { (Comb t1 t2 ) }
proof

assume p = []
from this and ‹subterm (Comb t1 t2 ) p x› show ?thesis by auto

next
assume ∃ i q. p = i #q
then obtain i q where p = i # q by auto
have i = Left ∨ i = Right using indices.exhaust by blast
then show x ∈ (subterms-of t1 ) ∪ (subterms-of t2 ) ∪ { (Comb t1 t2 ) }
proof

assume i = Left
from this and ‹p = i # q› and ‹subterm (Comb t1 t2 ) p x›

have subterm t1 q x by auto
then have occurs-in x t1 unfolding occurs-in-def by auto
then show x ∈ (subterms-of t1 ) ∪ (subterms-of t2 ) ∪ { (Comb t1 t2 ) } by

auto
next

assume i = Right
from this and ‹p = i # q› and ‹subterm (Comb t1 t2 ) p x›

have subterm t2 q x by auto
then have occurs-in x t2 unfolding occurs-in-def by auto
then show x ∈ (subterms-of t1 ) ∪ (subterms-of t2 ) ∪ { (Comb t1 t2 ) } by

auto
qed

qed
qed

next
show (subterms-of t1 ) ∪ (subterms-of t2 ) ∪ { (Comb t1 t2 ) } ⊆ subterms-of

(Comb t1 t2 )
proof

fix x assume x ∈ (subterms-of t1 ) ∪ (subterms-of t2 ) ∪ { (Comb t1 t2 ) }
then have x ∈ (subterms-of t1 ) ∨ (x ∈ (subterms-of t2 ) ∨ x = (Comb t1 t2 ))

by auto
thus x ∈ subterms-of (Comb t1 t2 )
proof

assume x ∈ (subterms-of t1 )
then have occurs-in x t1 by auto
then obtain p where subterm t1 p x unfolding occurs-in-def by auto
then have subterm (Comb t1 t2 ) (Left # p) x by auto
then have occurs-in x (Comb t1 t2 ) using occurs-in-def by blast
then show x ∈ subterms-of (Comb t1 t2 ) by auto

next
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assume (x ∈ (subterms-of t2 ) ∨ x = (Comb t1 t2 ))
then show x ∈ subterms-of (Comb t1 t2 )
proof

assume x ∈ (subterms-of t2 )
then have occurs-in x t2 by auto
then obtain p where subterm t2 p x unfolding occurs-in-def by auto
then have subterm (Comb t1 t2 ) (Right # p) x by auto
then have occurs-in x (Comb t1 t2 ) using occurs-in-def by blast
then show x ∈ subterms-of (Comb t1 t2 ) by auto

next
assume x = (Comb t1 t2 )
show x ∈ subterms-of (Comb t1 t2 ) using ‹x = t1 · t2 › root-subterm by

blast
qed

qed
qed

qed

lemma positions-of-a-non-atomic-term:
shows pos-of (Comb t1 t2 ) = (left-app ‘ (pos-of t1 )) ∪ (right-app ‘ (pos-of t2 ))
∪ { Nil }
proof

show pos-of (Comb t1 t2 ) ⊆ (left-app ‘ (pos-of t1 )) ∪ (right-app ‘ (pos-of t2 ))
∪ { Nil }

proof
fix x assume x ∈ pos-of (Comb t1 t2 )
then have position-in x (Comb t1 t2 ) by auto
then obtain s where subterm (Comb t1 t2 ) x s unfolding position-in-def by

auto
have x = [] ∨ (∃ i q. x = i #q) using neq-Nil-conv by blast
then show x ∈ (left-app ‘ (pos-of t1 )) ∪ (right-app ‘ (pos-of t2 )) ∪ { Nil }
proof

assume x = []
from this and ‹subterm (Comb t1 t2 ) x s› show ?thesis by auto

next
assume ∃ i q. x = i #q
then obtain i q where x = i # q by auto
have i = Left ∨ i = Right using indices.exhaust by blast
then show x ∈ (left-app ‘ (pos-of t1 )) ∪ (right-app ‘ (pos-of t2 )) ∪ { Nil }
proof

assume i = Left
from this and ‹x = i # q› and ‹subterm (Comb t1 t2 ) x s›

have subterm t1 q s by auto
then have position-in q t1 unfolding position-in-def by auto
from this and ‹x = i # q› ‹i = Left›

show x ∈ (left-app ‘ (pos-of t1 )) ∪ (right-app ‘ (pos-of t2 )) ∪ { Nil } by
auto

next
assume i = Right
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from this and ‹x = i # q› and ‹subterm (Comb t1 t2 ) x s›
have subterm t2 q s by auto

then have position-in q t2 unfolding position-in-def by auto
from this and ‹x = i # q› ‹i = Right›

show x ∈ (left-app ‘ (pos-of t1 )) ∪ (right-app ‘ (pos-of t2 )) ∪ { Nil } by
auto

qed
qed

qed
next

show (left-app ‘ (pos-of t1 )) ∪ (right-app ‘ (pos-of t2 )) ∪ { Nil } ⊆ pos-of (Comb
t1 t2 )

proof
fix x assume x ∈ (left-app ‘ (pos-of t1 )) ∪ (right-app ‘ (pos-of t2 )) ∪ { Nil }
then have (x ∈ left-app ‘ (pos-of t1 )) ∨ ((x ∈ (right-app ‘ (pos-of t2 ))) ∨ (x

= Nil)) by auto
thus x ∈ pos-of (Comb t1 t2 )
proof

assume x ∈ left-app ‘ (pos-of t1 )
then obtain q where x = Left # q and position-in q t1 by auto
then obtain s where subterm t1 q s unfolding position-in-def by auto
then have subterm (Comb t1 t2 ) (Left # q) s by auto

from this and ‹x = Left # q› have position-in x (Comb t1 t2 ) using
position-in-def by blast

then show x ∈ pos-of (Comb t1 t2 ) by auto
next

assume (x ∈ (right-app ‘ (pos-of t2 ))) ∨ (x = Nil)
then show x ∈ pos-of (Comb t1 t2 )
proof

assume x ∈ right-app ‘ (pos-of t2 )
then obtain q where x = Right # q and position-in q t2 by auto
then obtain s where subterm t2 q s unfolding position-in-def by auto
then have subterm (Comb t1 t2 ) (Right # q) s by auto
from this and ‹x = Right # q› have position-in x (Comb t1 t2 ) using

position-in-def by blast
then show x ∈ pos-of (Comb t1 t2 ) by auto

next
assume x = Nil
show x ∈ pos-of (Comb t1 t2 ) using ‹x = Nil› root-position by blast

qed
qed

qed
qed

lemma set-of-subterms-is-finite :
shows (finite (subterms-of (t :: ′a trm)))

proof (induction t)
case (Var x)
then show ?case using subterms-of-an-atomic-term [of Var x] by simp
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next
case (Const x)
then show ?case using subterms-of-an-atomic-term [of Const x] by simp

next
case (Comb t1 t2 ) assume finite (subterms-of t1 ) and finite (subterms-of t2 )
have subterms-of (Comb t1 t2 ) = subterms-of t1 ∪ subterms-of t2 ∪ { Comb

t1 t2 }
using subterms-of-a-non-atomic-term by auto

from this and ‹finite (subterms-of t1 )› and ‹finite (subterms-of t2 )›
show finite (subterms-of (Comb t1 t2 )) by simp

qed

lemma set-of-positions-is-finite :
shows (finite (pos-of (t :: ′a trm)))

proof (induction t)
case (Var x)
then show ?case using positions-of-an-atomic-term [of Var x] by simp

next
case (Const x)
then show ?case using positions-of-an-atomic-term [of Const x] by simp

next
case (Comb t1 t2 ) assume finite (pos-of t1 ) and finite (pos-of t2 )
from ‹finite (pos-of t1 )› have i: finite (left-app ‘ (pos-of t1 )) by auto
from ‹finite (pos-of t2 )› have ii: finite (right-app ‘ (pos-of t2 )) by auto
have pos-of (Comb t1 t2 ) = (left-app ‘ (pos-of t1 )) ∪ (right-app ‘ (pos-of t2 ))

∪ { Nil }
using positions-of-a-non-atomic-term by metis

from this and i ii show finite (pos-of (Comb t1 t2 )) by simp
qed

lemma vars-of-instances:
shows vars-of (subst t σ)
=

⋃
{ V . ∃ x. (x ∈ (vars-of t)) ∧ (V = vars-of (subst (Var x) σ)) }

proof (induction t)
case (Const a)

have vars-of (Const a) = {} by auto
then have rhs-empty:

⋃
{ V . ∃ x. (x ∈ (vars-of (Const a))) ∧ (V = vars-of

(subst (Var x) σ)) } = {} by auto
have lhs-empty: (subst (Const a) σ) = (Const a) by auto
from rhs-empty and lhs-empty show ?case by auto

next
case (Var a)

have vars-of (Var a) = { a } by auto
then have rhs:

⋃
{ V . ∃ x. (x ∈ (vars-of (Var a))) ∧ (V = vars-of (subst

(Var x) σ)) } =
vars-of (subst (Var a) σ) by auto

have lhs: (subst (Var a) σ) = (subst (Var a) σ) by auto
from rhs and lhs show ?case by auto

next
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case (Comb t1 t2 )
have vars-of (Comb t1 t2 ) = (vars-of t1 ) ∪ (vars-of t2 ) by auto
then have

⋃
{ V . ∃ x. (x ∈ (vars-of (Comb t1 t2 ))) ∧ (V = vars-of (subst

(Var x) σ)) }
=

⋃
{ V . ∃ x. (x ∈ (vars-of t1 )) ∧ (V = vars-of (subst(Var x) σ)) }

∪
⋃
{ V . ∃ x. (x ∈ (vars-of t2 )) ∧ (V = vars-of (subst (Var x) σ)) }

by auto
then have rhs:

⋃
{ V . ∃ x. (x ∈ (vars-of (Comb t1 t2 ))) ∧ (V = vars-of

(subst (Var x) σ)) }
= (vars-of (subst t1 σ)) ∪ (vars-of (subst t2 σ))
using ‹vars-of (subst t1 σ)

=
⋃
{ V . ∃ x. (x ∈ (vars-of t1 )) ∧ (V = vars-of (subst (Var x) σ)) }›

and
‹vars-of (subst t2 σ)
=

⋃
{ V . ∃ x. (x ∈ (vars-of t2 )) ∧ (V = vars-of (subst (Var x) σ)) }›

by auto
have (subst (Comb t1 t2 ) σ) = (Comb (subst t1 σ) (subst t2 σ))

by auto
then have lhs: (vars-of (subst (Comb t1 t2 ) σ)) =
(vars-of (subst t1 σ)) ∪ (vars-of (subst t2 σ)) by auto

from lhs and rhs show ?case by auto
qed

lemma subterms-of-instances :
∀ u v u ′ s. (u = (subst v s) −→ (subterm u p u ′)
−→ (∃ x q1 q2 . (is-a-variable x) ∧ (subterm (subst x s) q1 u ′) ∧

(subterm v q2 x) ∧ (p = (append q2 q1 ))) ∨
((∃ v ′. ((¬ is-a-variable v ′) ∧ (subterm v p v ′) ∧ (u ′ = (subst v ′ s)))))) (is

?prop p)
proof (induction p)

case Nil
show ?case
proof ((rule allI )+,(rule impI )+)

fix u :: ′a trm fix v u ′ s assume u = (subst v s) and subterm u [] u ′

then have u = u ′ by auto
show (∃ x q1 q2 . (is-a-variable x) ∧ (subterm (subst x s) q1 u ′) ∧

(subterm v q2 x) ∧ ([] = (append q2 q1 ))) ∨
((∃ v ′. ((¬ is-a-variable v ′) ∧ (subterm v [] v ′) ∧ (u ′ = (subst v ′ s)))))

proof (cases)
assume is-a-variable v

from ‹u = u ′›and ‹u = (subst v s)›
have (subterm (subst v s) [] u ′) by auto

have subterm v [] v by auto
from this and ‹(subterm (subst v s) [] u ′)› and ‹is-a-variable v›

show ?thesis by auto
next assume ¬ is-a-variable v

from ‹u = u ′› and ‹u = (subst v s)›
have ((subterm v [] v) ∧ (u ′ = (subst v s))) by auto
then show ?thesis by auto
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qed
qed
next
case (Cons i q)
show ?case
proof ((rule allI )+,(rule impI )+)

fix u :: ′a trm fix v u ′ s assume u = (subst v s)
and subterm u (Cons i q) u ′

show (∃ x q1 q2 . (is-a-variable x) ∧ (subterm (subst x s) q1 u ′) ∧
(subterm v q2 x) ∧ ((Cons i q) = (append q2 q1 ))) ∨

((∃ v ′. ((¬ is-a-variable v ′) ∧ (subterm v (Cons i q) v ′) ∧ (u ′ = (subst v ′

s)))))
proof (cases v)

fix x assume v = (Var x)
then have subterm v [] v by auto
from ‹v = (Var x)› have is-a-variable v by auto
have Cons i q = (append [] (Cons i q)) by auto
from ‹subterm u (Cons i q) u ′› and ‹u = (subst v s)›

and ‹v = (Var x)› have subterm (subst v s) (Cons i q) u ′ by auto
from ‹is-a-variable v› and ‹subterm v [] v› and ‹Cons i q = (append [] (Cons

i q))› and this
show ?thesis by blast

next
fix x assume v = (Const x)
from this and ‹u = (subst v s)› have u = v by auto
from this and ‹v = (Const x)› and ‹subterm u (Cons i q) u ′› show ?thesis

by auto
next

fix t1 t2 assume v = (Comb t1 t2 )
from this and ‹u = (subst v s)›

have u = (Comb (subst t1 s) (subst t2 s)) by auto
have i = Left ∨ i = Right using indices.exhaust by auto
from ‹i = Left ∨ i = Right› and ‹u = (Comb (subst t1 s) (subst t2 s))›

and ‹subterm u (Cons i q) u ′› obtain ti where
subterm (subst ti s) q u ′ and ti = t1 ∨ ti = t2 and subterm v [i] ti
using ‹v = t1 · t2 › by auto

from ‹?prop q› and ‹subterm (subst ti s) q u ′› have
(∃ x q1 q2 . (is-a-variable x) ∧ (subterm (subst x s) q1 u ′) ∧

(subterm ti q2 x) ∧ (q = (append q2 q1 ))) ∨
((∃ v ′. ((¬ is-a-variable v ′) ∧ (subterm ti q v ′) ∧ (u ′ = (subst v ′

s)))))
by auto

then show ?thesis
proof

assume (∃ x q1 q2 . (is-a-variable x) ∧ (subterm (subst x s) q1 u ′) ∧
(subterm ti q2 x) ∧ (q = (append q2 q1 )))

then obtain x q1 q2 where is-a-variable x and subterm (subst x s) q1 u ′

and subterm ti q2 x and q = (append q2 q1 )
by auto
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from ‹subterm ti q2 x› and ‹subterm v [i] ti› have subterm v (i # q2 ) x
using ‹i = indices.Left ∨ i = indices.Right› ‹v = t1 · t2 › by auto
from ‹q = append q2 q1 › have i # q = (append (i # q2 ) q1 ) by auto
from ‹i # q = (append (i # q2 ) q1 )› and ‹is-a-variable x›

and ‹subterm (subst x s) q1 u ′› and ‹subterm v (i # q2 ) x›
show ?thesis by blast

next
assume ((∃ v ′. ((¬ is-a-variable v ′) ∧ (subterm ti q v ′) ∧ (u ′ = (subst v ′

s)))))
then obtain v ′ where (¬ is-a-variable v ′) (subterm ti q v ′) and u ′ = (subst

v ′ s) by auto
from ‹subterm ti q v ′› and ‹subterm v [i] ti› have subterm v (i # q) v ′

using ‹i = indices.Left ∨ i = indices.Right› ‹v = t1 · t2 › by auto
from this and ‹(¬ is-a-variable v ′)› ‹subterm ti q v ′› and ‹u ′ = (subst v ′

s)›
show ?thesis by auto

qed
qed

qed
qed

lemma vars-of-replacement:
shows

∧
t s. x ∈ vars-of s =⇒ replace-subterm t p v s =⇒ x ∈ (vars-of t) ∪

(vars-of v)
proof (induction p)

case Nil
from ‹replace-subterm t Nil v s› have s = v by auto
from this and ‹x ∈ vars-of s› show ?case by auto

next case (Cons i q)
from ‹replace-subterm t (Cons i q) v s› obtain t1 t2 where

t = (Comb t1 t2 )
by (metis is-a-variable.cases replace-subterm.simps(2 ) replace-subterm.simps(3 ))

have i = Left ∨ i = Right using indices.exhaust by blast
then show ?case
proof

assume i = Left
from this and ‹t = Comb t1 t2 › and ‹replace-subterm t (Cons i q) v s›

obtain s1 where s = Comb s1 t2 and replace-subterm t1 q v s1
using replace-subterm.simps(4 ) by auto

from ‹s = Comb s1 t2 › and ‹x ∈ vars-of s› have x ∈ vars-of s1 ∨ x ∈ vars-of
t2

by simp
then show ?case
proof

assume x ∈ vars-of s1
from this and Cons.IH [of s1 t1 ] and ‹replace-subterm t1 q v s1 › have x

∈ (vars-of t1 ) ∪ (vars-of v)
by auto
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from this and ‹t = (Comb t1 t2 )› show ?case by auto
next

assume x ∈ vars-of t2
from this and ‹t = (Comb t1 t2 )› show ?case by auto

qed
next

assume i = Right
from this and ‹t = Comb t1 t2 › and ‹replace-subterm t (Cons i q) v s›

obtain s2 where s = Comb t1 s2 and replace-subterm t2 q v s2
using replace-subterm.simps by auto

from ‹s = Comb t1 s2 › and ‹x ∈ vars-of s› have x ∈ vars-of t1 ∨ x ∈ vars-of
s2

by simp
then show ?case
proof

assume x ∈ vars-of s2
from this and Cons.IH [of s2 t2 ] and ‹replace-subterm t2 q v s2 › have x

∈ (vars-of t2 ) ∪ (vars-of v)
by auto

from this and ‹t = (Comb t1 t2 )› show ?case by auto
next

assume x ∈ vars-of t1
from this and ‹t = (Comb t1 t2 )› show ?case by auto

qed
qed

qed

lemma vars-of-replacement-set:
assumes replace-subterm t p v s
shows vars-of s ⊆ (vars-of t) ∪ (vars-of v)

by (meson assms subsetI vars-of-replacement)

2.3 Substitutions and Most General Unifiers

Substitutions are defined in the Unification theory. We provide some addi-
tional definitions and lemmata.
fun subst-set :: ′a trm set => ′a subst => ′a trm set

where
(subst-set S σ) = { u. ∃ t. u = (subst t σ) ∧ t ∈ S }

definition subst-codomain
where

subst-codomain σ V = { x. ∃ y. (subst (Var y) σ) = (Var x) ∧ (y ∈ V ) }

lemma subst-codomain-is-finite:
assumes finite A
shows finite (subst-codomain η A)

proof −
have i: ((λx. (Var x)) ‘ (subst-codomain η A)) ⊆ ((λx. (subst (Var x) η)) ‘ A)
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proof
fix x assume x ∈ ((λx. (Var x)) ‘ (subst-codomain η A))
from this obtain y where y ∈ (subst-codomain η A) and x = (Var y) by auto
from ‹y ∈ (subst-codomain η A)› obtain z where (subst (Var z) η) = (Var

y) (z ∈ A)
unfolding subst-codomain-def by auto

from ‹(z ∈ A)› ‹x = (Var y)› ‹(subst (Var z) η) = (Var y)› this show
x ∈ ((λx. (subst (Var x) η)) ‘ A)using image-iff by fastforce

qed
have inj-on (λx. (Var x)) (subst-codomain η A) by (meson inj-onI trm.inject(1 ))
from assms(1 ) have finite ((λx. (subst (Var x) η)) ‘ A) by auto
from this and i have finite ((λx. (Var x)) ‘ (subst-codomain η A))

using rev-finite-subset by auto
from this and ‹inj-on (λx. (Var x)) (subst-codomain η A)› show ?thesis using

finite-imageD [of (λx. (Var x)) subst-codomain η A]
by auto

qed

The notions of unifiers, most general unifiers, the unification algorithm and
a proof of correctness are provided in the Unification theory. Below, we
prove that the algorithm is complete.
lemma subt-decompose:

shows ∀ t1 t2 . Comb t1 t2 ≺ s −→ (t1 ≺ s ∧ t2≺ s)
proof ((induction s),(simp),(simp))

case (Comb s1 s2 )
show ?case
proof ((rule allI )+,(rule impI ))
fix t1 t2 assume Comb t1 t2 ≺ Comb s1 s2
show t1 ≺ (Comb s1 s2 ) ∧ t2 ≺ (Comb s1 s2 )
proof (rule ccontr)

assume neg: ¬(t1 ≺ (Comb s1 s2 ) ∧ t2 ≺ (Comb s1 s2 ))
from ‹Comb t1 t2 ≺ Comb s1 s2 › have

d: Comb t1 t2 = s1 ∨ Comb t1 t2 = s2 ∨ Comb t1 t2 ≺ s1 ∨ Comb t1
t2 ≺ s2

by auto
have i: ¬ (Comb t1 t2 = s1 )
proof

assume (Comb t1 t2 = s1 )
then have t1 ≺ s1 and t2 ≺ s1 by auto
from this and neg show False by auto

qed
have ii: ¬ (Comb t1 t2 = s2 )
proof

assume (Comb t1 t2 = s2 )
then have t1 ≺ s2 and t2 ≺ s2 by auto
from this and neg show False by auto

qed
have iii: ¬ (Comb t1 t2 ≺ s1 )
proof
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assume (Comb t1 t2 ≺ s1 )
then have t1 ≺ s1 ∧ t2 ≺ s1 using Comb.IH by metis
from this and neg show False by auto

qed
have iv: ¬ (Comb t1 t2 ≺ s2 )
proof

assume (Comb t1 t2 ≺ s2 )
then have t1 ≺ s2 ∧ t2 ≺ s2 using Comb.IH by metis
from this and neg show False by auto

qed
from d and i ii iii iv show False by auto

qed
qed

qed

lemma subt-irrefl:
shows ¬ (s ≺ s)

proof ((induction s),(simp),(simp))
case (Comb t1 t2 )
show ?case

proof
assume Comb t1 t2 ≺ Comb t1 t2
then have i: Comb t1 t2 6= t1 using Comb.IH (1 ) by fastforce

from ‹Comb t1 t2 ≺ Comb t1 t2 › have ii: Comb t1 t2 6= t2 using Comb.IH (2 )
by fastforce

from i ii and ‹Comb t1 t2 ≺ Comb t1 t2 › have Comb t1 t2 ≺ t1 ∨ Comb
t1 t2 ≺ t2 by auto

then show False
proof

assume Comb t1 t2 ≺ t1
then have t1 ≺ t1 using subt-decompose [of t1 ] by metis
from this show False using Comb.IH by auto

next
assume Comb t1 t2 ≺ t2
then have t2 ≺ t2 using subt-decompose [of t2 ] by metis
from this show False using Comb.IH by auto

qed
qed

qed

lemma MGU-exists:
shows ∀σ. ((subst t σ) = (subst s σ) −→ unify t s 6= None)

proof (rule unify.induct)
fix x s1 s2 show ∀σ :: ′a subst .((subst (Const x) σ) = (subst (Comb s1 s2 )

σ)
−→ unify (Const x) (Comb s1 s2 ) 6= None) by simp

next
fix t1 t2 y show ∀σ :: ′a subst.(subst (Comb t1 t2 ) σ) = (subst (Const y) σ)
−→ unify (Comb t1 t2 ) (Const y) 6= None by simp
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next
fix x y show ∀σ :: ′a subst.(subst (Const x) σ) = (subst (Var y) σ)
−→ unify (Const x) (Var y) 6= None using unify.simps(3 ) by fastforce

next
fix t1 t2 y show ∀σ :: ′a subst.(subst (Comb t1 t2 ) σ) = (subst (Var y) σ)
−→ unify (Comb t1 t2 ) (Var y) 6= None
by (metis option.distinct(1 ) subst-mono subt-irrefl unify.simps(4 ))

next
fix x s show ∀σ :: ′a subst.(subst (Var x) σ) = (subst s σ)
−→ unify (Var x) s 6= None
by (metis option.distinct(1 ) subst-mono subt-irrefl unify.simps(5 ))

next
fix x y show ∀σ :: ′a subst.(subst (Const x) σ) = (subst (Const y) σ)
−→ unify (Const x) (Const y) 6= None by simp

next
fix t1 t2 s1 s2
show ∀σ :: ′a subst. (subst t1 σ = subst s1 σ −→ unify t1 s1 6= None) =⇒

(
∧

x2 . unify t1 s1 = Some x2 =⇒
∀σ. subst (t2 C x2 ) σ = subst (s2 C x2 ) σ −→
unify (t2 C x2 ) (s2 C x2 ) 6= None) =⇒

∀σ. (subst (t1 · t2 ) σ = subst (s1 · s2 ) σ −→
unify (t1 · t2 ) (s1 · s2 ) 6= None)

proof −
assume h1 : ∀σ. (subst t1 σ = subst s1 σ −→ unify t1 s1 6= None)
assume h2 : (

∧
x2 . unify t1 s1 = Some x2 =⇒

∀σ. subst (t2 C x2 ) σ = subst (s2 C x2 ) σ −→
unify (t2 C x2 ) (s2 C x2 ) 6= None)

show ∀σ. (subst (t1 · t2 ) σ = subst (s1 · s2 ) σ −→
unify (t1 · t2 ) (s1 · s2 ) 6= None)

proof ((rule allI ),(rule impI ))
fix σ assume h3 : subst (t1 · t2 ) σ = subst (s1 · s2 ) σ
from h3 have subst t1 σ = subst s1 σ by auto
from this and h1 have unify t1 s1 6= None by auto
from this obtain ϑ where unify t1 s1 = Some ϑ and MGU ϑ t1 s1

by (meson option.exhaust unify-computes-MGU )
from ‹subst t1 σ = subst s1 σ› have Unifier σ t1 s1

unfolding Unifier-def by auto
from this and ‹MGU ϑ t1 s1 › obtain η where σ

.
= ϑ ♦ η using MGU-def

by metis
from h3 have subst t2 σ = subst s2 σ by auto
from this and ‹σ .

= ϑ ♦ η›
have subst (subst t2 ϑ) η
= subst (subst s2 ϑ) η

by (simp add: subst-eq-def )
from this and ‹unify t1 s1 = Some ϑ› and h2 [of ϑ] have unify (t2 C ϑ)

(s2 C ϑ) 6= None
by auto

from this show unify (t1 · t2 ) (s1 · s2 ) 6= None
by (simp add: ‹unify t1 s1 = Some ϑ› option.case-eq-if )
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qed
qed

qed

We establish some useful properties of substitutions and instances.
definition ground-on :: ′a set ⇒ ′a subst ⇒ bool

where ground-on V σ = (∀ x ∈ V . (ground-term (subst (Var x) σ)))

lemma comp-subst-terms:
assumes σ

.
= ϑ ♦ η

shows (subst t σ) = (subst (subst t ϑ) η)
proof −

from ‹σ .
= ϑ ♦ η› have ((subst t σ) = (subst t (ϑ ♦ η))) by auto

have (subst t (ϑ ♦ η) = (subst (subst t ϑ) η)) by auto
from this and ‹((subst t σ) = (subst t (ϑ ♦ η)))› show ?thesis by auto

qed

lemma ground-instance:
assumes ground-on (vars-of t) σ
shows ground-term (subst t σ)

proof (rule ccontr)
assume ¬ ground-term (subst t σ)
then have vars-of (subst t σ) 6= {} unfolding ground-term-def by auto
then obtain x where x ∈ vars-of (subst t σ) by auto
then have x ∈

⋃
{ V . ∃ x. (x ∈ (vars-of t)) ∧ (V = vars-of (subst (Var x) σ))

}
using vars-of-instances by force

then obtain y where x ∈ (vars-of (subst (Var y) σ)) and y ∈ (vars-of t) by
blast

from assms(1 ) and ‹y ∈ (vars-of t)› have ground-term (subst (Var y) σ) un-
folding ground-on-def

by auto
from this and ‹x ∈ (vars-of (subst (Var y) σ))› show False unfolding ground-term-def

by auto
qed

lemma substs-preserve-groundness:
assumes ground-term t
shows ground-term (subst t σ)

by (metis assms equals0D ground-instance ground-on-def ground-term-def )

lemma ground-subst-exists :
finite V =⇒ ∃σ. (ground-on V σ)

proof (induction rule: finite.induct)
case emptyI
show ?case unfolding ground-on-def by simp

next
fix A :: ′a set and a:: ′a
assume finite A
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assume hyp-ind: ∃σ. ground-on A σ
then obtain σ where ground-on A σ by auto
then show ∃σ. ground-on (insert a A) σ
proof cases

assume a ∈ A
from this and hyp-ind show ∃σ. ground-on (insert a A) σ

unfolding ground-on-def by auto
next

assume a /∈ A
obtain c where c = (Const a) and is-a-constant c by auto
obtain ϑ where ϑ = (a,c) # σ by auto
have ∀ x. (x ∈ insert a A −→ (ground-term (subst (Var x) ϑ)))
proof ((rule allI )+,(rule impI )+)

fix x assume x ∈ insert a A
show ground-term (subst (Var x) ϑ)
proof cases

assume x = a
from this and ‹ϑ = (a,c) # σ› have (subst (Var x) ϑ) = c by auto
from ‹is-a-constant c› have ground-term c using constants-are-ground by

auto
from this and ‹(subst (Var x) ϑ) = c› show ground-term (subst (Var x)

ϑ) by auto
next

assume x 6= a
from ‹x 6= a› and ‹x ∈ insert a A› have x ∈ A by auto
from ‹x 6= a› and ‹ϑ = (a,c) # σ› have (subst (Var x) ϑ) = (subst (Var

x) σ) by auto
from this and ‹x ∈ A› and ‹ground-on A σ›

show ground-term (subst (Var x) ϑ) unfolding ground-on-def by auto
qed

qed
from this show ?thesis unfolding ground-on-def by auto

qed
qed

lemma substs-preserve-ground-terms :
assumes ground-term t
shows subst t σ = t

by (metis agreement assms equals0D ground-term-def subst-Nil)

lemma substs-preserve-subterms :
shows

∧
t s. subterm t p s =⇒ subterm (subst t σ) p (subst s σ)

proof (induction p)
case Nil

then have t = s using subterm.elims(2 ) by auto
from ‹t = s› have (subst t σ) = (subst s σ) by auto
from this show ?case using Nil.prems by auto

next case (Cons i q)
from ‹subterm t (i # q) s› obtain t1 t2 where
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t = (Comb t1 t2 ) using subterm.elims(2 ) by blast
have i = Left ∨ i = Right using indices.exhaust by blast
then show subterm (subst t σ) (i # q) (subst s σ)
proof

assume i = Left
from this and ‹t = Comb t1 t2 › and ‹subterm t (i # q) s›

have subterm t1 q s by auto
from this have subterm (subst t1 σ) q (subst s σ) using Cons.IH by auto
from this and ‹t = Comb t1 t2 ›

show subterm (subst t σ) (i # q) (subst s σ)
by (simp add: ‹i = indices.Left›)

next assume i = Right
from this and ‹t = Comb t1 t2 › and ‹subterm t (i # q) s›

have subterm t2 q s by auto
from this have subterm (subst t2 σ) q (subst s σ) using Cons.IH by auto
from this and ‹t = Comb t1 t2 ›

show subterm (subst t σ) (i # q) (subst s σ)
by (simp add: ‹i = indices.Right›)

qed
qed

lemma substs-preserve-occurs-in:
assumes occurs-in s t
shows occurs-in (subst s σ) (subst t σ)

using substs-preserve-subterms
using assms occurs-in-def by blast

definition coincide-on
where coincide-on σ η V = (∀ x ∈ V . (subst (Var x) σ) = ( (subst (Var x) η)))

lemma coincide-sym:
assumes coincide-on σ η V
shows coincide-on η σ V

by (metis assms coincide-on-def )

lemma coincide-on-term:
shows

∧
σ η. coincide-on σ η (vars-of t) =⇒ subst t σ = subst t η

proof (induction t)
case (Var x)

from this show subst (Var x) σ = subst (Var x) η
unfolding coincide-on-def by auto

next case (Const x)
show subst (Const x) σ = subst (Const x) η by auto

next case (Comb t1 t2 )
from this show ?case unfolding coincide-on-def by auto

qed

lemma ground-replacement:
assumes replace-subterm t p v s
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assumes ground-term (subst t σ)
assumes ground-term (subst v σ)
shows ground-term (subst s σ)

proof −
from assms(1 ) have vars-of s ⊆ (vars-of t) ∪ (vars-of v) using vars-of-replacement-set

[of t p v s]
by auto

from assms(2 ) have ground-on (vars-of t) σ unfolding ground-on-def
by (metis contra-subsetD ex-in-conv ground-term-def

occs-vars-subset subst-mono vars-iff-occseq)
from assms(3 ) have ground-on (vars-of v) σ unfolding ground-on-def

by (metis contra-subsetD ex-in-conv ground-term-def
occs-vars-subset subst-mono vars-iff-occseq)

from ‹vars-of s ⊆ (vars-of t) ∪ (vars-of v)› ‹ground-on (vars-of t) σ›
and ‹ground-on (vars-of v) σ› have ground-on (vars-of s) σ
by (meson UnE ground-on-def rev-subsetD)

from this show ?thesis using ground-instance by blast
qed

We now show that two disjoint substitutions can always be fused.
lemma combine-substs:

assumes finite V1
assumes V1 ∩ V2 = {}
assumes ground-on V1 η1
shows ∃σ. (coincide-on σ η1 V1 ) ∧ (coincide-on σ η2 V2 )

proof −
have finite V1 =⇒ ground-on V1 η1 =⇒ V1 ∩ V2 = {} =⇒ ∃σ. (coincide-on

σ η1 V1 ) ∧ (coincide-on σ η2 V2 )
proof (induction rule: finite.induct)

case emptyI
show ?case unfolding coincide-on-def by auto

next fix V1 :: ′a set and a:: ′a
assume finite V1
assume hyp-ind: ground-on V1 η1 =⇒ V1 ∩ V2 = {}
=⇒ ∃σ. (coincide-on σ η1 V1 ) ∧ (coincide-on σ η2 V2 )

assume ground-on (insert a V1 ) η1
assume (insert a V1 ) ∩ V2 = {}
from this have V1 ∩ V2 = {} by auto
from ‹ground-on (insert a V1 ) η1 › have ground-on V1 η1

unfolding ground-on-def by auto
from this and hyp-ind and ‹V1 ∩ V2 = {}› obtain σ ′

where c:(coincide-on σ ′ η1 V1 ) ∧ (coincide-on σ ′ η2 V2 ) by auto
let ?t = subst (Var a) η1
from assms(2 ) have ground-term ?t

by (meson ‹ground-on (insert a V1 ) η1 › ground-on-def insertI1 )
let ?σ = comp [(a,?t)] σ ′

have coincide-on ?σ η1 (insert a V1 )
proof (rule ccontr)

assume ¬coincide-on ?σ η1 (insert a V1 )
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then obtain x where x ∈ (insert a V1 ) and
(subst (Var x) ?σ) 6= ( (subst (Var x) η1 ))
unfolding coincide-on-def by blast

have subst (Var a) ?σ = subst ?t σ ′ by simp
from ‹ground-term ?t› have subst (Var a) ?σ = ?t

using substs-preserve-ground-terms by auto
from this and ‹(subst (Var x) ?σ) 6= ( (subst (Var x) η1 ))›

have x 6= a by blast
from this and ‹x ∈ (insert a V1 )› have x ∈ V1 by auto
from ‹x 6= a› have (subst (Var x) ?σ) = (subst (Var x) σ ′) by auto
from c and ‹x ∈ V1 › have (subst (Var x) σ ′) = (subst (Var x) η1 )

unfolding coincide-on-def by blast
from this and ‹(subst (Var x) ?σ) = (subst (Var x) σ ′)›

and ‹(subst (Var x) ?σ) 6= ( (subst (Var x) η1 ))› show False by auto
qed
have coincide-on ?σ η2 V2
proof (rule ccontr)

assume ¬coincide-on ?σ η2 V2
then obtain x where x ∈ V2 and
(subst (Var x) ?σ) 6= ( (subst (Var x) η2 ))
unfolding coincide-on-def by blast

from ‹(insert a V1 ) ∩ V2 = {}› and ‹x ∈ V2 › have x 6= a by auto
from this have (subst (Var x) ?σ) = (subst (Var x) σ ′) by auto
from c and ‹x ∈ V2 › have (subst (Var x) σ ′) = (subst (Var x) η2 )

unfolding coincide-on-def by blast
from this and ‹(subst (Var x) ?σ) = (subst (Var x) σ ′)›

and ‹(subst (Var x) ?σ) 6= ( (subst (Var x) η2 ))› show False by auto
qed
from ‹coincide-on ?σ η1 (insert a V1 )› ‹coincide-on ?σ η2 V2 ›

show ∃σ. (coincide-on σ η1 (insert a V1 )) ∧ (coincide-on σ η2 V2 ) by
auto

qed
from this and assms show ?thesis by auto

qed

We define a map function for substitutions and prove its correctness.
fun map-subst

where map-subst f Nil = Nil
| map-subst f ((x,y) # l) = (x,(f y)) # (map-subst f l)

lemma map-subst-lemma:
shows ((subst (Var x) σ) 6= (Var x) ∨ (subst (Var x) σ) 6= (subst (Var x)

(map-subst f σ)))
−→ ((subst (Var x) (map-subst f σ)) = (f (subst (Var x) σ)))

proof (induction σ,simp)
next case (Cons p σ)

let ?u = (fst p)
let ?v = (snd p)
show ?case
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proof
assume ((subst (Var x) (Cons p σ)) 6= (Var x)
∨ (subst (Var x) (Cons p σ))
6= (subst (Var x) (map-subst f (Cons p σ))))

have map-subst f (Cons p σ) = ( (?u, (f ?v)) # (map-subst f σ))
by (metis map-subst.simps(2 ) prod.collapse)

show (subst (Var x) (map-subst f (Cons p σ))) = (f (subst (Var x) (Cons p
σ)))

proof cases
assume x = ?u
from this have subst (Var x) (Cons p σ) = ?v

by (metis assoc.simps(2 ) prod.collapse subst.simps(1 ))
from ‹map-subst f (Cons p σ) = ( (?u, (f ?v)) # (map-subst f σ))›

and ‹x = ?u›
have subst (Var x) (map-subst f (Cons p σ)) = (f ?v) by simp

from ‹subst (Var x) (Cons p σ) = ?v› ‹subst (Var x) (map-subst f (Cons p
σ)) = (f ?v)› show ?thesis by auto

next
assume x 6= ?u
from this have subst (Var x) (Cons p σ) = (subst (Var x) σ)

by (metis assoc.simps(2 ) prod.collapse subst.simps(1 ))
from ‹map-subst f (Cons p σ) = ( (?u, (f ?v)) # (map-subst f σ))›

and ‹x 6= ?u›
have subst (Var x) (map-subst f (Cons p σ)) =

subst (Var x) (map-subst f σ) by simp
from this and Cons.IH have

subst (Var x) (map-subst f (Cons p σ)) = (f (subst (Var x) σ))
using ‹subst (Var x) (p # σ) = subst (Var x) σ› ‹subst (Var x) (p # σ)

6= Var x ∨ subst (Var x) (p # σ) 6= subst (Var x) (map-subst f (p # σ))› by auto

from this and ‹subst (Var x) (Cons p σ) = (subst (Var x) σ)› show ?thesis
by auto

qed
qed

qed

2.3.1 Minimum Idempotent Most General Unifier
definition min-IMGU :: ′a subst ⇒ ′a trm ⇒ ′a trm ⇒ bool where

min-IMGU µ t u ←→
IMGU µ t u ∧ fst ‘ set µ ⊆ vars-of t ∪ vars-of u ∧ range-vars µ ⊆ vars-of t ∪

vars-of u

lemma unify-computes-min-IMGU :
unify M N = Some σ =⇒ min-IMGU σ M N
by (simp add: min-IMGU-def IMGU-iff-Idem-and-MGU unify-computes-MGU

unify-gives-Idem
unify-gives-minimal-domain unify-gives-minimal-range)
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2.4 Congruences

We now define the notion of a congruence on ground terms, i.e., an equiva-
lence relation that is closed under contextual embedding.
type-synonym ′a binary-relation-on-trms = ′a trm ⇒ ′a trm ⇒ bool

definition reflexive :: ′a binary-relation-on-trms ⇒ bool
where

(reflexive x) = (∀ y. (x y y))

definition symmetric :: ′a binary-relation-on-trms ⇒ bool
where

(symmetric x) = (∀ y. ∀ z. ((x y z) = (x z y)))

definition transitive :: ′a binary-relation-on-trms ⇒ bool
where

(transitive x) = (∀ y. ∀ z. ∀ u. (x y z) −→ (x z u) −→ (x y u))

definition equivalence-relation :: ′a binary-relation-on-trms ⇒ bool
where
(equivalence-relation x) = ((reflexive x) ∧ (symmetric x) ∧ (transitive x))

definition compatible-with-structure :: ( ′a binary-relation-on-trms) ⇒ bool
where

(compatible-with-structure x) = (∀ t1 t2 s1 s2 .
(x t1 s1 ) −→ (x t2 s2 ) −→ (x (Comb t1 t2 ) (Comb s1 s2 )))

definition congruence :: ′a binary-relation-on-trms ⇒ bool
where
(congruence x) = ((equivalence-relation x) ∧ (compatible-with-structure x))

lemma replacement-preserves-congruences :
shows

∧
t s. (congruence I ) =⇒ (I (subst u σ) (subst v σ))

=⇒ subterm t p u =⇒ replace-subterm t p v s
=⇒ (I (subst t σ) (subst s σ))

proof (induction p)
case Nil

from ‹subterm t Nil u› have t = u by auto
from ‹replace-subterm t Nil v s› have s = v by auto
from ‹t = u› and ‹s = v› and ‹(I (subst u σ) (subst v σ))›

show ?case by auto
next case (Cons i q)

from ‹subterm t (i # q) u› obtain t1 t2 where
t = (Comb t1 t2 ) using subterm.elims(2 ) by blast

have i = Left ∨ i = Right using indices.exhaust by blast
then show I (subst t σ) (subst s σ)
proof

assume i = Left
from this and ‹t = Comb t1 t2 › and ‹subterm t (i # q) u›
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have subterm t1 q u by auto
from ‹i = Left› and ‹t = Comb t1 t2 › and ‹replace-subterm t (i # q) v s›

obtain t1 ′ where replace-subterm t1 q v t1 ′ and s = Comb t1 ′ t2 by auto
from ‹congruence I › and ‹(I (subst u σ) (subst v σ))›

and ‹subterm t1 q u› and ‹replace-subterm t1 q v t1 ′› have
I (subst t1 σ) (subst t1 ′ σ) using Cons.IH Cons.prems(1 ) by blast

from ‹congruence I › have I (subst t2 σ) (subst t2 σ)
unfolding congruence-def equivalence-relation-def reflexive-def by auto

from ‹I (subst t1 σ) (subst t1 ′ σ)›
and ‹I (subst t2 σ) (subst t2 σ)›
and ‹congruence I › and ‹t = (Comb t1 t2 )› and ‹s = (Comb t1 ′ t2 )›
show I (subst t σ) (subst s σ)

unfolding congruence-def compatible-with-structure-def by auto
next

assume i = Right
from this and ‹t = Comb t1 t2 › and ‹subterm t (i # q) u›

have subterm t2 q u by auto
from ‹i = Right› and ‹t = Comb t1 t2 › and ‹replace-subterm t (i # q) v s›

obtain t2 ′ where replace-subterm t2 q v t2 ′ and s = Comb t1 t2 ′ by auto
from ‹congruence I › and ‹(I (subst u σ) (subst v σ))›

and ‹subterm t2 q u› and ‹replace-subterm t2 q v t2 ′› have
I (subst t2 σ) (subst t2 ′ σ) using Cons.IH Cons.prems(1 ) by blast

from ‹congruence I › have I (subst t1 σ) (subst t1 σ)
unfolding congruence-def equivalence-relation-def reflexive-def by auto

from ‹I (subst t2 σ) (subst t2 ′ σ)›
and ‹I (subst t1 σ) (subst t1 σ)›
and ‹congruence I › and ‹t = (Comb t1 t2 )› and ‹s = (Comb t1 t2 ′)›
show I (subst t σ) (subst s σ)

unfolding congruence-def compatible-with-structure-def by auto
qed

qed

definition equivalent-on
where equivalent-on σ η V I = (∀ x ∈ V .
(I (subst (Var x) σ) ( (subst (Var x) η))))

lemma equivalent-on-term:
assumes congruence I
shows

∧
σ η. equivalent-on σ η (vars-of t) I =⇒ (I (subst t σ) (subst t η))

proof (induction t)
case (Var x)

from this show (I (subst (Var x) σ) (subst (Var x) η))
unfolding equivalent-on-def by auto

next case (Const x)
from assms(1 ) show (I (subst (Const x) σ) (subst (Const x) η))

unfolding congruence-def equivalence-relation-def reflexive-def by auto
next case (Comb t1 t2 )

from this assms(1 ) show ?case unfolding equivalent-on-def
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unfolding congruence-def compatible-with-structure-def by auto
qed

2.5 Renamings

We define the usual notion of a renaming. We show that fresh renamings
always exist (provided the set of variables is infinite) and that renamings
admit inverses.
definition renaming
where

renaming σ V = (∀ x ∈ V . (is-a-variable (subst (Var x) σ))
∧ (∀ x y. ((x ∈ V ) −→ (y ∈ V ) −→ x 6= y −→ (subst (Var x) σ) 6= (subst

(Var y) σ))))

lemma renamings-admit-inverse:
shows finite V =⇒ renaming σ V =⇒ ∃ ϑ. (∀ x ∈ V . (subst (subst (Var x) σ

) ϑ) = (Var x))
∧ (∀ x. (x /∈ (subst-codomain σ V ) −→ (subst (Var x) ϑ) = (Var x)))
∧ (∀ x. is-a-variable (subst (Var x) ϑ))

proof (induction rule: finite.induct)
case emptyI

let ?ϑ = []
have i: (∀ x ∈ {}. (subst (subst (Var x) σ ) ?ϑ) = (Var x)) by auto
have ii: (∀ x. (x /∈ (subst-codomain σ {}) −→ (subst (Var x) ?ϑ) = (Var x)))

by auto
have iii: ∀ x. is-a-variable (subst (Var x) ?ϑ) by simp
from i ii iii show ?case by metis

next
fix A :: ′a set and a:: ′a
assume finite A
assume hyp-ind: renaming σ A =⇒ ∃ ϑ. (∀ x ∈ A. (subst (subst (Var x) σ ) ϑ)

= (Var x))
∧ (∀ x. (x /∈ (subst-codomain σ A) −→ (subst (Var x) ϑ) = (Var x)))
∧ (∀ x. is-a-variable (subst (Var x) ϑ))

show renaming σ (insert a A) =⇒ ∃ ϑ. (∀ x ∈ (insert a A). (subst (subst (Var
x) σ ) ϑ) = (Var x))
∧ (∀ x. (x /∈ (subst-codomain σ (insert a A)) −→ (subst (Var x) ϑ) = (Var x)))
∧ (∀ x. is-a-variable (subst (Var x) ϑ))

proof −
assume renaming σ (insert a A)
show ∃ ϑ. (∀ x ∈ (insert a A). (subst (subst (Var x) σ ) ϑ) = (Var x))
∧ (∀ x. (x /∈ (subst-codomain σ (insert a A)) −→ (subst (Var x) ϑ) = (Var x)))
∧ (∀ x. is-a-variable (subst (Var x) ϑ))
proof (cases)

assume a ∈ A
from this have insert a A = A by auto
from this and ‹renaming σ (insert a A)› hyp-ind show ?thesis by metis

next assume a /∈ A
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from ‹renaming σ (insert a A)› have renaming σ A unfolding renaming-def
by blast

from this and hyp-ind obtain ϑ where i: (∀ x ∈ A. (subst (subst (Var x)
σ ) ϑ) = (Var x)) and

ii: (∀ x. (x /∈ (subst-codomain σ A) −→ (subst (Var x) ϑ) = (Var x))) and
iii: ∀ x. is-a-variable (Var x C ϑ) by metis

from ‹renaming σ (insert a A)› have is-a-variable (subst (Var a) σ) unfolding
renaming-def by blast

from this obtain b where (subst (Var a) σ) = (Var b) using is-a-variable.elims(2 )
by auto

let ?η = (b,(Var a)) # ϑ
have i ′: (∀ x ∈ (insert a A). (subst (subst (Var x) σ ) ?η) = (Var x))
proof

fix x assume x ∈ (insert a A)
show (subst (subst (Var x) σ ) ?η) = (Var x)
proof (cases)

assume x = a
from this

have (subst (Var b) ( (b,(Var a)) # Nil)) = (Var a)
by simp

have b /∈ (subst-codomain σ A)
proof

assume b ∈ (subst-codomain σ A)
from this have ∃ y. (subst (Var y) σ) = (Var b) ∧ (y ∈ A) unfolding

subst-codomain-def
by force

then obtain a ′ where a ′ ∈ A and subst (Var a ′) σ = (Var b)
by metis

from ‹a ′ ∈ A› and ‹a /∈ A› have a 6= a ′ by auto
have a ∈ (insert a A) by auto
from ‹a 6= a ′› and ‹a ′ ∈ A› and ‹a ∈ (insert a A)› and ‹renaming σ

(insert a A)›
have (subst (Var a) σ 6= (subst (Var a ′) σ))
unfolding renaming-def by blast

from this and ‹subst (Var a ′) σ = (Var b)› ‹(subst (Var a) σ) = (Var
b)›

show False by auto
qed
from this and ii have (subst (Var b) ϑ) = (Var b) by auto
from this and ‹x = a› ‹(subst (Var a) σ) = (Var b)›

‹(subst (Var b) ( (b,(Var a)) # Nil)) = (Var a)›
show (subst (subst (Var x) σ ) ?η) = (Var x)
by simp

next assume x 6= a
from this and ‹x ∈ insert a A› obtain x ∈ A by auto
from this i have (subst (subst (Var x) σ ) ϑ) = (Var x)

by auto
then show (subst (subst (Var x) σ ) ?η) = (Var x)

by (metis ‹subst (Var a) σ = Var b› ‹renaming σ (insert a A)›
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‹x ∈ insert a A› ‹x 6= a› insertI1 is-a-variable.elims(2 )
occs.simps(1 ) renaming-def repl-invariance vars-iff-occseq)

qed
qed
have ii ′: (∀ x. (x /∈ (subst-codomain σ (insert a A)) −→ (subst (Var x) ?η)

= (Var x)))
proof ((rule allI ),(rule impI ))
fix x assume x /∈ subst-codomain σ (insert a A)

from this ‹(subst (Var a) σ) = (Var b)› have x 6= b unfolding subst-codomain-def

by auto
from this have (subst (Var x) ?η) = (subst (Var x) ϑ) by auto
from ‹x /∈ subst-codomain σ (insert a A)› have x /∈ (subst-codomain σ A)

unfolding subst-codomain-def
by auto

from this and ii have (subst (Var x) ϑ) = (Var x) by auto
from ‹(subst (Var x) ?η) = (subst (Var x) ϑ)›

and ‹(subst (Var x) ϑ) = (Var x)› show (subst (Var x) ?η) = (Var x)
by auto

qed
have iii ′: ∀ x. is-a-variable (subst (Var x) ?η)

using iii by auto
from i ′ ii ′ iii ′ show ?thesis by auto

qed
qed

qed

lemma renaming-exists:
assumes ¬ finite (Vars :: ( ′a set))
shows finite V =⇒ (∀V ′:: ′a set. finite V ′−→ (∃ η. ((renaming η V ) ∧ ((subst-codomain

η V ) ∩ V ′) = {})))
proof (induction rule: finite.induct)

case emptyI
let ?η = []
show ?case unfolding renaming-def subst-codomain-def by auto

next
fix A :: ′a set and a:: ′a
assume finite A

assume hyp-ind: ∀V ′ :: ′a set. finite V ′−→ (∃ η. renaming η A ∧ subst-codomain
η A ∩ V ′ = {})

show ∀V ′:: ′a set. finite V ′ −→ (∃ η. renaming η (insert a A) ∧ subst-codomain
η (insert a A) ∩ V ′ = {})

proof ((rule allI ),(rule impI ))
fix V ′:: ′a set assume finite V ′

from this have finite (insert a V ′) by auto
from this and hyp-ind obtain η where renaming η A and (subst-codomain

η A) ∩ (insert a V ′) = {} by metis
from ‹finite A› have finite (subst-codomain η A)

using subst-codomain-is-finite by auto
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from this ‹finite V ′› have finite (V ′ ∪ (subst-codomain η A)) by auto
from this have finite ((insert a V ′) ∪ (subst-codomain η A)) by auto
from this ‹¬ finite Vars› have ¬ (Vars ⊆ ((insert a V ′) ∪ (subst-codomain

η A))) using rev-finite-subset
by metis

from this obtain nv where nv ∈ Vars and nv /∈ (insert a V ′) and nv /∈
(subst-codomain η A) by auto

let ?η = (a,(Var nv)) # η
have i: (∀ x ∈ (insert a A). (is-a-variable (subst (Var x) ?η)))
proof (rule ccontr)

assume ¬ (∀ x ∈ (insert a A). (is-a-variable (subst (Var x) ?η)))
then obtain x where x ∈ (insert a A) and ¬is-a-variable (subst (Var x)

?η)
by auto

from ‹¬is-a-variable (subst (Var x) ?η)› have x 6= a by auto
from this and ‹x ∈ (insert a A)› have x ∈ A by auto
from ‹x 6= a› have (subst (Var x) ?η) = (subst (Var x) η) by auto
from ‹renaming η A› and ‹x ∈ A› have is-a-variable (subst (Var x) η)

unfolding renaming-def by metis
from this and ‹¬is-a-variable (subst (Var x) ?η)›

‹(subst (Var x) ?η) = (subst (Var x) η)› show False by auto
qed
have ii: (∀ x y. ((x ∈ (insert a A)) −→ (y ∈ (insert a A)) −→ x 6= y
−→ (subst (Var x) ?η) 6= (subst (Var y) ?η)))

proof (rule ccontr)
assume ¬(∀ x y. ((x ∈ (insert a A)) −→ (y ∈ (insert a A)) −→ x 6= y
−→ (subst (Var x) ?η) 6= (subst (Var y) ?η)))

from this obtain x y where x ∈ insert a A y ∈ insert a A x 6= y
(subst (Var x) ?η) = (subst (Var y) ?η) by blast

from i obtain y ′ where (subst (Var y) ?η) = (Var y ′)
using is-a-variable.simps using ‹y ∈ insert a A› is-a-variable.elims(2 ) by

auto
from i obtain x ′ where (subst (Var x) ?η) = (Var x ′)
using is-a-variable.simps using ‹x ∈ insert a A› is-a-variable.elims(2 ) by

auto
from ‹(subst (Var x) ?η) = (Var x ′)› ‹(subst (Var y) ?η) = (Var y ′)›

‹(subst (Var x) ?η) = (subst (Var y) ?η)› have x ′ = y ′ by auto
have x 6= a
proof

assume x = a
from this and ‹x 6= y› and ‹y ∈ insert a A› have y ∈ A by auto
from this and ‹x 6= y› and ‹x = a› and ‹(subst (Var y) ?η) = (Var y ′)›
have y ′ ∈ (subst-codomain η A) unfolding subst-codomain-def by auto
from ‹x = a› and ‹(subst (Var x) ?η) = (Var x ′)› have x ′ = nv by auto

from this and ‹y ′ ∈ (subst-codomain η A)› and ‹x ′ = y ′› and ‹nv /∈
(subst-codomain η A)›

show False by auto
qed
from this and ‹x ∈ insert a A› have x ∈ A and
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(subst (Var x) ?η) = (subst (Var x) η) by auto
have y 6= a
proof

assume y = a
from this and ‹x 6= y› and ‹x ∈ insert a A› have x ∈ A by auto
from this and ‹x 6= y› and ‹y = a› and ‹(subst (Var x) ?η) = (Var x ′)›

have x ′ ∈ (subst-codomain η A) unfolding subst-codomain-def by auto
from ‹y = a› and ‹(subst (Var y) ?η) = (Var y ′)› have y ′ = nv by auto

from this and ‹x ′ ∈ (subst-codomain η A)› and ‹x ′ = y ′› and ‹nv /∈
(subst-codomain η A)›

show False by auto
qed
from this and ‹y ∈ insert a A› have y ∈ A and
(subst (Var y) ?η) = (subst (Var y) η) by auto

from ‹(subst (Var x) ?η) = (subst (Var x) η)›
‹(subst (Var y) ?η) = (subst (Var y) η)›
‹(subst (Var x) ?η) = (subst (Var y) ?η)›

have (subst (Var x) η) = (subst (Var y) η) by auto
from this and ‹x ∈ A› and ‹y ∈ A›and ‹renaming η A› and ‹x 6= y› show

False
unfolding renaming-def by metis

qed
from i ii have renaming ?η (insert a A) unfolding renaming-def by auto
have ((subst-codomain ?η (insert a A)) ∩ V ′) = {}
proof (rule ccontr)
assume (subst-codomain ?η (insert a A)) ∩ V ′ 6= {}
then obtain x where x ∈ (subst-codomain ?η (insert a A)) and x ∈ V ′ by

auto
from ‹x ∈ (subst-codomain ?η (insert a A))› obtain x ′ where x ′ ∈ (insert a

A)
and subst (Var x ′) ?η = (Var x) unfolding subst-codomain-def by blast

have x ′ 6= a
proof

assume x ′ = a
from this and ‹subst (Var x ′) ?η = (Var x)› have x = nv by auto
from this and ‹x ∈ V ′› and ‹nv /∈ (insert a V ′)› show False by auto

qed
from this and ‹x ′ ∈ (insert a A)› have x ′ ∈ A by auto
from ‹x ′ 6= a› and ‹subst (Var x ′) ?η = (Var x)› have
(Var x) = (subst (Var x ′) η) by auto

from this and ‹x ′∈ A› have x ∈ subst-codomain η A unfolding subst-codomain-def
by auto

from ‹x ∈ subst-codomain η A› and ‹(subst-codomain η A) ∩ (insert a V ′)
= {}› and ‹x ∈ V ′›

show False by auto
qed
from this and ‹renaming ?η (insert a A)›
show ∃ η. renaming η (insert a A) ∧ subst-codomain η (insert a A) ∩ V ′ =

{} by auto
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qed
qed

end
theory equational-clausal-logic

imports Main terms HOL−Library.Multiset

begin

3 Equational Clausal Logic

The syntax and semantics of clausal equational logic are defined as usual.
Interpretations are congruences on binary trees.

3.1 Syntax

We first define the syntax of equational clauses.
datatype ′a equation = Eq ′a trm ′a trm

fun lhs
where lhs (Comb t1 t2 ) = t1 |

lhs (Var x) = (Var x) |
lhs (Const x) = (Const x)

fun rhs
where rhs (Comb t1 t2 ) = t2 |

rhs (Var x) = (Var x) |
rhs (Const x) = (Const x)

datatype ′a literal = Pos ′a equation | Neg ′a equation

fun atom :: ′a literal ⇒ ′a equation
where
(atom (Pos x)) = x |
(atom (Neg x)) = x

datatype sign = pos | neg

fun get-sign :: ′a literal ⇒ sign
where
(get-sign (Pos x)) = pos |
(get-sign (Neg x)) = neg

fun positive-literal :: ′a literal ⇒ bool
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where
(positive-literal (Pos x)) = True |
(positive-literal (Neg x)) = False

fun negative-literal :: ′a literal ⇒ bool
where
(negative-literal (Pos x)) = False |
(negative-literal (Neg x)) = True

fun mk-lit :: sign ⇒ ′a equation ⇒ ′a literal
where
(mk-lit pos x) = (Pos x) |
(mk-lit neg x) = (Neg x)

definition decompose-equation
where decompose-equation e t s = (e = (Eq t s) ∨ (e = (Eq s t)))

definition decompose-literal
where decompose-literal L t s p =

(∃ e. ((p = pos ∧ (L = (Pos e)) ∧ decompose-equation e t s)
∨ (p = neg ∧ (L = (Neg e)) ∧ decompose-equation e t s)))

fun subterms-of-eq
where subterms-of-eq (Eq t s) = (subterms-of t ∪ subterms-of s)

fun vars-of-eq
where vars-of-eq (Eq t s) = (vars-of t ∪ vars-of s)

lemma decompose-equation-vars:
assumes decompose-equation e t s
shows vars-of t ⊆ vars-of-eq e

by (metis assms decompose-equation-def sup.cobounded1 sup-commute vars-of-eq.simps)

fun subterms-of-lit
where

subterms-of-lit (Pos e) = (subterms-of-eq e) |
subterms-of-lit (Neg e) = (subterms-of-eq e)

fun vars-of-lit
where

vars-of-lit (Pos e) = (vars-of-eq e) |
vars-of-lit (Neg e) = (vars-of-eq e)

fun vars-of-cl
where vars-of-cl C = { x. ∃L. x ∈ (vars-of-lit L) ∧ L ∈ C }

fun subterms-of-cl
where subterms-of-cl C = { x. ∃L. x ∈ (subterms-of-lit L) ∧ L ∈ C }

Note that clauses are defined as sets and not as multisets (identical literals
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are always merged).
type-synonym ′a clause = ′a literal set

fun ground-clause :: ′a clause ⇒ bool
where
(ground-clause C ) = ((vars-of-cl C ) = {})

fun subst-equation :: ′a equation ⇒ ′a subst ⇒ ′a equation
where
(subst-equation (Eq u v) s)
= (Eq (subst u s) (subst v s))

fun subst-lit :: ′a literal ⇒ ′a subst ⇒ ′a literal
where
(subst-lit (Pos e) s)
= (Pos (subst-equation e s)) |

(subst-lit (Neg e) s)
= (Neg (subst-equation e s))

fun subst-cl :: ′a clause ⇒ ′a subst ⇒ ′a clause
where
(subst-cl C s) = { L. (∃L ′. (L ′ ∈ C ) ∧ (L = (subst-lit L ′ s))) }

We establish some properties of the functions returning the set of variables
occurring in an object.
lemma decompose-literal-vars:

assumes decompose-literal L t s p
shows vars-of t ⊆ vars-of-lit L

by (metis assms decompose-equation-vars decompose-literal-def vars-of-lit.simps(1 )
vars-of-lit.simps(2 ))

lemma vars-of-cl-lem:
assumes L ∈ C
shows vars-of-lit L ⊆ vars-of-cl C

using assms by auto

lemma set-of-variables-is-finite-eq:
shows finite (vars-of-eq e)

proof −
obtain t and s where e = Eq t s using equation.exhaust by auto
then have vars-of-eq e = (vars-of t) ∪ (vars-of s) by auto
from this show ?thesis by auto

qed

lemma set-of-variables-is-finite-lit:
shows finite (vars-of-lit l)

proof −
obtain e where l = Pos e ∨ l = Neg e using literal.exhaust by auto
then have vars-of-lit l = (vars-of-eq e) by auto
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from this show ?thesis using set-of-variables-is-finite-eq by auto
qed

lemma set-of-variables-is-finite-cl:
assumes finite C
shows finite (vars-of-cl C )

proof −
let ?S = { x. ∃ l. x = vars-of-lit l ∧ l ∈ C }
have vars-of-cl C =

⋃
?S by auto

from assms have finite ?S by auto
{ fix x have x ∈ ?S =⇒ finite x using set-of-variables-is-finite-lit by auto }
from this and ‹finite ?S› have finite (

⋃
?S) using finite-Union by auto

from this and ‹vars-of-cl C =
⋃

?S› show ?thesis by auto
qed

lemma subterm-lit-vars :
assumes u ∈ subterms-of-lit L
shows vars-of u ⊆ vars-of-lit L

proof −
obtain e where def-e: L = (Pos e) ∨ L = (Neg e) and vars-of-lit L = vars-of-eq

e
by (metis negative-literal.elims(2 ) negative-literal.elims(3 )

vars-of-lit.simps(1 ) vars-of-lit.simps(2 ))
obtain t and s where def-ts: e = (Eq t s) ∨ e = (Eq s t) and vars-of-eq e =

vars-of t ∪ vars-of s
by (metis equation.exhaust vars-of-eq.simps)

from this and ‹vars-of-lit L = vars-of-eq e› have vars-of-lit L = vars-of t ∪
vars-of s by auto

from assms(1 ) and def-e def-ts have u ∈ subterms-of t ∪ subterms-of s by auto
from this have vars-of u ⊆ vars-of t ∪ vars-of s

by (meson UnE sup.coboundedI1 sup.coboundedI2 vars-subterms-of )
from this and ‹vars-of-lit L = vars-of t ∪ vars-of s› show ?thesis by auto

qed

lemma subterm-vars :
assumes u ∈ subterms-of-cl C
shows vars-of u ⊆ vars-of-cl C

proof −
from assms(1 ) obtain L where u ∈ subterms-of-lit L and L ∈ C by auto
from ‹u ∈ subterms-of-lit L› have vars-of u ⊆ vars-of-lit L using subterm-lit-vars

by auto
from ‹L ∈ C › have vars-of-lit L ⊆ vars-of-cl C using vars-of-cl.simps by auto
from this and ‹vars-of u ⊆ vars-of-lit L› show ?thesis by auto

qed

We establish some basic properties of substitutions.
lemma subterm-cl-subst:

assumes x ∈ (subterms-of-cl C )
shows (subst x σ) ∈ (subterms-of-cl (subst-cl C σ))
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proof −
from assms(1 ) obtain L where L ∈ C and x ∈ subterms-of-lit L by auto
from ‹L ∈ C › have (subst-lit L σ) ∈ (subst-cl C σ) by auto
obtain e where L = (Pos e) ∨ L = (Neg e) using literal.exhaust by auto
then show ?thesis
proof

assume L = (Pos e)
from this and ‹x ∈ subterms-of-lit L› have x ∈ subterms-of-eq e by auto
from ‹L = (Pos e)› have (subst-lit L σ) = (Pos (subst-equation e σ))

by auto
obtain t s where e = (Eq t s) using equation.exhaust by auto
from this have (subst-equation e σ) = (Eq (subst t σ) (subst s σ))

by auto
from ‹x ∈ subterms-of-eq e› and ‹e = (Eq t s)› have x ∈ subterms-of t ∨ x ∈

subterms-of s by auto
then show ?thesis
proof

assume x ∈ subterms-of t
then have occurs-in x t by auto
then obtain p where subterm t p x unfolding occurs-in-def by blast
from this have subterm (subst t σ) p (subst x σ)

using substs-preserve-subterms by auto
from this have occurs-in (subst x σ) (subst t σ) unfolding occurs-in-def by

auto
then have (subst x σ) ∈ subterms-of (subst t σ) by auto
then have (subst x σ) ∈ subterms-of-eq (Eq (subst t σ) (subst s σ)) by auto
from this and ‹L = (Pos e)› and ‹e = Eq t s›

have (subst x σ) ∈ (subterms-of-lit (subst-lit L σ)) by auto
from this and ‹(subst-lit L σ) ∈ (subst-cl C σ)›

show (subst x σ) ∈ subterms-of-cl (subst-cl C σ) by auto
next

assume x ∈ subterms-of s
then have occurs-in x s by auto
then obtain p where subterm s p x unfolding occurs-in-def by blast
from this have subterm (subst s σ) p (subst x σ)

using substs-preserve-subterms by auto
from this have occurs-in (subst x σ) (subst s σ) unfolding occurs-in-def by

auto
then have (subst x σ) ∈ subterms-of (subst s σ) by auto
then have (subst x σ) ∈ subterms-of-eq (Eq (subst t σ) (subst s σ)) by auto
from this and ‹L = (Pos e)› and ‹e = Eq t s›

have (subst x σ) ∈ (subterms-of-lit (subst-lit L σ)) by auto
from this and ‹(subst-lit L σ) ∈ (subst-cl C σ)›

show (subst x σ) ∈ subterms-of-cl (subst-cl C σ) by auto
qed
next
assume L = (Neg e)
from this and ‹x ∈ subterms-of-lit L› have x ∈ subterms-of-eq e by auto
from ‹L = (Neg e)› have (subst-lit L σ) = (Neg (subst-equation e σ))
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by auto
obtain t s where e = (Eq t s) using equation.exhaust by auto
from this have (subst-equation e σ) = (Eq (subst t σ) (subst s σ))

by auto
from ‹x ∈ subterms-of-eq e› and ‹e = (Eq t s)› have x ∈ subterms-of t ∨ x ∈

subterms-of s by auto
then show ?thesis
proof

assume x ∈ subterms-of t
then have occurs-in x t by auto
then obtain p where subterm t p x unfolding occurs-in-def by blast
from this have subterm (subst t σ) p (subst x σ)

using substs-preserve-subterms by auto
from this have occurs-in (subst x σ) (subst t σ) unfolding occurs-in-def by

auto
then have (subst x σ) ∈ subterms-of (subst t σ) by auto
then have (subst x σ) ∈ subterms-of-eq (Eq (subst t σ) (subst s σ)) by auto
from this and ‹L = (Neg e)› and ‹e = Eq t s›

have (subst x σ) ∈ (subterms-of-lit (subst-lit L σ)) by auto
from this and ‹(subst-lit L σ) ∈ (subst-cl C σ)›

show (subst x σ) ∈ subterms-of-cl (subst-cl C σ) by auto
next

assume x ∈ subterms-of s
then have occurs-in x s by auto
then obtain p where subterm s p x unfolding occurs-in-def by blast
from this have subterm (subst s σ) p (subst x σ)

using substs-preserve-subterms by auto
from this have occurs-in (subst x σ) (subst s σ) unfolding occurs-in-def by

auto
then have (subst x σ) ∈ subterms-of (subst s σ) by auto
then have (subst x σ) ∈ subterms-of-eq (Eq (subst t σ) (subst s σ)) by auto
from this and ‹L = (Neg e)› and ‹e = Eq t s›

have (subst x σ) ∈ (subterms-of-lit (subst-lit L σ)) by auto
from this and ‹(subst-lit L σ) ∈ (subst-cl C σ)›

show (subst x σ) ∈ subterms-of-cl (subst-cl C σ) by auto
qed

qed
qed

lemma ground-substs-yield-ground-clause:
assumes ground-on (vars-of-cl C ) σ
shows ground-clause (subst-cl C σ)

proof (rule ccontr)
let ?D = (subst-cl C σ)
let ?V = (vars-of-cl C )
assume ¬(ground-clause ?D)
then obtain x where x ∈ (vars-of-cl ?D) by auto
then obtain l where l ∈ C and x ∈ (vars-of-lit (subst-lit l σ)) by auto
from ‹l ∈ C › have vars-of-lit l ⊆ vars-of-cl C by auto
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obtain e where l = Pos e ∨ l = Neg e using literal.exhaust by auto
then have vars-of-lit l = vars-of-eq e by auto
let ?l ′ = (subst-lit l σ)
let ?e ′ = (subst-equation e σ)
obtain t and s where e = Eq t s using equation.exhaust by auto
then have vars-of-eq e = vars-of t ∪ vars-of s by auto
let ?t ′ = (subst t σ)
let ?s ′ = (subst s σ)
from ‹e = Eq t s› have ?e ′ = (Eq ?t ′ ?s ′) by auto
from ‹l = Pos e ∨ l = Neg e› have ?l ′ = Pos ?e ′ ∨ ?l ′ = Neg ?e ′ by auto
from ‹l ∈ C › have ?l ′ ∈ ?D by auto
from ‹?l ′ = Pos ?e ′ ∨ ?l ′ = Neg ?e ′› and ‹x ∈ (vars-of-lit ?l ′)›

have x ∈ (vars-of-eq ?e ′) by auto
from this and ‹?e ′ = (Eq ?t ′ ?s ′)› have x ∈ (vars-of ?t ′ ∪ vars-of ?s ′) by auto

then have i:¬(ground-term ?t ′) ∨ ¬(ground-term ?s ′) unfolding ground-term-def
by auto

from ‹vars-of-eq e = vars-of t ∪ vars-of s› and ‹vars-of-lit l = vars-of-eq e›
and

‹vars-of-lit l ⊆ ?V › have vars-of t ⊆ ?V and vars-of s ⊆ ?V by auto
from ‹vars-of t ⊆ ?V › and ‹ground-on ?V σ› have ground-on (vars-of t) σ

unfolding ground-on-def by auto
then have ii:ground-term ?t ′ using ground-instance by auto
from ‹vars-of s ⊆ ?V › and ‹ground-on ?V σ› have ground-on (vars-of s) σ

unfolding ground-on-def by auto
then have iii:ground-term ?s ′ using ground-instance by auto
from i and ii and iii show False by auto

qed

lemma ground-clauses-and-ground-substs:
assumes ground-clause (subst-cl C σ)
shows ground-on (vars-of-cl C ) σ

proof (rule ccontr)
assume ¬ground-on (vars-of-cl C ) σ
from this obtain x where x ∈ vars-of-cl C and ¬ ground-term (subst (Var x)

σ)
unfolding ground-on-def by auto

from ‹¬ ground-term (subst (Var x) σ)› obtain y where
y ∈ vars-of (subst (Var x) σ) unfolding ground-term-def by auto

from ‹x ∈ vars-of-cl C › obtain L where L ∈ C and x ∈ vars-of-lit L by auto
from ‹x ∈ vars-of-lit L› obtain e where L = Pos e ∨ L = Neg e and x ∈

vars-of-eq e
by (metis vars-of-lit.elims)

from ‹x ∈ vars-of-eq e› obtain t s where e = (Eq t s) and x ∈ vars-of t ∪
vars-of s

by (metis vars-of-eq.elims)
from this have x ∈ vars-of t ∨ x ∈ vars-of s by auto
then have y ∈ vars-of-eq (subst-equation e σ)
proof
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assume x ∈ vars-of t
have i: vars-of (subst t σ) =

⋃
{V . ∃ x. x ∈ vars-of t ∧ V = vars-of (subst

(Var x) σ) }
using vars-of-instances [of t σ] by meson

from ‹x ∈ vars-of t› i
have vars-of (subst (Var x) σ) ⊆ vars-of (subst t σ)
by auto

from this and ‹y ∈ vars-of (subst (Var x) σ)› ‹e = (Eq t s)› show ?thesis by
auto

next
assume x ∈ vars-of s
have i: vars-of (subst s σ) =

⋃
{V . ∃ x. x ∈ vars-of s ∧ V = vars-of (subst

(Var x) σ) }
using vars-of-instances [of s σ] by meson

from ‹x ∈ vars-of s› i
have vars-of (subst (Var x) σ) ⊆ vars-of (subst s σ)
by auto

from this and ‹y ∈ vars-of (subst (Var x) σ)› ‹e = (Eq t s)› show ?thesis by
auto

qed
from this and ‹L = Pos e ∨ L = Neg e› have y ∈ vars-of-lit (subst-lit L σ)

by auto
from this and ‹L ∈ C › have y ∈ vars-of-cl (subst-cl C σ) by auto
from this and assms(1 ) show False by auto

qed

lemma ground-instance-exists:
assumes finite C
shows ∃σ. (ground-clause (subst-cl C σ))

proof −
let ?V = (vars-of-cl C )
from assms have finite ?V using set-of-variables-is-finite-cl by auto
from this obtain σ where ground-on ?V σ

using ground-subst-exists by blast
let ?D = (subst-cl C σ)
from ‹ground-on ?V σ› have (ground-clause ?D) using ground-substs-yield-ground-clause

[of C σ] by auto
then show ?thesis by auto

qed

lemma composition-of-substs :
shows (subst (subst t σ) η)
= (subst t (comp σ η))

by simp

lemma composition-of-substs-eq :
shows (subst-equation (subst-equation e σ) η)
= (subst-equation e (comp σ η))

by (metis subst-equation.simps composition-of-substs vars-of-eq.elims)
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lemma composition-of-substs-lit :
shows (subst-lit (subst-lit l σ) η)
= (subst-lit l (comp σ η))

by (metis subst-lit.simps(1 ) subst-lit.simps(2 )
composition-of-substs-eq positive-literal.cases)

lemma composition-of-substs-cl :
shows (subst-cl (subst-cl C σ) η)
= (subst-cl C (comp σ η))

proof −
let ?f = (λx. (subst-lit (subst-lit x σ) η))
let ?f ′ = (λx. (subst-lit x (comp σ η)))
have ∀ l. (?f l) = (?f ′ l) using composition-of-substs-lit by auto
then show ?thesis by auto

qed

lemma substs-preserve-ground-lit :
assumes ground-clause C
assumes y ∈ C
shows subst-lit y σ = y

proof −
obtain t and s where y = Pos (Eq t s) ∨ y = Neg (Eq t s)

by (metis subst-equation.elims get-sign.elims)
from this have vars-of t ⊆ vars-of-lit y by auto
from this and ‹y ∈ C › have vars-of t ⊆ vars-of-cl C by auto
from this and assms(1 ) have ground-term t unfolding ground-term-def by

auto
then have subst t σ = t using substs-preserve-ground-terms by auto
from ‹y = Pos (Eq t s) ∨ y = Neg (Eq t s)› have vars-of s ⊆ vars-of-lit y by

auto
from this and ‹y ∈ C › have vars-of s ⊆ vars-of-cl C by auto
from this and assms(1 ) have ground-term s unfolding ground-term-def by

auto
then have subst s σ = s using substs-preserve-ground-terms by auto
from ‹subst s σ = s› and ‹subst t σ = t› and ‹y = Pos (Eq t s) ∨ y = Neg

(Eq t s)›
show subst-lit y σ = y by auto

qed

lemma substs-preserve-ground-clause :
assumes ground-clause C
shows subst-cl C σ = C

proof
show subst-cl C σ ⊆ C
proof

fix x assume x ∈ subst-cl C σ
then obtain y where y ∈ C and x = subst-lit y σ by auto
from assms(1 ) and ‹y ∈ C › and ‹x = subst-lit y σ›
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have x = y using substs-preserve-ground-lit by auto
from this and ‹y ∈ C › show x ∈ C by auto

qed
next

show C ⊆ subst-cl C σ
proof

fix x assume x ∈ C
then have subst-lit x σ ∈ subst-cl C σ by auto
from assms(1 ) and ‹x ∈ C › have x = subst-lit x σ

using substs-preserve-ground-lit [of C x] by auto
from this and ‹x ∈ C › show x ∈ subst-cl C σ by auto

qed
qed

lemma substs-preserve-finiteness :
assumes finite C
shows finite (subst-cl C σ)

proof −
from assms(1 ) show ?thesis using Finite-Set.finite-imageI by auto

qed

We prove that two equal substitutions yield the same objects.
lemma subst-eq-eq :

assumes subst-eq σ η
shows subst-equation e σ = subst-equation e η

proof −
obtain t and s where e = Eq t s using equation.exhaust by auto
from assms(1 ) have subst s σ = subst s η by auto
from assms(1 ) have subst t σ = subst t η by auto
from ‹subst s σ = subst s η› ‹subst t σ = subst t η›

and ‹e = Eq t s› show ?thesis by auto
qed

lemma subst-eq-lit :
assumes subst-eq σ η
shows subst-lit l σ = subst-lit l η

proof −
obtain e where l = Pos e ∨ l = Neg e using literal.exhaust by auto
from assms(1 ) have subst-equation e σ = subst-equation e η using subst-eq-eq

by auto
from this and ‹l = Pos e ∨ l = Neg e› show ?thesis by auto

qed

lemma subst-eq-cl:
assumes subst-eq σ η
shows subst-cl C σ = subst-cl C η

proof (rule ccontr)
assume subst-cl C σ 6= subst-cl C η
then obtain L where L ∈ C and subst-lit L σ 6= subst-lit L η
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by force
from assms(1 ) and ‹subst-lit L σ 6= subst-lit L η›

show False using subst-eq-lit by auto
qed

lemma coincide-on-eq :
assumes coincide-on σ η (vars-of-eq e)
shows subst-equation e σ = subst-equation e η

proof −
obtain t and s where e = Eq t s using equation.exhaust by auto
then have vars-of t ⊆ vars-of-eq e by simp
from this and ‹coincide-on σ η (vars-of-eq e)› have coincide-on σ η (vars-of t)

unfolding coincide-on-def by auto
from this have subst t σ = subst t η using coincide-on-term by auto
from ‹e = Eq t s› have vars-of s ⊆ vars-of-eq e by simp
from this and ‹coincide-on σ η (vars-of-eq e)› have coincide-on σ η (vars-of s)

unfolding coincide-on-def by auto
from this have subst s σ = subst s η using coincide-on-term by auto
from ‹subst t σ = subst t η›

and ‹subst s σ = subst s η›
and ‹e = Eq t s› show ?thesis by auto

qed

lemma coincide-on-lit :
assumes coincide-on σ η (vars-of-lit l)
shows subst-lit l σ = subst-lit l η

proof −
obtain e where l = Pos e ∨ l = Neg e using literal.exhaust by auto
then have vars-of-eq e ⊆ vars-of-lit l by auto
from this and ‹coincide-on σ η (vars-of-lit l)› have coincide-on σ η (vars-of-eq

e)
unfolding coincide-on-def by auto

from this have subst-equation e σ = subst-equation e η
using coincide-on-eq by auto

from this and ‹l = Pos e ∨ l = Neg e› show ?thesis by auto
qed

lemma coincide-on-cl :
assumes coincide-on σ η (vars-of-cl C )
shows subst-cl C σ = subst-cl C η

proof (rule ccontr)
assume subst-cl C σ 6= subst-cl C η
then obtain L where L ∈ C and subst-lit L σ 6= subst-lit L η

by force
from ‹L ∈ C › have vars-of-lit L ⊆ vars-of-cl C by auto
from this and assms have coincide-on σ η (vars-of-lit L) unfolding coin-

cide-on-def by auto
from this and ‹subst-lit L σ 6= subst-lit L η›

show False using coincide-on-lit by auto
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qed

3.2 Semantics

Interpretations are congruences on the set of terms.
definition fo-interpretation :: ′a binary-relation-on-trms ⇒ bool
where
(fo-interpretation x) = (congruence x)

fun validate-ground-eq :: ′a binary-relation-on-trms ⇒ ′a equation ⇒ bool
where
(validate-ground-eq I (Eq t s) = (I t s))

fun validate-ground-lit :: ′a binary-relation-on-trms ⇒ ′a literal ⇒ bool
where
validate-ground-lit I (Pos E) = (validate-ground-eq I E) |
validate-ground-lit I (Neg E) = (¬(validate-ground-eq I E))

fun validate-ground-clause :: ′a binary-relation-on-trms ⇒ ′a clause ⇒ bool
where
validate-ground-clause I C = (∃L.(L ∈ C ) ∧ (validate-ground-lit I L))

fun validate-clause :: ′a binary-relation-on-trms ⇒ ′a clause ⇒ bool
where
validate-clause I C = (∀ s. (ground-clause (subst-cl C s))
−→ (validate-ground-clause I (subst-cl C s)))

fun validate-clause-set :: ′a binary-relation-on-trms ⇒ ′a clause set ⇒ bool
where
validate-clause-set I S = (∀C . (C ∈ S −→ (validate-clause I C )))

definition clause-entails-clause :: ′a clause ⇒ ′a clause ⇒ bool
where

clause-entails-clause C D = (∀ I . (fo-interpretation I −→ validate-clause I C −→
validate-clause I D))

definition set-entails-clause :: ′a clause set ⇒ ′a clause ⇒ bool
where

set-entails-clause S C = (∀ I . (fo-interpretation I −→ validate-clause-set I S −→
validate-clause I C ))

definition satisfiable-clause-set :: ′a clause set ⇒ bool
where
(satisfiable-clause-set S) = (∃ I . (fo-interpretation I ) ∧ (validate-clause-set I S))

We state basic properties of the entailment relation.
lemma set-entails-clause-member :

assumes C ∈ S
shows set-entails-clause S C
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proof (rule ccontr)
assume ¬ ?thesis
from this obtain I where fo-interpretation I validate-clause-set I S ¬ vali-

date-clause I C
unfolding set-entails-clause-def by auto

from ‹validate-clause-set I S› and assms(1 ) ‹¬ validate-clause I C › show False
by auto
qed

lemma instances-are-entailed :
assumes validate-clause I C
shows validate-clause I (subst-cl C σ)

proof (rule ccontr)
assume ¬validate-clause I (subst-cl C σ)
then obtain η

where ¬validate-ground-clause I (subst-cl (subst-cl C σ) η)
and ground-clause (subst-cl (subst-cl C σ) η)

by auto
then have i: ¬validate-ground-clause I (subst-cl C (comp σ η))
using composition-of-substs-cl by metis

from ‹ground-clause (subst-cl (subst-cl C σ) η)›
have ii: ground-clause (subst-cl C (comp σ η))
using composition-of-substs-cl by metis

from i and ii have ¬validate-clause I C by auto
from ‹¬validate-clause I C › and ‹validate-clause I C › show False by blast

qed

We prove that two equivalent substitutions yield equivalent objects.
lemma equivalent-on-eq :

assumes equivalent-on σ η (vars-of-eq e) I
assumes fo-interpretation I
shows (validate-ground-eq I (subst-equation e σ)) = (validate-ground-eq I (subst-equation

e η))
proof −

obtain t and s where e = Eq t s using equation.exhaust by auto
then have vars-of t ⊆ vars-of-eq e by simp
from this and assms(1 ) have equivalent-on σ η (vars-of t) I

unfolding equivalent-on-def by auto
from this assms(2 )

have I (subst t σ) (subst t η) using equivalent-on-term
unfolding fo-interpretation-def by auto

from ‹e = Eq t s› have vars-of s ⊆ vars-of-eq e by simp
from this and ‹equivalent-on σ η (vars-of-eq e) I › have equivalent-on σ η (vars-of

s) I
unfolding equivalent-on-def by auto

from this assms(2 ) have I (subst s σ) (subst s η)
using equivalent-on-term unfolding fo-interpretation-def by auto

from assms(2 ) ‹I (subst t σ) (subst t η)›
and ‹I (subst s σ) (subst s η)›
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and ‹e = Eq t s› show ?thesis unfolding fo-interpretation-def congruence-def
equivalence-relation-def

transitive-def symmetric-def reflexive-def
by (metis (full-types) subst-equation.simps validate-ground-eq.simps)

qed

lemma equivalent-on-lit :
assumes equivalent-on σ η (vars-of-lit l) I
assumes fo-interpretation I
shows (validate-ground-lit I (subst-lit l σ))
= (validate-ground-lit I (subst-lit l η))

proof −
obtain e where l = Pos e ∨ l = Neg e using literal.exhaust by auto
then have vars-of-eq e ⊆ vars-of-lit l by auto
from this and ‹equivalent-on σ η (vars-of-lit l) I › have equivalent-on σ η

(vars-of-eq e) I
unfolding equivalent-on-def by auto

from this assms(2 ) have (validate-ground-eq I (subst-equation e σ)) = (validate-ground-eq
I (subst-equation e η))

using equivalent-on-eq by auto
from this and ‹l = Pos e ∨ l = Neg e› show ?thesis by auto

qed

lemma equivalent-on-cl :
assumes equivalent-on σ η (vars-of-cl C ) I
assumes fo-interpretation I
shows (validate-ground-clause I (subst-cl C σ))
= (validate-ground-clause I (subst-cl C η))

proof (rule ccontr)
assume (validate-ground-clause I (subst-cl C σ))
6= (validate-ground-clause I (subst-cl C η))

then obtain L where L ∈ C and (validate-ground-lit I (subst-lit L σ))
6= (validate-ground-lit I (subst-lit L η))
by force

from ‹L ∈ C › have vars-of-lit L ⊆ vars-of-cl C by auto
from this and assms have equivalent-on σ η (vars-of-lit L) I unfolding equiv-

alent-on-def by auto
from this assms(2 ) and ‹(validate-ground-lit I (subst-lit L σ))
6= (validate-ground-lit I (subst-lit L η))›
show False using equivalent-on-lit by metis

qed

end
theory superposition

imports Main terms equational-clausal-logic well-founded-continued HOL−Library.Multiset
multisets-continued
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begin

4 Definition of the Superposition Calculus
4.1 Extended Clauses

An extended clause is a clause associated with a set of terms. The intended
meaning is that the terms occurring in the attached set are assumed to be
in normal form: any application of the superposition rule on these terms is
therefore useless and can be blocked. Initially the set of irreducible terms
attached to each clause is empty. At each inference step, new terms can be
added or deleted from this set.
datatype ′a eclause = Ecl ′a clause ′a trm set

fun subst-ecl
where
(subst-ecl (Ecl C S) σ) =
(Ecl (subst-cl C σ) { s. (∃ t. (s = (subst t σ) ∧ t ∈ S)) })

fun cl-ecl
where
(cl-ecl (Ecl C X)) = C

fun trms-ecl
where
(trms-ecl (Ecl C X)) = X

definition renaming-cl
where renaming-cl C D = (∃ η. (renaming η (vars-of-cl (cl-ecl C ))) ∧ D =

(subst-ecl C η))

definition closed-under-renaming
where closed-under-renaming S = (∀C D.
(C ∈ S) −→ (renaming-cl C D) −→ (D ∈ S))

definition variable-disjoint
where (variable-disjoint C D) = ((vars-of-cl (cl-ecl C )) ∩ (vars-of-cl (cl-ecl D))
= {})

4.2 Orders and Selection Functions

We assume that the set of variables is infinite (so that shared variables can
be renamed away) and that the following objects are given:
(i) A term ordering that is total on ground terms, well-founded and closed
under contextual embedding and substitutions. This ordering is used as
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usual to orient equations and to restrict the application of the replacement
rule.
(ii) A selection function, mapping each clause to a (possibly empty) set of
negative literals. We assume that this selection function is closed under
renamings.
(iii) A function mapping every extended clause to an order on positions,
which contains the (reversed) prefix ordering. This order allows one to
control the order in which the subterms are rewritten (terms occurring at
minimal positions are considered with the highest priority).
(iv) A function filter-trms that allows one to filter away some of the terms
attached to a given extended clause (it can be used for instance to remove
terms if the set becomes too big). The standard superposition calculus
corresponds to the case where this function always returns the empty set.
locale basic-superposition =

fixes trm-ord :: ( ′a trm × ′a trm) set
fixes sel :: ′a clause ⇒ ′a clause
fixes pos-ord :: ′a eclause ⇒ ′a trm ⇒ (position × position) set
fixes vars :: ′a set
fixes filter-trms :: ′a clause ⇒ ′a trm set ⇒ ′a trm set
assumes

trm-ord-wf : (wf trm-ord)
and trm-ord-ground-total :
(∀ x y. ((ground-term x) −→ (ground-term y) −→ x 6= y
−→ ((x,y) ∈ trm-ord ∨ (y,x) ∈ trm-ord)))

and trm-ord-trans : trans trm-ord
and trm-ord-irrefl : irrefl trm-ord
and trm-ord-reduction-left : ∀ x1 x2 y. (x1 ,x2 ) ∈ trm-ord
−→ ((Comb x1 y),(Comb x2 y)) ∈ trm-ord

and trm-ord-reduction-right : ∀ x1 x2 y. (x1 ,x2 ) ∈ trm-ord
−→ ((Comb y x1 ),(Comb y x2 )) ∈ trm-ord

and trm-ord-subterm : ∀ x1 x2 . (x1 ,(Comb x1 x2 )) ∈ trm-ord
∧ (x2 ,(Comb x1 x2 )) ∈ trm-ord

and trm-ord-subst :
∀ s x y. (x,y) ∈ trm-ord −→ ( (subst x s),(subst y s)) ∈ trm-ord
and pos-ord-irrefl : (∀ x y. (irrefl (pos-ord x y)))
and pos-ord-trans : (∀ x. (trans (pos-ord x y)))
and pos-ord-prefix : ∀ x y p q r . ((q,p) ∈ (pos-ord x y) −→ ((append q r),p) ∈

(pos-ord x y))
and pos-ord-nil : ∀ x y p . (p 6= Nil) −→ (p,Nil) ∈ (pos-ord x y)
and sel-neg: (∀ x. ( (sel (cl-ecl x)) ⊆ (cl-ecl x))
∧ (∀ y ∈ sel (cl-ecl x). (negative-literal y)))

and sel-renaming: ∀ η C . ((renaming η (vars-of-cl C )) −→ sel C = {} −→ sel
(subst-cl C η) = {})

and infinite-vars: ¬ (finite vars)
and filter-trms-inclusion: filter-trms C E ⊆ E

begin
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We provide some functions to decompose a literal in a way that is compatible
with the ordering and establish some basic properties.
definition orient-lit :: ′a literal ⇒ ′a trm ⇒ ′a trm ⇒ sign ⇒ bool
where
(orient-lit L u v s) =
((( (L = (Pos (Eq u v))) ∨ (L = (Pos (Eq v u)))) ∧ ((u,v) /∈ trm-ord) ∧ (s =

pos))
∨
(( (L = (Neg (Eq u v))) ∨ (L = (Neg (Eq v u)))) ∧ ((u,v) /∈ trm-ord) ∧ (s =

neg)))

definition orient-lit-inst :: ′a literal ⇒ ′a trm ⇒ ′a trm ⇒ sign ⇒ ′a subst ⇒
bool
where
(orient-lit-inst L u v s σ) =
((( (L = (Pos (Eq u v))) ∨ (L = (Pos (Eq v u))))
∧ (((subst u σ),(subst v σ)) /∈ trm-ord) ∧ (s = pos))
∨
(( (L = (Neg (Eq u v))) ∨ (L = (Neg (Eq v u)))) ∧ (((subst u σ),(subst v σ))
/∈ trm-ord) ∧ (s = neg)))

lemma lift-orient-lit:
assumes orient-lit-inst L t s p σ
shows orient-lit (subst-lit L σ) (subst t σ) (subst s σ) p

unfolding orient-lit-inst-def orient-lit-def using assms orient-lit-inst-def by auto

lemma orient-lit-vars:
assumes orient-lit L t s p
shows vars-of t ⊆ vars-of-lit L ∧ vars-of s ⊆ vars-of-lit L

proof −
have p = neg ∨ p = pos using sign.exhaust by auto
then show ?thesis
proof

assume p = neg
from this and assms(1 ) have (L = Neg (Eq t s)) ∨ (L = (Neg (Eq s t)))

unfolding orient-lit-def by auto
then show ?thesis
proof

assume L = Neg (Eq t s)
then have vars-of-lit L = vars-of t ∪ vars-of s by simp
from this show ?thesis by simp

next
assume L = Neg (Eq s t)
then have vars-of-lit L = vars-of s ∪ vars-of t by simp
from this show ?thesis by simp

qed
next assume p = pos
from this and assms(1 ) have (L = Pos (Eq t s)) ∨ (L = (Pos (Eq s t)))
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unfolding orient-lit-def by auto
then show ?thesis
proof

assume L = Pos (Eq t s)
then have vars-of-lit L = vars-of t ∪ vars-of s by simp
from this show ?thesis by simp

next
assume L = Pos (Eq s t)
then have vars-of-lit L = vars-of s ∪ vars-of t by simp
from this show ?thesis by simp

qed
qed

qed

lemma orient-lit-inst-vars:
assumes orient-lit-inst L t s p σ
shows vars-of t ⊆ vars-of-lit L ∧ vars-of s ⊆ vars-of-lit L

proof −
have p = neg ∨ p = pos using sign.exhaust by auto
then show ?thesis
proof

assume p = neg
from this and assms(1 ) have (L = Neg (Eq t s)) ∨ (L = (Neg (Eq s t)))

unfolding orient-lit-inst-def by auto
then show ?thesis
proof

assume L = Neg (Eq t s)
then have vars-of-lit L = vars-of t ∪ vars-of s by simp
from this show ?thesis by simp

next
assume L = Neg (Eq s t)
then have vars-of-lit L = vars-of s ∪ vars-of t by simp
from this show ?thesis by simp

qed
next assume p = pos
from this and assms(1 ) have (L = Pos (Eq t s)) ∨ (L = (Pos (Eq s t)))

unfolding orient-lit-inst-def by auto
then show ?thesis
proof

assume L = Pos (Eq t s)
then have vars-of-lit L = vars-of t ∪ vars-of s by simp
from this show ?thesis by simp

next
assume L = Pos (Eq s t)
then have vars-of-lit L = vars-of s ∪ vars-of t by simp
from this show ?thesis by simp

qed
qed

qed
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lemma orient-lit-inst-coincide:
assumes orient-lit-inst L1 t s polarity σ
assumes coincide-on σ η (vars-of-lit L1 )
shows orient-lit-inst L1 t s polarity η

proof −
have polarity = pos ∨ polarity = neg using sign.exhaust by auto
then show ?thesis
proof

assume polarity = pos
from this and assms(1 ) have L1 = Pos (Eq t s) ∨ L1 = Pos (Eq s t)

and ( (subst t σ), (subst s σ)) /∈ trm-ord
unfolding orient-lit-inst-def by auto

from ‹L1 = Pos (Eq t s) ∨ L1 = Pos (Eq s t)›
have vars-of t ⊆ vars-of-lit L1 and vars-of s ⊆ vars-of-lit L1 by auto

from ‹vars-of t ⊆ vars-of-lit L1 › and assms(2 ) have coincide-on σ η (vars-of
t)

unfolding coincide-on-def by auto
from ‹vars-of s ⊆ vars-of-lit L1 › and assms(2 ) have coincide-on σ η (vars-of

s)
unfolding coincide-on-def by auto

from ‹( (subst t σ), (subst s σ)) /∈ trm-ord›
and ‹coincide-on σ η (vars-of t)› and ‹coincide-on σ η (vars-of s)› assms(2 )

have ( (subst t η), (subst s η)) /∈ trm-ord
using coincide-on-term by metis

from this and ‹polarity = pos› and ‹L1 = Pos (Eq t s) ∨ L1 = Pos (Eq s t)›
show ?thesis

unfolding orient-lit-inst-def by auto
next assume polarity = neg
from this and assms(1 ) have L1 = Neg (Eq t s) ∨ L1 = Neg (Eq s t)

and ( (subst t σ), (subst s σ)) /∈ trm-ord
unfolding orient-lit-inst-def by auto

from ‹L1 = Neg (Eq t s) ∨ L1 = Neg (Eq s t)›
have vars-of t ⊆ vars-of-lit L1 and vars-of s ⊆ vars-of-lit L1 by auto

from ‹vars-of t ⊆ vars-of-lit L1 › and assms(2 ) have coincide-on σ η (vars-of
t)

unfolding coincide-on-def by auto
from ‹vars-of s ⊆ vars-of-lit L1 › and assms(2 ) have coincide-on σ η (vars-of

s)
unfolding coincide-on-def by auto

from ‹( (subst t σ), (subst s σ)) /∈ trm-ord›
and ‹coincide-on σ η (vars-of t)› and ‹coincide-on σ η (vars-of s)› assms(2 )

have ( (subst t η), (subst s η)) /∈ trm-ord
using coincide-on-term by metis

from this and ‹polarity = neg› and ‹L1 = Neg (Eq t s) ∨ L1 = Neg (Eq s t)›
show ?thesis

unfolding orient-lit-inst-def by auto
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qed
qed

lemma orient-lit-inst-subterms:
assumes orient-lit-inst L t s polarity σ
assumes u ∈ subterms-of t
shows u ∈ subterms-of-lit L

proof −
have polarity = pos ∨ polarity = neg using sign.exhaust by auto
then show ?thesis
proof

assume polarity = pos
from this and assms(1 ) have L = (Pos (Eq t s)) ∨ L = (Pos (Eq s t))

unfolding orient-lit-inst-def by auto
then show ?thesis
proof

assume L = (Pos (Eq t s))
from this and assms(2 ) show ?thesis by simp
next assume L = (Pos (Eq s t))
from this and assms(2 ) show ?thesis by simp

qed
next

assume polarity = neg
from this and assms(1 ) have L = (Neg (Eq t s)) ∨ L = (Neg (Eq s t))

unfolding orient-lit-inst-def by auto
then show ?thesis
proof

assume L = (Neg (Eq t s))
from this and assms(2 ) show ?thesis by simp
next assume L = (Neg (Eq s t))
from this and assms(2 ) show ?thesis by simp

qed
qed

qed

4.3 Clause Ordering

Clauses and extended clauses are ordered by transforming them into multi-
sets of multisets of terms. To avoid any problem with the merging of identical
literals, the multiset is assigned to a pair clause-substitution rather than to
an instantiated clause.

We first map every literal to a multiset of terms, using the usual conventions
and then define the multisets associated with clauses and extended clauses.
fun mset-lit :: ′a literal ⇒ ′a trm multiset

where mset-lit (Pos (Eq t s)) = {# t,s #} |
mset-lit (Neg (Eq t s)) = {# t,t,s,s #}

fun mset-cl
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where mset-cl (C ,σ) = {# (mset-lit (subst-lit x σ)). x ∈# (mset-set C ) #}

fun mset-ecl
where mset-ecl (C ,σ) = {# (mset-lit (subst-lit x σ)). x ∈# (mset-set (cl-ecl

C )) #}

lemma mset-ecl-conv: mset-ecl (C , σ) = mset-cl (cl-ecl C , σ)
by simp

lemma mset-ecl-and-mset-lit:
assumes L ∈ (cl-ecl C )
assumes finite (cl-ecl C )
shows (mset-lit (subst-lit L σ)) ∈# (mset-ecl (C ,σ))

proof −
from assms(1 ) assms(2 ) have L ∈# (mset-set (cl-ecl C )) by (simp)
then show ?thesis
proof −
have f1 : mset-set (cl-ecl C ) − {#L#} + {#L#} = mset-set (cl-ecl C )

by (meson ‹L ∈# mset-set (cl-ecl C )› insert-DiffM2 )
have count {#mset-lit (subst-lit L σ)#} (mset-lit (subst-lit L σ)) = 1

by simp
then show ?thesis

by (metis (no-types, lifting) f1 image-mset-add-mset insert-iff mset-ecl.simps
set-mset-add-mset-insert union-mset-add-mset-right)

qed
qed

lemma ecl-ord-coincide:
assumes coincide-on σ σ ′ (vars-of-cl (cl-ecl C ))
shows mset-ecl (C ,σ) = mset-ecl (C ,σ ′)

proof −
have ∀ x. (x ∈ (cl-ecl C ) −→ ((subst-lit x σ) = (subst-lit x σ ′)))
proof ((rule allI ),(rule impI ))

fix x assume x ∈ (cl-ecl C )
from this have vars-of-lit x ⊆ (vars-of-cl (cl-ecl C )) by auto
from this and assms(1 ) have coincide-on σ σ ′ (vars-of-lit x) unfolding coin-

cide-on-def by auto
from this show ((subst-lit x σ) = (subst-lit x σ ′))

by (simp add: coincide-on-lit)
qed
then show ?thesis using equal-image-mset
[of cl-ecl C λx. (mset-lit (subst-lit x σ)) λx. (mset-lit (subst-lit x σ ′))]

by (metis mset-ecl.simps)
qed

Literal and clause orderings are obtained as usual as the multiset extensions
of the term ordering.
definition lit-ord :: ( ′a literal × ′a literal) set

where
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lit-ord =
{ (x,y). (((mset-lit x),(mset-lit y)) ∈ (mult trm-ord)) }

lemma mult-trm-ord-trans:
shows trans (mult trm-ord)

by (metis (no-types, lifting) mult-def transI transitive-closure-trans(2 ))

lemma lit-ord-trans:
shows trans lit-ord

by (metis (no-types, lifting) basic-superposition.lit-ord-def basic-superposition-axioms

case-prodD case-prodI mem-Collect-eq mult-def transI transitive-closure-trans(2 ))

lemma lit-ord-wf :
shows wf lit-ord

proof −
from trm-ord-wf have wf (mult trm-ord) using wf-mult by auto
then show ?thesis

using lit-ord-def
and measure-wf [of (mult trm-ord) lit-ord mset-lit]
by blast

qed

definition ecl-ord :: (( ′a eclause × ′a subst) × ( ′a eclause × ′a subst)) set
where
ecl-ord =
{ (x,y). (((mset-ecl x),(mset-ecl y)) ∈ (mult (mult trm-ord))) }

definition ecl-ord-eq :: (( ′a eclause × ′a subst) × ( ′a eclause × ′a subst)) set
where
ecl-ord-eq =

ecl-ord ∪ { (x,y). ((mset-ecl x) = (mset-ecl y)) }

definition cl-ord :: (( ′a clause × ′a subst) × ( ′a clause × ′a subst)) set
where
cl-ord =
{ (x,y). (((mset-cl x),(mset-cl y)) ∈ (mult (mult trm-ord))) }

definition cl-ord-eq :: (( ′a clause × ′a subst) × ( ′a clause × ′a subst)) set
where
cl-ord-eq = cl-ord ∪
{ (x,y). (mset-cl x) = (mset-cl y) }

lemma member-ecl-ord-iff :
((C , σC), (D, σD)) ∈ ecl-ord ←→ ((cl-ecl C , σC), (cl-ecl D, σD)) ∈ cl-ord
by (simp add: ecl-ord-def cl-ord-def )

lemma mult-mult-trm-ord-trans:
shows trans (mult (mult trm-ord))
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by (metis (no-types, lifting) mult-def transI transitive-closure-trans(2 ))

lemma ecl-ord-trans:
shows trans ecl-ord

by (metis (no-types, lifting) basic-superposition.ecl-ord-def basic-superposition-axioms
case-prodD

case-prodI mem-Collect-eq mult-def transI transitive-closure-trans(2 ))

lemma cl-ord-trans:
shows trans cl-ord

by (metis (no-types, lifting) basic-superposition.cl-ord-def basic-superposition-axioms
case-prodD

case-prodI mem-Collect-eq mult-def transI transitive-closure-trans(2 ))

lemma cl-ord-eq-trans:
shows trans cl-ord-eq

proof −
have ∀ r . trans r = (∀ p pa pb. ((p:: ′a literal set × ( ′a × ′a trm) list, pa) /∈ r ∨

(pa, pb) /∈ r)
∨ (p, pb) ∈ r)

by (simp add: trans-def )
then obtain pp :: (( ′a literal set × ( ′a × ′a trm) list) × ′a literal set × ( ′a × ′a

trm) list) set ⇒ ′a literal set × ( ′a × ′a trm) list and ppa :: (( ′a literal set × ( ′a
× ′a trm) list) × ′a literal set × ( ′a × ′a trm) list) set ⇒ ′a literal set × ( ′a × ′a
trm) list and ppb :: (( ′a literal set × ( ′a × ′a trm) list) × ′a literal set × ( ′a × ′a
trm) list) set ⇒ ′a literal set × ( ′a × ′a trm) list where

f1 : ∀ r . (¬ trans r ∨ (∀ p pa pb. (p, pa) /∈ r ∨ (pa, pb) /∈ r ∨ (p, pb) ∈ r)) ∧
(trans r ∨ (pp r , ppa r) ∈ r ∧ (ppa r , ppb r) ∈ r ∧ (pp r , ppb r) /∈ r)

by (metis (no-types))
have f2 : trans {(p, pa). (mset-cl p, mset-cl pa) ∈ mult (mult trm-ord)}

using cl-ord-def cl-ord-trans by presburger
{ assume ¬ (case (ppa (cl-ord ∪ {(p, pa). mset-cl p = mset-cl pa}), ppb (cl-ord
∪ {(p, pa). mset-cl p = mset-cl pa})) of (p, pa) ⇒ mset-cl p = mset-cl pa)

{ assume (ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪
{(pa, p). mset-cl pa = mset-cl p})) ∈ {(pa, p). (mset-cl pa, mset-cl p) ∈ mult (mult
trm-ord)}

moreover
{ assume (ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪

{(pa, p). mset-cl pa = mset-cl p})) ∈ {(pa, p). (mset-cl pa, mset-cl p) ∈ mult (mult
trm-ord)} ∧ (mset-cl (pp (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})), mset-cl
(ppb (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}))) /∈ mult (mult trm-ord)

then have (ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪
{(pa, p). mset-cl pa = mset-cl p})) ∈ {(pa, p). (mset-cl pa, mset-cl p) ∈ mult (mult
trm-ord)} ∧ mset-cl (pp (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})) 6= mset-cl
(ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}))

by force
then have ((pp (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪

{(pa, p). mset-cl pa = mset-cl p})) ∈ {(pa, p). (mset-cl pa, mset-cl p) ∈ mult (mult
trm-ord)} ∨ (pp (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪ {(pa,
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p). mset-cl pa = mset-cl p})) ∈ {(pa, p). mset-cl pa = mset-cl p}) ∨ (pp (cl-ord
∪ {(pa, p). mset-cl pa = mset-cl p}), ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl
p})) /∈ {(pa, p). (mset-cl pa, mset-cl p) ∈ mult (mult trm-ord)} ∧ (pp (cl-ord ∪
{(pa, p). mset-cl pa = mset-cl p}), ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl
p})) /∈ {(pa, p). mset-cl pa = mset-cl p}

using f2 f1 by blast }
ultimately have (mset-cl (pp (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})),

mset-cl (ppb (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}))) ∈ mult (mult trm-ord)
∨ ((pp (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪ {(pa, p). mset-cl
pa = mset-cl p})) ∈ {(pa, p). (mset-cl pa, mset-cl p) ∈ mult (mult trm-ord)} ∨ (pp
(cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪ {(pa, p). mset-cl pa =
mset-cl p})) ∈ {(pa, p). mset-cl pa = mset-cl p}) ∨ (pp (cl-ord ∪ {(pa, p). mset-cl
pa = mset-cl p}), ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})) /∈ {(pa, p).
(mset-cl pa, mset-cl p) ∈ mult (mult trm-ord)} ∧ (pp (cl-ord ∪ {(pa, p). mset-cl pa
= mset-cl p}), ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})) /∈ {(pa, p). mset-cl
pa = mset-cl p}

by fastforce }
then have (mset-cl (pp (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})), mset-cl

(ppb (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}))) ∈ mult (mult trm-ord) ∨ ((pp
(cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪ {(pa, p). mset-cl pa
= mset-cl p})) ∈ {(pa, p). (mset-cl pa, mset-cl p) ∈ mult (mult trm-ord)} ∨ (pp
(cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪ {(pa, p). mset-cl pa =
mset-cl p})) ∈ {(pa, p). mset-cl pa = mset-cl p}) ∨ (pp (cl-ord ∪ {(pa, p). mset-cl
pa = mset-cl p}), ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})) /∈ {(pa, p).
(mset-cl pa, mset-cl p) ∈ mult (mult trm-ord)} ∧ (pp (cl-ord ∪ {(pa, p). mset-cl pa
= mset-cl p}), ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})) /∈ {(pa, p). mset-cl
pa = mset-cl p} ∨ (pp (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppa (cl-ord ∪
{(pa, p). mset-cl pa = mset-cl p})) /∈ cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p} ∨
(ppa (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪ {(pa, p). mset-cl pa
= mset-cl p})) /∈ cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p} ∨ (pp (cl-ord ∪ {(pa,
p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})) ∈
cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}

using cl-ord-def by auto }
then have (pp (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppa (cl-ord ∪ {(pa,

p). mset-cl pa = mset-cl p})) /∈ cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p} ∨ (ppa
(cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p}), ppb (cl-ord ∪ {(pa, p). mset-cl pa =
mset-cl p})) /∈ cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p} ∨ (pp (cl-ord ∪ {(pa, p).
mset-cl pa = mset-cl p}), ppb (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})) ∈ cl-ord
∪ {(pa, p). mset-cl pa = mset-cl p}

using cl-ord-def by force
then have trans (cl-ord ∪ {(pa, p). mset-cl pa = mset-cl p})

using f1 by meson
from this show ?thesis unfolding cl-ord-eq-def by auto

qed

lemma wf-ecl-ord:
shows wf ecl-ord

proof −
have wf (mult trm-ord) using trm-ord-wf and wf-mult by auto
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then have wf (mult (mult trm-ord)) using wf-mult by auto
thus ?thesis

using ecl-ord-def
and measure-wf [of (mult (mult trm-ord)) ecl-ord mset-ecl]
by blast

qed

definition maximal-literal :: ′a literal ⇒ ′a clause ⇒ bool
where
(maximal-literal L C ) = (∀ x. (x ∈ C −→ (L,x) /∈ lit-ord))

definition eligible-literal
where
(eligible-literal L C σ) = (L ∈ sel (cl-ecl C ) ∨
(sel(cl-ecl C ) = {}
∧ (maximal-literal (subst-lit L σ) (subst-cl (cl-ecl C ) σ))))

definition strictly-maximal-literal
where strictly-maximal-literal C L σ =
(∀ x ∈ (cl-ecl C ) − { L }. ( (subst-lit x σ),(subst-lit L σ))

∈ lit-ord)

definition lower-or-eq
where lower-or-eq t s = ((t = s) ∨ ((t,s) ∈ trm-ord))

lemma eligible-literal-coincide:
assumes coincide-on σ σ ′ (vars-of-cl (cl-ecl C ))
assumes eligible-literal L C σ
assumes L ∈ (cl-ecl C )
shows eligible-literal L C σ ′

proof −
from assms(2 ) have

L ∈ sel (cl-ecl C ) ∨ (sel (cl-ecl C ) = {} ∧ maximal-literal (subst-lit L σ)
(subst-cl (cl-ecl C ) σ))

unfolding eligible-literal-def by auto
then show ?thesis
proof

assume L ∈ sel (cl-ecl C )
then show ?thesis unfolding eligible-literal-def by auto

next
assume sel (cl-ecl C ) = {} ∧ maximal-literal (subst-lit L σ) (subst-cl (cl-ecl

C ) σ)
then have sel (cl-ecl C ) = {} and maximal-literal (subst-lit L σ) (subst-cl

(cl-ecl C ) σ)
by auto

from assms(1 ) have (subst-cl (cl-ecl C ) σ) = (subst-cl (cl-ecl C ) σ ′)
using coincide-on-cl by blast

from assms(3 ) and assms(1 ) have coincide-on σ σ ′ (vars-of-lit L) unfolding
coincide-on-def
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by auto
from this have (subst-lit L σ) = (subst-lit L σ ′)

using coincide-on-lit by auto
from this and ‹(subst-cl (cl-ecl C ) σ) = (subst-cl (cl-ecl C ) σ ′)›

and ‹maximal-literal (subst-lit L σ) (subst-cl (cl-ecl C ) σ)›
have maximal-literal (subst-lit L σ ′) (subst-cl (cl-ecl C ) σ ′)
by auto

from this and ‹sel (cl-ecl C ) = {}› show ?thesis unfolding eligible-literal-def
by auto

qed
qed

The next definition extends the ordering to substitutions.
definition lower-on
where lower-on σ η V = (∀ x ∈ V .
(lower-or-eq (subst (Var x) σ) ( (subst (Var x) η))))

We now establish some properties of the ordering relations.
lemma lower-or-eq-monotonic:

assumes lower-or-eq t1 s1
assumes lower-or-eq t2 s2
shows lower-or-eq (Comb t1 t2 ) (Comb s1 s2 )

unfolding lower-or-eq-def using trm-ord-reduction-left trm-ord-reduction-right
by (metis assms(1 ) assms(2 ) lower-or-eq-def trm-ord-trans transD)

lemma lower-on-term:
shows

∧
σ η. lower-on σ η (vars-of t) =⇒

(lower-or-eq (subst t σ) (subst t η))
proof (induction t)

case (Var x)
from this show ?case

unfolding lower-on-def by auto
next case (Const x)

show ?case
unfolding lower-or-eq-def by auto

next case (Comb t1 t2 )
show

∧
σ η. lower-on σ η (vars-of (Comb t1 t2 )) =⇒

(lower-or-eq (subst (Comb t1 t2 ) σ) (subst (Comb t1 t2 ) η))
proof −

fix σ η assume lower-on σ η (vars-of (Comb t1 t2 ))
from this have lower-on σ η (vars-of t1 ) and lower-on σ η (vars-of t2 )

unfolding lower-on-def by auto
from ‹lower-on σ η (vars-of t1 )› have lower-or-eq (subst t1 σ) (subst t1 η)

using Comb.IH by auto
from ‹lower-on σ η (vars-of t2 )› have lower-or-eq (subst t2 σ) (subst t2 η)

using Comb.IH by auto
from ‹lower-or-eq (subst t1 σ) (subst t1 η)› ‹lower-or-eq (subst t2 σ) (subst

t2 η)›
show lower-or-eq (subst (Comb t1 t2 ) σ) (subst (Comb t1 t2 ) η)
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using lower-or-eq-monotonic by auto
qed

qed

lemma diff-substs-yield-diff-trms:
assumes (subst (Var x) σ) 6= (subst (Var x) η)
shows (x ∈ vars-of t)
=⇒ (subst t σ) 6= (subst t η)

proof (induction t)
case (Var y)

show (x ∈ vars-of (Var y)) =⇒ (subst (Var y) σ) 6= (subst (Var y) η)
proof −

assume (x ∈ vars-of (Var y))
from ‹(x ∈ vars-of (Var y))› have x = y by auto
from this and assms(1 )
show (subst (Var y) σ) 6= (subst (Var y) η)
by auto

qed
next case (Const y)

show (x ∈ vars-of (Const y))
=⇒ (subst (Const y) σ) 6= (subst (Const y) η)
proof (rule ccontr)

from ‹(x ∈ vars-of (Const y))› show False by auto
qed

next case (Comb t1 t2 )
show (x ∈ vars-of (Comb t1 t2 ))
=⇒ (subst (Comb t1 t2 ) σ) 6= (subst (Comb t1 t2 ) η)
proof −

assume (x ∈ vars-of (Comb t1 t2 ))
from ‹x ∈ vars-of (Comb t1 t2 )› have x ∈ vars-of t1 ∨ x ∈ vars-of t2 by

auto
then show (subst (Comb t1 t2 ) σ) 6= (subst (Comb t1 t2 ) η)
proof

assume x ∈ vars-of t1
from this have (subst t1 σ) 6= (subst t1 η)

using Comb.IH by auto
then show ?thesis by auto

next
assume x ∈ vars-of t2
from this have (subst t2 σ) 6= (subst t2 η)

using Comb.IH by auto
then show ?thesis by auto

qed
qed

qed

lemma lower-subst-yields-lower-trms:
assumes lower-on σ η (vars-of t)
assumes ((subst (Var x) σ),(subst (Var x) η)) ∈ trm-ord
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assumes (x ∈ vars-of t)
shows ((subst t σ),(subst t η)) ∈ trm-ord

proof −
from assms(1 ) have lower-or-eq (subst t σ) (subst t η)

using lower-on-term by auto
from assms(2 ) have (subst (Var x) σ) 6= (subst (Var x) η)

using trm-ord-irrefl irrefl-def by fastforce
from this and assms(3 ) have (subst t σ) 6= (subst t η)

using diff-substs-yield-diff-trms by fastforce
from this and ‹lower-or-eq (subst t σ) (subst t η)›

show ?thesis unfolding lower-or-eq-def by auto
qed

lemma lower-on-lit:
assumes lower-on σ η (vars-of-lit L)
assumes ((subst (Var x) σ),(subst (Var x) η)) ∈ trm-ord
assumes x ∈ vars-of-lit L
shows ((subst-lit L σ), (subst-lit L η)) ∈ lit-ord

proof −
obtain t s where def-l: L = Pos (Eq t s) | L = (Neg (Eq t s))

by (metis mset-lit.cases)
from this have vars-of t ⊆ vars-of-lit L and vars-of s ⊆ vars-of-lit L by auto
from ‹vars-of s ⊆ vars-of-lit L› and assms(1 ) have lower-on σ η (vars-of s)

unfolding lower-on-def by auto
from def-l have def-ms-l: mset-lit L = {# t,s #} ∨ mset-lit L = {# t,t,s,s #}

by auto
from this have t ∈# (mset-lit L) and s ∈# (mset-lit L) by auto
from def-l have mset-lit (subst-lit L σ) = {# (subst u σ). u ∈# (mset-lit L)

#} by auto
from def-l have mset-lit (subst-lit L η) = {# (subst u η). u ∈# (mset-lit L) #}

by auto
from ‹lower-on σ η (vars-of s)› have lower-or-eq (subst s σ) (subst s η)

using lower-on-term by auto
let ?L = mset-lit L
let ?M1 = mset-lit (subst-lit L σ)
let ?M2 = mset-lit (subst-lit L η)
from ‹vars-of t ⊆ vars-of-lit L› and assms(1 ) have lower-on σ η (vars-of t)

unfolding lower-on-def by auto
from ‹vars-of s ⊆ vars-of-lit L› and assms(1 ) have lower-on σ η (vars-of s)

unfolding lower-on-def by auto
have all-lower : ∀ u. (u ∈# (mset-lit L) −→ (((subst u σ), (subst u η)) ∈ trm-ord

∨ (subst u σ) = (subst u η)))
proof (rule allI ,rule impI )

fix u assume u ∈# (mset-lit L)
have u = t ∨ u = s
proof (cases)

assume mset-lit L = {# t,s #}
from this and ‹u ∈# (mset-lit L)› show ?thesis
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by (simp add: count-single insert-DiffM2 insert-noteq-member not-gr0 )
next
assume ¬mset-lit L = {# t,s #}
from this and def-ms-l have mset-lit L = {# t,t,s,s #}

by auto
from this and ‹u ∈# (mset-lit L)› show ?thesis

using not-gr0 by fastforce
qed
then show (((subst u σ), (subst u η)) ∈ trm-ord
∨ (subst u σ) = (subst u η))

proof
assume u = t
from ‹lower-on σ η (vars-of t)› have lower-or-eq (subst t σ) (subst t η)

using lower-on-term by auto
from this show ?thesis unfolding lower-or-eq-def using ‹u = t› by auto

next
assume u = s
from ‹lower-on σ η (vars-of s)› have lower-or-eq (subst s σ) (subst s η)

using lower-on-term by auto
from this show ?thesis unfolding lower-or-eq-def using ‹u = s› by auto

qed
qed
have sl-exists: ∃ u. (u ∈# (mset-lit L) ∧ ((subst u σ), (subst u η)) ∈ trm-ord)
proof −

from ‹x ∈ vars-of-lit L› and def-l have
x ∈ vars-of t ∨ x ∈ vars-of s by auto

then show ?thesis
proof

assume x ∈ vars-of t
from this and ‹lower-on σ η (vars-of t)› assms(1 ) assms(2 )

have ( (subst t σ),(subst t η)) ∈ trm-ord
using lower-subst-yields-lower-trms by auto

from this and ‹t ∈# (mset-lit L)› show ?thesis by auto
next

assume x ∈ vars-of s
from this and ‹lower-on σ η (vars-of s)› assms(1 ) assms(2 )

have ( (subst s σ),(subst s η)) ∈ trm-ord
using lower-subst-yields-lower-trms by auto

from this and ‹s ∈# (mset-lit L)› show ?thesis by auto
qed

qed
from all-lower sl-exists and
‹mset-lit (subst-lit L σ) = {# (subst u σ). u ∈# (mset-lit L) #}›
‹mset-lit (subst-lit L η) = {# (subst u η). u ∈# (mset-lit L) #}›
have (?M1 ,?M2 ) ∈ (mult trm-ord)
using trm-ord-irrefl image-mset-ordering

[of ?M1 λx. (subst x σ) ?L ?M2 λx. (subst x η) trm-ord]
by blast
from this show ?thesis unfolding lit-ord-def by auto

72



qed

lemma lower-on-lit-eq:
assumes lower-on σ η (vars-of-lit L)
shows ((subst-lit L σ) = (subst-lit L η)) ∨ ((subst-lit L σ), (subst-lit L η)) ∈

lit-ord
proof (cases)

assume coincide-on σ η (vars-of-lit L)
then show ?thesis using coincide-on-lit by auto

next
assume ¬coincide-on σ η (vars-of-lit L)
then obtain x where x ∈ vars-of-lit L

and (subst (Var x) σ) 6= (subst (Var x) η)
unfolding coincide-on-def by auto

from ‹x ∈ vars-of-lit L› assms(1 )
‹(subst (Var x) σ) 6= (subst (Var x) η)›and assms(1 )

have ((subst (Var x) σ),(subst (Var x) η)) ∈ trm-ord
unfolding lower-on-def lower-or-eq-def by auto

from this assms(1 ) ‹x ∈ vars-of-lit L› show ?thesis using lower-on-lit by auto
qed

lemma lower-on-cl:
assumes lower-on σ η (vars-of-cl (cl-ecl C ))
assumes ((subst (Var x) σ),(subst (Var x) η)) ∈ trm-ord
assumes x ∈ vars-of-cl (cl-ecl C )
assumes finite (cl-ecl C )
shows ((C ,σ), (C , η)) ∈ ecl-ord

proof −
let ?M1 = mset-ecl (C ,σ)
let ?M2 = mset-ecl (C ,η)
let ?M = (mset-set (cl-ecl C ))
let ?f1 = λx. (mset-lit (subst-lit x σ))
let ?f2 = λx. (mset-lit (subst-lit x η))
have ?M1 = {# (?f1 u). u ∈# ?M #} using mset-ecl.simps by blast
have ?M2 = {# (?f2 u). u ∈# ?M #} using mset-ecl.simps by blast
have i: ∀ u. (u ∈# ?M −→ (((?f1 u), (?f2 u)) ∈ (mult trm-ord) ∨ (?f1 u) = (?f2

u)))
proof ((rule allI ),(rule impI ))

fix u assume u ∈# ?M
from this have u ∈ (cl-ecl C ) using count-mset-set(3 ) by (simp add: assms(4 ))
from this and assms(1 ) have lower-on σ η (vars-of-lit u) unfolding lower-on-def

by auto
then have ((subst-lit u σ) = (subst-lit u η))
∨ ((subst-lit u σ), (subst-lit u η)) ∈ lit-ord
using lower-on-lit-eq by blast

from this show (((?f1 u), (?f2 u)) ∈ (mult trm-ord) ∨ (?f1 u) = (?f2 u))
unfolding lit-ord-def by auto

qed
have irrefl (mult trm-ord) by (simp add: irreflI trm-ord-wf wf-mult)
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have ii: ∃ u. (u ∈# ?M ∧ ((?f1 u), (?f2 u)) ∈ (mult trm-ord))
proof −

from ‹x ∈ vars-of-cl (cl-ecl C )› obtain u where u ∈ (cl-ecl C ) and x ∈
vars-of-lit u

by auto
from assms(4 ) ‹u ∈ (cl-ecl C )› have u ∈# ?M by auto
from ‹u ∈ (cl-ecl C )› and assms(1 ) have lower-on σ η (vars-of-lit u)

unfolding lower-on-def by auto
from ‹x ∈ vars-of-lit u› ‹lower-on σ η (vars-of-lit u)› assms(2 )

have ((subst-lit u σ), (subst-lit u η)) ∈ lit-ord
using lower-on-lit by blast

from this ‹u ∈# ?M › have (u ∈# ?M ∧ ((?f1 u), (?f2 u)) ∈ (mult trm-ord))
unfolding lit-ord-def by auto

then show ?thesis by auto
qed
from i ii ‹?M1 = {# (?f1 u). u ∈# ?M #}› ‹?M2 = {# (?f2 u). u ∈# ?M

#}› ‹irrefl (mult trm-ord)›
have (?M1 ,?M2 ) ∈ (mult (mult trm-ord))
using image-mset-ordering [of ?M1 ?f1 ?M ?M2 ?f2 (mult trm-ord) ] by auto

then show ?thesis unfolding ecl-ord-def by auto
qed

lemma subterm-trm-ord :
shows

∧
t s.

subterm t p s =⇒ p 6= []
=⇒ (s,t) ∈ trm-ord

proof (induction p)
case Nil

from ‹Nil 6= []› show ?case by auto
next case (Cons i q)

from ‹subterm t (i # q) s› obtain t1 t2 where
t = (Comb t1 t2 ) using subterm.elims(2 ) by blast

have i = Left ∨ i = Right using indices.exhaust by blast
then show (s,t) ∈ trm-ord
proof

assume i = Left
from this and ‹t = Comb t1 t2 › and ‹subterm t (i # q) s›

have subterm t1 q s by auto
show ?thesis
proof (cases)

assume q = Nil
from this and ‹subterm t1 q s› have t1 = s by auto
from this and ‹t = Comb t1 t2 › show ?case using trm-ord-subterm by

auto
next

assume q 6= Nil
from this and ‹subterm t1 q s› have (s,t1 ) ∈ trm-ord using Cons.IH by

auto
from ‹t = Comb t1 t2 › have (t1 ,t) ∈ trm-ord using trm-ord-subterm by
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auto
from this and ‹(s,t1 ) ∈ trm-ord› show ?case

using trm-ord-trans unfolding trans-def by metis
qed

next
assume i = Right
from this and ‹t = Comb t1 t2 › and ‹subterm t (i # q) s›

have subterm t2 q s by auto
show ?thesis
proof (cases)

assume q = Nil
from this and ‹subterm t2 q s› have t2 = s by auto
from this and ‹t = Comb t1 t2 › show ?case using trm-ord-subterm by

auto
next

assume q 6= Nil
from this and ‹subterm t2 q s› have (s,t2 ) ∈ trm-ord using Cons.IH by

auto
from ‹t = Comb t1 t2 › have (t2 ,t) ∈ trm-ord using trm-ord-subterm by

auto
from this and ‹(s,t2 ) ∈ trm-ord› show ?case

using trm-ord-trans unfolding trans-def by metis
qed

qed
qed

lemma subterm-trm-ord-eq :
assumes subterm t p s
shows s = t ∨ (s,t) ∈ trm-ord

proof (cases)
assume p = Nil

from this and assms(1 ) show ?thesis by auto
next assume p 6= Nil

from this and assms(1 ) show ?thesis using subterm-trm-ord by auto
qed

lemma subterms-of-trm-ord-eq :
assumes s ∈ subterms-of t
shows s = t ∨ (s,t) ∈ trm-ord

proof −
from assms(1 ) obtain p where subterm t p s using occurs-in-def by auto
from this show ?thesis using subterm-trm-ord-eq by auto

qed

lemma subt-trm-ord:
shows t ≺ s −→ (t,s) ∈ trm-ord

proof (induction s)
case (Var x)
show ?case
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proof
assume t ≺ Var x
then show (t,Var x) ∈ trm-ord by auto

qed
case (Const x)
show ?case
proof

assume t ≺ Const x
then show (t,Const x) ∈ trm-ord by auto

qed
case (Comb t1 t2 )
show ?case

proof
assume t ≺ Comb t1 t2
show (t, Comb t1 t2 ) ∈ trm-ord
proof (rule ccontr)

assume (t, Comb t1 t2 ) /∈ trm-ord
then have i: t 6= t1 using trm-ord-subterm by auto
from ‹(t, Comb t1 t2 ) /∈ trm-ord› have ii: t 6= t2 using trm-ord-subterm

by auto
from i ii and ‹t ≺ Comb t1 t2 › have t ≺ t1 ∨ t ≺ t2 by auto
from this and ‹(t, Comb t1 t2 ) /∈ trm-ord›

show False using Comb.IH trm-ord-subterm trm-ord-trans trans-def by
metis

qed
qed

qed

lemma trm-ord-vars:
assumes (t,s) ∈ trm-ord
shows vars-of t ⊆ vars-of s

proof (rule ccontr)
assume ¬vars-of t ⊆ vars-of s
then obtain x where x ∈ vars-of t and x /∈ vars-of s by auto
let ?σ = [(x,s)]
from assms have ((subst t ?σ),(subst s ?σ)) ∈ trm-ord

using trm-ord-subst by auto
let ?ϑ = []
let ?V = vars-of s
have subst s ?ϑ = s by simp
have subst (Var x) ?σ = s by simp
have coincide-on ?σ ?ϑ ?V
proof (rule ccontr)

assume ¬ coincide-on ?σ ?ϑ ?V
then obtain y where y ∈ ?V subst (Var y) ?σ 6= subst (Var y) ?ϑ

unfolding coincide-on-def by auto
from ‹subst (Var y) ?σ 6= subst (Var y) ?ϑ› have y = x

by (metis assoc.simps(2 ) subst.simps(1 ))
from this and ‹x /∈ vars-of s› ‹y ∈ ?V › show False by auto
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qed
from this and ‹subst s ?ϑ = s› have subst s ?σ = s

using coincide-on-term by metis
from ‹x ∈ vars-of t› have (Var x) ≺ t

using ‹(subst t [(x, s)], subst s [(x, s)]) ∈ trm-ord›
‹subst s [(x, s)] = s› trm-ord-wf vars-iff-occseq by fastforce

from this have ((Var x), t) ∈ trm-ord using subt-trm-ord by auto
from this and assms(1 ) have (Var x,s) ∈trm-ord using trm-ord-trans trans-def

by metis
from this have ((subst (Var x) ?σ),(subst s ?σ)) ∈ trm-ord

using trm-ord-subst by metis
from this and ‹subst s ?σ = s› ‹subst (Var x) ?σ = s›

have (s,s) ∈ trm-ord by auto
from this show False using trm-ord-irrefl irrefl-def by metis

qed

lemma lower-on-ground:
assumes lower-on σ η V
assumes ground-on V η
shows ground-on V σ

proof (rule ccontr)
assume ¬ ground-on V σ
from this obtain x where x ∈ V and vars-of (subst (Var x) σ) 6= {}

unfolding ground-on-def ground-term-def by metis
from assms(1 ) ‹x ∈ V › have (subst (Var x) σ) = (subst (Var x) η)
∨ ((subst (Var x) σ),(subst (Var x) η)) ∈ trm-ord
unfolding lower-on-def lower-or-eq-def by metis

from this have vars-of (subst (Var x) σ) ⊆ vars-of (subst (Var x) η)
using trm-ord-vars by auto

from this and ‹vars-of (subst (Var x) σ) 6= {}›
have vars-of (subst (Var x) η) 6= {} by auto

from this and ‹x ∈ V › and assms(2 ) show False
unfolding ground-on-def ground-term-def by metis

qed

lemma replacement-monotonic :
shows

∧
t s. ((subst v σ), (subst u σ)) ∈ trm-ord

=⇒ subterm t p u =⇒ replace-subterm t p v s
=⇒ ((subst s σ), (subst t σ)) ∈ trm-ord

proof (induction p)
case Nil

from ‹subterm t Nil u› have t = u by auto
from ‹replace-subterm t Nil v s› have s = v by auto
from ‹t = u› and ‹s = v› and ‹((subst v σ), (subst u σ)) ∈ trm-ord›

show ?case by auto
next case (Cons i q)

from ‹subterm t (i # q) u› obtain t1 t2 where
t = (Comb t1 t2 ) using subterm.elims(2 ) by blast

have i = Left ∨ i = Right using indices.exhaust by blast
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then show ((subst s σ), (subst t σ)) ∈ trm-ord
proof

assume i = Left
from this and ‹t = Comb t1 t2 › and ‹subterm t (i # q) u›

have subterm t1 q u by auto
from ‹i = Left› and ‹t = Comb t1 t2 › and ‹replace-subterm t (i # q) v s›

obtain t1 ′ where replace-subterm t1 q v t1 ′ and s = Comb t1 ′ t2 by auto
from ‹((subst v σ), (subst u σ)) ∈ trm-ord›

and ‹subterm t1 q u› and ‹replace-subterm t1 q v t1 ′› have
((subst t1 ′ σ), (subst t1 σ)) ∈ trm-ord
using Cons.IH Cons.prems(1 ) by blast

from this and ‹t = (Comb t1 t2 )› and ‹s = (Comb t1 ′ t2 )›
show ((subst s σ), (subst t σ)) ∈ trm-ord
by (simp add: trm-ord-reduction-left)

next
assume i = Right
from this and ‹t = Comb t1 t2 › and ‹subterm t (i # q) u›

have subterm t2 q u by auto
from ‹i = Right› and ‹t = Comb t1 t2 › and ‹replace-subterm t (i # q) v s›

obtain t2 ′ where replace-subterm t2 q v t2 ′ and s = Comb t1 t2 ′ by auto
from ‹((subst v σ), (subst u σ)) ∈ trm-ord›

and ‹subterm t2 q u› and ‹replace-subterm t2 q v t2 ′› have
((subst t2 ′ σ), (subst t2 σ)) ∈ trm-ord
using Cons.IH Cons.prems(2 ) by blast

from this and ‹t = (Comb t1 t2 )› and ‹s = (Comb t1 t2 ′)›
show ((subst s σ), (subst t σ)) ∈ trm-ord
by (simp add: trm-ord-reduction-right)

qed
qed

lemma mset-lit-subst:
shows (mset-lit (subst-lit L σ)) =
{# (subst x σ). x ∈# (mset-lit L) #}

proof −
have positive-literal L ∨ negative-literal L

using negative-literal.simps(2 ) positive-literal.elims(3 ) by blast
then show ?thesis
proof

assume positive-literal L
then obtain t s where L = Pos (Eq t s)

by (metis equation.exhaust positive-literal.elims(2 ))
from this show ?thesis by auto

next
assume negative-literal L
then obtain t s where L = Neg (Eq t s)

by (metis equation.exhaust negative-literal.elims(2 ))
from this show ?thesis by auto

qed
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qed

lemma lit-ord-irrefl:
shows (L,L) /∈ lit-ord

by (simp add: lit-ord-wf )

lemma lit-ord-subst:
assumes (L,M ) ∈ lit-ord
shows ((subst-lit L σ), (subst-lit M σ)) ∈ lit-ord

proof −
let ?f = λx. (subst x σ)
have i:

∧
t s. ((t,s) ∈ trm-ord =⇒ ((?f t), (?f s)) ∈ trm-ord)

using trm-ord-subst by auto
from assms(1 ) have ii: ( (mset-lit L),(mset-lit M )) ∈ (mult trm-ord)

unfolding lit-ord-def by auto
let ?L = {# (?f x). x ∈# (mset-lit L) #}
let ?M = {# (?f x). x ∈# (mset-lit M ) #}
from i and ii have iii: ( ?L,?M ) ∈ (mult trm-ord) using monotonic-fun-mult

by metis
have l: ?L = (mset-lit (subst-lit L σ))

using mset-lit-subst by auto
have m: ?M = (mset-lit (subst-lit M σ))

using mset-lit-subst by auto
from l m iii show ?thesis unfolding lit-ord-def by auto

qed

lemma args-are-strictly-lower :
assumes is-compound t
shows (lhs t,t) ∈ trm-ord ∧ (rhs t,t) ∈ trm-ord

by (metis assms is-compound.elims(2 ) lhs.simps(1 ) rhs.simps(1 ) trm-ord-subterm)

lemma mset-subst:
assumes C ′ = subst-cl D ϑ
assumes σ

.
= ϑ ♦ η

assumes finite D
shows mset-cl (C ′,η) = mset-cl (D,σ) ∨ (mset-cl (C ′,η),mset-cl (D,σ)) ∈ (mult

(mult trm-ord))
proof −

let ?f = λx. (subst-lit x ϑ)
let ?g = λx. (mset-lit (subst-lit x η))
let ?h = λx. (mset-lit (subst-lit x σ))
have i: ∀ x ∈ D. ( (?g (?f x)) = (?h x))
proof

fix x
have (subst-lit (subst-lit x ϑ) η) = (subst-lit x (ϑ ♦ η))

using composition-of-substs-lit by auto
from assms(2 ) have (subst-lit x σ) = (subst-lit x (ϑ ♦ η))

using subst-eq-lit by auto
from this ‹(subst-lit (subst-lit x ϑ) η) = (subst-lit x (ϑ ♦ η))›
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show (?g (?f x)) = (?h x) by auto
qed
from assms(3 ) have mset-set (?f ‘ D) ⊆# {# (?f x). x ∈# mset-set (D) #}

using mset-set-mset-image by auto
from this have ii: {# (?g x). x ∈# mset-set (?f ‘ D) #} ⊆# {# (?g x). x ∈#
{# (?f x). x ∈# mset-set (D) #} #}

using image-mset-subseteq-mono by auto
have {# (?g x). x ∈# {# (?f x). x ∈# mset-set (D) #} #} = {# (?g (?f x)).

x ∈# mset-set D #}
using mset-image-comp [of ?g ?f ] by auto

from this and ii have
iii: {# (?g x). x ∈# mset-set (?f ‘ D) #} ⊆# {# (?g (?f x)). x ∈# mset-set

D #} by auto
from i have {# (?g (?f x)). x ∈# (mset-set D) #} = {# (?h x). x ∈# (mset-set

D) #}
using equal-image-mset [of D λx. (?g (?f x))] by auto

from this and iii
have {# (?g x). x ∈# mset-set (?f ‘ D) #} ⊆# {# (?h x). x ∈# mset-set D

#} by auto
from this

have iv: {# (?g x). x ∈# mset-set (?f ‘ D) #} ⊆# mset-cl (D,σ) by auto
from assms(1 ) have ((λx. subst-lit x ϑ) ‘ D) = C ′ by auto
from this and iv have {#mset-lit (subst-lit x η). x ∈# mset-set C ′ #} ⊆#

mset-cl (D, σ)
by auto

from this have mset-cl (C ′, η) ⊆# mset-cl (D, σ) by auto
from this show ?thesis using multiset-order-inclusion-eq mult-trm-ord-trans by

auto
qed

lemma max-lit-exists:
shows finite C =⇒ C 6= {} −→ ground-clause C −→ (∃L. (L ∈ C ∧ (maximal-literal

L C )))
proof (induction rule: finite.induct)

case emptyI
show ?case by simp

next
fix A :: ′a clause and a:: ′a literal
assume finite A
assume hyp-ind: A 6= {} −→ ground-clause A −→ (∃L. (L ∈ A ∧ (maximal-literal

L A)))
show (insert a A) 6= {} −→ ground-clause (insert a A)

−→ (∃L. (L ∈ (insert a A) ∧ (maximal-literal L (insert a A))))
proof ((rule impI )+)

assume insert a A 6= {}
assume ground-clause (insert a A)
show (∃L. (L ∈ (insert a A) ∧ (maximal-literal L (insert a A))))
proof (cases)

assume A = {}
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then have a ∈ (insert a A) ∧ (maximal-literal a (insert a A))
unfolding maximal-literal-def using lit-ord-irrefl by auto

then show ?thesis by auto
next assume A 6= {}

have insert a A = {a} ∪ A by auto
then have vars-of-cl (insert a A) = vars-of-cl A ∪ vars-of-lit a by auto
from this and ‹ground-clause (insert a A)› have

vars-of-lit a = {} and ground-clause A by auto
from ‹ground-clause A› and ‹A 6= {}› and hyp-ind obtain b where

b ∈ A and maximal-literal b A by auto
show ?thesis
proof (cases)
assume maximal-literal a A
then have maximal-literal a (insert a A)
using lit-ord-wf maximal-literal-def by auto

then show ?thesis by auto
next
assume ¬maximal-literal a A
then obtain a ′ where a ′ ∈ A and (a,a ′) ∈ lit-ord
unfolding maximal-literal-def by auto

from ‹a ′ ∈ A› and ‹maximal-literal b A› have (b,a ′) /∈ lit-ord
unfolding maximal-literal-def by auto

from this and ‹(a,a ′) ∈ lit-ord›
have (b,a) /∈ lit-ord unfolding lit-ord-def

using mult-def trancl-trans by fastforce

from this and ‹maximal-literal b A› have maximal-literal b (insert a A)
unfolding maximal-literal-def by simp

from this and ‹b ∈ A› show ?thesis by auto
qed

qed
qed

qed

We deduce that a clause contains at least one eligible literal.
lemma eligible-lit-exists:

assumes finite (cl-ecl C )
assumes (cl-ecl C ) 6= {}
assumes (ground-clause (subst-cl (cl-ecl C ) σ))
shows ∃L. ((eligible-literal L C σ) ∧ (L ∈ (cl-ecl C )))

proof (cases)
assume sel (cl-ecl C ) = {}
let ?C = (subst-cl (cl-ecl C ) σ)
have finite ?C by (simp add: assms(1 ))
have ?C 6= {}
proof −

from assms(2 ) obtain L where L ∈ (cl-ecl C ) by auto
from this have (subst-lit L σ) ∈ ?C by auto
from this show ?C 6= {} by auto
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qed
from ‹finite ?C › ‹?C 6= {}› assms(3 ) obtain L where L ∈ ?C maximal-literal

L ?C using max-lit-exists by metis
from ‹L ∈ ?C › obtain L ′ where L ′ ∈ (cl-ecl C ) and L = (subst-lit L ′ σ) by

auto
from ‹L ′ ∈ (cl-ecl C )› ‹L = (subst-lit L ′ σ)› ‹maximal-literal L ?C › ‹sel (cl-ecl

C ) = {}›
show ?thesis unfolding eligible-literal-def by metis

next
assume sel (cl-ecl C ) 6= {}
then obtain L where L ∈ sel (cl-ecl C ) by auto
from this show ?thesis unfolding eligible-literal-def using sel-neg by blast

qed

The following lemmata provide various ways of proving that literals are
ordered, depending on the relations between the terms they contain.
lemma lit-ord-dominating-term:

assumes (s1 ,s2 ) ∈ trm-ord ∨ (s1 ,t2 ) ∈ trm-ord
assumes orient-lit x1 s1 t1 p1
assumes orient-lit x2 s2 t2 p2
assumes vars-of-lit x1 = {}
assumes vars-of-lit x2 = {}
shows (x1 ,x2 ) ∈ lit-ord

proof −
from ‹vars-of-lit x1 = {}› and ‹orient-lit x1 s1 t1 p1 › have vars-of t1 = {} and

vars-of s1 = {}
and ¬(s1 ,t1 ) ∈ trm-ord unfolding orient-lit-def by auto

from assms(5 ) and ‹orient-lit x2 s2 t2 p2 › have vars-of t2 = {} and vars-of s2
= {}

and ¬(s2 ,t2 ) ∈ trm-ord unfolding orient-lit-def by auto
from ‹vars-of t1 = {}› and ‹vars-of s1 = {}› and ‹¬(s1 ,t1 ) ∈ trm-ord›

have o1 : t1 = s1 ∨ (t1 ,s1 ) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by auto

from ‹vars-of t2 = {}› and ‹vars-of s2 = {}› and ‹¬(s2 ,t2 ) ∈ trm-ord›
have o2 : t2 = s2 ∨ (t2 ,s2 ) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by auto

from ‹¬(s2 ,t2 ) ∈ trm-ord› and assms(1 ) have (s1 ,s2 ) ∈ trm-ord
by (metis assms(1 ) o2 trm-ord-trans transE)

let ?m1 = mset-lit x1
let ?m2 = mset-lit x2
from assms(1 ) and o1 and o2 have (t1 ,s2 ) ∈ trm-ord using trm-ord-trans

trans-def by metis
from this and ‹(s1 ,s2 ) ∈ trm-ord› have

s2max: ∀ x. (x ∈# {# t1 ,t1 ,s1 ,s1 #} −→ (x,s2 ) ∈ trm-ord)
by auto

have {# s2 #} ⊂# {# t2 ,t2 ,s2 ,s2 #} by simp
from ‹{# s2 #} ⊂# {# t2 ,t2 ,s2 ,s2 #}›
have ( {# s2 #}, {# t2 ,t2 ,s2 ,s2 #} ) ∈ mult trm-ord
using trm-ord-trans multiset-order-inclusion [of {# s2 #} {# t2 ,t2 ,s2 ,s2 #}
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trm-ord] by auto
have p1 = neg ∨ p1 = pos using sign.exhaust by auto
then show ?thesis
proof

assume p1 = neg
from this and ‹orient-lit x1 s1 t1 p1 › have x1 = (Neg (Eq t1 s1 )) ∨ x1 =

(Neg (Eq s1 t1 ))
using orient-lit-def by blast

from this have m1 : ?m1 = {# t1 ,t1 ,s1 ,s1 #} using mset-lit.simps by auto

have p2 = neg ∨ p2 = pos using sign.exhaust by auto
then show ?thesis
proof

assume p2 = neg
from this and ‹orient-lit x2 s2 t2 p2 › have x2 = (Neg (Eq t2 s2 )) ∨ x2 =

(Neg (Eq s2 t2 ))
using orient-lit-def by blast

from this have m2 : ?m2 = {# t2 ,t2 ,s2 ,s2 #} using mset-lit.simps by auto
from s2max have ({# t1 ,t1 ,s1 ,s1 #}, {# s2 #}) ∈ mult trm-ord

using mult1-def-lemma [of {# s2 #} {#} s2 {# t1 ,t1 ,s1 ,s1 #} {#
t1 ,t1 ,s1 ,s1 #} trm-ord]

mult-def
by auto

from ‹( {# s2 #}, {# t2 ,t2 ,s2 ,s2 #} ) ∈ mult trm-ord› and ‹({# t1 ,t1 ,s1 ,s1
#}, {# s2 #}) ∈ mult trm-ord›

have ( {# t1 ,t1 ,s1 ,s1 #}, {# t2 ,t2 ,s2 ,s2 #} ) ∈ mult trm-ord
using mult-trm-ord-trans unfolding trans-def by blast

from this and m1 and m2 show ?thesis
using lit-ord-def by auto

next assume p2 = pos
from this and ‹orient-lit x2 s2 t2 p2 › have x2 = (Pos (Eq t2 s2 )) ∨ x2 =

(Pos (Eq s2 t2 ))
using orient-lit-def by blast

from this have m2 : ?m2 = {# t2 ,s2 #} using mset-lit.simps by auto
from s2max have ({# t1 ,t1 ,s1 ,s1 #}, {# s2 #}) ∈ mult trm-ord

using mult1-def-lemma [of {# s2 #} {#} s2 {# t1 ,t1 ,s1 ,s1 #} {#
t1 ,t1 ,s1 ,s1 #} trm-ord]

mult-def
by auto

from this and ‹( {# s2 #}, {# t2 ,t2 ,s2 ,s2 #} ) ∈ mult trm-ord›
have ({# t1 ,t1 ,s1 ,s1 #}, {# t2 ,s2 #}) ∈ mult trm-ord
using mset-ordering-add1 [of {# t1 ,t1 ,s1 ,s1 #} {# s2 #} trm-ord t2 ] by

(auto)
from this and m1 and m2 show ?thesis

using lit-ord-def by auto
qed
next
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assume p1 = pos
from this and ‹orient-lit x1 s1 t1 p1 › have x1 = (Pos (Eq t1 s1 )) ∨ x1 =

(Pos (Eq s1 t1 ))
using orient-lit-def by blast

from this have m1 : ?m1 = {# t1 ,s1 #} using mset-lit.simps by auto
have p2 = neg ∨ p2 = pos using sign.exhaust by auto
then show ?thesis
proof

assume p2 = neg
from this and ‹orient-lit x2 s2 t2 p2 › have x2 = (Neg (Eq t2 s2 )) ∨ x2 =

(Neg (Eq s2 t2 ))
using orient-lit-def by blast

from this have m2 : ?m2 = {# t2 ,t2 ,s2 ,s2 #} using mset-lit.simps by auto
from s2max have ({# t1 ,s1 #}, {# s2 #}) ∈ mult trm-ord

using mult1-def-lemma [of {# s2 #} {#} s2 {# t1 ,s1 #} {# t1 ,s1 #}
trm-ord]

mult-def
by auto

from ‹( {# s2 #}, {# t2 ,t2 ,s2 ,s2 #} ) ∈ mult trm-ord› and ‹({# t1 ,s1
#}, {# s2 #}) ∈ mult trm-ord›

have ( {# t1 ,s1 #}, {# t2 ,t2 ,s2 ,s2 #} ) ∈ mult trm-ord
using mult-trm-ord-trans unfolding trans-def by blast

from this and m1 and m2 show ?thesis
using lit-ord-def by auto

next assume p2 = pos
from this and ‹orient-lit x2 s2 t2 p2 › have x2 = (Pos (Eq t2 s2 )) ∨ x2 =

(Pos (Eq s2 t2 ))
using orient-lit-def by blast

from this have m2 : ?m2 = {# t2 ,s2 #} using mset-lit.simps by auto
from s2max have ({# t1 ,s1 #}, {# s2 #}) ∈ mult trm-ord

using mult1-def-lemma [of {# s2 #} {#} s2 {# t1 ,s1 #} {# t1 ,s1 #}
trm-ord]

mult-def
by auto

from this have ({# t1 ,s1 #}, {# t2 ,s2 #}) ∈ mult trm-ord
using mset-ordering-add1 [of {# t1 ,s1 #} {# s2 #} trm-ord t2 ] by auto

from this and m1 and m2 show ?thesis
using lit-ord-def by auto

qed
qed

qed

lemma lit-ord-neg-lit-lhs:
assumes orient-lit x1 s t1 pos
assumes orient-lit x2 s t2 neg
assumes vars-of-lit x1 = {}
assumes vars-of-lit x2 = {}
shows (x1 ,x2 ) ∈ lit-ord
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proof −
from assms(3 ) and assms(1 ) have vars-of t1 = {} and vars-of s = {}

and ¬(s,t1 ) ∈ trm-ord unfolding orient-lit-def by auto
from assms(4 ) and assms(2 ) have vars-of t2 = {}

and ¬(s,t2 ) ∈ trm-ord unfolding orient-lit-def by auto
from ‹vars-of t1 = {}› and ‹vars-of s = {}› and ‹¬(s,t1 ) ∈ trm-ord›

have o1 : t1 = s ∨ (t1 ,s) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by auto

from ‹vars-of t2 = {}› and ‹vars-of s = {}› and ‹¬(s,t2 ) ∈ trm-ord›
have o2 : t2 = s ∨ (t2 ,s) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by auto

let ?m1 = mset-lit x1
let ?m2 = mset-lit x2
from ‹orient-lit x1 s t1 pos› have x1 = (Pos (Eq t1 s)) ∨ x1 = (Pos (Eq s t1 ))

using orient-lit-def by blast
from this have m1 : ?m1 = {# t1 ,s #} using mset-lit.simps by auto
from ‹orient-lit x2 s t2 neg› have x2 = (Neg (Eq t2 s)) ∨ x2 = (Neg (Eq s t2 ))

using orient-lit-def by blast
from this have m2 : ?m2 = {# t2 ,t2 ,s,s #} using mset-lit.simps by auto
show ?thesis
proof (cases)

assume t1 = s
have ({# s,s #}, {# t2 ,s,s #}) ∈ mult trm-ord

using mult1-def-lemma [of {# t2 ,s,s #} {# s,s #} t2 {# s,s #} {#}
trm-ord]

mult-def by auto
then have ({# s,s #}, {# t2 ,t2 ,s,s #}) ∈ mult trm-ord

using mset-ordering-add1 [of {# s,s #} {# t2 ,s,s #} trm-ord t2 ] by auto
from this and ‹t1 = s› and m1 and m2 show ?thesis using lit-ord-def by

auto
next

assume t1 6= s
from this and o1 have (t1 ,s) ∈ trm-ord by auto
from this have smax: ∀ x. (x ∈# {# t1 #} −→ (x,s) ∈ trm-ord)
by auto

from smax have ({# t1 ,s #}, {# s,s #}) ∈ mult trm-ord
using mult1-def-lemma [of {# s,s #} {# s #} s {# t1 ,s #} {# t1 #}

trm-ord]
mult-def by auto

from this have ({# t1 ,s #}, {# t2 ,s,s #}) ∈ mult trm-ord
using mset-ordering-add1 [of {# t1 ,s #} {# s,s #} trm-ord t2 ] by auto

from this have ({# t1 ,s #}, {# t2 ,t2 ,s,s #}) ∈ mult trm-ord
using mset-ordering-add1 [of {# t1 ,s #} {# t2 ,s,s #} trm-ord t2 ] by

auto
from this and m1 and m2 show ?thesis using lit-ord-def by auto

qed
qed

lemma lit-ord-neg-lit-rhs:
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assumes orient-lit x1 s t1 pos
assumes orient-lit x2 t2 s neg
assumes vars-of-lit x1 = {}
assumes vars-of-lit x2 = {}
shows (x1 ,x2 ) ∈ lit-ord

proof −
from assms(3 ) and assms(1 ) have vars-of t1 = {} and vars-of s = {}

and ¬(s,t1 ) ∈ trm-ord unfolding orient-lit-def by auto
from assms(4 ) and assms(2 ) have vars-of t2 = {}

and ¬(t2 ,s) ∈ trm-ord unfolding orient-lit-def by auto
from ‹vars-of t1 = {}› and ‹vars-of s = {}› and ‹¬(s,t1 ) ∈ trm-ord›

have o1 : t1 = s ∨ (t1 ,s) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by auto

from ‹vars-of t2 = {}› and ‹vars-of s = {}› and ‹¬(t2 ,s) ∈ trm-ord›
have o2 : t2 = s ∨ (s,t2 ) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by auto

let ?m1 = mset-lit x1
let ?m2 = mset-lit x2
from ‹orient-lit x1 s t1 pos› have x1 = (Pos (Eq t1 s)) ∨ x1 = (Pos (Eq s t1 ))

using orient-lit-def by blast
from this have m1 : ?m1 = {# t1 ,s #} using mset-lit.simps by auto
from ‹orient-lit x2 t2 s neg› have x2 = (Neg (Eq t2 s)) ∨ x2 = (Neg (Eq s t2 ))

using orient-lit-def by blast
from this have m2 : ?m2 = {# t2 ,t2 ,s,s #} using mset-lit.simps by auto
show ?thesis
proof (cases)

assume t1 = s
have ({# s,s #}, {# t2 ,s,s #}) ∈ mult trm-ord

using mult1-def-lemma [of {# t2 ,s,s #} {# s,s #} t2 {# s,s #} {#}
trm-ord]

mult-def by auto
then have ({# s,s #}, {# t2 ,t2 ,s,s #}) ∈ mult trm-ord

using mset-ordering-add1 [of {# s,s #} {# t2 ,s,s #} trm-ord t2 ] by auto
from this and ‹t1 = s› and m1 and m2 show ?thesis using lit-ord-def by

auto
next

assume t1 6= s
from this and o1 have (t1 ,s) ∈ trm-ord by auto
from this have smax: ∀ x. (x ∈# {# t1 #} −→ (x,s) ∈ trm-ord)
by auto

from smax have ({# t1 ,s #}, {# s,s #}) ∈ mult trm-ord
using mult1-def-lemma [of {# s,s #} {# s #} s {# t1 ,s #} {# t1 #}

trm-ord]
mult-def by auto

from this have ({# t1 ,s #}, {# t2 ,s,s #}) ∈ mult trm-ord
using mset-ordering-add1 [of {# t1 ,s #} {# s,s #} trm-ord t2 ] by auto

from this have ({# t1 ,s #}, {# t2 ,t2 ,s,s #}) ∈ mult trm-ord
using mset-ordering-add1 [of {# t1 ,s #} {# t2 ,s,s #} trm-ord t2 ] by

auto
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from this and m1 and m2 show ?thesis using lit-ord-def by auto
qed

qed

lemma lit-ord-rhs:
assumes (t1 ,t2 ) ∈ trm-ord
assumes orient-lit x1 s t1 p
assumes orient-lit x2 s t2 p
assumes vars-of-lit x1 = {}
assumes vars-of-lit x2 = {}
shows (x1 ,x2 ) ∈ lit-ord

proof −
from assms(2 ) and assms(4 ) have vars-of t1 = {} and vars-of s = {}

and ¬(s,t1 ) ∈ trm-ord unfolding orient-lit-def by auto
from assms(3 ) and assms(5 ) have vars-of t2 = {}

and ¬(s,t2 ) ∈ trm-ord unfolding orient-lit-def by auto
from ‹vars-of t1 = {}› and ‹vars-of s = {}› and ‹¬(s,t1 ) ∈ trm-ord›

have o1 : t1 = s ∨ (t1 ,s) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by auto

from ‹vars-of t2 = {}› and ‹vars-of s = {}› and ‹¬(s,t2 ) ∈ trm-ord›
have o2 : t2 = s ∨ (t2 ,s) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by auto

let ?m1 = mset-lit x1
let ?m2 = mset-lit x2
have p = pos ∨ p = neg using sign.exhaust by auto
then show ?thesis
proof

assume p = pos
from this and ‹orient-lit x1 s t1 p› have x1 = (Pos (Eq t1 s)) ∨ x1 = (Pos

(Eq s t1 ))
using orient-lit-def by blast

from this have m1 : ?m1 = {# t1 ,s #} using mset-lit.simps by auto
from ‹p = pos› and ‹orient-lit x2 s t2 p› have x2 = (Pos (Eq t2 s)) ∨ x2 =

(Pos (Eq s t2 ))
using orient-lit-def by blast

from this have m2 : ?m2 = {# t2 ,s #} using mset-lit.simps by auto
from assms(1 ) have (∀ b. b ∈# {#t1#} −→ (b, t2 ) ∈ trm-ord) by auto
then have ({# t1 ,s #}, {# t2 ,s #}) ∈ mult trm-ord

using mult1-def-lemma [of {# t2 ,s #} {# s #} t2 {# t1 ,s #} {# t1 #}
trm-ord]

mult-def by auto
from this and m1 and m2 show ?thesis using lit-ord-def by auto

next assume p = neg
from this and ‹orient-lit x1 s t1 p› have x1 = (Neg (Eq t1 s)) ∨ x1 = (Neg

(Eq s t1 ))
using orient-lit-def by blast

from this have m1 : ?m1 = {# t1 ,t1 ,s,s #} using mset-lit.simps by auto
from ‹p = neg› and ‹orient-lit x2 s t2 p› have x2 = (Neg (Eq t2 s)) ∨ x2 =

(Neg (Eq s t2 ))
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using orient-lit-def by blast
from this have m2 : ?m2 = {# t2 ,t2 ,s,s #} using mset-lit.simps by auto
from assms(1 ) have max: (∀ b. b ∈# {#t1 ,t1#} −→ (b, t2 ) ∈ trm-ord) by

auto

have i: {# t2 ,s,s #} = {# s,s,t2 #} by (simp add: add.commute add.left-commute)

have ii: {# t1 ,t1 ,s,s #} = {# s,s,t1 ,t1 #} by (simp add: add.commute
add.left-commute)

from i and ii and max have ({# t1 ,t1 ,s,s #}, {# t2 ,s,s #}) ∈ mult trm-ord
using mult1-def-lemma [of {# t2 ,s,s #} {# s,s #} t2 {# t1 ,t1 ,s,s #} {#

t1 ,t1 #} trm-ord]
mult-def by auto

then have ({# t1 ,t1 ,s,s #}, {# t2 ,t2 ,s,s #}) ∈ mult trm-ord
using mset-ordering-add1 [of {# t1 ,t1 ,s,s #} {# t2 ,s,s #} trm-ord t2 ]

by auto
from this and m1 and m2 show ?thesis using lit-ord-def by auto

qed
qed

We show that the replacement of a term by an equivalent term preserves
the semantics.
lemma trm-rep-preserves-eq-semantics:

assumes fo-interpretation I
assumes (I (subst t1 σ) (subst t2 σ))
assumes (validate-ground-eq I (subst-equation (Eq t1 s) σ))
shows (validate-ground-eq I (subst-equation (Eq t2 s) σ))

proof −
from assms(1 ) have transitive I and symmetric I unfolding

fo-interpretation-def congruence-def equivalence-relation-def by auto
have (subst-equation (Eq t1 s) σ) = (Eq (subst t1 σ) (subst s σ)) by simp
from this and assms(3 ) have I (subst t1 σ) (subst s σ) by simp
from this and assms(2 ) and ‹transitive I › and ‹symmetric I ›

have I (subst t2 σ) (subst s σ)
unfolding transitive-def symmetric-def by metis

have (subst-equation (Eq t2 s) σ) = (Eq (subst t2 σ) (subst s σ)) by simp
from this and ‹I (subst t2 σ) (subst s σ)› show ?thesis by simp

qed

lemma trm-rep-preserves-lit-semantics:
assumes fo-interpretation I
assumes (I (subst t1 σ) (subst t2 σ))
assumes orient-lit-inst L t1 s polarity σ ′

assumes ¬(validate-ground-lit I (subst-lit L σ))
shows ¬validate-ground-lit I (subst-lit (mk-lit polarity (Eq t2 s)) σ)

proof −
from assms(1 ) have transitive I and symmetric I unfolding

fo-interpretation-def congruence-def equivalence-relation-def by auto
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have polarity = pos ∨ polarity = neg using sign.exhaust by auto
then show ?thesis
proof

assume polarity = pos
from this have mk: (mk-lit polarity (Eq t2 s)) = (Pos (Eq t2 s)) by auto
from ‹polarity = pos› and assms(3 ) have L = (Pos (Eq t1 s)) ∨ L = (Pos

(Eq s t1 ))
unfolding orient-lit-inst-def by auto

then show ?thesis
proof

assume L = (Pos (Eq t1 s))
from this and assms(4 ) have ¬I (subst t1 σ) (subst s σ) by simp
from this and assms(2 ) and ‹transitive I › and ‹symmetric I ›

have ¬I (subst t2 σ) (subst s σ)
unfolding transitive-def symmetric-def by metis

from this and mk show ?thesis by simp
next

assume L = (Pos (Eq s t1 ))
from this and assms(4 ) have ¬I (subst s σ) (subst t1 σ) by simp
from this and assms(2 ) and ‹transitive I › and ‹symmetric I ›

have ¬I (subst t2 σ) (subst s σ)
unfolding transitive-def symmetric-def by metis

from this and mk show ?thesis by simp
qed
next
assume polarity = neg
from this have mk: (mk-lit polarity (Eq t2 s)) = (Neg (Eq t2 s)) by auto
from ‹polarity = neg› and assms(3 ) have L = (Neg (Eq t1 s)) ∨ L = (Neg

(Eq s t1 ))
unfolding orient-lit-inst-def by auto

then show ?thesis
proof

assume L = (Neg (Eq t1 s))
from this and assms(4 ) have I (subst t1 σ) (subst s σ) by simp
from this and assms(2 ) and ‹transitive I › and ‹symmetric I ›

have I (subst t2 σ) (subst s σ)
unfolding transitive-def symmetric-def by metis

from this and mk show ?thesis by simp
next

assume L = (Neg (Eq s t1 ))
from this and assms(4 ) have I (subst s σ) (subst t1 σ) by simp
from this and assms(2 ) and ‹transitive I › and ‹symmetric I ›

have I (subst t2 σ) (subst s σ)
unfolding transitive-def symmetric-def by metis

from this and mk show ?thesis by simp
qed

qed
qed
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lemma subterms-dominated :
assumes maximal-literal L C
assumes orient-lit L t s p
assumes u ∈ subterms-of-cl C
assumes vars-of-lit L = {}
assumes vars-of-cl C = {}
shows u = t ∨ (u,t) ∈ trm-ord

proof (rule ccontr)
assume neg-h: ¬(u = t ∨ (u,t) ∈ trm-ord)
from assms(5 ) and assms(3 ) have vars-of u = {} using subterm-vars by blast
from ‹vars-of-lit L = {}› and ‹orient-lit L t s p› have vars-of s = {} and vars-of

t = {}
and ¬(t,s) ∈ trm-ord unfolding orient-lit-def by auto

from assms(3 ) obtain L ′ where u ∈ subterms-of-lit L ′ and L ′ ∈ C by auto
from assms(5 ) and ‹L ′ ∈ C › have vars-of-lit L ′ = {} using vars-of-cl.simps

by auto
from ‹u ∈ subterms-of-lit L ′› obtain t ′ s ′ p ′ where orient-lit L ′ t ′ s ′ p ′

and u ∈ subterms-of t ′ ∪ subterms-of s ′ unfolding orient-lit-def
by (metis Un-commute mset-lit.cases subterms-of-eq.simps subterms-of-lit.simps(1 )

subterms-of-lit.simps(2 ) trm-ord-wf wf-asym)
from ‹u ∈ subterms-of t ′ ∪ subterms-of s ′› have u ∈ subterms-of t ′ ∨ u ∈

subterms-of s ′ by auto
then show False
proof

assume u ∈ subterms-of t ′

from this have u = t ′ ∨ (u,t ′) ∈ trm-ord
using subterms-of-trm-ord-eq [of u t ′] by auto

from neg-h and ‹vars-of u = {}› and ‹vars-of t = {}› have (t,u) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by auto

from this and ‹u = t ′ ∨ (u,t ′) ∈ trm-ord› have (t,t ′) ∈ trm-ord
using trm-ord-trans unfolding trans-def by metis

from this and ‹vars-of-lit L ′ = {}› and assms(4 ) and
‹orient-lit L t s p› and ‹orient-lit L ′ t ′ s ′ p ′›

have (L,L ′) ∈ lit-ord using lit-ord-dominating-term by blast
from this and assms(1 ) and ‹L ′∈ C › show False unfolding maximal-literal-def

by auto
next

assume u ∈ subterms-of s ′

from this have u = s ′ ∨ (u,s ′) ∈ trm-ord
using subterms-of-trm-ord-eq [of u s ′] by auto

from neg-h and ‹vars-of u = {}› and ‹vars-of t = {}› have (t,u) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by auto

from this and ‹u = s ′ ∨ (u,s ′) ∈ trm-ord› have (t,s ′) ∈ trm-ord
using trm-ord-trans unfolding trans-def by metis

from this and ‹vars-of-lit L ′ = {}› and assms(4 ) and
‹orient-lit L t s p› and ‹orient-lit L ′ t ′ s ′ p ′›

have (L,L ′) ∈ lit-ord using lit-ord-dominating-term by blast
from this and assms(1 ) and ‹L ′∈ C › show False unfolding maximal-literal-def

90



by auto
qed

qed

A term dominates an expression if the expression contains no strictly greater
subterm:
fun dominate-eq:: ′a trm ⇒ ′a equation ⇒ bool

where (dominate-eq t (Eq u v)) = ((t,u) /∈ trm-ord ∧ (t,v) /∈ trm-ord)

fun dominate-lit:: ′a trm ⇒ ′a literal ⇒ bool
where (dominate-lit t (Pos e)) = (dominate-eq t e) |

(dominate-lit t (Neg e)) = (dominate-eq t e)

definition dominate-cl:: ′a trm ⇒ ′a clause ⇒ bool
where (dominate-cl t C ) = (∀ x ∈ C . (dominate-lit t x))

definition no-disequation-in-cl:: ′a trm ⇒ ′a clause ⇒ bool
where (no-disequation-in-cl t C ) = (∀ u v.
(Neg (Eq u v) ∈ C −→ (u 6= t ∧ v 6= t)))

definition no-taut-eq-in-cl:: ′a trm ⇒ ′a clause ⇒ bool
where (no-taut-eq-in-cl t C ) = (Pos (Eq t t) /∈ C )

definition eq-occurs-in-cl
where
(eq-occurs-in-cl t s C σ) = (∃L t ′ s ′. (L ∈ C ) ∧ (orient-lit-inst L t ′ s ′ pos σ)
∧ (t = subst t ′ σ) ∧ (s = subst s ′ σ))

4.4 Inference Rules

We now define the rules of the superposition calculus. Standard superpo-
sition is a refinement of the paramodulation rule based on the following
ideas:
(i) the replacement of a term by a bigger term is forbidden;
(ii) the replacement can be performed only in the maximal term of a maximal
(or selected) literal;
(iii) replacement of variables is forbidden.
Our definition imposes additional conditions on the positions on which the
replacements are allowed: any superposition inference inside a term occur-
ring in the set attached to the extended clause is blocked.

We consider two different kinds of inferences: ground or first-order. Ground
inferences are those needed for completeness, first-order inferences are those
actually used by theorem provers. For conciseness, these two notions of
inferences are defined simultaneously, and a parameter is added to the cor-
responding functions to determine whether the inference is ground or first-
order.
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datatype inferences = Ground | FirstOrder

The following function checks whether a given substitution is a unifier of
two terms. If the inference is first-order then the unifier must be maximal.
definition ck-unifier where

ck-unifier t s σ type ←→ (if type = FirstOrder then min-IMGU σ t s else Unifier
σ t s)

lemma ck-unifier-thm:
assumes ck-unifier t s σ k
shows (subst t σ) = (subst s σ)
by (metis assms min-IMGU-def IMGU-iff-Idem-and-MGU MGU-is-Unifier ck-unifier-def

Unifier-def )

lemma subst-preserve-ck-unifier :
assumes ck-unifier t s σ k
shows ck-unifier t s (comp σ η) Ground

proof −
let ?σ ′ = (comp σ η)
from assms have (subst t σ) = (subst s σ)

using ck-unifier-thm by auto
then have (subst t ?σ ′) = (subst s ?σ ′) by simp
then show ?thesis unfolding ck-unifier-def Unifier-def by auto

qed

The following function checks whether a given term is allowed to be reduced
according to the strategy described above, i.e., that it does not occur in the
set of terms associated with the clause (we do not assume that the set of
irreducible terms is closed under subterm thus we use the function occurs-in
instead of a mere membership test.
definition allowed-redex

where allowed-redex t C σ = (¬ (∃ s ∈ (trms-ecl C ).
(occurs-in (subst t σ) (subst s σ))))

The following function allows one to compute the set of irreducible terms
attached to the conclusion of an inference. The computation depends on
the type of the considered inference: for ground inferences the entire set of
irreducible terms is kept. For first-order inferences, the function filter-trms
is called to remove some of the terms (see also the function dom-trms below).
definition get-trms

where
get-trms C E t = (if (t = FirstOrder) then (filter-trms C E) else E)

The following definition provides the conditions that allow one to propagate
irreducible terms from the parent clauses to the conclusion. A term can
be propagated if it is strictly lower than a term occurring in the derived
clause, or if it occurs in a negative literal of the derived clause. Note that
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this condition is slightly more restrictive than that of the basic superposi-
tion calculus, because maximal terms occurring in maximal positive literals
cannot be kept in the set of irreducible terms. However in our definition,
terms can be propagated even if they do not occur in the parent clause or in
the conclusion. Extended clauses whose set of irreducible terms fulfills this
property are called well-constrained.
definition dom-trm

where dom-trm t C =
(∃ L u v p. (L ∈ C ∧ (decompose-literal L u v p)
∧ (( (p = neg ∧ t = u) ∨ (t,u) ∈ trm-ord))))

lemma dom-trm-lemma:
assumes dom-trm t C
shows ∃ u. (u ∈ (subterms-of-cl C ) ∧ (u = t ∨ (t,u) ∈ trm-ord))

proof −
from assms(1 ) obtain L u v p where

L ∈ C decompose-literal L u v p (u = t ∨ (t,u) ∈ trm-ord)
unfolding dom-trm-def by blast

from ‹decompose-literal L u v p› have u ∈ subterms-of-lit L
unfolding decompose-literal-def decompose-equation-def using root-subterm by

force
from this and ‹L ∈ C › have u ∈ (subterms-of-cl C ) by auto
from this and ‹(u = t ∨ (t,u) ∈ trm-ord)› show ?thesis by auto

qed

definition dom-trms
where

dom-trms C E = { x. (x ∈ E) ∧ (dom-trm x C ) }

lemma dom-trms-subset:
shows (dom-trms C E ) ⊆ E

unfolding dom-trms-def by auto

lemma dom-trm-vars:
assumes dom-trm t C
shows vars-of t ⊆ vars-of-cl C

proof −
from assms obtain L u v p where L ∈ C decompose-literal L u v p t = u ∨

(t,u) ∈ trm-ord
unfolding dom-trm-def by auto

from ‹t = u ∨ (t,u) ∈ trm-ord› have vars-of t ⊆ vars-of u using trm-ord-vars
by blast

from this and ‹decompose-literal L u v p› have vars-of t ⊆ vars-of-lit L using
decompose-literal-vars by blast

from this show ?thesis using ‹L ∈ C › by auto
qed

definition well-constrained
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where well-constrained C = (∀ y. (y ∈ trms-ecl C −→ dom-trm y (cl-ecl C )))

The next function allows one to check that a set of terms is in normal form.
The argument f denotes the function mapping a term to its normal form (we
do not assume that f is compatible with the term structure at this point).
definition all-trms-irreducible

where (all-trms-irreducible E f ) = (∀ x y. (x ∈ E −→ occurs-in y x −→ (f y) =
y))

Superposition We now define the superposition rule. Note that we as-
sume that the parent clauses are variable-disjoint, but we do not explicitly
rename them at this point, thus for completeness we will have to assume
that the clause sets are closed under renaming. During the application of
the rule, all the terms occurring at a position that is lower than that of
the reduced term can be added in the set of irreducible terms attached to
the conclusion (the intuition is that we assume that the terms occurring at
minimal positions are reduced first). In particular, every proper subterm
of the reduced term u ′ is added in the set of irreducible terms, thus every
application of the superposition rule in a term introduced by unification will
be blocked.
Clause P1 is the “into” clause and clause P2 is the “from” clause.
definition superposition ::

′a eclause ⇒ ′a eclause ⇒ ′a eclause ⇒ ′a subst ⇒ inferences ⇒ ′a clause ⇒ bool
where

(superposition P1 P2 C σ k C ′) =
(∃L t s u v M p Cl-P1 Cl-P2 Cl-C polarity t ′ u ′ L ′ trms-C .

(L ∈ Cl-P1 ) ∧ (M ∈ Cl-P2 ) ∧ (eligible-literal L P1 σ) ∧ (eligible-literal M
P2 σ)

∧ (variable-disjoint P1 P2 )
∧ (Cl-P1 = (cl-ecl P1 )) ∧ (Cl-P2 = (cl-ecl P2 ))
∧ (¬ is-a-variable u ′)
∧ (allowed-redex u ′ P1 σ)
∧ trms-C = (get-trms Cl-C (dom-trms Cl-C (subst-set

((trms-ecl P1 ) ∪ (trms-ecl P2 ) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord P1 t) ∧ (subterm t q r) }) σ)) k)

∧ (C = (Ecl Cl-C trms-C ))
∧ (orient-lit-inst M u v pos σ)
∧ (orient-lit-inst L t s polarity σ)
∧ ((subst u σ) 6= (subst v σ))
∧ (subterm t p u ′)
∧ (ck-unifier u ′ u σ k)
∧ (replace-subterm t p v t ′)
∧ ((k = FirstOrder) ∨ ( (subst-lit M σ),(subst-lit L σ)) ∈ lit-ord)
∧ ((k = FirstOrder) ∨ (strictly-maximal-literal P2 M σ))
∧ (L ′ = mk-lit polarity (Eq t ′ s))
∧ (Cl-C = (subst-cl C ′ σ))
∧ (C ′ = (Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } )))
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Reflexion We now define the Reflexion rule, which deletes contradictory
literals (after unification). All the terms occurring in these literals can be
added into the set of irreducible terms (intuitively, we can assume that these
terms have been normalized before applying the rule). It is sufficient to add
the term t, since every term occurring in the considered literal is a subterm
of t (after unification).
definition reflexion ::

′a eclause ⇒ ′a eclause ⇒ ′a subst ⇒ inferences ⇒ ′a clause ⇒ bool
where
(reflexion P C σ k C ′) =
(∃L1 t s Cl-P Cl-C trms-C .
(eligible-literal L1 P σ)
∧ (L1 ∈ (cl-ecl P)) ∧ (Cl-C = (cl-ecl C )) ∧ (Cl-P = (cl-ecl P))
∧ (orient-lit-inst L1 t s neg σ)
∧ (ck-unifier t s σ k)
∧ (C = (Ecl Cl-C trms-C ))
∧ trms-C = (get-trms Cl-C

(dom-trms Cl-C (subst-set ( (trms-ecl P) ∪ { t } ) σ)) k)
∧ (Cl-C = (subst-cl C ′ σ))
∧ (C ′ = ((Cl-P − { L1 }) )))

Factorization We now define the equational factorization rule, which
merges two equations sharing the same left-hand side (after unification),
if the right-hand sides are equivalent. Here, contrarily to the previous rule,
the term t cannot be added into the set of irreducible terms, because we
cannot assume that this term is in normal form (e.g., the application of the
equational factorization rule may yield a new rewrite rule of left-hand side
t). However, all proper subterms of t can be added.
definition factorization ::

′a eclause ⇒ ′a eclause ⇒ ′a subst ⇒ inferences ⇒ ′a clause ⇒ bool
where
(factorization P C σ k C ′) =
(∃L1 L2 L ′ t s u v Cl-P Cl-C trms-C .
(eligible-literal L1 P σ)
∧ (L1 ∈ (cl-ecl P)) ∧ (L2 ∈ (cl-ecl P) − { L1 }) ∧ (Cl-C = (cl-ecl C )) ∧

(Cl-P = (cl-ecl P))
∧ (orient-lit-inst L1 t s pos σ)
∧ (orient-lit-inst L2 u v pos σ)
∧ ((subst t σ) 6= (subst s σ))
∧ ((subst t σ) 6= (subst v σ))
∧ (ck-unifier t u σ k)
∧ (L ′ = Neg (Eq s v))
∧ (C = (Ecl Cl-C trms-C )
∧ trms-C = (get-trms Cl-C

(dom-trms Cl-C (subst-set ( (trms-ecl P) ∪ (proper-subterms-of t) ) σ)))
k)

∧ (Cl-C = (subst-cl C ′ σ))
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∧ (C ′ = ( (Cl-P − { L2 }) ∪ { L ′ } )))

4.5 Derivations

We now define the set of derivable clauses by induction. Note that redun-
dancy criteria are not taken into account at this point. Our definition of
derivations also covers renaming.
definition derivable :: ′a eclause ⇒ ′a eclause set
⇒ ′a eclause set ⇒ ′a subst ⇒ inferences ⇒ ′a clause ⇒ bool

where
(derivable C P S σ k C ′) =

((∃P1 P2 . (P1 ∈ S ∧ P2 ∈ S ∧ P = { P1 , P2 } ∧ superposition P1 P2 C
σ k C ′))
∨ (∃P1 . (P1 ∈ S ∧ P = { P1 } ∧ factorization P1 C σ k C ′))
∨ (∃P1 . (P1 ∈ S ∧ P = { P1 } ∧ reflexion P1 C σ k C ′)))

lemma derivable-premisses:
assumes derivable C P S σ k C ′

shows P ⊆ S
using assms derivable-def by auto

inductive derivable-ecl :: ′a eclause ⇒ ′a eclause set ⇒ bool
where

init [simp, intro!]: C ∈ S =⇒ (derivable-ecl C S) |
rn [simp, intro!]: (derivable-ecl C S) =⇒ (renaming-cl C D) =⇒ (derivable-ecl

D S) |
deriv [simp, intro!]: (∀ x. (x ∈ P −→ (derivable-ecl x S)))
=⇒ (derivable C P S ′ σ FirstOrder C ′) =⇒ (derivable-ecl C S)

We define a notion of instance by associating clauses with ground substitu-
tions.
definition instances:: ′a eclause set ⇒ ( ′a eclause × ′a subst) set

where instances S = { x. ∃C σ. (C ∈ S ∧ (ground-clause (subst-cl (cl-ecl C )
σ))
∧ x = ( C ,σ))}

definition clset-instances:: ( ′a eclause × ′a subst) set ⇒ ′a clause set
where

clset-instances S = { C . ∃ x. (x ∈ S ∧ C = (subst-cl (cl-ecl (fst x)) (snd x))) }

definition grounding-set
where grounding-set S σ = (∀ x. (x ∈ S −→ (ground-clause (subst-cl (cl-ecl x)

σ))))
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5 Soundness

In this section, we prove that the conclusion of every inference rule is a
logical consequence of the premises. Thus a clause set is unsatisfiable if
the empty clause is derivable. For each rule, we first prove that all ground
instances of the conclusion are entailed by the corresponding instances of
the parent clauses, then we lift the result to first-order clauses. The proof is
standard and straightforward, but note that we also prove that the derived
clauses are finite and well-constrained.
lemma cannot-validate-contradictary-literals :

assumes l = Neg (Eq t t)
assumes fo-interpretation I
shows ¬ (validate-ground-lit I l)

proof −
from assms(2 ) have congruence I unfolding fo-interpretation-def by auto
then have I t t unfolding congruence-def reflexive-def equivalence-relation-def

by auto
from this and assms(1 ) show ?thesis by auto

qed

lemma ground-reflexion-is-sound :
assumes finite (cl-ecl C )
assumes reflexion C D σ k C ′

assumes (ground-clause (subst-cl (cl-ecl D) ϑ))
shows clause-entails-clause (subst-cl (subst-cl (cl-ecl C ) σ) ϑ)

(subst-cl (cl-ecl D) ϑ)
proof (rule ccontr)

let ?C = (cl-ecl C )
let ?D = (cl-ecl D)
let ?C ′ = (subst-cl (subst-cl (cl-ecl C ) σ) ϑ)
let ?D ′ = (subst-cl (cl-ecl D) ϑ)
assume ¬ (clause-entails-clause ?C ′ ?D ′)
then obtain I where validate-clause I ?C ′ and ¬ (validate-clause I ?D ′)

fo-interpretation I
unfolding clause-entails-clause-def by auto

from assms(2 ) obtain L1 t s where
?D = (subst-cl (?C − { L1 }) σ)
and orient-lit-inst L1 t s neg σ and ck-unifier t s σ k

using reflexion-def [of C D σ k] by auto
from assms(1 ) have finite (subst-cl (subst-cl ?C σ) ϑ) by auto
then obtain η where i: ground-clause (subst-cl

(subst-cl (subst-cl ?C σ) ϑ) η)
using ground-instance-exists [of (subst-cl (subst-cl ?C σ) ϑ)]
by auto

let ?CC = (subst-cl (subst-cl (subst-cl ?C σ) ϑ) η)
let ?σ ′′ = comp σ ϑ
let ?σ ′ = comp ?σ ′′ η
have ?CC = (subst-cl (subst-cl ?C ?σ ′′) η)
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using composition-of-substs-cl [of ?C ] by auto
then have ?CC = (subst-cl ?C ?σ ′)

using composition-of-substs-cl [of ?C ] by auto
from ‹validate-clause I (subst-cl (subst-cl (cl-ecl C ) σ) ϑ)›

have validate-ground-clause I ?CC using i validate-clause.simps by blast
then obtain l ′ where l ′ ∈ ?CC and validate-ground-lit I l ′ by auto
from ‹l ′ ∈ ?CC › and ‹?CC = (subst-cl ?C ?σ ′)› obtain l where

l ∈ ?C and l ′ = (subst-lit l ?σ ′) using subst-cl.simps by blast
have subst-lit l σ ∈ ?D
proof (rule ccontr)

assume subst-lit l σ /∈ ?D
from this and ‹?D = (subst-cl (?C − { L1 }) σ)› and ‹l ∈ ?C ›

have l = L1 by auto
from this and ‹orient-lit-inst L1 t s neg σ› have l = (Neg (Eq t s)) ∨ l = (Neg

(Eq s t))
unfolding orient-lit-inst-def by auto

from ‹ck-unifier t s σ k› have subst t σ = subst s σ
using ck-unifier-thm by auto

then have subst (subst (subst t σ) ϑ) η =
subst (subst (subst s σ) ϑ) η by auto

then have (subst t ?σ ′) = subst s ?σ ′ by auto
from this and ‹l = (Neg (Eq t s)) ∨ l = (Neg (Eq s t))›

have (subst-lit l ?σ ′) = (Neg (Eq (subst t ?σ ′) (subst t ?σ ′)))
by auto

from this and ‹fo-interpretation I › have ¬ (validate-ground-lit I (subst-lit l
?σ ′))

using cannot-validate-contradictary-literals [of (subst-lit l ?σ ′) (subst t ?σ ′) I ]
by auto

from this and ‹l ′ = subst-lit l ?σ ′› and ‹validate-ground-lit I l ′› show False
by auto

qed
from ‹subst-lit l σ ∈ ?D› and ‹l ′ = subst-lit l ?σ ′›

have l ′ ∈ (subst-cl (subst-cl ?D ϑ) η)
using subst-cl.simps composition-of-substs-lit mem-Collect-eq
by (metis (mono-tags, lifting))

from this and ‹validate-ground-lit I l ′› have
validate-ground-clause I (subst-cl (subst-cl ?D ϑ) η) by auto

from ‹ground-clause (subst-cl ?D ϑ)› have
(subst-cl ?D ϑ) = (subst-cl (subst-cl ?D ϑ) η)
using substs-preserve-ground-clause [of (subst-cl ?D ϑ) η] by blast

from this and ‹validate-ground-clause I (subst-cl (subst-cl ?D ϑ) η)›
have validate-ground-clause I (subst-cl ?D ϑ) by force

from this and assms(3 ) and ‹¬ validate-clause I (subst-cl (cl-ecl D) ϑ)› show
False

using substs-preserve-ground-clause validate-clause.elims(3 ) by metis
qed

lemma reflexion-is-sound :
assumes finite (cl-ecl C )
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assumes reflexion C D σ k C ′

shows clause-entails-clause (cl-ecl C ) (cl-ecl D)
proof (rule ccontr)

let ?C = (cl-ecl C )
let ?D = (cl-ecl D)
assume ¬ (clause-entails-clause ?C ?D)
then obtain I where validate-clause I ?C and ¬ (validate-clause I ?D) fo-interpretation

I
unfolding clause-entails-clause-def by auto

from ‹¬ (validate-clause I ?D)› obtain ϑ
where D-false: ¬ (validate-ground-clause I (subst-cl ?D ϑ))

and (ground-clause (subst-cl ?D ϑ)) by auto
have validate-clause I (subst-cl (subst-cl ?C σ) ϑ)

using ‹validate-clause I (cl-ecl C )› instances-are-entailed by blast
from this and assms(1 ) and assms(2 ) have validate-clause I (subst-cl ?D ϑ)

using ground-reflexion-is-sound unfolding clause-entails-clause-def
using ‹fo-interpretation I › ‹ground-clause (subst-cl (cl-ecl D) ϑ)› by blast

from this and D-false show False
by (metis ‹ground-clause (subst-cl (cl-ecl D) ϑ)›
substs-preserve-ground-clause validate-clause.elims(1 ))

qed

lemma orient-lit-semantics-pos :
assumes fo-interpretation I
assumes orient-lit-inst l u v pos η
assumes validate-ground-lit I (subst-lit l σ)
shows I (subst u σ) (subst v σ)

proof −
let ?u = subst u σ
let ?v = subst v σ
from assms(2 ) have l = (Pos (Eq u v)) ∨ l = (Pos (Eq v u)) using ori-

ent-lit-inst-def by auto
from this and assms(3 ) have validate-ground-eq I (Eq ?u ?v) ∨ validate-ground-eq

I (Eq ?v ?u)
by auto

then have I ?u ?v ∨ I ?v ?u by auto
from this and ‹fo-interpretation I › show I ?u ?v

unfolding fo-interpretation-def congruence-def equivalence-relation-def sym-
metric-def by blast
qed

lemma orient-lit-semantics-neg :
assumes fo-interpretation I
assumes orient-lit-inst l u v neg ϑ
assumes validate-ground-lit I (subst-lit l σ)
shows ¬I (subst u σ) (subst v σ)

proof −
let ?u = subst u σ
let ?v = subst v σ
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from assms(2 ) have l = (Neg (Eq u v)) ∨ l = (Neg (Eq v u)) using ori-
ent-lit-inst-def by auto

from this and assms(3 ) have ¬validate-ground-eq I (Eq ?u ?v) ∨ ¬vali-
date-ground-eq I (Eq ?v ?u)

by auto
then have ¬I ?u ?v ∨ ¬I ?v ?u by auto
from this and ‹fo-interpretation I › show ¬I ?u ?v

unfolding fo-interpretation-def congruence-def equivalence-relation-def sym-
metric-def by blast
qed

lemma orient-lit-semantics-replacement :
assumes fo-interpretation I
assumes orient-lit-inst l u v polarity ϑ
assumes validate-ground-lit I (subst-lit l σ)
assumes I (subst u σ) (subst u ′ σ)
shows validate-ground-lit I (subst-lit (mk-lit polarity (Eq u ′ v)) σ)

proof −
from assms(2 ) obtain e where l = Pos e ∨ l = Neg e and e = Eq u v ∨ e =

Eq v u
unfolding orient-lit-inst-def by auto

have polarity = pos ∨ polarity = neg using sign.exhaust by blast
then show ?thesis
proof

assume polarity = pos
from this and assms(1 ) and assms(2 ) and ‹validate-ground-lit I (subst-lit l

σ)› have
I (subst u σ) (subst v σ) using orient-lit-semantics-pos by auto

from this and assms(1 ) and ‹I (subst u σ) (subst u ′ σ)›
have I (subst u ′ σ) (subst v σ) unfolding fo-interpretation-def
congruence-def equivalence-relation-def symmetric-def transitive-def by blast

from this and ‹polarity = pos› show ?thesis by auto
next

assume polarity = neg
from this and assms(1 ) and assms(2 ) and ‹validate-ground-lit I (subst-lit l

σ)› have
¬I (subst u σ) (subst v σ) using orient-lit-semantics-neg
by blast

from this and assms(1 ) and ‹I (subst u σ) (subst u ′ σ)›
have ¬I (subst u ′ σ) (subst v σ) unfolding fo-interpretation-def
congruence-def equivalence-relation-def symmetric-def transitive-def by blast

from this and ‹polarity = neg› show ?thesis by auto
qed

qed

lemma ground-factorization-is-sound :
assumes finite (cl-ecl C )
assumes factorization C D σ k C ′

assumes (ground-clause (subst-cl (cl-ecl D) ϑ))
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shows clause-entails-clause (subst-cl (subst-cl (cl-ecl C ) σ) ϑ)
(subst-cl (cl-ecl D) ϑ)

proof (rule ccontr)
let ?C = (cl-ecl C )
let ?D = (cl-ecl D)
assume ¬ clause-entails-clause (subst-cl (subst-cl (cl-ecl C ) σ) ϑ)

(subst-cl (cl-ecl D) ϑ)
then obtain I where

validate-clause I (subst-cl (subst-cl (cl-ecl C ) σ) ϑ) and
¬ (validate-clause I (subst-cl (cl-ecl D) ϑ)) and fo-interpretation I

unfolding clause-entails-clause-def by auto
from assms(2 ) obtain L1 L2 L ′ t s u v where

orient-lit-inst L1 t s pos σ and orient-lit-inst L2 u v pos σ and ck-unifier t u
σ k

and L ′ = Neg (Eq s v)
and (?D = (subst-cl ( (?C − { L2 }) ∪ { L ′ } )) σ)
and L1 6= L2
and L1 ∈ ?C

using factorization-def by auto

from assms(1 ) have finite (subst-cl (subst-cl ?C σ) ϑ) by auto
then obtain η where i: ground-clause (subst-cl

(subst-cl (subst-cl ?C σ) ϑ) η)
using ground-instance-exists [of (subst-cl (subst-cl ?C σ) ϑ)]
by auto

let ?CC = (subst-cl (subst-cl (subst-cl ?C σ) ϑ) η)
let ?σ ′′ = comp σ ϑ
let ?σ ′ = comp ?σ ′′ η
have ?CC = (subst-cl (subst-cl ?C ?σ ′′) η)

using composition-of-substs-cl [of ?C ] by auto
then have ?CC = (subst-cl ?C ?σ ′)

using composition-of-substs-cl [of ?C ] by auto
from ‹validate-clause I (subst-cl (subst-cl (cl-ecl C ) σ) ϑ)›

have validate-ground-clause I ?CC using i validate-clause.simps by blast
then obtain l ′ where l ′ ∈ ?CC and validate-ground-lit I l ′ by auto
from ‹l ′ ∈ ?CC › and ‹?CC = (subst-cl ?C ?σ ′)› obtain l where

l ∈ ?C and l ′ = (subst-lit l ?σ ′) using subst-cl.simps by blast
from ‹¬ validate-clause I (subst-cl (cl-ecl D) ϑ)›
have ¬ validate-ground-clause I (subst-cl ?D ϑ)
using assms(3 ) substs-preserve-ground-clause validate-clause.elims(3 ) by metis

from ‹ground-clause (subst-cl ?D ϑ)› have
(subst-cl ?D ϑ) = (subst-cl (subst-cl ?D ϑ) η)
using substs-preserve-ground-clause [of (subst-cl ?D ϑ) η] by blast

from this and ‹¬ validate-ground-clause I (subst-cl ?D ϑ)›
have ¬ validate-ground-clause I (subst-cl (subst-cl ?D ϑ) η) by force

from ‹(?D = (subst-cl ( (?C − { L2 }) ∪ { L ′ } )) σ)›
have (subst-lit L ′ σ) ∈ ?D by auto

then have
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(subst-lit (subst-lit (subst-lit L ′ σ) ϑ) η)
∈ (subst-cl (subst-cl ?D ϑ) η)

by auto
from this and ‹¬ validate-ground-clause I (subst-cl (subst-cl ?D ϑ) η)›

have ¬validate-ground-lit I (subst-lit (subst-lit (subst-lit L ′ σ) ϑ) η)
by auto

from this and ‹L ′= Neg (Eq s v)› have
I (subst (subst (subst s σ) ϑ) η)

(subst (subst (subst v σ) ϑ) η) by auto
from this have I (subst s ?σ ′) (subst v ?σ ′) by simp

have subst-lit l σ ∈ ?D
proof (rule ccontr)

assume subst-lit l σ /∈ ?D
from this and ‹(?D = (subst-cl ( (?C − { L2 }) ∪ { L ′ } )) σ)› and ‹l ∈

?C ›
have l = L2 by auto

from ‹ck-unifier t u σ k› have subst t σ = subst u σ
using ck-unifier-thm by auto

then have subst (subst (subst t σ) ϑ) η =
subst (subst (subst u σ) ϑ) η by auto

then have (subst t ?σ ′) = subst u ?σ ′ by auto
from ‹validate-ground-lit I l ′› and ‹l ′ = (subst-lit l ?σ ′)› have

validate-ground-lit I (subst-lit l ?σ ′) by auto

from this and ‹fo-interpretation I › and ‹l = L2 › and ‹orient-lit-inst L2 u v
pos σ›

have I (subst u ?σ ′) (subst v ?σ ′) using orient-lit-semantics-pos
by blast

from this and ‹fo-interpretation I › and ‹I (subst s ?σ ′) (subst v ?σ ′)›
have I (subst u ?σ ′) (subst s ?σ ′)
unfolding fo-interpretation-def congruence-def equivalence-relation-def

symmetric-def transitive-def by blast
from this and ‹(subst t ?σ ′) = subst u ?σ ′›

have I (subst t ?σ ′) (subst s ?σ ′) by auto
from this have validate-ground-eq I (subst-equation (Eq t s) ?σ ′)

by auto

from ‹I (subst t ?σ ′) (subst s ?σ ′)› and ‹fo-interpretation I ›
have I (subst s ?σ ′) (subst t ?σ ′)
unfolding fo-interpretation-def congruence-def equivalence-relation-def

symmetric-def by auto
from this have validate-ground-eq I (subst-equation (Eq s t) ?σ ′)

by auto

from ‹orient-lit-inst L1 t s pos σ› have L1 = (Pos (Eq t s)) ∨ L1 = (Pos (Eq
s t))

unfolding orient-lit-inst-def by auto
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from this and ‹validate-ground-eq I (subst-equation (Eq s t) ?σ ′)› and
‹validate-ground-eq I (subst-equation (Eq t s) ?σ ′)›
have validate-ground-lit I (subst-lit L1 ?σ ′)

by auto
from ‹L1 ∈ ?C › and ‹?D = (subst-cl ( (?C − { L2 }) ∪ { L ′ } )) σ› and

‹L1 6= L2 ›
have (subst-lit L1 σ) ∈ ?D
by auto

then have
(subst-lit (subst-lit (subst-lit L1 σ) ϑ) η)
∈ (subst-cl (subst-cl ?D ϑ) η) by auto

then have (subst-lit L1 ?σ ′) ∈ (subst-cl (subst-cl ?D ϑ) η)
using composition-of-substs-lit by metis

from this and ‹validate-ground-lit I (subst-lit L1 ?σ ′)› and
‹¬ validate-ground-clause I (subst-cl (subst-cl ?D ϑ) η)›
show False by auto

qed

from ‹subst-lit l σ ∈ ?D› and ‹l ′ = subst-lit l ?σ ′›
have l ′ ∈ (subst-cl (subst-cl ?D ϑ) η)
using subst-cl.simps composition-of-substs-lit mem-Collect-eq
by (metis (mono-tags, lifting))

from this and ‹validate-ground-lit I l ′› have
validate-ground-clause I (subst-cl (subst-cl ?D ϑ) η) by auto

from this and ‹¬ validate-ground-clause I (subst-cl (subst-cl ?D ϑ) η)›
show False by blast

qed

lemma factorization-is-sound :
assumes finite (cl-ecl C )
assumes factorization C D σ k C ′

shows clause-entails-clause (cl-ecl C ) (cl-ecl D)
proof (rule ccontr)

let ?C = (cl-ecl C )
let ?D = (cl-ecl D)
assume ¬ (clause-entails-clause ?C ?D)
then obtain I where validate-clause I ?C and ¬ (validate-clause I ?D) fo-interpretation

I
unfolding clause-entails-clause-def by auto

from ‹¬ (validate-clause I ?D)› obtain ϑ
where D-false: ¬ (validate-ground-clause I (subst-cl ?D ϑ))

and (ground-clause (subst-cl ?D ϑ)) by auto
have validate-clause I (subst-cl (subst-cl ?C σ) ϑ)

using ‹validate-clause I (cl-ecl C )› instances-are-entailed by blast
from this and assms(1 ) and assms(2 ) have validate-clause I (subst-cl ?D ϑ)

using ground-factorization-is-sound unfolding clause-entails-clause-def
using ‹fo-interpretation I › ‹ground-clause (subst-cl (cl-ecl D) ϑ)› by blast

from this and D-false show False
by (metis ‹ground-clause (subst-cl (cl-ecl D) ϑ)›
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substs-preserve-ground-clause validate-clause.elims(1 ))
qed

lemma ground-superposition-is-sound :
assumes finite (cl-ecl P1 )
assumes finite (cl-ecl P2 )
assumes superposition P1 P2 C σ k C ′

assumes (ground-clause (subst-cl (cl-ecl C ) ϑ))
shows set-entails-clause
{ (subst-cl (subst-cl (cl-ecl P1 ) σ) ϑ),
(subst-cl (subst-cl (cl-ecl P2 ) σ) ϑ) }

(subst-cl (cl-ecl C ) ϑ)

proof (rule ccontr)
let ?P1 = (cl-ecl P1 )
let ?P2 = (cl-ecl P2 )
let ?C = (cl-ecl C )
assume ¬ set-entails-clause
{ (subst-cl (subst-cl (cl-ecl P1 ) σ) ϑ),
(subst-cl (subst-cl (cl-ecl P2 ) σ) ϑ) }

(subst-cl (cl-ecl C ) ϑ)
then obtain I

where validate-clause I (subst-cl (subst-cl (cl-ecl P1 ) σ) ϑ)
and validate-clause I (subst-cl (subst-cl (cl-ecl P2 ) σ) ϑ)

and ¬ (validate-clause I (subst-cl (cl-ecl C ) ϑ)) and fo-interpretation I
unfolding set-entails-clause-def by (meson insert-iff validate-clause-set.elims(2 ))

from assms(3 ) obtain t s u v M p polarity t ′ u ′ L L ′ where
orient-lit-inst M u v pos σ
and orient-lit-inst L t s polarity σ
and subterm t p u ′

and ck-unifier u ′ u σ k
and replace-subterm t p v t ′

and L ′ = mk-lit polarity (Eq t ′ s)
and ?C = (subst-cl ((?P1 − { L }) ∪ ((?P2 − { M }) ∪ { L ′ } )) σ)

using superposition-def by auto

let ?P1 ′ = (subst-cl (subst-cl ?P1 σ) ϑ)
let ?P2 ′ = (subst-cl (subst-cl ?P2 σ) ϑ)
from assms(1 ) have finite ?P1 ′ by simp
from assms(2 ) have finite ?P2 ′ by simp

let ?vars = (vars-of-cl ?P1 ′) ∪ (vars-of-cl ?P2 ′)
from ‹finite ?P1 ′› have finite (vars-of-cl ?P1 ′)

using set-of-variables-is-finite-cl [of ?P1 ′] by auto
from ‹finite ?P2 ′› have finite (vars-of-cl ?P2 ′)

using set-of-variables-is-finite-cl [of ?P2 ′] by auto
from ‹finite (vars-of-cl ?P1 ′)› and ‹finite (vars-of-cl ?P2 ′)› have finite ?vars

by auto
then obtain η where ground-on ?vars η using ground-subst-exists by blast
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then have ground-on (vars-of-cl ?P1 ′) η unfolding ground-on-def by auto
then have ground-clause (subst-cl

(subst-cl (subst-cl ?P1 σ) ϑ) η)
using ground-substs-yield-ground-clause
[of (subst-cl (subst-cl ?P1 σ) ϑ) η] by auto

from ‹ground-on ?vars η› have ground-on (vars-of-cl ?P2 ′) η unfolding ground-on-def
by auto

then have ground-clause (subst-cl
(subst-cl (subst-cl ?P2 σ) ϑ) η)

using ground-substs-yield-ground-clause
[of (subst-cl (subst-cl ?P2 σ) ϑ) η] by auto

let ?P1 ′′ = (subst-cl ?P1 ′ η)
let ?P2 ′′ = (subst-cl ?P2 ′ η)
let ?σ ′′ = comp σ ϑ
let ?σ ′ = comp ?σ ′′ η
have ?P1 ′′ = (subst-cl (subst-cl ?P1 ?σ ′′) η)

using composition-of-substs-cl [of ?P1 ] by auto
then have ?P1 ′′ = (subst-cl ?P1 ?σ ′)

using composition-of-substs-cl [of ?P1 ] by auto
from ‹ground-clause (subst-cl (subst-cl (subst-cl (cl-ecl P1 ) σ) ϑ) η)›

and ‹validate-clause I (subst-cl (subst-cl (cl-ecl P1 ) σ) ϑ)›
have validate-ground-clause I ?P1 ′′ using validate-clause.simps by blast

then obtain l1 ′ where l1 ′ ∈ ?P1 ′′ and validate-ground-lit I l1 ′ by auto

have ?P2 ′′ = (subst-cl (subst-cl ?P2 ?σ ′′) η)
using composition-of-substs-cl [of ?P2 ] by auto

then have ?P2 ′′ = (subst-cl ?P2 ?σ ′)
using composition-of-substs-cl [of ?P2 ] by auto

from ‹ground-clause (subst-cl (subst-cl (subst-cl (cl-ecl P2 ) σ) ϑ) η)› ‹vali-
date-clause I (subst-cl (subst-cl (cl-ecl P2 ) σ) ϑ)›

have validate-ground-clause I ?P2 ′′ using validate-clause.simps by blast
then obtain l2 ′ where l2 ′ ∈ ?P2 ′′ and validate-ground-lit I l2 ′ by auto

from ‹l1 ′ ∈ ?P1 ′′› and ‹?P1 ′′ = (subst-cl ?P1 ?σ ′)› obtain l1 where
l1 ∈ ?P1 and l1 ′ = (subst-lit l1 ?σ ′) using subst-cl.simps by blast

from ‹l2 ′ ∈ ?P2 ′′› and ‹?P2 ′′ = (subst-cl ?P2 ?σ ′)› obtain l2 where
l2 ∈ ?P2 and l2 ′ = (subst-lit l2 ?σ ′) using subst-cl.simps by blast

let ?C ′ = (subst-cl (subst-cl ?C ϑ) η)

from ‹ground-clause (subst-cl ?C ϑ)› have
(subst-cl ?C ϑ) = (subst-cl (subst-cl ?C ϑ) η)
using substs-preserve-ground-clause [of (subst-cl ?C ϑ) η] by blast

from ‹¬ validate-clause I (subst-cl (cl-ecl C ) ϑ)›
have ¬ validate-ground-clause I ?C ′

by (metis assms(4 ) substs-preserve-ground-clause validate-clause.simps)
have l1 = L
proof (rule ccontr)
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assume l1 6= L
from this and ‹l1 ∈ ?P1 › and ‹?C = (subst-cl ((?P1 − { L }) ∪ ((?P2 − {

M }) ∪ { L ′ } )) σ)›
have (subst-lit l1 σ) ∈ ?C by auto
from this have (subst-lit (subst-lit (subst-lit l1 σ) ϑ) η)
∈ ?C ′ by auto

from this and ‹l1 ′ = (subst-lit l1 ?σ ′)› have l1 ′ ∈ ?C ′

by (simp add: composition-of-substs-lit)
from this and ‹validate-ground-lit I l1 ′› have validate-ground-clause I ?C ′ by

auto
from this and ‹¬ validate-ground-clause I (subst-cl (subst-cl (cl-ecl C ) ϑ) η)›

show False by auto
qed

have l2 = M
proof (rule ccontr)

assume l2 6= M
from this and ‹l2 ∈ ?P2 › and ‹?C = (subst-cl ((?P1 − { L }) ∪ ((?P2 − {

M }) ∪ { L ′ } )) σ)›
have (subst-lit l2 σ) ∈ ?C by auto
from this have (subst-lit (subst-lit (subst-lit l2 σ) ϑ) η)
∈ ?C ′ by auto

from this and ‹l2 ′ = (subst-lit l2 ?σ ′)› have l2 ′ ∈ ?C ′

by (simp add: composition-of-substs-lit)
from this and ‹validate-ground-lit I l2 ′› have validate-ground-clause I ?C ′ by

auto
from this and ‹¬ validate-ground-clause I (subst-cl (subst-cl (cl-ecl C ) ϑ) η)›

show False by auto
qed

from ‹orient-lit-inst M u v pos σ› and ‹l2 = M › and ‹fo-interpretation I ›
and ‹validate-ground-lit I l2 ′› and ‹l2 ′ = (subst-lit l2 ?σ ′)›
have I (subst u ?σ ′) (subst v ?σ ′)
using orient-lit-semantics-pos by blast

from ‹subterm t p u ′› have
subterm (subst t ?σ ′) p (subst u ′ ?σ ′)

using substs-preserve-subterms [of t p u ′] by metis

from ‹ck-unifier u ′ u σ k› have (subst u σ) = (subst u ′ σ)
using ck-unifier-thm [of u ′ u σ k] by auto

from this have (subst (subst (subst u σ) ϑ) η)
= (subst (subst (subst u ′ σ) ϑ ) η) by auto

from this have (subst u ?σ ′) = (subst u ′ ?σ ′)
using composition-of-substs by auto

from ‹(subst u ?σ ′) = (subst u ′ ?σ ′)›
and ‹I (subst u ?σ ′) (subst v ?σ ′)›
have I (subst u ′ ?σ ′) (subst v ?σ ′)
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by auto
from ‹subterm t p u ′›

and ‹I (subst u ′ ?σ ′) (subst v ?σ ′)›
and ‹fo-interpretation I ›
and ‹replace-subterm t p v t ′›
have I (subst t ?σ ′) (subst t ′ ?σ ′)

unfolding fo-interpretation-def using replacement-preserves-congruences [of
I u ′ ?σ ′ v t p t ′]

by auto

from ‹l1 = L› and ‹fo-interpretation I › and ‹validate-ground-lit I l1 ′›
and ‹l1 ′ = (subst-lit l1 ?σ ′)›
and ‹orient-lit-inst L t s polarity σ›
and ‹I (subst t ?σ ′) (subst t ′ ?σ ′)›
and ‹L ′ = mk-lit polarity (Eq t ′ s)›
have validate-ground-lit I (subst-lit L ′ ?σ ′)
using orient-lit-semantics-replacement [of I L t s polarity σ ?σ ′ t ′] by blast

from ‹?C = (subst-cl ((?P1 − { L }) ∪ ((?P2 − { M }) ∪ { L ′ } )) σ)›
have subst-lit L ′ σ ∈ ?C by auto

then have subst-lit (subst-lit (subst-lit L ′ σ) ϑ) η ∈ ?C ′

by auto
then have subst-lit L ′ ?σ ′ ∈ ?C ′ by (simp add: composition-of-substs-lit)

from this and ‹validate-ground-lit I (subst-lit L ′ ?σ ′)› and ‹¬validate-ground-clause
I ?C ′›

show False by auto
qed

lemma superposition-is-sound :
assumes finite (cl-ecl P1 )
assumes finite (cl-ecl P2 )
assumes superposition P1 P2 C σ k C ′

shows set-entails-clause { cl-ecl P1 , cl-ecl P2 } (cl-ecl C )
proof (rule ccontr)

let ?P1 = (cl-ecl P1 )
let ?P2 = (cl-ecl P2 )
let ?C = (cl-ecl C )
assume ¬ set-entails-clause { cl-ecl P1 , cl-ecl P2 } (cl-ecl C )
then obtain I

where validate-clause I ?P1 and validate-clause I ?P2
and ¬ (validate-clause I ?C ) and fo-interpretation I

unfolding set-entails-clause-def by (meson insert-iff validate-clause-set.elims(2 ))
from ‹¬ (validate-clause I ?C )› obtain ϑ

where ¬ (validate-ground-clause I (subst-cl ?C ϑ))
and (ground-clause (subst-cl ?C ϑ)) by auto

have P1-true: validate-clause I (subst-cl (subst-cl ?P1 σ) ϑ)
using ‹validate-clause I (cl-ecl P1 )› instances-are-entailed by blast
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have P2-true: validate-clause I (subst-cl (subst-cl ?P2 σ) ϑ)
using ‹validate-clause I (cl-ecl P2 )› instances-are-entailed by blast

have ¬ (validate-clause I (subst-cl ?C ϑ))
by (metis ‹¬ validate-ground-clause I (subst-cl (cl-ecl C ) ϑ)›

‹ground-clause (subst-cl (cl-ecl C ) ϑ)›
substs-preserve-ground-clause validate-clause.elims(1 ))

let ?S = { (subst-cl (subst-cl (cl-ecl P1 ) σ) ϑ),
(subst-cl (subst-cl (cl-ecl P2 ) σ) ϑ) }

from P1-true and P2-true have validate-clause-set I ?S
by (metis insert-iff singletonD validate-clause-set.elims(3 ))

from this and ‹¬ (validate-clause I (subst-cl ?C ϑ))› ‹fo-interpretation I ›
have ¬ set-entails-clause ?S (subst-cl (cl-ecl C ) ϑ)
using set-entails-clause-def by blast

from this and assms(1 ) and assms(2 ) and assms(3 ) and
‹(ground-clause (subst-cl ?C ϑ))›

show False using ground-superposition-is-sound by auto
qed

lemma superposition-preserves-finiteness:
assumes finite (cl-ecl P1 )
assumes finite (cl-ecl P2 )
assumes superposition P1 P2 C σ k C ′

shows finite (cl-ecl C ) ∧ (finite C ′)
proof −

from assms(3 ) obtain L M L ′ where
def-C : (cl-ecl C ) = (subst-cl (((cl-ecl P1 ) − { L }) ∪ (((cl-ecl P2 ) − { M }) ∪

{ L ′ } )) σ)
and def-C ′: C ′ = (((cl-ecl P1 ) − { L }) ∪ (((cl-ecl P2 ) − { M }) ∪ { L ′ } ))
using superposition-def by auto

from assms(1 ) and assms(2 ) have finite (((cl-ecl P1 ) − { L }) ∪ (((cl-ecl P2 )
− { M }) ∪ { L ′ } ))

by auto
from this and def-C def-C ′ show ?thesis using substs-preserve-finiteness by

auto
qed

lemma reflexion-preserves-finiteness:
assumes finite (cl-ecl P1 )
assumes reflexion P1 C σ k C ′

shows finite (cl-ecl C ) ∧ (finite C ′)
proof −

from assms(2 ) obtain L1 where
def-C : (cl-ecl C ) = (subst-cl ((cl-ecl P1 ) − { L1 }) σ)
and def-C ′: C ′ = ((cl-ecl P1 ) − { L1 })
using reflexion-def by auto

from assms(1 ) have finite ((cl-ecl P1 ) − { L1 }) by auto
from this and def-C def-C ′ show ?thesis using substs-preserve-finiteness by

auto
qed
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lemma factorization-preserves-finiteness:
assumes finite (cl-ecl P1 )
assumes factorization P1 C σ k C ′

shows finite (cl-ecl C ) ∧ (finite C ′)
proof −

from assms(2 ) obtain L2 L ′ where
def-C : (cl-ecl C ) = (subst-cl ( ((cl-ecl P1 ) − { L2 }) ∪ { L ′ } ) σ)
and def-C ′: C ′ = ( ((cl-ecl P1 ) − { L2 }) ∪ { L ′ } )
using factorization-def by auto

from assms(1 ) have (finite (((cl-ecl P1 ) − { L2 }) ∪ { L ′ })) by auto
from this and def-C def-C ′ show ?thesis using substs-preserve-finiteness by

auto
qed

lemma derivable-clauses-are-finite:
assumes derivable C P S σ k C ′

assumes ∀ x ∈ P. (finite (cl-ecl x))
shows finite (cl-ecl C ) ∧ (finite C ′)

proof (rule ccontr)
assume hyp: ¬ (finite (cl-ecl C ) ∧ (finite C ′))
have not-sup: ¬ (∃P1 P2 . (P1 ∈ P ∧ P2 ∈ P ∧ superposition P1 P2 C σ k C ′))
proof

assume (∃P1 P2 . (P1 ∈ P ∧ P2 ∈ P ∧ superposition P1 P2 C σ k C ′))
then obtain P1 P2 where P1 ∈ P P2 ∈ P superposition P1 P2 C σ k C ′ by

auto
from ‹P1 ∈ P› and assms(2 ) have finite (cl-ecl P1 ) by auto
from ‹P2 ∈ P› and assms(2 ) have finite (cl-ecl P2 ) by auto
from ‹(finite (cl-ecl P1 ))› and ‹(finite (cl-ecl P2 ))› and ‹superposition P1 P2

C σ k C ′›
have finite (cl-ecl C ) ∧ (finite C ′) using superposition-preserves-finiteness

[of P1 P2 C σ] by auto
then show False using hyp by auto

qed
have not-ref : ¬ (∃P1 . (P1 ∈ P ∧ reflexion P1 C σ k C ′))
proof

assume (∃P1 . (P1 ∈ P ∧ reflexion P1 C σ k C ′))
then obtain P1 where P1 ∈ P reflexion P1 C σ k C ′ by auto
from ‹P1 ∈ P› and assms(2 ) have finite (cl-ecl P1 ) by auto
from ‹(finite (cl-ecl P1 ))› and ‹reflexion P1 C σ k C ′›
have finite (cl-ecl C ) ∧ (finite C ′) using reflexion-preserves-finiteness [of P1

C σ] by auto
then show False using hyp by auto

qed
have not-fact: ¬ (∃P1 . (P1 ∈ P ∧ factorization P1 C σ k C ′))
proof

assume (∃P1 . (P1 ∈ P ∧ factorization P1 C σ k C ′))
then obtain P1 where P1 ∈ P factorization P1 C σ k C ′ by auto
from ‹P1 ∈ P› and assms(2 ) have finite (cl-ecl P1 ) by auto

109



from ‹(finite (cl-ecl P1 ))› and ‹ factorization P1 C σ k C ′›
have finite (cl-ecl C ) ∧ (finite C ′) using factorization-preserves-finiteness

[of P1 C σ] by auto
then show False using hyp by auto

qed
from not-sup not-ref not-fact and assms(1 ) show False unfolding derivable-def

by blast
qed

lemma derivable-clauses-lemma:
assumes derivable C P S σ k C ′

shows ((cl-ecl C ) = (subst-cl C ′ σ))
proof (rule ccontr)

assume hyp: ¬ ((cl-ecl C ) = (subst-cl C ′ σ))
have not-sup: ¬ (∃P1 P2 . (P1 ∈ S ∧ P2 ∈ S ∧ superposition P1 P2 C σ k C ′))
proof

assume (∃P1 P2 . (P1 ∈ S ∧ P2 ∈ S ∧ superposition P1 P2 C σ k C ′))
then obtain P1 P2 where P1 ∈ S P2 ∈ S superposition P1 P2 C σ k C ′ by

auto
from ‹superposition P1 P2 C σ k C ′› obtain Cl-C Cl-P1 L Cl-P2 M L ′ T
where Cl-C = (subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } )) σ)
(C ′ = (Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } ))
C = (Ecl Cl-C T )
unfolding superposition-def by blast

from ‹Cl-C = (subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } )) σ)›
‹(C ′ = (Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } ))› ‹C = (Ecl Cl-C

T )› hyp show False by auto
qed
have not-ref : ¬ (∃P1 . (P1 ∈ S ∧ reflexion P1 C σ k C ′))
proof

assume (∃P1 . (P1 ∈ S ∧ reflexion P1 C σ k C ′))
then obtain P1 where P1 ∈ S reflexion P1 C σ k C ′ by auto
from ‹reflexion P1 C σ k C ′› obtain T Cl-C Cl-P L1 where

C = (Ecl Cl-C T )
Cl-C = (subst-cl ((Cl-P − { L1 }) )) σ
(C ′ = ((Cl-P − { L1 }) )) unfolding reflexion-def by blast

from ‹Cl-C = (subst-cl ((Cl-P − { L1 }) )) σ›
‹(C ′ = ((Cl-P − { L1 }) ))› ‹C = (Ecl Cl-C T )› hyp show False by auto

qed
have not-fact: ¬ (∃P1 . (P1 ∈ S ∧ factorization P1 C σ k C ′))
proof

assume (∃P1 . (P1 ∈ S ∧ factorization P1 C σ k C ′))
then obtain P1 where P1 ∈ S factorization P1 C σ k C ′ by auto
from ‹factorization P1 C σ k C ′› obtain T Cl-C Cl-P L ′ L2 where

C = (Ecl Cl-C T )
Cl-C = (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } )) σ
C ′ = ( (Cl-P − { L2 }) ∪ { L ′ } ) unfolding factorization-def by blast

from ‹Cl-C = (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } )) σ›
‹C ′ = ( (Cl-P − { L2 }) ∪ { L ′ } )› ‹C = (Ecl Cl-C T )› hyp show False by
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auto
qed
from not-sup not-ref not-fact and assms(1 ) show False unfolding derivable-def

by blast
qed

lemma substs-preserves-decompose-literal:
assumes decompose-literal L t s polarity
shows decompose-literal (subst-lit L η) (subst t η) (subst s η) polarity

proof −
let ?L = (subst-lit L η)
let ?t = (subst t η)
let ?s = (subst s η)

have polarity = pos ∨ polarity = neg using sign.exhaust by auto
then show ?thesis
proof

assume polarity = pos
from this and assms(1 ) have L = Pos (Eq t s) ∨ L = Pos (Eq s t)

unfolding decompose-literal-def decompose-equation-def by auto
from ‹L = Pos (Eq t s) ∨ L = Pos (Eq s t)›

have ?L = Pos (Eq ?t ?s) ∨ ?L = Pos (Eq ?s ?t) by auto
from this ‹polarity = pos› show ?thesis unfolding decompose-literal-def

decompose-equation-def by auto
next

assume polarity = neg
from this and assms(1 ) have L = Neg (Eq t s) ∨ L = Neg (Eq s t)

unfolding decompose-literal-def decompose-equation-def by auto
from this ‹polarity = neg› show ?thesis unfolding decompose-literal-def

decompose-equation-def by auto
qed

qed

lemma substs-preserve-dom-trm:
assumes dom-trm t C
shows dom-trm (subst t σ) (subst-cl C σ)

proof −
let ?t = (subst t σ)
from assms(1 ) have (∃ L u v p. (L ∈ C ∧ (decompose-literal L u v p)

∧ (( (p = neg ∧ t = u) ∨ (t,u) ∈ trm-ord)))) unfolding dom-trm-def by
auto

from this obtain L u v p where L ∈ C
decompose-literal L u v p (( (p = neg ∧ t = u) ∨ (t,u) ∈ trm-ord))
unfolding dom-trm-def by blast

let ?u = (subst u σ)

from ‹L ∈ C › have (subst-lit L σ) ∈ (subst-cl C σ) by auto
from ‹decompose-literal L u v p›

have decompose-literal (subst-lit L σ) (subst u σ) (subst v σ) p
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using substs-preserves-decompose-literal by metis
from ‹(( (p = neg ∧ t = u) ∨ (t,u) ∈ trm-ord))›

have (( (p = neg ∧ ?t = ?u) ∨ (?t,?u) ∈ trm-ord))
using trm-ord-subst by auto

from this ‹(subst-lit L σ) ∈ (subst-cl C σ)›
‹decompose-literal (subst-lit L σ) (subst u σ) (subst v σ) p›
show dom-trm (subst t σ) (subst-cl C σ)
unfolding dom-trm-def by auto

qed

lemma substs-preserve-well-constrainedness:
assumes well-constrained C
shows well-constrained (subst-ecl C σ)

proof (rule ccontr)
assume ¬?thesis
from this obtain y where y ∈ trms-ecl (subst-ecl C σ)

and ¬ dom-trm y (cl-ecl (subst-ecl C σ)) unfolding well-constrained-def by
auto

obtain Cl-C T where C = (Ecl Cl-C T ) using eclause.exhaust by auto
from this have (subst-ecl C σ)
= (Ecl (subst-cl Cl-C σ) (subst-set T σ)) by auto

from this have (cl-ecl (subst-ecl C σ) = (subst-cl Cl-C σ))
and trms-ecl (subst-ecl C σ) = (subst-set T σ)
by auto

from ‹(cl-ecl (subst-ecl C σ) = (subst-cl Cl-C σ))›
‹C = (Ecl Cl-C T )› have (cl-ecl (subst-ecl C σ) = (subst-cl (cl-ecl C ) σ)) by

auto
from ‹y ∈ trms-ecl (subst-ecl C σ)› ‹C = (Ecl Cl-C T )›

obtain z where z ∈ T and y = (subst z σ) by auto
from ‹z ∈ T › assms(1 ) ‹C = (Ecl Cl-C T )› have dom-trm z (cl-ecl C )

unfolding well-constrained-def by auto
from this have dom-trm (subst z σ) (subst-cl (cl-ecl C ) σ)

using substs-preserve-dom-trm by auto
from this ‹y = (subst z σ)› have dom-trm y (subst-cl (cl-ecl C ) σ)

by auto
from this ‹(cl-ecl (subst-ecl C σ) = (subst-cl (cl-ecl C ) σ))›

‹¬ dom-trm y (cl-ecl (subst-ecl C σ))› show False by auto
qed

lemma ck-trms-sound:
assumes T = get-trms D (dom-trms C E) k
shows T ⊆ (dom-trms C E)

proof (cases)
assume k = FirstOrder
from this and assms have T = filter-trms D (dom-trms C E)

unfolding get-trms-def by auto
from this show ?thesis using filter-trms-inclusion by blast

next
assume k 6= FirstOrder
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from this and assms have T = (dom-trms C E)
unfolding get-trms-def by auto

from this show ?thesis using filter-trms-inclusion by blast
qed

lemma derivable-clauses-are-well-constrained:
assumes derivable C P S σ k C ′

shows well-constrained C
proof (rule ccontr)

assume hyp: ¬ well-constrained C
then obtain y where y ∈ trms-ecl C and ¬ dom-trm y (cl-ecl C )

unfolding well-constrained-def by auto
have not-sup: ¬ (∃P1 P2 . (P1 ∈ S ∧ P2 ∈ S ∧ superposition P1 P2 C σ k C ′))
proof

assume (∃P1 P2 . (P1 ∈ S ∧ P2 ∈ S ∧ superposition P1 P2 C σ k C ′))
then obtain P1 P2 where P1 ∈ S P2 ∈ S superposition P1 P2 C σ k C ′ by

auto
from ‹superposition P1 P2 C σ k C ′› obtain Cl-C T E

where
T = (get-trms Cl-C (dom-trms Cl-C (subst-set E σ)) k)
Cl-C = (subst-cl C ′ σ)
C = (Ecl Cl-C T )
unfolding superposition-def by blast

from ‹T = (get-trms Cl-C (dom-trms Cl-C (subst-set E σ)) k)›
have T ⊆(dom-trms Cl-C (subst-set E σ))
using ck-trms-sound by metis

from this and ‹y ∈ trms-ecl C › and ‹C = (Ecl Cl-C T )› have
y ∈ (dom-trms (cl-ecl C ) (subst-set E σ)) by auto

from this and ‹¬ dom-trm y (cl-ecl C )› show False unfolding dom-trms-def
by auto

qed
have not-ref : ¬ (∃P1 . (P1 ∈ S ∧ reflexion P1 C σ k C ′))
proof

assume (∃P1 . (P1 ∈ S ∧ reflexion P1 C σ k C ′))
then obtain P1 where P1 ∈ S reflexion P1 C σ k C ′ by auto
from ‹reflexion P1 C σ k C ′› obtain T Cl-C E where

T = (get-trms Cl-C (dom-trms Cl-C (subst-set E σ)) k)
Cl-C = (subst-cl C ′ σ)
C = (Ecl Cl-C T )

unfolding reflexion-def by blast
from ‹T = (get-trms Cl-C (dom-trms Cl-C (subst-set E σ)) k)›

have T ⊆(dom-trms Cl-C (subst-set E σ))
using ck-trms-sound by metis

from this and ‹y ∈ trms-ecl C › and ‹C = (Ecl Cl-C T )› have
y ∈ (dom-trms (cl-ecl C ) (subst-set E σ)) by auto

from this and ‹¬ dom-trm y (cl-ecl C )› show False unfolding dom-trms-def
by auto

qed
have not-fact: ¬ (∃P1 . (P1 ∈ S ∧ factorization P1 C σ k C ′))
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proof
assume (∃P1 . (P1 ∈ S ∧ factorization P1 C σ k C ′))
then obtain P1 where P1 ∈ S factorization P1 C σ k C ′ by auto
from ‹factorization P1 C σ k C ′› obtain T Cl-C E where

T = (get-trms Cl-C (dom-trms Cl-C (subst-set E σ)) k)
Cl-C = (subst-cl C ′ σ)
C = (Ecl Cl-C T )

unfolding factorization-def by blast
from ‹T = (get-trms Cl-C (dom-trms Cl-C (subst-set E σ)) k)›

have T ⊆(dom-trms Cl-C (subst-set E σ))
using ck-trms-sound by metis

from this and ‹y ∈ trms-ecl C › and ‹C = (Ecl Cl-C T )› have
y ∈ (dom-trms (cl-ecl C ) (subst-set E σ)) by auto

from this and ‹¬ dom-trm y (cl-ecl C )› show False unfolding dom-trms-def
by auto

qed
from not-sup not-ref not-fact and assms(1 ) show False unfolding derivable-def

by blast
qed

lemma derivable-clauses-are-entailed:
assumes derivable C P S σ k C ′

assumes validate-clause-set I (cl-ecl ‘ P)
assumes fo-interpretation I
assumes ∀ x ∈ P. (finite (cl-ecl x))
shows validate-clause I (cl-ecl C )

proof (rule ccontr)
assume ¬validate-clause I (cl-ecl C )
have not-sup: ¬ (∃P1 P2 . (P1 ∈ S ∧ P2 ∈ S ∧ P = { P1 , P2 } ∧ superposition

P1 P2 C σ k C ′))
proof

assume (∃P1 P2 . (P1 ∈ S ∧ P2 ∈ S ∧ P = { P1 , P2 } ∧ superposition P1
P2 C σ k C ′))

from this obtain P1 P2 where P1 ∈ P P2 ∈ P and superposition P1 P2 C
σ k C ′ by auto

from ‹P1 ∈ P› and assms(2 ) have validate-clause I (cl-ecl P1 ) by auto
from ‹P2 ∈ P› and assms(2 ) have validate-clause I (cl-ecl P2 ) by auto
from assms(4 ) and ‹P1 ∈ P› have finite (cl-ecl P1 ) by auto
from assms(4 ) and ‹P2 ∈ P› have finite (cl-ecl P2 ) by auto
from assms(3 ) and ‹finite (cl-ecl P1 )› and ‹finite (cl-ecl P2 )›

and ‹superposition P1 P2 C σ k C ′› have set-entails-clause { (cl-ecl P1 ),
(cl-ecl P2 ) } (cl-ecl C )

using superposition-is-sound by blast
from this and assms(3 ) and ‹validate-clause I (cl-ecl P1 )› and ‹validate-clause

I (cl-ecl P2 )›
have validate-clause I (cl-ecl C )
using set-entails-clause-def [of { (cl-ecl P1 ), (cl-ecl P2 ) } cl-ecl C ] by auto

from this and ‹¬validate-clause I (cl-ecl C )› show False by auto
qed
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have not-fact: ¬ (∃P1 . (P1 ∈ S ∧ P = { P1 } ∧ factorization P1 C σ k C ′))
proof

assume (∃P1 . (P1 ∈ S ∧ P = { P1 } ∧ factorization P1 C σ k C ′))
from this obtain P1 where P1 ∈ P and factorization P1 C σ k C ′ by auto
from ‹P1 ∈ P› and assms(2 ) have validate-clause I (cl-ecl P1 ) by auto
from assms(4 ) and ‹P1 ∈ P› have finite (cl-ecl P1 ) by auto
from assms(3 ) and ‹finite (cl-ecl P1 )› and

‹factorization P1 C σ k C ′› have clause-entails-clause (cl-ecl P1 ) (cl-ecl C )
using factorization-is-sound by auto

from this and assms(3 ) and ‹validate-clause I (cl-ecl P1 )›
have validate-clause I (cl-ecl C ) unfolding clause-entails-clause-def by auto

from this and ‹¬validate-clause I (cl-ecl C )› show False by auto
qed
have not-ref : ¬ (∃P1 . (P1 ∈ S ∧ P = { P1 } ∧ reflexion P1 C σ k C ′))
proof

assume (∃P1 . (P1 ∈ S ∧ P = { P1 } ∧ reflexion P1 C σ k C ′))
from this obtain P1 where P1 ∈ P and reflexion P1 C σ k C ′ by auto
from ‹P1 ∈ P› and assms(2 ) have validate-clause I (cl-ecl P1 ) by auto
from assms(4 ) and ‹P1 ∈ P› have finite (cl-ecl P1 ) by auto
from assms(3 ) and ‹finite (cl-ecl P1 )› and

‹reflexion P1 C σ k C ′› have clause-entails-clause (cl-ecl P1 ) (cl-ecl C )
using reflexion-is-sound by auto

from this and assms(3 ) and ‹validate-clause I (cl-ecl P1 )›
have validate-clause I (cl-ecl C ) unfolding clause-entails-clause-def by auto

from this and ‹¬validate-clause I (cl-ecl C )› show False by auto
qed
from not-sup not-fact not-ref and assms(1 ) show False unfolding derivable-def

by blast
qed

lemma all-derived-clauses-are-finite:
shows derivable-ecl C S =⇒ ∀ x ∈ S . (finite (cl-ecl x)) =⇒ finite (cl-ecl C )

proof (induction rule: derivable-ecl.induct)
fix C :: ′a eclause fix S assume C ∈ S
assume ∀ x ∈ S . (finite (cl-ecl x))
from this ‹C ∈ S› show finite (cl-ecl C ) by auto

next
fix C S fix D :: ′a eclause assume derivable-ecl C S
assume ∀ x ∈ S . (finite (cl-ecl x)) assume hyp-ind: ∀ x ∈ S . (finite (cl-ecl x))

=⇒ finite (cl-ecl C )
(renaming-cl C D)

from ‹(renaming-cl C D)› obtain η where D = (subst-ecl C η)
unfolding renaming-cl-def by auto

obtain C-Cl T where C = (Ecl C-Cl T ) using eclause.exhaust by auto
from this and ‹D = (subst-ecl C η)›

have (cl-ecl D) = (subst-cl (cl-ecl C ) η) by auto
from this hyp-ind ‹∀ x ∈ S . (finite (cl-ecl x))› show finite (cl-ecl D)

using substs-preserve-finiteness by auto
next
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fix P S C S ′ σ C ′

assume h: ∀ x. x ∈ P −→ derivable-ecl x S ∧ ((∀ x∈S . finite (cl-ecl x)) −→ finite
(cl-ecl x))

assume derivable C P S ′ σ FirstOrder C ′

assume ∀ x∈S . finite (cl-ecl x)
from h and ‹∀ x∈S . finite (cl-ecl x)› have ∀ x ∈ P. (finite (cl-ecl x)) by metis
from this and ‹derivable C P S ′ σ FirstOrder C ′› show finite (cl-ecl C )

using derivable-clauses-are-finite by auto
qed

lemma all-derived-clauses-are-wellconstrained:
shows derivable-ecl C S =⇒ ∀ x ∈ S . (well-constrained x) =⇒ well-constrained

C
proof (induction rule: derivable-ecl.induct)

fix C :: ′a eclause fix S assume C ∈ S
assume ∀ x ∈ S . (well-constrained x)
from this ‹C ∈ S› show well-constrained C by auto

next
fix C S fix D :: ′a eclause assume derivable-ecl C S
assume ∀ x ∈ S . (well-constrained x) assume hyp-ind: ∀ x ∈ S . (well-constrained

x) =⇒ well-constrained C
(renaming-cl C D)

from ‹∀ x ∈ S . (well-constrained x)› and hyp-ind have well-constrained C by
auto

from ‹(renaming-cl C D)› obtain η where D = (subst-ecl C η)
unfolding renaming-cl-def by auto

from this and ‹well-constrained C › show well-constrained D
using substs-preserve-well-constrainedness by auto

next
fix P S C S ′ σ C ′

assume ∀ x. x ∈ P −→ derivable-ecl x S ∧ (Ball S well-constrained −→ well-constrained
x)

assume derivable C P S ′ σ FirstOrder C ′

assume Ball S well-constrained
from ‹derivable C P S ′ σ FirstOrder C ′› show well-constrained C

using derivable-clauses-are-well-constrained by auto
qed

lemma SOUNDNESS :
shows derivable-ecl C S =⇒ ∀ x ∈ S . (finite (cl-ecl x))
=⇒ set-entails-clause (cl-ecl ‘ S) (cl-ecl C )

proof (induction rule: derivable-ecl.induct)
fix C :: ′a eclause fix S assume C ∈ S
assume ∀ x ∈ S . (finite (cl-ecl x))
from ‹C ∈ S› show set-entails-clause (cl-ecl ‘ S) (cl-ecl C )

unfolding set-entails-clause-def by auto
next

fix C S fix D :: ′a eclause assume derivable-ecl C S
assume ∀ x ∈ S . (finite (cl-ecl x))
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assume hyp-ind: ∀ x ∈ S . (finite (cl-ecl x)) =⇒ set-entails-clause (cl-ecl ‘ S)
(cl-ecl C )

assume (renaming-cl C D)
from ‹(renaming-cl C D)› obtain η where D = (subst-ecl C η)

unfolding renaming-cl-def by auto
obtain C-Cl T where C = (Ecl C-Cl T ) using eclause.exhaust by auto
from this and ‹D = (subst-ecl C η)›

have (cl-ecl D) = (subst-cl (cl-ecl C ) η) by auto
show set-entails-clause (cl-ecl ‘ S) (cl-ecl D)
proof (rule ccontr)

assume ¬?thesis
from this obtain I where fo-interpretation I and i: validate-clause-set I (cl-ecl

‘S)
¬validate-clause I (cl-ecl D)
unfolding set-entails-clause-def by auto

from ‹¬validate-clause I (cl-ecl D)› and ‹(cl-ecl D) = (subst-cl (cl-ecl C ) η)›
have ¬validate-clause I (cl-ecl C ) using instances-are-entailed by metis

from this and ‹fo-interpretation I › i have ¬set-entails-clause (cl-ecl ‘ S) (cl-ecl
C )

unfolding set-entails-clause-def by auto
from this and ‹∀ x ∈ S . (finite (cl-ecl x))› hyp-ind show False by auto

qed
next

fix P S C S ′ σ C ′

assume h: ∀ x. x ∈ P −→ derivable-ecl x S ∧ ((∀ x∈S . finite (cl-ecl x)) −→
set-entails-clause (cl-ecl ‘ S) (cl-ecl x))

assume derivable C P S ′ σ FirstOrder C ′

assume ∀ x∈S . finite (cl-ecl x)
from h and ‹∀ x∈S . finite (cl-ecl x)› have i: ∀ x ∈ P. set-entails-clause (cl-ecl

‘ S) (cl-ecl x)
by metis

show set-entails-clause (cl-ecl ‘ S) (cl-ecl C )
proof (rule ccontr)

assume ¬?thesis
from this obtain I where fo-interpretation I and ii: validate-clause-set I

(cl-ecl ‘S)
¬validate-clause I (cl-ecl C )
unfolding set-entails-clause-def by auto

from h ‹∀ x∈S . finite (cl-ecl x)› have (∀ x∈P. finite (cl-ecl x))
using all-derived-clauses-are-finite by metis

from ‹fo-interpretation I › i and ii
have ∀ x ∈ P. (validate-clause I (cl-ecl x)) unfolding set-entails-clause-def

by auto
from this have validate-clause-set I (cl-ecl ‘ P) by auto
from this and ‹(∀ x∈P. finite (cl-ecl x))› ‹fo-interpretation I › ‹derivable C P

S ′ σ FirstOrder C ′›
have validate-clause I (cl-ecl C )
using derivable-clauses-are-entailed [of C P S ′ σ FirstOrder C ′ I ] by blast

from this and ‹¬validate-clause I (cl-ecl C )› show False by auto
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qed
qed

lemma REFUTABLE-SETS-ARE-UNSAT :
assumes ∀ x ∈ S . (finite (cl-ecl x))
assumes derivable-ecl C S
assumes (cl-ecl C = {})
shows ¬ (satisfiable-clause-set (cl-ecl ‘ S))

proof
assume (satisfiable-clause-set (cl-ecl ‘ S))
then obtain I where fo-interpretation I and model: validate-clause-set I (cl-ecl

‘ S)
unfolding satisfiable-clause-set-def [of cl-ecl ‘ S ] by blast

from assms(1 ) assms(2 ) have set-entails-clause (cl-ecl ‘ S) (cl-ecl C )
using SOUNDNESS by metis

from this ‹fo-interpretation I › and model have validate-clause I (cl-ecl C )
unfolding set-entails-clause-def by auto

from this and assms(3 ) show False by auto
qed

6 Redundancy Criteria and Saturated Sets

We define redundancy criteria. We use similar notions as in the Bachmair
and Ganzinger paper, the only difference is that we have to handle the sets
of irreducible terms associated with the clauses. Indeed, to ensure com-
pleteness, we must guarantee that all the terms that are irreducible in the
entailing clauses are also irreducible in the entailed one (otherwise some
needed inferences could be blocked due the irreducibility condition, as in
the basic superposition calculus). Of course, if the attached sets of terms
are empty, then this condition trivially holds and the definition collapses to
the usual one.
We introduce the following relation:
definition subterms-inclusion :: ′a trm set ⇒ ′a trm set ⇒ bool

where subterms-inclusion E1 E2 = (∀ x1 ∈ E1 . ∃ x2 ∈ E2 . (occurs-in x1 x2 ))

lemma subterms-inclusion-refl:
shows subterms-inclusion E E

proof (rule ccontr)
assume ¬subterms-inclusion E E
from this obtain x1 where x1 ∈ E and ¬ occurs-in x1 x1 unfolding sub-

terms-inclusion-def by force
from ‹¬ occurs-in x1 x1 › have ¬ (∃ p. subterm x1 p x1 ) unfolding occurs-in-def

by auto
from this have ¬subterm x1 Nil x1 by metis
from this show False by auto

qed
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lemma subterms-inclusion-subset:
assumes subterms-inclusion E1 E2
assumes E2 ⊆ E2 ′

shows subterms-inclusion E1 E2 ′

by (meson assms(1 ) assms(2 ) basic-superposition.subterms-inclusion-def basic-superposition-axioms

subsetD)

lemma set-inclusion-preserve-normalization:
assumes all-trms-irreducible E f
assumes E ′ ⊆ E
shows all-trms-irreducible E ′ f

by (meson all-trms-irreducible-def assms(1 ) assms(2 ) subsetD)

lemma subterms-inclusion-preserves-normalization:
assumes all-trms-irreducible E f
assumes subterms-inclusion E ′ E
shows all-trms-irreducible E ′ f

by (meson all-trms-irreducible-def assms(1 ) assms(2 ) occur-in-subterm subterms-inclusion-def )

We define two notions of redundancy, the first one is for inferences: any
derivable clause must be entailed by a set of clauses that are strictly smaller
than one of the premises.
definition redundant-inference ::

′a eclause ⇒ ′a eclause set ⇒ ′a eclause set ⇒ ′a subst ⇒ bool
where redundant-inference C S P σ ←→ (∃S ′ ⊆ instances S .

set-entails-clause (clset-instances S ′) (cl-ecl C ) ∧
(∀ x ∈ S ′. subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x)) (trms-ecl C ))

∧
(∀ x ∈ S ′. ∃D ′ ∈ cl-ecl ‘ P. ((cl-ecl (fst x), snd x),(D ′,σ)) ∈ cl-ord))

The second one is the usual notion for clauses: a clause is redundant if it is
entailed by smaller (or equal) clauses.
definition redundant-clause ::

′a eclause ⇒ ′a eclause set ⇒ ′a subst ⇒ ′a clause ⇒ bool
where (redundant-clause C S σ C ′) =
(∃S ′. (S ′ ⊆ (instances S) ∧ (set-entails-clause (clset-instances S ′) (cl-ecl C ))

∧
(∀ x ∈ S ′. ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))
(trms-ecl C ))) ∧

(∀ x ∈ S ′. ( ((mset-ecl ((fst x),(snd x))),(mset-cl (C ′,σ))) ∈ (mult (mult
trm-ord))

∨ (mset-ecl ((fst x),(snd x))) = mset-cl (C ′,σ)))))

Note that according to the definition above, an extended clause is always
redundant w.r.t. a clause obtained from the initial one by adding in the
attached set of terms a subterm of a term that already occurs in this set.
This remark is important because explicitly adding such subterms in the
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attached set may prune the search space, due to the fact that the containing
term can be removed at some point when calling the function dom-trm.
Adding the subterm explicitly is thus useful in this case. In practice, the
simplest solution may be to assume that the set of irreducible terms is closed
under subterm.
Of course, a clause is also redundant w.r.t. any clause obtained by removing
terms in the attached set. In particular, terms can be safely removed from
the set of irreducible terms of the entailing clauses if needed to make a given
clause redundant.
lemma self-redundant-clause:

assumes C ∈ S
assumes C ′ = (cl-ecl C )
assumes ground-clause (subst-cl (cl-ecl C ) σ)
shows redundant-clause (subst-ecl C σ) S σ C ′

proof −
obtain Cl-C and T where C = Ecl Cl-C T using eclause.exhaust by auto
from this have cl-ecl C = Cl-C and trms-ecl C = T by auto
let ?Cl-C = subst-cl Cl-C σ
let ?T = subst-set T σ
let ?C = subst-ecl C σ
from ‹C = Ecl Cl-C T › have ?C = (Ecl ?Cl-C ?T ) by auto
from this have cl-ecl ?C = ?Cl-C and trms-ecl ?C = ?T by auto
let ?S = { (C ,σ) }
from assms(1 ) assms(3 ) have i: ?S ⊆ (instances S) unfolding instances-def

by auto
from ‹cl-ecl C = Cl-C › have clset-instances ?S = { ?Cl-C } unfolding clset-instances-def

by auto
from this and ‹cl-ecl ?C = ?Cl-C › have ii: set-entails-clause (clset-instances

?S) (cl-ecl ?C )
using set-entails-clause-member by force

have iii: (∀ x ∈ ?S . ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))
(trms-ecl ?C )))

proof
fix x assume x ∈ ?S
from this have x = (C ,σ) by auto
from this ‹C = Ecl Cl-C T ›

have subst-set (trms-ecl (fst x)) (snd x) = ?T by auto
from this and ‹trms-ecl ?C = ?T ›

have subst-set (trms-ecl (fst x)) (snd x) = (trms-ecl ?C ) by auto
from this show ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))

(trms-ecl ?C ))
using subterms-inclusion-refl by auto

qed
have iv: (∀ x ∈ ?S . ( ((mset-ecl ((fst x),(snd x))),(mset-cl (C ′,σ))) ∈ (mult (mult

trm-ord))
∨ (mset-ecl ((fst x),(snd x))) = mset-cl (C ′,σ)))

proof
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fix x assume x ∈ ?S
from this have x = (C ,σ) by auto
from this ‹C = Ecl Cl-C T › have (mset-ecl ((fst x),(snd x))) = (mset-ecl

(C ,σ)) by auto
from this ‹C ′ = (cl-ecl C )› have (mset-ecl ((fst x),(snd x))) = mset-cl (C ′,σ)

by auto
from this show ( ((mset-ecl ((fst x),(snd x))),(mset-cl (C ′,σ))) ∈ (mult (mult

trm-ord))
∨ (mset-ecl ((fst x),(snd x))) = mset-cl (C ′,σ)) by auto

qed
from i ii iii iv show ?thesis unfolding redundant-clause-def by metis

qed

definition trms-subsumes
where trms-subsumes C D σ
= ( (subst-cl (cl-ecl C ) σ) = (cl-ecl D)
∧ ((subst-set (trms-ecl C ) σ) ⊆ trms-ecl D))

definition inference-closed
where inference-closed S = (∀ P C ′ D ϑ.

(derivable D P S ϑ FirstOrder C ′) −→ (D ∈ S))

Various notions of saturatedness are defined, depending on the kind of in-
ferences that are considered and on the redundancy criterion.

The first definition is the weakest one: all ground inferences must be redun-
dant (this definition is used for the completeness proof to make it the most
general).
definition ground-inference-saturated :: ′a eclause set ⇒ bool

where (ground-inference-saturated S) = (∀ C P σ C ′. (derivable C P S σ Ground
C ′) −→

(ground-clause (cl-ecl C )) −→ (grounding-set P σ) −→ (redundant-inference
C S P σ))

The second one states that every ground instance of a first-order inference
must be redundant.
definition inference-saturated :: ′a eclause set ⇒ bool

where (inference-saturated S) = (∀ C P σ C ′ D ϑ η.
(derivable C P S σ Ground C ′) −→ (ground-clause (cl-ecl C )) −→ (grounding-set

P σ)
−→ (derivable D P S ϑ FirstOrder C ′) −→ (trms-subsumes D C η)
−→ (σ

.
= ϑ ♦ η)

−→ (redundant-inference (subst-ecl D η) S P σ))

The last definition is the most restrictive one: every derivable clause must
be redundant.
definition clause-saturated :: ′a eclause set ⇒ bool

where (clause-saturated S) = (∀ C P σ C ′ D ϑ η.
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(derivable C P S σ Ground C ′) −→ (ground-clause (cl-ecl C ))
−→ (derivable D P S ϑ FirstOrder C ′) −→ (trms-subsumes D C η)
−→ (σ

.
= ϑ ♦ η)

−→ (redundant-clause (subst-ecl D η) S σ C ′))

We now relate these various notions, so that the forthcoming completeness
proof applies to all of them. To this purpose, we have to show that the
conclusion of a (ground) inference rule is always strictly smaller than one of
the premises.
lemma conclusion-is-smaller-than-premisses:

assumes derivable C P S σ Ground C ′

assumes ∀ x ∈ S . (finite (cl-ecl x))
assumes grounding-set P σ
shows ∃ D. (D ∈ P ∧ (( (mset-cl (C ′,σ)), (mset-ecl (D,σ))) ∈ (mult (mult

trm-ord))))
proof (rule ccontr)

assume hyp: ¬ (∃ D. (D ∈ P ∧ (( (mset-cl (C ′,σ)), (mset-ecl (D,σ))) ∈ (mult
(mult trm-ord)))))

from assms(1 ) have P ⊆ S unfolding derivable-def by auto
have not-sup: ¬ (∃P1 P2 . (P1 ∈ P ∧ P2 ∈ P ∧ superposition P1 P2 C σ

Ground C ′))
proof
assume (∃P1 P2 . (P1 ∈ P ∧ P2 ∈ P ∧ superposition P1 P2 C σ Ground C ′))
then obtain P1 P2 where P1 ∈ P P2 ∈ P superposition P1 P2 C σ Ground

C ′ by auto
from ‹superposition P1 P2 C σ Ground C ′› obtain L t s u v M L ′ polarity u ′

p t ′ Cl-C NT where
M ∈ (cl-ecl P2 ) L ∈ (cl-ecl P1 )
orient-lit-inst M u v pos σ
orient-lit-inst L t s polarity σ
subterm t p u ′

ck-unifier u ′ u σ Ground
replace-subterm t p v t ′

L ′ = mk-lit polarity (Eq t ′ s)
(C = (Ecl Cl-C NT ))
(subst u σ) 6= (subst v σ)
( (subst-lit M σ),(subst-lit L σ))

∈ lit-ord
strictly-maximal-literal P2 M σ
Cl-C = (subst-cl (((cl-ecl P1 ) − { L }) ∪ (((cl-ecl P2 ) − { M }) ∪ { L ′ } ))

σ)
C ′ = (((cl-ecl P1 ) − { L }) ∪ (((cl-ecl P2 ) − { M }) ∪ { L ′ } ))
unfolding superposition-def by blast

from ‹P1 ∈ P› and assms(2 ) and ‹P ⊆ S› have finite (cl-ecl P1 ) by auto
from ‹P2 ∈ P› and assms(2 ) and ‹P ⊆ S› have finite (cl-ecl P2 ) by auto

from assms(3 ) and ‹P2 ∈ P› have ground-clause (subst-cl (cl-ecl P2 ) σ)
unfolding grounding-set-def by auto

from this have vars-of-cl (subst-cl (cl-ecl P2 ) σ) = {} by auto
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from ‹M ∈ (cl-ecl P2 )›have (subst-lit M σ) ∈ (subst-cl (cl-ecl P2 ) σ) by auto
from this and ‹vars-of-cl (subst-cl (cl-ecl P2 ) σ) = {}› have vars-of-lit (subst-lit

M σ) = {}
by auto

from ‹orient-lit-inst M u v pos σ› have
orient-lit (subst-lit M σ) (subst u σ) (subst v σ) pos
using lift-orient-lit by auto

from this and ‹vars-of-lit (subst-lit M σ) = {}› have vars-of (subst u σ) =
{}

using orient-lit-vars by blast
from ‹orient-lit (subst-lit M σ) (subst u σ) (subst v σ) pos›

and ‹vars-of-lit (subst-lit M σ) = {}› have vars-of (subst v σ) = {}
using orient-lit-vars by blast

from ‹orient-lit (subst-lit M σ) (subst u σ) (subst v σ) pos›
have ((subst u σ),(subst v σ)) /∈ trm-ord
unfolding orient-lit-def by auto

from this and ‹(subst u σ) 6= (subst v σ)›
and ‹vars-of (subst u σ) = {}› ‹vars-of (subst v σ) = {}›
have ((subst v σ),(subst u σ)) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by blast

from assms(3 ) and ‹P1 ∈ P› have ground-clause (subst-cl (cl-ecl P1 ) σ)
unfolding grounding-set-def by auto

from this have vars-of-cl (subst-cl (cl-ecl P1 ) σ) = {} by auto
from ‹L ∈ (cl-ecl P1 )›have (subst-lit L σ) ∈ (subst-cl (cl-ecl P1 ) σ) by auto

from this and ‹vars-of-cl (subst-cl (cl-ecl P1 ) σ) = {}› have vars-of-lit (subst-lit
L σ) = {}

by auto
from ‹orient-lit-inst L t s polarity σ› have

orient-lit (subst-lit L σ) (subst t σ) (subst s σ) polarity
using lift-orient-lit by auto

from this and ‹vars-of-lit (subst-lit L σ) = {}› have vars-of (subst t σ) = {}
using orient-lit-vars by blast

from ‹orient-lit (subst-lit L σ) (subst t σ) (subst s σ) polarity›
and ‹vars-of-lit (subst-lit L σ) = {}› have vars-of (subst s σ) = {}
using orient-lit-vars by blast

let ?mC1 = mset-ecl (P1 , σ)
let ?mC2 = mset-ecl (C , σ)

from ‹L ∈ (cl-ecl P1 )› ‹finite (cl-ecl P1 )›
have mset-set (cl-ecl P1 ) = mset-set ((cl-ecl P1 )−{ L }) + mset-set { L }
using split-mset-set [of cl-ecl P1 cl-ecl P1 − { L } { L }] by blast

from this have d1 : {# (mset-lit (subst-lit x σ)). x ∈# (mset-set (cl-ecl P1 ))
#}

= {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ((cl-ecl P1 ) − { L })) #}
+ {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L }) #}
using split-image-mset by auto
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let ?C = (((cl-ecl P1 ) − { L }) ∪ (((cl-ecl P2 ) − { M }) ∪ { L ′ } ))
from ‹finite (cl-ecl P1 )› ‹finite (cl-ecl P2 )› have finite ?C by auto
let ?C ′ = ?C − ( (cl-ecl P1 ) − { L })
from ‹finite ?C › have finite ?C ′ by auto
have ?C = ( (cl-ecl P1 ) − { L }) ∪ ?C ′ by auto
from ‹finite (cl-ecl P1 )› ‹finite ?C ′›

have mset-set ?C = mset-set ((cl-ecl P1 )−{ L }) + mset-set ?C ′

using split-mset-set [of ?C cl-ecl P1 − { L } ?C ′] by blast

from this have d2 : {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ) #}
= {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ((cl-ecl P1 ) − { L })) #}
+ {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ′) #}
using split-image-mset by auto

have {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L }) #} 6= {#}
by auto

let ?K = {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ′) #}
let ?J = {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L }) #}
have (∀ k ∈ set-mset ?K . ∃ j ∈ set-mset ?J . (k, j) ∈ (mult trm-ord))
proof
fix k assume k ∈ set-mset ?K
from this have k ∈# ?K by auto
from this obtain M ′ where M ′ ∈# (mset-set ?C ′) and k = (mset-lit (subst-lit

M ′ σ))
using image-mset-thm [of ?K λx. (mset-lit (subst-lit x σ)) (mset-set ?C ′)]
by metis

from ‹M ′ ∈# (mset-set ?C ′)›and ‹finite ?C ′› have M ′ ∈ ?C ′ by auto
have L ∈# (mset-set { L }) by auto
from this have (mset-lit (subst-lit L σ) ∈# ?J ) by auto
from this have (mset-lit (subst-lit L σ) ∈ set-mset ?J ) by auto

have {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L }) #} 6= {#} by auto

show ∃ j ∈ set-mset ?J . (k, j) ∈ (mult trm-ord)
proof (cases)

assume M ′ ∈ (cl-ecl P2 ) − { M }
from this and ‹strictly-maximal-literal P2 M σ›

have ((subst-lit M ′ σ),(subst-lit M σ)) ∈ lit-ord
unfolding strictly-maximal-literal-def by metis

from this and ‹( (subst-lit M σ),(subst-lit L σ)) ∈ lit-ord›
have ((subst-lit M ′ σ),(subst-lit L σ)) ∈ lit-ord
using lit-ord-trans unfolding trans-def by metis

from this have ((mset-lit (subst-lit M ′ σ)),
(mset-lit (subst-lit L σ))) ∈ (mult trm-ord)

unfolding lit-ord-def by auto
from ‹(mset-lit (subst-lit L σ) ∈ set-mset ?J )› this ‹((mset-lit (subst-lit M ′
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σ)),
(mset-lit (subst-lit L σ))) ∈ (mult trm-ord)›

and ‹k = (mset-lit (subst-lit M ′ σ))› show ?thesis by blast
next assume M ′ /∈ (cl-ecl P2 ) − { M }
from this and ‹M ′ ∈ ?C ′› have M ′ = L ′ by auto
from ‹subterm t p u ′› have subterm (subst t σ) p (subst u ′ σ)

using substs-preserve-subterms by blast
from ‹ck-unifier u ′ u σ Ground› have
(subst u σ) = (subst u ′ σ) unfolding ck-unifier-def Unifier-def by auto

from this and ‹((subst v σ),(subst u σ)) ∈ trm-ord›
have ((subst v σ),(subst u ′ σ)) ∈ trm-ord by auto

from this ‹subterm t p u ′› ‹replace-subterm t p v t ′›
have ((subst t ′ σ),(subst t σ)) ∈ trm-ord
using replacement-monotonic by auto

have polarity = pos ∨ polarity = neg using sign.exhaust by auto
then have ((subst-lit L ′ σ),(subst-lit L σ)) ∈ lit-ord
proof

assume polarity = pos
from this and ‹orient-lit-inst L t s polarity σ›

have i: (mset-lit (subst-lit L σ)) = {# (subst s σ) #} + {# (subst t σ) #}
unfolding orient-lit-inst-def using add.commute by force

from ‹L ′ = mk-lit polarity (Eq t ′ s)› ‹polarity = pos›
have ii: (mset-lit (subst-lit L ′ σ)) = {# (subst s σ) #}
+ {# (subst t ′ σ) #}
using add.commute by force

have {# (subst t σ) #} 6= {#} by auto
have (∀ k ′ ∈ set-mset {# (subst t ′ σ) #}. ∃ j ′ ∈ set-mset {# (subst t σ)

#}. (k ′, j ′) ∈ (trm-ord))
proof

fix k ′ assume k ′ ∈set-mset {# (subst t ′ σ) #}
from this have k ′ = (subst t ′ σ) by auto
have (subst t σ) ∈ set-mset {# (subst t σ) #} by auto
from this ‹k ′ = (subst t ′ σ)›

and ‹((subst t ′ σ),(subst t σ)) ∈ trm-ord›
show ∃ j ′ ∈ set-mset {# (subst t σ) #}. (k ′, j ′) ∈ (trm-ord)

by auto
qed
from i ii

‹((subst t ′ σ),(subst t σ)) ∈ trm-ord›
have (mset-lit (subst-lit L ′ σ),(mset-lit (subst-lit L σ)))
∈ (mult trm-ord)

by (metis one-step-implies-mult empty-iff insert-iff set-mset-add-mset-insert
set-mset-empty)

from this show ?thesis unfolding lit-ord-def by auto

next
assume polarity = neg

from this and ‹orient-lit-inst L t s polarity σ›
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have i: (mset-lit (subst-lit L σ)) = {# (subst s σ), (subst s σ) #}
+ {# (subst t σ), (subst t σ) #}
unfolding orient-lit-inst-def by auto

from ‹L ′ = mk-lit polarity (Eq t ′ s)› ‹polarity = neg› have
subst-lit L ′ σ = (Neg (Eq (subst t ′ σ) (subst s σ))) by auto

from this have (mset-lit (subst-lit L ′ σ))
= {# (subst t ′ σ), (subst t ′ σ), (subst s σ), (subst s σ) #}
by auto

from this have ii: (mset-lit (subst-lit L ′ σ))
= {# (subst s σ), (subst s σ) #} + {# (subst t ′ σ), (subst t ′ σ) #}
by (simp add: add.commute add.left-commute)

have {# (subst t σ), (subst t σ) #} 6= {#} by auto

have (∀ k ′ ∈ set-mset {# (subst t ′ σ),(subst t ′ σ) #}.
∃ j ′ ∈ set-mset {# (subst t σ),(subst t σ) #}. (k ′, j ′) ∈ (trm-ord))

proof
fix k ′ assume k ′ ∈set-mset {# (subst t ′ σ),(subst t ′ σ) #}
from this have k ′ = (subst t ′ σ) by auto
have (subst t σ) ∈ set-mset {# (subst t σ),(subst t σ) #} by auto
from this ‹k ′ = (subst t ′ σ)›

and ‹((subst t ′ σ),(subst t σ)) ∈ trm-ord›
show ∃ j ′ ∈ set-mset {# (subst t σ),(subst t σ) #}. (k ′, j ′) ∈ (trm-ord)

by auto
qed

from this i ii ‹{# (subst t σ), (subst t σ) #} 6= {#}›
have (mset-lit (subst-lit L ′ σ),
(mset-lit (subst-lit L σ))) ∈ (mult trm-ord)
using one-step-implies-mult [of {# (subst t σ), (subst t σ) #}
{# (subst t ′ σ),(subst t ′ σ) #} trm-ord
{# (subst s σ),(subst s σ) #}]

trm-ord-trans by auto

from this show ?thesis unfolding lit-ord-def by auto
qed

from this and
‹(mset-lit (subst-lit L σ) ∈ set-mset ?J )›
‹k = (mset-lit (subst-lit M ′ σ))›
‹M ′ = L ′› show ?thesis unfolding lit-ord-def by auto

qed
qed
from this d1 d2 have o:

({#mset-lit (subst-lit x σ). x ∈# mset-set ?C #},
{#mset-lit (subst-lit x σ). x ∈# mset-set (cl-ecl P1 )#})
∈ mult (mult trm-ord)

using mult-trm-ord-trans one-step-implies-mult [of {# (mset-lit (subst-lit x σ)).
x ∈# (mset-set { L }) #}

{# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ′) #} mult trm-ord
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{# (mset-lit (subst-lit x σ)). x ∈# (mset-set ((cl-ecl P1 ) − { L })) #} ] by
auto

from this ‹C ′ = (((cl-ecl P1 ) − { L }) ∪ (((cl-ecl P2 ) − { M }) ∪ { L ′ } ))›
and ‹P1 ∈ P›

and hyp show False by auto
qed

have not-ref : ¬ (∃P1 . (P1 ∈ P ∧ reflexion P1 C σ Ground C ′))
proof

assume (∃P1 . (P1 ∈ P ∧ reflexion P1 C σ Ground C ′))
then obtain P1 where P1 ∈ P reflexion P1 C σ Ground C ′ by auto
from ‹reflexion P1 C σ Ground C ′› obtain L1 t s Cl-C Cl-P where
(eligible-literal L1 P1 σ)
(L1 ∈ (cl-ecl P1 )) (Cl-C = (cl-ecl C )) (Cl-P = (cl-ecl P1 ))
(orient-lit-inst L1 t s neg σ)
(ck-unifier t s σ Ground)
(Cl-C = (subst-cl ((Cl-P − { L1 }) )) σ)
(C ′ = ((Cl-P − { L1 }) ))
unfolding reflexion-def by blast

from ‹P1 ∈ P› and assms(2 ) and ‹P ⊆ S› have finite (cl-ecl P1 ) by auto

let ?mC1 = mset-ecl (P1 , σ)
let ?mC2 = mset-ecl (C , σ)

from ‹L1 ∈ (cl-ecl P1 )› ‹finite (cl-ecl P1 )›
have mset-set (cl-ecl P1 ) = mset-set ((cl-ecl P1 )−{ L1 }) + mset-set { L1 }
using split-mset-set [of cl-ecl P1 cl-ecl P1 − { L1 } { L1 }] by blast

from this have d1 : {# (mset-lit (subst-lit x σ)). x ∈# (mset-set (cl-ecl P1 ))
#}

= {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ((cl-ecl P1 ) − { L1 })) #}
+ {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L1 }) #}
using split-image-mset by auto

let ?C = ((cl-ecl P1 ) − { L1 })
from ‹finite (cl-ecl P1 )› have finite ?C by auto
let ?C ′ = {}
have finite ?C ′ by auto
have ?C = ( (cl-ecl P1 ) − { L1 }) ∪ ?C ′ by auto
from ‹finite (cl-ecl P1 )› ‹finite ?C ′›

have mset-set ?C = mset-set ((cl-ecl P1 )−{ L1 }) + mset-set ?C ′

using split-mset-set [of ?C cl-ecl P1 − { L1 } ?C ′] by blast

from this have d2 : {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ) #}
= {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ((cl-ecl P1 ) − { L1 })) #}
+ {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ′) #}
using split-image-mset by auto
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have {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L1 }) #} 6= {#}
by auto

let ?K = {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ′) #}
let ?J = {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L1 }) #}
have (∀ k ∈ set-mset ?K . ∃ j ∈ set-mset ?J . (k, j) ∈ (mult trm-ord)) by auto

from this d1 d2 ‹{# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L1 }) #} 6=
{#}›

have o:
({#mset-lit (subst-lit x σ). x ∈# mset-set ?C #},
{#mset-lit (subst-lit x σ). x ∈# mset-set (cl-ecl P1 )#})
∈ mult (mult trm-ord)

using mult-trm-ord-trans one-step-implies-mult [of
{# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L1 }) #}
{# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ′) #} mult trm-ord
{# (mset-lit (subst-lit x σ)). x ∈# (mset-set ((cl-ecl P1 ) − { L1 })) #} ]

by auto

from this ‹Cl-P = (cl-ecl P1 )› ‹C ′ = ((Cl-P − { L1 }) )› and ‹P1 ∈ P›
and hyp show False by auto

qed

have not-fact: ¬ (∃P1 . (P1 ∈ P ∧ factorization P1 C σ Ground C ′))
proof

assume (∃P1 . (P1 ∈ P ∧ factorization P1 C σ Ground C ′))
then obtain P1 where P1 ∈ P factorization P1 C σ Ground C ′ by auto
from ‹factorization P1 C σ Ground C ′› obtain L1 L2 L ′ t s u v Cl-P Cl-C

where
(eligible-literal L1 P1 σ)
(L1 ∈ (cl-ecl P1 )) (L2 ∈ (cl-ecl P1 ) − { L1 }) (Cl-C = (cl-ecl C )) (Cl-P =

(cl-ecl P1 ))
(orient-lit-inst L1 t s pos σ)
(orient-lit-inst L2 u v pos σ)
((subst t σ) 6= (subst s σ))
((subst t σ) 6= (subst v σ))
(ck-unifier t u σ Ground)
(L ′ = Neg (Eq s v))
(Cl-C = (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } )) σ)
(C ′ = ( (Cl-P − { L2 }) ∪ { L ′ } ))
unfolding factorization-def by blast

from ‹P1 ∈ P› and assms(2 ) and ‹P ⊆ S› have finite (cl-ecl P1 ) by auto

from assms(3 ) and ‹P1 ∈ P› have ground-clause (subst-cl (cl-ecl P1 ) σ)
unfolding grounding-set-def by auto

from this have vars-of-cl (subst-cl (cl-ecl P1 ) σ) = {} by auto
from ‹L1 ∈ (cl-ecl P1 )›have (subst-lit L1 σ) ∈ (subst-cl (cl-ecl P1 ) σ) by auto
from this and ‹vars-of-cl (subst-cl (cl-ecl P1 ) σ) = {}› have vars-of-lit (subst-lit

L1 σ) = {}
by auto
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from ‹orient-lit-inst L1 t s pos σ› have
orient-lit (subst-lit L1 σ) (subst t σ) (subst s σ) pos
using lift-orient-lit by auto

from this and ‹vars-of-lit (subst-lit L1 σ) = {}› have vars-of (subst t σ) =
{}

using orient-lit-vars by blast
from ‹orient-lit (subst-lit L1 σ) (subst t σ) (subst s σ) pos›

and ‹vars-of-lit (subst-lit L1 σ) = {}› have vars-of (subst s σ) = {}
using orient-lit-vars by blast

from ‹(L2 ∈ (cl-ecl P1 ) − { L1 })› have L2 ∈ (cl-ecl P1 ) by auto
from ‹L2 ∈ (cl-ecl P1 )› have (subst-lit L2 σ) ∈ (subst-cl (cl-ecl P1 ) σ) by

auto
from this and ‹vars-of-cl (subst-cl (cl-ecl P1 ) σ) = {}› have vars-of-lit (subst-lit

L2 σ) = {}
by auto

from ‹orient-lit-inst L2 u v pos σ› have
orient-lit (subst-lit L2 σ) (subst u σ) (subst v σ) pos
using lift-orient-lit by auto

from this and ‹vars-of-lit (subst-lit L2 σ) = {}› have vars-of (subst u σ) =
{}

using orient-lit-vars by blast
from ‹orient-lit (subst-lit L2 σ) (subst u σ) (subst v σ) pos›

and ‹vars-of-lit (subst-lit L2 σ) = {}› have vars-of (subst v σ) = {}
using orient-lit-vars by blast

from ‹ck-unifier t u σ Ground› have (subst t σ) = (subst u σ)
unfolding ck-unifier-def Unifier-def by auto

from ‹orient-lit (subst-lit L1 σ) (subst t σ) (subst s σ) pos›
have ((subst t σ),(subst s σ)) /∈ trm-ord
unfolding orient-lit-def by auto

from this and ‹(subst t σ) 6= (subst s σ)›
and ‹vars-of (subst t σ) = {}› ‹vars-of (subst s σ) = {}›
have ((subst s σ),(subst t σ)) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by blast

from this and ‹(subst t σ) = (subst u σ)› have
((subst s σ),(subst u σ)) ∈ trm-ord by auto

from ‹orient-lit (subst-lit L2 σ) (subst u σ) (subst v σ) pos›
have ((subst u σ),(subst v σ)) /∈ trm-ord
unfolding orient-lit-def by auto

from this and ‹(subst t σ) 6= (subst v σ)›
and ‹(subst t σ) = (subst u σ)›
and ‹vars-of (subst u σ) = {}› ‹vars-of (subst v σ) = {}›
have ((subst v σ),(subst u σ)) ∈ trm-ord using trm-ord-ground-total
unfolding ground-term-def by metis
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let ?mC1 = mset-ecl (P1 , σ)
let ?mC2 = mset-ecl (C , σ)

from ‹L2 ∈ (cl-ecl P1 )› ‹finite (cl-ecl P1 )›
have mset-set (cl-ecl P1 ) = mset-set ((cl-ecl P1 )−{ L2 }) + mset-set { L2 }
using split-mset-set [of cl-ecl P1 cl-ecl P1 − { L2 } { L2 }] by blast

from this have d1 : {# (mset-lit (subst-lit x σ)). x ∈# (mset-set (cl-ecl P1 ))
#}

= {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ((cl-ecl P1 ) − { L2 })) #}
+ {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L2 }) #}
using split-image-mset by auto

let ?C = (((cl-ecl P1 ) − { L2 }) ∪ { L ′ } )
from ‹finite (cl-ecl P1 )› have finite ?C by auto
let ?C ′ = ?C − ( (cl-ecl P1 ) − { L2 })
from ‹finite ?C › have finite ?C ′ by auto
have ?C = ( (cl-ecl P1 ) − { L2 }) ∪ ?C ′ by auto
from ‹finite (cl-ecl P1 )› ‹finite ?C ′›

have mset-set ?C = mset-set ((cl-ecl P1 )−{ L2 }) + mset-set ?C ′

using split-mset-set [of ?C cl-ecl P1 − { L2 } ?C ′] by blast

from this have d2 : {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ) #}
= {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ((cl-ecl P1 ) − { L2 })) #}
+ {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ′) #}
using split-image-mset by auto

have {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L2 }) #} 6= {#}
by auto

let ?K = {# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ′) #}
let ?J = {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L2 }) #}
have (∀ k ∈ set-mset ?K . ∃ j ∈ set-mset ?J . (k, j) ∈ (mult trm-ord))
proof
fix k assume k ∈ set-mset ?K
from this have k ∈# ?K by simp
from this obtain M ′ where M ′ ∈# (mset-set ?C ′) and k = (mset-lit (subst-lit

M ′ σ))
using image-mset-thm [of ?K λx. (mset-lit (subst-lit x σ)) (mset-set ?C ′)]
by metis

from ‹M ′ ∈# (mset-set ?C ′)›and ‹finite ?C ′› have M ′ ∈ ?C ′ by auto
have L2 ∈# (mset-set { L2 }) by auto
from this have (mset-lit (subst-lit L2 σ) ∈# ?J ) by auto
from this have (mset-lit (subst-lit L2 σ) ∈ set-mset ?J ) by auto

have {# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L2 }) #} 6= {#} by auto

show ∃ j ∈ set-mset ?J . (k, j) ∈ (mult trm-ord)
proof −
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from ‹M ′ ∈ ?C ′› have M ′ = L ′ by auto
from ‹orient-lit-inst L2 u v pos σ›

have i: (mset-lit (subst-lit L2 σ))
= {#} + {# (subst u σ), (subst v σ) #}
unfolding orient-lit-inst-def using add.commute by force

from ‹L ′ = Neg (Eq s v)›
have ii: (mset-lit (subst-lit L ′ σ)) =
{#} + {# (subst s σ), (subst s σ), (subst v σ), (subst v σ) #}
by force

have {# (subst u σ), (subst v σ) #} 6= {#} by auto
have (∀ k ′ ∈ set-mset {# (subst s σ), (subst s σ), (subst v σ), (subst v σ) #}.

∃ j ′ ∈ set-mset {# (subst u σ), (subst v σ) #}. (k ′, j ′) ∈ (trm-ord))
proof

fix k ′ assume nh: k ′ ∈set-mset {# (subst s σ), (subst s σ), (subst v σ),
(subst v σ) #}

have (subst u σ) ∈ set-mset {# (subst u σ), (subst v σ) #} by auto
from nh have k ′ = (subst s σ) ∨ k ′ = (subst v σ) by auto

then show ∃ j ′ ∈ set-mset {# (subst u σ), (subst v σ) #}. (k ′, j ′) ∈
(trm-ord)

proof
assume k ′ = (subst s σ)
from this and ‹((subst s σ),(subst u σ)) ∈ trm-ord›

and ‹(subst u σ) ∈ set-mset {# (subst u σ), (subst v σ) #}› show
?thesis by auto

next
assume k ′ = (subst v σ)
from this and ‹((subst v σ),(subst u σ)) ∈ trm-ord›

and ‹(subst u σ) ∈ set-mset {# (subst u σ), (subst v σ) #}› show
?thesis by auto

qed
qed

from this i ii ‹{# (subst u σ), (subst v σ) #} 6= {#}›
have (mset-lit (subst-lit L ′ σ),
(mset-lit (subst-lit L2 σ))) ∈ (mult trm-ord)
using one-step-implies-mult [of {# (subst u σ), (subst v σ) #}
{# (subst s σ),(subst s σ), (subst v σ),(subst v σ) #}
trm-ord {#}]

trm-ord-trans by metis
from this ‹M ′ = L ′› ‹k = (mset-lit (subst-lit M ′ σ))› show ?thesis by auto

qed

qed
from this d1 d2 ‹{# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L2 }) #} 6=
{#}›

have o:
({#mset-lit (subst-lit x σ). x ∈# mset-set ?C #},
{#mset-lit (subst-lit x σ). x ∈# mset-set (cl-ecl P1 )#})
∈ mult (mult trm-ord)
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using mult-trm-ord-trans one-step-implies-mult [of
{# (mset-lit (subst-lit x σ)). x ∈# (mset-set { L2 }) #}
{# (mset-lit (subst-lit x σ)). x ∈# (mset-set ?C ′) #} mult trm-ord
{# (mset-lit (subst-lit x σ)). x ∈# (mset-set ((cl-ecl P1 ) − { L2 })) #} ]

by metis

from this ‹(Cl-P = (cl-ecl P1 ))› ‹C ′ = ( (Cl-P − { L2 }) ∪ { L ′ } )› and ‹P1
∈ P›

and hyp show False by auto
qed
from not-sup not-ref not-fact and assms(1 ) show False unfolding derivable-def

by blast
qed

lemma redundant-inference-clause:
assumes redundant-clause E S σ C ′

assumes derivable C P S σ Ground C ′

assumes grounding-set P σ
assumes ∀ x ∈ S . (finite (cl-ecl x))
shows redundant-inference E S P σ

proof −
from assms(1 ) obtain S ′ where S ′ ⊆ (instances S)
(set-entails-clause (clset-instances S ′) (cl-ecl E))
(∀ x ∈ S ′. ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))

(trms-ecl E))) and
ball-S ′-C ′-le: ∀ x ∈ S ′. (mset-ecl (fst x, snd x), mset-cl (C ′, σ)) ∈ mult (mult

trm-ord) ∨
mset-ecl (fst x, snd x) = mset-cl (C ′, σ)

unfolding redundant-clause-def by auto
from assms(3 ) assms(4 ) ‹derivable C P S σ Ground C ′›

obtain D where D ∈ P
(( (mset-cl (C ′,σ)), (mset-ecl (D,σ))) ∈ (mult (mult trm-ord)))
using conclusion-is-smaller-than-premisses by blast

have ∀ x ∈ S ′. ∃D ′ ∈ cl-ecl ‘ P. ((cl-ecl (fst x), snd x), (D ′, σ)) ∈ cl-ord
proof (intro ballI )

fix x assume x ∈ S ′

have ((cl-ecl (fst x), snd x), (cl-ecl D, σ)) ∈ cl-ord
using ball-S ′-C ′-le[rule-format, OF ‹x ∈ S ′›]
using ‹(mset-cl (C ′, σ), mset-ecl (D, σ)) ∈ mult (mult trm-ord)›
unfolding cl-ord-def mem-Collect-eq prod.case mset-ecl-conv
by (metis mult-mult-trm-ord-trans[THEN transD])

with ‹D ∈ P› show ∃D ′ ∈ cl-ecl ‘ P. ((cl-ecl (fst x), snd x), (D ′, σ)) ∈ cl-ord
by auto

qed
from this and ‹S ′ ⊆ (instances S)› and ‹(set-entails-clause (clset-instances S ′)

(cl-ecl E))›
and ‹(∀ x ∈ S ′. ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))

(trms-ecl E)))›
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show ?thesis unfolding redundant-inference-def
by auto

qed

lemma clause-saturated-and-inference-saturated:
assumes clause-saturated S
assumes ∀ x ∈ S . (finite (cl-ecl x))
shows inference-saturated S

proof (rule ccontr)
assume ¬ inference-saturated S
then obtain C P σ C ′ D ϑ η

where derivable C P S σ Ground C ′ ground-clause (cl-ecl C )
derivable D P S ϑ FirstOrder C ′ trms-subsumes D C η
σ

.
= ϑ ♦ η grounding-set P σ
¬redundant-inference (subst-ecl D η) S P σ

unfolding inference-saturated-def by blast

from assms(2 ) ‹grounding-set P σ› ‹derivable C P S σ Ground C ′›
‹¬redundant-inference (subst-ecl D η) S P σ›
have ¬redundant-clause (subst-ecl D η) S σ C ′

using redundant-inference-clause by blast

from assms(1 ) have
∧

C P σ C ′ D ϑ η.
(derivable C P S σ Ground C ′) −→ (ground-clause (cl-ecl C ))
−→ (derivable D P S ϑ FirstOrder C ′) −→ (trms-subsumes D C η)
−→ (σ

.
= ϑ ♦ η)

−→ (redundant-clause (subst-ecl D η) S σ C ′) unfolding clause-saturated-def
by blast

from this and ‹derivable C P S σ Ground C ′› ‹ground-clause (cl-ecl C )›
‹derivable D P S ϑ FirstOrder C ′›
‹trms-subsumes D C η› ‹σ .

= ϑ ♦ η› assms(1 ) have redundant-clause (subst-ecl
D η) S σ C ′

by auto
from this and ‹¬redundant-clause (subst-ecl D η) S σ C ′› show False by auto

qed

7 Refutational Completeness

We prove that our variant of the superposition calculus is complete under
the redundancy criteria defined above. This is done as usual, by constructing
a model of every saturated set not containing the empty clause.

7.1 Model Construction

We associate as usual every set of extended clauses with an interpretation.
The interpretation is constructed in such a way that it is a model of the set of
clauses if the latter is saturated and does not contain the empty clause. The
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interpretation is constructed by defining directly a normalization function
mapping every term to its normal form, i.e., to the minimal equivalent term.
Note that we do not consider sets of rewrite rules explicitly.

The next function associates every normalization function with the corre-
sponding interpretation (two terms are in relation if they share the same
normal form). The obtained relation is an interpretation if the normaliza-
tion function is compatible with the term combination operator.
definition same-values :: ( ′a trm ⇒ ′a trm) ⇒ ′a trm ⇒ ′a trm ⇒ bool

where (same-values f ) =
(λx y. (f x) = (f y))

definition value-is-compatible-with-structure :: ( ′a trm ⇒ ′a trm) ⇒ bool
where (value-is-compatible-with-structure f ) = (∀ t s. (f (Comb t s)) = (f (Comb

(f t) (f s))))

lemma same-values-fo-int:
assumes value-is-compatible-with-structure f
shows fo-interpretation (same-values f )

proof −
let ?I = (same-values f )
have ref : reflexive ?I unfolding same-values-def reflexive-def by simp
have sym: symmetric ?I unfolding same-values-def symmetric-def by auto
have trans: transitive ?I unfolding same-values-def transitive-def by auto
from assms(1 ) have comp: compatible-with-structure ?I

unfolding same-values-def
compatible-with-structure-def value-is-compatible-with-structure-def [of f ]

by metis
from ref trans sym comp have congruence ?I unfolding congruence-def equiv-

alence-relation-def
by auto

then show ?thesis unfolding fo-interpretation-def by auto
qed

The normalization function is defined by mapping each term to a set of
pairs. Intuitively, the second element of each pair represents the right hand
side of a rule that can be used to rewrite the considered term, and the first
element of the pair denotes its normal form. The value of the term is the
first component of the pair with the smallest second component.

The following function returns the set of values for which the second com-
ponent is minimal. We then prove that this set is non-empty and define a
function returning an arbitrary chosen element.
definition min-trms :: ( ′a trm × ′a trm) set ⇒ ′a trm set

where (min-trms E) = ({ x. (∃ pair . (pair ∈ E
∧ (∀ pair ′ ∈ E . (snd pair ′,snd pair) /∈ trm-ord)) ∧ x = fst pair) })

lemma min-trms-not-empty:
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assumes E 6= {}
shows min-trms E 6= {}

proof −
from assms(1 ) obtain x where x ∈ E by auto
let ?pair-ordering = { (x,y). ((snd x),(snd y)) ∈ trm-ord }
from trm-ord-wf have wf ?pair-ordering using measure-wf by auto
from this ‹x ∈ E›

obtain y where y ∈ E and ∀ z. (z,y) ∈ ?pair-ordering −→ (z /∈ E)
using wfE-min [of ?pair-ordering ]
by metis

from this have fst y ∈ min-trms E unfolding min-trms-def by blast
then show ?thesis by auto

qed

definition get-min :: ′a trm ⇒ ( ′a trm × ′a trm) set ⇒ ′a trm
where (get-min t E) =

(if ((min-trms E) = {}) then t else (SOME x. (x ∈ min-trms E)))

We now define the normalization function. The definition is tuned to make
the termination proof straightforward. We will reformulate it afterward to
get a simpler definition.
We first test whether a subterm of the considered term is reducible. If this is
the case then the value can be obtained by applying recursively the function
on each subterm, and then again on the term obtained by combining the
obtained normal forms. If not, then we collect all possible pairs (as explained
above), and we use the one with the minimal second component. These
pairs can be interpreted as rewrite rules, giving the value of the considered
term: the second component is the right-hand side of the rule and the first
component is the normal form of the right-hand side. As usual, such rewrite
rules are obtained from ground clauses that have a strictly positive maximal
literal, no selected literals, and that are not validated by the constructed
interpretation.
function trm-rep:: ′a trm ⇒ ( ′a eclause set ⇒ ′a trm)

where
(trm-rep t) =
(λS . (if ((is-compound t) ∧ ((lhs t),t) ∈ trm-ord ∧ ((rhs t),t) ∈ trm-ord
∧ ( ((lhs t,t) ∈ trm-ord −→ (trm-rep (lhs t) S) 6= (lhs t))
∨ ((rhs t,t) ∈ trm-ord −→(trm-rep (rhs t) S) 6= (rhs t))))

then (if ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈ trm-ord
then

(trm-rep (Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)) S)
else t)

else (get-min t
{ pair . ∃ z CC C ′ C s L L ′ σ t ′ s ′.

pair = (z,s)
∧ CC ∈ S ∧ (t /∈ (subst-set (trms-ecl CC ) σ))
∧ (∀ x. (∃ x ′ ∈ (trms-ecl CC ). occurs-in x (subst x ′ σ))
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−→ ( (x,t) ∈ trm-ord −→ (trm-rep x S) = x))
∧ (C ′ = (cl-ecl CC )) ∧ (s,t) ∈ trm-ord ∧ ((s,t) ∈ trm-ord −→ (z = trm-rep

s S))
∧ (orient-lit-inst L ′ t ′ s ′ pos σ) ∧ (sel C ′) = {} ∧ (L ′ ∈ C ′)
∧ (maximal-literal L C ) ∧ (L = (subst-lit L ′ σ)) ∧ (C = (subst-cl C ′ σ))
∧ (ground-clause C ) ∧ (t = (subst t ′ σ)) ∧ (s = (subst s ′ σ)) ∧ (finite C ′)
∧
(∀ L u v.

(L ∈ C −→ orient-lit L u v pos
−→ (u,t) ∈ trm-ord −→ (v,t) ∈ trm-ord
−→ (trm-rep u S) 6= (trm-rep v S))

∧
(L ∈ C −→ orient-lit L u v neg −→ (u,t) ∈ trm-ord −→ (v,t) ∈ trm-ord
−→ (trm-rep u S) = (trm-rep v S)))

∧ (∀ s ′′. (
(eq-occurs-in-cl t s ′′ (C ′− { L ′ }) σ) −→ (s ′′,t) ∈ trm-ord −→ (s,t) ∈

trm-ord
−→ (trm-rep s S) 6= (trm-rep s ′′ S))) })))

by auto
termination apply (relation trm-ord)
by auto (simp add: trm-ord-wf )

We now introduce a few shorthands and rewrite the previous definition into
an equivalent simpler form. The key point is to prove that a term is always
greater than its normal form.
definition subterm-reduction-aux:: ′a eclause set ⇒ ′a trm ⇒ ′a trm
where

subterm-reduction-aux S t =
(if ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈ trm-ord
then (trm-rep (Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)) S)
else t)

definition subterm-reduction:: ′a eclause set ⇒ ′a trm ⇒ ′a trm
where

subterm-reduction S t =
(trm-rep (Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)) S)

definition maximal-literal-is-unique
where (maximal-literal-is-unique t s C ′ L ′ S σ) =
(∀ s ′′. (

(eq-occurs-in-cl t s ′′ (C ′− { L ′ }) σ) −→ (s ′′,t) ∈ trm-ord −→ (s,t) ∈
trm-ord

−→ (trm-rep s S) 6= (trm-rep s ′′ S)))

definition smaller-lits-are-false
where (smaller-lits-are-false t C S) =
(∀ L u v.

(L ∈ C −→ orient-lit L u v pos
−→ (u,t) ∈ trm-ord −→ (v,t) ∈ trm-ord
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−→ (trm-rep u S) 6= (trm-rep v S))
∧
(L ∈ C −→ orient-lit L u v neg −→ (u,t) ∈ trm-ord −→ (v,t) ∈ trm-ord
−→ (trm-rep u S) = (trm-rep v S)))

definition int-clset
where int-clset S = (same-values (λx. (trm-rep x S)))

lemma smaller-lits-are-false-if-cl-not-valid:
assumes ¬(validate-ground-clause (int-clset S) C )
shows smaller-lits-are-false t C S

proof (rule ccontr)
let ?I = int-clset S
assume ¬smaller-lits-are-false t C S
from this obtain L u v where L ∈ C

and (orient-lit L u v pos ∧ (trm-rep u S) = (trm-rep v S))
∨ (orient-lit L u v neg ∧ (trm-rep u S) 6= (trm-rep v S))

unfolding smaller-lits-are-false-def by blast
then have (orient-lit L u v pos ∧ (trm-rep u S) = (trm-rep v S))

∨ (orient-lit L u v neg ∧ (trm-rep u S) 6= (trm-rep v S)) by blast
then show False
proof

assume c-pos: (orient-lit L u v pos ∧ (trm-rep u S) = (trm-rep v S))
then have orient-lit L u v pos by blast
from c-pos have (trm-rep u S) = (trm-rep v S) by blast
from ‹orient-lit L u v pos› have L = (Pos (Eq u v)) ∨ L = (Pos (Eq v u))

unfolding orient-lit-def by auto
from this and ‹(trm-rep u S) = (trm-rep v S)› have validate-ground-lit ?I L

using validate-ground-lit.simps(1 ) validate-ground-eq.simps
unfolding same-values-def int-clset-def
by (metis (mono-tags, lifting))

from this and ‹L ∈ C › and assms show False unfolding int-clset-def
using validate-ground-clause.simps by blast

next
assume c-neg: (orient-lit L u v neg ∧ (trm-rep u S) 6= (trm-rep v S))
then have orient-lit L u v neg by blast
from c-neg have (trm-rep u S) 6= (trm-rep v S) by blast
from ‹orient-lit L u v neg› have L = (Neg (Eq u v)) ∨ L = (Neg (Eq v u))

unfolding orient-lit-def by auto
from this and ‹(trm-rep u S) 6= (trm-rep v S)› have validate-ground-lit ?I L

using validate-ground-lit.simps(2 ) validate-ground-eq.simps
unfolding same-values-def int-clset-def
by (metis (mono-tags, lifting))

from this and ‹L ∈ C › and assms show False unfolding int-clset-def
using validate-ground-clause.simps by blast

qed
qed

The following function states that all instances of the terms attached to a
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clause are in normal form w.r.t. the interpretation associated with S, up to
some maximal term t
definition trms-irreducible

where trms-irreducible CC σ S t =
(∀ x. (∃ x ′ ∈ (trms-ecl CC ). occurs-in x (subst x ′ σ)) −→
( (x,t) ∈ trm-ord −→ (trm-rep x S) = x))

lemma trms-irreducible-lemma:
assumes all-trms-irreducible (subst-set (trms-ecl C ) σ) (λt. trm-rep t S)
shows trms-irreducible C σ S t

proof (rule ccontr)
assume ¬trms-irreducible C σ S t
from this obtain x where ∃ x ′∈ trms-ecl C . occurs-in x (subst x ′ σ) and

trm-rep x S 6= x unfolding trms-irreducible-def by blast
from ‹∃ x ′∈ trms-ecl C . occurs-in x (subst x ′ σ)› obtain x ′ where

x ′ ∈ trms-ecl C and occurs-in x (subst x ′ σ) by blast
from ‹x ′ ∈ trms-ecl C ›

have (subst x ′ σ) ∈ (subst-set (trms-ecl C ) σ)
by auto

from this and assms(1 ) ‹occurs-in x (subst x ′ σ)›
have trm-rep x S = x unfolding all-trms-irreducible-def by metis

from this and ‹trm-rep x S 6= x› show False by blast
qed

The following predicate states that a term z is the normal form of the right-
hand side of a rule of left-hand side t. It is used to define the set of possible
values for term t. The actual value is that corresponding to the smallest
right-hand side.
definition candidate-values

where (candidate-values z CC C ′ C s L L ′ σ t ′ s ′ t S) =
(CC ∈ S ∧ (t /∈ (subst-set (trms-ecl CC ) σ)) ∧ (trms-irreducible CC σ S

t)
∧ (C ′ = (cl-ecl CC )) ∧ (s,t) ∈ trm-ord ∧ ((s,t) ∈ trm-ord −→ (z = trm-rep

s S))
∧ (orient-lit-inst L ′ t ′ s ′ pos σ) ∧ (sel C ′= {}) ∧ (L ′ ∈ C ′) ∧ (maximal-literal

L C )
∧ (L = (subst-lit L ′ σ)) ∧ (C = (subst-cl C ′ σ)) ∧ (ground-clause C )
∧ (t = (subst t ′ σ)) ∧ (s = (subst s ′ σ)) ∧ (finite C ′)
∧ (smaller-lits-are-false t C S)
∧ (maximal-literal-is-unique t s C ′ L ′ S σ))

definition set-of-candidate-values:: ′a eclause set ⇒ ′a trm ⇒ ( ′a trm × ′a trm)
set
where set-of-candidate-values S t =

{ pair . ∃ z CC C ′ C s L L ′ σ t ′ s ′.
pair = (z,s) ∧ (candidate-values z CC C ′ C s L L ′ σ t ′ s ′ t S) }

definition subterm-reduction-applicable-aux:: ′a eclause set ⇒ ′a trm ⇒ bool
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where subterm-reduction-applicable-aux S t =
(is-compound t ∧ (lhs t,t) ∈ trm-ord ∧ (rhs t,t) ∈ trm-ord
∧ ( ((lhs t,t) ∈ trm-ord −→ (trm-rep (lhs t) S) 6= (lhs t))
∨ ((rhs t,t) ∈ trm-ord −→(trm-rep (rhs t) S) 6= (rhs t))))

definition subterm-reduction-applicable:: ′a eclause set ⇒ ′a trm ⇒ bool
where subterm-reduction-applicable S t =
(is-compound t ∧ ((trm-rep (lhs t) S) 6= (lhs t) ∨ (trm-rep (rhs t) S) 6= (rhs t)))

lemma trm-rep-is-lower-aux:
assumes ∀ y. (y,t) ∈ trm-ord −→

(y 6= (trm-rep y S) −→ ((trm-rep y S),y) ∈ trm-ord)
assumes (subterm-reduction-applicable S t)
shows ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈ trm-ord

proof −
have (lhs t,t) ∈ trm-ord using ‹subterm-reduction-applicable S t› args-are-strictly-lower

subterm-reduction-applicable-def
by blast

have (rhs t,t) ∈ trm-ord using ‹subterm-reduction-applicable S t› args-are-strictly-lower

subterm-reduction-applicable-def by blast
from assms(1 ) and ‹(lhs t,t) ∈ trm-ord› have

l: ( (lhs t 6= (trm-rep (lhs t) S)) −→ ((trm-rep (lhs t) S), (lhs t)) ∈ trm-ord)
by metis

from assms(1 ) and ‹(rhs t,t) ∈ trm-ord› have
r : (rhs t 6= (trm-rep (rhs t) S) −→ ((trm-rep (rhs t) S), (rhs t)) ∈ trm-ord)
by metis

from ‹subterm-reduction-applicable S t›
have ((trm-rep (lhs t) S) 6= (lhs t) ∨ (trm-rep (rhs t) S) 6= (rhs t))
unfolding subterm-reduction-applicable-def [of S t] by blast

then show ?thesis
proof

assume (trm-rep (lhs t) S) 6= (lhs t)
from this and l have ((trm-rep (lhs t) S), (lhs t)) ∈ trm-ord by metis
from this
have i: ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),(Comb (lhs t) (trm-rep

(rhs t) S)))
∈ trm-ord using trm-ord-reduction-left by blast

show ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈ trm-ord
proof (cases)

assume (trm-rep (rhs t) S) = (rhs t)
from this
and ‹((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),(Comb (lhs t) (trm-rep

(rhs t) S)))
∈ trm-ord›

show ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈ trm-ord
by (metis assms(2 ) is-compound.elims(2 ) lhs.simps(1 )

rhs.simps(1 ) subterm-reduction-applicable-def )
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next
assume (trm-rep (rhs t) S) 6= (rhs t)
from this and r have ((trm-rep (rhs t) S), (rhs t)) ∈ trm-ord by metis
from this have ((Comb (lhs t) (trm-rep (rhs t) S)), ((Comb (lhs t) (rhs t))))

∈ trm-ord
using trm-ord-reduction-right by blast

from this and i show ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈
trm-ord

by (metis assms(2 ) is-compound.elims(2 ) lhs.simps(1 ) rhs.simps(1 )
subterm-reduction-applicable-def trm-ord-trans transE)

qed
next

assume (trm-rep (rhs t) S) 6= (rhs t)
from this and r have ((trm-rep (rhs t) S), (rhs t)) ∈ trm-ord by metis
from this

have i: ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),(Comb (trm-rep (lhs
t) S) (rhs t)))

∈ trm-ord using trm-ord-reduction-right by blast
show ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈ trm-ord
proof (cases)

assume (trm-rep (lhs t) S) = (lhs t)
from this and
‹((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),(Comb (trm-rep (lhs t) S)

(rhs t))) ∈ trm-ord›
show ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈ trm-ord

by (metis assms(2 ) basic-superposition.subterm-reduction-applicable-def
basic-superposition-axioms is-compound.elims(2 ) lhs.simps(1 ) rhs.simps(1 ))

next
assume (trm-rep (lhs t) S) 6= (lhs t)
from this and l have ((trm-rep (lhs t) S), (lhs t)) ∈ trm-ord by metis
from this have ((Comb (trm-rep (lhs t) S) (rhs t)), ((Comb (lhs t) (rhs t))))

∈ trm-ord
using trm-ord-reduction-left by blast

from this and i show ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈
trm-ord

by (metis assms(2 ) basic-superposition.subterm-reduction-applicable-def
basic-superposition-axioms is-compound.elims(2 ) lhs.simps(1 ) rhs.simps(1 )

trm-ord-trans transE)
qed

qed
qed

The following lemma corresponds to the initial definition of the function
trm-rep.
lemma trm-rep-init-def :

shows (trm-rep t) = (λS . (if (subterm-reduction-applicable-aux S t)
then (subterm-reduction-aux S t)
else (get-min t (set-of-candidate-values S t))))
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unfolding subterm-reduction-aux-def set-of-candidate-values-def candidate-values-def

subterm-reduction-applicable-aux-def maximal-literal-is-unique-def smaller-lits-are-false-def

trms-irreducible-def
using trm-rep.simps [of t] by force

lemma trm-rep-aux-def :
assumes ∀ y. (y,t) ∈ trm-ord −→

(y 6= (trm-rep y S) −→ ((trm-rep y S),y) ∈ trm-ord)
shows (trm-rep t S) = (if (subterm-reduction-applicable S t)

then (subterm-reduction S t)
else (get-min t (set-of-candidate-values S t)))

proof (cases)
assume subterm-reduction-applicable S t
then have subterm-reduction-applicable-aux S t

using args-are-strictly-lower
subterm-reduction-applicable-def subterm-reduction-applicable-aux-def by blast

from this have (trm-rep t S) = (subterm-reduction-aux S t)
using trm-rep-init-def [of t] by meson
then have ((Comb (trm-rep (lhs t) S) (trm-rep (rhs t) S)),t) ∈ trm-ord

using ‹subterm-reduction-applicable S t› assms trm-rep-is-lower-aux by blast
then show ?thesis

by (metis ‹trm-rep t S = subterm-reduction-aux S t›
‹subterm-reduction-applicable S t›
subterm-reduction-def
subterm-reduction-aux-def )

next
assume ¬subterm-reduction-applicable S t
then have ¬subterm-reduction-applicable-aux S t
using subterm-reduction-applicable-def subterm-reduction-applicable-aux-def by

blast
from this and ‹¬subterm-reduction-applicable S t› show ?thesis

by (meson trm-rep-init-def )
qed

lemma trm-rep-is-lower :
shows (t 6= (trm-rep t S)) −→ (((trm-rep t S),t) ∈ trm-ord) (is ?P t)

proof ((rule wf-induct [of trm-ord ?P t]),(simp add: trm-ord-wf ))
next

fix x assume hyp-ind: ∀ y. (y,x) ∈ trm-ord −→ (?P y)
let ?v = (Comb (trm-rep (lhs x) S) (trm-rep (rhs x) S))
show (?P x)
proof (rule impI )

assume x 6= (trm-rep x S)
show ((trm-rep x S),x) ∈ trm-ord
proof cases

assume c1 : subterm-reduction-applicable S x
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from this and hyp-ind
have (?v,x) ∈ trm-ord using trm-rep-is-lower-aux by metis

from c1 and hyp-ind have (trm-rep x S) = (subterm-reduction S x)
using trm-rep-aux-def [of x S ] by metis

from this have (trm-rep x S) = (trm-rep ?v S)
unfolding subterm-reduction-def by metis

from ‹(?v,x) ∈ trm-ord› and hyp-ind have ?P ?v by metis
from this and ‹(trm-rep x S) = (trm-rep ?v S)› show ?thesis
by (metis ‹(trm-rep (lhs x) S · trm-rep (rhs x) S , x) ∈ trm-ord› trm-ord-trans

transE)
next assume c2 : ¬subterm-reduction-applicable S x
from c2 and hyp-ind have (trm-rep x S) = (get-min x (set-of-candidate-values

S x))
using trm-rep-aux-def [of x S ] by metis

from this and ‹x 6= (trm-rep x S)›
have (trm-rep x S) ∈ (min-trms (set-of-candidate-values S x))
unfolding get-min-def by (metis (full-types) some-in-eq)

then obtain pair where pair ∈ (set-of-candidate-values S x) (trm-rep x
S) = fst pair

unfolding min-trms-def by blast
from ‹pair ∈ (set-of-candidate-values S x)›

have
∃ CC C ′ C L L ′ σ t ′ s ′. candidate-values (fst pair) CC C ′ C (snd pair)

L L ′ σ t ′ s ′ x S
unfolding set-of-candidate-values-def by fastforce

from this have (snd pair ,x) ∈ trm-ord unfolding candidate-values-def by
blast

from
‹∃ CC C ′ C L L ′ σ t ′ s ′. candidate-values (fst pair) CC C ′ C (snd pair)

L L ′ σ t ′ s ′ x S›
have ((snd pair , x) ∈ trm-ord −→ fst pair = trm-rep (snd pair) S)
unfolding candidate-values-def by blast
from ‹(snd pair ,x) ∈ trm-ord› ‹((snd pair , x) ∈ trm-ord −→ fst pair =

trm-rep (snd pair) S)›
have fst pair = trm-rep (snd pair) S by blast

from ‹(snd pair ,x) ∈ trm-ord› and hyp-ind have (?P (snd pair)) by blast
from this and ‹fst pair = (trm-rep (snd pair) S)›

have fst pair = snd pair ∨ (fst pair ,snd pair) ∈ trm-ord
by metis

from this and ‹(trm-rep x S) = fst pair› and ‹(snd pair ,x) ∈ trm-ord› ‹x
6= (trm-rep x S)›

show ?thesis by (metis trm-ord-trans transD)
qed

qed
qed

lemma trm-rep-is-lower-subt-red:
assumes (subterm-reduction-applicable S x)
shows ((trm-rep x S),x) ∈ trm-ord
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proof −
let ?v = (Comb (trm-rep (lhs x) S) (trm-rep (rhs x) S))
from assms(1 )

have (?v,x) ∈ trm-ord using trm-rep-is-lower-aux trm-rep-is-lower by
metis

from assms(1 ) have (trm-rep x S) = (subterm-reduction S x)
using trm-rep-aux-def [of x S ] trm-rep-is-lower by metis

from this have (trm-rep x S) = (trm-rep ?v S)
unfolding subterm-reduction-def by metis

have ?v = trm-rep ?v S ∨ (trm-rep ?v S ,?v) ∈ trm-ord using trm-rep-is-lower
by blast

from this and ‹(trm-rep x S) = (trm-rep ?v S)› show (((trm-rep x S),x) ∈
trm-ord)

by (metis ‹(trm-rep (lhs x) S · trm-rep (rhs x) S , x) ∈ trm-ord› trm-ord-trans
transE)
qed

lemma trm-rep-is-lower-root-red:
assumes ¬(subterm-reduction-applicable S x)
assumes min-trms (set-of-candidate-values S x) 6= {}
shows (((trm-rep x S),x) ∈ trm-ord)

proof −
from assms(1 ) have (trm-rep x S) = (get-min x (set-of-candidate-values S x))

using trm-rep-aux-def [of x S ] trm-rep-is-lower by metis
from this and assms(2 ) have (trm-rep x S) ∈ (min-trms (set-of-candidate-values

S x))
unfolding get-min-def by (metis (full-types) some-in-eq)

then obtain pair where pair ∈ (set-of-candidate-values S x) and (trm-rep x
S) = fst pair

unfolding min-trms-def by blast
from ‹pair ∈ (set-of-candidate-values S x)›

have ∃ CC C ′ C L L ′ σ t ′ s ′. candidate-values (fst pair) CC C ′ C (snd pair)
L L ′ σ t ′ s ′ x S

unfolding set-of-candidate-values-def by fastforce
from this have (snd pair ,x) ∈ trm-ord unfolding candidate-values-def by blast
from ‹∃ CC C ′ C L L ′ σ t ′ s ′. candidate-values (fst pair) CC C ′ C (snd pair)

L L ′ σ t ′ s ′ x S›
have ((snd pair , x) ∈ trm-ord −→ fst pair = trm-rep (snd pair) S)
unfolding candidate-values-def by blast

from ‹(snd pair ,x) ∈ trm-ord› and ‹((snd pair , x) ∈ trm-ord −→ fst pair =
trm-rep (snd pair) S)›

have fst pair = trm-rep (snd pair) S by blast
have snd pair = trm-rep (snd pair) S ∨ (trm-rep (snd pair) S ,snd pair) ∈ trm-ord

using trm-rep-is-lower by blast
from this and ‹(snd pair ,x) ∈ trm-ord› have (trm-rep (snd pair) S ,x) ∈ trm-ord

using trm-ord-trans trans-def by metis
from this and ‹(trm-rep x S) = fst pair› and ‹fst pair = trm-rep (snd pair) S›

show ?thesis
by metis
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qed

Finally, the next lemma gives a simpler and more convenient definition of
the function trm-rep.
lemma trm-rep-simp-def :

shows (trm-rep t S) = (if (subterm-reduction-applicable S t)
then (subterm-reduction S t)
else (get-min t (set-of-candidate-values S t)))

using trm-rep-is-lower trm-rep-aux-def by blast

We now establish some useful properties of the normalization function.
lemma trm-rep-involutive:

shows (trm-rep (trm-rep t S) S) = (trm-rep t S) (is ?P t)
proof ((rule wf-induct [of trm-ord ?P t]),(simp add: trm-ord-wf ))
next

fix x assume hyp-ind: ∀ y. (y,x) ∈ trm-ord −→ (?P y)
let ?v = (Comb (trm-rep (lhs x) S) (trm-rep (rhs x) S))
show (?P x)

proof cases
assume c1 : subterm-reduction-applicable S x
from this and hyp-ind

have (?v,x) ∈ trm-ord using trm-rep-is-lower-aux trm-rep-is-lower by
metis

from this hyp-ind have (trm-rep (trm-rep ?v S) S) = (trm-rep ?v S)
using trm-rep-aux-def [of x S ] by metis

from c1 have trm-rep x S = trm-rep ?v S
using trm-rep-simp-def [of x S ] unfolding subterm-reduction-def by metis

from this and ‹(trm-rep (trm-rep ?v S) S) = (trm-rep ?v S)› ‹trm-rep x S
= trm-rep ?v S›

show ?thesis by metis
next assume c2 : ¬subterm-reduction-applicable S x
from c2 have (trm-rep x S) = (get-min x (set-of-candidate-values S x))

using trm-rep-simp-def [of x S ] by metis
show ?thesis
proof (rule ccontr)

assume (trm-rep (trm-rep x S) S) 6= (trm-rep x S)
from this have x 6= (trm-rep x S) by metis
from c2 and ‹x 6= (trm-rep x S)›

have (trm-rep x S) ∈ (min-trms (set-of-candidate-values S x))
using trm-rep-simp-def [of x S ]
unfolding get-min-def by (metis (full-types) some-in-eq)

then obtain pair where
pair ∈ (set-of-candidate-values S x) and (trm-rep x S) = fst pair
unfolding min-trms-def by blast

from ‹pair ∈ (set-of-candidate-values S x)›
have i: ∃ CC C ′ C L L ′ σ t ′ s ′.

candidate-values (fst pair) CC C ′ C (snd pair) L L ′ σ t ′ s ′ x S
unfolding set-of-candidate-values-def
by fastforce

144



from this have (snd pair ,x) ∈ trm-ord unfolding candidate-values-def
by blast

from i have ((snd pair , x) ∈ trm-ord −→ fst pair = trm-rep (snd pair)
S)

unfolding candidate-values-def by blast
from ‹(snd pair ,x) ∈ trm-ord›

and ‹((snd pair , x) ∈ trm-ord −→ fst pair = trm-rep (snd pair) S)›
have fst pair = trm-rep (snd pair) S by blast

from ‹(snd pair ,x) ∈ trm-ord› and hyp-ind have (?P (snd pair)) by blast
from this and ‹fst pair = (trm-rep (snd pair) S)› and ‹(trm-rep x S) =

fst pair›
and ‹(trm-rep (trm-rep x S) S) 6= (trm-rep x S)›
show False by metis

qed
qed

qed

The following predicate is true if all proper subterms are in normal form.
definition root-term :: ′a eclause set ⇒ ′a trm ⇒ bool

where
(root-term S t) =
((trm-rep t S) = (get-min t (set-of-candidate-values S t)))

The following function checks that the considered term contains a subterm
that can be reduced.
definition st-red :: ′a eclause set ⇒ ′a trm ⇒ bool

where
(st-red S t)
= (∃ t ′ p. ( (subterm t p t ′) ∧ (root-term S t ′) ∧ (trm-rep t ′ S 6= t ′)))

lemma red-arg-implies-red-trm :
assumes st-red S t1
assumes t = (Comb t1 t2 ) ∨ t = (Comb t2 t1 )
shows st-red S t

proof −
from assms(1 ) obtain t ′ p where subterm t1 p t ′ and root-term S t ′ and

trm-rep t ′ S 6= t ′

unfolding st-red-def by blast
from ‹subterm t1 p t ′› and assms(2 ) obtain q where subterm t q t ′

by (metis subterm.simps(4 ) subterm.simps(5 ))
from this and ‹root-term S t ′› and ‹trm-rep t ′ S 6= t ′›

show ?thesis unfolding st-red-def by blast
qed

lemma subterms-of-irred-trms-are-irred:
(trm-rep t S) 6= t −→ st-red S t (is (?P t))

proof ((rule wf-induct [of trm-ord ?P t]),(simp add: trm-ord-wf ))
next

fix x assume hyp-ind: ∀ y. (y,x) ∈ trm-ord −→ (?P y)
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show (?P x)
proof (rule impI )

assume (trm-rep x S) 6= x
show st-red S x
proof (rule ccontr)

assume neg-h: ¬st-red S x
have i: ¬subterm-reduction-applicable S x
proof

assume decomp-case: subterm-reduction-applicable S x
then obtain x1 x2 where x = (Comb x1 x2 ) using is-compound.elims(2 )

unfolding subterm-reduction-applicable-def by blast
from this and decomp-case have ((trm-rep x1 S) 6= x1 ∨ (trm-rep x2 S)

6= x2 )
using lhs.simps(1 ) rhs.simps(1 )
unfolding subterm-reduction-applicable-def by metis

then show False
proof

assume (trm-rep x1 S) 6= x1
from ‹x = (Comb x1 x2 )› and trm-ord-subterm have (x1 ,x) ∈ trm-ord

by auto
from this and hyp-ind and ‹(trm-rep x1 S) 6= x1 ›

have st-red S x1 by blast
from this and neg-h and ‹x = (Comb x1 x2 )› show False

using red-arg-implies-red-trm [of S x1 x x2 ] by blast
next

assume (trm-rep x2 S) 6= x2
from ‹x = (Comb x1 x2 )› and trm-ord-subterm have (x2 ,x) ∈ trm-ord

by auto
from this and hyp-ind and ‹(trm-rep x2 S) 6= x2 ›

have st-red S x2 by metis
from this and neg-h and ‹x = (Comb x1 x2 )› show False

using red-arg-implies-red-trm [of S x2 x x1 ] by blast
qed

qed
then have (trm-rep x S) = (get-min x (set-of-candidate-values S x))

using trm-rep-simp-def by metis
then have root-term S x unfolding root-term-def by blast
have subterm x [] x by auto
from this and ‹root-term S x› and ‹(trm-rep x S) 6= x›have

st-red S x unfolding st-red-def by blast
from this and neg-h show False by auto

qed
qed

qed

lemma trm-rep-compatible-with-structure:
shows value-is-compatible-with-structure (λx. trm-rep x S)

proof (rule ccontr)
assume ¬value-is-compatible-with-structure (λx. trm-rep x S)
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from this obtain t s
where neg-h:trm-rep (Comb t s) S 6= (trm-rep (Comb (trm-rep t S) (trm-rep s

S)) S)
unfolding value-is-compatible-with-structure-def by blast

from this have (trm-rep t S) 6= t ∨ (trm-rep s S) 6= s by metis
from this have subterm-reduction-applicable S (Comb t s)

unfolding subterm-reduction-applicable-def
by (metis is-compound.simps(3 ) lhs.simps(1 ) rhs.simps(1 ))

from this have (trm-rep (Comb t s) S) = (subterm-reduction S (Comb t s))
using trm-rep-simp-def by metis

from this and neg-h show False unfolding subterm-reduction-def
by (metis lhs.simps(1 ) rhs.simps(1 ))

qed

The following function checks that a position can be reduced, taking into
account the order on positions associated with the considered clause and
term. A term is reducible when all terms occurring at smaller positions are
irreducible.
definition minimal-redex

where minimal-redex p t C S t ′

= (∀ q s. ((q,p) ∈ (pos-ord C t ′) −→ (subterm t q s) −→ (trm-rep s S = s)))

The next function checks that a given clause contains two equations with
the same left-hand side and whose right-hand sides are equivalent in a given
interpretation. If no such equations exist then it is clear that the maximal
literal is necessarily unique.
definition equivalent-eq-exists

where equivalent-eq-exists t s C I σ L1 = (∃L∈ C − { L1 }. ∃ u v.
(orient-lit-inst L u v pos σ) ∧ ((subst t σ) = (subst u σ))
∧ (I (subst s σ) (subst v σ)))

lemma maximal-literal-is-unique-lemma:
assumes ¬equivalent-eq-exists t s C (int-clset S) σ L1
shows maximal-literal-is-unique (subst t σ) (subst s σ) C L1 S σ

proof (rule ccontr)
let ?t = (subst t σ)
let ?s = (subst s σ)
let ?L = (subst-lit L σ)
let ?C = (subst-cl C σ)

assume ¬(maximal-literal-is-unique ?t ?s C L1 S σ)
from this obtain s ′′ where (eq-occurs-in-cl ?t s ′′ (C− { L1 }) σ)

and (trm-rep ?s S) = (trm-rep s ′′ S) unfolding maximal-literal-is-unique-def
by blast

from ‹(eq-occurs-in-cl ?t s ′′ (C− { L1 }) σ)›
obtain L ′ t ′ s ′ where L ′ ∈ (C− { L1 })

and orient-lit-inst L ′ t ′ s ′ pos σ and (subst t ′ σ) = ?t
and s ′′ = subst s ′ σ
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unfolding eq-occurs-in-cl-def by auto
from ‹s ′′ = subst s ′ σ› and ‹(trm-rep ?s S) = (trm-rep s ′′ S)›

have (trm-rep ?s S) = (trm-rep (subst s ′ σ) S) by blast
from ‹L ′ ∈ (C− { L1 })› ‹orient-lit-inst L ′ t ′ s ′ pos σ› ‹(subst t ′ σ) = ?t›
‹(trm-rep ?s S) = (trm-rep (subst s ′ σ) S)›
have equivalent-eq-exists t s C (int-clset S) σ L1
unfolding equivalent-eq-exists-def same-values-def int-clset-def

by metis
from this and assms(1 ) show False by blast

qed

lemma max-pos-lit-dominates-cl:
assumes maximal-literal (subst-lit L σ) (subst-cl C σ)
assumes orient-lit-inst L t s pos σ
assumes L ′ ∈ C − { L }
assumes ¬equivalent-eq-exists t s C I σ L
assumes vars-of-lit (subst-lit L σ) = {}
assumes vars-of-lit (subst-lit L ′ σ) = {}
assumes fo-interpretation I
shows ((subst-lit L ′ σ),(subst-lit L σ)) ∈ lit-ord

proof −
let ?L ′ = (subst-lit L ′ σ)
let ?L = (subst-lit L σ)
let ?t = (subst t σ)
let ?s = (subst s σ)

from assms(2 ) have (?t,?s) /∈ trm-ord unfolding orient-lit-inst-def by auto
obtain u ′ v ′ where L ′ = (Pos (Eq u ′ v ′)) ∨ L ′ = (Neg (Eq u ′ v ′))

using literal.exhaust equation.exhaust by metis
from this obtain polarity u v where orient-lit-inst L ′ u v polarity σ

and ((subst u σ),(subst v σ)) /∈ trm-ord using
trm-ord-trans trm-ord-irrefl unfolding trans-def irrefl-def orient-lit-inst-def by

metis
let ?u = (subst u σ)
let ?v = (subst v σ)
from ‹orient-lit-inst L ′ u v polarity σ› have orient-lit ?L ′ ?u ?v polarity

using lift-orient-lit by auto
from ‹orient-lit-inst L t s pos σ› have orient-lit ?L ?t ?s pos

using lift-orient-lit by auto

from assms(6 ) and ‹orient-lit ?L ′ ?u ?v polarity›
have vars-of ?u ⊆ {} using orient-lit-vars by metis

from assms(6 ) and ‹orient-lit ?L ′ ?u ?v polarity›
have vars-of ?v ⊆ {} using orient-lit-vars by metis

from assms(5 ) and ‹orient-lit ?L ?t ?s pos›
have vars-of ?t ⊆ {} using orient-lit-vars by metis

from assms(5 ) and ‹orient-lit ?L ?t ?s pos›
have vars-of ?s ⊆ {} using orient-lit-vars by metis
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from assms(1 ) and ‹L ′ ∈ C − { L }› have (?L,?L ′) /∈ lit-ord
unfolding maximal-literal-def by auto

from this and ‹orient-lit ?L ?t ?s pos› ‹orient-lit ?L ′ ?u ?v polarity› and
assms(5 ) assms(6 )

have (?t,?u) /∈ trm-ord using lit-ord-dominating-term by metis
from this and ‹vars-of ?t ⊆ {}› ‹vars-of ?u ⊆ {}› have ?u = ?t ∨ (?u,?t) ∈

trm-ord
using trm-ord-ground-total unfolding ground-term-def by blast

from ‹(?u,?v) /∈ trm-ord› and ‹vars-of ?u ⊆ {}› ‹vars-of ?v ⊆ {}›
have ?u = ?v ∨ (?v,?u) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by blast

from ‹(?t,?s) /∈ trm-ord› and ‹vars-of ?t ⊆ {}› ‹vars-of ?s ⊆ {}›
have ?t = ?s ∨ (?s,?t) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by blast

from ‹vars-of ?v ⊆ {}› ‹vars-of ?s ⊆ {}› have ?v = ?s ∨ (?v,?s) ∈ trm-ord ∨
(?s,?v) ∈ trm-ord

using trm-ord-ground-total unfolding ground-term-def by blast

show ?thesis
proof (cases)

assume (?u,?t) ∈ trm-ord
from this and ‹?u = ?v ∨ (?v,?u) ∈ trm-ord› have (?v,?t) ∈ trm-ord

using trm-ord-trans unfolding trans-def by auto
from this and ‹(?u,?t) ∈ trm-ord› and ‹orient-lit ?L ?t ?s pos› ‹orient-lit ?L ′

?u ?v polarity›
assms(5 ) assms(6 ) show ?thesis using lit-ord-dominating-term by metis

next
assume (?u,?t) /∈ trm-ord
from this and ‹?u = ?t ∨ (?u,?t) ∈ trm-ord› have ?u = ?t by auto
have polarity = pos
proof (rule ccontr)

assume polarity 6= pos
then have polarity = neg using sign.exhaust by auto
from this and ‹?u = ?t› and ‹orient-lit ?L ?t ?s pos›

‹orient-lit ?L ′ ?u ?v polarity› assms(5 ) assms(6 )
have (?L,?L ′) ∈ lit-ord using lit-ord-neg-lit-lhs by auto

from this and ‹(?L,?L ′) /∈ lit-ord› show False by auto
qed
have ?v 6= ?s
proof

assume ?v = ?s
from this assms(7 ) have I ?s ?v unfolding fo-interpretation-def congru-

ence-def
equivalence-relation-def reflexive-def by auto

from this and ‹orient-lit-inst L ′ u v polarity σ› ‹polarity = pos› ‹?u = ?t›
and assms(3 ) have equivalent-eq-exists t s C I σ L
unfolding equivalent-eq-exists-def by metis

from this and assms(4 ) show False by auto
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qed
have (?s,?v) /∈ trm-ord
proof

assume (?s,?v) ∈ trm-ord
from this and ‹?u = ?t› and ‹orient-lit ?L ?t ?s pos› ‹orient-lit ?L ′ ?u ?v

polarity›
and ‹polarity=pos› assms(5 ) assms(6 )
have (?L,?L ′) ∈ lit-ord using lit-ord-rhs by auto

from this and ‹(?L,?L ′) /∈ lit-ord›show False by auto
qed
from this and ‹?v 6= ?s› and ‹?v = ?s ∨ (?v,?s) ∈ trm-ord ∨ (?s,?v) ∈

trm-ord›
have (?v,?s) ∈ trm-ord by metis
from this and ‹?u = ?t› and ‹orient-lit ?L ?t ?s pos› ‹orient-lit ?L ′ ?u ?v

polarity›
and ‹polarity=pos› assms(5 ) assms(6 )
show (?L ′,?L) ∈ lit-ord using lit-ord-rhs by auto

qed
qed

lemma if-all-smaller-are-false-then-cl-not-valid:
assumes (smaller-lits-are-false (subst t σ) (subst-cl C σ) S)
assumes (fo-interpretation (same-values (λt. (trm-rep t S))))
assumes orient-lit-inst L1 t s pos σ
assumes maximal-literal (subst-lit L1 σ) (subst-cl C σ)
assumes ground-clause (subst-cl C σ)
assumes (subst-lit L1 σ) ∈ (subst-cl C σ)
assumes ¬equivalent-eq-exists t s C (same-values (λt. (trm-rep t S))) σ L1
assumes trm-rep (subst t σ) S = trm-rep (subst s σ) S
shows (¬ validate-ground-clause (same-values (λt. (trm-rep t S))) (subst-cl ( C
− { L1 } ) σ))
proof

let ?I = (same-values (λt. (trm-rep t S)))
assume validate-ground-clause ?I (subst-cl ( C − { L1 } ) σ)
then obtain L where L ∈ (subst-cl ( C − { L1 } ) σ) and validate-ground-lit

?I L
using validate-ground-clause.simps [of ?I (subst-cl ( C − { L1 } ) σ)] by blast

from ‹L ∈ (subst-cl ( C − { L1 } ) σ)› obtain L ′ where L ′ ∈ C − { L1 } and

L = (subst-lit L ′ σ) by auto
from ‹L ′ ∈ C − { L1 }› and ‹L = (subst-lit L ′ σ)›

have L ∈(subst-cl C σ) by auto
from ‹L ∈(subst-cl C σ)› and assms(5 ) have vars-of-lit L = {} by auto
from assms(6 ) and assms(5 ) have vars-of-lit (subst-lit L1 σ) = {} by auto

obtain u v polarity where o: orient-lit-inst L ′ u v polarity σ
and ((subst u σ), (subst v σ)) /∈ trm-ord

unfolding orient-lit-inst-def using literal.exhaust equation.exhaust
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trm-ord-trans trm-ord-irrefl unfolding trans-def irrefl-def by metis
from o and ‹L = (subst-lit L ′ σ)›

have o ′ : orient-lit L (subst u σ) (subst v σ) polarity
using lift-orient-lit by auto

from o ′ and ‹vars-of-lit L = {}› have vars-of (subst u σ) = {}
using orient-lit-vars by blast

from o ′ and ‹vars-of-lit L = {}› have vars-of (subst v σ) = {}
using orient-lit-vars by blast

from assms(3 )
have o1 : orient-lit (subst-lit L1 σ) (subst t σ) (subst s σ) pos
using lift-orient-lit [of L1 t s pos σ] by auto

from o1 and ‹vars-of-lit (subst-lit L1 σ) = {}› have vars-of (subst t σ) = {}
using orient-lit-vars by blast

have polarity = pos ∨ polarity = neg using sign.exhaust by auto
then show False
proof

assume polarity = pos
from this and o and assms(2 ) and ‹validate-ground-lit ?I L› and ‹L =

(subst-lit L ′ σ)›
have (trm-rep (subst u σ) S) = (trm-rep (subst v σ) S)
using orient-lit-semantics-pos [of ?I ] unfolding same-values-def by metis

from assms(4 ) and ‹L ∈(subst-cl C σ)›
have ((subst-lit L1 σ),L) /∈ lit-ord unfolding maximal-literal-def
by blast

from this and o ′ and o1 and ‹polarity=pos› and ‹vars-of-lit L = {}› and ‹L
= (subst-lit L ′ σ)›

and ‹vars-of-lit (subst-lit L1 σ) = {}›
have (subst t σ, subst u σ) /∈ trm-ord
and (subst t σ, subst v σ) /∈ trm-ord
using lit-ord-dominating-term [of subst t σ subst u σ

subst v σ subst-lit L1 σ subst s σ pos] by auto
show ?thesis
proof (cases)

assume (subst t σ) = (subst u σ)
from this and assms(8 ) and ‹(trm-rep (subst u σ) S) = (trm-rep (subst v

σ) S)›
have (trm-rep (subst s σ) S) = (trm-rep (subst v σ) S) by metis

from this o and ‹L ′ ∈ C − { L1 }› ‹polarity = pos› ‹(subst t σ) = (subst
u σ)› assms(7 )

show False unfolding equivalent-eq-exists-def same-values-def by blast
next

assume (subst t σ) 6= (subst u σ)
from this and ‹(subst t σ, subst u σ) /∈ trm-ord›
and ‹vars-of (subst t σ) = {}› and ‹vars-of (subst u σ) = {}›
have (subst u σ, subst t σ) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by auto
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from this and ‹(subst u σ, subst v σ) /∈ trm-ord›
and ‹vars-of (subst v σ) = {}› and ‹vars-of (subst t σ) = {}›
have (subst v σ, subst t σ) ∈ trm-ord
using trm-ord-ground-total trm-ord-trans
unfolding ground-term-def trans-def by metis

from ‹polarity = pos› and o ′ and assms(1 ) and ‹L ∈(subst-cl C σ)› and
‹L = (subst-lit L ′ σ)›

and ‹((subst u σ), subst t σ) ∈ trm-ord›
and ‹((subst v σ), subst t σ) ∈ trm-ord›
have trm-rep (subst u σ) S 6= trm-rep (subst v σ) S
unfolding smaller-lits-are-false-def by metis

from this and ‹trm-rep (subst u σ) S = trm-rep (subst v σ) S›
show False by blast

qed
next assume polarity = neg

from this and o and assms(2 ) and ‹validate-ground-lit ?I L› and ‹L =
(subst-lit L ′ σ)›

have (trm-rep (subst u σ) S) 6= (trm-rep (subst v σ) S)
using orient-lit-semantics-neg [of ?I ] unfolding same-values-def by metis

from assms(4 ) and ‹L ∈(subst-cl C σ)›
have ((subst-lit L1 σ),L) /∈ lit-ord unfolding maximal-literal-def
by blast

from this and o ′ and o1 and ‹vars-of-lit L = {}› and ‹L = (subst-lit L ′ σ)›
and ‹vars-of-lit (subst-lit L1 σ) = {}›
have (subst t σ, subst u σ) /∈ trm-ord
and (subst t σ, subst v σ) /∈ trm-ord
using lit-ord-dominating-term [of subst t σ subst u σ

subst v σ subst-lit L1 σ subst s σ pos]
by auto

from ‹((subst-lit L1 σ),L) /∈ lit-ord› and o ′ and o1 and ‹polarity=neg› and
‹vars-of-lit L = {}›

and ‹L = (subst-lit L ′ σ)› and ‹vars-of-lit (subst-lit L1 σ) = {}›
have subst t σ 6= subst u σ
using lit-ord-neg-lit-lhs by auto

from this and ‹(subst t σ, subst u σ) /∈ trm-ord› and ‹vars-of (subst t σ) =
{}›

and ‹vars-of (subst u σ) = {}›
have (subst u σ, subst t σ) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by auto

from this and ‹(subst u σ, subst v σ) /∈ trm-ord› and ‹vars-of (subst v σ) =
{}›

and ‹vars-of (subst t σ) = {}› have (subst v σ, subst t σ) ∈ trm-ord
using trm-ord-ground-total trm-ord-trans unfolding ground-term-def trans-def

by metis
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from ‹polarity = neg› and o ′ and assms(1 ) and ‹L ∈(subst-cl C σ)› and ‹L
= (subst-lit L ′ σ)›

and ‹((subst u σ), subst t σ) ∈ trm-ord› and ‹((subst v σ), subst t σ) ∈
trm-ord›

have trm-rep (subst u σ) S = trm-rep (subst v σ) S
unfolding smaller-lits-are-false-def by metis

from this and ‹trm-rep (subst u σ) S 6= trm-rep (subst v σ) S› show False
by blast

qed
qed

We introduce the notion of a reduction, which is a ground superposition
inference satisfying some additional conditions:
(i) the “from” clause is smaller than the “into” clause;
(ii) its “body” (i.e., the part of the clause without the equation involved
in the rule) is false in a given interpretation and strictly smaller than the
involved equation.
definition reduction
where (reduction L1 C σ ′ t s polarity L2 u u ′ p v D I S σ) =

( (D ∈ S) ∧ (eligible-literal L1 C σ ′) ∧ (eligible-literal L2 D σ ′)
∧ ground-clause (subst-cl (cl-ecl D) σ ′)
∧ (minimal-redex p (subst t σ) C S t)
∧ (coincide-on σ σ ′ (vars-of-cl (cl-ecl C )))
∧ (allowed-redex u ′ C σ)
∧ (¬ is-a-variable u ′)
∧ (L1 ∈ (cl-ecl C )) ∧ (L2 ∈ (cl-ecl D))
∧ (orient-lit-inst L1 t s polarity σ ′)
∧ (orient-lit-inst L2 u v pos σ ′)
∧ (subst u σ ′) 6= (subst v σ ′)
∧ (subst u ′ σ ′) = (subst u σ ′)
∧ (¬ validate-ground-clause I (subst-cl ( (cl-ecl D) − { L2 } ) σ ′))
∧ ( (subst-lit L2 σ ′),(subst-lit L1 σ ′)) ∈ lit-ord
∧ (∀ x ∈ (cl-ecl D) − { L2 }. ( (subst-lit x σ ′),(subst-lit L2 σ ′))

∈ lit-ord)
∧ (all-trms-irreducible (subst-set (trms-ecl D) σ ′)

(λt. (trm-rep t S)))
∧ (I (subst u σ ′) (subst v σ ′))
∧ (subterm t p u ′))

The next lemma states that the rules used to evaluate terms can be renamed
so that they share no variable with the clause in which the term occurs.
lemma candidate-values-renaming:

assumes (candidate-values z CC C ′ C s L L ′ σ t ′ s ′ t S)
assumes finite C ′

assumes finite (cl-ecl (D:: ′a eclause))
assumes closed-under-renaming S
assumes Ball S well-constrained
shows ∃ CC-bis C ′-bis L ′-bis σ-bis t ′-bis s ′-bis t-bis.
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(candidate-values z CC-bis C ′-bis C s L L ′-bis σ-bis t ′-bis s ′-bis t S)
∧ (vars-of-cl (cl-ecl D)) ∩ vars-of-cl (cl-ecl CC-bis) = {}

proof −
from assms(2 ) have finite (vars-of-cl C ′) using set-of-variables-is-finite-cl by

auto
from assms(3 ) have finite (vars-of-cl (cl-ecl D)) using set-of-variables-is-finite-cl

by auto
from infinite-vars have ¬ (finite vars) by auto
from ‹finite (vars-of-cl C ′)› ‹finite (vars-of-cl (cl-ecl D))›

and ‹¬ (finite vars)›
obtain η where renaming η (vars-of-cl C ′)

and ((subst-codomain η (vars-of-cl C ′)) ∩ (vars-of-cl (cl-ecl D))) = {}
using renaming-exists [of vars ] by meson

from this ‹finite (vars-of-cl C ′)› obtain η ′

where i: (∀ x ∈ (vars-of-cl C ′). (subst (subst (Var x) η ) η ′)
= (Var x))

using renamings-admit-inverse by blast
obtain CC-bis where CC-bis = (subst-ecl CC η) by auto
obtain C ′-bis where C ′-bis = (subst-cl C ′ η) by auto
from assms(1 ) have C ′ = (cl-ecl CC ) unfolding candidate-values-def by metis
from this obtain T where CC = (Ecl C ′ T )

by (metis cl-ecl.simps trms-ecl.elims)
from this and ‹CC-bis = (subst-ecl CC η)›

and ‹C ′-bis = (subst-cl C ′ η)›
have C ′-bis = (cl-ecl CC-bis) by auto

from assms(1 ) have CC ∈ S unfolding candidate-values-def by metis
from assms(1 ) have (s,t) ∈ trm-ord unfolding candidate-values-def by metis
from assms(1 ) have ((s,t) ∈ trm-ord −→ (z = trm-rep s S))

unfolding candidate-values-def by metis
from assms(1 ) have (maximal-literal L C ) unfolding candidate-values-def by

metis
from assms(1 ) have (ground-clause C ) unfolding candidate-values-def by metis
from assms(1 ) have L ′ ∈ C ′ unfolding candidate-values-def by metis
from assms(1 ) have L = (subst-lit L ′ σ)

unfolding candidate-values-def by metis
from assms(1 ) have (smaller-lits-are-false t C S)

unfolding candidate-values-def by metis
from assms(1 ) have C = (subst-cl C ′ σ)

unfolding candidate-values-def by metis
from assms(1 ) have (orient-lit-inst L ′ t ′ s ′ pos σ)

unfolding candidate-values-def by metis
from assms(1 ) have (trms-irreducible CC σ S t)

unfolding candidate-values-def by metis
from assms(1 ) have t = subst t ′ σ unfolding candidate-values-def by metis
from assms(1 ) have s = subst s ′ σ unfolding candidate-values-def by metis

from ‹CC ∈ S› and assms(4 ) and ‹renaming η (vars-of-cl C ′)› and ‹C ′ =
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(cl-ecl CC )›
‹CC-bis = (subst-ecl CC η)› have CC-bis ∈ S
unfolding closed-under-renaming-def renaming-cl-def by auto

from assms(1 ) have (sel C ′ = {}) unfolding candidate-values-def by metis
from this and ‹renaming η (vars-of-cl C ′)› ‹C ′ = (cl-ecl CC )›

‹C ′-bis = (subst-cl C ′ η)› have sel C ′-bis = {}
using sel-renaming by auto

obtain L ′-bis where L ′-bis = (subst-lit L ′ η) by auto
from this and ‹L ′ ∈ C ′› ‹C ′-bis = (subst-cl C ′ η)› have L ′-bis ∈ C ′-bis by auto

let ?ϑ = (comp (comp η η ′) σ)
let ?ϑ ′ = (comp η ′ σ)
have coincide-on σ ?ϑ (vars-of-cl C ′)
proof (rule ccontr)

assume ¬coincide-on σ ?ϑ (vars-of-cl C ′)
from this obtain x where (subst (Var x) σ) 6= (subst (Var x) ?ϑ)

and x ∈ vars-of-cl C ′ unfolding coincide-on-def by auto
from ‹x ∈ vars-of-cl C ′› i

have (subst (subst (Var x) η ) η ′) = (Var x)
by blast

from this and ‹(subst (Var x) σ) 6= (subst (Var x) ?ϑ)›
show False by simp

qed
from ‹L ′ ∈ C ′› have vars-of-lit L ′ ⊆ vars-of-cl C ′ by auto
from this and ‹coincide-on σ ?ϑ (vars-of-cl C ′)›
have coincide-on σ ?ϑ (vars-of-lit L ′) unfolding coincide-on-def by auto

from this and ‹L = (subst-lit L ′ σ)›
have L = (subst-lit L ′ ?ϑ) using coincide-on-lit by auto

have subst-lit L ′ ?ϑ
= subst-lit (subst-lit L ′ η) ?ϑ ′

by (simp add: coincide-on-def coincide-on-lit composition-of-substs-lit)
from this and ‹L = (subst-lit L ′ ?ϑ)› and

‹L ′-bis = (subst-lit L ′ η)›
have L = (subst-lit L ′-bis ?ϑ ′)
by auto

from ‹coincide-on σ ?ϑ (vars-of-cl C ′)› and ‹C = (subst-cl C ′ σ)›
have C = subst-cl C ′ ?ϑ
using coincide-on-cl by blast

have subst-cl C ′ ?ϑ
= subst-cl (subst-cl C ′ η) ?ϑ ′

by (metis composition-of-substs-cl)
from this and ‹C = subst-cl C ′ ?ϑ› and ‹C ′-bis = (subst-cl C ′ η)›

have C = subst-cl C ′-bis ?ϑ ′ by auto
from ‹(finite C ′)› and ‹C ′-bis = (subst-cl C ′ η)› have finite C ′-bis by auto
have t /∈ (subst-set (trms-ecl CC-bis) ?ϑ ′)
proof

assume t ∈ (subst-set (trms-ecl CC-bis) ?ϑ ′)
from this obtain u where u ∈ (trms-ecl CC-bis)

and t = (subst u ?ϑ ′) by auto
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from ‹u ∈ (trms-ecl CC-bis)› and ‹CC-bis = (subst-ecl CC η)›
obtain v where v ∈ trms-ecl CC and u = (subst v η)
using ‹CC = Ecl C ′ T › by auto

from ‹u = (subst v η)› ‹t = (subst u ?ϑ ′)› have subst v ?ϑ = t by simp
from ‹v ∈ trms-ecl CC › ‹CC ∈ S› assms(5 )
have dom-trm v (cl-ecl CC ) unfolding Ball-def well-constrained-def by metis

from this have vars-of v ⊆ vars-of-cl (cl-ecl CC ) using dom-trm-vars by auto
from this and ‹C ′ = (cl-ecl CC )› ‹coincide-on σ ?ϑ (vars-of-cl C ′)›

have coincide-on σ ?ϑ (vars-of v) unfolding coincide-on-def by auto
from this and ‹subst v ?ϑ = t› have (subst v σ) = t

using coincide-on-term by metis
from this and ‹v ∈ trms-ecl CC › have
(t ∈ (subst-set (trms-ecl CC ) σ)) by auto

from this and assms(1 ) show False unfolding candidate-values-def by metis
qed
have (trms-irreducible CC-bis ?ϑ ′ S t)
proof (rule ccontr)

assume ¬(trms-irreducible CC-bis ?ϑ ′ S t)
then obtain x x ′ where x ′ ∈ trms-ecl CC-bis

occurs-in x (subst x ′ ?ϑ ′)
(x,t) ∈ trm-ord (trm-rep x S) 6= x
using trms-irreducible-def by blast

from ‹x ′ ∈ (trms-ecl CC-bis)› and ‹CC-bis = (subst-ecl CC η)›
obtain v where v ∈ trms-ecl CC and x ′ = (subst v η)
using ‹CC = Ecl C ′ T › by auto

from ‹occurs-in x (subst x ′ ?ϑ ′)› ‹x ′ = subst v η› have occurs-in x (subst v ?ϑ)
by simp

from ‹v ∈ trms-ecl CC › ‹CC ∈ S› assms(5 )
have dom-trm v (cl-ecl CC ) unfolding Ball-def well-constrained-def by auto

from this have vars-of v ⊆ vars-of-cl (cl-ecl CC ) using dom-trm-vars by auto
from this and ‹C ′ = (cl-ecl CC )› ‹coincide-on σ ?ϑ (vars-of-cl C ′)›

have coincide-on σ ?ϑ (vars-of v) unfolding coincide-on-def by auto
from this have (subst v σ) = (subst v ?ϑ)

using coincide-on-term by metis
from this and ‹occurs-in x (subst v ?ϑ)›

have occurs-in x (subst v σ) by auto
from this and ‹v ∈ trms-ecl CC › and ‹(x,t) ∈ trm-ord›

‹(trm-rep x S) 6= x› and ‹(trms-irreducible CC σ S t)› show False
unfolding trms-irreducible-def by metis

qed
obtain t ′-bis where t ′-bis = (subst t ′ η) by auto
obtain s ′-bis where s ′-bis = (subst s ′ η) by auto

from ‹(orient-lit-inst L ′ t ′ s ′ pos σ)› have vars-of t ′ ⊆ vars-of-lit L ′

using orient-lit-inst-vars by auto
from this ‹coincide-on σ ?ϑ (vars-of-lit L ′)›

have coincide-on σ ?ϑ (vars-of t ′) unfolding coincide-on-def by blast
from this have subst t ′ ?ϑ = subst t ′ σ

using coincide-on-term by metis
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from this ‹t ′-bis = (subst t ′ η)› have subst t ′-bis ?ϑ ′ = subst t ′ σ by simp

from ‹(orient-lit-inst L ′ t ′ s ′ pos σ)› have vars-of s ′ ⊆ vars-of-lit L ′

using orient-lit-inst-vars by auto
from this ‹coincide-on σ ?ϑ (vars-of-lit L ′)›

have coincide-on σ ?ϑ (vars-of s ′) unfolding coincide-on-def by blast
from this have subst s ′ ?ϑ = subst s ′ σ

using coincide-on-term by metis
from this ‹s ′-bis = (subst s ′ η)› have subst s ′-bis ?ϑ ′ = subst s ′ σ by simp

have (orient-lit-inst L ′-bis t ′-bis s ′-bis pos ?ϑ ′)
proof −
from ‹(orient-lit-inst L ′ t ′ s ′ pos σ)›

have ((subst t ′ σ),(subst s ′ σ)) /∈ trm-ord
using orient-lit-inst-def by simp

from ‹(orient-lit-inst L ′ t ′ s ′ pos σ)›
have L ′ = (Pos (Eq t ′ s ′)) ∨ L ′ = (Pos (Eq s ′ t ′))
by (simp add: orient-lit-inst-def )

from this
‹L ′-bis = (subst-lit L ′ η)›
‹t ′-bis = (subst t ′ η)›
‹s ′-bis = (subst s ′ η)›
have L ′-bis = (Pos (Eq t ′-bis s ′-bis)) ∨ L ′-bis = (Pos (Eq s ′-bis t ′-bis))
by auto

from ‹subst s ′-bis ?ϑ ′ = subst s ′ σ›
and ‹subst t ′-bis ?ϑ ′ = subst t ′ σ›
and ‹((subst t ′ σ),(subst s ′ σ)) /∈ trm-ord›
have ((subst t ′-bis ?ϑ ′),(subst s ′-bis ?ϑ ′)) /∈ trm-ord
by auto

from this and ‹L ′-bis = (Pos (Eq t ′-bis s ′-bis)) ∨ L ′-bis = (Pos (Eq s ′-bis
t ′-bis))›

show ?thesis unfolding orient-lit-inst-def by auto
qed
have (maximal-literal-is-unique t s C ′-bis L ′-bis S ?ϑ ′)
proof (rule ccontr)

assume ¬(maximal-literal-is-unique t s C ′-bis L ′-bis S ?ϑ ′)
from this obtain s ′′ where (eq-occurs-in-cl t s ′′ (C ′-bis− { L ′-bis }) ?ϑ ′)

(s ′′,t) ∈ trm-ord
(s,t) ∈ trm-ord
(trm-rep s S) = (trm-rep s ′′ S)
unfolding maximal-literal-is-unique-def
by metis

from ‹(eq-occurs-in-cl t s ′′ (C ′-bis− { L ′-bis }) ?ϑ ′)› obtain M u v where
M ∈ C ′-bis − { L ′-bis } orient-lit-inst M u v pos ?ϑ ′

t = (subst u ?ϑ ′) s ′′ = (subst v ?ϑ ′)
unfolding eq-occurs-in-cl-def by blast

from ‹M ∈ C ′-bis − { L ′-bis }›
and ‹C ′-bis = (subst-cl C ′ η)› and ‹L ′-bis = (subst-lit L ′ η)›
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obtain M ′ where M ′ ∈ C ′− { L ′ } and subst-lit M ′ η = M by auto
from ‹orient-lit-inst M u v pos ?ϑ ′› obtain e where M = (Pos e)

unfolding orient-lit-inst-def by auto
from this and ‹orient-lit-inst M u v pos ?ϑ ′› have e = (Eq u v) ∨ e = (Eq v

u)
unfolding orient-lit-inst-def by auto

from ‹orient-lit-inst M u v pos ?ϑ ′› have
( (subst u ?ϑ ′),(subst v ?ϑ ′)) /∈ trm-ord
unfolding orient-lit-inst-def by auto

from ‹M = (Pos e)› and ‹subst-lit M ′ η = M ›
obtain e ′ where (subst-equation e ′ η) = e and M ′ = (Pos e ′)

by (metis (no-types, opaque-lifting) subst-lit.simps(1 ) subst-lit.simps(2 ) atom.simps(1 )

literal.distinct(1 ) positive-literal.elims(1 ))
from ‹e = (Eq u v) ∨ e = (Eq v u)› and ‹(subst-equation e ′ η) = e›

obtain u ′ v ′ where e ′ = (Eq u ′ v ′) ∨ (e ′ = (Eq v ′ u ′)) and (subst u ′ η) = u
and

(subst v ′ η) = v
by (metis subst-equation.simps equation.inject subterms-of-eq.cases)

from ‹( (subst u ?ϑ ′),(subst v ?ϑ ′)) /∈ trm-ord›
‹(subst u ′ η) = u›
‹(subst v ′ η) = v›
have ( (subst u ′ ?ϑ),(subst v ′ ?ϑ)) /∈ trm-ord by simp

from this and ‹M ′ = (Pos e ′)› and ‹e ′ = (Eq u ′ v ′) ∨ (e ′ = (Eq v ′ u ′))›
have orient-lit-inst M ′ u ′ v ′ pos ?ϑ
unfolding orient-lit-inst-def by auto

from ‹M ′ ∈ C ′ − { L ′ }› have vars-of-lit M ′ ⊆ vars-of-cl C ′ by auto
from this and ‹coincide-on σ ?ϑ (vars-of-cl C ′)› have coincide-on σ ?ϑ

(vars-of-lit M ′)
unfolding coincide-on-def by auto

from this have coincide-on ?ϑ σ (vars-of-lit M ′) using coincide-sym by auto
from this and ‹orient-lit-inst M ′ u ′ v ′ pos ?ϑ› have orient-lit-inst M ′ u ′ v ′ pos

σ
using orient-lit-inst-coincide by auto

from ‹orient-lit-inst M ′ u ′ v ′ pos ?ϑ› have vars-of u ′ ⊆ vars-of-lit M ′ and
vars-of v ′ ⊆ vars-of-lit M ′ using orient-lit-inst-vars by auto

from ‹vars-of u ′ ⊆ vars-of-lit M ′› and ‹coincide-on ?ϑ σ (vars-of-lit M ′)›
have coincide-on ?ϑ σ (vars-of u ′) unfolding coincide-on-def by auto

from this have subst u ′ ?ϑ = subst u ′ σ using coincide-on-term by metis
from this and ‹(subst u ′ η) = u› have subst u ?ϑ ′ = subst u ′ σ by simp
from ‹vars-of v ′ ⊆ vars-of-lit M ′› and ‹coincide-on ?ϑ σ (vars-of-lit M ′)›

have coincide-on ?ϑ σ (vars-of v ′) unfolding coincide-on-def by auto
from this have subst v ′ ?ϑ = subst v ′ σ using coincide-on-term by metis
from this and ‹(subst v ′ η) = v› have subst v ?ϑ ′ = subst v ′ σ by simp
from ‹subst v ?ϑ ′ = subst v ′ σ› ‹s ′′ = (subst v ?ϑ ′)›

have s ′′ = (subst v ′ σ) by auto
from ‹subst u ?ϑ ′ = subst u ′ σ› ‹t = (subst u ?ϑ ′)›

have t = (subst u ′ σ) by auto
from ‹s ′′ = (subst v ′ σ)› ‹t = (subst u ′ σ)›
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‹orient-lit-inst M ′ u ′ v ′ pos σ› ‹M ′ ∈ C ′ − { L ′}›
have eq-occurs-in-cl t s ′′ (C ′− { L ′ }) σ
unfolding eq-occurs-in-cl-def by auto

from this and ‹(s ′′,t) ∈ trm-ord› and ‹(s,t) ∈ trm-ord› and ‹(trm-rep s S) =
(trm-rep s ′′ S)›

have ¬(maximal-literal-is-unique t s C ′ L ′ S σ) unfolding maximal-literal-is-unique-def

by blast
from this and assms(1 ) show False unfolding candidate-values-def by metis

qed

from ‹t ′-bis = (subst t ′ η)›
and ‹t = subst t ′ σ›
have t = subst t ′-bis (comp η ′ σ)
using ‹subst t ′-bis (comp η ′ σ) = subst t ′ σ› by auto

from ‹s ′-bis = (subst s ′ η)›
and ‹s = subst s ′ σ›
have s = subst s ′-bis (comp η ′ σ)
using ‹subst s ′-bis (comp η ′ σ) = subst s ′ σ› by auto

from ‹CC-bis ∈ S› ‹t /∈ subst-set (trms-ecl CC-bis) (comp η ′ σ)›
‹trms-irreducible CC-bis (comp η ′ σ) S t›
‹C ′-bis = cl-ecl CC-bis› ‹(s, t) ∈ trm-ord› ‹((s, t) ∈ trm-ord −→ z = trm-rep

s S)›
‹orient-lit-inst L ′-bis t ′-bis s ′-bis pos (comp η ′ σ)›
‹sel C ′-bis = {}› ‹L ′-bis ∈ C ′-bis› ‹maximal-literal L C ›
‹L = subst-lit L ′-bis (comp η ′ σ)›
‹C = subst-cl C ′-bis (comp η ′ σ)›
‹ground-clause C › ‹t = subst t ′-bis (comp η ′ σ)›
‹s = subst s ′-bis (comp η ′ σ)›
‹finite C ′-bis› ‹smaller-lits-are-false t C S›
‹maximal-literal-is-unique t s C ′-bis L ′-bis S (comp η ′ σ)›
have (candidate-values z CC-bis C ′-bis C s L L ′-bis ?ϑ ′ t ′-bis s ′-bis t S)
unfolding candidate-values-def by metis

have vars-of-cl (cl-ecl D) ∩ (vars-of-cl (cl-ecl CC-bis)) = {}
proof (rule ccontr)

assume vars-of-cl (cl-ecl D) ∩ (vars-of-cl (cl-ecl CC-bis)) 6= {}
from this and ‹C ′-bis = (cl-ecl CC-bis)›
obtain x where x ∈ vars-of-cl C ′-bis and x ∈ vars-of-cl (cl-ecl D) by auto

from ‹x ∈ vars-of-cl C ′-bis›
obtain N where N ∈ C ′-bis and x ∈ vars-of-lit N by auto

from ‹N ∈ C ′-bis› and ‹C ′-bis = (subst-cl C ′ η)› obtain N ′ where
N ′ ∈ C ′ and N = subst-lit N ′ η by auto

from ‹x ∈ vars-of-lit N › obtain e where N = (Pos e) ∨ (N = (Neg e))
and x ∈ vars-of-eq e

by (metis negative-literal.elims(2 ) negative-literal.elims(3 ) vars-of-lit.simps(1 )
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vars-of-lit.simps(2 ))
from ‹N = (Pos e) ∨ (N = (Neg e))› and ‹N = subst-lit N ′ η› obtain e ′

where
N ′ = (Pos e ′) ∨ (N ′ = (Neg e ′)) and e = subst-equation e ′ η
by (metis subst-lit.elims atom.simps(1 ) atom.simps(2 ))

from ‹x ∈ vars-of-eq e› obtain u v where e = (Eq u v) and x ∈ vars-of u
∪ vars-of v

by (metis equation.exhaust vars-of-eq.simps)
from ‹e = (Eq u v)› and ‹e = subst-equation e ′ η› obtain u ′ v ′ where e ′ =

(Eq u ′ v ′)
u = (subst u ′ η) and v = (subst v ′ η)
by (metis subst-equation.simps equation.exhaust equation.inject)

from ‹x ∈ vars-of u ∪ vars-of v› have x ∈ vars-of u ∨ x ∈ vars-of v by auto
then show False
proof

assume x ∈ vars-of u
from this and ‹u = (subst u ′ η)›

obtain y where y ∈ vars-of u ′ and x ∈ vars-of (subst (Var y) η)
using vars-of-instances [of u ′ η] by auto

from ‹y ∈ vars-of u ′› and ‹e ′ = (Eq u ′ v ′)› have y ∈ vars-of-eq e ′ by auto
from this and ‹N ′ = (Pos e ′) ∨ (N ′ = (Neg e ′))› have y ∈ vars-of-lit N ′

by auto
from this and ‹N ′ ∈ C ′› have y ∈ vars-of-cl C ′ by auto
from this and ‹renaming η (vars-of-cl C ′)›

have is-a-variable (subst (Var y) η) unfolding renaming-def by auto
from this and ‹x ∈ vars-of (subst (Var y) η)› have

Var x = (subst (Var y) η)
by (metis is-a-variable.elims(2 ) singletonD vars-of .simps(1 ))

from this and ‹y ∈ vars-of-cl C ′›
have x ∈ (subst-codomain η (vars-of-cl C ′)) unfolding subst-codomain-def

by auto
from this and ‹x ∈ vars-of-cl (cl-ecl D)›

and ‹((subst-codomain η (vars-of-cl C ′)) ∩ (vars-of-cl (cl-ecl D))) = {}›
show False by auto

next
assume x ∈ vars-of v
from this and ‹v = (subst v ′ η)›

obtain y where y ∈ vars-of v ′ and x ∈ vars-of (subst (Var y) η)
using vars-of-instances [of v ′ η] by auto

from ‹y ∈ vars-of v ′› and ‹e ′ = (Eq u ′ v ′)› have y ∈ vars-of-eq e ′ by auto
from this and ‹N ′ = (Pos e ′) ∨ (N ′ = (Neg e ′))› have y ∈ vars-of-lit N ′

by auto
from this and ‹N ′ ∈ C ′› have y ∈ vars-of-cl C ′ by auto
from this and ‹renaming η (vars-of-cl C ′)›

have is-a-variable (subst (Var y) η) unfolding renaming-def by auto
from this and ‹x ∈ vars-of (subst (Var y) η)› have

Var x = (subst (Var y) η)
by (metis is-a-variable.elims(2 ) singletonD vars-of .simps(1 ))
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from this and ‹y ∈ vars-of-cl C ′›
have x ∈ (subst-codomain η (vars-of-cl C ′)) unfolding subst-codomain-def

by auto
from this and ‹x ∈ vars-of-cl (cl-ecl D)›

and ‹((subst-codomain η (vars-of-cl C ′)) ∩ (vars-of-cl (cl-ecl D))) = {}›
show False by auto

qed
qed
from this and ‹(candidate-values z CC-bis C ′-bis C s L L ′-bis ?ϑ ′ t ′-bis s ′-bis

t S)›
show ?thesis by blast

qed

lemma pos-ord-acyclic:
shows acyclic (pos-ord C t)

by (simp add: acyclic-irrefl pos-ord-irrefl pos-ord-trans)

definition proper-subterm-red
where proper-subterm-red t S σ =
(∃ p s. (subterm t p s ∧ p 6= Nil ∧ (trm-rep (subst s σ) S 6= (subst s σ))))

The following lemma states that if an eligible term in a clause instance is
not in normal form, then the clause instance must be reducible (according
to the previous definition of reduction). This is the key lemma for proving
completeness. Note that we assume that the considered substitution is in
normal form, so that the reduction cannot occur inside a variable. We also
rename the clause used for the reduction, to ensure that it shares no vari-
able with the provided clause. The proof requires an additional hypothesis
in the case where the reducible term occurs at the root position in an eli-
gible term of a positive literal, see the first hypothesis below and function
equivalent-eq-exists.
lemma reduction-exists:

assumes polarity = neg ∨ ¬ equivalent-eq-exists t s (cl-ecl C ) (int-clset S) σ L1
∨ proper-subterm-red t S σ

assumes ∀ x y. (( x ∈ vars-of-cl (cl-ecl C )) −→ (occurs-in y (subst (Var x) σ))
−→ trm-rep y S = y)

assumes eligible-literal L1 C σ
assumes (trm-rep (subst t σ) S) 6= (subst t σ)
assumes L1 ∈ (cl-ecl C )
assumes (orient-lit-inst L1 t s polarity σ)
assumes ∀ x ∈ S . finite (cl-ecl x)
assumes ground-clause (subst-cl (cl-ecl C ) σ)
assumes (fo-interpretation (same-values (λt. (trm-rep t S))))
assumes C ∈ S
assumes Ball S well-constrained
assumes all-trms-irreducible (subst-set (trms-ecl C ) σ) (λt. trm-rep t S)
assumes ¬ validate-ground-clause (int-clset S) (subst-cl (cl-ecl C ) σ)
assumes closed-under-renaming S
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shows ∃σ ′ u u ′ p v D L2 .
((reduction L1 C σ ′ t s polarity L2 u u ′ p v D (same-values (λt. (trm-rep t S)))

S σ)
∧ (variable-disjoint C D))

proof −

The first step is to get the minimal reducible position in t C σ and the
corresponding subterm v.

let ?Redexes = { p. ∃ v. subterm (subst t σ) p v ∧ root-term S v ∧ trm-rep v S
6= v }

have ?Redexes ⊆ pos-of (subst t σ)
proof

fix x assume x ∈ ?Redexes
then have ∃ v. subterm (subst t σ) x v by blast
then have position-in x (subst t σ) unfolding position-in-def by metis
then show x ∈ pos-of (subst t σ) by auto

qed
from this have finite ?Redexes using set-of-positions-is-finite [of (subst t σ) ]

using finite-subset by blast
from assms(4 ) have st-red S (subst t σ) using subterms-of-irred-trms-are-irred

by blast
from this obtain p ′ where p ′ ∈ ?Redexes unfolding st-red-def by blast
from ‹finite ?Redexes› this obtain mp where mp ∈ ?Redexes

and
∧

p ′. (p ′, mp) ∈ (pos-ord C t) =⇒ p ′ /∈ ?Redexes
using pos-ord-acyclic [of C t] finite-proj-wf [of ?Redexes p ′ pos-ord C t] by blast

have mr : minimal-redex mp (subst t σ) C S t
proof (rule ccontr)

assume ¬minimal-redex mp (subst t σ) C S t
from this obtain p ′′ v ′ where (p ′′,mp) ∈ (pos-ord C t) subterm (subst t σ) p ′′

v ′

and trm-rep v ′ S 6= v ′ unfolding minimal-redex-def by blast
show False
proof (cases)

assume (root-term S v ′)
from this and ‹subterm (subst t σ) p ′′ v ′› ‹trm-rep v ′ S 6= v ′›

have p ′′ ∈?Redexes by blast
from this and ‹

∧
p ′. (p ′, mp) ∈ (pos-ord C t) =⇒ p ′ /∈ ?Redexes› and ‹(p ′′,mp)

∈ (pos-ord C t)›
show False by blast

next assume ¬(root-term S v ′)
from ‹trm-rep v ′ S 6= v ′› have st-red S v ′

using subterms-of-irred-trms-are-irred by blast
from this obtain p ′′′ v ′′ where subterm v ′ p ′′′ v ′′ root-term S v ′′ trm-rep v ′′

S 6= v ′′

unfolding st-red-def by blast
from ‹subterm v ′ p ′′′ v ′′› and ‹subterm (subst t σ) p ′′ v ′›

have subterm (subst t σ) (append p ′′ p ′′′) v ′′
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using subterm-of-a-subterm-is-a-subterm by metis
from this and ‹trm-rep v ′′ S 6= v ′′› ‹root-term S v ′′›

have (append p ′′ p ′′′) ∈ ?Redexes by blast
from this and ‹

∧
p ′. (p ′, mp) ∈ (pos-ord C t) =⇒ p ′ /∈ ?Redexes›

have (append p ′′ p ′′′,mp) /∈ (pos-ord C t) by blast
from this and ‹(p ′′,mp) ∈ (pos-ord C t)› show False using pos-ord-prefix

by auto
qed

qed

from ‹mp ∈ ?Redexes› obtain p v where mp=p subterm (subst t σ) p v and
root-term S v

and trm-rep v S 6= v unfolding st-red-def by blast

Second, we find the clause C2 and substitution η that are used to determine
the value of v according to the definition of trm-rep, and we prove that they
satisfy all the desired properties. In particular, clause C2 is renamed to
ensure that it shares no variable with C.

from ‹subterm (subst t σ) p v› have
si: (∃ x q1 q2 . (is-a-variable x) ∧ (subterm (subst x σ) q1 v) ∧

(subterm t q2 x) ∧ (p = (append q2 q1 ))) ∨
((∃ u. (¬(is-a-variable u) ∧ (subterm t p u) ∧ (v = (subst u σ)))))
using subterms-of-instances by metis

let ?v = trm-rep v S
from ‹trm-rep v S 6= v› and ‹root-term S v› have ?v ∈ min-trms (set-of-candidate-values

S v)
unfolding root-term-def get-min-def by (metis some-in-eq)

from ‹?v ∈ min-trms (set-of-candidate-values S v)› obtain pair where ?v = fst
pair

and pair ∈ (set-of-candidate-values S v) and
min-pair : (∀ pair ′∈set-of-candidate-values S v. (snd pair ′, snd pair) /∈ trm-ord)

unfolding min-trms-def by blast

from ‹pair ∈ (set-of-candidate-values S v)› have
∃ z CC C ′ C s L L ′ σ t ′ s ′. pair = (z, s) ∧ (candidate-values z CC C ′ C s L L ′

σ t ′ s ′ v S)
unfolding set-of-candidate-values-def [of S v] by blast

from this obtain zz C2-init Cl-C2-init gr-Cl-C2 gr-rhs gr-L2 L2-init η-init
lhs-init rhs-init

where pair = (zz, gr-rhs)
and (candidate-values zz C2-init Cl-C2-init gr-Cl-C2 gr-rhs gr-L2 L2-init

η-init lhs-init rhs-init v S)
by blast

from assms(7 ) and ‹C ∈ S› have finite (cl-ecl C ) by auto
from ‹(candidate-values zz C2-init Cl-C2-init gr-Cl-C2 gr-rhs gr-L2 L2-init

η-init lhs-init rhs-init v S)›
have finite Cl-C2-init unfolding candidate-values-def by metis

163



from assms(11 ) ‹closed-under-renaming S› ‹finite Cl-C2-init› ‹finite (cl-ecl C )›
‹(candidate-values zz C2-init Cl-C2-init gr-Cl-C2 gr-rhs gr-L2 L2-init

η-init lhs-init rhs-init v S)›
obtain C2 Cl-C2 η L2 lhs rhs where
(candidate-values zz C2 Cl-C2 gr-Cl-C2 gr-rhs gr-L2 L2 η lhs rhs v S)
and (vars-of-cl (cl-ecl C ) ∩ vars-of-cl (cl-ecl C2 )) = {}

using candidate-values-renaming [of zz C2-init Cl-C2-init gr-Cl-C2 gr-rhs
gr-L2 L2-init

η-init lhs-init rhs-init v S C ] by auto

from ‹(candidate-values zz C2 Cl-C2 gr-Cl-C2 gr-rhs gr-L2 L2 η lhs rhs v S)›
and ‹pair = (zz, gr-rhs)› and ‹?v = fst pair›

have cv: (candidate-values ?v C2 Cl-C2 gr-Cl-C2 gr-rhs gr-L2 L2 η lhs rhs v
S)

by (metis fst-conv)
from cv have C2 ∈ S
unfolding candidate-values-def by metis

from cv have ground-clause gr-Cl-C2
unfolding candidate-values-def by metis

from assms(7 ) and assms(10 ) have finite (vars-of-cl (cl-ecl C ))
using set-of-variables-is-finite-cl by blast

from cv have smaller-lits-are-false v gr-Cl-C2 S
unfolding candidate-values-def by metis

from cv have gr-Cl-C2 = subst-cl Cl-C2 η
unfolding candidate-values-def by metis

from cv have orient-lit-inst L2 lhs rhs pos η
unfolding candidate-values-def by metis

from cv have maximal-literal gr-L2 gr-Cl-C2
unfolding candidate-values-def by metis

from cv have gr-L2 = subst-lit L2 η
unfolding candidate-values-def by metis

from cv have ground-clause gr-Cl-C2
unfolding candidate-values-def by metis

from cv have L2 ∈ Cl-C2
unfolding candidate-values-def by metis

from this and ‹gr-Cl-C2 = subst-cl Cl-C2 η› and ‹gr-L2 = subst-lit L2 η›
have gr-L2 ∈ gr-Cl-C2 by auto

from cv have trm-rep v S = trm-rep gr-rhs S
unfolding candidate-values-def by metis

from cv have (gr-rhs, v) ∈ trm-ord
unfolding candidate-values-def by metis

from cv have Cl-C2 = cl-ecl C2
unfolding candidate-values-def by metis

from cv have v /∈ subst-set (trms-ecl C2 ) η
unfolding candidate-values-def by metis
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from cv have sel (cl-ecl C2 ) = {}
unfolding candidate-values-def by metis

from this and ‹maximal-literal gr-L2 gr-Cl-C2 › and ‹gr-Cl-C2 = subst-cl Cl-C2
η›

and ‹Cl-C2 = (cl-ecl C2 )› and ‹gr-L2 = subst-lit L2 η› have eligible-literal
L2 C2 η

unfolding eligible-literal-def by auto
from cv have (gr-rhs, v) ∈ trm-ord

unfolding candidate-values-def by metis

from cv have norm: (∀ x. (∃ x ′∈ trms-ecl C2 . occurs-in x (subst x ′ η)) −→
(x, v) ∈ trm-ord −→ trm-rep x S = x)

unfolding candidate-values-def trms-irreducible-def by metis

from ‹ground-clause gr-Cl-C2 › and ‹gr-L2 ∈ gr-Cl-C2 › have vars-of-lit gr-L2
= {}

by auto
from cv have v = subst lhs η unfolding candidate-values-def by metis
from cv have gr-rhs = subst rhs η unfolding candidate-values-def by metis

let ?I = (same-values (λt. (trm-rep t S)))

have no-fact: ¬ equivalent-eq-exists lhs rhs Cl-C2 (same-values (λt. trm-rep t
S)) η L2

proof
assume equivalent-eq-exists lhs rhs Cl-C2 (same-values (λt. trm-rep t S)) η L2
from this have ∃L∈Cl-C2 − {L2}.∃ u v. orient-lit-inst L u v pos η ∧

subst lhs η = subst u η ∧ same-values (λt. trm-rep t S) (subst rhs η) (subst
v η)

unfolding equivalent-eq-exists-def
by blast

from this obtain M where M∈Cl-C2 − {L2} and e: ∃ u v. orient-lit-inst M
u v pos η ∧

subst lhs η = subst u η ∧ same-values (λt. trm-rep t S) (subst rhs η) (subst
v η)

by blast
from e obtain u ′ v ′ where orient-lit-inst M u ′ v ′ pos η

and i: subst lhs η = subst u ′ η ∧ same-values (λt. trm-rep t S) (subst rhs
η) (subst v ′ η)

by blast

from i have subst lhs η = subst u ′ η by blast
from i have trm-rep (subst rhs η) S = trm-rep (subst v ′ η) S unfolding

same-values-def by blast
let ?u ′ = (subst u ′ η)
let ?v ′ = (subst v ′ η)
from ‹orient-lit-inst M u ′ v ′ pos η› have orient-lit (subst-lit M η) ?u ′ ?v ′ pos

using lift-orient-lit by auto
from ‹orient-lit-inst L2 lhs rhs pos η› have orient-lit (subst-lit L2 η) (subst lhs
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η)
(subst rhs η) pos
using lift-orient-lit by auto

from ‹orient-lit-inst M u ′ v ′ pos η› and ‹M ∈ (Cl-C2 − {L2})› and
‹gr-Cl-C2 = subst-cl Cl-C2 η›

have eq-occurs-in-cl ?u ′ ?v ′ (Cl-C2 − {L2}) η unfolding eq-occurs-in-cl-def
by auto

from ‹M∈Cl-C2 − {L2}› and ‹gr-Cl-C2 = subst-cl Cl-C2 η›
have (subst-lit M η) ∈ (subst-cl (Cl-C2 − { L2 }) η) by auto

from ‹M∈Cl-C2 − {L2}› and ‹gr-Cl-C2 = subst-cl Cl-C2 η›
have (subst-lit M η) ∈ gr-Cl-C2 by auto

from ‹vars-of-lit gr-L2 = {}› and ‹gr-L2 = subst-lit L2 η›
‹orient-lit (subst-lit L2 η) (subst lhs η) (subst rhs η) pos›
have vars-of (subst rhs η) = {} using orient-lit-vars by blast

from ‹ground-clause gr-Cl-C2 › and ‹(subst-lit M η) ∈ gr-Cl-C2 ›
have vars-of-lit (subst-lit M η) = {} by auto

from this and ‹orient-lit (subst-lit M η) ?u ′ ?v ′ pos›
have vars-of ?v ′ = {} using orient-lit-vars by blast

from ‹maximal-literal gr-L2 gr-Cl-C2 › and ‹(subst-lit M η) ∈ gr-Cl-C2 ›
have (gr-L2 ,(subst-lit M η)) /∈ lit-ord
unfolding maximal-literal-def by auto

from this and ‹orient-lit (subst-lit M η) ?u ′ ?v ′ pos›
and ‹orient-lit (subst-lit L2 η) (subst lhs η) (subst rhs η) pos›
and ‹subst lhs η = subst u ′ η›
and ‹vars-of-lit gr-L2 = {}› and ‹vars-of-lit (subst-lit M η) = {}›
and ‹gr-L2 = subst-lit L2 η› have ((subst rhs η),?v ′) /∈ trm-ord
using lit-ord-rhs by auto

from this and ‹vars-of ?v ′ = {}› and ‹vars-of (subst rhs η) = {}›
have ?v ′ = (subst rhs η) ∨ (?v ′,(subst rhs η)) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by auto

from this and ‹(gr-rhs,v) ∈ trm-ord› and ‹gr-rhs = subst rhs η› have
(?v ′,v) ∈ trm-ord using trm-ord-trans unfolding trans-def by auto

from cv have maximal-literal-is-unique v gr-rhs Cl-C2 L2 S η
unfolding candidate-values-def by metis

from ‹orient-lit-inst M u ′ v ′ pos η› have ((subst u ′ η),(subst v ′ η)) /∈ trm-ord
unfolding orient-lit-inst-def by auto

have trm-rep gr-rhs S 6= trm-rep (subst v ′ η) S
by (metis ‹(subst v ′ η, v) ∈ trm-ord› ‹(gr-rhs, v) ∈ trm-ord›

‹subst lhs η = subst u ′ η›
‹eq-occurs-in-cl (subst u ′ η) (subst v ′ η) (Cl-C2 − {L2}) η›
‹maximal-literal-is-unique v gr-rhs Cl-C2 L2 S η› ‹v = subst lhs η›

maximal-literal-is-unique-def )
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from this and ‹trm-rep (subst rhs η) S = trm-rep (subst v ′ η) S›
and ‹gr-rhs = (subst rhs η)› show False by blast

qed
from this ‹gr-Cl-C2 = subst-cl Cl-C2 η›
and ‹gr-L2 = subst-lit L2 η›
and ‹smaller-lits-are-false v gr-Cl-C2 S› and assms(9 ) and ‹orient-lit-inst L2

lhs rhs pos η›
and ‹maximal-literal gr-L2 gr-Cl-C2 ›
and ‹ground-clause gr-Cl-C2 ›
and ‹gr-L2 ∈ gr-Cl-C2 › and ‹v = subst lhs η› ‹gr-rhs = subst rhs η›
and ‹trm-rep v S = trm-rep gr-rhs S›
have (¬ validate-ground-clause ?I (subst-cl ( Cl-C2 − { L2 } ) η))
using if-all-smaller-are-false-then-cl-not-valid [of lhs η Cl-C2 S L2 rhs] by blast

We fuse the substitutions σ and η so that the superposition rule can be
applied:

from ‹ground-clause (subst-cl (cl-ecl C ) σ)›
have ground-on (vars-of-cl (cl-ecl C )) σ using ground-clauses-and-ground-substs
by auto
from ‹finite (vars-of-cl (cl-ecl C ))› ‹(vars-of-cl (cl-ecl C ) ∩ vars-of-cl (cl-ecl

C2 )) = {}›
‹ground-on (vars-of-cl (cl-ecl C )) σ› obtain σ ′ where
coincide-on σ ′ σ (vars-of-cl (cl-ecl C )) and coincide-on σ ′ η (vars-of-cl (cl-ecl

C2 ))
using combine-substs [of (vars-of-cl (cl-ecl C )) (vars-of-cl (cl-ecl C2 )) σ η]

by blast

from ‹coincide-on σ ′ σ (vars-of-cl (cl-ecl C ))› have coincide-on σ σ ′ (vars-of-cl
(cl-ecl C ))

using coincide-sym by auto
from ‹coincide-on σ ′ η (vars-of-cl (cl-ecl C2 ))› have coincide-on η σ ′ (vars-of-cl

(cl-ecl C2 ))
using coincide-sym by auto

from ‹eligible-literal L1 C σ› ‹L1 ∈ (cl-ecl C )› ‹coincide-on σ σ ′ (vars-of-cl
(cl-ecl C ))›

have eligible-literal L1 C σ ′ using eligible-literal-coincide by auto

from ‹eligible-literal L2 C2 η› ‹L2 ∈ Cl-C2 › ‹Cl-C2 = (cl-ecl C2 )› ‹coincide-on
η σ ′

(vars-of-cl (cl-ecl C2 ))›
have eligible-literal L2 C2 σ ′ using eligible-literal-coincide by auto

from ‹ground-clause gr-Cl-C2 › and ‹gr-Cl-C2 = (subst-cl Cl-C2 η)›
have ground-clause (subst-cl Cl-C2 σ ′)
by (metis ‹Cl-C2 = cl-ecl C2 › ‹coincide-on σ ′ η (vars-of-cl (cl-ecl C2 ))› coin-

cide-on-cl)
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from ‹coincide-on σ σ ′ (vars-of-cl (cl-ecl C ))› ‹L1 ∈ (cl-ecl C )› have
coincide-on σ σ ′ (vars-of-lit L1 ) unfolding coincide-on-def by auto

from ‹coincide-on η σ ′ (vars-of-cl (cl-ecl C2 ))› ‹L2 ∈ Cl-C2 › and ‹Cl-C2 =
(cl-ecl C2 )›

have coincide-on η σ ′ (vars-of-lit L2 ) unfolding coincide-on-def by auto

from ‹(orient-lit-inst L1 t s polarity σ)› and ‹coincide-on σ σ ′ (vars-of-lit L1 )›

have (orient-lit-inst L1 t s polarity σ ′)
using orient-lit-inst-coincide [of L1 t s polarity σ σ ′] by blast

from ‹(orient-lit-inst L2 lhs rhs pos η)› and ‹coincide-on η σ ′ (vars-of-lit L2 )›

have (orient-lit-inst L2 lhs rhs pos σ ′) using orient-lit-inst-coincide by blast

To prove that the superposition rule is applicable, we need to show that v
does not occur inside a variable:

have ¬(∃ x q1 q2 . (is-a-variable x) ∧ (subterm (subst x σ) q1 v) ∧
(subterm t q2 x) ∧ (p = (append q2 q1 )))

proof
assume (∃ x q1 q2 . (is-a-variable x) ∧ (subterm (subst x σ) q1 v) ∧

(subterm t q2 x) ∧ (p = (append q2 q1 )))
then obtain x q1 q2 where is-a-variable x subterm (subst x σ) q1 v
(subterm (subst x σ) q1 v) (subterm t q2 x) by auto

from ‹(subterm (subst x σ) q1 v)› have occurs-in v (subst x σ)
unfolding occurs-in-def by auto

from ‹is-a-variable x› obtain x ′ where x = Var x ′ using is-a-variable.elims(2 )
by blast

from ‹subterm t q2 x› have x ∈ subterms-of t
using subterms-of .simps unfolding occurs-in-def by blast

from this have x ∈ subterms-of-lit L1 using assms(6 ) by (simp add: ori-
ent-lit-inst-subterms)

from this ‹L1 ∈ (cl-ecl C )› have x ∈ subterms-of-cl (cl-ecl C ) by auto
from this have vars-of x ⊆ vars-of-cl (cl-ecl C ) using subterm-vars by blast
from this and ‹x = (Var x ′)› have x ′ ∈ vars-of-cl (cl-ecl C ) by auto
from ‹x ′ ∈ vars-of-cl (cl-ecl C )› ‹occurs-in v (subst x σ)›

‹x = Var x ′› assms(2 ) have trm-rep v S = v by blast
from this and ‹trm-rep v S 6= v› show False by blast

qed
from this and si obtain u where ¬ (is-a-variable u) (subterm t p u) and v =

(subst u σ)
by auto

from ‹orient-lit-inst L1 t s polarity σ› have vars-of t ⊆ vars-of-lit L1
using orient-lit-inst-vars by auto

from ‹subterm t p u› have vars-of u ⊆ vars-of t using vars-subterm by auto
from ‹vars-of t ⊆ vars-of-lit L1 › ‹vars-of u ⊆ vars-of t› ‹coincide-on σ σ ′

(vars-of-lit L1 )›
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have coincide-on σ σ ′ (vars-of u) unfolding coincide-on-def by blast
from this have subst u σ = subst u σ ′ using coincide-on-term by auto

from ‹orient-lit-inst L2 lhs rhs pos η› have vars-of lhs ⊆ vars-of-lit L2
and vars-of rhs ⊆ vars-of-lit L2 using orient-lit-inst-vars by auto

from ‹vars-of lhs ⊆ vars-of-lit L2 › ‹coincide-on η σ ′ (vars-of-lit L2 )›
have coincide-on η σ ′ (vars-of lhs) unfolding coincide-on-def by blast

from this have subst lhs η = subst lhs σ ′

using coincide-on-term by auto

from ‹vars-of rhs ⊆ vars-of-lit L2 › ‹coincide-on η σ ′ (vars-of-lit L2 )›
have coincide-on η σ ′ (vars-of rhs) unfolding coincide-on-def by blast

from this have subst rhs η = subst rhs σ ′

using coincide-on-term by auto

from ‹trm-rep v S = trm-rep gr-rhs S› and ‹v= subst lhs η› and ‹gr-rhs =
(subst rhs η)›

have trm-rep (subst rhs η) S = trm-rep (subst lhs η) S by metis

from this and ‹subst rhs η = subst rhs σ ′› ‹subst lhs η = subst lhs σ ′›
have trm-rep (subst rhs σ ′) S = trm-rep (subst lhs σ ′) S by metis

from ‹subst lhs η = subst lhs σ ′› ‹subst u σ = subst u σ ′› ‹v = subst u σ› and
‹v = subst lhs η›

have subst u σ ′ = subst lhs σ ′ by auto

from ‹coincide-on σ ′ η (vars-of-cl (cl-ecl C2 ))› and ‹Cl-C2 = (cl-ecl C2 )›
have coincide-on σ ′ η (vars-of-cl (Cl-C2 − { L2 })) unfolding coin-

cide-on-def by auto
from this and ‹(¬ validate-ground-clause ?I (subst-cl ( Cl-C2 − { L2 } ) η))›

have (¬ validate-ground-clause ?I (subst-cl ( Cl-C2 − { L2 } ) σ ′))
using coincide-on-cl by metis

have (∀ x∈cl-ecl C2 − {L2}. (subst-lit x σ ′, subst-lit L2 σ ′) ∈ lit-ord)
proof
fix x assume x ∈cl-ecl C2 − {L2}
from ‹L2 ∈ Cl-C2 › and ‹gr-L2 = (subst-lit L2 η)›

‹gr-Cl-C2 = (subst-cl Cl-C2 η)› have gr-L2 ∈ gr-Cl-C2 by auto
from this and ‹ground-clause gr-Cl-C2 › have vars-of-lit gr-L2 = {} by auto
from ‹x ∈ cl-ecl C2 − {L2}› and ‹Cl-C2 = (cl-ecl C2 )› ‹gr-Cl-C2 = (subst-cl

Cl-C2 η)›
have (subst-lit x η) ∈ gr-Cl-C2 by auto

from this and ‹ground-clause gr-Cl-C2 › have vars-of-lit (subst-lit x η) = {}
by auto

from this ‹x ∈ cl-ecl C2 − {L2}› ‹maximal-literal gr-L2 gr-Cl-C2 › ‹Cl-C2 =
cl-ecl C2 ›

‹gr-L2 = (subst-lit L2 η)›
‹gr-Cl-C2 = (subst-cl Cl-C2 η)› ‹orient-lit-inst L2 lhs rhs pos η› no-fact
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assms(9 )
‹vars-of-lit gr-L2 = {}› ‹vars-of-lit (subst-lit x η) = {}›
have (subst-lit x η, subst-lit L2 η) ∈ lit-ord
using max-pos-lit-dominates-cl [of L2 η Cl-C2 lhs rhs x ?I ] by metis

from ‹L2 ∈ Cl-C2 › have vars-of-lit L2 ⊆ vars-of-cl Cl-C2 by auto
from this and ‹coincide-on σ ′ η (vars-of-cl (cl-ecl C2 ))› and ‹Cl-C2 = cl-ecl

C2 ›
have coincide-on σ ′ η (vars-of-lit L2 ) unfolding coincide-on-def by auto

from this have subst-lit L2 σ ′ = subst-lit L2 η using coincide-on-lit by auto

from ‹x ∈ (cl-ecl C2 ) − {L2}› have x ∈ cl-ecl C2 by auto
from this have vars-of-lit x ⊆ vars-of-cl (cl-ecl C2 ) by auto
from this and ‹coincide-on σ ′ η (vars-of-cl (cl-ecl C2 ))›

have coincide-on σ ′ η (vars-of-lit x) unfolding coincide-on-def by auto
from this have subst-lit x σ ′ = subst-lit x η using coincide-on-lit by auto

from ‹(subst-lit x η, subst-lit L2 η) ∈ lit-ord›
‹subst-lit L2 σ ′ = subst-lit L2 η›
‹subst-lit x σ ′ = subst-lit x η›
show (subst-lit x σ ′,subst-lit L2 σ ′) ∈ lit-ord by metis

qed

have all-trms-irreducible (subst-set (trms-ecl C2 ) σ ′) (λt. trm-rep t S)
proof (rule ccontr)
assume ¬all-trms-irreducible (subst-set (trms-ecl C2 ) σ ′) (λt. trm-rep t S)
from this obtain x y where x ∈ (subst-set (trms-ecl C2 ) σ ′) and occurs-in y

x
and trm-rep y S 6= y unfolding all-trms-irreducible-def by blast

from ‹x ∈ (subst-set (trms-ecl C2 ) σ ′)› obtain x ′ where x ′ ∈ trms-ecl C2
and x = (subst x ′ σ ′) by auto

from assms(11 ) and ‹x ′ ∈ (trms-ecl C2 )› and ‹C2 ∈ S›
have dom-trm x ′ (cl-ecl C2 ) unfolding Ball-def well-constrained-def by blast

from this obtain x ′′

where x ′′ ∈ subterms-of-cl (cl-ecl C2 ) and x ′′ = x ′ ∨ (x ′,x ′′) ∈ trm-ord
using dom-trm-lemma by blast

from ‹dom-trm x ′ (cl-ecl C2 )› have vars-of x ′ ⊆ vars-of-cl (cl-ecl C2 )
using dom-trm-vars by blast

from this and ‹coincide-on σ ′ η (vars-of-cl (cl-ecl C2 ))› have coincide-on σ ′

η (vars-of x ′)
unfolding coincide-on-def by auto

from this have (subst x ′ η) = (subst x ′ σ ′) using coincide-on-term by metis
from this and ‹x = (subst x ′ σ ′)› have x = (subst x ′ η) by auto
from this and ‹x ′ ∈ trms-ecl C2 › have x ∈(subst-set (trms-ecl C2 ) η)

by auto
from ‹x ′′ ∈ (subterms-of-cl (cl-ecl C2 ))› have

(subst x ′′ η) ∈ (subterms-of-cl (subst-cl (cl-ecl C2 ) η))
using subterm-cl-subst [of x ′′ cl-ecl C2 ] by auto
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from ‹orient-lit-inst L2 lhs rhs pos η› ‹gr-rhs = (subst rhs η)›
‹gr-L2 = (subst-lit L2 η)›
have orient-lit gr-L2 (subst lhs η) gr-rhs pos
using lift-orient-lit
by auto

from ‹ground-clause gr-Cl-C2 › have vars-of-cl gr-Cl-C2 = {} by auto
from ‹vars-of-lit gr-L2 = {}› ‹vars-of-cl gr-Cl-C2 = {}›
‹(subst x ′′ η) ∈ (subterms-of-cl (subst-cl (cl-ecl C2 ) η))›
‹orient-lit gr-L2 (subst lhs η) gr-rhs pos› ‹maximal-literal gr-L2 gr-Cl-C2 ›
‹Cl-C2 = cl-ecl C2 › ‹gr-L2 = (subst-lit L2 η)›
‹gr-Cl-C2 = (subst-cl Cl-C2 η)› ‹v = (subst lhs η)› ‹v = (subst lhs η)›

have (subst x ′′ η) = v ∨ (((subst x ′′ η),v) ∈ trm-ord)
using subterms-dominated [of gr-L2 gr-Cl-C2 (subst lhs η) gr-rhs pos subst

x ′′ η]
by metis

from ‹x ′′ = x ′ ∨ (x ′,x ′′) ∈ trm-ord› ‹x = (subst x ′ η)› have
(subst x ′′ η) = x ∨ (x,(subst x ′′ η)) ∈ trm-ord
using trm-ord-subst by metis

from this and ‹(subst x ′′ η) = v ∨ (((subst x ′′ η),v) ∈ trm-ord)›
have x = v ∨ ((x,v) ∈ trm-ord) using trm-ord-trans trans-def by metis

then show False
proof

assume x = v
from this and ‹v /∈ subst-set (trms-ecl C2 ) η›
‹x ∈ (subst-set (trms-ecl C2 ) η)› show False by auto

next
assume (x,v) ∈ trm-ord
from ‹occurs-in y x› have y = x ∨ (y,x) ∈ trm-ord unfolding occurs-in-def

using subterm-trm-ord-eq by auto
from this and ‹(x,v) ∈ trm-ord› have (y,v) ∈ trm-ord using trm-ord-trans

unfolding trans-def by metis
from this and norm and ‹trm-rep y S 6= y› and ‹occurs-in y x› and ‹x ′ ∈

trms-ecl C2 ›
and ‹x = (subst x ′ η)› show False by metis

qed
qed

from ‹subterm t p u› have u = t ∨ (u,t) ∈ trm-ord using subterm-trm-ord-eq
by auto

from assms(8 ) and ‹L1 ∈ (cl-ecl C )› have vars-of-lit (subst-lit L1 σ) = {}
by auto
from ‹coincide-on σ σ ′ (vars-of-lit L1 )› have (subst-lit L1 σ) = (subst-lit L1

σ ′)
using coincide-on-lit by metis

from this and ‹vars-of-lit (subst-lit L1 σ) = {}›
have vars-of-lit (subst-lit L1 σ ′) = {} by auto

from ‹coincide-on η σ ′ (vars-of-lit L2 )› have (subst-lit L2 η) = (subst-lit L2
σ ′)
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using coincide-on-lit by metis
from ‹vars-of-lit gr-L2 = {}› ‹ground-clause gr-Cl-C2 › ‹gr-Cl-C2 = (subst-cl

Cl-C2 η)›
‹L2 ∈ Cl-C2 › have vars-of-lit (subst-lit L2 η) = {} by auto

from this and ‹(subst-lit L2 η) = (subst-lit L2 σ ′)›
have vars-of-lit (subst-lit L2 σ ′) = {} by auto

We now prove that the “into” clause is strictly smaller than the “from”
clause. This is easy if the rewritten literal is negative or if the reduction
does not occur at root level. Otherwise, we must use the fact that the
function trm-rep selects the smallest right-hand side to compute the value
of a term.

have (subst-lit L2 σ ′, subst-lit L1 σ ′) ∈ lit-ord
proof (rule ccontr)
assume ¬(subst-lit L2 σ ′, subst-lit L1 σ ′) ∈ lit-ord
from ‹orient-lit-inst L1 t s polarity σ ′›

have orient-lit (subst-lit L1 σ ′)
(subst t σ ′) (subst s σ ′) polarity

using lift-orient-lit [of L1 t s polarity σ ′] by auto
from ‹orient-lit-inst L2 lhs rhs pos σ ′›

have orient-lit (subst-lit L2 σ ′)
(subst lhs σ ′) (subst rhs σ ′) pos

using lift-orient-lit by auto
have (u,t) /∈ trm-ord
proof

assume (u,t) ∈ trm-ord
from this have (subst u σ ′, subst t σ ′) ∈ trm-ord

using trm-ord-subst by auto
have False subst u σ ′ = subst lhs σ ′

using ‹(subst u σ ′, subst t σ ′) ∈ trm-ord›
‹(subst-lit L2 σ ′, subst-lit L1 σ ′) /∈ lit-ord› ‹subst lhs η = subst lhs σ ′›
‹subst u σ = subst u σ ′› ‹subst-lit L2 η = subst-lit L2 σ ′› ‹gr-L2 = subst-lit

L2 η›
‹orient-lit (subst-lit L1 σ ′) (subst t σ ′) (subst s σ ′) polarity›
‹orient-lit (subst-lit L2 σ ′) (subst lhs σ ′) (subst rhs σ ′) pos› ‹v = subst lhs

η›
‹v = subst u σ› ‹vars-of-lit (subst-lit L1 σ ′) = {}› ‹vars-of-lit gr-L2 = {}›
lit-ord-dominating-term apply fastforce
using ‹(subst u σ ′, subst t σ ′) ∈ trm-ord›
‹(subst-lit L2 σ ′, subst-lit L1 σ ′) /∈ lit-ord›
‹subst u σ ′ = subst lhs σ ′›
‹orient-lit (subst-lit L1 σ ′) (subst t σ ′) (subst s σ ′) polarity›
‹orient-lit (subst-lit L2 σ ′) (subst lhs σ ′) (subst rhs σ ′) pos›
‹vars-of-lit (subst-lit L1 σ ′) = {}› ‹vars-of-lit (subst-lit L2 σ ′) = {}›
lit-ord-dominating-term by fastforce

then show False by auto
qed
from this and ‹subterm t p u› have p = Nil using subterm-trm-ord by auto
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have ¬ proper-subterm-red t S σ
proof

assume proper-subterm-red t S σ
from this obtain p ′ s where p ′ 6= Nil and subterm t p ′ s

trm-rep (subst s σ) S 6= (subst s σ)
unfolding proper-subterm-red-def by blast

from ‹p = Nil› and ‹p ′ 6= Nil› have (p ′,p) ∈ (pos-ord C t)
using pos-ord-nil by auto

from ‹subterm t p ′ s› have subterm (subst t σ) p ′ (subst s σ)
by (simp add: substs-preserve-subterms)

from this and ‹(p ′,p) ∈ (pos-ord C t)› mr and ‹trm-rep (subst s σ) S 6=
(subst s σ)› ‹mp=p›

show False using minimal-redex-def by blast
qed

from ‹(u,t) /∈ trm-ord› and ‹u = t ∨ (u,t) ∈ trm-ord› have u = t by auto
have polarity = pos
proof (rule ccontr)

assume polarity 6= pos
then have polarity = neg using sign.exhaust by auto
from ‹u = t› have subst t σ ′ = subst u σ ′ by auto
from this and ‹v = (subst u σ)› and ‹v = (subst lhs η)›

and ‹subst lhs η = subst lhs σ ′›
and ‹(subst u σ) = (subst u σ ′)›
have (subst t σ ′) = (subst lhs σ ′) by auto

from this and ‹polarity = neg› ‹orient-lit (subst-lit L1 σ ′)
(subst t σ ′) (subst s σ ′) polarity›
and ‹orient-lit (subst-lit L2 σ ′)
(subst lhs σ ′) (subst rhs σ ′) pos›
‹(subst-lit L2 σ ′, subst-lit L1 σ ′) /∈ lit-ord›
‹vars-of-lit (subst-lit L1 σ ′) = {}›
‹vars-of-lit (subst-lit L2 σ ′) = {}›

show False using lit-ord-neg-lit-lhs by auto
qed
from ‹vars-of-lit (subst-lit L1 σ) = {}› assms(6 )

have vars-of (subst t σ) = {} using lift-orient-lit orient-lit-vars
by blast

from ‹vars-of-lit (subst-lit L1 σ) = {}› assms(6 )
have vars-of (subst s σ) = {} using lift-orient-lit orient-lit-vars
by blast

have trm-rep (subst t σ) S 6= trm-rep (subst s σ) S
proof
assume trm-rep (subst t σ) S = trm-rep (subst s σ) S
from this have validate-ground-eq ?I (Eq (subst t σ) (subst s σ))

unfolding same-values-def using validate-ground-eq.simps by (metis
(mono-tags, lifting))

from ‹trm-rep (subst t σ) S = trm-rep (subst s σ) S›
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have validate-ground-eq ?I (Eq (subst s σ) (subst t σ))
unfolding same-values-def using validate-ground-eq.simps by (metis

(mono-tags, lifting))
from ‹orient-lit-inst L1 t s polarity σ› and ‹polarity=pos›

have L1 = (Pos (Eq t s)) ∨ L1 = (Pos (Eq s t))
unfolding orient-lit-inst-def by auto

from this have subst-lit L1 σ = (Pos (Eq (subst t σ) (subst s σ))) ∨
subst-lit L1 σ = (Pos (Eq (subst s σ) (subst t σ))) by auto

from this and ‹validate-ground-eq ?I (Eq (subst s σ) (subst t σ))›
and ‹validate-ground-eq ?I (Eq (subst t σ) (subst s σ))›

have validate-ground-lit ?I (subst-lit L1 σ) using validate-ground-lit.simps(1 )
by metis

from ‹L1 ∈ (cl-ecl C )› have (subst-lit L1 σ) ∈ (subst-cl (cl-ecl C ) σ) by
auto

from this and ‹validate-ground-lit ?I (subst-lit L1 σ)›
have validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)
using validate-ground-clause.simps by metis

from this and ‹¬ validate-ground-clause (int-clset S) (subst-cl (cl-ecl C ) σ)›
show False unfolding int-clset-def by blast

qed
have cv ′: (candidate-values (trm-rep (subst s σ) S) C (cl-ecl C ) (subst-cl (cl-ecl

C ) σ)
(subst s σ) (subst-lit L1 σ) L1 σ t s v S)

proof −
from ‹polarity=pos› and ‹orient-lit-inst L1 t s polarity σ› have ¬nega-

tive-literal L1
unfolding orient-lit-inst-def by auto

from this and ‹eligible-literal L1 C σ›
have sel(cl-ecl C ) = {} and maximal-literal (subst-lit L1 σ) (subst-cl

(cl-ecl C ) σ)
using sel-neg unfolding eligible-literal-def by auto

from ‹v = subst u σ› and ‹u = t› have v = subst t σ by auto
from assms(7 ) ‹C ∈ S› have finite (cl-ecl C ) by auto
have v /∈ subst-set (trms-ecl C ) σ
proof

assume v ∈ subst-set (trms-ecl C ) σ
from this and assms(12 ) ‹subterm (subst t σ) p v› ‹v = subst t σ›

have trm-rep v S = v unfolding all-trms-irreducible-def occurs-in-def
by blast

from this ‹v = subst t σ› ‹trm-rep (subst t σ) S 6= (subst t σ)›
show False by blast

qed

from assms(13 ) have smaller-lits-are-false v (subst-cl (cl-ecl C ) σ) S
using smaller-lits-are-false-if-cl-not-valid [of S (subst-cl (cl-ecl C ) σ) ] by

blast
from assms(1 ) ‹¬ proper-subterm-red t S σ› ‹polarity=pos› ‹v = subst t σ›

have
maximal-literal-is-unique v (subst s σ) (cl-ecl C ) L1 S σ

174



using maximal-literal-is-unique-lemma [of t s (cl-ecl C ) S σ L1 ] by blast
from ‹all-trms-irreducible (subst-set (trms-ecl C ) σ) (λt. trm-rep t S)›

have trms-irreducible C σ S v using trms-irreducible-lemma [of C σ S v]
by blast

have (subst s σ, subst t σ) ∈ trm-ord
proof −
from ‹orient-lit-inst L1 t s polarity σ› have (subst t σ, subst s σ) /∈ trm-ord

unfolding orient-lit-inst-def by auto

from ‹trm-rep (subst t σ) S 6= trm-rep (subst s σ) S›
have (subst t σ) 6= (subst s σ) by metis

from this and ‹(subst t σ, subst s σ) /∈ trm-ord›
‹vars-of (subst t σ) = {}›
‹vars-of (subst s σ) = {}›
show (subst s σ, subst t σ) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by metis

qed

from ‹C ∈ S› ‹(subst s σ, subst t σ) ∈ trm-ord›
and ‹polarity=pos› ‹orient-lit-inst L1 t s polarity σ› and ‹sel (cl-ecl C ) =

{}›
and ‹L1 ∈ cl-ecl C ›
and ‹maximal-literal (subst-lit L1 σ) (subst-cl (cl-ecl C ) σ)›
and ‹ground-clause (subst-cl (cl-ecl C ) σ)› and ‹v = subst t σ›
and ‹finite (cl-ecl C )›
and ‹v /∈ subst-set (trms-ecl C ) σ›
and ‹smaller-lits-are-false v (subst-cl (cl-ecl C ) σ) S›
and ‹maximal-literal-is-unique v (subst s σ) (cl-ecl C ) L1 S σ›
and ‹trms-irreducible C σ S v›
show cv ′: (candidate-values (trm-rep (subst s σ) S) C (cl-ecl C ) (subst-cl

(cl-ecl C ) σ)
(subst s σ) (subst-lit L1 σ) L1 σ t s v S)
unfolding candidate-values-def by blast

qed

from cv ′ have (trm-rep (subst s σ) S ,(subst s σ)) ∈ set-of-candidate-values S
v

unfolding set-of-candidate-values-def by blast

from this and min-pair and ‹pair = (zz, gr-rhs)›
have ((subst s σ),gr-rhs) /∈ trm-ord
by (metis snd-conv)

have (subst s σ) 6= gr-rhs
using ‹trm-rep v S = trm-rep gr-rhs S› ‹u = t› ‹v = subst u σ›

‹trm-rep (subst t σ) S 6= trm-rep (subst s σ) S› by blast
have vars-of gr-rhs = {}
using ‹subst rhs η = subst rhs σ ′›
‹subst-lit L2 η = subst-lit L2 σ ′›
‹gr-L2 = subst-lit L2 η› ‹gr-rhs = subst rhs η›
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‹orient-lit (subst-lit L2 σ ′) (subst lhs σ ′) (subst rhs σ ′) pos›
‹vars-of-lit gr-L2 = {}› orient-lit-vars by fastforce

from ‹(subst s σ) 6= gr-rhs› and ‹vars-of (subst s σ) = {}› ‹vars-of gr-rhs =
{}›

‹((subst s σ),gr-rhs) /∈ trm-ord›
have (gr-rhs,(subst s σ)) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by blast

have (subst-lit L2 σ ′, subst-lit L1 σ ′) ∈ lit-ord
using ‹(gr-rhs, subst s σ) ∈ trm-ord›

‹subst lhs η = subst lhs σ ′› ‹subst rhs η = subst rhs σ ′›
‹subst-lit L1 σ = subst-lit L1 σ ′›
‹gr-rhs = subst rhs η›
‹orient-lit (subst-lit L2 σ ′) (subst lhs σ ′) (subst rhs σ ′) pos›
‹polarity = pos› ‹u = t› ‹v = subst lhs η› ‹v = subst u σ›
‹vars-of-lit (subst-lit L1 σ ′) = {}› ‹vars-of-lit (subst-lit L2 σ ′) = {}›
assms(6 ) lit-ord-rhs lift-orient-lit by fastforce

from this and ‹(subst-lit L2 σ ′, subst-lit L1 σ ′) /∈ lit-ord› show False by auto
qed

have trm-rep (subst u σ) S 6= (subst u σ)
using ‹trm-rep v S 6= v› ‹v = subst u σ› by blast

have allowed-redex u C σ
proof (rule ccontr)
assume ¬allowed-redex u C σ
from this obtain ss where ss ∈ trms-ecl C

and occurs-in (subst u σ) (subst ss σ) unfolding allowed-redex-def by auto
from ‹ss ∈ trms-ecl C › have (subst ss σ) ∈ (subst-set (trms-ecl C ) σ) by auto
from this and assms(12 ) and ‹occurs-in (subst u σ) (subst ss σ)›

‹trm-rep (subst u σ) S 6= (subst u σ)›
show False
unfolding all-trms-irreducible-def by blast

qed
have subst lhs σ ′ 6= subst rhs σ ′

using ‹(gr-rhs, v) ∈ trm-ord›
‹subst lhs η = subst lhs σ ′›
‹subst rhs η = subst rhs σ ′›
‹gr-rhs = subst rhs η› ‹v = subst lhs η› trm-ord-wf by auto

from this ‹mp=p› ‹¬ (is-a-variable u)›
‹all-trms-irreducible (subst-set (trms-ecl C2 ) σ ′) (λt. trm-rep t S)›
‹(subst-lit L2 σ ′, subst-lit L1 σ ′) ∈ lit-ord›
‹all-trms-irreducible (subst-set (trms-ecl C2 ) σ ′) (λt. trm-rep t S)›
‹(∀ x∈cl-ecl C2 − {L2}. (subst-lit x σ ′, subst-lit L2 σ ′) ∈ lit-ord)›
‹C2 ∈ S› ‹eligible-literal L1 C σ ′› ‹eligible-literal L2 C2 σ ′›
‹ground-clause (subst-cl Cl-C2 σ ′)› ‹Cl-C2 = cl-ecl C2 ›
mr ‹coincide-on σ σ ′ (vars-of-cl (cl-ecl C ))› ‹L1 ∈ cl-ecl C › ‹L2 ∈ Cl-C2 ›
‹orient-lit-inst L1 t s polarity σ ′› ‹(orient-lit-inst L2 lhs rhs pos σ ′)›
‹(subterm t p u)› ‹subst u σ ′ = subst lhs σ ′›
‹trm-rep (subst rhs σ ′) S = trm-rep (subst lhs σ ′) S›
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‹(¬ validate-ground-clause ?I (subst-cl ( Cl-C2 − { L2 } ) σ ′))›
‹allowed-redex u C σ›
have (reduction L1 C σ ′ t s polarity L2 lhs u mp rhs C2 (same-values (λt.

(trm-rep t S))) S σ)
unfolding reduction-def same-values-def
by metis

from ‹vars-of-cl (cl-ecl C ) ∩ vars-of-cl (cl-ecl C2 ) = {}› have variable-disjoint
C C2

unfolding variable-disjoint-def by auto
from this and
‹(reduction L1 C σ ′ t s polarity L2 lhs u mp rhs C2 (same-values (λt. (trm-rep

t S))) S σ)›
show ?thesis by blast

qed

lemma subts-of-irred-trms-are-irred:
assumes trm-rep y S 6= y
shows

∧
x. subterm x p y −→ trm-rep x S 6= x

proof (induction p)
case (Nil)

from assms(1 ) show ?case by (metis subterm.simps(1 ))
next case (Cons i p)

show
∧

x. subterm x (Cons i p) y −→ trm-rep x S 6= x
proof

fix x assume subterm x (Cons i p) y
from this obtain x1 x2 where x = Comb x1 x2 using subterm.elims(2 ) by

blast
have i = Left | i = Right using indices.exhaust by auto
then show trm-rep x S 6= x
proof

assume i = Left
from this and ‹subterm x (Cons i p) y› ‹x = Comb x1 x2 › have subterm

x1 p y by auto
from this and Cons.IH have trm-rep x1 S 6= x1 by blast
from this and ‹x = Comb x1 x2 › have subterm-reduction-applicable S x

unfolding subterm-reduction-applicable-def
by (metis is-compound.simps(3 ) lhs.simps(1 ))

from this have (trm-rep x S , x) ∈ trm-ord using trm-rep-is-lower-subt-red
by blast

from this show ?thesis using trm-ord-irrefl unfolding irrefl-def by metis
next

assume i = Right
from this and ‹subterm x (Cons i p) y› ‹x = Comb x1 x2 › have subterm

x2 p y by auto
from this and Cons.IH have trm-rep x2 S 6= x2 by blast
from this and ‹x = Comb x1 x2 › have subterm-reduction-applicable S x

unfolding subterm-reduction-applicable-def
by (metis is-compound.simps(3 ) rhs.simps(1 ))

from this have (trm-rep x S , x) ∈ trm-ord using trm-rep-is-lower-subt-red
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by blast
from this show ?thesis using trm-ord-irrefl unfolding irrefl-def by metis

qed
qed

qed

lemma allowed-redex-coincide:
assumes allowed-redex t C σ
assumes t ∈ subterms-of-cl (cl-ecl C )
assumes coincide-on σ σ ′ (vars-of-cl (cl-ecl C ))
assumes well-constrained C
shows allowed-redex t C σ ′

proof (rule ccontr)
assume ¬allowed-redex t C σ ′

from this obtain s
where s ∈ trms-ecl C and occurs-in (subst t σ ′) (subst s σ ′)
unfolding allowed-redex-def by auto

from ‹s ∈ trms-ecl C › and assms(4 ) have vars-of s ⊆ vars-of-cl (cl-ecl C )
using dom-trm-vars unfolding well-constrained-def by blast

from this have vars-of s ⊆ vars-of-cl (cl-ecl C ) using subterm-vars by blast
from this and assms(3 ) have coincide-on σ σ ′ (vars-of s) unfolding coin-

cide-on-def by auto
from this have (subst s σ) = (subst s σ ′) using coincide-on-term by auto
from assms(2 ) have vars-of t ⊆ vars-of-cl (cl-ecl C ) using subterm-vars by

blast
from this and assms(3 ) have coincide-on σ σ ′ (vars-of t) unfolding coin-

cide-on-def by auto
from this have (subst t σ) = (subst t σ ′) using coincide-on-term by auto
from this and ‹(subst s σ) = (subst s σ ′)› and ‹occurs-in (subst t σ ′) (subst s

σ ′)›
have occurs-in (subst t σ) (subst s σ) by auto

from this and ‹s ∈ trms-ecl C › have ¬allowed-redex t C σ unfolding al-
lowed-redex-def by auto

from this and assms(1 ) show False by auto
qed

The next lemma states that the irreducibility of an instance of a set of terms
is preserved when the substitution is replaced by its equivalent normal form.
lemma irred-terms-and-reduced-subst:

assumes f = (λt. (trm-rep t S))
assumes η = (map-subst f σ)
assumes all-trms-irreducible (subst-set E σ) f
assumes I = int-clset S
assumes equivalent-on σ η (vars-of-cl (cl-ecl C )) I
assumes lower-on η σ (vars-of-cl (cl-ecl C ))
assumes E = (trms-ecl C )
assumes ∀ x ∈ S . ∀ y. (y ∈ trms-ecl x −→ dom-trm y (cl-ecl x))
assumes C ∈ S
assumes fo-interpretation I
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shows all-trms-irreducible (subst-set E η ) f
proof (rule ccontr)

assume ¬all-trms-irreducible (subst-set E η) f
from this obtain t y where y ∈ (subst-set E η) occurs-in t y f t 6= t

unfolding all-trms-irreducible-def by metis
from ‹occurs-in t y› obtain p where subterm y p t unfolding occurs-in-def by

auto
from this and ‹f t 6= t› and assms(1 ) have f y 6= y using subts-of-irred-trms-are-irred

by blast
from ‹y ∈ (subst-set E η)› obtain z where z ∈ E and y = (subst z η)

by auto
from ‹z ∈ E› have (subst z σ) ∈ (subst-set E σ) by auto
have subterm (subst z σ) [] (subst z σ) by auto
then have occurs-in (subst z σ) (subst z σ) unfolding occurs-in-def

by blast
from this and assms(3 ) and ‹(subst z σ) ∈ (subst-set E σ)›

have f (subst z σ) = (subst z σ)
unfolding all-trms-irreducible-def by metis

from this and ‹f y 6= y› and ‹y = (subst z η)›
have (subst z σ) 6= (subst z η) by metis

from ‹z ∈ E› and assms(7 ) assms(8 ) assms(9 ) have dom-trm z (cl-ecl C ) by
metis

from this have vars-of z ⊆ vars-of-cl (cl-ecl C ) using dom-trm-vars by auto
from this assms(5 ) have equivalent-on σ η (vars-of z) I

unfolding equivalent-on-def by auto
from ‹vars-of z ⊆ vars-of-cl (cl-ecl C )› assms(6 ) have lower-on η σ (vars-of z)

unfolding lower-on-def by auto
from ‹(subst z σ) 6= (subst z η)›

‹lower-on η σ (vars-of z)›
have ( (subst z η),(subst z σ) ) ∈ trm-ord
using lower-on-term unfolding lower-or-eq-def by metis

from this have ( (subst z σ),(subst z η) ) /∈ trm-ord
using trm-ord-trans trm-ord-irrefl irrefl-def trans-def by metis

from assms(10 ) ‹equivalent-on σ η (vars-of z) I ›
have (I (subst z σ) (subst z η)) using equivalent-on-term

unfolding fo-interpretation-def by auto
from this and assms(4 ) assms(1 ) ‹f (subst z σ) = (subst z σ)›

have (subst z σ) = f (subst z η) unfolding same-values-def int-clset-def
by metis

from this ‹( (subst z σ),(subst z η) ) /∈ trm-ord›
‹(subst z σ) 6= (subst z η)› assms(1 )
show False using trm-rep-is-lower by metis

qed

lemma no-valid-literal:
assumes L ∈ C
assumes orient-lit-inst L t s pos σ
assumes ¬(validate-ground-clause (int-clset S) (subst-cl C σ))
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shows trm-rep (subst t σ) S 6= trm-rep (subst s σ) S
proof

assume neg-hyp: trm-rep (subst t σ) S = trm-rep (subst s σ) S
let ?I = int-clset S
from neg-hyp have validate-ground-eq ?I (Eq (subst t σ) (subst s σ))

unfolding same-values-def int-clset-def using validate-ground-eq.simps
by (metis (mono-tags, lifting))

from ‹trm-rep (subst t σ) S = trm-rep (subst s σ) S›
have validate-ground-eq ?I (Eq (subst s σ) (subst t σ))
unfolding same-values-def int-clset-def using validate-ground-eq.simps
by (metis (mono-tags, lifting))

from ‹orient-lit-inst L t s pos σ› have L = (Pos (Eq t s)) ∨ L = (Pos (Eq s
t))

unfolding orient-lit-inst-def by auto
from this have subst-lit L σ = (Pos (Eq (subst t σ) (subst s σ))) ∨

subst-lit L σ = (Pos (Eq (subst s σ) (subst t σ))) by auto
from this and ‹validate-ground-eq ?I (Eq (subst s σ) (subst t σ))›

and ‹validate-ground-eq ?I (Eq (subst t σ) (subst s σ))›
have validate-ground-lit ?I (subst-lit L σ) using validate-ground-lit.simps(1 )

by metis
from assms(1 ) have (subst-lit L σ) ∈ (subst-cl C σ) by auto
from ‹(subst-lit L σ) ∈ (subst-cl C σ)›

and ‹validate-ground-lit ?I (subst-lit L σ)›
have validate-ground-clause ?I (subst-cl C σ)
using validate-ground-clause.elims(3 ) by blast

from this and ‹¬ validate-ground-clause ?I (subst-cl C σ)› show False by
blast
qed

7.2 Lifting

This section contains all the necessary lemmata for transforming ground in-
ferences into first-order inferences. We show that all the necessary properties
can be lifted.
lemma lift-orient-lit-inst:

assumes orient-lit-inst L t s polarity ϑ
assumes subst-eq ϑ (comp σ η)
shows orient-lit-inst L t s polarity σ

proof −
let ?ϑ = (comp σ η)
have polarity = pos ∨ polarity = neg using sign.exhaust by auto
then show ?thesis
proof

assume polarity = pos
from this and assms(1 ) have L = Pos (Eq t s) ∨ L = Pos (Eq s t)

and ( (subst t ϑ), (subst s ϑ)) /∈ trm-ord
unfolding orient-lit-inst-def by auto

from assms(2 ) have (subst t ϑ) = (subst (subst t σ) η)
by auto
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from assms(2 ) have (subst s ϑ) = (subst (subst s σ) η)
by auto

from ‹(subst t ϑ) = (subst (subst t σ) η)›
‹(subst s ϑ) = (subst (subst s σ) η)›
‹( (subst t ϑ), (subst s ϑ)) /∈ trm-ord›

have ( (subst (subst t σ) η),(subst (subst s σ) η)) /∈ trm-ord
by auto

from this have ( (subst t σ), (subst s σ)) /∈ trm-ord
using trm-ord-subst by auto

from this and ‹polarity = pos› ‹L = Pos (Eq t s) ∨ L = Pos (Eq s t)› show
?thesis

unfolding orient-lit-inst-def by blast
next

assume polarity = neg
from this and assms(1 ) have L = Neg (Eq t s) ∨ L = Neg (Eq s t)

and ( (subst t ϑ), (subst s ϑ)) /∈ trm-ord
unfolding orient-lit-inst-def by auto

from assms(2 ) have (subst t ϑ) = (subst (subst t σ) η)
by auto

from assms(2 ) have (subst s ϑ) = (subst (subst s σ) η)
by auto

from ‹(subst t ϑ) = (subst (subst t σ) η)›
‹(subst s ϑ) = (subst (subst s σ) η)›
‹( (subst t ϑ), (subst s ϑ)) /∈ trm-ord›

have ( (subst (subst t σ) η),(subst (subst s σ) η)) /∈ trm-ord
by auto

from this have ( (subst t σ), (subst s σ)) /∈ trm-ord
using trm-ord-subst by auto

from this and ‹polarity = neg› ‹L = Neg (Eq t s) ∨ L = Neg (Eq s t)› show
?thesis

unfolding orient-lit-inst-def by blast
qed

qed

lemma lift-maximal-literal:
assumes maximal-literal (subst-lit L σ) (subst-cl C σ)
shows maximal-literal L C

proof (rule ccontr)
assume ¬maximal-literal L C
then obtain M where M ∈ C and (L,M ) ∈ lit-ord unfolding maximal-literal-def

by auto
from ‹M ∈ C › have (subst-lit M σ) ∈ (subst-cl C σ) by auto
from ‹(L,M ) ∈ lit-ord› have ((subst-lit L σ),(subst-lit M σ)) ∈ lit-ord

using lit-ord-subst by auto
from this and ‹(subst-lit M σ) ∈ (subst-cl C σ)› and assms(1 )

show False unfolding maximal-literal-def by auto
qed

lemma lift-eligible-literal:
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assumes eligible-literal L C σ
assumes σ

.
= ϑ ♦ η

shows eligible-literal L C ϑ
proof −

from assms(1 ) have (L ∈ sel (cl-ecl C ) ∨
(sel(cl-ecl C ) = {}
∧ (maximal-literal (subst-lit L σ) (subst-cl (cl-ecl C ) σ))))
unfolding eligible-literal-def by auto

then show ?thesis
proof

assume L ∈ sel (cl-ecl C )
then show ?thesis unfolding eligible-literal-def by auto

next
assume sel(cl-ecl C ) = {}
∧ (maximal-literal (subst-lit L σ) (subst-cl (cl-ecl C ) σ))
then have sel (cl-ecl C ) = {} and maximal-literal (subst-lit L σ) (subst-cl

(cl-ecl C ) σ)
by auto

let ?σ = ϑ ♦ η
from assms(2 ) have (subst-lit L σ) = (subst-lit L ?σ)

using subst-eq-lit by auto
then have (subst-lit L σ) = (subst-lit (subst-lit L ϑ) η)

using composition-of-substs-lit [of L ϑ η] by auto

from assms(2 ) have (subst-cl (cl-ecl C ) σ) = (subst-cl (cl-ecl C ) ?σ)
using subst-eq-cl [of σ ?σ (cl-ecl C )] by auto

then have (subst-cl (cl-ecl C ) σ) = (subst-cl (subst-cl (cl-ecl C ) ϑ) η)
using composition-of-substs-cl [of cl-ecl C ϑ η] by auto

from ‹maximal-literal (subst-lit L σ) (subst-cl (cl-ecl C ) σ)›
‹(subst-lit L σ) = (subst-lit (subst-lit L ϑ) η)›
‹(subst-cl (cl-ecl C ) σ) = (subst-cl (subst-cl (cl-ecl C ) ϑ) η)›
have maximal-literal (subst-lit (subst-lit L ϑ) η)

(subst-cl (subst-cl (cl-ecl C ) ϑ) η) by auto
from this have maximal-literal (subst-lit L ϑ) (subst-cl (cl-ecl C ) ϑ)

using lift-maximal-literal by metis
from this and ‹sel (cl-ecl C ) = {}› show ?thesis unfolding eligible-literal-def

by auto
qed

qed

lemma lift-allowed-redex:
assumes σ

.
= ϑ ♦ η

assumes (allowed-redex u C σ)
shows (allowed-redex u C ϑ)

proof (rule ccontr)
assume ¬(allowed-redex u C ϑ)
from this obtain s where s ∈ (trms-ecl C ) and (occurs-in (subst u ϑ) (subst s

ϑ))
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unfolding allowed-redex-def by metis
from ‹(occurs-in (subst u ϑ) (subst s ϑ))›

have (occurs-in (subst (subst u ϑ) η) (subst (subst s ϑ) η))
using substs-preserve-occurs-in by auto

from ‹σ .
= ϑ ♦ η› have (subst u σ) = (subst (subst u ϑ) η) by auto

from ‹σ .
= ϑ ♦ η› have (subst s σ) = (subst (subst s ϑ) η) by auto

from ‹(occurs-in (subst (subst u ϑ) η) (subst (subst s ϑ) η))›
‹(subst u σ) = (subst (subst u ϑ) η)›
‹(subst s σ) = (subst (subst s ϑ) η)›
have (occurs-in (subst u σ) (subst s σ)) by auto

from this and ‹s ∈ (trms-ecl C )› assms(2 ) show False unfolding allowed-redex-def
by auto
qed

lemma lift-decompose-literal:
assumes decompose-literal (subst-lit L σ) t s polarity
assumes subst-eq ϑ (comp σ η)
shows decompose-literal (subst-lit L ϑ) (subst t η) (subst s η) polarity

proof −
let ?L = (subst-lit L σ)
let ?t ′ = (subst t η)
let ?s ′ = (subst s η)

let ?ϑ = (comp σ η)
let ?L ′ = (subst-lit ?L η)

from assms(2 ) have (subst-lit L ϑ) = (subst-lit L ?ϑ) using
subst-eq-lit by auto

from this have (subst-lit L ϑ) = ?L ′

using composition-of-substs-lit by metis

have polarity = pos ∨ polarity = neg using sign.exhaust by auto
then show ?thesis
proof

assume polarity = pos
from this and assms(1 ) have ?L = Pos (Eq t s) ∨ ?L = Pos (Eq s t)

unfolding decompose-literal-def decompose-equation-def by auto
from ‹?L = Pos (Eq t s) ∨ ?L = Pos (Eq s t)›

have ?L ′ = Pos (Eq ?t ′ ?s ′) ∨ ?L ′ = Pos (Eq ?s ′ ?t ′) by auto
from this ‹(subst-lit L ϑ) = ?L ′›

have (subst-lit L ϑ) = Pos (Eq ?t ′ ?s ′) ∨ (subst-lit L ϑ) = Pos (Eq ?s ′ ?t ′)
by auto

from this ‹polarity = pos› show ?thesis unfolding decompose-literal-def
decompose-equation-def by auto

next
assume polarity = neg
from this and assms(1 ) have ?L = Neg (Eq t s) ∨ ?L = Neg (Eq s t)

unfolding decompose-literal-def decompose-equation-def by auto
from ‹?L = Neg (Eq t s) ∨ ?L = Neg (Eq s t)›
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have ?L ′ = Neg (Eq ?t ′ ?s ′) ∨ ?L ′ = Neg (Eq ?s ′ ?t ′) by auto
from this and ‹(subst-lit L ϑ) = ?L ′›

have (subst-lit L ϑ) = Neg (Eq ?t ′ ?s ′) ∨ (subst-lit L ϑ) = Neg (Eq ?s ′ ?t ′)
by auto

from this ‹polarity = neg› show ?thesis unfolding decompose-literal-def
decompose-equation-def by auto

qed
qed

lemma lift-dom-trm:
assumes dom-trm (subst t ϑ) (subst-cl C ϑ)
assumes σ

.
= ϑ ♦ η

shows dom-trm (subst t σ) (subst-cl C σ)
proof −

let ?t = (subst t ϑ)
let ?t ′ = (subst ?t η)
let ?t ′′ = (subst t σ)
have ?t ′ = (subst t (ϑ ♦ η)) by auto
from assms(2 ) have ?t ′′ = (subst t (ϑ ♦ η)) by auto
from this and ‹?t ′ = (subst t (ϑ ♦ η))› have ?t ′ = ?t ′′ by metis
from assms(1 ) have (∃ L u v p. (L ∈ (subst-cl C ϑ) ∧ (decompose-literal L u v

p)
∧ (( (p = neg ∧ ?t = u) ∨ (?t,u) ∈ trm-ord)))) unfolding dom-trm-def by

auto
from this obtain L u v p where L ∈ (subst-cl C ϑ)

decompose-literal L u v p (( (p = neg ∧ ?t = u) ∨ (?t,u) ∈ trm-ord))
unfolding dom-trm-def by blast

from ‹L ∈ (subst-cl C ϑ)› obtain L ′ where L ′ ∈ C
L = (subst-lit L ′ ϑ) by auto

from this and ‹decompose-literal L u v p› have decompose-literal (subst-lit L ′ ϑ)
u v p by auto

from this assms(2 ) ‹L = (subst-lit L ′ ϑ)›
have decompose-literal (subst-lit L ′ σ) (subst u η) (subst v η) p
using lift-decompose-literal [of L ′ ϑ u v p σ η] by auto

let ?u = (subst u η)
from ‹L ′ ∈ C › have (subst-lit L ′ σ) ∈ (subst-cl C σ) by auto
from ‹(( (p = neg ∧ ?t = u) ∨ (?t,u) ∈ trm-ord))›

have (( (p = neg ∧ ?t ′ = ?u) ∨ (?t ′,?u) ∈ trm-ord))
using trm-ord-subst by auto

from this and ‹?t ′ = ?t ′′› have (( (p = neg ∧ ?t ′′ = ?u) ∨ (?t ′′,?u) ∈ trm-ord))
by auto

from this ‹(subst-lit L ′ σ) ∈ (subst-cl C σ)›
‹decompose-literal (subst-lit L ′ σ) (subst u η) (subst v η) p›
show dom-trm (subst t σ) (subst-cl C σ)
unfolding dom-trm-def by auto

qed

lemma lift-irreducible-terms:
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assumes T = get-trms C (dom-trms (subst-cl D σ) (subst-set E σ)) Ground
assumes σ

.
= ϑ ♦ η

shows ∃T ′. ( (subst-set T ′ η) ⊆ T ∧ T ′ = get-trms C ′

(dom-trms (subst-cl D ϑ) (subst-set E ϑ)) FirstOrder)
proof −

let ?E = (dom-trms (subst-cl D ϑ) (subst-set E ϑ))
let ?E ′ = (dom-trms (subst-cl D σ) (subst-set E σ))
let ?T ′ = (filter-trms C ′ ?E)
have ?T ′ = get-trms C ′ ?E FirstOrder

unfolding get-trms-def by auto
from assms(1 ) have T = ?E ′ unfolding get-trms-def by auto
have (subst-set ?T ′ η) ⊆ ?E ′

proof
fix x assume x ∈ (subst-set ?T ′ η)
from this obtain x ′ where x = (subst x ′ η) and x ′ ∈ ?T ′ by auto
from ‹x ′ ∈ ?T ′› have x ′ ∈ ?E using filter-trms-inclusion by auto
from ‹x ′ ∈ ?E› have x ′ ∈ (subst-set E ϑ)

and dom-trm x ′ (subst-cl D ϑ) unfolding dom-trms-def by auto
from ‹x ′ ∈ (subst-set E ϑ)› obtain y where y ∈ E

and x ′ = (subst y ϑ) by auto
from ‹x ′ = (subst y ϑ)› and ‹dom-trm x ′ (subst-cl D ϑ)›

have dom-trm (subst y ϑ) (subst-cl D ϑ) by auto
from this assms(2 )

have dom-trm (subst y σ) (subst-cl D σ)
using lift-dom-trm by auto

from ‹y ∈ E› have (subst y σ) ∈ (subst-set E σ) by auto
from this and ‹dom-trm (subst y σ) (subst-cl D σ)›

have (subst y σ) ∈ ?E ′ unfolding dom-trms-def by auto
from assms(2 ) have (subst y σ) = (subst y (ϑ ♦ η)) by auto
from this ‹x = (subst x ′ η)› and ‹x ′ = (subst y ϑ)›

have x = (subst y σ) by auto
from this and ‹(subst y σ) ∈ ?E ′› show x ∈ ?E ′ by auto

qed
from this and ‹T = ?E ′› ‹?T ′ = get-trms C ′ ?E FirstOrder› show ?thesis by

auto
qed

We eventually deduce the following lemmas, which allows one to transform
ground derivations into first-order derivations.
lemma lifting-lemma-superposition:

assumes superposition P1 P2 C σ Ground C ′

shows ∃D ϑ. superposition P1 P2 D ϑ FirstOrder C ′∧ σ
.
= ϑ ♦ σ ∧ trms-subsumes

D C σ
proof (rule ccontr)

assume hyp: @D ϑ. superposition P1 P2 D ϑ FirstOrder C ′ ∧ σ
.
= ϑ ♦ σ ∧

trms-subsumes D C σ

have not-sup: ¬ superposition P1 P2 C σ Ground C ′

proof (rule notI )
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assume superposition P1 P2 C σ Ground C ′

from this obtain L t s u v M p Cl-P1 Cl-P2 Cl-C polarity t ′ u ′ L ′ trms-C
where L ∈ Cl-P1 (M ∈ Cl-P2 ) (eligible-literal L P1 σ) (eligible-literal M P2

σ)
(variable-disjoint P1 P2 )
(Cl-P1 = (cl-ecl P1 )) (Cl-P2 = (cl-ecl P2 ))
(¬ is-a-variable u ′)
(allowed-redex u ′ P1 σ)
(C = (Ecl Cl-C trms-C ))
(orient-lit-inst M u v pos σ)
(orient-lit-inst L t s polarity σ)
((subst u σ) 6= (subst v σ))
(subterm t p u ′)
(ck-unifier u ′ u σ Ground)
(replace-subterm t p v t ′)
(L ′ = mk-lit polarity (Eq t ′ s))
(trms-C = get-trms Cl-C (dom-trms Cl-C (subst-set
((trms-ecl P1 ) ∪ (trms-ecl P2 ) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord P1 t) ∧ (subterm t q r) }) σ)) Ground)

(Cl-C = (subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } )) σ))
(C ′ = (Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } ))
unfolding superposition-def get-trms-def by auto

from ‹(ck-unifier u ′ u σ Ground)› have Unifier σ u ′ u
unfolding ck-unifier-def by auto

from this have (subst u ′ σ) = (subst u σ) unfolding Unifier-def by auto
from this have unify u ′ u 6= None using MGU-exists by auto
from this obtain ϑ where unify u ′ u = Some ϑ by auto
hence min-IMGU ϑ u ′ u by (rule unify-computes-min-IMGU )
with ‹Unifier σ u ′ u› have σ

.
= ϑ ♦ σ

unfolding min-IMGU-def IMGU-def by simp
with ‹(eligible-literal L P1 σ)› have eligible-literal L P1 ϑ

using lift-eligible-literal by auto
from ‹σ .

= ϑ ♦ σ› and ‹(eligible-literal M P2 σ)› have eligible-literal M P2 ϑ
using lift-eligible-literal by auto
from ‹min-IMGU ϑ u ′ u› have ck-unifier u ′ u ϑ FirstOrder unfolding

ck-unifier-def by auto
from ‹σ .

= ϑ ♦ σ› have (subst u σ) = (subst (subst u ϑ) σ) by auto
from ‹σ .

= ϑ ♦ σ› have (subst v σ) = (subst (subst v ϑ) σ) by auto
from ‹((subst u σ) 6= (subst v σ))›

‹(subst u σ) = (subst (subst u ϑ) σ)›
‹(subst v σ) = (subst (subst v ϑ) σ)›
have (subst (subst u ϑ) σ) 6= (subst (subst v ϑ) σ) by auto

from this have (subst u ϑ) 6= (subst v ϑ) by auto

from ‹σ .
= ϑ ♦ σ› ‹allowed-redex u ′ P1 σ› have allowed-redex u ′ P1 ϑ

using lift-allowed-redex[of σ ϑ σ] by auto
from ‹σ .

= ϑ ♦ σ› ‹orient-lit-inst M u v pos σ› have orient-lit-inst M u v pos ϑ
using lift-orient-lit-inst by auto

from ‹σ .
= ϑ ♦ σ› ‹orient-lit-inst L t s polarity σ› have orient-lit-inst L t s
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polarity ϑ
using lift-orient-lit-inst by auto

from ‹(Cl-C = (subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } ))
σ))›

and ‹C ′ = (Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } )›
have (Cl-C = (subst-cl C ′ σ)) by auto

obtain E where E = ((trms-ecl P1 ) ∪ (trms-ecl P2 ) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord P1 t) ∧ (subterm t q r) }) by auto

from this and ‹(Cl-C = (subst-cl C ′ σ))›
‹trms-C = (get-trms Cl-C (dom-trms Cl-C (subst-set
((trms-ecl P1 ) ∪ (trms-ecl P2 ) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord P1 t) ∧ (subterm t q r) }) σ)) Ground)›

have trms-C = (get-trms Cl-C
(dom-trms (subst-cl C ′ σ) (subst-set
E σ)) Ground)

by auto

let ?Cl-C ′ = (subst-cl C ′ ϑ)
from ‹σ .

= ϑ ♦ σ› ‹trms-C = (get-trms Cl-C
(dom-trms (subst-cl C ′ σ) (subst-set
E σ)) Ground)›
obtain ∃T ′. ((subst-set T ′ σ) ⊆ trms-C ∧ T ′ = get-trms ?Cl-C ′

(dom-trms (subst-cl C ′ ϑ) (subst-set E ϑ)) FirstOrder)
using lift-irreducible-terms by auto
from this obtain T ′ where (subst-set T ′ σ) ⊆ trms-C

and T ′ = get-trms ?Cl-C ′

(dom-trms (subst-cl C ′ ϑ) (subst-set E ϑ)) FirstOrder by auto

obtain C-fo where C-fo = (Ecl ?Cl-C ′ T ′) by auto
from ‹C ′ = (Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } )›

have (?Cl-C ′ = (subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } ))
ϑ))

by auto
from ‹L ∈ Cl-P1 › ‹(M ∈ Cl-P2 )› ‹(eligible-literal L P1 ϑ)› ‹(eligible-literal M

P2 ϑ)›
‹(variable-disjoint P1 P2 )›
‹(Cl-P1 = (cl-ecl P1 ))› ‹(Cl-P2 = (cl-ecl P2 ))›
‹(¬ is-a-variable u ′)›
‹(allowed-redex u ′ P1 ϑ)›
‹(C-fo = (Ecl ?Cl-C ′ T ′))›
‹(orient-lit-inst M u v pos ϑ)›
‹(orient-lit-inst L t s polarity ϑ)›
‹((subst u ϑ) 6= (subst v ϑ))›
‹(subterm t p u ′)›
‹(ck-unifier u ′ u ϑ FirstOrder)›
‹(replace-subterm t p v t ′)›
‹(L ′ = mk-lit polarity (Eq t ′ s))›
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‹T ′ = (get-trms ?Cl-C ′ (dom-trms (subst-cl C ′ ϑ) (subst-set E ϑ)) FirstOrder)›
‹(?Cl-C ′ = (subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } )) ϑ))›
‹(C ′ = (Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } ))›
‹E = ((trms-ecl P1 ) ∪ (trms-ecl P2 ) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord P1 t) ∧ (subterm t q r) })›

have superposition P1 P2 C-fo ϑ FirstOrder C ′ unfolding superposition-def
by blast

have subst-cl ?Cl-C ′ σ = subst-cl (subst-cl ((Cl-P1 − { L }) ∪ (Cl-P2 − { M
}) ∪ { L ′ }) ϑ) σ

using ‹?Cl-C ′ = subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ }))
ϑ› by auto

also have ... = (subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } )) (ϑ
♦ σ))

using composition-of-substs-cl [of ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪
{ L ′ } )) ] by auto

also have ... = (subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } )) σ)
using subst-eq-cl[OF ‹σ .

= ϑ ♦ σ›] by blast
also have ... = Cl-C

using ‹Cl-C = (subst-cl ((Cl-P1 − { L }) ∪ ((Cl-P2 − { M }) ∪ { L ′ } ))
σ)› by argo

finally have subst-cl (cl-ecl C-fo) σ = cl-ecl C
using ‹C = Ecl Cl-C trms-C › ‹C-fo = Ecl ?Cl-C ′ T ′› by simp

moreover have (subst-set (trms-ecl C-fo) σ) ⊆ (trms-ecl C )
using ‹subst-set T ′ σ ⊆ trms-C › ‹C = Ecl Cl-C trms-C › ‹C-fo = Ecl ?Cl-C ′

T ′› by auto
ultimately have (trms-subsumes C-fo C σ)

unfolding trms-subsumes-def by auto
with ‹superposition P1 P2 C-fo ϑ FirstOrder C ′› ‹σ .

= ϑ ♦ σ› hyp show False
by auto

qed

from not-sup and assms(1 ) show False by blast
qed

lemma lifting-lemma-factorization:
assumes factorization P1 C σ Ground C ′

shows ∃D ϑ. factorization P1 D ϑ FirstOrder C ′ ∧ σ
.
= ϑ ♦ σ ∧ trms-subsumes

D C σ
proof (rule ccontr)

assume hyp: @D ϑ. factorization P1 D ϑ FirstOrder C ′ ∧ σ
.
= ϑ ♦ σ ∧

trms-subsumes D C σ

have not-fact: ¬ factorization P1 C σ Ground C ′

proof (rule notI )
assume factorization P1 C σ Ground C ′

from this obtain L1 L2 L ′ t s u v Cl-P Cl-C trms-C where
eligible-literal L1 P1 σ
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L1 ∈ (cl-ecl P1 ) L2 ∈ (cl-ecl P1 ) − { L1 } Cl-C = (cl-ecl C ) (Cl-P = (cl-ecl
P1 ))

(orient-lit-inst L1 t s pos σ)
(orient-lit-inst L2 u v pos σ)
((subst t σ) 6= (subst s σ))
(subst t σ) 6= (subst v σ)
(ck-unifier t u σ Ground)
(L ′ = Neg (Eq s v))
C = (Ecl Cl-C trms-C )
trms-C = (get-trms Cl-C

(dom-trms Cl-C (subst-set ( (trms-ecl P1 ) ∪ (proper-subterms-of t) ) σ)))
Ground

(Cl-C = (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } )) σ)
(C ′ = ( (Cl-P − { L2 }) ∪ { L ′ } ))
unfolding factorization-def get-trms-def by auto

from ‹(ck-unifier t u σ Ground)› have Unifier σ t u
unfolding ck-unifier-def Unifier-def by auto

from this have (subst t σ) = (subst u σ) unfolding Unifier-def by auto
from this have unify t u 6= None using MGU-exists by auto
from this obtain ϑ where unify t u = Some ϑ by auto
hence min-IMGU ϑ t u by (rule unify-computes-min-IMGU )
with ‹Unifier σ t u› have σ

.
= ϑ ♦ σ

unfolding min-IMGU-def IMGU-def by simp
with ‹(eligible-literal L1 P1 σ)› have eligible-literal L1 P1 ϑ

using lift-eligible-literal by auto
from ‹min-IMGU ϑ t u› have ck-unifier t u ϑ FirstOrder unfolding ck-unifier-def

by auto
from ‹σ .

= ϑ ♦ σ› have (subst t σ) = (subst (subst t ϑ) σ) by auto
from ‹σ .

= ϑ ♦ σ› have (subst s σ) = (subst (subst s ϑ) σ) by auto
from ‹σ .

= ϑ ♦ σ› have (subst v σ) = (subst (subst v ϑ) σ) by auto

from ‹((subst t σ) 6= (subst s σ))›
‹(subst t σ) = (subst (subst t ϑ) σ)›
‹(subst s σ) = (subst (subst s ϑ) σ)›
have (subst (subst t ϑ) σ) 6= (subst (subst s ϑ) σ) by auto

from this have (subst t ϑ) 6= (subst s ϑ) by auto

from ‹((subst t σ) 6= (subst v σ))›
‹(subst t σ) = (subst (subst t ϑ) σ)›
‹(subst v σ) = (subst (subst v ϑ) σ)›
have (subst (subst t ϑ) σ) 6= (subst (subst v ϑ) σ) by auto

from this have (subst t ϑ) 6= (subst v ϑ) by auto

from ‹σ .
= ϑ ♦ σ› ‹orient-lit-inst L1 t s pos σ› have orient-lit-inst L1 t s pos ϑ

using lift-orient-lit-inst by auto
from ‹σ .

= ϑ ♦ σ› ‹orient-lit-inst L2 u v pos σ› have orient-lit-inst L2 u v pos
ϑ

using lift-orient-lit-inst by auto
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from ‹(Cl-C = (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } )) σ)›
and ‹C ′ = ( (Cl-P − { L2 }) ∪ { L ′ } )›
have (Cl-C = (subst-cl C ′ σ)) by auto

obtain E where E = (trms-ecl P1 ) by auto
from this and ‹(Cl-C = (subst-cl C ′ σ))›

‹trms-C = (get-trms Cl-C
(dom-trms Cl-C (subst-set ( (trms-ecl P1 ) ∪ (proper-subterms-of t) ) σ)))

Ground›
have trms-C = (get-trms Cl-C
(dom-trms (subst-cl C ′ σ) (subst-set
(E ∪ (proper-subterms-of t)) σ)) Ground)

by auto

let ?Cl-C ′ = (subst-cl C ′ ϑ)
from ‹σ .

= ϑ ♦ σ› ‹trms-C = (get-trms Cl-C
(dom-trms (subst-cl C ′ σ) (subst-set
(E ∪ (proper-subterms-of t)) σ)) Ground)›

obtain T ′ where (subst-set T ′ σ) ⊆ trms-C
and T ′ = get-trms ?Cl-C ′

(dom-trms (subst-cl C ′ ϑ) (subst-set (E ∪ (proper-subterms-of t)) ϑ)) FirstOrder
using lift-irreducible-terms by blast

obtain C-fo where C-fo = (Ecl ?Cl-C ′ T ′) by auto
from ‹C ′ = ( (Cl-P − { L2 }) ∪ { L ′ } )›

have (?Cl-C ′ = (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } ) ϑ))
by auto

from ‹C-fo = (Ecl ?Cl-C ′ T ′)› have ?Cl-C ′ = (cl-ecl C-fo) by auto
have ?Cl-C ′ = (subst-cl C ′ ϑ) by auto
from

‹eligible-literal L1 P1 ϑ›
‹L1 ∈ (cl-ecl P1 )› ‹L2 ∈ (cl-ecl P1 ) − { L1 }› ‹?Cl-C ′ = (cl-ecl C-fo)› ‹(Cl-P

= (cl-ecl P1 ))›
‹(orient-lit-inst L1 t s pos ϑ)›
‹(orient-lit-inst L2 u v pos ϑ)›
‹((subst t ϑ) 6= (subst s ϑ))›
‹(subst t ϑ) 6= (subst v ϑ)›
‹(ck-unifier t u ϑ FirstOrder)›
‹(L ′ = Neg (Eq s v))›
‹C-fo = (Ecl ?Cl-C ′ T ′)›
‹T ′ = get-trms?Cl-C ′

(dom-trms ?Cl-C ′ (subst-set (E ∪ (proper-subterms-of t)) ϑ)) FirstOrder›
‹(?Cl-C ′ = (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } ) ϑ))›
‹C ′ = ( (Cl-P − { L2 }) ∪ { L ′ } )›
‹E = (trms-ecl P1 )›
have factorization P1 C-fo ϑ FirstOrder C ′ unfolding factorization-def by

blast

have i: subst-cl ?Cl-C ′ σ = subst-cl (subst-cl (Cl-P − { L2 } ∪ { L ′ }) ϑ) σ
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using ‹?Cl-C ′ = subst-cl ((Cl-P − { L2 }) ∪ { L ′ }) ϑ› by auto
have ii: subst-cl (subst-cl ((Cl-P − { L2 }) ∪ { L ′ }) ϑ) σ
= subst-cl ((Cl-P − { L2 }) ∪ { L ′ }) (ϑ ♦ σ)
using composition-of-substs-cl [of ( (Cl-P − { L2 }) ∪ { L ′ } ) ] by auto

from ‹σ .
= ϑ ♦ σ› have (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } ) σ)

= (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } ) (ϑ ♦ σ))
using subst-eq-cl [of σ ϑ ♦ σ ( (Cl-P − { L2 }) ∪ { L ′ } ) ] by auto

with i ii ‹Cl-C = (subst-cl ( (Cl-P − { L2 }) ∪ { L ′ } ) σ)›
have (subst-cl ?Cl-C ′ σ) = Cl-C by metis
with ‹C = Ecl Cl-C trms-C › ‹C-fo = Ecl ?Cl-C ′ T ′› have subst-cl (cl-ecl C-fo)

σ = cl-ecl C
by auto

from ‹(subst-set T ′ σ) ⊆ trms-C ›
and ‹(C = (Ecl Cl-C trms-C ))› and ‹(C-fo = (Ecl ?Cl-C ′ T ′))›
have (subst-set (trms-ecl C-fo) σ) ⊆ (trms-ecl C ) by auto

from ‹(subst-cl (cl-ecl C-fo) σ) = (cl-ecl C )› ‹(subst-set (trms-ecl C-fo) σ) ⊆
(trms-ecl C )›

have (trms-subsumes C-fo C σ)
unfolding trms-subsumes-def by auto

with ‹factorization P1 C-fo ϑ FirstOrder C ′› ‹σ .
= ϑ ♦ σ› hyp show False by

auto
qed

from not-fact and assms(1 ) show False by blast
qed

lemma lifting-lemma-reflexion:
assumes reflexion P1 C σ Ground C ′

shows ∃D ϑ. reflexion P1 D ϑ FirstOrder C ′ ∧ σ
.
= ϑ ♦ σ ∧ trms-subsumes D

C σ
proof (rule ccontr)
assume hyp: @D ϑ. reflexion P1 D ϑ FirstOrder C ′ ∧ σ

.
= ϑ ♦ σ ∧ trms-subsumes

D C σ

have not-ref : ¬ reflexion P1 C σ Ground C ′

proof (rule notI )
assume reflexion P1 C σ Ground C ′

from this obtain L1 t s Cl-P Cl-C trms-C where
eligible-literal L1 P1 σ
L1 ∈ cl-ecl P1 Cl-C = cl-ecl C Cl-P = cl-ecl P1
orient-lit-inst L1 t s neg σ
ck-unifier t s σ Ground
C = Ecl Cl-C trms-C
trms-C = get-trms Cl-C
(dom-trms Cl-C (subst-set (trms-ecl P1 ∪ { t }) σ)) Ground

Cl-C = subst-cl (Cl-P − { L1 }) σ
C ′ = Cl-P − { L1 }
unfolding reflexion-def get-trms-def by auto
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from ‹ck-unifier t s σ Ground› have Unifier σ t s
unfolding ck-unifier-def Unifier-def by auto

hence subst t σ = subst s σ unfolding Unifier-def by auto
hence unify t s 6= None using MGU-exists by auto
then obtain ϑ where unify t s = Some ϑ by auto
hence min-IMGU ϑ t s by (rule unify-computes-min-IMGU )
with ‹Unifier σ t s› have σ

.
= ϑ ♦ σ

unfolding IMGU-def min-IMGU-def by simp
with ‹eligible-literal L1 P1 σ› have eligible-literal L1 P1 ϑ

using lift-eligible-literal by auto

from ‹min-IMGU ϑ t s› have ck-unifier t s ϑ FirstOrder unfolding ck-unifier-def
by auto

from ‹σ .
= ϑ ♦ σ› ‹orient-lit-inst L1 t s neg σ› have orient-lit-inst L1 t s neg

ϑ
using lift-orient-lit-inst by auto

from ‹Cl-C = subst-cl (Cl-P − { L1 }) σ› and ‹C ′ = Cl-P − { L1 }›
have Cl-C = subst-cl C ′ σ by auto

obtain E where E = (trms-ecl P1 ) by auto
with ‹Cl-C = subst-cl C ′ σ›

‹trms-C = get-trms Cl-C (dom-trms Cl-C (subst-set (trms-ecl P1 ∪ { t })
σ)) Ground›

have trms-C = get-trms Cl-C (dom-trms (subst-cl C ′ σ) (subst-set (E ∪ { t })
σ)) Ground

by auto

let ?Cl-C ′ = subst-cl C ′ ϑ

from ‹σ .
= ϑ ♦ σ›

‹trms-C = get-trms Cl-C (dom-trms (subst-cl C ′ σ) (subst-set (E ∪ { t })
σ)) Ground›

obtain T ′ where
subst-set T ′ σ ⊆ trms-C and
T ′ = get-trms ?Cl-C ′ (dom-trms (subst-cl C ′ ϑ) (subst-set (E ∪ { t }) ϑ))

FirstOrder
using lift-irreducible-terms by blast

obtain C-fo where C-fo = Ecl ?Cl-C ′ T ′ by auto

from ‹C ′ = Cl-P − { L1 }›
have ?Cl-C ′ = subst-cl (Cl-P − { L1 }) ϑ by auto

from ‹C-fo = Ecl ?Cl-C ′ T ′› have ?Cl-C ′ = cl-ecl C-fo by auto
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have ?Cl-C ′ = (subst-cl C ′ ϑ) by auto

from
‹eligible-literal L1 P1 ϑ›
‹L1 ∈ cl-ecl P1 › ‹?Cl-C ′ = cl-ecl C-fo› ‹Cl-P = cl-ecl P1 ›
‹orient-lit-inst L1 t s neg ϑ›
‹ck-unifier t s ϑ FirstOrder›
‹C-fo = Ecl ?Cl-C ′ T ′›
‹T ′ = get-trms ?Cl-C ′

(dom-trms (subst-cl C ′ ϑ) (subst-set (E ∪ { t }) ϑ)) FirstOrder›
‹?Cl-C ′ = subst-cl (Cl-P − { L1 }) ϑ›
‹C ′ = Cl-P − { L1 }›
‹E = trms-ecl P1 ›

have reflexion P1 C-fo ϑ FirstOrder C ′

unfolding reflexion-def by metis

have i: subst-cl ?Cl-C ′ σ = subst-cl (subst-cl (Cl-P − { L1 }) ϑ) σ
using ‹?Cl-C ′ = subst-cl (Cl-P − { L1 }) ϑ› by auto

have ii: subst-cl (subst-cl (Cl-P − { L1 }) ϑ) σ = subst-cl (Cl-P − { L1 })
(ϑ ♦ σ)

using composition-of-substs-cl[of Cl-P − { L1 }] by auto

from ‹σ .
= ϑ ♦ σ› have subst-cl (Cl-P − { L1 }) σ = subst-cl (Cl-P − { L1

}) (ϑ ♦ σ)
using subst-eq-cl[of σ ϑ ♦ σ Cl-P − { L1 }] by auto

with i ii ‹Cl-C = (subst-cl ((Cl-P − { L1 }) ) σ)›
have subst-cl ?Cl-C ′ σ = Cl-C by metis
with ‹C = Ecl Cl-C trms-C › ‹C-fo = Ecl ?Cl-C ′ T ′›
have subst-cl (cl-ecl C-fo) σ = cl-ecl C by auto

from ‹subst-set T ′ σ ⊆ trms-C › ‹C = Ecl Cl-C trms-C › ‹C-fo = Ecl ?Cl-C ′

T ′›
have subst-set (trms-ecl C-fo) σ ⊆ trms-ecl C by auto

from ‹subst-cl (cl-ecl C-fo) σ = cl-ecl C › ‹subst-set (trms-ecl C-fo) σ ⊆ trms-ecl
C ›

have trms-subsumes C-fo C σ unfolding trms-subsumes-def by auto
with ‹reflexion P1 C-fo ϑ FirstOrder C ′› ‹σ .

= ϑ ♦ σ› hyp show False by auto
qed

from not-ref and assms(1 ) show False by blast
qed

lemma lifting-lemma:
assumes deriv: derivable C P S σ Ground C ′

shows ∃ D ϑ. ((derivable D P S ϑ FirstOrder C ′) ∧ (σ
.
= ϑ ♦ σ) ∧ (trms-subsumes

D C σ))
proof (rule ccontr)
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assume hyp: ¬ (∃ D ϑ. derivable D P S ϑ FirstOrder C ′ ∧ σ
.
= ϑ ♦ σ ∧

trms-subsumes D C σ)

from deriv have P ⊆ S unfolding derivable-def by auto

have not-sup: ¬ (∃P1 P2 . P = { P1 , P2 } ∧ superposition P1 P2 C σ Ground
C ′)

using lifting-lemma-superposition
by (metis ‹P ⊆ S› derivable-def hyp insert-subset)

have not-fact: ¬ (∃P1 . { P1 } = P ∧ factorization P1 C σ Ground C ′)
using lifting-lemma-factorization
by (metis ‹P ⊆ S› derivable-def hyp insert-subset)

have not-ref : ¬ (∃P1 . { P1 } = P ∧ reflexion P1 C σ Ground C ′)
using lifting-lemma-reflexion
by (metis ‹P ⊆ S› derivable-def hyp insert-subset)

from not-sup not-ref not-fact deriv show False unfolding derivable-def by blast
qed

lemma trms-subsumes-and-red-inf :
assumes trms-subsumes D C η
assumes redundant-inference (subst-ecl D η) S P σ
assumes σ

.
= ϑ ♦ η

shows redundant-inference C S P σ
proof −

from assms(2 ) obtain S ′ where S ′ ⊆ (instances S)
(set-entails-clause (clset-instances S ′) (cl-ecl (subst-ecl D η)))
(∀ x ∈ S ′. ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))

(trms-ecl (subst-ecl D η)))) and
ball-S ′-le: ∀ x ∈ S ′. ∃D ′ ∈ cl-ecl ‘ P. ((cl-ecl (fst x), snd x), (D ′, σ)) ∈ cl-ord
unfolding redundant-inference-def by auto

from assms(1 ) have (subst-cl (cl-ecl D) η) = (cl-ecl C )
unfolding trms-subsumes-def by auto

obtain Cl-D T where D = Ecl Cl-D T using eclause.exhaust by auto
from this have (cl-ecl D) = Cl-D and trms-ecl D = T by auto
from ‹D = Ecl Cl-D T › have subst-ecl D η = Ecl (subst-cl Cl-D η) (subst-set T

η)
by auto

from this have (cl-ecl (subst-ecl D η)) = (subst-cl Cl-D η)
and trms-ecl (subst-ecl D η) = (subst-set T η) by auto

from ‹(cl-ecl (subst-ecl D η)) = (subst-cl Cl-D η)›
and ‹(cl-ecl D) = Cl-D› ‹(subst-cl (cl-ecl D) η) = (cl-ecl C )›
have (cl-ecl (subst-ecl D η)) = (cl-ecl C ) by auto

from this and ‹(set-entails-clause (clset-instances S ′) (cl-ecl (subst-ecl D η)))›
have (set-entails-clause (clset-instances S ′) (cl-ecl C )) by auto

from ‹trms-ecl D = T › and ‹trms-ecl (subst-ecl D η) = (subst-set T η)›
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have trms-ecl (subst-ecl D η) = (subst-set (trms-ecl D) η) by auto

from assms(1 ) have (subst-set (trms-ecl D) η) ⊆ (trms-ecl C )
unfolding trms-subsumes-def by auto

have ii: (∀ x ∈ S ′. ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))
(trms-ecl C )))

proof (rule ccontr)
assume ¬ (∀ x ∈ S ′. ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))

(trms-ecl C )))
from this obtain x where x ∈ S ′ and
¬( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x)) (trms-ecl C ))
by auto

from ‹x ∈ S ′› and ‹(∀ x ∈ S ′. ( subterms-inclusion (subst-set (trms-ecl (fst x))
(snd x))

(trms-ecl (subst-ecl D η))))›
have ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))

(trms-ecl (subst-ecl D η))) by auto

obtain E1 where E1 = (subst-set (trms-ecl (fst x)) (snd x)) by auto
obtain E2 where E2 = (subst-set (trms-ecl D) η) by auto
obtain E2 ′ where E2 ′ = (trms-ecl C ) by auto
from ‹E2 = (subst-set (trms-ecl D) η)› ‹E2 ′ = (trms-ecl C )›

‹(subst-set (trms-ecl D) η) ⊆ (trms-ecl C )›
have E2 ⊆ E2 ′ by auto

from ‹E1 = (subst-set (trms-ecl (fst x)) (snd x))›
‹E2 = (subst-set (trms-ecl D) η)›
‹trms-ecl (subst-ecl D η) = (subst-set (trms-ecl D) η)›
‹( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))

(trms-ecl (subst-ecl D η)))› have subterms-inclusion E1 E2 by auto
from this and ‹E2 ⊆ E2 ′› have subterms-inclusion E1 E2 ′

using subterms-inclusion-subset by auto
from this and ‹E1 = (subst-set (trms-ecl (fst x)) (snd x))› ‹E2 ′ = (trms-ecl

C )›
and ‹¬( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))

(trms-ecl C ))› show False by auto
qed
from this and ‹(set-entails-clause (clset-instances S ′) (cl-ecl C ))›

and ball-S ′-le
and ‹S ′ ⊆ (instances S)›

show redundant-inference C S P σ unfolding redundant-inference-def by auto
qed

lemma lift-inference:
assumes inference-saturated S
shows ground-inference-saturated S

proof (rule ccontr)
assume ¬ (ground-inference-saturated S)
from this obtain C P σ C ′ where derivable C P S σ Ground C ′ ground-clause

(cl-ecl C )
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grounding-set P σ ¬redundant-inference C S P σ unfolding ground-inference-saturated-def

by blast
from ‹derivable C P S σ Ground C ′› obtain D ϑ η where derivable D P S ϑ

FirstOrder C ′

σ
.
= ϑ ♦ η trms-subsumes D C η using lifting-lemma by blast

from ‹trms-subsumes D C η› and ‹¬redundant-inference C S P σ› ‹σ .
= ϑ ♦ η›

have ¬ redundant-inference (subst-ecl D η) S P σ
using trms-subsumes-and-red-inf by auto

from this and ‹derivable C P S σ Ground C ′› ‹derivable D P S ϑ FirstOrder
C ′› ‹trms-subsumes D C η›

‹σ .
= ϑ ♦ η› ‹ground-clause (cl-ecl C )› ‹grounding-set P σ›

‹¬ redundant-inference (subst-ecl D η) S P σ›
assms(1 ) show False unfolding inference-saturated-def by auto

qed

lemma lift-redundant-cl :
assumes C ′ = subst-cl D ϑ
assumes redundant-clause C S η C ′

assumes σ
.
= ϑ ♦ η

assumes finite D
shows redundant-clause C S σ D

proof −
from assms(2 ) have
(∃S ′. (S ′ ⊆ (instances S) ∧ (set-entails-clause (clset-instances S ′) (cl-ecl C ))

∧
(∀ x ∈ S ′. ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))
(trms-ecl C ))) ∧

(∀ x ∈ S ′. ( ((mset-ecl ((fst x),(snd x))),(mset-cl (C ′,η))) ∈ (mult (mult
trm-ord))

∨ (mset-ecl ((fst x),(snd x))) = mset-cl (C ′,η)))))
unfolding redundant-clause-def by auto

from this obtain S ′ where i: S ′ ⊆ (instances S)
and ii: (set-entails-clause (clset-instances S ′) (cl-ecl C ))

and iii: (∀ x ∈ S ′. ( subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))
(trms-ecl C )))

and
iv: (∀ x ∈ S ′. ( ((mset-ecl ((fst x),(snd x))),(mset-cl (C ′,η))) ∈ (mult (mult

trm-ord))
∨ (mset-ecl ((fst x),(snd x))) = mset-cl (C ′,η)))

by auto
let ?m1 = mset-cl (C ′,η)
let ?m2 = mset-cl (D,σ)
from assms(1 ) assms(3 ) assms(4 )

have mset-cl (C ′,η) = mset-cl (D,σ) ∨ (mset-cl (C ′,η),mset-cl (D,σ)) ∈ (mult
(mult trm-ord))

using mset-subst by auto
from this iv

have (∀ x ∈ S ′. ( ((mset-ecl ((fst x),(snd x))),(mset-cl (D,σ))) ∈ (mult (mult
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trm-ord))
∨ (mset-ecl ((fst x),(snd x))) = mset-cl (D,σ)))

using mult-mult-trm-ord-trans unfolding trans-def by metis
from this and i ii iii show ?thesis unfolding redundant-clause-def by meson

qed

We deduce the following (trivial) lemma, stating that sets that are closed
under all inferences are also saturated.
lemma inference-closed-sets-are-saturated:

assumes inference-closed S
assumes ∀ x ∈ S . (finite (cl-ecl x))
shows clause-saturated S

proof (rule ccontr)
assume ¬?thesis
from this obtain C P σ C ′ D ϑ η

where
(derivable C P S σ Ground C ′) (ground-clause (cl-ecl C ))
(derivable D P S ϑ FirstOrder C ′) (trms-subsumes D C η)
(σ

.
= ϑ ♦ η)

¬(redundant-clause (subst-ecl D η) S σ C ′)
unfolding clause-saturated-def by blast

from ‹(derivable D P S ϑ FirstOrder C ′)› assms(1 ) have D ∈ S
unfolding inference-closed-def by auto

from ‹derivable D P S ϑ FirstOrder C ′› have (cl-ecl D) = (subst-cl C ′ ϑ)
using derivable-clauses-lemma by auto

from ‹trms-subsumes D C η› have (cl-ecl C ) = (subst-cl (cl-ecl D) η)
unfolding trms-subsumes-def by blast

from ‹σ .
= ϑ ♦ η› have subst-cl (cl-ecl D) σ = subst-cl (cl-ecl D) (ϑ ♦ η)

using subst-eq-cl by blast
then have (subst-cl (cl-ecl D) σ) = (subst-cl (subst-cl (cl-ecl D) ϑ) η)

using composition-of-substs-cl [of cl-ecl D ϑ η] by auto
from this and ‹(cl-ecl C ) = (subst-cl (cl-ecl D) η)›

‹(ground-clause (cl-ecl C ))› have ground-clause (subst-cl (cl-ecl D) η)
by auto

from this ‹D ∈ S› ‹(cl-ecl D) = (subst-cl C ′ ϑ)›
‹(cl-ecl D) = (subst-cl C ′ ϑ)›
have redundant-clause (subst-ecl D η) S η (subst-cl C ′ ϑ)
using self-redundant-clause by metis

from ‹derivable D P S ϑ FirstOrder C ′› have P ⊆ S unfolding derivable-def
by auto

from this assms(2 ) have ∀ x ∈ P. (finite (cl-ecl x)) by auto
from this ‹derivable D P S ϑ FirstOrder C ′› have finite C ′

using derivable-clauses-are-finite by auto
from this ‹(cl-ecl D) = subst-cl C ′ ϑ›

‹redundant-clause (subst-ecl D η) S η (subst-cl C ′ ϑ)› ‹(σ .
= ϑ ♦ η)›

have redundant-clause (subst-ecl D η) S σ C ′

using lift-redundant-cl by metis
from this and ‹¬(redundant-clause (subst-ecl D η) S σ C ′)› show False by auto

qed
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7.3 Satisfiability of Saturated Sets with No Empty Clause

We are now in the position to prove that the previously constructed inter-
pretation is indeed a model of the set of extended clauses, if the latter is
saturated and does not contain an extended clause with empty clausal part.
More precisely, the constructed interpretation satisfies the clausal part of
every extended clause whose attached set of terms is in normal form. This
is the case in particular if this set is empty, hence if the clause is an input
clause.
Note that we do not provide any function for explicitly constructing such
saturated sets, except by generating all derivable clauses (see below).
lemma int-clset-is-a-model:

assumes ground-inference-saturated S
assumes all-finite: ∀ x ∈ S . (finite (cl-ecl x))
assumes Ball S well-constrained
assumes all-non-empty: ∀ x ∈ S . (cl-ecl x) 6= {}
assumes closed-under-renaming S
shows ∀ C σ. (fst pair = C ) −→ σ = (snd pair) −→ C ∈ S −→

ground-clause (subst-cl (cl-ecl C ) σ)
−→ (all-trms-irreducible (subst-set (trms-ecl C ) σ) (λt. (trm-rep t S)))
−→ validate-ground-clause (same-values (λt. (trm-rep t S))) (subst-cl (cl-ecl

C ) σ)
(is ?P pair)

proof ((rule wf-induct [of ecl-ord ?P pair ]),(simp add: wf-ecl-ord))
next

The proof is by induction and contradiction. We consider a minimal instance
that is not true in the interpretation and we derive a contradiction.

fix pair assume hyp-ind: ∀ y. (y,pair) ∈ ecl-ord −→ (?P y)
let ?I = (int-clset S)
have fo-interpretation ?I
unfolding int-clset-def using trm-rep-compatible-with-structure same-values-fo-int

by metis
show (?P pair)
proof (rule ccontr)

assume ¬(?P pair)
then obtain C σ where C = (fst pair) and σ = (snd pair) and C ∈ S

and ground-clause (subst-cl (cl-ecl C ) σ)
and (all-trms-irreducible (subst-set (trms-ecl C ) σ)

(λt. (trm-rep t S)))
and cm: ¬validate-ground-clause (int-clset S) (subst-cl (cl-ecl C ) σ)

unfolding int-clset-def by metis

First, we prove that no reduction is possible (otherwise the superposition
rule applies).

let ?nored = (∀L1 L2 D t s u ′ u v p polarity σ ′.
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¬ ((reduction L1 C σ ′ t s polarity L2 u u ′ p v D ?I S σ) ∧ (variable-disjoint
C D)))

have ?nored
proof (rule ccontr)

assume ¬ ?nored
then obtain L1 L2 D t s u ′ u v p polarity σ ′

where red: reduction L1 C σ ′ t s polarity L2 u u ′ p v D ?I S σ
and variable-disjoint C D

by blast
from red have (subst u σ ′) 6= (subst v σ ′)

unfolding reduction-def by blast
from red have ground-clause (subst-cl (cl-ecl D) σ ′)

unfolding reduction-def by blast
from red have (coincide-on σ σ ′ (vars-of-cl (cl-ecl C )))

unfolding reduction-def by blast
from red have ¬ is-a-variable u ′ unfolding reduction-def by blast
from red have D ∈ S unfolding reduction-def by blast
from red have el1 : (eligible-literal L1 C σ ′) unfolding reduction-def by

blast
from red have el2 : (eligible-literal L2 D σ ′) unfolding reduction-def by

blast
from red have D ∈ S unfolding reduction-def by blast
from red have (minimal-redex p (subst t σ) C S t)

unfolding reduction-def by blast
from red have l1 : L1 ∈ (cl-ecl C ) unfolding reduction-def by blast
from red have l2 : L2 ∈ (cl-ecl D) unfolding reduction-def by blast

from red have o1 : (orient-lit-inst L1 t s polarity σ ′) unfolding reduction-def
by blast

from red have o2 : (orient-lit-inst L2 u v pos σ ′) unfolding reduction-def
by blast

from red have e:(subst u ′ σ ′) = (subst u σ ′)
unfolding reduction-def by blast

from red have (¬ validate-ground-clause ?I (subst-cl ( (cl-ecl D) − { L2 }
) σ ′))

unfolding reduction-def by blast
from red have (∀ x ∈ (cl-ecl D) − { L2 }. ( (subst-lit x σ ′),(subst-lit L2

σ ′))
∈ lit-ord)

unfolding reduction-def by blast
from red have st: (subterm t p u ′) unfolding reduction-def by blast
from red have (allowed-redex u ′ C σ) unfolding reduction-def by blast
from st have u ′ ∈ (subterms-of t) using occurs-in-def by auto

from this and o1 have u ′∈ (subterms-of-lit L1 ) using orient-lit-inst-subterms
by auto

from this and ‹L1 ∈ (cl-ecl C )› have u ′ ∈ (subterms-of-cl (cl-ecl C )) by
auto

from this and ‹(allowed-redex u ′ C σ)› and ‹C ∈ S›
and ‹(coincide-on σ σ ′ (vars-of-cl (cl-ecl C )))›
assms(3 )
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have rte: (allowed-redex u ′ C σ ′) using allowed-redex-coincide [of u ′ C σ
σ ′]

by metis

from red have ( (subst-lit L2 σ ′),(subst-lit L1 σ ′))
∈ lit-ord unfolding reduction-def by blast

from red have (all-trms-irreducible (subst-set (trms-ecl D) σ ′)
(λt. (trm-rep t S))) unfolding reduction-def by blast

from red have ?I (subst u σ ′) (subst v σ ′)
unfolding reduction-def by blast

from e have t: ck-unifier u ′ u σ ′ Ground unfolding ck-unifier-def Unifier-def
by auto

have ∀ x ∈ (cl-ecl D). ( (mset-lit (subst-lit x σ ′)),(mset-lit (subst-lit L1 σ ′)))

∈ (mult trm-ord)
proof (rule ccontr)

assume ¬(∀ x ∈ (cl-ecl D). ( (mset-lit (subst-lit x σ ′)),(mset-lit (subst-lit
L1 σ ′)))

∈ (mult trm-ord))
from this obtain x where x ∈ (cl-ecl D)
and ( (mset-lit (subst-lit x σ ′)),(mset-lit (subst-lit L1 σ ′)))

/∈ (mult trm-ord)
by auto
show False
proof (cases)

assume x = L2
from this and ‹((subst-lit L2 σ ′),(subst-lit L1 σ ′))
∈ lit-ord› and ‹( (mset-lit (subst-lit x σ ′)),(mset-lit (subst-lit L1 σ ′)))

/∈ (mult trm-ord)›
show False unfolding lit-ord-def by auto

next
assume x 6= L2
from this and ‹x ∈ (cl-ecl D)› have x ∈ (cl-ecl D) − { L2 } by auto
from this and ‹(∀ x ∈ (cl-ecl D) − { L2 }. ( (subst-lit x σ ′),(subst-lit L2

σ ′))
∈ lit-ord)›

have ( (subst-lit x σ ′),(subst-lit L2 σ ′))
∈ lit-ord by auto

from ‹((mset-lit (subst-lit x σ ′)),(mset-lit (subst-lit L1 σ ′)))
/∈ (mult trm-ord)›

have ((subst-lit x σ ′),(subst-lit L1 σ ′))
/∈ lit-ord
unfolding lit-ord-def by auto

from this and ‹( (subst-lit x σ ′),(subst-lit L2 σ ′))
∈ lit-ord›

and ‹((subst-lit L2 σ ′),(subst-lit L1 σ ′))
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∈ lit-ord›
show False using lit-ord-trans unfolding trans-def by blast

qed
qed
from all-finite and ‹C ∈ S› have finite (cl-ecl C ) by auto
from this and ‹L1 ∈ (cl-ecl C )›
have (mset-lit (subst-lit L1 σ ′)) ∈# mset-ecl (C ,σ ′)

using mset-ecl-and-mset-lit by auto
from this have (mset-lit (subst-lit L1 σ ′)) ∈ (set-mset (mset-ecl (C ,σ ′)))

by simp
have ∀ x. (x ∈ (set-mset (mset-ecl (D,σ ′)))
−→ (∃ y ∈ set-mset (mset-ecl (C ,σ ′)). (x,y) ∈ (mult trm-ord)))

proof ((rule allI ),(rule impI ))
fix x assume x ∈ (set-mset (mset-ecl (D,σ ′)))

then have x ∈# mset-ecl (D,σ ′) by simp
from ‹x ∈# mset-ecl (D,σ ′)› obtain x ′

where x ′ ∈# (mset-set (cl-ecl D))
and x = (mset-lit (subst-lit x ′ σ ′)) by auto

from ‹x ′ ∈# (mset-set (cl-ecl D))› have x ′ ∈ (cl-ecl D)
using count-mset-set(3 ) by (fastforce simp: count-eq-zero-iff )

from this
and ‹∀ x ∈ (cl-ecl D).
( (mset-lit (subst-lit x σ ′)),(mset-lit (subst-lit L1 σ ′)))

∈ (mult trm-ord)›
and ‹x = (mset-lit (subst-lit x ′ σ ′))›
have (x,(mset-lit (subst-lit L1 σ ′))) ∈ (mult trm-ord)
by auto

from ‹(mset-lit (subst-lit L1 σ ′)) ∈ (set-mset (mset-ecl (C ,σ ′)))›
and ‹(x,(mset-lit (subst-lit L1 σ ′))) ∈ (mult trm-ord)›
show
(∃ y ∈ set-mset (mset-ecl (C ,σ ′)). (x,y) ∈ (mult trm-ord))
by auto

qed

from this have
dom:

∧
I J K . J 6= {#} ∧ (∀ k∈set-mset K . ∃ j∈set-mset J . (k, j) ∈ (mult

trm-ord)) −→
(I + K , I + J ) ∈ mult (mult trm-ord)
by (blast intro: one-step-implies-mult)

from ‹(mset-lit (subst-lit L1 σ ′)) ∈# mset-ecl (C ,σ ′)›
have mset-ecl (C ,σ ′) 6= {#} by auto

from ‹∀ x. (x ∈ (set-mset (mset-ecl (D,σ ′)))
−→ (∃ y ∈ set-mset (mset-ecl (C ,σ ′)). (x,y) ∈ (mult trm-ord)))›

and ‹mset-ecl (C ,σ ′) 6= {#}›
have ({#} + mset-ecl (D, σ ′), {#} + mset-ecl (C , σ ′)) ∈ mult (mult

trm-ord)
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using dom [of (mset-ecl (C ,σ ′)) mset-ecl (D,σ ′) {#}] by auto
from this have (mset-ecl (D, σ ′), mset-ecl (C , σ ′)) ∈ mult (mult trm-ord)
by auto
from this have ( (D,σ ′), (C ,σ ′) ) ∈ ecl-ord

unfolding ecl-ord-def by auto

from st obtain t ′ where rt: (replace-subterm t p v t ′)
using replace-subterm-is-a-function by blast

from st obtain R Cl-R nt-R L ′ Cl-C Cl-D where
ntr : nt-R = (dom-trms Cl-R (subst-set
((trms-ecl C ) ∪ (trms-ecl D) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord C t) ∧ (subterm t q r) }) σ ′))

and r : R = Ecl Cl-R nt-R
and clc: Cl-C = (cl-ecl C )
and cld: Cl-D = (cl-ecl D)
and clr : Cl-R = (subst-cl ((Cl-C − { L1 }) ∪ ((Cl-D − { L2 }) ∪ { L ′

} )) σ ′)
and l ′: L ′ = mk-lit polarity (Eq t ′ s)
by auto

from ‹orient-lit-inst L1 t s polarity σ ′› have vars-of t ⊆ vars-of-lit L1
using orient-lit-inst-vars by auto

from ‹L1 ∈ (cl-ecl C )› have vars-of-lit L1 ⊆ vars-of-cl (cl-ecl C ) by auto
from this and ‹vars-of t ⊆ vars-of-lit L1 › have vars-of t ⊆vars-of-cl (cl-ecl

C ) by auto
from this and ‹coincide-on σ σ ′ (vars-of-cl (cl-ecl C ))›
have coincide-on σ σ ′ (vars-of t) unfolding coincide-on-def by auto

from this have subst t σ = subst t σ ′ using coincide-on-term by auto

from ‹(∀ x ∈ (cl-ecl D) − { L2 }. ( (subst-lit x σ ′),(subst-lit L2 σ ′))
∈ lit-ord)›

have strictly-maximal-literal D L2 σ ′ unfolding strictly-maximal-literal-def
by metis

from ntr have nt-R = get-trms Cl-R (dom-trms Cl-R (subst-set
((trms-ecl C ) ∪ (trms-ecl D) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord C t) ∧ (subterm t q r) }) σ ′)) Ground
unfolding get-trms-def by auto

from this ‹(subst u σ ′) 6= (subst v σ ′)› ‹¬ is-a-variable u ′› l1 l2 el1 el2
‹variable-disjoint C D› rte r o1 o2 t st rt l ′ clr ntr clr clc cld ‹R = Ecl Cl-R

nt-R›
‹( (subst-lit L2 σ ′),(subst-lit L1 σ ′))
∈ lit-ord›

‹strictly-maximal-literal D L2 σ ′ ›
have superposition C D R σ ′ Ground ((Cl-C − { L1 }) ∪ ((Cl-D − { L2

}) ∪ { L ′ } ))
unfolding superposition-def by blast

from l2 have (subst-lit L2 σ ′) ∈ (subst-cl (cl-ecl D) σ ′) by auto
from this and ‹ground-clause (subst-cl (cl-ecl D) σ ′)›
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have vars-of-lit (subst-lit L2 σ ′) = {}
by auto

from this and o2 have vars-of (subst v σ ′) = {}
unfolding orient-lit-inst-def using vars-of-lit.simps vars-of-eq.simps by

force

from ‹(coincide-on σ σ ′ (vars-of-cl (cl-ecl C )))›
have (subst-cl (cl-ecl C ) σ ′) = (subst-cl (cl-ecl C ) σ)
using coincide-on-cl [of σ σ ′ (cl-ecl C )] by auto

from this and ‹ground-clause (subst-cl (cl-ecl C ) σ)›
have ground-clause (subst-cl (cl-ecl C ) σ ′) using

coincide-on-cl by auto

from l1 have (subst-lit L1 σ ′) ∈ (subst-cl (cl-ecl C ) σ ′) by auto
from this and ‹ground-clause (subst-cl (cl-ecl C ) σ ′)›
have vars-of-lit (subst-lit L1 σ ′) = {} by auto

from this and o1 have vars-of (subst t σ ′) = {}
unfolding orient-lit-inst-def using vars-of-lit.simps vars-of-eq.simps by

force
from ‹vars-of-lit (subst-lit L1 σ ′) = {}›
and o1 have vars-of (subst s σ ′) = {}
unfolding orient-lit-inst-def using vars-of-lit.simps vars-of-eq.simps by

force

from ‹vars-of (subst t σ ′) = {}› and ‹vars-of (subst v σ ′) = {}›
and rt have vars-of (subst t ′ σ ′) = {} using ground-replacement [of t p

v t ′ σ ′]
unfolding ground-term-def by blast

from ‹vars-of (subst t ′ σ ′) = {}› and ‹vars-of (subst s σ ′) = {}›
have vars-of-eq (subst-equation (Eq t ′ s) σ ′) = {} by auto

from l ′ have L ′ = (Pos (Eq t ′ s)) ∨ L ′ = (Neg (Eq t ′ s)) using mk-lit.elims
by auto

from this and ‹vars-of-eq (subst-equation (Eq t ′ s) σ ′) = {}›
have vars-of-lit (subst-lit L ′ σ ′) = {} by auto

from ‹C ∈ S› and ‹D ∈ S› and
‹superposition C D R σ ′ Ground ((Cl-C − { L1 }) ∪ ((Cl-D − { L2 }) ∪

{ L ′ } ))›
have derivable R { C ,D } S σ ′ Ground ((Cl-C − { L1 }) ∪ ((Cl-D − {

L2 }) ∪ { L ′ } ))
unfolding derivable-def by auto

have ground-clause Cl-R
proof (rule ccontr)

assume ¬ground-clause Cl-R
then have vars-of-cl Cl-R 6= {} by auto
then obtain M where M ∈ Cl-R and vars-of-lit M 6= {} by auto
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from ‹M ∈ Cl-R› and clr obtain M ′ where M = (subst-lit M ′ σ ′)
and M ′ ∈ ((Cl-C − { L1 }) ∪ ((Cl-D − { L2 }) ∪ { L ′ } ))

by auto
show False
proof (cases)

assume M ′ = L ′

from this and ‹vars-of-lit (subst-lit L ′ σ ′) = {}› and ‹vars-of-lit M 6=
{}›

and ‹M = (subst-lit M ′ σ ′)› show False by auto
next

assume M ′ 6= L ′

from this and l1 clc cld and ‹M ′ ∈(Cl-C − { L1 }) ∪ ((Cl-D − { L2
}) ∪ { L ′ } )›

have M ′ ∈ (cl-ecl C ) ∨ M ′ ∈ (cl-ecl D)
by auto

then show False
proof

assume M ′ ∈ (cl-ecl C )
from this and ‹ground-clause (subst-cl (cl-ecl C ) σ ′)› have
vars-of-lit (subst-lit M ′ σ ′) = {} by auto
from this and ‹M = (subst-lit M ′ σ ′)› and
‹vars-of-lit M 6= {}› show False by auto

next
assume M ′ ∈ (cl-ecl D)
from this and ‹ground-clause (subst-cl (cl-ecl D) σ ′)› have
vars-of-lit (subst-lit M ′ σ ′) = {} by auto
from this and ‹M = (subst-lit M ′ σ ′)› and
‹vars-of-lit M 6= {}› show False by auto

qed
qed

qed
from ‹ground-clause (subst-cl (cl-ecl C ) σ ′)› and ‹ground-clause (subst-cl

(cl-ecl D) σ ′)›
have grounding-set { C ,D } σ ′ unfolding grounding-set-def by auto

from ‹ground-clause Cl-R› and ‹R = Ecl Cl-R nt-R› have ground-clause
(cl-ecl R) by auto

from this and ‹derivable R { C ,D } S σ ′ Ground ((Cl-C − { L1 }) ∪
((Cl-D − { L2 }) ∪ { L ′ } ))›

and ‹ground-inference-saturated S› ‹grounding-set { C ,D } σ ′›
have (redundant-inference R S { C ,D } σ ′) unfolding ground-inference-saturated-def

by blast
from this obtain S ′ where S ′ ⊆ (instances S) and
(set-entails-clause (clset-instances S ′) (cl-ecl R))
and order : ∀ x∈S ′. ((cl-ecl (fst x), snd x), cl-ecl C , σ ′) ∈ cl-ord ∨
((cl-ecl (fst x), snd x), cl-ecl D, σ ′) ∈ cl-ord

and all-normalized-term-included: (∀ x ∈ S ′.
(subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))
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(trms-ecl R)))
unfolding redundant-inference-def by auto

have all-smaller : (∀ x ∈ S ′. (((fst x),(snd x)),(C ,σ)) ∈ ecl-ord)
proof (rule ccontr)

assume ¬(∀ x ∈ S ′. (((fst x),(snd x)),(C ,σ)) ∈ ecl-ord)
then obtain x where x ∈ S ′ and (((fst x),(snd x)),(C ,σ)) /∈ ecl-ord

by auto

from order [rule-format, OF ‹x ∈ S ′›]
have ((cl-ecl (fst x), snd x), cl-ecl C , σ ′) ∈ cl-ord
proof (elim disjE)

assume ((cl-ecl (fst x), snd x), cl-ecl C , σ ′) ∈ cl-ord
thus ?thesis by assumption

next
assume ((cl-ecl (fst x), snd x), cl-ecl D, σ ′) ∈ cl-ord
thus ((cl-ecl (fst x), snd x), cl-ecl C , σ ′) ∈ cl-ord

using ‹((D, σ ′), (C , σ ′)) ∈ ecl-ord›[unfolded member-ecl-ord-iff ]
by (rule cl-ord-trans[THEN transD])

qed
from ‹(coincide-on σ σ ′ (vars-of-cl (cl-ecl C )))›

have (mset-ecl (C ,σ ′)) = (mset-ecl (C ,σ))
using ecl-ord-coincide [of σ σ ′ C ] by auto

with ‹((cl-ecl (fst x), snd x), cl-ecl C , σ ′) ∈ cl-ord›
have ((mset-ecl x), (mset-ecl (C ,σ))) ∈ (mult (mult trm-ord))
by (metis (no-types, lifting) CollectD case-prodD cl-ord-def mset-ecl-conv

prod.collapse)
from this and ‹¬(((fst x),(snd x)),(C ,σ)) ∈ ecl-ord› show False

unfolding ecl-ord-def by auto
qed

have validate-clause-set ?I (clset-instances S ′)
proof (rule ccontr)

assume ¬ validate-clause-set ?I (clset-instances S ′)
then obtain x where x ∈(clset-instances S ′) and ¬validate-clause ?I x

using validate-clause-set.simps by blast
from ‹x ∈(clset-instances S ′)› obtain pair ′ where pair ′ ∈ S ′

and x = (subst-cl (cl-ecl (fst pair ′)) (snd pair ′))
unfolding clset-instances-def
by auto

from all-smaller and ‹pair ′ ∈ S ′› have (pair ′,(C ,σ)) ∈ ecl-ord
by auto
from this and ‹C = fst pair› and ‹σ = snd pair› have (pair ′,pair) ∈

ecl-ord
by auto

from this and hyp-ind have ?P pair ′ by blast

from ‹pair ′ ∈ S ′› and all-normalized-term-included have
(subterms-inclusion (subst-set (trms-ecl (fst pair ′)) (snd pair ′))
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(trms-ecl R)) by auto
have i: (all-trms-irreducible (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

(λt. (trm-rep t S)))
proof (rule ccontr)
assume ¬(all-trms-irreducible (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

(λt. (trm-rep t S)))
then obtain w w ′ where w ∈ subst-set (trms-ecl (fst pair ′)) (snd pair ′)
and occurs-in w ′ w
trm-rep w ′ S 6= w ′

unfolding all-trms-irreducible-def by blast
from ‹w ∈ subst-set (trms-ecl (fst pair ′)) (snd pair ′)› and
‹(subterms-inclusion (subst-set (trms-ecl (fst pair ′)) (snd pair ′))
(trms-ecl R))› obtain w ′′ where w ′′ ∈ trms-ecl R and occurs-in w w ′′

unfolding subterms-inclusion-def by auto
from ‹occurs-in w w ′′› and ‹occurs-in w ′ w› have occurs-in w ′ w ′′

using occur-in-subterm by blast
from ntr have nt-R ⊆ (subst-set ((trms-ecl C ) ∪ (trms-ecl D) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord C t) ∧ (subterm t q r) }) σ ′)

using dom-trms-subset [of Cl-R (subst-set ((trms-ecl C ) ∪ (trms-ecl D) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord C t) ∧ (subterm t q r) }) σ ′)] by blast

from this and r have trms-ecl R ⊆ (subst-set ((trms-ecl C ) ∪ (trms-ecl
D) ∪

{ r . ∃ q. (q,p) ∈ (pos-ord C t) ∧ (subterm t q r) }) σ ′) by auto
from this and ‹w ′′ ∈ trms-ecl R› have

w ′′ ∈ (subst-set ((trms-ecl C ) ∪ (trms-ecl D) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord C t) ∧ (subterm t q r) }) σ ′) by blast

from this obtain w ′′′

where w ′′′ ∈ ((trms-ecl C ) ∪ (trms-ecl D) ∪
{ r . ∃ q. (q,p) ∈ (pos-ord C t) ∧ (subterm t q r) }) and w ′′ = subst

w ′′′ σ ′

by auto
from this and ‹occurs-in w ′ w ′′› have occurs-in w ′ (subst w ′′′ σ ′) by auto

have ¬ (w ′′′ ∈ trms-ecl C )
proof

assume w ′′′ ∈ trms-ecl C
from this and ‹occurs-in w ′ w ′′› and ‹w ′′ = subst w ′′′ σ ′› have

occurs-in w ′ (subst w ′′′ σ ′) by auto
from assms(3 ) and ‹C ∈ S› and ‹w ′′′ ∈ trms-ecl C ›

have vars-of w ′′′ ⊆ vars-of-cl (cl-ecl C ) using dom-trm-vars
unfolding Ball-def well-constrained-def by blast

from this and ‹coincide-on σ σ ′ (vars-of-cl (cl-ecl C ))› have coincide-on
σ σ ′ (vars-of w ′′′)

unfolding coincide-on-def by auto
from this have subst w ′′′ σ = subst w ′′′ σ ′

using coincide-on-term by auto
from this

and ‹occurs-in w ′ (subst w ′′′ σ ′)›
have occurs-in w ′ (subst w ′′′ σ) by auto
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from this and ‹w ′′′ ∈ trms-ecl C ›
‹(all-trms-irreducible (subst-set (trms-ecl C ) σ)

(λt. (trm-rep t S)))›
have trm-rep w ′ S = w ′

unfolding all-trms-irreducible-def using subst-set.simps by blast
from this and ‹trm-rep w ′ S 6= w ′› show False by blast

qed

have ¬ (w ′′′ ∈ trms-ecl D)
proof

assume w ′′′ ∈ trms-ecl D
from this and ‹occurs-in w ′ w ′′› and ‹w ′′ = subst w ′′′ σ ′› have

occurs-in w ′ (subst w ′′′ σ ′) by auto
from this and ‹w ′′′ ∈ trms-ecl D›

‹(all-trms-irreducible (subst-set (trms-ecl D) σ ′)
(λt. (trm-rep t S)))›
have trm-rep w ′ S = w ′

unfolding all-trms-irreducible-def using subst-set.simps by blast
from this and ‹trm-rep w ′ S 6= w ′› show False by blast

qed

from this and
‹w ′′′ ∈ ((trms-ecl C ) ∪ (trms-ecl D)
∪ { r . ∃ q. (q,p) ∈ (pos-ord C t) ∧ (subterm t q r) })›

and ‹¬ (w ′′′ ∈ trms-ecl C )›
obtain q-w where (subterm t q-w w ′′′) and (q-w,p) ∈ (pos-ord C t)

by auto

from ‹subterm t q-w w ′′′› have subterm (subst t σ ′) q-w (subst w ′′′ σ ′)
using substs-preserve-subterms by auto

from ‹occurs-in w ′ (subst w ′′′ σ ′)› obtain q
where (subterm (subst w ′′′ σ ′) q w ′) unfolding occurs-in-def by blast

from this and ‹subterm (subst t σ ′) q-w (subst w ′′′ σ ′)›
have subterm (subst t σ ′) (append q-w q) w ′ using subterm-of-a-subterm-is-a-subterm

by blast
from this and ‹(subst t σ) = (subst t σ ′)›
have subterm (subst t σ) (append q-w q) w ′ by auto

from ‹(q-w,p) ∈ (pos-ord C t)› have ((append q-w q),p) ∈ (pos-ord C t)
using pos-ord-prefix by blast

from this and ‹minimal-redex p (subst t σ) C S t›
and ‹subterm (subst t σ) (append q-w q) w ′›
have trm-rep w ′ S = w ′

unfolding minimal-redex-def by blast
from this and ‹trm-rep w ′ S 6= w ′› show False by blast

qed
from ‹S ′ ⊆ (instances S)› and ‹pair ′ ∈ S ′› have
ii: ground-clause (subst-cl (cl-ecl (fst pair ′)) (snd pair ′))
unfolding instances-def [of S ] by fastforce

from ‹S ′ ⊆ (instances S)› and ‹pair ′ ∈ S ′› have
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iii: (fst pair ′) ∈ S unfolding instances-def [of S ] by fastforce
from ‹?P pair ′› and i ii iii have validate-ground-clause ?I
(subst-cl (cl-ecl (fst pair ′)) (snd pair ′)) unfolding int-clset-def by blast

from this and ‹x = (subst-cl (cl-ecl (fst pair ′)) (snd pair ′))›
and ‹¬validate-clause ?I x› show False
by (metis ii substs-preserve-ground-clause validate-clause.simps)

qed
from this and ‹fo-interpretation ?I › and
‹(set-entails-clause (clset-instances S ′) (cl-ecl R))›
have validate-clause ?I (cl-ecl R) unfolding set-entails-clause-def by blast
from this have validate-ground-clause ?I (cl-ecl R)

by (metis ‹R = Ecl Cl-R nt-R› ‹ground-clause Cl-R›
cl-ecl.simps substs-preserve-ground-clause validate-clause.simps)

from this obtain L ′′ where L ′′ ∈ (cl-ecl R) and validate-ground-lit ?I L ′′

using validate-ground-clause.simps by blast
from ‹L ′′ ∈ (cl-ecl R)› and ‹R = Ecl Cl-R nt-R› and

‹Cl-R = (subst-cl ((Cl-C − { L1 }) ∪ ((Cl-D − { L2 }) ∪ { L ′ } )) σ ′)›
obtain M where m: M ∈ ((Cl-C − { L1 }) ∪ ((Cl-D − { L2 }) ∪ { L ′

} ))
and L ′′ = subst-lit M σ ′ by auto

have M /∈ cl-ecl C
proof

assume M ∈ cl-ecl C
from this have vars-of-lit M ⊆ vars-of-cl (cl-ecl C ) by auto
from this and ‹coincide-on σ σ ′ (vars-of-cl (cl-ecl C ))›
have coincide-on σ σ ′ (vars-of-lit M ) unfolding coincide-on-def by auto
from this have subst-lit M σ = subst-lit M σ ′ using coincide-on-lit by

auto
from this and ‹L ′′ = subst-lit M σ ′›have L ′′ = subst-lit M σ by auto
from ‹M ∈ cl-ecl C › and ‹L ′′ = subst-lit M σ›and ‹validate-ground-lit ?I

L ′′›
have validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)

by (metis (mono-tags, lifting) subst-cl.simps mem-Collect-eq
validate-ground-clause.simps)

from this and cm show False by blast
qed
have M /∈ Cl-D − { L2 }
proof

assume M ∈ Cl-D − { L2 }
from this and cld and ‹L ′′ = subst-lit M σ ′› and ‹validate-ground-lit ?I

L ′′›
have validate-ground-clause ?I (subst-cl ( (cl-ecl D) − { L2 } ) σ ′)

by (metis (mono-tags, lifting) subst-cl.simps mem-Collect-eq vali-
date-ground-clause.simps)

from this and ‹¬validate-ground-clause ?I (subst-cl ( (cl-ecl D) − { L2 }
) σ ′)›

show False by blast
qed
have M 6= L ′
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proof
assume M = L ′

from ‹?I (subst u σ ′) (subst v σ ′)›
and e have ?I (subst u ′ σ ′) (subst v σ ′) by metis

from rt and st ‹fo-interpretation ?I › ‹?I (subst u ′ σ ′) (subst v σ ′)›
have ?I (subst t σ ′) (subst t ′ σ ′)
using replacement-preserves-congruences [of ?I u ′ σ ′ v t p t ′]

unfolding fo-interpretation-def by metis
from l1 and cm have ¬ (validate-ground-lit ?I (subst-lit L1 σ ′))

using ‹subst-cl (cl-ecl C ) σ ′ = subst-cl (cl-ecl C ) σ›
‹subst-lit L1 σ ′ ∈ subst-cl (cl-ecl C ) σ ′›
validate-ground-clause.simps by blast

from this and ‹?I (subst t σ ′) (subst t ′ σ ′)› and ‹fo-interpretation ?I ›
and l ′ ‹orient-lit-inst L1 t s polarity σ ′›
have ¬validate-ground-lit ?I (subst-lit L ′ σ ′)
using trm-rep-preserves-lit-semantics [of ?I t σ ′ t ′ L1 s polarity σ ′] by

metis
from this and ‹M = L ′› and ‹validate-ground-lit ?I L ′′› and ‹L ′′ =

subst-lit M σ ′›
show False by blast

qed
from this and ‹M /∈ Cl-D − { L2 }› ‹M /∈ (cl-ecl C )› and m clc show

False by auto
qed

Second, we show that the clause contains no contradictory literal (otherwise
the reflexion rule applies).

let ?no-cont = ∀L t s. (L ∈ (cl-ecl C )) −→ (eligible-literal L C σ)
−→ (orient-lit-inst L t s neg σ) −→ (trm-rep (subst t σ) S) = (subst t σ)
−→ (subst t σ) 6= (subst s σ)

have ?no-cont
proof (rule ccontr)

assume ¬ ?no-cont
then obtain L t s where l: L ∈ (cl-ecl C ) and e: (eligible-literal L C σ)

and o: orient-lit-inst L t s neg σ
and (trm-rep (subst t σ) S) = (subst t σ)
and (subst t σ) = (subst s σ) by blast

from ‹(subst t σ) = (subst s σ)›
have t: ck-unifier t s σ Ground unfolding ck-unifier-def Unifier-def by

auto
from l and e and o and t obtain R Cl-R nt-R where

R = Ecl Cl-R nt-R and Cl-R = (subst-cl ((cl-ecl C ) − { L }) σ) and
reflexion C R σ Ground ((cl-ecl C ) − { L })
and trms-ecl R = (dom-trms (cl-ecl R) (subst-set ((trms-ecl C ) ∪ { t })

σ))
unfolding reflexion-def get-trms-def
by fastforce

from ‹C ∈ S› and ‹reflexion C R σ Ground ((cl-ecl C ) − { L })›
have derivable R { C } S σ Ground ((cl-ecl C ) − { L })
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unfolding derivable-def by auto
from ‹ground-clause (subst-cl (cl-ecl C ) σ)›

and ‹Cl-R = (subst-cl ((cl-ecl C ) − { L }) σ)›
have ground-clause Cl-R using ground-clause.simps by auto

from this and ‹R = Ecl Cl-R nt-R› have ground-clause (cl-ecl R) by auto
from ‹ground-clause (subst-cl (cl-ecl C ) σ)›

have grounding-set { C } σ unfolding grounding-set-def by auto
from this and ‹ground-clause (cl-ecl R)›

‹derivable R { C } S σ Ground ((cl-ecl C ) − { L })› and ‹ground-inference-saturated
S›

have (redundant-inference R S { C } σ) unfolding ground-inference-saturated-def

by blast
from this obtain S ′ where S ′ ⊆ (instances S) and
(set-entails-clause (clset-instances S ′) (cl-ecl R))
and all-smaller : ∀ x ∈ S ′. ((cl-ecl (fst x), snd x), cl-ecl C , σ) ∈ cl-ord
and all-normalized-term-included: (∀ x ∈ S ′.
(subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))

(trms-ecl R)))
unfolding redundant-inference-def by auto

have validate-clause-set ?I (clset-instances S ′)
proof (rule ccontr)

assume ¬ validate-clause-set ?I (clset-instances S ′)
then obtain x where x ∈(clset-instances S ′) and ¬validate-clause ?I x

using validate-clause-set.simps by blast
from ‹x ∈(clset-instances S ′)› obtain pair ′ where pair ′ ∈ S ′

and x = (subst-cl (cl-ecl (fst pair ′)) (snd pair ′))
unfolding clset-instances-def
by auto

from all-smaller and ‹pair ′ ∈ S ′› have (pair ′,(C ,σ)) ∈ ecl-ord
by (metis member-ecl-ord-iff prod.collapse)
from this and ‹C = fst pair› and ‹σ = snd pair› have (pair ′,pair) ∈

ecl-ord
by auto

from this and hyp-ind have ?P pair ′ by blast

from ‹trms-ecl R = (dom-trms (cl-ecl R) (subst-set ((trms-ecl C ) ∪ { t })
σ))›

have trms-ecl R ⊆ (subst-set ((trms-ecl C ) ∪ { t }) σ)
using dom-trms-subset by metis

from ‹pair ′ ∈ S ′› and all-normalized-term-included have
(subterms-inclusion (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

(trms-ecl R)) by auto
have i: (all-trms-irreducible (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

(λt. (trm-rep t S)))
proof (rule ccontr)
assume ¬(all-trms-irreducible (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

(λt. (trm-rep t S)))
then obtain t ′ t ′′ where t ′ ∈ (subst-set (trms-ecl (fst pair ′)) (snd pair ′))
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occurs-in t ′′ t ′ and trm-rep t ′′ S 6= t ′′ unfolding all-trms-irreducible-def
by blast

from ‹t ′ ∈ (subst-set (trms-ecl (fst pair ′)) (snd pair ′))›
and ‹(subterms-inclusion (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

(trms-ecl R))›
obtain s ′ where s ′ ∈ (trms-ecl R) and occurs-in t ′ s ′

unfolding subterms-inclusion-def by auto
from ‹s ′ ∈ (trms-ecl R)› and ‹trms-ecl R ⊆ (subst-set ((trms-ecl C ) ∪ {

t }) σ)›
obtain s ′′ where s ′ = subst s ′′ σ and s ′′ ∈ ((trms-ecl C ) ∪ { t }) by

auto
from ‹s ′′ ∈ ((trms-ecl C ) ∪ { t })› have s ′′ ∈ trms-ecl C ∨ s ′′ = t by

auto
thus False
proof

assume s ′′ ∈ trms-ecl C
from this and ‹s ′ = subst s ′′ σ› have s ′ ∈ (subst-set (trms-ecl C ) σ) by

auto
from this and ‹(all-trms-irreducible (subst-set (trms-ecl C ) σ)

(λt. (trm-rep t S)))› and ‹occurs-in t ′ s ′› have trm-rep t ′ S = t ′

unfolding all-trms-irreducible-def by blast
from this and ‹occurs-in t ′′ t ′› and ‹trm-rep t ′′ S 6= t ′′›show False

using occurs-in-def subts-of-irred-trms-are-irred by blast
next

assume s ′′ = t
from this and ‹s ′ = subst s ′′ σ› have s ′ = subst t σ by auto
from this and ‹(trm-rep (subst t σ) S) = (subst t σ)›

have trm-rep s ′ S = s ′ by blast
from ‹trm-rep s ′ S = s ′› ‹trm-rep t ′′ S 6= t ′′› ‹occurs-in t ′ s ′› ‹occurs-in

t ′′ t ′›
show False using occurs-in-def subts-of-irred-trms-are-irred by blast

qed
qed
from ‹S ′ ⊆ (instances S)› and ‹pair ′ ∈ S ′› have
ii: ground-clause (subst-cl (cl-ecl (fst pair ′)) (snd pair ′))
unfolding instances-def [of S ] by fastforce

from ‹S ′ ⊆ (instances S)› and ‹pair ′ ∈ S ′› have
iii: (fst pair ′) ∈ S unfolding instances-def [of S ] by fastforce

from ‹?P pair ′› and i ii iii have validate-ground-clause ?I
(subst-cl (cl-ecl (fst pair ′)) (snd pair ′)) unfolding int-clset-def by blast

from this and ‹x = (subst-cl (cl-ecl (fst pair ′)) (snd pair ′))›
and ‹¬validate-clause ?I x› show False
by (metis ii substs-preserve-ground-clause validate-clause.simps)

qed
from this and ‹fo-interpretation ?I › and
‹(set-entails-clause (clset-instances S ′) (cl-ecl R))›
have validate-clause ?I (cl-ecl R) unfolding set-entails-clause-def by blast
from this have validate-ground-clause ?I (cl-ecl R)

by (metis ‹R = Ecl Cl-R nt-R› ‹ground-clause Cl-R›
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cl-ecl.simps substs-preserve-ground-clause validate-clause.simps)
from this obtain L ′ where L ′ ∈ (cl-ecl R) and validate-ground-lit ?I L ′

using validate-ground-clause.simps by blast
from ‹L ′ ∈ (cl-ecl R)› and ‹R = Ecl Cl-R nt-R› and

‹Cl-R = (subst-cl ((cl-ecl C ) − { L }) σ)›
obtain L ′′ where L ′′ ∈ cl-ecl C and L ′ = subst-lit L ′′ σ
by auto

from ‹L ′′ ∈ cl-ecl C › and ‹L ′ = subst-lit L ′′ σ›and ‹validate-ground-lit ?I
L ′›

have validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)
by (metis (mono-tags, lifting) subst-cl.simps mem-Collect-eq

validate-ground-clause.simps)
from this and cm show False unfolding int-clset-def by blast

qed

Third, we prove that the clause contains no pair of equations with the same
left-hand side and equivalent right-hand sides (otherwise the factorization
rule applies and a smaller false clause is derived).

let ?no-fact = ∀L1 L2 t s u v. (L1 ∈ (cl-ecl C )) −→ (eligible-literal L1 C σ)
−→ (L2 ∈ (cl-ecl C ) − { L1 }) −→ (orient-lit-inst L1 t s pos σ)
−→ (orient-lit-inst L2 u v pos σ) −→ (subst t σ) = (subst u σ)
−→ (¬ (proper-subterm-red t S σ))
−→ (trm-rep ((subst s) σ) S) 6= (trm-rep ((subst v) σ) S)

have ?no-fact
proof (rule ccontr)

assume ¬ ?no-fact
then obtain L1 L2 t s u v where l1 : L1 ∈ (cl-ecl C ) and l2 : L2 ∈ (cl-ecl

C ) − { L1 }
and e1 : (eligible-literal L1 C σ) and o1 : (orient-lit-inst L1 t s pos σ)
and o2 : (orient-lit-inst L2 u v pos σ) and e: (subst t σ) = (subst u σ)
and (¬ (proper-subterm-red t S σ))
and i: (trm-rep ((subst s) σ) S) = (trm-rep ((subst v) σ) S)
by blast

from e have t: ck-unifier t u σ Ground unfolding ck-unifier-def Unifier-def

using inferences.distinct by metis
from ‹L1 ∈ (cl-ecl C )› o1 ‹¬(validate-ground-clause (int-clset S) (subst-cl

(cl-ecl C ) σ))›
have trm-rep (subst t σ) S 6= trm-rep (subst s σ) S
using no-valid-literal by metis
then have subst t σ 6= subst s σ by metis

from ‹L2 ∈ (cl-ecl C ) − { L1 }› have L2 ∈ (cl-ecl C ) by auto
from this o2 ‹¬(validate-ground-clause (int-clset S) (subst-cl (cl-ecl C ) σ))›

have trm-rep (subst u σ) S 6= trm-rep (subst v σ) S
using no-valid-literal by metis
from this and e have subst t σ 6= subst v σ by metis

obtain R Cl-R nt-R L ′ where
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ntr : nt-R = (dom-trms Cl-R (subst-set ((trms-ecl C ) ∪ (proper-subterms-of
t)) σ))

and r : R = Ecl Cl-R nt-R
and clr : Cl-R = (subst-cl ( ((cl-ecl C ) − { L2 }) ∪ { L ′ } ) σ)
and l ′: L ′ = Neg (Eq s v) by auto

from ntr r l ′ clr l1 l2 o1 o2 e1 t
‹subst t σ 6= subst s σ› ‹subst t σ 6= subst v σ›
have factorization C R σ Ground (((cl-ecl C ) − { L2 }) ∪ { L ′ } )

unfolding factorization-def get-trms-def using inferences.distinct
by (metis cl-ecl.simps)

from l2 have (subst-lit L2 σ) ∈ (subst-cl (cl-ecl C ) σ) by auto
from this and ‹ground-clause (subst-cl (cl-ecl C ) σ)›
have vars-of-lit (subst-lit L2 σ) = {}
by auto

from this and o2 have vars-of (subst v σ) = {}
unfolding orient-lit-inst-def using vars-of-lit.simps vars-of-eq.simps by

force

from l1 have (subst-lit L1 σ) ∈ (subst-cl (cl-ecl C ) σ) by auto
from this and ‹ground-clause (subst-cl (cl-ecl C ) σ)›
have vars-of-lit (subst-lit L1 σ) = {} by auto

from this and o1 have vars-of (subst s σ) = {}
unfolding orient-lit-inst-def using vars-of-lit.simps vars-of-eq.simps by

force
from ‹vars-of (subst v σ) = {}› and ‹vars-of (subst s σ) = {}›
and l ′ have vars-of-lit (subst-lit L ′ σ) = {} by auto

from ‹C ∈ S› and ‹factorization C R σ Ground (((cl-ecl C ) − { L2 }) ∪
{ L ′ } )›

have derivable R { C } S σ Ground (((cl-ecl C ) − { L2 }) ∪ { L ′ } )
unfolding derivable-def by auto

have ground-clause Cl-R
proof (rule ccontr)

assume ¬ground-clause Cl-R
then have vars-of-cl Cl-R 6= {} by auto
then obtain M where M ∈ Cl-R and vars-of-lit M 6= {} by auto
from ‹M ∈ Cl-R› and clr obtain M ′ where M = (subst-lit M ′ σ)
and M ′ ∈((cl-ecl C ) − { L2 , L1 }) ∪ { L ′, L1 }

by auto
show False
proof (cases)

assume M ′ = L ′

from this and ‹vars-of-lit (subst-lit L ′ σ) = {}› and ‹vars-of-lit M 6=
{}›

and ‹M = (subst-lit M ′ σ)› show False by auto
next

assume M ′ 6= L ′

from this and l1 and ‹M ′ ∈((cl-ecl C ) − { L2 , L1 }) ∪ { L ′, L1 }›
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have M ′ ∈ (cl-ecl C )
by auto

from this and ‹ground-clause (subst-cl (cl-ecl C ) σ)› have
vars-of-lit (subst-lit M ′ σ) = {} by auto

from this and ‹M = (subst-lit M ′ σ)› and
‹vars-of-lit M 6= {}› show False by auto

qed
qed

from ‹ground-clause Cl-R› and ‹R = Ecl Cl-R nt-R› have ground-clause
(cl-ecl R) by auto

from ‹ground-clause (subst-cl (cl-ecl C ) σ)›
have grounding-set { C } σ unfolding grounding-set-def by auto

from this ‹ground-clause (cl-ecl R)›
and ‹derivable R { C } S σ Ground (((cl-ecl C ) − { L2 }) ∪ { L ′ } )›
and ‹ground-inference-saturated S›

have (redundant-inference R S { C } σ) unfolding ground-inference-saturated-def

by blast
from this obtain S ′ where S ′ ⊆ (instances S) and
(set-entails-clause (clset-instances S ′) (cl-ecl R))
and all-smaller : ∀ x ∈ S ′. ((cl-ecl (fst x), snd x), cl-ecl C , σ) ∈ cl-ord
and all-normalized-term-included: (∀ x ∈ S ′.
(subterms-inclusion (subst-set (trms-ecl (fst x)) (snd x))
(trms-ecl R)))

unfolding redundant-inference-def by auto
have validate-clause-set ?I (clset-instances S ′)
proof (rule ccontr)

assume ¬ validate-clause-set ?I (clset-instances S ′)
then obtain x where x ∈(clset-instances S ′) and ¬validate-clause ?I x

using validate-clause-set.simps by blast
from ‹x ∈(clset-instances S ′)› obtain pair ′ where pair ′ ∈ S ′

and x = (subst-cl (cl-ecl (fst pair ′)) (snd pair ′))
unfolding clset-instances-def
by auto

from all-smaller and ‹pair ′ ∈ S ′› have (pair ′,(C ,σ)) ∈ ecl-ord
by (metis member-ecl-ord-iff prod.collapse)
from this and ‹C = fst pair› and ‹σ = snd pair› have (pair ′,pair) ∈

ecl-ord
by auto

from this and hyp-ind have ?P pair ′ by blast

from r ntr have trms-ecl R = (dom-trms (cl-ecl R)
(subst-set ((trms-ecl C ) ∪ (proper-subterms-of t)) σ))
by auto

from this have trms-ecl R ⊆ (subst-set ((trms-ecl C ) ∪ (proper-subterms-of
t)) σ)

using dom-trms-subset by metis
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from ‹pair ′ ∈ S ′› and all-normalized-term-included have
(subterms-inclusion (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

(trms-ecl R)) by auto

have i: (all-trms-irreducible (subst-set (trms-ecl (fst pair ′)) (snd pair ′))
(λt. (trm-rep t S)))

proof (rule ccontr)
assume ¬(all-trms-irreducible (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

(λt. (trm-rep t S)))
then obtain t ′ t ′′ where t ′ ∈ (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

occurs-in t ′′ t ′ and trm-rep t ′′ S 6= t ′′ unfolding all-trms-irreducible-def
by blast

from ‹t ′ ∈ (subst-set (trms-ecl (fst pair ′)) (snd pair ′))›
and ‹(subterms-inclusion (subst-set (trms-ecl (fst pair ′)) (snd pair ′))

(trms-ecl R))›
obtain s ′ where s ′ ∈ (trms-ecl R) and occurs-in t ′ s ′

unfolding subterms-inclusion-def by auto
from ‹s ′ ∈ (trms-ecl R)› and ‹trms-ecl R ⊆ (subst-set ((trms-ecl C ) ∪

(proper-subterms-of t)) σ)›
have s ′ ∈(subst-set ((trms-ecl C ) ∪ (proper-subterms-of t)) σ) by auto
then obtain s ′′

where s ′ = subst s ′′ σ and s ′′ ∈ ((trms-ecl C ) ∪ (proper-subterms-of t))
by auto

from ‹s ′′ ∈ ((trms-ecl C ) ∪ (proper-subterms-of t))› have s ′′ ∈ trms-ecl
C

∨ s ′′ ∈ (proper-subterms-of t) by auto
thus False
proof

assume s ′′ ∈ trms-ecl C
from this and ‹s ′ = subst s ′′ σ› have s ′ ∈ (subst-set (trms-ecl C ) σ) by

auto
from this and ‹(all-trms-irreducible (subst-set (trms-ecl C ) σ)

(λt. (trm-rep t S)))› and ‹occurs-in t ′ s ′› have trm-rep t ′ S = t ′

unfolding all-trms-irreducible-def by blast
from this and ‹occurs-in t ′′ t ′› and ‹trm-rep t ′′ S 6= t ′′›show False

using occurs-in-def subts-of-irred-trms-are-irred by blast
next

assume s ′′ ∈ (proper-subterms-of t)
from ‹occurs-in t ′ s ′› ‹occurs-in t ′′ t ′› ‹s ′ = s ′′ C σ› ‹trm-rep t ′′ S 6= t ′′›

have trm-rep (subst s ′′ σ) S 6= (subst s ′′ σ)
using occurs-in-def subts-of-irred-trms-are-irred by blast

from this and ‹s ′′ ∈ (proper-subterms-of t)› and ‹¬ (proper-subterm-red
t S σ)›

show False using proper-subterm-red-def proper-subterms-of .simps by
blast

qed
qed
from ‹S ′ ⊆ (instances S)› and ‹pair ′ ∈ S ′› have
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ii: ground-clause (subst-cl (cl-ecl (fst pair ′)) (snd pair ′))
unfolding instances-def [of S ] by fastforce

from ‹S ′ ⊆ (instances S)› and ‹pair ′ ∈ S ′› have
iii: (fst pair ′) ∈ S unfolding instances-def [of S ] by fastforce

from ‹?P pair ′› and i ii iii have validate-ground-clause ?I
(subst-cl (cl-ecl (fst pair ′)) (snd pair ′))
unfolding int-clset-def by blast

from this and ‹x = (subst-cl (cl-ecl (fst pair ′)) (snd pair ′))›
and ‹¬validate-clause ?I x› show False
by (metis ii substs-preserve-ground-clause validate-clause.simps)

qed
from this and ‹fo-interpretation ?I › and
‹(set-entails-clause (clset-instances S ′) (cl-ecl R))›
have validate-clause ?I (cl-ecl R) unfolding set-entails-clause-def by blast
from this have validate-ground-clause ?I (cl-ecl R)

by (metis ‹R = Ecl Cl-R nt-R› ‹ground-clause Cl-R›
cl-ecl.simps substs-preserve-ground-clause validate-clause.simps)

from this obtain L ′′ where L ′′ ∈ (cl-ecl R) and validate-ground-lit ?I L ′′

using validate-ground-clause.simps by blast
from ‹L ′′ ∈ (cl-ecl R)› and ‹R = Ecl Cl-R nt-R› and

‹Cl-R = (subst-cl ( ((cl-ecl C ) − { L2 }) ∪ { L ′ } ) σ)›
obtain M where m: M ∈ ( ((cl-ecl C ) − { L2 , L1 }) ∪ { L ′, L1 } )
and L ′′ = subst-lit M σ
by auto

have M ∈ cl-ecl C
proof (rule ccontr)

assume M /∈ cl-ecl C
from this and m and l1 have M = L ′ by auto
from this and ‹L ′′ = subst-lit M σ› and ‹L ′ = (Neg (Eq s v))›

have L ′′ = (Neg (Eq (subst s σ) (subst v σ))) by auto
from this and ‹validate-ground-lit ?I L ′′›

have ¬(?I (subst s σ) (subst v σ))
using validate-ground-lit.simps(2 ) validate-ground-eq.simps by metis

from this and i show False unfolding same-values-def int-clset-def by
blast

qed
from ‹M ∈ cl-ecl C › and ‹L ′′ = subst-lit M σ›and ‹validate-ground-lit ?I

L ′′›
have validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)

by (metis (mono-tags, lifting) subst-cl.simps mem-Collect-eq
validate-ground-clause.simps)

from this and cm show False by blast
qed

Now, it remains to prove that the considered clause yields a rule which can
be used to reduce the left-hand side of the maximal equation, which (since
no reduction is possible) entails that the left-hand side must be equivalent
to the right-hand side (thus contradicting the fact that the clause is false).

have (finite (cl-ecl C )) by (simp add: ‹C ∈ S› all-finite)
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have (cl-ecl C ) 6= {} by (simp add: ‹C ∈ S› all-non-empty)
from ‹finite (cl-ecl C )› ‹(cl-ecl C ) 6= {}› ‹ground-clause (subst-cl (cl-ecl C )

σ)›
obtain L where L ∈ (cl-ecl C ) eligible-literal L C σ using eligible-lit-exists

by metis
obtain t s p where orient-lit-inst L t s p σ using literal.exhaust equa-

tion.exhaust
using trm-ord-irrefl trm-ord-trans
unfolding orient-lit-inst-def irrefl-def trans-def by metis

We first show that the terms occurring inside variables are irreducible. To
this aim, we need to consider the normal form of the substitution σ, obtained
by replacing the image of each variable by its normal form.

have ∀ x y.
((x ∈ vars-of-cl (cl-ecl C )) −→ occurs-in y (subst (Var x) σ) −→ trm-rep y

S = y)
proof (rule ccontr)
assume ¬(∀ x y. (x ∈ vars-of-cl (cl-ecl C )) −→ occurs-in y (subst (Var x)

σ) −→ trm-rep y S = y)
then obtain x y where (x ∈ vars-of-cl (cl-ecl C )) and

occurs-in y (subst (Var x) σ) and trm-rep y S 6= y by blast
from ‹occurs-in y (subst (Var x) σ)› obtain p where subterm (subst (Var

x) σ) p y
unfolding occurs-in-def by auto

from ‹subterm (subst (Var x) σ) p y› and ‹trm-rep y S 6= y›
have trm-rep (subst (Var x) σ) S 6= (subst (Var x) σ)
using subts-of-irred-trms-are-irred by blast

let ?ϑ = map-subst (λx. (trm-rep x S)) σ
have equivalent-on σ ?ϑ (vars-of-cl (cl-ecl C )) ?I
proof (rule ccontr)

assume ¬equivalent-on σ ?ϑ (vars-of-cl (cl-ecl C )) ?I
then obtain z where z ∈ vars-of-cl (cl-ecl C )

and ¬ (?I (subst (Var z) σ) (subst (Var z) ?ϑ))
unfolding equivalent-on-def by blast

from ‹¬ (?I (subst (Var z) σ) (subst (Var z) ?ϑ))›
have trm-rep (subst (Var z) σ) S 6= trm-rep (subst (Var z) ?ϑ) S
unfolding same-values-def int-clset-def by blast

from this have trm-rep (trm-rep (subst (Var z) σ) S) S 6= trm-rep (subst
(Var z) ?ϑ) S

using trm-rep-involutive by metis
from this have (subst (Var z) σ) = (subst (Var z) ?ϑ)

using map-subst-lemma [of z σ λx. (trm-rep x S)] by metis
from this and ‹¬ (?I (subst (Var z) σ) (subst (Var z) ?ϑ))›

show False using ‹fo-interpretation ?I ›
unfolding fo-interpretation-def congruence-def equivalence-relation-def

reflexive-def
by metis

qed
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from this and ‹¬ validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)›
‹fo-interpretation ?I ›
have ¬ validate-ground-clause ?I (subst-cl (cl-ecl C ) ?ϑ)
using equivalent-on-cl by metis

have lower-on ?ϑ σ (vars-of-cl (cl-ecl C ))
proof (rule ccontr)

assume ¬lower-on ?ϑ σ (vars-of-cl (cl-ecl C ))
then obtain z where z ∈ vars-of-cl (cl-ecl C )

and (subst (Var z) σ) 6= (subst (Var z) ?ϑ)
and ((subst (Var z) ?ϑ),(subst (Var z) σ)) /∈ trm-ord
unfolding lower-on-def lower-or-eq-def by metis

from ‹(subst (Var z) σ) 6= (subst (Var z) ?ϑ)› have
(trm-rep (subst (Var z) σ) S) = (subst (Var z) ?ϑ)
using map-subst-lemma [of z σ λx. (trm-rep x S)] by metis

from this and ‹(subst (Var z) σ) 6= (subst (Var z) ?ϑ)›
and ‹((subst (Var z) ?ϑ),(subst (Var z) σ)) /∈ trm-ord›

show False using trm-rep-is-lower by metis
qed
have subst (Var x) σ 6= (Var x)
proof

assume subst (Var x) σ = (Var x)
from this and ‹x ∈ vars-of-cl (cl-ecl C )› have ¬ (ground-on (vars-of-cl

(cl-ecl C )) σ)
unfolding ground-on-def ground-term-def by auto

from this and ‹ground-clause (subst-cl (cl-ecl C ) σ)›
show False using ground-clauses-and-ground-substs by metis

qed
from ‹subst (Var x) σ 6= (Var x)›

have (trm-rep (subst (Var x) σ) S) = (subst (Var x) ?ϑ)
using map-subst-lemma [of x σ λx. (trm-rep x S)] by metis

from this and ‹trm-rep (subst (Var x) σ) S 6= (subst (Var x) σ)›
have ((subst (Var x) ?ϑ),(subst (Var x) σ)) ∈ trm-ord
using trm-rep-is-lower by metis

from ‹lower-on ?ϑ σ (vars-of-cl (cl-ecl C ))› and ‹x ∈ vars-of-cl (cl-ecl C )›
‹finite (cl-ecl C )›
and ‹((subst (Var x) ?ϑ),(subst (Var x) σ)) ∈ trm-ord›

have ((C ,?ϑ), (C , σ)) ∈ ecl-ord
using lower-on-cl by blast

from ‹C = fst pair› ‹σ = snd pair› have pair = (C ,σ) by auto
from this and ‹((C ,?ϑ), (C , σ)) ∈ ecl-ord› have
((C ,?ϑ),pair) ∈ ecl-ord
by metis

from this and hyp-ind have ?P (C ,?ϑ) by blast
from ‹(all-trms-irreducible (subst-set (trms-ecl C ) σ)

(λt. (trm-rep t S)))›
‹lower-on ?ϑ σ (vars-of-cl (cl-ecl C ))› ‹C ∈ S› ‹fo-interpretation ?I ›
‹equivalent-on σ ?ϑ (vars-of-cl (cl-ecl C )) ?I › assms(3 )

have (all-trms-irreducible (subst-set (trms-ecl C ) ?ϑ)
(λt. (trm-rep t S)))
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using irred-terms-and-reduced-subst unfolding Ball-def well-constrained-def

by metis
have ground-clause (subst-cl (cl-ecl C ) ?ϑ)
proof −
from ‹ground-clause (subst-cl (cl-ecl C ) σ)›

have ground-on (vars-of-cl (cl-ecl C )) σ using ground-clauses-and-ground-substs
by auto

from this and ‹lower-on ?ϑ σ (vars-of-cl (cl-ecl C ))›
have ground-on (vars-of-cl (cl-ecl C )) ?ϑ
using lower-on-ground by meson

from this show ?thesis using ground-substs-yield-ground-clause by metis
qed
from this
‹(all-trms-irreducible (subst-set (trms-ecl C ) ?ϑ) (λt. (trm-rep t S)))›
‹?P (C ,?ϑ)› ‹¬ validate-ground-clause ?I (subst-cl (cl-ecl C ) ?ϑ)›

‹C ∈ S› show False unfolding int-clset-def by (metis fst-conv snd-conv)
qed

Next, we show that the eligible term t is in normal form. We first need to
establish the result for proper subterms of t before considering the general
case.

have ¬(proper-subterm-red t S σ)
proof
assume (proper-subterm-red t S σ)
from this have trm-rep (subst t σ) S 6= subst t σ

using proper-subterm-red-def substs-preserve-subterms subts-of-irred-trms-are-irred

by blast

from ‹(proper-subterm-red t S σ)›
‹∀ x y.

((x ∈ vars-of-cl (cl-ecl C )) −→ occurs-in y (subst (Var x) σ) −→ trm-rep y
S = y)›

‹eligible-literal L C σ›
‹trm-rep (subst t σ) S 6= subst t σ› ‹L ∈ cl-ecl C ›
‹orient-lit-inst L t s p σ› ‹∀ x∈S . finite (cl-ecl x)›
‹ground-clause (subst-cl (cl-ecl C ) σ)›
‹fo-interpretation (int-clset S)›
‹Ball S well-constrained› ‹C ∈ S›
‹all-trms-irreducible (subst-set (trms-ecl C ) σ) (λt. trm-rep t S)›
‹¬ validate-ground-clause (int-clset S) (subst-cl (cl-ecl C ) σ)›
‹closed-under-renaming S›

have
∃σ ′′ u u ′ pa v D L2 . (reduction L C σ ′′ t s p L2 u u ′ pa v D
(same-values (λt. trm-rep t S)) S σ ∧ variable-disjoint C D)
using reduction-exists [of p t s C S σ L] unfolding int-clset-def by

blast
from this and ‹?nored› show False unfolding int-clset-def by blast
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qed

have p = neg ∨ ¬ equivalent-eq-exists t s (cl-ecl C ) (same-values (λx. trm-rep
x S)) σ

L
proof (rule ccontr)

assume neg: ¬ (p = neg ∨ ¬ equivalent-eq-exists t s (cl-ecl C )
(same-values (λx. trm-rep x S)) σ L)

then have p 6= neg by metis
from neg have equivalent-eq-exists t s (cl-ecl C ) (same-values (λx. trm-rep

x S)) σ L
by metis

from ‹p 6= neg› have p = pos using sign.exhaust by auto
from ‹equivalent-eq-exists t s (cl-ecl C ) (same-values (λx. trm-rep x S)) σ

L›
obtain L2 where L2 ∈ (cl-ecl C ) − { L } and f :∃ u v. orient-lit-inst

L2 u v pos σ ∧
subst t σ = subst u σ ∧ trm-rep (subst s σ) S = trm-rep (subst v σ)

S
unfolding equivalent-eq-exists-def unfolding same-values-def by metis
from f obtain u v where f ′: orient-lit-inst L2 u v pos σ ∧ subst t σ =

subst u σ
∧ trm-rep (subst s σ) S = trm-rep (subst v σ) S

by blast
from f ′ have orient-lit-inst L2 u v pos σ by metis
from f ′ have subst t σ = subst u σ by metis
from f ′ have trm-rep (subst s σ) S = trm-rep (subst v σ) S by metis
from ‹orient-lit-inst L2 u v pos σ› ‹subst t σ = subst u σ›

‹trm-rep (subst s σ) S = trm-rep (subst v σ) S›
‹orient-lit-inst L t s p σ› ‹p = pos› ‹L ∈ (cl-ecl C )› ‹L2 ∈ (cl-ecl C ) −

{ L }›
‹eligible-literal L C σ›

‹¬(proper-subterm-red t S σ)›
and ‹?no-fact› show False by blast

qed

have (trm-rep (subst t σ) S) = (subst t σ)
proof (rule ccontr)

assume (trm-rep (subst t σ) S) 6= (subst t σ)

from ‹p = neg ∨ ¬ equivalent-eq-exists t s (cl-ecl C ) (same-values (λx.
trm-rep x S)) σ L›

‹∀ x y.
((x ∈ vars-of-cl (cl-ecl C )) −→ occurs-in y (subst (Var x) σ) −→ trm-rep y

S = y)›
‹eligible-literal L C σ›
‹trm-rep (subst t σ) S 6= subst t σ› ‹L ∈ cl-ecl C ›
‹orient-lit-inst L t s p σ› ‹∀ x∈S . finite (cl-ecl x)›
‹ground-clause (subst-cl (cl-ecl C ) σ)›
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‹fo-interpretation (int-clset S)›
‹Ball S well-constrained› ‹C ∈ S›
‹all-trms-irreducible (subst-set (trms-ecl C ) σ) (λt. trm-rep t S)›
‹¬ validate-ground-clause (int-clset S) (subst-cl (cl-ecl C ) σ)›
‹closed-under-renaming S›

have
∃σ ′′ u u ′ pa v D L2 . (reduction L C σ ′′ t s p L2 u u ′ pa v D
(same-values (λt. trm-rep t S)) S σ ∧ variable-disjoint C D)
using reduction-exists [of p t s C S σ L] unfolding int-clset-def by

blast
from this and ‹?nored› show False unfolding int-clset-def by blast

qed

from ‹orient-lit-inst L t s p σ› have ((subst t σ),(subst s σ)) /∈ trm-ord
unfolding orient-lit-inst-def by auto

from ‹ground-clause (subst-cl (cl-ecl C ) σ)›
have vars-of-cl (subst-cl (cl-ecl C ) σ) = {} by auto

from this and ‹L ∈ (cl-ecl C )› have vars-of-lit (subst-lit L σ) = {} by auto
from ‹orient-lit-inst L t s p σ›

have orient-lit (subst-lit L σ) (subst t σ) (subst s σ) p
using lift-orient-lit by auto

from ‹orient-lit (subst-lit L σ) (subst t σ) (subst s σ) p›
have vars-of (subst t σ) ⊆ vars-of-lit (subst-lit L σ)
using orient-lit-vars by auto

from this and ‹vars-of-lit (subst-lit L σ) = {}› have vars-of (subst t σ) =
{}

by auto
from ‹orient-lit (subst-lit L σ) (subst t σ) (subst s σ) p›

have vars-of (subst s σ) ⊆ vars-of-lit (subst-lit L σ)
using orient-lit-vars by auto

from this and ‹vars-of-lit (subst-lit L σ) = {}› have vars-of (subst s σ) =
{}

by auto
from

‹((subst t σ),(subst s σ)) /∈ trm-ord›
‹vars-of (subst t σ) = {}› ‹vars-of (subst s σ) = {}›
have (subst t σ) = (subst s σ) ∨ ((subst s σ),(subst t σ)) ∈ trm-ord
using trm-ord-ground-total unfolding ground-term-def by blast

from ‹L ∈ (cl-ecl C )› have (subst-lit L σ) ∈ (subst-cl (cl-ecl C ) σ) by auto

Using the fact that the eligible term is in normal form and that the eligible
literal is false in the considered interpretation but is not a contradiction, we
deduce that this literal must be positive.

have p = pos
proof (rule ccontr)

assume p 6= pos
from this have p = neg using sign.exhaust by auto
from ‹trm-rep (subst t σ) S = (subst t σ)› ‹L ∈ (cl-ecl C )› ‹eligible-literal
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L C σ›
and ‹orient-lit-inst L t s p σ› ‹p = neg› ‹?no-cont›
have (subst t σ) 6= (subst s σ) by blast

from this and
‹(subst t σ) = (subst s σ) ∨ ((subst s σ),(subst t σ)) ∈ trm-ord›

and ‹trm-rep (subst t σ) S = subst t σ›
have ((trm-rep (subst s σ) S),(trm-rep (subst t σ) S)) ∈ trm-ord

using trm-rep-is-lower [of (subst s σ) S ] trm-ord-trans unfolding trans-def
by metis

from this have (trm-rep (subst s σ) S) 6= (trm-rep (subst t σ) S)
using trm-ord-irrefl irrefl-def by metis

from this have ¬validate-ground-eq ?I (Eq (subst t σ) (subst s σ))
unfolding same-values-def int-clset-def using validate-ground-eq.simps
by (metis (mono-tags, lifting))

from ‹(trm-rep (subst s σ) S) 6= (trm-rep (subst t σ) S)›
have ¬validate-ground-eq ?I (Eq (subst s σ) (subst t σ))
unfolding same-values-def int-clset-def using validate-ground-eq.simps
by (metis (mono-tags, lifting))

from ‹orient-lit-inst L t s p σ› and ‹p=neg› have L = (Neg (Eq t s)) ∨ L
= (Neg (Eq s t))

unfolding orient-lit-inst-def by auto
from this have subst-lit L σ = (Neg (Eq (subst t σ) (subst s σ)))
∨ subst-lit L σ = (Neg (Eq (subst s σ) (subst t σ))) by auto

from this and ‹¬validate-ground-eq ?I (Eq (subst s σ) (subst t σ))›
and ‹¬validate-ground-eq ?I (Eq (subst t σ) (subst s σ))›

have validate-ground-lit ?I (subst-lit L σ) using validate-ground-lit.simps(2 )
by metis

from ‹(subst-lit L σ) ∈ (subst-cl (cl-ecl C ) σ)›
and ‹validate-ground-lit ?I (subst-lit L σ)›
have validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)
using validate-ground-clause.elims(3 ) by blast

from this and ‹¬ validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)› show
False by blast

qed

This entails that the right-hand side of the eligible literal occurs in the set
of possible values for the left-hand side t, which is impossible since this term
is irreducible.

from ‹L ∈ (cl-ecl C )› ‹orient-lit-inst L t s p σ› ‹p = pos›
‹¬ validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)›
have trm-rep (subst t σ) S 6= trm-rep (subst s σ) S
using no-valid-literal by metis

from this have (subst t σ) 6= (subst s σ) by metis
from this and ‹(subst t σ) = (subst s σ) ∨ ((subst s σ),(subst t σ)) ∈ trm-ord›

have ((subst s σ),(subst t σ)) ∈ trm-ord
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using trm-ord-ground-total unfolding ground-term-def by blast
from ‹p=pos› and ‹orient-lit-inst L t s p σ› have ¬negative-literal L

unfolding orient-lit-inst-def by auto
from this and ‹eligible-literal L C σ›

have sel(cl-ecl C ) = {} and maximal-literal (subst-lit L σ) (subst-cl (cl-ecl
C ) σ)

using sel-neg unfolding eligible-literal-def by auto

from ‹¬ validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)›
have smaller-lits-are-false (subst t σ) (subst-cl (cl-ecl C ) σ) S

using smaller-lits-are-false-if-cl-not-valid [of S (subst-cl (cl-ecl C ) σ) ] by
blast

from ‹p = pos› and ‹p = neg ∨ ¬ equivalent-eq-exists t s (cl-ecl C )
(same-values (λx. trm-rep x S)) σ L›

have ¬ equivalent-eq-exists t s (cl-ecl C ) (int-clset S) σ L unfolding
int-clset-def

using sign.distinct by metis
from this ‹p=pos› have maximal-literal-is-unique (subst t σ) (subst s σ) (cl-ecl

C ) L S σ
using maximal-literal-is-unique-lemma [of t s (cl-ecl C ) S σ L] by blast

from ‹all-trms-irreducible (subst-set (trms-ecl C ) σ) (λt. trm-rep t S)›
have trms-irreducible C σ S (subst t σ)
using trms-irreducible-lemma by blast

have (subst t σ) /∈ subst-set (trms-ecl C ) σ
proof
assume (subst t σ) ∈ subst-set (trms-ecl C ) σ
from this obtain t ′ where t ′ ∈ trms-ecl C and (subst t ′ σ) = (subst t σ) by

auto
from ‹t ′ ∈ trms-ecl C › and assms(3 ) and ‹C ∈ S› have dom-trm t ′ (cl-ecl

C )
unfolding Ball-def well-constrained-def by auto

from this obtain M u v q where M ∈ (cl-ecl C ) decompose-literal M u v q
and

q = neg ∧ (u = t ′) ∨ ( (t ′,u) ∈ trm-ord) unfolding dom-trm-def by blast
obtain u ′ v ′ q ′ where orient-lit-inst M u ′ v ′ q ′ σ using literal.exhaust

equation.exhaust
using trm-ord-irrefl trm-ord-trans
unfolding orient-lit-inst-def irrefl-def trans-def by metis

from ‹decompose-literal M u v q› and ‹orient-lit-inst M u ′ v ′ q ′ σ›
have u = u ′ ∨ u = v ′

unfolding decompose-literal-def orient-lit-inst-def
by (metis atom.simps(2 ) decompose-equation-def equation.inject lit-

eral.distinct(1 )
literal.inject(1 ))

from ‹decompose-literal M u v q› and ‹orient-lit-inst M u ′ v ′ q ′ σ›
have q = q ′

unfolding decompose-literal-def orient-lit-inst-def by auto
from ‹vars-of-cl (subst-cl (cl-ecl C ) σ) = {}› and ‹M ∈ (cl-ecl C )›
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have vars-of-lit (subst-lit M σ) = {} by auto
from ‹orient-lit-inst M u ′ v ′ q ′ σ› have

orient-lit (subst-lit M σ) (subst u ′ σ) (subst v ′ σ) q ′

using lift-orient-lit by auto
from ‹orient-lit-inst L t s p σ› have

orient-lit (subst-lit L σ) (subst t σ) (subst s σ) p
using lift-orient-lit by auto

have (t ′,u) /∈ trm-ord
proof

assume (t ′,u) ∈ trm-ord
then have ((subst t ′ σ),(subst u σ)) ∈ trm-ord

using trm-ord-subst by auto
from this and ‹(subst t ′ σ) = (subst t σ)› have
((subst t σ),(subst u σ)) ∈ trm-ord by auto

from ‹orient-lit (subst-lit M σ) (subst u ′ σ) (subst v ′ σ) q ′›
and ‹orient-lit (subst-lit L σ) (subst t σ) (subst s σ) p›
and ‹((subst t σ),(subst u σ)) ∈ trm-ord›
and ‹vars-of-lit (subst-lit M σ) = {}›
and ‹vars-of-lit (subst-lit L σ) = {}›
and ‹u = u ′ ∨ u = v ′›
have ((subst-lit L σ),(subst-lit M σ)) ∈ lit-ord
using lit-ord-dominating-term by metis

from this and ‹maximal-literal (subst-lit L σ) (subst-cl (cl-ecl C ) σ)›
and ‹M ∈ (cl-ecl C )› show False using maximal-literal-def by auto

qed
have ¬ (q = neg ∧ (u = t ′))
proof

assume q = neg ∧ (u = t ′)
then have q = neg and u = t ′ by auto
from ‹orient-lit (subst-lit M σ) (subst u ′ σ) (subst v ′ σ) q ′›

and ‹orient-lit (subst-lit L σ) (subst t σ) (subst s σ) p›
and ‹u = t ′›
and ‹(subst t ′ σ) = (subst t σ)›
and ‹q = neg› and ‹q = q ′›
and ‹p = pos›
and ‹vars-of-lit (subst-lit M σ) = {}›
and ‹vars-of-lit (subst-lit L σ) = {}›
and ‹u = u ′ ∨ u = v ′›
have ((subst-lit L σ),(subst-lit M σ)) ∈ lit-ord
using lit-ord-neg-lit-lhs lit-ord-neg-lit-rhs by metis

from this and ‹maximal-literal (subst-lit L σ) (subst-cl (cl-ecl C ) σ)›
and ‹M ∈ (cl-ecl C )› show False using maximal-literal-def by auto

qed
from this and ‹(t ′,u) /∈ trm-ord› and ‹q = neg ∧ (u = t ′) ∨ ( (t ′,u) ∈

trm-ord)›
show False by auto

qed

from ‹C ∈ S› ‹(subst s σ, subst t σ) ∈ trm-ord›
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and ‹p=pos› ‹orient-lit-inst L t s p σ› and ‹sel (cl-ecl C ) = {}›
and ‹L ∈ cl-ecl C ›
and ‹maximal-literal (subst-lit L σ) (subst-cl (cl-ecl C ) σ)›
and ‹ground-clause (subst-cl (cl-ecl C ) σ)›
and ‹finite (cl-ecl C )›
and ‹smaller-lits-are-false (subst t σ) (subst-cl (cl-ecl C ) σ) S›
and ‹maximal-literal-is-unique (subst t σ) (subst s σ) (cl-ecl C ) L S σ›
and ‹trms-irreducible C σ S (subst t σ)›
and ‹(subst t σ) /∈ subst-set (trms-ecl C ) σ›
have cv: (candidate-values (trm-rep (subst s σ) S) C (cl-ecl C )
(subst-cl (cl-ecl C ) σ) (subst s σ) (subst-lit L σ) L σ t s (subst t σ) S)

unfolding candidate-values-def by blast
from cv have (trm-rep (subst s σ) S ,(subst s σ)) ∈ set-of-candidate-values

S (subst t σ)
unfolding set-of-candidate-values-def by blast

from ‹trm-rep (subst t σ) S = (subst t σ)›
have ¬(subterm-reduction-applicable S (subst t σ))
using trm-rep-is-lower-subt-red trm-ord-irrefl irrefl-def
by metis

from ‹(trm-rep (subst s σ) S , subst s σ)
∈ set-of-candidate-values S (subst t σ)›
have set-of-candidate-values S (subst t σ) 6= {} by blast

from ‹(trm-rep (subst s σ) S , subst s σ)
∈ set-of-candidate-values S (subst t σ)›
have min-trms (set-of-candidate-values S (subst t σ)) 6= {}
using min-trms-not-empty by blast

from ‹¬(subterm-reduction-applicable S (subst t σ))›
‹min-trms (set-of-candidate-values S (subst t σ)) 6= {}›

have (trm-rep (subst t σ) S ,(subst t σ)) ∈ trm-ord
using trm-rep-is-lower-root-red [of S subst t σ] by blast

from this and ‹(trm-rep (subst t σ) S) = (subst t σ)›
show False using trm-ord-irrefl irrefl-def by metis

qed
qed

As an immediate consequence of the previous lemma, we show that the set
of clauses that are derivable from an unsatisfiable clause set must contain
an empty clause (since this set is trivially saturated).
lemma COMPLETENESS :

assumes ∀ x. (x ∈ S −→ (trms-ecl x = {}))
assumes (∀ x∈S . finite (cl-ecl x))
assumes ¬ (satisfiable-clause-set (cl-ecl ‘ S))
shows ∃ x. (derivable-ecl x S) ∧ cl-ecl x = {}

proof (rule ccontr)
assume ¬ (∃ x. (derivable-ecl x S) ∧ cl-ecl x = {})
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let ?S = { y. (derivable-ecl y S) }
let ?I = same-values (λx. (trm-rep x ?S))
have fo-interpretation ?I using trm-rep-compatible-with-structure same-values-fo-int

by metis

have ∀ x ∈ ?S . (cl-ecl x) 6= {}
proof (rule ccontr)

assume ¬ ?thesis
then obtain x where x ∈ ?S and cl-ecl x = {} by blast
from ‹x ∈ ?S› have derivable-ecl x S by (meson CollectD)
from this ‹cl-ecl x = {}› ‹¬ (∃ x. (derivable-ecl x S) ∧ cl-ecl x = {})›

show False by metis
qed
have all-finite: ∀ x ∈ ?S . (finite (cl-ecl x))
proof (rule ccontr)

assume ¬ ?thesis
then obtain x where x ∈ ?S and ¬ finite (cl-ecl x) by blast
from ‹x ∈ ?S› have derivable-ecl x S by (meson CollectD)

from this assms(2 ) ‹¬ finite (cl-ecl x)› show False using all-derived-clauses-are-finite
by metis

qed
have Ball S well-constrained
proof

fix x assume x ∈ S
from this assms(1 ) have trms-ecl x = {} by auto
from this show well-constrained x unfolding well-constrained-def by blast

qed
have Ball ?S well-constrained
proof

fix x assume x ∈ ?S
from this have derivable-ecl x S by (meson CollectD)
from this assms(2 ) ‹Ball S well-constrained› show well-constrained x

using all-derived-clauses-are-wellconstrained
by metis

qed
have closed-under-renaming ?S
proof (rule ccontr)

assume ¬ ?thesis
then obtain C D where C ∈ ?S renaming-cl C D D /∈ ?S

unfolding closed-under-renaming-def by metis
from ‹C ∈ ?S› have derivable-ecl C S by (meson CollectD)
from ‹derivable-ecl C S› ‹renaming-cl C D› have (derivable-ecl D S)

using derivable-ecl.intros(2 ) by metis
from this and ‹D /∈ ?S› show False by blast

qed
have inference-closed ?S
proof (rule ccontr)

assume ¬ ?thesis
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then obtain D P ϑ C ′ where (derivable D P ?S ϑ FirstOrder C ′) D /∈ ?S
unfolding inference-closed-def by metis

from ‹derivable D P ?S ϑ FirstOrder C ′› have P ⊆ ?S using derivable-premisses
by metis

have ∀ x. x ∈ P −→ derivable-ecl x S
proof ((rule allI ),(rule impI ))

fix x assume x ∈ P
from this and ‹P ⊆ ?S› have x ∈ ?S by (meson rev-subsetD)
from this show derivable-ecl x S by (meson CollectD)

qed
from this and ‹(derivable D P ?S ϑ FirstOrder C ′)› have derivable-ecl D S

using derivable-ecl.intros(3 ) [of P S D ?S ϑ C ′] by meson
from this and ‹D /∈ ?S› show False by blast

qed
from this all-finite have clause-saturated ?S

using inference-closed-sets-are-saturated by meson
from this all-finite have inference-saturated ?S

using clause-saturated-and-inference-saturated by meson
from this have ground-inference-saturated ?S

using lift-inference by metis
have validate-clause-set ?I (cl-ecl ‘ S)
proof (rule ccontr)

assume ¬ ?thesis
from this obtain Cl-C where clc: Cl-C ∈ (cl-ecl ‘ S) and ¬ (validate-clause

?I Cl-C )
using validate-clause-set.simps by metis

from clc obtain C where C ∈ S and Cl-C = (cl-ecl C ) by blast
from ‹C ∈ S› have derivable-ecl C S

using derivable-ecl.intros(1 ) by metis
from this have C ∈ ?S by blast
from ‹¬ (validate-clause ?I Cl-C )› obtain σ

where ¬ (validate-ground-clause ?I (subst-cl Cl-C σ))
and ground-clause (subst-cl Cl-C σ)

using validate-clause.simps by metis
let ?pair = (C ,σ)
have fst ?pair = C by auto
have snd ?pair = σ by auto

from ‹C ∈ S› assms(1 ) have trms-ecl C = {} by auto
then have (subst-set (trms-ecl C ) σ) = {} by auto
then have n: all-trms-irreducible (subst-set (trms-ecl C ) σ)

(λt. trm-rep t {y. derivable-ecl y S})
unfolding all-trms-irreducible-def by blast

from ‹ground-inference-saturated ?S› all-finite ‹Ball ?S well-constrained›
‹closed-under-renaming ?S› ‹∀ x ∈ ?S . (cl-ecl x) 6= {}›

have ∀C σ. fst ?pair = C −→
σ = snd ?pair −→
C ∈ {y. derivable-ecl y S} −→
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ground-clause (subst-cl (cl-ecl C ) σ) −→
all-trms-irreducible (subst-set (trms-ecl C ) σ) (λt. trm-rep t {y. derivable-ecl

y S})
−→ validate-ground-clause ?I (subst-cl (cl-ecl C ) σ)

using int-clset-is-a-model [of ?S ?pair ] by blast
from this ‹fst ?pair = C › ‹C ∈ ?S› ‹snd ?pair = σ› ‹Cl-C = (cl-ecl C )›

‹ground-clause (subst-cl Cl-C σ)› n
have validate-ground-clause ?I (subst-cl (cl-ecl C ) σ) by metis

from this and ‹¬ (validate-ground-clause ?I (subst-cl Cl-C σ))› ‹Cl-C = (cl-ecl
C )›

show False by metis
qed
from this and assms(3 ) ‹fo-interpretation ?I › show False using satisfiable-clause-set-def

by metis
qed

end

end
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