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Abstract

We formally define sunflowers and provide a formalization of the
sunflower lemma of Erdős and Rado: whenever a set of size-k-sets has
a larger cardinality than (r − 1)k · k!, then it contains a sunflower of
cardinality r.

1 Sunflowers
Sunflowers are sets of sets, such that whenever an element is contained in
at least two of the sets, then it is contained in all of the sets.
theory Sunflower

imports Main
HOL−Library.FuncSet

begin

definition sunflower :: ′a set set ⇒ bool where
sunflower S = (∀ x. (∃ A B. A ∈ S ∧ B ∈ S ∧ A 6= B ∧

x ∈ A ∧ x ∈ B)
−→ (∀ A. A ∈ S −→ x ∈ A))

lemma sunflower-subset: F ⊆ G =⇒ sunflower G =⇒ sunflower F
〈proof 〉

lemma pairwise-disjnt-imp-sunflower :
pairwise disjnt F =⇒ sunflower F
〈proof 〉

lemma card2-sunflower : assumes finite S and card S ≤ 2
shows sunflower S
〈proof 〉

lemma empty-sunflower : sunflower {}
〈proof 〉

lemma singleton-sunflower : sunflower {A}
〈proof 〉
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lemma doubleton-sunflower : sunflower {A,B}
〈proof 〉

lemma sunflower-imp-union-intersect-unique:
assumes sunflower S

and x ∈ (
⋃

S) − (
⋂

S)
shows ∃ ! A. A ∈ S ∧ x ∈ A
〈proof 〉

lemma union-intersect-unique-imp-sunflower :
assumes

∧
x. x ∈ (

⋃
S) − (

⋂
S) =⇒ ∃≤1 A. A ∈ S ∧ x ∈ A

shows sunflower S
〈proof 〉

lemma sunflower-iff-union-intersect-unique:
sunflower S ←→ (∀ x ∈

⋃
S −

⋂
S . ∃ ! A. A ∈ S ∧ x ∈ A)

(is ?l = ?r)
〈proof 〉

lemma sunflower-iff-intersect-Uniq:
sunflower S ←→ (∀ x. x ∈

⋂
S ∨ (∃≤1 A. A ∈ S ∧ x ∈ A))

(is ?l = ?r)
〈proof 〉

If there exists sunflowers whenever all elements are sets of the same
cardinality r, then there also exists sunflowers whenever all elements are
sets with cardinality at most r.
lemma sunflower-card-subset-lift: fixes F :: ′a set set

assumes sunflower :
∧

G :: ( ′a + nat) set set.
(∀ A ∈ G. finite A ∧ card A = k) =⇒ card G > c

=⇒ ∃ S . S ⊆ G ∧ sunflower S ∧ card S = r
and kF : ∀ A ∈ F . finite A ∧ card A ≤ k
and cardF : card F > c

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r
〈proof 〉

We provide another sunflower lifting lemma that ensures non-empty
cores. Here, all elements must be taken from a finite set, and the bound
is multiplied the cardinality.
lemma sunflower-card-core-lift:

assumes finE : finite (E :: ′a set)
and sunflower :

∧
G :: ′a set set.

(∀ A ∈ G. finite A ∧ card A ≤ k) =⇒ card G > c
=⇒ ∃ S . S ⊆ G ∧ sunflower S ∧ card S = r

and F : ∀ A ∈ F . A ⊆ E ∧ s ≤ card A ∧ card A ≤ k
and cardF : card F > (card E choose s) ∗ c
and s: s 6= 0
and r : r 6= 0
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shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧ card (
⋂

S) ≥ s
〈proof 〉

lemma sunflower-nonempty-core-lift:
assumes finE : finite (E :: ′a set)

and sunflower :
∧

G :: ′a set set.
(∀ A ∈ G. finite A ∧ card A ≤ k) =⇒ card G > c

=⇒ ∃ S . S ⊆ G ∧ sunflower S ∧ card S = r
and F : ∀ A ∈ F . A ⊆ E ∧ card A ≤ k
and empty: {} /∈ F
and cardF : card F > card E ∗ c

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧ (
⋂

S) 6= {}
〈proof 〉

end

2 The Sunflower Lemma
We formalize the proof of the sunflower lemma of Erdős and Rado [2], as it
is presented in the textbook [3, Chapter 6]. We further integrate Exercise
6.2 from the textbook, which provides a lower bound on the existence of
sunflowers.
theory Erdos-Rado-Sunflower

imports
Sunflower

begin

When removing an element from all subsets, then one can afterwards
add these elements to a sunflower and get a new sunflower.
lemma sunflower-remove-element-lift:

assumes S : S ⊆ { A − {a} | A . A ∈ F ∧ a ∈ A}
and sf : sunflower S

shows ∃ Sa. sunflower Sa ∧ Sa ⊆ F ∧ card Sa = card S ∧ Sa = insert a ‘ S
〈proof 〉

The sunflower-lemma of Erdős and Rado: if a set has a certain size and
all elements have the same cardinality, then a sunflower exists.
lemma Erdos-Rado-sunflower-same-card:

assumes ∀ A ∈ F . finite A ∧ card A = k
and card F > (r − 1 )^k ∗ fact k

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧ {} /∈ S
〈proof 〉

Using sunflower-card-subset-lift we can easily replace the condition that
the cardinality is exactly k by the requirement that the cardinality is at
most k. However, then {} /∈ S cannot be ensured. Consider r = 1 ∧ 0 < k
∧ F = {{}}.
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lemma Erdos-Rado-sunflower :
assumes ∀ A ∈ F . finite A ∧ card A ≤ k

and card F > (r − 1 )^k ∗ fact k
shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r
〈proof 〉

We further provide a lower bound on the existence of sunflowers, i.e.,
Exercise 6.2 of the textbook [3]. To be more precise, we prove that there is
a set of sets of cardinality (r − 1 )k, where each element is a set of cardinality
k, such that there is no subset which is a sunflower with cardinality of at
least r.
lemma sunflower-lower-bound:

assumes inf : infinite (UNIV :: ′a set)
and r : r 6= 0
and rk: r = 1 =⇒ k 6= 0

shows ∃ F .
card F = (r − 1 )^k ∧ finite F ∧
(∀ A ∈ F . finite (A :: ′a set) ∧ card A = k) ∧
(@ S . S ⊆ F ∧ sunflower S ∧ card S ≥ r)

〈proof 〉

The difference between the lower and the upper bound on the existence
of sunflowers as they have been formalized is fact k. There is more recent
work with tighter bounds [1], but we only integrate the initial result of Erdős
and Rado in this theory.

We further provide the Erdős Rado lemma lifted to obtain non-empty
cores or cores of arbitrary cardinality.
lemma Erdos-Rado-sunflower-card-core:

assumes finite E
and ∀ A ∈ F . A ⊆ E ∧ s ≤ card A ∧ card A ≤ k
and card F > (card E choose s) ∗ (r − 1 )^k ∗ fact k
and s 6= 0
and r 6= 0

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧ card (
⋂

S) ≥ s
〈proof 〉

lemma Erdos-Rado-sunflower-nonempty-core:
assumes finite E

and ∀ A ∈ F . A ⊆ E ∧ card A ≤ k
and {} /∈ F
and card F > card E ∗ (r − 1 )^k ∗ fact k

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧
⋂

S 6= {}
〈proof 〉

end

4



References
[1] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved

bounds for the sunflower lemma. In Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages
624–630. ACM, 2020. doi:10.1145/3357713.3384234.

[2] Paul Erdős and Richard Rado. Intersection theorems for systems of
sets. Journal of the London Mathematical Society, 35:85–90, 1960. doi:
10.1112/jlms/s1-35.1.85.

[3] Stasys Jukna. Extremal Combinatorics. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2011. doi:10.1007/
978-3-642-17364-6_6.

5

http://dx.doi.org/10.1145/3357713.3384234
http://dx.doi.org/10.1112/jlms/s1-35.1.85
http://dx.doi.org/10.1112/jlms/s1-35.1.85
http://dx.doi.org/10.1007/978-3-642-17364-6_6
http://dx.doi.org/10.1007/978-3-642-17364-6_6

	Sunflowers
	The Sunflower Lemma

