
Sums of two and four squares

Roelof Oosterhuis
University of Groningen

March 17, 2025

Abstract

This document gives the formal proofs of the following results about the
sums of two and four squares:

1. Any prime number p ≡ 1 mod 4 can be written as the sum of two
squares.

2. (Lagrange) Any natural number can be written as the sum of four
squares.

The proofs are largely based on chapters II and III of the book by Weil [Wei83].
The results have been formalised before in the proof assistant HOL Light [Har].

A more complete study of the sum of two squares, including the first result,
has been formalised in Coq [The04]. The results can also be found as numbers
20 and 19 on the list of ‘top 100 mathematical theorems’ [Wie].

This research is part of an M.Sc. thesis under supervision of Jaap Top
and Wim H. Hesselink (RU Groningen). For more information see [Oos07].

2 Contents

Contents

1 Lagrange’s four-square theorem 13

theory TwoSquares
imports

HOL−Number-Theory.Number-Theory
begin

context

fixes sum2sq-nat :: nat ⇒ nat ⇒ nat
defines sum2sq-nat a b ≡ a^2+b^2

fixes is-sum2sq-nat :: nat ⇒ bool
defines is-sum2sq-nat n ≡ (∃ a b. n = sum2sq-nat a b)

begin

private lemma best-division-abs: (n::int) > 0 =⇒ ∃ k. 2 ∗ |a − k∗n| ≤ n
proof −

assume a: n > 0
define k where k = a div n
hence h: a − k ∗ n = a mod n by (simp add: mod-div-mult-eq algebra-simps)
thus ?thesis
proof (cases 2 ∗ (a mod n) ≤ n)

case True
hence 2 ∗ |a − k∗n| ≤ n using h pos-mod-sign a by auto
thus ?thesis by blast

next
case False
hence 2 ∗ (n − a mod n) ≤ n by auto
have a − (k+1)∗n = a mod n − n using h by (simp add: algebra-simps)
hence 2 ∗ |a − (k+1)∗n| ≤ n using h pos-mod-bound[of n a] a False by fastforce
thus ?thesis by blast

qed
qed

private definition
sum2sq-int :: int × int ⇒ int where
sum2sq-int = (λ(a,b). a^2+b^2)

private definition
is-sum2sq-int :: int ⇒ bool where
is-sum2sq-int n ←→ (∃ a b. n = sum2sq-int(a,b))

private lemma sum2sq-int-nat-eq: sum2sq-nat a b = sum2sq-int (a, b)
unfolding sum2sq-nat-def sum2sq-int-def by simp

private lemma is-sum2sq-int-nat-eq: is-sum2sq-nat n = is-sum2sq-int (int n)

Contents 3

unfolding is-sum2sq-nat-def is-sum2sq-int-def
proof

assume ∃ a b. n = sum2sq-nat a b
thus ∃ a b. int n = sum2sq-int (a, b) using sum2sq-int-nat-eq by force

next
assume ∃ a b. int n = sum2sq-int (a, b)
then obtain a b where int n = sum2sq-int (a, b) by blast
hence int n = sum2sq-int (int (nat |a|), int (nat |b|)) unfolding sum2sq-int-def by

simp
hence int n = int (sum2sq-nat (nat |a|) (nat |b|)) using sum2sq-int-nat-eq by pres-

burger
thus ∃ a b. n = sum2sq-nat a b by auto

qed

private lemma product-two-squares-aux: sum2sq-int(a, b) ∗ sum2sq-int(c, d) = sum2sq-int(a∗c
− b∗d, a∗d + b∗c)

unfolding power2-eq-square sum2sq-int-def by (simp add: algebra-simps)

private lemma product-two-squares-int: is-sum2sq-int m =⇒ is-sum2sq-int n =⇒ is-sum2sq-int
(m∗n)

by (unfold is-sum2sq-int-def , auto simp only: product-two-squares-aux, blast)

private lemma product-two-squares-nat: is-sum2sq-nat m =⇒ is-sum2sq-nat n =⇒ is-sum2sq-nat
(m∗n)

using product-two-squares-int is-sum2sq-int-nat-eq by simp

private lemma sots1-aux:
assumes prime (4∗k+3)
assumes odd (multiplicity (4∗k+3) n)
shows ¬ is-sum2sq-nat n

proof
assume is-sum2sq-nat n
then obtain a b where h1 : n = a^2 + b^2 unfolding is-sum2sq-nat-def sum2sq-nat-def

by blast
have ab-nz: a 6= 0 ∨ b 6= 0 by (rule ccontr) (insert assms, auto simp: h1)
let ?p = 4∗k+3
let ?g = gcd a b
have h2 : ?g 6= 0 using assms(2) h1 odd-pos by fastforce
then obtain a ′ b ′ where h3 : a = a ′ ∗ ?g b = b ′ ∗ ?g coprime a ′ b ′

using gcd-coprime-exists by blast
have ?g^2 dvd n using dvd-add h1 by auto
then obtain m where h4 : m ∗ ?g^2 = n using dvd-div-mult-self by blast
also have . . . = (a ′ ∗ ?g)^2 + (b ′ ∗ ?g)^2 unfolding h1 using h3 by presburger
also have . . . = ?g^2 ∗ a ′̂ 2 + ?g^2 ∗ b ′̂ 2 unfolding power2-eq-square by simp
finally have ?g^2 ∗ m = ?g^2 ∗ (a ′̂ 2 + b ′̂ 2) by (simp add: distrib-left mult.commute)
hence h5 : m = a ′̂ 2 + b ′̂ 2 using h2 by auto
let ?mul = multiplicity ?p ?g
have multiplicity ?p (?g^2) = ?mul + ?mul

unfolding power2-eq-square using h2 assms
by (subst prime-elem-multiplicity-mult-distrib) simp-all

hence even (multiplicity ?p (?g^2)) by simp
moreover have m 6= 0 using assms(2) h4 odd-pos by fastforce

4 Contents

ultimately have odd (multiplicity ?p m)
using assms ab-nz by (simp-all add: h4 [symmetric] prime-elem-multiplicity-mult-distrib)

hence ?p dvd m using not-dvd-imp-multiplicity-0 by force
hence h6 : ?p dvd a ′̂ 2+b ′̂ 2 using h5 by auto
{

assume ?p dvd a ′̂ 2
moreover hence ?p dvd b ′̂ 2 using h6 dvd-add-right-iff by blast
ultimately have ?p dvd a ′ ?p dvd b ′ using assms(1) prime-dvd-power-nat by blast+
hence False

using assms(1) h3 (3) coprime-common-divisor-nat[of a ′ b ′ ?p] not-prime-1 by
linarith

}
hence ¬ (?p dvd a ′̂ 2) ..
hence h7 : ¬ (?p dvd a ′) using assms(1)

by (simp add: power2-eq-square prime-dvd-mult-iff)
hence coprime ?p a ′

using assms(1) by (simp add: prime-imp-coprime)
thm prime-imp-coprime-nat
moreover have a ′ 6= 0 using h7 dvd-0-right[of ?p] by meson
ultimately obtain ainv aux where a ′ ∗ ainv = ?p ∗ aux + 1

using bezout-nat[of a ′ ?p]
by (auto simp: ac-simps)

hence [a ′ ∗ ainv = 1] (mod ?p) using cong-to-1 ′-nat by auto
from cong-mult [OF this this] have h11 : [1 = ainv^2 ∗ a ′̂ 2] (mod ?p)

unfolding power2-eq-square by (simp add: algebra-simps cong-sym)
let ?bdiva = ainv ∗ b ′

have [ainv^2 ∗ (a ′̂ 2 + b ′̂ 2) = 0] (mod ?p)
using h6 cong-dvd-modulus-nat cong-mult-self-right by blast

from cong-add [OF h11 this] have [1 + ainv^2 ∗ b ′̂ 2 = 0] (mod ?p)
unfolding add-mult-distrib2 using cong-add-lcancel-nat[of ainv^2 ∗ a ′̂ 2]
by fastforce

hence h8 : [?bdiva^2 + 1 = 0] (mod ?p) by (simp add: power-mult-distrib)
{

assume ?p dvd ?bdiva
hence ?p dvd (?bdiva^2) by (simp add: assms(1) prime-dvd-power-nat-iff)
hence [?bdiva^2 = 0] (mod ?p) using cong-altdef-nat by auto
hence [?bdiva^2 +1 = 1] (mod ?p) using cong-add-rcancel-0-nat by blast
from this h8 have [0 = 1] (mod ?p) using cong-sym cong-trans by blast
hence ?p dvd 1 using cong-0-1-nat by auto
hence False using assms(1) by simp

}
hence ¬ (?p dvd ?bdiva) ..
hence h9 : [?bdiva^(?p−1) = 1] (mod ?p)

using assms(1) fermat-theorem [of ?p ?bdiva] by simp
have h10 : ?p≥3 by simp
have h11 : [?bdiva^(4∗k+2) = 1] (mod ?p) using h9 by auto
have [(?bdiva^2 + 1)^2 = 0] (mod ?p) using h8 cong-pow [of ?bdiva^2 + 1 0 ?p 2]

by auto
moreover have ?bdiva ^ 4 = (?bdiva ^ 2) ^ 2 by auto
hence (?bdiva^2 + 1)^2 = ?bdiva^4 + ?bdiva^2 + ?bdiva^2 + 1

by (auto simp: algebra-simps power2-eq-square)
ultimately have [?bdiva^4 + ?bdiva^2 + ?bdiva^2 + 1 = 0] (mod ?p) by simp

Contents 5

moreover have [?bdiva^4 + ?bdiva^2 + (?bdiva^2 + 1) = ?bdiva^4 + ?bdiva^2 +
0] (mod ?p)

using h8 cong-add-lcancel-nat by blast
ultimately have [?bdiva^4 + ?bdiva^2 = 0] (mod ?p) by (simp add: cong-def)
hence [?bdiva^4 + ?bdiva^2 + 1 = 0 + 1] (mod ?p) using cong-add-rcancel-nat by

blast
moreover have [?bdiva^4 + (?bdiva^2 + 1) = ?bdiva^4 + 0] (mod ?p)

using h8 cong-add-lcancel-nat by blast
ultimately have [?bdiva^4 = 1] (mod ?p) by (simp add: cong-def)
hence [(?bdiva^4)^k = 1^k] (mod ?p) using cong-pow by blast
hence h12 : [?bdiva^(4∗k) = 1] (mod ?p) by (simp add: power-mult)
hence h13 : [?bdiva^(4∗k)∗(?bdiva^2 + 1) = 1∗(?bdiva^2 + 1)] (mod ?p)

using cong-scalar-right by blast
have ?bdiva^(4∗k)∗(?bdiva^2 + 1) = ?bdiva^(4∗k+2)+?bdiva^(4∗k)

unfolding add-mult-distrib2 power-add by simp
hence [?bdiva^(4∗k+2)+?bdiva^(4∗k) = ?bdiva^2 + 1] (mod ?p)

using h13 unfolding nat-mult-1 by presburger
moreover have [?bdiva^(4∗k+2) + ?bdiva^(4∗k) = 1 + 1] (mod ?p)

using h11 h12 cong-add by blast
ultimately have [?bdiva^2 + 1 = 2] (mod ?p)

by (auto simp add: cong-def)
hence [0 = 2] (mod ?p) using h8 by (simp add: cong-def)
then have ?p dvd 2 by (auto dest: cong-dvd-iff)
then show False

by (auto dest: dvd-imp-le)
qed

private lemma sots1 : assumes is-sum2sq-nat n
shows

∧
k. prime (4∗k+3) −→ even (multiplicity (4∗k+3) n)

using sots1-aux assms by blast

private lemma aux-lemma: assumes [(a::nat) = b] (mod c) b < c
shows ∃ k. a = c∗k + b

proof −
have a mod c = b using assms by (simp add: cong-def mod-if)
hence b ≤ a using assms by auto
thus ?thesis using cong-le-nat assms(1) by auto

qed

private lemma Legendre-1mod4 : prime (4∗k+1 ::nat) =⇒ (Legendre (−1) (4∗k+1)) =
1
proof −

let ?p = 4∗k+1
let ?L = Legendre (−1) ?p
assume p: prime ?p
from p have k 6= 0 by (intro notI) simp-all
hence p2 : ?p > 2 by simp
with p have [?L = (−1)^((?p − 1) div 2)] (mod ?p)

by (rule euler-criterion)
hence [?L = (−1)^(2 ∗ nat k)] (mod ?p) by auto
hence [?L = 1] (mod ?p) unfolding power-mult by simp
hence ?p dvd 1−?L

6 Contents

using cong-iff-dvd-diff dvd-minus-iff [of ?p ?L−1] by auto
moreover have ?L=1 ∨ ?L=0 ∨ ?L=−1 by (simp add: Legendre-def)
ultimately have ?L = 1 ∨ ?p dvd 1 ∨ ?p dvd (2 ::int) by auto
moreover
{ assume ?p dvd 1 ∨ ?p dvd (2 ::int)

with p2 have False by (auto simp add: zdvd-not-zless) }
ultimately show ?thesis by auto

qed

private lemma qf1-prime-exists: prime (4∗k+1) =⇒ is-sum2sq-nat (4∗k+1)
proof −

let ?p = 4∗k+1
assume p: prime ?p
hence Legendre (−1) ?p = 1 by (rule Legendre-1mod4)
moreover
{ assume ¬ QuadRes ?p (−1)

hence Legendre (−1) ?p 6= 1 by (unfold Legendre-def , auto) }
ultimately have QuadRes ?p (−1) by auto
then obtain s1 where s1 : [s1^2 = −1] (mod ?p) by (auto simp add: QuadRes-def)
hence s1 ′: [s1^2 + 1 = 0] (mod ?p) by (simp add: cong-iff-dvd-diff)
define s2 where s2 = nat |s1 |
hence int (s2^2 + 1) = s1^2 + 1 by auto
with s1 ′ have [int (s2^2 + 1) = 0] (mod ?p) by presburger
hence s2 : [s2^2 + 1 = 0] (mod ?p)

using cong-int-iff by fastforce
from p have p0 : ?p > 0 by simp
then obtain s where s0p: 0 ≤ s ∧ s < ?p ∧ [s2 = s] (mod ?p)

using cong-less-unique-nat[of ?p] by fastforce
then have [s^2 = s2^2] (mod ?p)

by (simp add: cong-sym cong-pow)
with s2 have s: [s^2 + 1 = 0] (mod ?p)

using cong-trans cong-add-rcancel-nat by blast
hence ?p dvd s^2 + 1 using cong-altdef-nat by auto
then obtain t where t: s^2 + 1 = ?p∗t by (auto simp add: dvd-def)
hence ?p∗t = sum2sq-nat s 1 by (simp add: sum2sq-nat-def)
hence qf1pt: is-sum2sq-nat (?p∗t) by (auto simp add: is-sum2sq-nat-def)
have t-l-p: t < ?p
proof (rule ccontr)

assume ¬ t < ?p
hence t > ?p − 1 by simp
with p0 have ?p∗(?p − 1) < ?p∗t by (simp only: mult-less-mono2)
also with t have . . . = s^2 + 1 by simp
also have . . . ≤ ?p∗(?p − 1) − ?p + 2
proof −

from s0p have s ≤ ?p − 1 by (auto simp add: less-le)
with s0p have s^2 ≤ (?p − 1)^2 by (simp only: power-mono)

also have . . . = ?p∗(?p − 1) − 1∗(?p − 1) by (simp only: power2-eq-square
diff-mult-distrib)

finally show ?thesis by auto
qed
finally have ?p < 2 by simp
with p show False by (unfold prime-def , auto)

Contents 7

qed
have tpos: t ≥ 1
proof (rule ccontr)

assume ¬ t ≥ 1
hence t < 1 by auto
moreover
{ assume t = 0 with t have s^2 + 1 = 0 by simp }
moreover

{ assume t < 0
with p0 have ?p∗t < ?p∗0 by (simp only: zmult-zless-mono2)
with t have s^2 + 1 < 0 by auto }

moreover have s^2 ≥ 0 by (simp only: zero-le-power2)
ultimately show False by (auto simp add: less-le)

qed
moreover
{ assume t1 : t > 0

then obtain tn where tn: tn = t − 1 by auto
have is-sum2sq-nat (?p∗(1+ 0)) (is ?Q 0)

— So, Q n = there exist x, y such that x2 + y2 = (p ∗ (1 + int(n)))
proof (rule ccontr)

assume nQ1 : ¬ ?Q 0
have (1 + tn) < ?p =⇒ ¬ ?Q tn
proof (induct tn rule: infinite-descent0)

case 0
from nQ1 show 1+ 0 < ?p =⇒ ¬ ?Q 0 by simp

next
case (smaller n)
hence n0 : n > 0 and IH : 1+ n < ?p ∧ ?Q n by auto
then obtain x y where x^2 + y^2 = int (?p∗(1+ n))

using is-sum2sq-int-nat-eq by (unfold is-sum2sq-int-def sum2sq-int-def , auto)
hence xy: x^2 + y^2 = (int ?p)∗(int (1+ n)) unfolding of-nat-mult by presburger
let ?n1 = int (1 + n)
from n0 have n1pos: ?n1 > 0 by simp
then obtain r v where rv: v = x−r∗?n1 ∧ 2∗|v| ≤ ?n1

by (frule-tac n=?n1 in best-division-abs, auto)
from n1pos obtain s w where sw: w = y−s∗?n1 ∧ 2∗|w| ≤ ?n1

by (frule-tac n=?n1 in best-division-abs, auto)
let ?C = v^2 + w^2
have ?n1 dvd ?C
proof

from rv sw have ?C = (x−r∗?n1)^2 + (y−s∗?n1)^2 by simp
also have . . . = x^2 + y^2 − 2∗x∗(r∗?n1) − 2∗y∗(s∗?n1) + (r∗?n1)^2 +

(s∗?n1)^2
unfolding power2-eq-square by (simp add: algebra-simps)

also with xy have . . . = ?n1∗?p − ?n1∗(2∗x∗r) − ?n1∗(2∗y∗s) + ?n1^2∗r^2
+ ?n1^2∗s^2

by (simp only: ac-simps power-mult-distrib)
finally show ?C = ?n1∗(?p − 2∗x∗r − 2∗y∗s + ?n1∗(r^2 + s^2))

by (simp only: power-mult-distrib distrib-left ac-simps
left-diff-distrib right-diff-distrib power2-eq-square)

qed
then obtain m1 where m1 : ?C = ?n1∗m1 by (auto simp add: dvd-def)

8 Contents

have mn: m1 < ?n1
proof (rule ccontr)

assume ¬ m1 < ?n1 hence ?n1−m1 ≤ 0 by simp
hence 4∗?n1 − 4∗m1 ≤ 0 by simp
with n1pos have 2∗?n1 − 4∗m1 < 0 by simp

with n1pos have ?n1∗(2∗?n1 − 4∗m1) < ?n1∗0 by (simp only: zmult-zless-mono2)
hence contr : ?n1∗(2∗?n1− 4∗m1) < 0 by simp
have hlp: 2∗|v| ≥ 0 ∧ 2∗|w| ≥ 0 by simp
from m1 have 4∗?n1∗m1 = 4∗v^2 + 4∗w^2 by arith
also have . . . = (2∗|v|)^2 + (2∗|w|)^2

by (auto simp add: power-mult-distrib)
also from rv hlp have . . . ≤ ?n1^2 + (2∗|w|)^2

using power-mono [of 2∗|b| 1 + int n 2 for b] by auto
also from sw hlp have . . . ≤ ?n1^2 + ?n1^2

using power-mono [of 2∗|b| 1 + int n 2 for b] by auto
finally have ?n1∗m1∗4 ≤ ?n1∗?n1∗2 by (simp add: power2-eq-square ac-simps)

hence ?n1∗(2∗?n1− 4∗m1) ≥ 0 by (simp only: right-diff-distrib ac-simps)
with contr show False by auto

qed
have ?p∗m1 = (r∗v + s∗w + m1)^2 + (r∗w − s∗v)^2
proof −

from m1 xy have (?p∗?n1)∗?C = (x^2+y^2)∗(v^2+w^2) by simp
also have . . . = (x∗v + y∗w)^2 + (x∗w − y∗v)^2

by (simp add: eval-nat-numeral field-simps)
also with rv sw have . . . = ((r∗?n1+v)∗v + (s∗?n1+w)∗w)^2 + ((r∗?n1+v)∗w

− (s∗?n1+w)∗v)^2
by simp

also have . . . = (?n1∗(r∗v) + ?n1∗(s∗w) + (v^2+w^2))^2 + (?n1∗(r∗w) −
?n1∗(s∗v))^2

by (simp add: eval-nat-numeral field-simps)
also from m1 have . . . = (?n1∗(r∗v) + ?n1∗(s∗w) + ?n1∗m1)^2 + (?n1∗(r∗w)

− ?n1∗(s∗v))^2
by simp

finally have (?p∗?n1)∗?C = ?n1^2∗(r∗v + s∗w + m1)^2 + ?n1^2∗(r∗w −
s∗v)^2

by (simp add: eval-nat-numeral field-simps)
with m1 have ?n1^2∗(?p∗m1) = ?n1^2∗((r∗v + s∗w + m1)^2 + (r∗w −

s∗v)^2)
by (simp only: ac-simps power2-eq-square, simp add: distrib-left)

hence ?n1^2∗(?p∗m1 − (r∗v+s∗w+m1)^2 − (r∗w−s∗v)^2) = 0
by (auto simp add: distrib-left right-diff-distrib)

moreover from n1pos have ?n1^2 6= 0 by (simp add: power2-eq-square)
ultimately show ?thesis by simp

qed
hence qf1pm1 : is-sum2sq-int ((int ?p)∗m1)

by (unfold is-sum2sq-int-def sum2sq-int-def , auto)
have m1pos: m1 > 0
proof −

{ assume v^2 + w^2 = 0
hence v = 0 ∧ w = 0 using sum-power2-eq-zero-iff by blast
with rv sw have ?n1 dvd x ∧ ?n1 dvd y by (unfold dvd-def , auto)
hence ?n1^2 dvd x^2 ∧ ?n1^2 dvd y^2 by simp

Contents 9

hence ?n1^2 dvd x^2 + y^2 by (simp only: dvd-add)
with xy have ?n1∗?n1 dvd ?n1∗?p by (simp only: power2-eq-square ac-simps)
moreover from n1pos have ?n1 6= 0 by simp
ultimately have ?n1 dvd ?p by (rule zdvd-mult-cancel)
with n1pos have ?n1 ≥ 0 ∧ ?n1 dvd ?p by simp
with p have ?n1 = 1 ∨ ?n1 = ?p unfolding prime-nat-iff by presburger
with IH have ?Q 0 by auto
with nQ1 have False by simp }

moreover
{ assume v^2 + 1∗w^2 6= 0

moreover have v^2 + w^2 ≥ 0 by simp
ultimately have vwpos: v^2 + w^2 > 0 by arith
with m1 have m1 6= 0 by auto
moreover have m1 ≥ 0
proof (rule ccontr)

assume ¬ m1 ≥ 0
hence m1 < 0 by simp
with n1pos have ?n1∗m1 < ?n1∗0 by (simp only: zmult-zless-mono2)
with m1 vwpos show False by simp

qed
ultimately have ?thesis by auto }

ultimately show ?thesis by auto
qed
hence 1 + int((nat m1) − 1) = m1 by arith
with qf1pm1 have Qm1 : ?Q ((nat m1) − 1)

using is-sum2sq-int-nat-eq by (simp add: algebra-simps)
then obtain mm where tmp: mm = (nat m1) − 1 ∧ ?Q mm by auto
moreover have mm<n using tmp mn m1pos by arith
moreover with IH have 1 + int mm < ?p by auto
ultimately show ?case by auto

qed
hence ¬ is-sum2sq-nat (?p∗t) using tn tpos t-l-p by auto
with qf1pt show False by simp

qed
hence ?thesis by auto }

ultimately show ?thesis by (auto simp add: less-le)
qed

private lemma fermat-two-squares: assumes prime p (¬ [p = 3] (mod 4))
shows is-sum2sq-nat p

proof (cases p=2)
case True

have (2 ::nat)=1^2+1^2 using power2-eq-square by simp
thus ?thesis unfolding is-sum2sq-nat-def sum2sq-nat-def using True by fast

next
case False

hence p > 2 using assms(1) unfolding prime-nat-iff by auto
hence h1 : odd p using assms(1) prime-odd-nat by simp
hence h2 : ¬ [p = 0] (mod 4) unfolding cong-def by fastforce
have h3 : ¬ [p = 2] (mod 4) using h1 cong-dvd-iff [of p 2 2] cong-dvd-modulus-nat by

auto
obtain x where h4 : [p = x] (mod 4) ∧ x<4 by (meson cong-less-unique-nat zero-less-numeral)

10 Contents

from h1 h2 h3 h4 assms have x 6=0 ∧ x 6=2 ∧ x 6=3 ∧ x<4 by meson
hence x=1 by linarith
from this h4 have [p = 1] (mod 4) by simp
then obtain k where p = 4∗k+1 using aux-lemma by fastforce
thus ?thesis using qf1-prime-exists assms by blast

qed

private lemma sots2 : assumes
∧

k. prime (4∗k+3) −→ even (multiplicity (4∗k+3)
n)

shows is-sum2sq-nat n using assms
proof (induction n rule: nat-less-induct)
case (1 n)

thus ?case
proof (cases n>1)
case f : False

thus ?thesis
proof (cases n=1)
case True

have (1 ::nat)=0^2+1^2 by (simp add: power2-eq-square)
thus ?thesis using True unfolding is-sum2sq-nat-def sum2sq-nat-def by blast

next
case False

hence n=0 using f by simp
moreover have (0 ::nat)=0^2+0^2 by (simp add: power2-eq-square)
ultimately show ?thesis unfolding is-sum2sq-nat-def sum2sq-nat-def by blast

qed
next
case True
then obtain p m where h1 : prime p ∧ n = p ∗ m using prime-divisor-exists[of n]

by (auto elim: dvdE)
with True have m-nz: m 6= 0 by (intro notI) auto
from h1 have h2 : m<n using n-less-m-mult-n[of m p] prime-gt-Suc-0-nat[of p] True

by linarith
{

assume a1 : [p = 3] (mod 4)
then obtain kp where p = 4∗kp+3 using aux-lemma by fastforce
hence even (multiplicity p n) using 1 .prems h1 by auto
moreover have multiplicity p n 6= 0 using h1 True m-nz

by (subst multiplicity-eq-zero-iff) (auto simp: prime-gt-0-nat)
ultimately have h3 : multiplicity p n ≥ 2 by presburger
have p dvd m
proof (rule ccontr)

assume a2 : ¬ p dvd m
hence multiplicity p m = 0 by (rule not-dvd-imp-multiplicity-0)
moreover from h1 have multiplicity p p = 1 by (intro multiplicity-prime) auto
moreover have m > 0 using h1 True by (cases m = 0) simp-all
ultimately have multiplicity p n = 1 using h1

using prime-elem-multiplicity-mult-distrib [of p p m] m-nz prime-gt-0-nat
by auto

thus False using h3 by simp
qed
then obtain m ′ where h4 : m = p ∗ m ′ using dvdE by blast

Contents 11

with h1 have h5 : n = p^2 ∗ m ′ by (simp add: power2-eq-square)
have h6 : m ′<n

using dual-order .strict-trans h1 h2 h4 nat-mult-less-cancel1 prime-gt-0-nat[of p]
by blast

have
∧

kq. prime (4∗kq + 3) =⇒ even (multiplicity (4∗kq + 3) m ′)
proof −

fix kq::nat
let ?q = 4∗kq + 3
assume a2 : prime ?q
{

assume p: p=?q
hence h7 : multiplicity ?q (p^2) = 2 using h1

by (auto intro!: multiplicity-prime-power)
have even (multiplicity ?q n) using 1 (2)[of kq] a2 by blast
also note h5
also from p h1 h4 m-nz

have multiplicity (4 ∗ kq + 3) (p^2 ∗ m ′) =
Suc (Suc (multiplicity (4 ∗ kq + 3) m ′))

by (subst prime-elem-multiplicity-mult-distrib) auto
finally have even (multiplicity ?q m ′) by simp

}
moreover {

assume p 6=?q
from a2 h4 m-nz have multiplicity ?q n =

multiplicity (4 ∗ kq + 3) (p2) + multiplicity (4 ∗ kq + 3) m ′

unfolding h5 by (subst prime-elem-multiplicity-mult-distrib) simp-all
also from ‹p 6= ?q› a2 h1 have multiplicity ?q (p^2) = 0

by (intro multiplicity-distinct-prime-power) simp-all
finally have multiplicity ?q n = multiplicity ?q m ′ by simp
moreover have even (multiplicity ?q n) using 1 (2)[of kq] a2 by blast
ultimately have even (multiplicity ?q m ′) by simp

}
ultimately show even (multiplicity ?q m ′) by blast

qed
hence is-sum2sq-nat m ′ by (simp add: 1 h6)
moreover have p^2 = p^2 + 0^2 by simp
hence is-sum2sq-nat (p^2) unfolding is-sum2sq-nat-def sum2sq-nat-def by blast
ultimately have ?thesis using product-two-squares-nat h5 by blast

} moreover
{

assume a1 : ¬ [p = 3] (mod 4)
have

∧
kq. prime (4∗kq+3) =⇒ even (multiplicity (4∗kq+3) m)

proof −
fix kq
let ?q = 4∗(kq::nat) + 3
assume a2 : prime ?q
{ assume p = ?q

then have False using a1 cong-add-rcancel-0-nat [of 4 ∗ kq 3 4]
by (auto simp add: cong-def)

}
hence p 6=?q ..

12 Contents

have n = p ∗ m using h1 by simp
also from h1 a2 m-nz have multiplicity ?q . . . =

multiplicity (4 ∗ kq + 3) p + multiplicity (4 ∗ kq + 3) m
by (subst prime-elem-multiplicity-mult-distrib) (simp-all add: prime-gt-0-nat)

also from ‹p 6= ?q› a2 h1 have multiplicity ?q p = 0
by (intro prime-multiplicity-other) simp-all

finally have multiplicity ?q n = multiplicity ?q m by simp
moreover have even (multiplicity ?q n) using 1 (2)[of kq] a2 by blast
ultimately show even (multiplicity ?q m) by simp

qed
hence is-sum2sq-nat m by (simp add: 1 h2)
moreover have is-sum2sq-nat p using fermat-two-squares a1 h1 by blast
ultimately have ?thesis using product-two-squares-nat h1 by blast

} ultimately
show ?thesis by blast

qed
qed

theorem sum-of-two-squares:
is-sum2sq-nat n ←→ (∀ k. prime (4∗k+3) −→ even (multiplicity (4∗k+3) n))

using sots1 [of n] sots2 [of n] by blast

private lemma k-mod-eq: (∀ p::nat. prime p ∧ [p = 3] (mod 4) −→ P p) = (∀ k. prime
(4∗k+3) −→ P (4∗k+3))
proof

assume a1 : ∀ p. prime p ∧ [p = 3] (mod 4) −→ P p
{

fix k :: nat
assume prime (4 ∗ k + 3)
moreover hence [4∗k+3 = 3] (mod 4)

by (simp add: cong-add-rcancel-0-nat cong-mult-self-left)
ultimately have P (4 ∗ k + 3) using a1 by blast

}
thus ∀ k. prime (4 ∗ k + 3) −→ P (4 ∗ k + 3) by blast

next
assume a1 : ∀ k. prime (4 ∗ k + 3) −→ P (4 ∗ k + 3)
{

fix p :: nat
assume prime p [p = 3] (mod 4)
moreover with aux-lemma obtain k where p = 4∗k+3 by fastforce
ultimately have P p using a1 by blast

}
thus ∀ p. prime p ∧ [p = 3] (mod 4) −→ P p by blast

qed

theorem sum-of-two-squares ′:
is-sum2sq-nat n ←→ (∀ p. prime p ∧ [p = 3] (mod 4) −→ even (multiplicity p n))

using sum-of-two-squares k-mod-eq by presburger

theorem sum-of-two-squares-prime: assumes prime p
shows is-sum2sq-nat p = [p 6=3] (mod 4)

proof (cases [p=3] (mod 4))

1 Lagrange’s four-square theorem 13

case True
have odd (multiplicity p p) using assms by simp
hence ¬ (is-sum2sq-nat p) using assms True sum-of-two-squares ′ by blast
with True show ?thesis by simp

qed (simp add: fermat-two-squares assms)

end

end

1 Lagrange’s four-square theorem
theory FourSquares

imports HOL−Number-Theory.Number-Theory
begin

context

fixes sum4sq-nat :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat
defines sum4sq-nat a b c d ≡ a^2+b^2+c^2+d^2

fixes is-sum4sq-nat :: nat ⇒ bool
defines is-sum4sq-nat n ≡ (∃ a b c d. n = sum4sq-nat a b c d)

begin

private lemma best-division-abs: (n::int) > 0 =⇒ ∃ k. 2 ∗ |a − k∗n| ≤ n
proof −

assume a: n > 0
define k where k = a div n
have h: a − k ∗ n = a mod n by (simp add: div-mult-mod-eq algebra-simps k-def)
thus ?thesis
proof (cases 2 ∗ (a mod n) ≤ n)

case True
hence 2 ∗ |a − k∗n| ≤ n using h pos-mod-sign a by auto
thus ?thesis by blast

next
case False
hence 2 ∗ (n − a mod n) ≤ n by auto
have a − (k+1)∗n = a mod n − n using h by (simp add: algebra-simps)
hence 2 ∗ |a − (k+1)∗n| ≤ n using h pos-mod-bound[of n a] a False by fastforce
thus ?thesis by blast

qed
qed

Shows that all nonnegative integers can be written as the sum of four squares.
The proof consists of the following steps:

• For every prime p = 2n+ 1 the two sets of residue classes

{x2 mod p | 0 ≤ x ≤ n} and {−1− y2 mod p | 0 ≤ y ≤ n}

14 1 Lagrange’s four-square theorem

both contain n+ 1 different elements and therefore they must have at least
one element in common.

• Hence there exist x, y such that x2 + y2 + 12 + 02 is a multiple of p.

• The next step is to show, by an infinite descent, that p itself can be written
as the sum of four squares.

• Finally, using the multiplicity of this form, the same holds for all positive
numbers.

private definition
sum4sq-int :: int × int × int × int ⇒ int where
sum4sq-int = (λ(a,b,c,d). a^2+b^2+c^2+d^2)

private definition
is-sum4sq-int :: int ⇒ bool where
is-sum4sq-int n ←→ (∃ a b c d. n = sum4sq-int(a,b,c,d))

private lemma mult-sum4sq-int: sum4sq-int(a,b,c,d) ∗ sum4sq-int(p,q,r ,s) =
sum4sq-int(a∗p+b∗q+c∗r+d∗s, a∗q−b∗p−c∗s+d∗r ,

a∗r+b∗s−c∗p−d∗q, a∗s−b∗r+c∗q−d∗p)
by (unfold sum4sq-int-def , simp add: eval-nat-numeral field-simps)

private lemma sum4sq-int-nat-eq: sum4sq-nat a b c d = sum4sq-int (a, b, c, d)
unfolding sum4sq-nat-def sum4sq-int-def by simp

private lemma is-sum4sq-int-nat-eq: is-sum4sq-nat n = is-sum4sq-int (int n)
unfolding is-sum4sq-nat-def is-sum4sq-int-def

proof
assume ∃ a b c d. n = sum4sq-nat a b c d
thus ∃ a b c d. int n = sum4sq-int (a, b, c, d) using sum4sq-int-nat-eq by force

next
assume ∃ a b c d. int n = sum4sq-int (a, b, c, d)
then obtain a b c d where int n = sum4sq-int (a, b, c, d) by blast
hence int n = sum4sq-int (int (nat |a|), int (nat |b|), int (nat |c|), int (nat |d|))

unfolding sum4sq-int-def by simp
hence int n = int (sum4sq-nat (nat |a|) (nat |b|) (nat |c|) (nat |d|))

using sum4sq-int-nat-eq by presburger
thus ∃ a b c d. n = sum4sq-nat a b c d by auto

qed

private lemma is-mult-sum4sq-int: is-sum4sq-int x =⇒ is-sum4sq-int y =⇒ is-sum4sq-int
(x∗y)

by (unfold is-sum4sq-int-def , auto simp only: mult-sum4sq-int, blast)

private lemma is-mult-sum4sq-nat: is-sum4sq-nat x =⇒ is-sum4sq-nat y =⇒ is-sum4sq-nat
(x∗y)

using is-mult-sum4sq-int is-sum4sq-int-nat-eq by simp

private lemma mult-oddprime-is-sum4sq: [[prime (nat p); odd p]] =⇒
∃ t. 0<t ∧ t<p ∧ is-sum4sq-int (p∗t)

1 Lagrange’s four-square theorem 15

proof −
assume p1 : prime (nat p)
then have p0 : p > 1 and prime p

by (simp-all add: prime-int-nat-transfer prime-nat-iff)
assume p2 : odd p
then obtain n where n: p = 2∗n+1 using oddE by blast
with p1 have n0 : n > 0 by (auto simp add: prime-nat-iff)
let ?C = {0 ..< p}
let ?D = {0 .. n}
let ?f = %x. x^2 mod p
let ?g = %x. (−1−x^2) mod p
let ?A = ?f ‘ ?D
let ?B = ?g ‘ ?D
have finC : finite ?C by simp
have finD: finite ?D by simp
from p0 have AsubC : ?A ⊆ ?C and BsubC : ?B ⊆ ?C

by auto
with finC have finA: finite ?A and finB: finite ?B

by (auto simp add: finite-subset)
from AsubC BsubC have AunBsubC : ?A ∪ ?B ⊆ ?C by (rule Un-least)
from p0 have cardC : card ?C = nat p using card-atLeastZeroLessThan-int by blast
from n0 have cardD: card ?D = 1+ nat n by simp
have cardA: card ?A = card ?D
proof −

have inj-on ?f ?D
proof (unfold inj-on-def , auto)

fix x fix y
assume x0 : 0 ≤ x and xn: x ≤ n and y0 : 0 ≤ y and yn: y ≤ n

and xyp: x^2 mod p = y^2 mod p
with p0 have [x^2 = y^2] (mod p) using cong-def by blast
hence p dvd x^2−y^2 using cong-iff-dvd-diff by blast
hence p dvd (x+y)∗(x−y) by (simp add: power2-eq-square algebra-simps)
hence p dvd x+y ∨ p dvd x−y using ‹prime p› p0

by (auto dest: prime-dvd-multD)
moreover
{ assume p dvd x+y

moreover from xn yn n have x+y < p by auto
ultimately have ¬ x+y > 0 by (auto simp add: zdvd-not-zless)
with x0 y0 have x = y by auto } — both are zero

moreover
{ assume ass: p dvd x−y

have x = y
proof (rule ccontr , case-tac x−y ≥ 0)

assume x−y ≥ 0 and x 6= y hence x−y > 0 by auto
with ass have ¬ x−y < p by (auto simp add: zdvd-not-zless)
with xn y0 n p0 show False by auto

next
assume ¬ 0 ≤ x−y hence y−x > 0 by auto
moreover from x0 yn n p0 have y−x < p by auto
ultimately have ¬ p dvd y−x by (auto simp add: zdvd-not-zless)
moreover from ass have p dvd −(x−y) by (simp only: dvd-minus-iff)
ultimately show False by auto

16 1 Lagrange’s four-square theorem

qed }
ultimately show x=y by auto

qed
with finD show ?thesis by (simp only: inj-on-iff-eq-card)

qed
have cardB: card ?B = card ?D
proof −

have inj-on ?g ?D
proof (unfold inj-on-def , auto)

fix x fix y
assume x0 : 0 ≤ x and xn: x ≤ n and y0 : 0 ≤ y and yn: y ≤ n

and xyp: (−1−x^2) mod p = (−1−y^2) mod p
with p0 have [−1−y^2 = −1−x^2] (mod p) by (simp only: cong-def)
hence p dvd (−1−y^2) − (−1−x^2) by (simp only: cong-iff-dvd-diff)
moreover have −1−y^2 − (−1−x^2) = x^2 − y^2 by arith
ultimately have p dvd x^2−y^2 by simp
hence p dvd (x+y)∗(x−y) by (simp add: power2-eq-square algebra-simps)
with p1 have p dvd x+y ∨ p dvd x−y using ‹prime p› p0

by (auto dest: prime-dvd-multD)
moreover
{ assume p dvd x+y

moreover from xn yn n have x+y < p by auto
ultimately have ¬ x+y > 0 by (auto simp add: zdvd-not-zless)
with x0 y0 have x = y by auto } — both are zero

moreover
{ assume ass: p dvd x−y

have x = y
proof (rule ccontr , case-tac x−y ≥ 0)

assume x−y ≥ 0 and x 6= y hence x−y > 0 by auto
with ass have ¬ x−y < p by (auto simp add: zdvd-not-zless)
with xn y0 n p0 show False by auto

next
assume ¬ 0 ≤ x−y hence y−x > 0 by auto
moreover from x0 yn n p0 have y−x < p by auto
ultimately have ¬ p dvd y−x by (auto simp add: zdvd-not-zless)
moreover from ass have p dvd −(x−y) by (simp only: dvd-minus-iff)
ultimately show False by auto

qed }
ultimately show x=y by auto

qed
with finD show ?thesis by (simp only: inj-on-iff-eq-card)

qed
have ?A ∩ ?B 6= {}
proof (rule ccontr , auto)

assume ABdisj: ?A ∩ ?B = {}
from cardA cardB cardD have 2 + 2∗(nat n) = card ?A + card ?B by auto
also with finA finB ABdisj have . . . = card (?A ∪ ?B)

by (simp only: card-Un-disjoint)
also with finC AunBsubC have . . . ≤ card ?C by (simp only: card-mono)
also with cardC have . . . = nat p by simp
finally have 2 + 2∗(nat n) ≤ nat p by simp
with n show False by arith

1 Lagrange’s four-square theorem 17

qed
then obtain z where z ∈ ?A ∧ z ∈ ?B by auto
then obtain x y where xy: x ∈ ?D ∧ y ∈ ?D ∧ z = x^2 mod p ∧ z = (−1−y^2) mod

p by blast
with p0 have [x^2=−1−y^2](mod p) by (simp add: cong-def)
hence p dvd x^2−(−1−y^2) by (simp only: cong-iff-dvd-diff)
moreover have x^2−(−1−y^2)=x^2+y^2+1 by arith
ultimately have p dvd sum4sq-int(x,y,1 ,0) by (auto simp add: sum4sq-int-def)
then obtain t where t: p ∗ t = sum4sq-int(x,y,1 ,0) by (auto simp only: dvd-def

eq-refl)
hence is-sum4sq-int (p∗t) by (unfold is-sum4sq-int-def , auto)
moreover have t > 0 ∧ t < p
proof

have x^2 ≥ 0 ∧ y^2 ≥ 0 by simp
hence x^2+y^2+1 > 0 by arith
with t have p∗t > 0 by (unfold sum4sq-int-def , auto)
moreover
{ assume t < 0 with p0 have p∗t < p∗0 by (simp only: zmult-zless-mono2)

hence p∗t < 0 by simp }
moreover
{ assume t = 0 hence p∗t = 0 by simp }
ultimately have ¬ t < 0 ∧ t 6= 0 by auto
thus t > 0 by simp
from xy have x^2 ≤ n^2 ∧ y^2 ≤ n^2 by (auto simp add: power-mono)
hence x^2+y^2+1 ≤ 2∗n^2 + 1 by auto
with t have contr : p∗t ≤ 2∗n^2+1 by (simp add: sum4sq-int-def)
moreover
{ assume t > n+1

with p0 have p∗(n+1) < p∗t by (simp only: zmult-zless-mono2)
with n have p∗t > (2∗n+1)∗n + (2∗n+1)∗1 by (simp only: distrib-left)
hence p∗t > 2∗n∗n + n + 2∗n + 1 by (simp only: distrib-right mult-1-left)
with n0 have p∗t > 2∗n^2 + 1 by (simp add: power2-eq-square) }

ultimately have ¬ t > n+1 by auto
with n0 n show t < p by auto

qed
ultimately show ?thesis by blast

qed

private lemma zprime-is-sum4sq: prime (nat p) =⇒ is-sum4sq-int p
proof (cases)

assume p2 : p=2
hence p = sum4sq-int(1 ,1 ,0 ,0) by (auto simp add: sum4sq-int-def)
thus ?thesis by (auto simp add: is-sum4sq-int-def)

next
assume ¬ p =2 and prp: prime (nat p)
hence ¬ nat p = 2 by simp
with prp have 2 < nat p using prime-nat-iff by force
moreover with prp have odd (nat p) using prime-odd-nat[of nat p] by blast
ultimately have odd p by (simp add: even-nat-iff)
with prp have ∃ t. 0<t ∧ t<p ∧ is-sum4sq-int (p∗t) by (rule mult-oddprime-is-sum4sq)
then obtain a b c d t where pt-sol: 0<t ∧ t<p ∧ p∗t = sum4sq-int(a,b,c,d)

by (unfold is-sum4sq-int-def , blast)

18 1 Lagrange’s four-square theorem

hence Qt: 0<t ∧ t<p ∧ (∃ a1 a2 a3 a4 . p∗t = sum4sq-int(a1 ,a2 ,a3 ,a4))
(is ?Q t) by blast

have ?Q 1
proof (rule ccontr)

assume nQ1 : ¬ ?Q 1
have ¬ ?Q t
proof (induct t rule: infinite-descent0-measure[where V=λx. (nat x)− 1], clarify)

fix x a b c d
assume nat x − 1 = 0 and x > 0 and s: p∗x=sum4sq-int(a,b,c,d) and x < p
moreover hence x = 1 by arith
ultimately have ?Q 1 by auto
with nQ1 show False by auto

next
fix x
assume 0 < nat x − 1 and ¬ ¬ ?Q x

then obtain a1 a2 a3 a4 where ass: 1<x ∧ x<p ∧ p∗x = sum4sq-int(a1 ,a2 ,a3 ,a4)
by auto

have ∃ y. nat y − 1 < nat x − 1 ∧ ?Q y
proof (cases)

assume evx: even x
hence even (x∗p) by simp
with ass have ev1234 : even (a1^2+a2^2 + a3^2+a4^2)

by (auto simp add: sum4sq-int-def ac-simps)
have ∃ b1 b2 b3 b4 . p∗x=sum4sq-int(b1 ,b2 ,b3 ,b4) ∧ even (b1+b2) ∧ even (b3+b4)

proof (cases)
assume ev12 : even (a1^2+a2^2)
with ev1234 ass show ?thesis by auto

next
assume ¬ even (a1^2+a2^2)
hence odd12 : odd (a1^2+a2^2) by simp
with ev1234 have odd34 : odd (a3^2+a4^2) by auto
show ?thesis
proof (cases)

assume ev1 : even (a1^2)
with odd12 have odd2 : odd (a2^2) by simp
show ?thesis
proof (cases)

assume even (a3^2)
moreover from ass have p∗x = sum4sq-int(a1 ,a3 ,a2 ,a4) by (auto simp

add: sum4sq-int-def)
ultimately show ?thesis using odd2 odd34 ev1 by auto

next
assume ¬ even (a3^2)

moreover from ass have p∗x = sum4sq-int(a1 ,a4 ,a2 ,a3) by (auto simp
add: sum4sq-int-def)

ultimately show ?thesis using odd34 odd2 ev1 by auto
qed

next
assume odd1 : ¬ even (a1^2)
with odd12 have ev2 : even (a2^2) by simp
show ?thesis
proof (cases)

1 Lagrange’s four-square theorem 19

assume even (a3^2)
moreover from ass have sum4sq-int(a1 ,a4 ,a2 ,a3)=p∗x by (auto simp add:

sum4sq-int-def)
ultimately show ?thesis using odd34 odd1 ev2 by force

next
assume ¬ even (a3^2)

moreover from ass have sum4sq-int(a1 ,a3 ,a2 ,a4)=p∗x by (auto simp add:
sum4sq-int-def)

ultimately show ?thesis using odd34 odd1 ev2 by force
qed

qed
qed
then obtain b1 b2 b3 b4

where b: p∗x = sum4sq-int(b1 ,b2 ,b3 ,b4) ∧ even (b1+b2) ∧ even (b3+b4) by
auto

then obtain c1 c3 where c13 : b1+b2 = 2∗c1 ∧ b3+b4 = 2∗c3
using evenE [of b1+b2] evenE [of b3+b4] by meson

from b have even (b1−b2) ∧ even (b3−b4) by simp
then obtain c2 c4 where c24 : b1−b2 = 2∗c2 ∧ b3−b4 = 2∗c4

using evenE [of b1−b2] evenE [of b3−b4] by meson
from evx obtain y where y: x = 2∗y using evenE by blast
hence 4∗(p∗y) = 2∗(p∗x) by (simp add: ac-simps)
also from b have . . . = 2∗b1^2 + 2∗b2^2 + 2∗b3^2 + 2∗b4^2

by (auto simp: sum4sq-int-def)
also have . . . = (b1 + b2)^2 + (b1 − b2)^2 + (b3 + b4)^2 + (b3 − b4)^2

by (auto simp add: power2-eq-square algebra-simps)
also with c13 c24 have . . . = 4∗(c1^2 + c2^2 + c3^2 + c4^2)

by (auto simp add: power-mult-distrib)
finally have p ∗ y = sum4sq-int(c1 ,c2 ,c3 ,c4) by (auto simp add: sum4sq-int-def)
moreover from y ass have 0 < y ∧ y < p ∧ (nat y) − 1 < (nat x) − 1 by arith
ultimately show ?thesis by blast

next
assume xodd: ¬ even x

with ass have ∃ c1 c2 c3 c4 . 2∗|a1−c1∗x|≤x ∧ 2∗|a2−c2∗x|≤x ∧ 2∗|a3−c3∗x|≤x
∧ 2∗|a4−c4∗x|≤x

by (simp add: best-division-abs)
then obtain b1 c1 b2 c2 b3 c3 b4 c4 where

bc-def : b1 = a1−c1∗x ∧ b2 = a2−c2∗x ∧ b3 = a3−c3∗x ∧ b4 = a4−c4∗x
and 2∗|b1 |≤x ∧ 2∗|b2 |≤x ∧ 2∗|b3 |≤x ∧ 2∗|b4 |≤x
by blast

moreover have 2∗|b1 |6=x ∧ 2∗|b2 |6=x ∧ 2∗|b3 |6=x ∧ 2∗|b4 |6=x using xodd by
fastforce

ultimately have bc-abs: 2∗|b1 |<x ∧ 2∗|b2 |<x ∧ 2∗|b3 |<x ∧ 2∗|b4 |<x by auto
let ?B = b1^2 + b2^2 + b3^2 + b4^2
let ?C = c1^2 + c2^2 + c3^2 + c4^2
have x dvd ?B
proof

from bc-def ass have
?B = p∗x − 2∗(a1∗c1+a2∗c2+a3∗c3+a4∗c4)∗x + ?C∗x^2
unfolding sum4sq-int-def by (auto simp add: power2-eq-square algebra-simps)

thus ?B = x∗(p − 2∗(a1∗c1+a2∗c2+a3∗c3+a4∗c4) + ?C∗x)
by (auto simp add: ac-simps power2-eq-square

20 1 Lagrange’s four-square theorem

distrib-left right-diff-distrib)
qed
then obtain y where y: ?B = x ∗ y by (auto simp add: dvd-def)
let ?A1 = a1∗b1 + a2∗b2 + a3∗b3 + a4∗b4
let ?A2 = a1∗b2 − a2∗b1 − a3∗b4 + a4∗b3
let ?A3 = a1∗b3 + a2∗b4 − a3∗b1 − a4∗b2
let ?A4 = a1∗b4 − a2∗b3 + a3∗b2 − a4∗b1
let ?A = sum4sq-int(?A1 ,?A2 ,?A3 ,?A4)
have x dvd ?A1 ∧ x dvd ?A2 ∧ x dvd ?A3 ∧ x dvd ?A4
proof (safe)

from bc-def have
?A1 = (b1+c1∗x)∗b1 + (b2+c2∗x)∗b2 + (b3+c3∗x)∗b3 + (b4+c4∗x)∗b4
by simp

also with y have . . . = x∗(y + c1∗b1 + c2∗b2 + c3∗b3 + c4∗b4)
by (auto simp add: distrib-left power2-eq-square ac-simps)

finally show x dvd ?A1 by auto
from bc-def have

?A2 = (b1+c1∗x)∗b2 − (b2+c2∗x)∗b1 − (b3+c3∗x)∗b4 + (b4+c4∗x)∗b3
by simp

also have . . . = x∗(c1∗b2 − c2∗b1 − c3∗b4 + c4∗b3)
by (auto simp add: distrib-left right-diff-distrib ac-simps)

finally show x dvd ?A2 by auto
from bc-def have

?A3 = (b1+c1∗x)∗b3 + (b2+c2∗x)∗b4 − (b3+c3∗x)∗b1 − (b4+c4∗x)∗b2
by simp

also have . . . = x∗(c1∗b3 + c2∗b4 − c3∗b1 − c4∗b2)
by (auto simp add: distrib-left right-diff-distrib ac-simps)

finally show x dvd ?A3 by auto
from bc-def have

?A4 = (b1+c1∗x)∗b4 − (b2+c2∗x)∗b3 + (b3+c3∗x)∗b2 − (b4+c4∗x)∗b1
by simp

also have . . . = x∗(c1∗b4 − c2∗b3 + c3∗b2 − c4∗b1)
by (auto simp add: distrib-left right-diff-distrib ac-simps)

finally show x dvd ?A4 by auto
qed
then obtain d1 d2 d3 d4 where d:

?A1=x∗d1 ∧ ?A2=x∗d2 ∧ ?A3=x∗d3 ∧ ?A4=x∗d4
by (auto simp add: dvd-def)

let ?D = sum4sq-int(d1 ,d2 ,d3 ,d4)
from d have x^2∗?D = ?A

by (auto simp only: sum4sq-int-def power-mult-distrib distrib-left)
also have . . . = sum4sq-int(a1 ,a2 ,a3 ,a4)∗sum4sq-int(b1 ,b2 ,b3 ,b4)

by (simp only: mult-sum4sq-int)
also with y ass have . . . = (p∗x)∗(x∗y) by (auto simp add: sum4sq-int-def)
also have . . . = x^2∗(p∗y) by (simp only: power2-eq-square ac-simps)
finally have x^2∗(?D − p∗y) = 0 by (auto simp add: right-diff-distrib)
with ass have p∗y = ?D by auto
moreover have y-l-x: y < x
proof −

have 4∗b1^2 = (2∗|b1 |)^2 ∧ 4∗b2^2 = (2∗|b2 |)^2 ∧
4∗b3^2 = (2∗|b3 |)^2 ∧ 4∗b4^2 = (2∗|b4 |)^2 by simp

with bc-abs have 4∗b1^2<x^2 ∧ 4∗b2^2<x^2 ∧ 4∗b3^2<x^2 ∧ 4∗b4^2<x^2

1 Lagrange’s four-square theorem 21

using power-strict-mono [of 2∗|b| x 2 for b]
by auto

hence ?B < x^2 by auto
with y have x∗(x−y) > 0

by (auto simp add: power2-eq-square right-diff-distrib)
moreover from ass have x > 0 by simp
ultimately show ?thesis using zero-less-mult-pos by fastforce

qed
moreover have y > 0
proof −

have b2pos: b1^2 ≥ 0 ∧ b2^2 ≥ 0 ∧ b3^2 ≥ 0 ∧ b4^2 ≥ 0 by simp
hence ?B = 0 ∨ ?B > 0 by arith
moreover
{ assume ?B = 0

moreover from b2pos have
?B−b1^2 ≥ 0 ∧ ?B−b2^2 ≥ 0 ∧ ?B−b3^2 ≥ 0 ∧ ?B−b4^2 ≥ 0 by arith

ultimately have b1^2 ≤ 0 ∧ b2^2 ≤ 0 ∧ b3^2 ≤ 0 ∧ b4^2 ≤ 0 by auto
with b2pos have b1^2 = 0 ∧ b2^2 = 0 ∧ b3^2 = 0 ∧ b4^2 = 0 by arith
hence b1 = 0 ∧ b2 = 0 ∧ b3 = 0 ∧ b4 = 0 by auto
with bc-def have x dvd a1 ∧ x dvd a2 ∧ x dvd a3 ∧ x dvd a4

by auto
hence x^2 dvd a1^2 ∧ x^2 dvd a2^2 ∧ x^2 dvd a3^2 ∧ x^2 dvd a4^2 by simp
hence x^2 dvd a1^2+a2^2+a3^2+a4^2 by (simp only: dvd-add)
with ass have x^2 dvd p∗x by (auto simp only: sum4sq-int-def)
hence x∗x dvd x∗p by (simp only: power2-eq-square ac-simps)
with ass have nat x dvd nat p

by (simp add: nat-dvd-iff)
moreover from ass prp have x ≥ 0 ∧ x 6= 1 ∧ x 6= p ∧ prime (nat p) by

simp
ultimately have False unfolding prime-nat-iff by auto }

moreover
{ assume ?B > 0

with y have x∗y > 0 by simp
moreover from ass have x > 0 by simp
ultimately have ?thesis using zero-less-mult-pos by blast }

ultimately show ?thesis by auto
qed
moreover with y-l-x have (nat y) − 1 < (nat x) − 1 by arith
moreover from y-l-x ass have y < p by auto
ultimately show ?thesis by blast

qed
thus ∃ y. nat y − 1 < nat x − 1 ∧ ¬ ¬ ?Q y by blast

qed
with Qt show False by simp

qed
thus is-sum4sq-int p by (auto simp add: is-sum4sq-int-def)

qed

private lemma prime-is-sum4sq: prime p =⇒ is-sum4sq-nat p
using zprime-is-sum4sq is-sum4sq-int-nat-eq by simp

theorem sum-of-four-squares: is-sum4sq-nat n

22 REFERENCES

proof (induction n rule: nat-less-induct)
case (1 n)

show ?case
proof (cases n>1)
case False

hence n = 0 ∨ n = 1 by auto
moreover have 0 = sum4sq-nat 0 0 0 0 1 = sum4sq-nat 1 0 0 0 unfolding

sum4sq-nat-def by auto
ultimately show ?thesis unfolding is-sum4sq-nat-def by blast

next
case True

then obtain p m where dec: prime p ∧ n = p ∗ m using prime-factor-nat[of n]
by (auto elim: dvdE)

moreover hence m<n using n-less-m-mult-n[of m p] prime-gt-Suc-0-nat[of p] True
by linarith

ultimately have is-sum4sq-nat m is-sum4sq-nat p using 1 prime-is-sum4sq by blast+
thus ?thesis using dec is-mult-sum4sq-nat by blast

qed
qed

end

end

References
[Har] John Harrison. The HOL Light theorem prover. http://www.cl.cam.ac.

uk/~jrh13/hol-light/.

[Oos07] Roelof Oosterhuis. Mechanised theorem proving: Exponents 3 and 4 of
Fermat’s Last Theorem in Isabelle. Master’s thesis, University of Gronin-
gen, 2007. http://www.roelofoosterhuis.nl/MScthesis.pdf.

[The04] Laurent Thery. Numbers equal to the sum of two square numbers. http:
//coq.inria.fr/contribs/SumOfTwoSquare.html, 2004.

[Wei83] André Weil. Number Theory: An Approach Through History; From Ham-
murapi to Legendre. Birkhäuser, 1983.

[Wie] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/
100/.

http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://www.roelofoosterhuis.nl/MScthesis.pdf
http://coq.inria.fr/contribs/SumOfTwoSquare.html
http://coq.inria.fr/contribs/SumOfTwoSquare.html
http://www.cs.ru.nl/~freek/100/
http://www.cs.ru.nl/~freek/100/

	Lagrange's four-square theorem

