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Abstract

We formally define sunflowers and provide a formalization of the
sunflower lemma of Erdős and Rado: whenever a set of size-k-sets has
a larger cardinality than (r − 1)k · k!, then it contains a sunflower of
cardinality r.

1 Sunflowers
Sunflowers are sets of sets, such that whenever an element is contained in
at least two of the sets, then it is contained in all of the sets.
theory Sunflower

imports Main
HOL−Library.FuncSet

begin

definition sunflower :: ′a set set ⇒ bool where
sunflower S = (∀ x. (∃ A B. A ∈ S ∧ B ∈ S ∧ A 6= B ∧

x ∈ A ∧ x ∈ B)
−→ (∀ A. A ∈ S −→ x ∈ A))

lemma sunflower-subset: F ⊆ G =⇒ sunflower G =⇒ sunflower F
unfolding sunflower-def by blast

lemma pairwise-disjnt-imp-sunflower :
pairwise disjnt F =⇒ sunflower F
unfolding sunflower-def
by (metis disjnt-insert1 mk-disjoint-insert pairwiseD)

lemma card2-sunflower : assumes finite S and card S ≤ 2
shows sunflower S

proof −
from assms have card S = 0 ∨ card S = Suc 0 ∨ card S = 2 by linarith
with ‹finite S› obtain A B where S = {} ∨ S = {A} ∨ S = {A,B}

using card-2-iff [of S ] card-1-singleton-iff [of S ] by auto
thus ?thesis unfolding sunflower-def by auto

qed
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lemma empty-sunflower : sunflower {}
by (rule card2-sunflower , auto)

lemma singleton-sunflower : sunflower {A}
by (rule card2-sunflower , auto)

lemma doubleton-sunflower : sunflower {A,B}
by (rule card2-sunflower , auto, cases A = B, auto)

lemma sunflower-imp-union-intersect-unique:
assumes sunflower S

and x ∈ (
⋃

S) − (
⋂

S)
shows ∃ ! A. A ∈ S ∧ x ∈ A

proof −
from assms obtain A where A: A ∈ S x ∈ A by auto
show ?thesis
proof

show A ∈ S ∧ x ∈ A using A by auto
fix B
assume B: B ∈ S ∧ x ∈ B
show B = A
proof (rule ccontr)

assume B 6= A
with A B have ∃A B. A ∈ S ∧ B ∈ S ∧ A 6= B ∧ x ∈ A ∧ x ∈ B by auto
from ‹sunflower S›[unfolded sunflower-def , rule-format, OF this]
have x ∈

⋂
S by auto

with assms show False by auto
qed

qed
qed

lemma union-intersect-unique-imp-sunflower :
assumes

∧
x. x ∈ (

⋃
S) − (

⋂
S) =⇒ ∃≤1 A. A ∈ S ∧ x ∈ A

shows sunflower S
unfolding sunflower-def

proof (intro allI impI , elim exE conjE , goal-cases)
case (1 x C A B)
hence x: x ∈

⋃
S by auto

show ?case
proof (cases x ∈

⋂
S)

case False
with assms[of x] x have ∃≤1 A. A ∈ S ∧ x ∈ A by blast
with 1 have False unfolding Uniq-def by blast
thus ?thesis ..

next
case True
with 1 show ?thesis by blast

qed
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qed

lemma sunflower-iff-union-intersect-unique:
sunflower S ←→ (∀ x ∈

⋃
S −

⋂
S . ∃ ! A. A ∈ S ∧ x ∈ A)

(is ?l = ?r)
proof

assume ?l
from sunflower-imp-union-intersect-unique[OF this]
show ?r by auto

next
assume ?r
hence ∗: ∀ x∈

⋃
S −

⋂
S . ∃≤1 A. A ∈ S ∧ x ∈ A

unfolding ex1-iff-ex-Uniq by auto
show ?l

by (rule union-intersect-unique-imp-sunflower , insert ∗, auto)
qed

lemma sunflower-iff-intersect-Uniq:
sunflower S ←→ (∀ x. x ∈

⋂
S ∨ (∃≤1 A. A ∈ S ∧ x ∈ A))

(is ?l = ?r)
proof

assume ?l
from sunflower-imp-union-intersect-unique[OF this]
show ?r unfolding ex1-iff-ex-Uniq

by (metis (no-types, lifting) DiffI UnionI Uniq-I )
next

assume ?r
show ?l

by (rule union-intersect-unique-imp-sunflower , insert ‹?r›, auto)
qed

If there exists sunflowers whenever all elements are sets of the same
cardinality r, then there also exists sunflowers whenever all elements are
sets with cardinality at most r.
lemma sunflower-card-subset-lift: fixes F :: ′a set set

assumes sunflower :
∧

G :: ( ′a + nat) set set.
(∀ A ∈ G. finite A ∧ card A = k) =⇒ card G > c

=⇒ ∃ S . S ⊆ G ∧ sunflower S ∧ card S = r
and kF : ∀ A ∈ F . finite A ∧ card A ≤ k
and cardF : card F > c

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r
proof −

let ?n = Suc c
from cardF have card F ≥ ?n by auto
then obtain FF where sub: FF ⊆ F and cardF : card FF = ?n

by (rule obtain-subset-with-card-n)
let ?N = {0 ..< ?n}
from cardF have finite FF

by (simp add: card-ge-0-finite)
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from ex-bij-betw-nat-finite[OF this, unfolded cardF ]
obtain f where f : bij-betw f ?N FF by auto
hence injf : inj-on f ?N by (rule bij-betw-imp-inj-on)
have Ff : FF = f ‘ ?N

by (metis bij-betw-imp-surj-on f )
define g where g = (λ i. (Inl ‘ f i) ∪ (Inr ‘ {0 ..< (k − card (f i))}))
have injg: inj-on g ?N unfolding g-def using f
proof (intro inj-onI , goal-cases)

case (1 x y)
hence f x = f y by auto
with injf 1 show x = y

by (meson inj-onD)
qed
hence cardgN : card (g ‘ ?N ) > c

by (simp add: card-image)
{

fix i
assume i ∈ ?N
hence f i ∈ FF unfolding Ff by auto
with sub have f i ∈ F by auto
hence card (f i) ≤ k finite (f i) using kF by auto
hence card (g i) = k ∧ finite (g i) unfolding g-def

by (subst card-Un-disjoint, auto, subst (1 2 ) card-image, auto intro: inj-onI )
}
hence ∀ A ∈ g ‘ ?N . finite A ∧ card A = k by auto
from sunflower [OF this cardgN ]
obtain S where SgN : S ⊆ g ‘ ?N and sf : sunflower S and card: card S = r

by auto
from SgN obtain N where NN : N ⊆ ?N and SgN : S = g ‘ N

by (meson subset-image-iff )
from injg NN have inj-g: inj-on g N

by (rule inj-on-subset)
from injf NN have inj-f : inj-on f N

by (rule inj-on-subset)
from card-image[OF inj-g] SgN card
have cardN : card N = r by auto
let ?S = f ‘ N
show ?thesis
proof (intro exI [of - ?S ] conjI )

from NN show ?S ⊆ F using Ff sub by auto
from card-image[OF inj-f ] cardN show card ?S = r by auto
show sunflower ?S unfolding sunflower-def
proof (intro allI impI , elim exE conjE , goal-cases)

case (1 x C A B)
from ‹A ∈ f ‘ N › obtain i where i: i ∈ N and A: A = f i by auto
from ‹B ∈ f ‘ N › obtain j where j: j ∈ N and B: B = f j by auto
from ‹C ∈ f ‘ N › obtain k where k: k ∈ N and C : C = f k by auto
hence gk: g k ∈ g ‘ N by auto
from ‹A 6= B› A B have ij: i 6= j by auto
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from inj-g ij i j have gij: g i 6= g j by (metis inj-on-contraD)
from ‹x ∈ A› have memi: Inl x ∈ g i unfolding A g-def by auto
from ‹x ∈ B› have memj: Inl x ∈ g j unfolding B g-def by auto
have ∃A B. A ∈ g ‘ N ∧ B ∈ g ‘ N ∧ A 6= B ∧ Inl x ∈ A ∧ Inl x ∈ B

using memi memj gij i j by auto
from sf [unfolded sunflower-def SgN , rule-format, OF this gk] have Inl x ∈ g

k .
thus x ∈ C unfolding C g-def by auto

qed
qed

qed

We provide another sunflower lifting lemma that ensures non-empty
cores. Here, all elements must be taken from a finite set, and the bound
is multiplied the cardinality.
lemma sunflower-card-core-lift:

assumes finE : finite (E :: ′a set)
and sunflower :

∧
G :: ′a set set.

(∀ A ∈ G. finite A ∧ card A ≤ k) =⇒ card G > c
=⇒ ∃ S . S ⊆ G ∧ sunflower S ∧ card S = r

and F : ∀ A ∈ F . A ⊆ E ∧ s ≤ card A ∧ card A ≤ k
and cardF : card F > (card E choose s) ∗ c
and s: s 6= 0
and r : r 6= 0

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧ card (
⋂

S) ≥ s
proof −

let ?g = λ (A :: ′a set) x. card x = s ∧ x ⊆ A
let ?E = {X . X ⊆ E ∧ card X = s}
from cardF have finF : finite F

by (metis card.infinite le-0-eq less-le)
from cardF have FnE : F 6= {} by force
{

from FnE obtain B where B: B ∈ F by auto
with F [rule-format, OF B] obtain A where A ⊆ E card A = s

by (meson obtain-subset-with-card-n order-trans)
hence ?E 6= {} using B by auto

} note EnE = this
define f where f = (λ A. SOME x. ?g A x)
from finE have finiteE : finite ?E by simp

have f ∈ F → ?E
proof

fix B
assume B: B ∈ F

with F [rule-format, OF B] have ∃ x. ?g B x by (meson obtain-subset-with-card-n)
from someI-ex[OF this] B F show f B ∈ ?E unfolding f-def by auto

qed
from pigeonhole-card[OF this finF finiteE EnE ]
obtain a where a: a ∈ ?E
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and le: card F ≤ card (f −‘ {a} ∩ F) ∗ card ?E by auto
have precond: ∀A∈f −‘ {a} ∩ F . finite A ∧ card A ≤ k

using F finite-subset[OF - finE ] by auto
have c ∗ (card E choose s) = (card E choose s) ∗ c by simp
also have . . . < card F by fact
also have . . . ≤ (card (f −‘ {a} ∩ F)) ∗ card ?E by fact
also have card ?E = card E choose s by (rule n-subsets[OF finE ])
finally have c < card (f −‘ {a} ∩ F) by auto
from sunflower [OF precond this]
obtain S where ∗: S ⊆ f −‘ {a} ∩ F sunflower S card S = r

by auto
from finite-subset[OF - finF , of S ]
have finS : finite S using ∗ by auto
from ∗ r have SnE : S 6= {} by auto
have finIS : finite (

⋂
S)

proof (rule finite-Inter)
from SnE obtain A where A: A ∈ S by auto
with F s have finite A

using ∗ precond by blast
thus ∃A∈S . finite A using A by auto

qed
show ?thesis
proof (intro exI [of - S ] conjI ∗)

show S ⊆ F using ∗ by auto
{

fix A
assume A ∈ S
with ∗(1 ) have A ∈ f −‘ {a} and A: A ∈ F using ∗ by auto
from this have ∗∗: f A = a A ∈ F by auto
from F [rule-format, OF A] have ∃ x. card x = s ∧ x ⊆ A

by (meson obtain-subset-with-card-n order-trans)
from someI-ex[of ?g A, OF this] ∗∗
have a ⊆ A unfolding f-def by auto

}
hence a ⊆

⋂
S by auto

from card-mono[OF finIS this]
have card a ≤ card (

⋂
S) .

with a show s ≤ card (
⋂

S) by auto
qed

qed

lemma sunflower-nonempty-core-lift:
assumes finE : finite (E :: ′a set)

and sunflower :
∧

G :: ′a set set.
(∀ A ∈ G. finite A ∧ card A ≤ k) =⇒ card G > c

=⇒ ∃ S . S ⊆ G ∧ sunflower S ∧ card S = r
and F : ∀ A ∈ F . A ⊆ E ∧ card A ≤ k
and empty: {} /∈ F
and cardF : card F > card E ∗ c
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shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧ (
⋂

S) 6= {}
proof (cases r = 0 )

case False
from F empty have F ′: ∀A∈F . A ⊆ E ∧ 1 ≤ card A ∧ card A ≤ k using finE

by (metis One-nat-def Suc-leI card-gt-0-iff finite-subset)
from cardF have cardF ′: (card E choose 1 ) ∗ c < card F by auto
from sunflower-card-core-lift[OF finE sunflower , of k c F 1 , OF - - F ′ cardF ′ -

False]
obtain S where S ⊆ F and main: sunflower S card S = r 1 ≤ card (

⋂
S) by

auto
thus ?thesis by (intro exI [of - S ], auto)

next
case True
thus ?thesis by (intro exI [of - {}], auto simp: empty-sunflower)

qed

end

2 The Sunflower Lemma
We formalize the proof of the sunflower lemma of Erdős and Rado [2], as it
is presented in the textbook [3, Chapter 6]. We further integrate Exercise
6.2 from the textbook, which provides a lower bound on the existence of
sunflowers.
theory Erdos-Rado-Sunflower

imports
Sunflower

begin

When removing an element from all subsets, then one can afterwards
add these elements to a sunflower and get a new sunflower.
lemma sunflower-remove-element-lift:

assumes S : S ⊆ { A − {a} | A . A ∈ F ∧ a ∈ A}
and sf : sunflower S

shows ∃ Sa. sunflower Sa ∧ Sa ⊆ F ∧ card Sa = card S ∧ Sa = insert a ‘ S
proof (intro exI [of - insert a ‘ S ] conjI refl)

let ?Sa = insert a ‘ S
{

fix B
assume B ∈ ?Sa
then obtain C where C : C ∈ S and B: B = insert a C

by auto
from C S obtain T where T ∈ F a ∈ T C = T − {a}

by auto
with B have B = T by auto
with ‹T ∈ F› have B ∈ F by auto

}
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thus SaF : ?Sa ⊆ F by auto
have inj: inj-on (insert a) S using S

by (intro inj-on-inverseI [of - λ B. B − {a}], auto)
thus card ?Sa = card S by (rule card-image)
show sunflower ?Sa unfolding sunflower-def
proof (intro allI , intro impI )

fix x
assume ∃C D. C ∈ ?Sa ∧ D ∈ ?Sa ∧ C 6= D ∧ x ∈ C ∧ x ∈ D
then obtain C D where ∗: C ∈ ?Sa D ∈ ?Sa C 6= D x ∈ C x ∈ D

by auto
from ∗(1−2 ) obtain C ′ D ′ where
∗∗: C ′ ∈ S D ′ ∈ S C = insert a C ′ D = insert a D ′

by auto
with ‹C 6= D› inj have CD ′: C ′ 6= D ′ by auto
show ∀E . E ∈ ?Sa −→ x ∈ E
proof (cases x = a)

case False
with ∗ ∗∗ have x ∈ C ′ x ∈ D ′ by auto
with ∗∗ CD ′ have ∃C D. C ∈ S ∧ D ∈ S ∧ C 6= D ∧ x ∈ C ∧ x ∈ D by

auto
from sf [unfolded sunflower-def , rule-format, OF this]
show ?thesis by auto

qed auto
qed

qed

The sunflower-lemma of Erdős and Rado: if a set has a certain size and
all elements have the same cardinality, then a sunflower exists.
lemma Erdos-Rado-sunflower-same-card:

assumes ∀ A ∈ F . finite A ∧ card A = k
and card F > (r − 1 )^k ∗ fact k

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧ {} /∈ S
using assms

proof (induct k arbitrary: F)
case 0
hence F = {{}} ∨ F = {} card F ≥ 2 by auto
hence False by auto
thus ?case by simp

next
case (Suc k F)
define pd-sub :: ′a set set ⇒ nat ⇒ bool where

pd-sub = (λ G t. G ⊆ F ∧ card G = t ∧ pairwise disjnt G ∧ {} /∈ G)
show ?case
proof (cases ∃ t G. pd-sub G t ∧ t ≥ r)

case True
then obtain t G where pd-sub: pd-sub G t and t: t ≥ r by auto
from pd-sub[unfolded pd-sub-def ] pairwise-disjnt-imp-sunflower
have ∗: G ⊆ F card G = t sunflower G {} /∈ G by auto
from t ‹card G = t› obtain H where H ⊆ G card H = r
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by (metis obtain-subset-with-card-n)
with sunflower-subset[OF ‹H ⊆ G›] ∗ show ?thesis by blast

next
case False
define P where P = (λ t. ∃ G. pd-sub G t)
have ex: ∃ t. P t unfolding P-def

by (intro exI [of - 0 ] exI [of - {}], auto simp: pd-sub-def )
have large ′:

∧
t. P t =⇒ t < r using False unfolding P-def by auto

hence large:
∧

t. P t =⇒ t ≤ r by fastforce
define t where t = (GREATEST t. P t)
from GreatestI-ex-nat[OF ex large, folded t-def ] have Pt: P t .
from Greatest-le-nat[of P, OF - large]
have greatest:

∧
s. P s =⇒ s ≤ t unfolding t-def by auto

from large ′[OF Pt] have tr : t ≤ r − 1 by simp
from Pt[unfolded P-def pd-sub-def ] obtain G where

cardG: card G = t and
disj: pairwise disjnt G and
GF : G ⊆ F
by blast

define A where A = (
⋃

G)
from Suc(3 ) have card F > 0 by simp
hence finite F by (rule card-ge-0-finite)
from GF ‹finite F› have finG: finite G by (rule finite-subset)
have card (

⋃
G) ≤ sum card G

using card-Union-le-sum-card by blast
also have . . . ≤ of-nat (card G) ∗ Suc k

by (metis GF Suc.prems(1 ) le-Suc-eq subsetD sum-bounded-above)
also have . . . ≤ (r − 1 ) ∗ Suc k

using tr [folded cardG] by (metis id-apply mult-le-mono1 of-nat-eq-id)
finally have cardA: card A ≤ (r − 1 ) ∗ Suc k unfolding A-def .
{

fix B
assume ∗: B ∈ F
with Suc(2 ) have nE : B 6= {} by auto
from Suc(2 ) have eF : {} /∈ F by auto
have B ∩ A 6= {}
proof

assume dis: B ∩ A = {}
hence disj: pairwise disjnt ({B} ∪ G) using disj unfolding A-def

by (smt (verit, ccfv-SIG) Int-commute Un-iff
Union-disjoint disjnt-def pairwise-def singleton-iff )

from nE dis have B /∈ G unfolding A-def by auto
with finG have c: card ({B} ∪ G) = Suc t by (simp add: cardG)
have P (Suc t) unfolding P-def pd-sub-def

by (intro exI [of - {B} ∪ G], insert eF disj c ∗ GF , auto)
with greatest show False by force

qed
} note overlap = this
have F 6= {} using Suc(2−) by auto
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with overlap have Ane: A 6= {} unfolding A-def by auto
have finite A unfolding A-def using finG Suc(2−) GF by auto
let ?g = λ B x. x ∈ B ∩ A
define f where f = (λ B. SOME x. ?g B x)
have f ∈ F → A
proof

fix B
assume B ∈ F
from overlap[OF this] have ∃ x. ?g B x unfolding A-def by auto
from someI-ex[OF this] show f B ∈ A unfolding f-def by auto

qed
from pigeonhole-card[OF this ‹finite F› ‹finite A› Ane]
obtain a where a: a ∈ A

and le: card F ≤ card (f −‘ {a} ∩ F) ∗ card A by auto
{

fix S
assume S ∈ F f S ∈ {a}
with someI-ex[of ?g S ] a overlap[OF this(1 )]
have a ∈ S unfolding f-def by auto

} note FaS = this
let ?F = {S − {a} | S . S ∈ F ∧ f S ∈ {a}}
from cardA have ((r − 1 ) ^ k ∗ fact k) ∗ card A ≤ ((r − 1 ) ^ k ∗ fact k) ∗

((r − 1 ) ∗ Suc k)
by simp

also have . . . = (r − 1 ) ^ (Suc k) ∗ fact (Suc k)
by (metis (no-types, lifting) fact-Suc mult.assoc mult.commute of-nat-id

power-Suc2 )
also have . . . < card (f −‘ {a} ∩ F) ∗ card A

using Suc(3 ) le by auto
also have f −‘ {a} ∩ F = {S ∈ F . f S ∈ {a}} by auto
also have card . . . = card ((λ S . S − {a}) ‘ {S ∈ F . f S ∈ {a}})

by (subst card-image; intro inj-onI refl, insert FaS) auto
also have (λ S . S − {a}) ‘ {S ∈ F . f S ∈ {a}} = ?F by auto
finally have lt: (r − 1 ) ^ k ∗ fact k < card ?F by simp
have ∀ A ∈ ?F . finite A ∧ card A = k using Suc(2 ) FaS by auto
from Suc(1 )[OF this lt] obtain S

where sunflower S card S = r S ⊆ ?F by auto
from ‹S ⊆ ?F› FaS have S ⊆ {A − {a} |A. A ∈ F ∧ a ∈ A} by auto
from sunflower-remove-element-lift[OF this ‹sunflower S›] ‹card S = r›
show ?thesis by auto

qed
qed

Using sunflower-card-subset-lift we can easily replace the condition that
the cardinality is exactly k by the requirement that the cardinality is at
most k. However, then {} /∈ S cannot be ensured. Consider r = 1 ∧ 0 < k
∧ F = {{}}.
lemma Erdos-Rado-sunflower :

assumes ∀ A ∈ F . finite A ∧ card A ≤ k
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and card F > (r − 1 )^k ∗ fact k
shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r
by (rule sunflower-card-subset-lift[OF - assms],

metis Erdos-Rado-sunflower-same-card)

We further provide a lower bound on the existence of sunflowers, i.e.,
Exercise 6.2 of the textbook [3]. To be more precise, we prove that there is
a set of sets of cardinality (r − 1 )k, where each element is a set of cardinality
k, such that there is no subset which is a sunflower with cardinality of at
least r.
lemma sunflower-lower-bound:

assumes inf : infinite (UNIV :: ′a set)
and r : r 6= 0
and rk: r = 1 =⇒ k 6= 0

shows ∃ F .
card F = (r − 1 )^k ∧ finite F ∧
(∀ A ∈ F . finite (A :: ′a set) ∧ card A = k) ∧
(@ S . S ⊆ F ∧ sunflower S ∧ card S ≥ r)

proof (cases r = 1 )
case False
with r have r : r > 1 by auto
show ?thesis
proof (induct k)

case 0
have id: S ⊆ {{}} ←→ (S = {} ∨ S = {{}}) for S :: ′a set set by auto
show ?case using r

by (intro exI [of - {{}}], auto simp: id)
next

case (Suc k)
then obtain F where

cardF : card F = (r − 1 ) ^ k and
fin: finite F and
AF :

∧
A. (A :: ′a set) ∈ F =⇒ finite A ∧ card A = k and

sf : ¬ (∃S⊆F . sunflower S ∧ r ≤ card S)
by metis

main idea: get k − 1 fresh elements and add one of these to all elements
of F

have finite (
⋃

F) using fin AF by simp
hence infinite (UNIV −

⋃
F) using inf by simp

from infinite-arbitrarily-large[OF this, of r − 1 ]
obtain New where New: finite New card New = r − 1

New ∩
⋃

F = {} by auto
define G where G = (λ (A, a). insert a A) ‘ (F × New)
show ?case
proof (intro exI [of - G] conjI )

show finite G using New fin unfolding G-def by simp
have card G = card (F × New) unfolding G-def
proof ((subst card-image; (intro refl)?), intro inj-onI , clarsimp, goal-cases)
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case (1 A a B b)
hence ab: a = b using New by auto
from 1 (1 ) have insert a A − {a} = insert b B − {a} by simp
also have insert a A − {a} = A using New 1 by auto
also have insert b B − {a} = B using New 1 ab[symmetric] by auto
finally show ?case using ab by auto

qed
also have . . . = card F ∗ card New using New fin by auto
finally show card G = (r − 1 ) ^ Suc k

unfolding cardF New by simp
{

fix B
assume B ∈ G
then obtain a A where G: a ∈ New A ∈ F B = insert a A

unfolding G-def by auto
with AF [of A] New have finite B card B = Suc k

by (auto simp: card-insert-if )
}
thus ∀A∈G. finite A ∧ card A = Suc k by auto
show ¬ (∃S⊆G. sunflower S ∧ r ≤ card S)
proof (intro notI , elim exE conjE)

fix S
assume ∗: S ⊆ G sunflower S r ≤ card S
define g where g B = (SOME a. a ∈ New ∧ a ∈ B) for B
{

fix B
assume B ∈ S
with ‹S ⊆ G› have B ∈ G by auto
hence ∃ a. a ∈ New ∧ a ∈ B unfolding G-def by auto
from someI-ex[OF this, folded g-def ]
have g B ∈ New g B ∈ B by auto

} note gB = this
have card (g ‘ S) ≤ card New

by (rule card-mono, insert New gB, auto)
also have . . . < r unfolding New using r by simp
also have . . . ≤ card S by fact
finally have card (g ‘ S) < card S .
from pigeonhole[OF this] have ¬ inj-on g S .
then obtain B1 B2 where B12 : B1 ∈ S B2 ∈ S B1 6= B2 g B1 = g B2

unfolding inj-on-def by auto
define a where a = g B2
from B12 gB[of B1 ] gB[of B2 ] have a: a ∈ New a ∈ B1 a ∈ B2

unfolding a-def by auto
with B12 have ∃B1 B2 . B1 ∈ S ∧ B2 ∈ S ∧ B1 6= B2 ∧ a ∈ B1 ∧ a ∈

B2
unfolding a-def by blast

from ‹sunflower S›[unfolded sunflower-def , rule-format, OF this]
have aS : B ∈ S =⇒ a ∈ B for B by auto
define h where h B = B − {a} for B

12



define T where T = h ‘ S
have ∃S⊆F . sunflower S ∧ r ≤ card S
proof (intro exI [of - T ] conjI )

{
fix B
assume B ∈ S
have hB: h B = B − {a}

unfolding h-def T-def by auto
from aS ‹B ∈ S› have aB: a ∈ B by auto
from ‹B ∈ S› ‹S ⊆ G› obtain a ′ A where AF : A ∈ F

and B: B = insert a ′ A
and a ′: a ′ ∈ New unfolding G-def by force

from aB B a ′ New AF a(1 ) hB AF have insert a (h B) = B h B = A
by auto

hence insert a (h B) = B h B ∈ F insert a (h B) ∈ S using AF ‹B ∈
S› by auto

} note main = this
have CTS : C ∈ T =⇒ insert a C ∈ S for C using main unfolding

T-def by force
show T ⊆ F unfolding T-def using main by auto
have r ≤ card S by fact
also have . . . = card T unfolding T-def

by (subst card-image, intro inj-on-inverseI [of - insert a], insert main,
auto)

finally show r ≤ card T .
show sunflower T unfolding sunflower-def
proof (intro allI impI , elim exE conjE , goal-cases)

case (1 x C C1 C2 )
from CTS [OF ‹C1 ∈ T ›] CTS [OF ‹C2 ∈ T ›] CTS [OF ‹C ∈ T ›]
have ∗: insert a C1 ∈ S insert a C2 ∈ S insert a C ∈ S by auto
from 1 have insert a C1 6= insert a C2 using main

unfolding T-def by auto
hence ∃A B. A ∈ S ∧ B ∈ S ∧ A 6= B ∧ x ∈ A ∧ x ∈ B

using ∗ 1 by auto
from ‹sunflower S›[unfolded sunflower-def , rule-format, OF this ∗(3 )]
have x ∈ insert a C .
with 1 show x ∈ C unfolding T-def h-def by auto

qed
qed
with sf
show False ..

qed
qed

qed
next

case r : True
with rk have k 6= 0 by auto
then obtain l where k: k = Suc l by (cases k, auto)
show ?thesis unfolding r k
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by (intro exI [of - {}], auto)
qed

The difference between the lower and the upper bound on the existence
of sunflowers as they have been formalized is fact k. There is more recent
work with tighter bounds [1], but we only integrate the initial result of Erdős
and Rado in this theory.

We further provide the Erdős Rado lemma lifted to obtain non-empty
cores or cores of arbitrary cardinality.
lemma Erdos-Rado-sunflower-card-core:

assumes finite E
and ∀ A ∈ F . A ⊆ E ∧ s ≤ card A ∧ card A ≤ k
and card F > (card E choose s) ∗ (r − 1 )^k ∗ fact k
and s 6= 0
and r 6= 0

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧ card (
⋂

S) ≥ s
by (rule sunflower-card-core-lift[OF assms(1 ) - assms(2 ) - assms(4−5 ),

of (r − 1 )^k ∗ fact k],
rule Erdos-Rado-sunflower , insert assms(3 ), auto simp: ac-simps)

lemma Erdos-Rado-sunflower-nonempty-core:
assumes finite E

and ∀ A ∈ F . A ⊆ E ∧ card A ≤ k
and {} /∈ F
and card F > card E ∗ (r − 1 )^k ∗ fact k

shows ∃ S . S ⊆ F ∧ sunflower S ∧ card S = r ∧
⋂

S 6= {}
by (rule sunflower-nonempty-core-lift[OF assms(1 )

- assms(2−3 ), of (r − 1 )^k ∗ fact k],
rule Erdos-Rado-sunflower , insert assms(4 ), auto simp: ac-simps)

end

References
[1] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved

bounds for the sunflower lemma. In Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages
624–630. ACM, 2020. doi:10.1145/3357713.3384234.

[2] Paul Erdős and Richard Rado. Intersection theorems for systems of
sets. Journal of the London Mathematical Society, 35:85–90, 1960. doi:
10.1112/jlms/s1-35.1.85.

[3] Stasys Jukna. Extremal Combinatorics. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2011. doi:10.1007/
978-3-642-17364-6_6.

14

http://dx.doi.org/10.1145/3357713.3384234
http://dx.doi.org/10.1112/jlms/s1-35.1.85
http://dx.doi.org/10.1112/jlms/s1-35.1.85
http://dx.doi.org/10.1007/978-3-642-17364-6_6
http://dx.doi.org/10.1007/978-3-642-17364-6_6

	Sunflowers
	The Sunflower Lemma

