Sums of two and four squares

Roelof Oosterhuis
University of Groningen

September 13, 2023

Abstract

This document gives the formal proofs of the following results about the sums of two and four squares: 1. Any prime number $p \equiv 1 \bmod 4$ can be written as the sum of two squares. 2. (Lagrange) Any natural number can be written as the sum of four squares. The proofs are largely based on chapters II and III of the book by Weil [Wei83]. The results have been formalised before in the proof assistant HOL Light [Har]. A more complete study of the sum of two squares, including the first result, has been formalised in Coq [The04]. The results can also be found as numbers 20 and 19 on the list of 'top 100 mathematical theorems' [Wie].

This research is part of an M.Sc. thesis under supervision of Jaap Top and Wim H. Hesselink (RU Groningen). For more information see [Oos07].

Contents

1 Lagrange's four-square theorem
theory TwoSquares
imports
HOL-Number-Theory.Number-Theory
begin
context

fixes sum2sq-nat $::$ nat \Rightarrow nat \Rightarrow nat
defines sum2sq-nat $a b \equiv a^{\wedge}$ 2 $+b^{\wedge} 2$
fixes is-sum2sq-nat :: nat \Rightarrow bool
defines $i s$-sum2sq-nat $n \equiv(\exists a b . n=$ sum2sq-nat $a b)$

begin

private lemma best-division-abs: $(n:: i n t)>0 \Longrightarrow \exists k .2 *|a-k * n| \leq n$ proof -
assume $a: n>0$
define k where $k=a$ div n
hence $h: a-k * n=a \bmod n$ by (simp add: mod-div-mult-eq algebra-simps)
thus ?thesis
proof $($ cases $2 *(a \bmod n) \leq n)$
case True
hence $2 *|a-k * n| \leq n$ using h pos-mod-sign a by auto
thus ?thesis by blast
next
case False
hence $2 *(n-a \bmod n) \leq n$ by auto
have $a-(k+1) * n=a \bmod n-n$ using h by (simp add: algebra-simps)
hence 2* $|a-(k+1) * n| \leq n$ using h pos-mod-bound[of n a] a False by fastforce
thus ?thesis by blast
qed
qed
private definition
sum2sq-int $::$ int \times int \Rightarrow int where
sum2sq-int $=(\lambda(a, b) . a \bumpeq 2+b$ ~2 $)$
private definition
is-sum2sq-int $::$ int \Rightarrow bool where
is-sum2sq-int $n \longleftrightarrow(\exists a b . n=\operatorname{sum2sq-int}(a, b))$
private lemma sum2sq-int-nat-eq: sum2sq-nat $a b=\operatorname{sum2sq-int}(a, b)$
unfolding sum2sq-nat-def sum2sq-int-def by simp
private lemma is-sum2sq-int-nat-eq: is-sum2sq-nat $n=$ is-sum2sq-int (int n)

```
    unfolding is-sum2sq-nat-def is-sum2sq-int-def
proof
    assume \existsab.n= sum2sq-nat a b
    thus \existsab. int n=sum2sq-int (a,b) using sum2sq-int-nat-eq by force
next
    assume \existsab. int n= sum2sq-int (a,b)
    then obtain ab where int n= sum2sq-int ( }a,b\mathrm{ ) by blast
    hence int n = sum2sq-int (int (nat |a|), int (nat |b|)) unfolding sum2sq-int-def by
simp
    hence int n= int (sum2sq-nat (nat |a|) (nat |b|)) using sum2sq-int-nat-eq by pres-
burger
    thus \existsab.n= sum2sq-nat a b by auto
qed
```

private lemma product-two-squares-aux: sum2sq-int $(a, b) * \operatorname{sum2sq-int}(c, d)=\operatorname{sum} 2 s q-i n t(a * c$
$-b * d, a * d+b * c)$
unfolding power2-eq-square sum2sq-int-def by (simp add: algebra-simps)
private lemma product-two-squares-int: is-sum2sq-int $m \Longrightarrow i s$-sum2sq-int $n \Longrightarrow i s$-sum2sq-int
($m * n$)
by (unfold is-sum2sq-int-def, auto simp only: product-two-squares-aux, blast)
private lemma product-two-squares-nat: is-sum2sq-nat $m \Longrightarrow i s$-sum2sq-nat $n \Longrightarrow i s$-sum2sq-nat
($m * n$)
using product-two-squares-int is-sum2sq-int-nat-eq by simp
private lemma sots1-aux:
assumes prime ($4 * k+3$)
assumes odd (multiplicity $(4 * k+3) n$)
shows \neg is-sum2sq-nat n
proof
assume is-sum2sq-nat n

by blast
have $a b-n z: a \neq 0 \vee b \neq 0$ by (rule ccontr) (insert assms, auto simp: h1)
let $? p=4 * k+3$
let ? $g=g c d a b$
have h2: ?g $\neq 0$ using assms(2) h1 odd-pos by fastforce
then obtain $a^{\prime} b^{\prime}$ where $h 3: a=a^{\prime} * ? g b=b^{\prime} * ? g$ coprime $a^{\prime} b^{\prime}$
using gcd-coprime-exists by blast
have ? g ح2 dvd n using dvd-add $h 1$ by auto
then obtain m where $h_{4}: m * ? g \wedge 2=n$ using dvd-div-mult-self by blast
also have $\ldots=\left(a^{\prime} * ? g\right)^{\wedge} 2+\left(b^{\prime} * ? g\right)^{\wedge} 2$ unfolding $h 1$ using $h 3$ by presburger
also have $\ldots=? g^{\wedge} 2 * a^{\prime \wedge 2}+? g^{\wedge} 2 * b^{\prime \wedge} 2$ unfolding power2-eq-square by simp
finally have ? $g^{\wedge} 2 * m=? g^{\wedge} 2 *\left(a^{\prime \wedge} 2+b^{\prime \wedge} 2\right)$ by (simp add: distrib-left mult.commute)
hence $h 5: m=a^{\prime \wedge} 2+b^{\prime \wedge} 2$ using $h 2$ by auto
let $? \mathrm{mul}=$ multiplicity $? p ? g$
have multiplicity ? $p\left(? g^{\wedge}\right.$ 2 $)=$?mul + ?mul
unfolding power2-eq-square using h2 assms
by (subst prime-elem-multiplicity-mult-distrib) simp-all
hence even (multiplicity ?p (? $\mathrm{g}^{\text {^2 } 2)) ~ b y ~ s i m p ~}$
moreover have $m \neq 0$ using assms(2) h_{4} odd-pos by fastforce
ultimately have odd (multiplicity ? $p \mathrm{~m}$)
using assms ab-nz by (simp-all add: h_{4} [symmetric] prime-elem-multiplicity-mult-distrib)
hence ?p dvd m using not-dvd-imp-multiplicity-0 by force
hence $h 6$: ? p dvd $a^{\prime \wedge} 2+b^{\prime \wedge} 2$ using $h 5$ by auto
\{
assume ?p dvd $a^{\prime \sim} 2$
moreover hence ?p dvd $b^{\prime \sim} 2$ using $h 6$ dvd-add-right-iff by blast
ultimately have ? p dvd a^{\prime} ? p dvd b^{\prime} using assms(1) prime-dvd-power-nat by blast+
hence False
using assms(1) h3(3) coprime-common-divisor-nat $\left[\right.$ of $a^{\prime} b^{\prime}$?p] not-prime-1 by linarith
\}
hence $\neg\left(? p\right.$ dvd $\left.a^{\prime \text { ^2 }}\right)$..
hence $h 7$: $\neg\left(? p d v d a^{\prime}\right)$ using $\operatorname{assms}(1)$
by (simp add: power2-eq-square prime-dvd-mult-iff)
hence coprime ?p a^{\prime}
using assms(1) by (simp add: prime-imp-coprime)
thm prime-imp-coprime-nat
moreover have $a^{\prime} \neq 0$ using $h 7 d v d-0$-right $[o f ? p]$ by meson
ultimately obtain ainv aux where $a^{\prime} * \operatorname{ainv}=? p * a u x+1$
using bezout-nat[of a^{\prime} ? p]
by (auto simp: ac-simps)
hence $\left[a^{\prime} *\right.$ ainv $\left.=1\right]$ (mod ?p) using cong-to-1'-nat by auto
from cong-mult [OF this this] have $111:\left[1=\operatorname{ainv} 2 * a^{\prime \wedge} 2\right](\bmod ? p)$
unfolding power2-eq-square by (simp add: algebra-simps cong-sym)
let ?bdiva $=a i n v * b^{\prime}$
have $\left[\operatorname{ainv} \wedge^{\wedge} 2 *\left(a^{\prime \wedge 2}+b^{\prime \wedge} 2\right)=0\right](\bmod ? p)$
using $h 6$ cong-dvd-modulus-nat cong-mult-self-right by blast
from cong-add [OF h11 this] have $\left[1+\operatorname{ainv} \mathrm{V}_{2} * b^{\prime \wedge 2}=0\right](\bmod ? p)$
unfolding add-mult-distrib2 using cong-add-lcancel-nat[of ainv^2 $\left.* a^{\prime \wedge} 2\right]$
by fastforce
hence $h 8$: [?bdiva^2 $+1=0](\bmod ? p)$ by (simp add: power-mult-distrib)
\{
assume ?p dvd ?bdiva
hence ?p dvd (?bdiva^2) by (simp add: assms(1) prime-dvd-power-nat-iff)
hence $[? b d i v a \wedge 2=0](\bmod ? p)$ using cong-altdef-nat by auto
hence [?bdiva^2 $+1=1$] (mod ?p) using cong-add-rcancel-0-nat by blast
from this h8 have [0 = 1] (mod ? p) using cong-sym cong-trans by blast
hence ?p dvd 1 using cong-0-1-nat by auto
hence False using assms(1) by simp
\}
hence $\neg(? p$ dvd ?bdiva) ..
hence $h 9$: [?bdiva^ $(? p-1)=1](\bmod ? p)$
using assms(1) fermat-theorem [of ?p ?bdiva] by simp
have $h 10:$? $p \geq 3$ by simp
have $h 11:[? b d i v a \Upsilon(4 * k+2)=1](\bmod ? p)$ using $h 9$ by auto
have $[(? b d i v a \wedge 2+1) \wedge 2=0](\bmod ? p)$ using h8 cong-pow $[o f ? b d i v a \wedge 2+10 ? p$ 2]
by auto
moreover have ?bdiva ${ }^{\wedge} 4=\left(? b d i v a{ }^{\wedge} 2\right){ }^{\wedge} 2$ by auto

by (auto simp: algebra-simps power2-eq-square)
ultimately have $[? b d i v a \wedge 4+? b d i v a \wedge 2+? b d i v a \wedge 2+1=0](\bmod ? p)$ by simp
moreover have $\left[? b d_{i v a \wedge 4}^{4}+? b d i v a \wedge 2+(? b d i v a \wedge 2+1)=? b d i v a \wedge 4+? b d i v a \wedge 2+\right.$
$0](\bmod ? p)$
using $h 8$ cong-add-lcancel-nat by blast
ultimately have $[? b d i v a \wedge 4+? b d i v a \wedge 2=0](\bmod ? p)$ by $($ simp add: cong-def)
hence $[? b d i v a \wedge 4+? b d i v a \wedge 2+1=0+1](\bmod ? p)$ using cong-add-rcancel-nat by blast
moreover have $\left[?\right.$ bdiva $^{\wedge} 4+\left(?\right.$ bdiva $\left.^{\wedge} 2+1\right)=?$ bdiva $\left.^{\wedge} 4+0\right](\bmod ? p)$
using $h 8$ cong-add-lcancel-nat by blast
ultimately have $\left[? b d i v a \wedge_{4}=1\right](\bmod ? p)$ by (simp add: cong-def)
hence $[(? b d i v a \wedge 4) \wedge k=1 \wedge k](\bmod ? p)$ using cong-pow by blast
hence h12: [?bdiva $(4 * k)=1]$ (\bmod ? p) by (simp add: power-mult)
hence h13: [?bdiva^(4*k)*(?bdiva^2 + 1) = $1 *(? b d i v a \wedge 2+1)](\bmod ? p)$
using cong-scalar-right by blast
have ?bdiva^(4*k)*(?bdiva^2 +1$)=? b d i v a \wedge(4 * k+2)+? b d i v a \wedge(4 * k)$
unfolding add-mult-distrib2 power-add by simp
hence $[? b d i v a \wedge(4 * k+2)+? b d i v a \wedge(4 * k)=? b d i v a \wedge 2+1](\bmod ? p)$
using h13 unfolding nat-mult-1 by presburger
moreover have $[? b d i v a \wedge(4 * k+2)+? b d i v a \wedge(4 * k)=1+1](\bmod ? p)$
using h11 h12 cong-add by blast
ultimately have $\left[? b d i v a \wedge^{\wedge} 2+1=2\right](\bmod ? p)$
by (auto simp add: cong-def)
hence $[0=2]$ (\bmod ? p) using $h 8$ by (simp add: cong-def)
then have ?p dvd 2 by (auto dest: cong-dvd-iff)
then show False
by (auto dest: dvd-imp-le)
qed
private lemma sots1: assumes is-sum2sq-nat n
shows $\wedge k$. prime $(4 * k+3) \longrightarrow$ even (multiplicity $(4 * k+3) n)$
using sots1-aux assms by blast
private lemma aux-lemma: assumes $[(a:: n a t)=b](\bmod c) b<c$
shows $\exists k$. $a=c * k+b$
proof -
have $a \bmod c=b$ using assms by (simp add: cong-def mod-if)
hence $b \leq a$ using assms by auto
thus ?thesis using cong-le-nat assms(1) by auto
qed
private lemma Legendre-1mod4: prime $(4 * k+1::$ nat $) \Longrightarrow($ Legendre $(-1)(4 * k+1))=$ 1
proof -
let ? $p=4 * k+1$
let $? L=$ Legendre $(-1) ? p$
assume p : prime?p
from p have $k \neq 0$ by (intro notI) simp-all
hence $p 2: ? p>2$ by simp
with p have $[? L=(-1) \uparrow((? p-1)$ div 2 $)](\bmod ? p)$
by (rule euler-criterion)
hence $[? L=(-1) \uparrow(2 *$ nat $k)](\bmod ? p)$ by auto
hence $[? L=1]$ (mod ?p) unfolding power-mult by simp
hence ?p dvd $1-$? L
using cong-iff-dvd-diff dvd-minus-iff[of ?p ?L-1] by auto
moreover have ? $L=1 \vee$? $L=0 \vee$? $L=-1$ by (simp add: Legendre-def)
ultimately have ? $L=1 \vee$? p dvd $1 \vee$?p dvd (2::int) by auto
moreover
\{ assume ?p dvd $1 \vee$?p dvd (2::int)
with p2 have False by (auto simp add: zdvd-not-zless) \}
ultimately show ?thesis by auto
qed
private lemma qf1-prime-exists: prime $(4 * k+1) \Longrightarrow$ is-sum2sq-nat $(4 * k+1)$
proof -
let $? p=4 * k+1$
assume p : prime ?p
hence Legendre (-1) ?p = 1 by (rule Legendre-1mod4)
moreover
\{ assume \neg QuadRes ?p (-1)
hence Legendre $(-1) ? p \neq 1$ by (unfold Legendre-def, auto) $\}$
ultimately have QuadRes ?p (-1) by auto
then obtain $s 1$ where $s 1:\left[s 1^{\wedge} 2=-1\right](\bmod ? p)$ by (auto simp add: QuadRes-def)
hence $s 1^{\prime}:\left[s 1^{\wedge} 2+1=0\right](\bmod ? p)$ by (simp add: cong-iff-dvd-diff)
define $s 2$ where $s 2=$ nat $|s 1|$
hence int $(s$ へへ $2+1)=s 1^{\text {^ } 2 ~}+1$ by auto
with $s 1^{\prime}$ have $[\operatorname{int}(s 2 \wedge 2+1)=0](\bmod ? p)$ by presburger
hence $s 2$: $[s 2 \subset 2+1=0](\bmod ? p)$
using cong-int-iff by fastforce
from p have $p 0: ? p>0$ by simp
then obtain s where $s 0 p: 0 \leq s \wedge s<? p \wedge[s 2=s](\bmod ? p)$ using cong-less-unique-nat [of ?p] by fastforce
then have $\left[s\right.$ ^2 $=s$ 2 $\left.^{2}\right](\bmod ? p)$
by (simp add: cong-sym cong-pow)
with $s 2$ have $s:\left[s^{\wedge} 2+1=0\right](\bmod ? p)$
using cong-trans cong-add-rcancel-nat by blast
hence ?p dvd s~2 +1 using cong-altdef-nat by auto
then obtain t where $t: s^{\wedge} 2+1=? p * t$ by (auto simp add: dvd-def)
hence ? $p * t=$ sum2sq-nat s 1 by (simp add: sum2sq-nat-def)
hence qf1pt: is-sum2sq-nat (?p*t) by (auto simp add: is-sum2sq-nat-def)
have $t-l-p: t<? p$
proof (rule ccontr)
assume $\neg t<? p$
hence $t>$? $p-1$ by simp
with $p 0$ have ? $p *(? p-1)<? p * t$ by (simp only: mult-less-mono2)
also with t have $\ldots=s^{\wedge} 2+1$ by simp
also have $\ldots \leq ? p *(? p-1)-? p+2$
proof -
from $s O p$ have $s \leq ? p-1$ by (auto simp add: less-le)
with sop have $s \sim 2 \leq(? p-1) \sim 2$ by (simp only: power-mono)
also have $\ldots=? p *(? p-1)-1 *(? p-1)$ by (simp only: power2-eq-square
diff-mult-distrib)
finally show ?thesis by auto
qed
finally have $? p<2$ by simp
with p show False by (unfold prime-def, auto)

```
    qed
    have tpos: t\geq1
    proof (rule ccontr)
    assume }\negt\geq
    hence t<1 by auto
    moreover
    { assume t=0 with t have s^2 + 1=0 by simp }
    moreover
    { assume t<0
        with p0 have ? p*t < ?p*0 by (simp only:zmult-zless-mono2)
        with t have s^2 + < < 0 by auto }
    moreover have s^2 \geq0 by (simp only:zero-le-power2)
    ultimately show False by (auto simp add: less-le)
qed
moreover
{ assume t1: t>0
    then obtain tn where tn: tn=t-1 by auto
    have is-sum2sq-nat (?p*(1+0)) (is ?Q 0)
        - So, Q n= there exist x,y such that \mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}=(p*(1+\operatorname{int}(n)))
    proof (rule ccontr)
        assume nQ1: ᄀ?Q 0
        have (1 + tn)<?p\Longrightarrow ᄀ?Q tn
        proof (induct tn rule: infinite-descent0)
            case 0
            from nQ1 show }1+0<?p\Longrightarrow\neg?Q 0 by sim
        next
            case (smaller n)
            hence n0: n>0 and IH: 1+ n<?p \wedge?Q n by auto
            then obtain x y where x^2 + y^2 = int (?p*(1+n))
                using is-sum2sq-int-nat-eq by (unfold is-sum2sq-int-def sum2sq-int-def, auto)
            hence xy: x^2 + y^2 = (int ? p )*(int (1+n)) unfolding of-nat-mult by presburger
            let ?n1 = int (1 + n)
            from n0 have n1pos: ?n1 > 0 by simp
            then obtain rv where rv: v=x-r*?n1 ^2* |v| \leq?n1
                by (frule-tac n=?n1 in best-division-abs, auto)
            from n1pos obtain s w where sw: w=y-s*?n1 ^2* w 
                by (frule-tac n=?n1 in best-division-abs, auto)
            let ?C = v^2 + w^2
            have ?n1 dvd?C
            proof
                from rv sw have ? C = (x-r*?n1)^2 + (y-s*?n1)^2 by simp
                    also have ... = x^2 + y^2 - 2*x*(r*?n1) - 2*y*(s*?n1) + (r*?n1)^2 +
(s*?n1)`2
            unfolding power2-eq-square by (simp add: algebra-simps)
            also with xy have ... = ? n1*?p - ?n1*(2*x*r) - ?n1*(2*y*s) + ?n1^2*r^2
+?n1^2*s`2
            by (simp only: ac-simps power-mult-distrib)
            finally show ?C = ? n1*(?p - 2*x*r - 2*y*s + ?n1*(r^2 + s^2))
                    by (simp only: power-mult-distrib distrib-left ac-simps
                    left-diff-distrib right-diff-distrib power2-eq-square)
            qed
            then obtain m1 where m1: ?C = ?n1*m1 by (auto simp add:dvd-def)
```

```
    have mn: m1 < ?n1
    proof (rule ccontr)
    assume \negm1<?n1 hence ? n1-m1\leq0 by simp
    hence 4*?n1 - 4*m1\leq0 by simp
    with n1pos have 2*?n1 - 4*m1<0 by simp
with n1pos have ? n1*(2*?n1 - 4*m1)<?n1*0 by (simp only:zmult-zless-mono2)
    hence contr: ? n1*(2*?n1-4*m1)<0 by simp
    have hlp:2* |v|\geq0^2*|w|\geq0 by simp
    from m1 have 4*?n n *m1=4*v^2 + 4*w`2 by arith
    also have ... = (2*|v|)^2 + (2*|w|)^2
        by (auto simp add: power-mult-distrib)
    also from rv hlp have ... \leq?n1^2 + (2*|w|)^2
        using power-mono [of 2*|b| 1 +int n 2 for b] by auto
    also from sw hlp have ...\leq?n1^2 + ?n1^2
        using power-mono [of 2*|b| 1 + int n 2 for b] by auto
    finally have ? n 1*m1*4 \leq?n 1*?n1*2 by (simp add: power2-eq-square ac-simps)
    hence ? n1*(2*?n1-4*m1)\geq0 by (simp only: right-diff-distrib ac-simps)
    with contr show False by auto
    qed
    have ? p*m1 = (r*v+s*w+m1)^2 + (r*w-s*v)`2
    proof -
    from m1 xy have (?p*?n1)*?C = (x^2+y^2)*(v^2+w^2) by simp
    also have ... = (x*v + y*w)^2 + (x*w-y*v)^2
        by (simp add: eval-nat-numeral field-simps)
    also with rv sw have ... = ((r*?n1+v)*v+(s*?n1+w)*w)^2 + ((r*?n1+v)*w
- (s*? n1 +w)*v)^2
            by simp
            also have ... = (?n1*(r*v) +? n1*(s*w)+(v`2+w`2))^2 + (?n1*(r*w) -
?n1*(s*v))`2
            by (simp add: eval-nat-numeral field-simps)
    also from m1 have . . = (?n1*(r*v)+?n1*(s*w)+? n1*m1)`2 + (?n1*(r*w)
- ? n n 1*(s*v))^2
            by simp
            finally have (?p*?n1)*?C = ?n1^2*(r*v + s*w + m1)^2 + ?n1^2*(r*w -
s*v)^2
            by (simp add: eval-nat-numeral field-simps)
            with m1 have ?n1^2*(?p*m1) = ?n1^2*((r*v + s*w + m1)^2 + (r*w-
s*v)`2)
            by (simp only: ac-simps power2-eq-square, simp add: distrib-left)
    hence ? n1^2*(?p*m1 - (r*v+s*w+m1)^2 - (r*w-s*v)^2) = 0
            by (auto simp add: distrib-left right-diff-distrib)
    moreover from n1pos have ? n1^2 }\not=0\mathrm{ by (simp add: power2-eq-square)
    ultimately show ?thesis by simp
    qed
    hence qf1pm1: is-sum2sq-int ((int ?p)*m1)
    by (unfold is-sum2sq-int-def sum2sq-int-def, auto)
have m1pos: m1 > 0
proof -
    { assume v`2 + w`2 =0
            hence v=0^w=0 using sum-power2-eq-zero-iff by blast
            with rv sw have ?n1 dvd x ^ ?n1 dvd y by (unfold dvd-def, auto)
            hence ? n1^2 dvd x^2 ^? n1^2 dvd y^2 by simp
```

```
            hence ?n1^2 dvd x^2 + y^2 by (simp only: dvd-add)
            with \(x y\) have ? \(n 1 * ? n 1\) dvd ? \(n 1 * ? p\) by (simp only: power2-eq-square ac-simps)
            moreover from \(n 1\) pos have ? \(n 1 \neq 0\) by simp
            ultimately have ?n1 dvd ?p by (rule zdvd-mult-cancel)
            with \(n 1\) pos have ? \(n 1 \geq 0 \wedge\) ? \(n 1\) dvd ? \(p\) by simp
            with \(p\) have ? \(n 1=1 \vee ? n 1=? p\) unfolding prime-nat-iff by presburger
            with \(I H\) have ?Q 0 by auto
            with \(n Q 1\) have False by simp \}
            moreover
            \{ assume \(v^{\wedge} 2+1 * w^{\wedge} 2 \neq 0\)
            moreover have \(\begin{array}{r} \\ \text { ^ } 2\end{array}+w^{\wedge} 2 \geq 0\) by \(\operatorname{simp}\)
            ultimately have vwpos: \(v^{\wedge} 2+w^{\wedge} 2>0\) by arith
            with \(m 1\) have \(m 1 \neq 0\) by auto
            moreover have \(m 1 \geq 0\)
            proof (rule ccontr)
                assume \(\neg m 1 \geq 0\)
            hence \(m 1<0\) by \(\operatorname{simp}\)
            with \(n 1\) pos have ? \(n 1 * m 1<? n 1 * 0\) by (simp only: zmult-zless-mono2)
            with \(m 1\) vwpos show False by simp
            qed
            ultimately have ?thesis by auto \}
            ultimately show ?thesis by auto
        qed
        hence \(1+\operatorname{int}((\) nat \(m 1)-1)=m 1\) by arith
        with \(q f 1 p m 1\) have \(Q m 1\) : ? \(Q((\) nat \(m 1)-1)\)
            using is-sum2sq-int-nat-eq by (simp add: algebra-simps)
            then obtain \(m m\) where \(t m p: m m=(n a t m 1)-1 \wedge ? Q m m\) by auto
            moreover have \(m m<n\) using \(t m p m n m 1 p o s\) by arith
            moreover with \(I H\) have \(1+\) int \(m m<? p\) by auto
            ultimately show ?case by auto
            qed
            hence \(\neg\) is-sum2sq-nat (?p*t) using tn tpos \(t-l-p\) by auto
            with \(q f 1 p t\) show False by simp
    qed
    hence ?thesis by auto \}
    ultimately show ?thesis by (auto simp add: less-le)
qed
private lemma fermat-two-squares: assumes prime \(p(\neg[p=3](\bmod 4))\)
    shows is-sum2sq-nat \(p\)
proof (cases \(p=2\) )
case True
    have (2::nat)=1^2+1^2 using power2-eq-square by simp
    thus ?thesis unfolding is-sum2sq-nat-def sum2sq-nat-def using True by fast
next
case False
    hence \(p>2\) using assms(1) unfolding prime-nat-iff by auto
    hence h1: odd \(p\) using assms(1) prime-odd-nat by simp
    hence \(h 2: \neg[p=0](\bmod 4)\) unfolding cong-def by fastforce
```



```
auto
    obtain \(x\) where \(h_{4}:[p=x](\bmod 4) \wedge x<4\) by (meson cong-less-unique-nat zero-less-numeral)
```

```
    from h1 h2 h3 h4 assms have \(x \neq 0 \wedge x \neq 2 \wedge x \neq 3 \wedge x<4\) by meson
    hence \(x=1\) by linarith
    from this \(h 4\) have \([p=1](\bmod 4)\) by simp
    then obtain \(k\) where \(p=4 * k+1\) using aux-lemma by fastforce
    thus ?thesis using qf1-prime-exists assms by blast
qed
private lemma sots2: assumes \(\wedge k\). prime \((4 * k+3) \longrightarrow\) even (multiplicity \((4 * k+3)\)
n)
    shows is-sum2sq-nat \(n\) using assms
proof (induction \(n\) rule: nat-less-induct)
case (1 n)
    thus? case
    proof (cases \(n>1\) )
    case \(f\) : False
        thus ?thesis
        proof (cases \(n=1\) )
        case True
            have ( \(1::\) nat \()=0\) ^2 \(2+1\) ^2 by (simp add: power2-eq-square)
            thus ?thesis using True unfolding is-sum2sq-nat-def sum2sq-nat-def by blast
        next
        case False
            hence \(n=0\) using \(f\) by simp
            moreover have ( \(0::\) nat \()=0\) 次 \(2+0^{\wedge} 2\) by (simp add: power2-eq-square)
            ultimately show ?thesis unfolding is-sum2sq-nat-def sum2sq-nat-def by blast
        qed
    next
    case True
    then obtain \(p m\) where h1: prime \(p \wedge n=p * m\) using prime-divisor-exists \([o f n]\)
        by (auto elim: \(d v d E\) )
    with True have \(m-n z: m \neq 0\) by (intro notI) auto
    from \(h 1\) have \(h 2\) : \(m<n\) using \(n\)-less-m-mult-n \([\) of \(m p]\) prime-gt-Suc-O-nat \([o f p]\) True
by linarith
        \{
            assume a1: \([p=3](\bmod 4)\)
            then obtain \(k p\) where \(p=4 * k p+3\) using aux-lemma by fastforce
            hence even (multiplicity \(p n\) ) using 1.prems h1 by auto
            moreover have multiplicity p \(n \neq 0\) using h1 True m-nz
            by (subst multiplicity-eq-zero-iff) (auto simp: prime-gt-0-nat)
            ultimately have \(h 3\) : multiplicity \(p n \geq 2\) by presburger
            have \(p\) dvd \(m\)
            proof (rule ccontr)
                        assume \(a 2: \neg p\) dvd \(m\)
                        hence multiplicity \(p m=0\) by (rule not-dvd-imp-multiplicity-0)
                            moreover from \(h 1\) have multiplicity \(p\) p \(=1\) by (intro multiplicity-prime) auto
                            moreover have \(m>0\) using \(h 1\) True by (cases \(m=0\) ) simp-all
                            ultimately have multiplicity \(p n=1\) using \(h 1\)
                using prime-elem-multiplicity-mult-distrib [of \(p\) p \(\quad m\) ] m-nz prime-gt-0-nat
                by auto
    thus False using h3 by simp
    qed
    then obtain \(m^{\prime}\) where \(h_{4}: m=p * m^{\prime}\) using dvdE by blast
```

with $h 1$ have $h 5: n=p^{\wedge} 2 * m^{\prime}$ by (simp add: power2-eq-square)
have $h 6: m^{\prime}<n$
using dual-order.strict-trans h1 h2 h4 nat-mult-less-cancel1 prime-gt-0-nat[of p] by blast
have $\wedge k q$. prime $(4 * k q+3) \Longrightarrow$ even (multiplicity $\left.(4 * k q+3) m^{\prime}\right)$
proof -
fix $k q:: n a t$
let $? q=4 * k q+3$
assume a2: prime? q
\{
assume $p: p=? q$
hence $h 7$: multiplicity $? q\left(p^{\wedge} 2\right)=2$ using $h 1$
by (auto intro!: multiplicity-prime-power)
have even (multiplicity ?q n) using 1 (2) [of $k q]$ a2 by blast
also note $h 5$
also from $p h 1 h 4 m-n z$
have multiplicity $(4 * k q+3)\left(p^{\wedge} 2 * m^{\prime}\right)=$

$$
\text { Suc (Suc (multiplicity } \left.\left.(4 * k q+3) m^{\prime}\right)\right)
$$

by (subst prime-elem-multiplicity-mult-distrib) auto
finally have even (multiplicity ? $q m^{\prime}$) by simp
\}
moreover \{
assume $p \neq ? q$
from $a 2 h 4 m-n z$ have multiplicity ? $q n=$
multiplicity $(4 * k q+3)\left(p^{2}\right)+$ multiplicity $(4 * k q+3) m^{\prime}$
unfolding $h 5$ by (subst prime-elem-multiplicity-mult-distrib) simp-all
also from $\langle p \neq ? q\rangle a 2 h 1$ have multiplicity ? $q\left(p^{\wedge} 2\right)=0$
by (intro multiplicity-distinct-prime-power) simp-all
finally have multiplicity ?q $n=$ multiplicity ? $q m^{\prime}$ by simp
moreover have even (multiplicity ?q n) using 1(2) $[$ of $k q]$ a2 by blast
ultimately have even (multiplicity ? $q m^{\prime}$) by simp
\}
ultimately show even (multiplicity ? $q m^{\prime}$) by blast
qed
hence is-sum2sq-nat m^{\prime} by (simp add: 1 h 6)
moreover have $p^{\wedge} 2=p^{\wedge} 2+0 \wedge 2$ by simp
hence is-sum2sq-nat (p^{\wedge} 2) unfolding is-sum2sq-nat-def sum2sq-nat-def by blast
ultimately have ?thesis using product-two-squares-nat h5 by blast
\} moreover
\{
assume $a 1: \neg[p=3](\bmod 4)$
have $\wedge k q$. prime $(4 * k q+3) \Longrightarrow$ even (multiplicity $(4 * k q+3) m$)
proof -
fix $k q$
let $? q=4 *(k q:: n a t)+3$
assume a2: prime ?q
$\{$ assume $p=? q$
then have False using a1 cong-add-rcancel-0-nat $[$ of $4 * k q 34]$
by (auto simp add: cong-def)
\}
hence $p \neq ? q$..
have $n=p * m$ using $h 1$ by simp
also from $h 1$ a2 m-nz have multiplicity ? $q \ldots=$

$$
\text { multiplicity }(4 * k q+3) p+\text { multiplicity }(4 * k q+3) m
$$

by (subst prime-elem-multiplicity-mult-distrib) (simp-all add: prime-gt-0-nat)
also from $\langle p \neq ? q\rangle a 2 h 1$ have multiplicity ? $q p=0$
by (intro prime-multiplicity-other) simp-all
finally have multiplicity ? $q n=$ multiplicity $? q$ m by simp
moreover have even (multiplicity ?q n) using 1(2) [of kq] a2 by blast
ultimately show even (multiplicity ? $q \mathrm{~m}$) by simp
qed
hence $i s$-sum2sq-nat m by (simp add: 1 h2)
moreover have is-sum2sq-nat p using fermat-two-squares a1 h1 by blast
ultimately have ?thesis using product-two-squares-nat h1 by blast
\} ultimately
show ?thesis by blast
qed
qed
theorem sum-of-two-squares:
is-sum2sq-nat $n \longleftrightarrow(\forall k$. prime $(4 * k+3) \longrightarrow$ even (multiplicity $(4 * k+3) n))$
using sots1[of n] sots2[of n] by blast
private lemma k-mod-eq: $(\forall$ p::nat. prime $p \wedge[p=3](\bmod 4) \longrightarrow P p)=(\forall k$. prime
$(4 * k+3) \longrightarrow P(4 * k+3))$
proof
assume a1: $\forall p$. prime $p \wedge[p=3](\bmod 4) \longrightarrow P p$
\{
fix $k::$ nat
assume prime $(4 * k+3)$
moreover hence $[4 * k+3=3](\bmod 4)$
by (simp add: cong-add-rcancel-0-nat cong-mult-self-left)
ultimately have $P(4 * k+3)$ using a1 by blast
\}
thus $\forall k$. prime $(4 * k+3) \longrightarrow P(4 * k+3)$ by blast
next
assume a1: $\forall k$. prime $(4 * k+3) \longrightarrow P(4 * k+3)$
\{
fix p :: nat
assume prime $p[p=3](\bmod 4)$
moreover with aux-lemma obtain k where $p=4 * k+3$ by fastforce
ultimately have $P p$ using a1 by blast
\}
thus $\forall p$. prime $p \wedge[p=3](\bmod 4) \longrightarrow P p$ by blast
qed
theorem sum-of-two-squares':
is-sum2sq-nat $n \longleftrightarrow(\forall p$. prime $p \wedge[p=3](\bmod 4) \longrightarrow$ even $($ multiplicity $p n))$
using sum-of-two-squares k-mod-eq by presburger
theorem sum-of-two-squares-prime: assumes prime p
shows is-sum2sq-nat $p=[p \neq 3](\bmod 4)$
proof $($ cases $[p=3](\bmod 4))$

```
case True
    have odd (multiplicity p p) using assms by simp
    hence }\neg\mathrm{ (is-sum2sq-nat p) using assms True sum-of-two-squares' by blast
    with True show ?thesis by simp
qed (simp add: fermat-two-squares assms)
end
end
```


1 Lagrange's four-square theorem

```
theory FourSquares
    imports HOL-Number-Theory.Number-Theory
begin
context
```

 fixes sum4sq-nat :: nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat
 defines sum4sq-nat \(a b c d \equiv a^{\wedge} 2+b^{\wedge} 2+c^{\wedge} 2+d^{\wedge} 2\)
 fixes is-sum4sq-nat :: nat \(\Rightarrow\) bool
 defines \(i s\)-sum4sq-nat \(n \equiv(\exists a b c c d . n=s u m 4 s q-n a t a b c c d)\)

begin

private lemma best-division-abs: $(n::$ int $)>0 \Longrightarrow \exists k .2 *|a-k * n| \leq n$ proof -
assume $a: n>0$
define k where $k=a$ div n
have $h: a-k * n=a \bmod n$ by (simp add: div-mult-mod-eq algebra-simps k-def)
thus ?thesis
proof $($ cases $2 *(a \bmod n) \leq n)$
case True
hence $2 *|a-k * n| \leq n$ using h pos-mod-sign a by auto
thus ?thesis by blast
next
case False
hence $2 *(n-a \bmod n) \leq n$ by auto
have $a-(k+1) * n=a \bmod n-n$ using h by (simp add: algebra-simps)
hence 2 $*|a-(k+1) * n| \leq n$ using h pos-mod-bound[of n a] a False by fastforce
thus ?thesis by blast
qed
qed
Shows that all nonnegative integers can be written as the sum of four squares. The proof consists of the following steps:

- For every prime $p=2 n+1$ the two sets of residue classes

$$
\left\{x^{2} \bmod p \mid 0 \leq x \leq n\right\} \text { and }\left\{-1-y^{2} \bmod p \mid 0 \leq y \leq n\right\}
$$

both contain $n+1$ different elements and therefore they must have at least one element in common.

- Hence there exist x, y such that $x^{2}+y^{2}+1^{2}+0^{2}$ is a multiple of p.
- The next step is to show, by an infinite descent, that p itself can be written as the sum of four squares.
- Finally, using the multiplicity of this form, the same holds for all positive numbers.

private definition

```
sum4sq-int :: int }\times\mathrm{ int }\times\mathrm{ int }\times\mathrm{ int }=>\mathrm{ int where
```


private definition

```
is-sum4sq-int :: int => bool where
is-sum4sq-int n \longleftrightarrow(\exists a b c d. n= sum4sq-int (a,b,c,d))
```

private lemma mult-sum4sq-int: $\operatorname{sum} 4 \operatorname{sq-int}(a, b, c, d) * \operatorname{sum} 4 \operatorname{sq-int}(p, q, r, s)=$
sum4sq-int $(a * p+b * q+c * r+d * s, a * q-b * p-c * s+d * r$,
$a * r+b * s-c * p-d * q, a * s-b * r+c * q-d * p)$
by (unfold sum4sq-int-def, simp add: eval-nat-numeral field-simps)
private lemma sum\&sq-int-nat-eq: sum\&sq-nat abcd=sum4sq-int (a, b, c, d)
unfolding sum4sq-nat-def sum4sq-int-def by simp
private lemma is-sum4sq-int-nat-eq: is-sum4sq-nat $n=i s$-sum4sq-int (int n)
unfolding is-sum4sq-nat-def is-sum4sq-int-def
proof
assume $\exists a b c d . n=\operatorname{sum}_{4} s q$-nat $a b c d$
thus $\exists a b c d$. int $n=\operatorname{sum} 4$ sq-int (a, b, c, d) using sum4sq-int-nat-eq by force
next
assume $\exists a b c d$. int $n=\operatorname{sum} 4 s q-i n t(a, b, c, d)$
then obtain $a b c d$ where int $n=\operatorname{sum4sq-int}(a, b, c, d)$ by blast
hence $\operatorname{int} n=\operatorname{sum} 4 \operatorname{sq-int}($ int $($ nat $|a|)$, int $($ nat $|b|)$, int (nat $|c|)$, int (nat $|d|))$
unfolding sum 4 s q-int-def by simp
hence int $n=\operatorname{int}(\operatorname{sum} 4 s q-n a t(n a t|a|)(n a t|b|)(n a t|c|)(n a t|d|))$
using sum4sq-int-nat-eq by presburger
thus $\exists a b c d . n=s u m 4 s q-n a t a b c d$ by auto
qed
private lemma is-mult-sum4sq-int: is-sum4sq-int $x \Longrightarrow i s$-sum 4 sq-int $y \Longrightarrow i s$-sum $\not \subset$ sq-int
($x * y$)
by (unfold is-sum4sq-int-def, auto simp only: mult-sum4sq-int, blast)
private lemma is-mult-sum4sq-nat: is-sum4sq-nat $x \Longrightarrow$ is-sum4sq-nat $y \Longrightarrow$ is-sum4sq-nat
($x * y$)
using is-mult-sum4sq-int is-sum4sq-int-nat-eq by simp
private lemma mult-oddprime-is-sum4sq: 【 prime (nat p); odd p】 \Longrightarrow
$\exists t .0<t \wedge t<p \wedge$ is-sum4sq-int $(p * t)$

```
proof -
    assume p1: prime (nat p)
    then have p0:p>1 and prime p
        by (simp-all add: prime-int-nat-transfer prime-nat-iff)
    assume p2: odd p
    then obtain n where n: p=2*n+1 using oddE by blast
    with p1 have n0: n>0 by (auto simp add: prime-nat-iff)
    let ?C = {0..<p}
    let ?D ={0 .. n}
    let ?f = %x. x^2 mod p
    let ?g = %x. (-1-x^2) mod p
    let ?A= ?f`?D
    let ?B=?g'?D
    have finC: finite ?C by simp
    have finD: finite ?D by simp
    from p0 have AsubC:?A\subseteq?C and BsubC:?B\subseteq?C
        by auto
    with finC have finA: finite ?A and finB: finite?B
    by (auto simp add: finite-subset)
    from AsubC BsubC have AunBsubC:?A \cup?B\subseteq?C by (rule Un-least)
    from p0 have cardC: card ?C = nat p using card-atLeastZeroLessThan-int by blast
    from n0 have cardD: card ?D = 1+ nat n by simp
    have cardA: card ?A = card ?D
    proof -
        have inj-on ?f ?D
        proof (unfold inj-on-def, auto)
        fix }x\mathrm{ fix }
        assume x0:0\leqx and xn:x\leqn and y0:0\leqy and yn: y \leqn
            and xyp: x^2 mod p=y^2 mod p
        with p0 have [x^2 = y^2] ( mod p) using cong-def by blast
        hence p dvd x`2-y^2 using cong-iff-dvd-diff by blast
        hence p dvd (x+y)*(x-y) by (simp add: power2-eq-square algebra-simps)
        hence pdvd x+y\vee pdvd x-y using <prime p> p0
            by (auto dest: prime-dvd-multD)
        moreover
        { assume p dvd x+y
                moreover from xn yn n have }x+y<p\mathrm{ by auto
                ultimately have }\negx+y>0\mathrm{ by (auto simp add:zdvd-not-zless)
                with x0 y0 have x=y by auto } - both are zero
            moreover
        { assume ass: p dvd x-y
            have }x=
            proof (rule ccontr, case-tac }x-y\geq0
                    assume }x-y\geq0\mathrm{ and }x\not=y\mathrm{ hence }x-y>0\mathrm{ by auto
                    with ass have }\negx-y<p\mathrm{ by (auto simp add:zdvd-not-zless)
                    with xn y0 n p0 show False by auto
            next
                    assume }\neg0\leqx-y\mathrm{ hence }y-x>0\mathrm{ by auto
                    moreover from x0 yn n p0 have }y-x<p\mathrm{ by auto
                            ultimately have }\negp\mathrm{ dvd }y-x\mathrm{ by (auto simp add:zdvd-not-zless)
                            moreover from ass have pdvd -(x-y) by (simp only:dvd-minus-iff)
                            ultimately show False by auto
```

```
        qed }
    ultimately show }x=y\mathrm{ by auto
    qed
    with finD show ?thesis by (simp only: inj-on-iff-eq-card)
qed
have cardB: card ?B = card ?D
proof -
    have inj-on ?g?D
    proof (unfold inj-on-def, auto)
        fix }x\mathrm{ fix }
        assume x0:0\leqx and xn:x\leqn and y0:0\leqy and yn: y \leqn
            and xyp: (-1-x^2) mod p=(-1-y^2) mod p
        with p0 have [-1-y^2 = -1-x^2] ( mod p) by (simp only: cong-def)
        hence }pdvd(-1-\mp@subsup{y}{}{\wedge2})-(-1-\mp@subsup{x}{}{\wedge}2) by (simp only: cong-iff-dvd-diff
        moreover have - 1- y^2 - (-1-x^2) = x^2 - y^2 by arith
        ultimately have pdvd x^2- y^2 by simp
        hence p dvd (x+y)*(x-y) by (simp add: power2-eq-square algebra-simps)
        with p1 have p dvd x+y\vee p dvd x-y using <prime p> p0
            by (auto dest: prime-dvd-multD)
        moreover
        { assume p dvd x+y
            moreover from xn yn n have }x+y<p\mathrm{ by auto
            ultimately have }\negx+y>0\mathrm{ by (auto simp add:zdvd-not-zless)
            with x0 y0 have }x=y\mathrm{ by auto } - both are zero
        moreover
        { assume ass: p dvd x-y
            have x= y
            proof (rule ccontr, case-tac }x-y\geq0\mathrm{ )
            assume }x-y\geq0\mathrm{ and }x\not=y\mathrm{ hence }x-y>0\mathrm{ by auto
            with ass have }\negx-y<p\mathrm{ by (auto simp add:zdvd-not-zless)
            with xn y0 n p0 show False by auto
            next
                assume }\neg0\leqx-y\mathrm{ hence }y-x>0\mathrm{ by auto
                    moreover from x0 yn n p0 have }y-x<p\mathrm{ by auto
                    ultimately have }\negpdvdy-x by (auto simp add: zdvd-not-zless
                    moreover from ass have p dvd -(x-y) by (simp only:dvd-minus-iff)
            ultimately show False by auto
        qed }
        ultimately show }x=y\mathrm{ by auto
    qed
    with finD show ?thesis by (simp only: inj-on-iff-eq-card)
qed
have ?A }\cap\mathrm{ ? B }\not={
proof (rule ccontr, auto)
    assume ABdisj: ?A \cap ?B = {}
    from cardA cardB cardD have 2 + 2*(nat n) = card ?A + card ?B by auto
    also with finA finB ABdisj have }\ldots=\operatorname{card}(?A\cup?B
        by (simp only: card-Un-disjoint)
    also with finC AunBsubC have ... \leqcard ?C by (simp only: card-mono)
    also with cardC have ... = nat p by simp
    finally have 2 + 2*(nat n)\leqnat p by simp
    with n show False by arith
```


qed

then obtain z where $z \in ? A \wedge z \in ? B$ by auto
then obtain $x y$ where $x y: x \in ? D \wedge y \in ? D \wedge z=x \wedge 2 \bmod p \wedge z=(-1-y \wedge 2) \bmod$ p by blast
with $p 0$ have $[x \wedge 2=-1-y \wedge 2](\bmod p)$ by (simp add: cong-def)
hence p dvd x ^2-($\left.-1-y^{\wedge 2}\right)$ by (simp only: cong-iff-dvd-diff)
moreover have x ^2 $-\left(-1-y^{\wedge} 2\right)=x^{\wedge} 2+y^{\wedge} 2+1$ by arith
ultimately have p dvd sum4sq-int $(x, y, 1,0)$ by (auto simp add: sum4sq-int-def)
then obtain t where $t: p * t=\operatorname{sum} 4 \operatorname{sq-int}(x, y, 1,0)$ by (auto simp only:dvd-def eq-refl)
hence $i s$-sum4sq-int ($p * t$) by (unfold is-sum4sq-int-def, auto)
moreover have $t>0 \wedge t<p$
proof
have $x \wedge 2 \geq 0 \wedge y \wedge 2 \geq 0$ by simp
hence $x^{\wedge} 2+y^{\wedge} 2+1>0$ by arith
with t have $p * t>0$ by (unfold sum4sq-int-def, auto)
moreover
\{ assume $t<0$ with $p 0$ have $p * t<p * 0$ by (simp only: zmult-zless-mono2)
hence $p * t<0$ by simp $\}$
moreover
$\{$ assume $t=0$ hence $p * t=0$ by simp \}
ultimately have $\neg t<0 \wedge t \neq 0$ by auto
thus $t>0$ by simp

hence $x^{\wedge} 2+y^{\wedge} 2+1 \leq 2 * n \wedge 2+1$ by auto
with t have contr: $p * t \leq 2 * n$ ^2 +1 by (simp add: sum4sq-int-def)
moreover
\{ assume $t>n+1$
with $p 0$ have $p *(n+1)<p * t$ by (simp only: zmult-zless-mono2)
with n have $p * t>(2 * n+1) * n+(2 * n+1) * 1$ by (simp only: distrib-left)
hence $p * t>2 * n * n+n+2 * n+1$ by (simp only: distrib-right mult-1-left)
with $n 0$ have $p * t>2 * n \wedge 2+1$ by (simp add: power2-eq-square) \}
ultimately have $\neg t>n+1$ by auto
with $n 0 n$ show $t<p$ by auto
qed
ultimately show ?thesis by blast
qed
private lemma zprime-is-sum4sq: prime (nat $p) \Longrightarrow$ is-sum4sq-int p
proof (cases)
assume p 2: $p=2$
hence $p=$ sum\&sq-int $(1,1,0,0)$ by (auto simp add: sum\&sq-int-def)
thus ?thesis by (auto simp add: is-sum4sq-int-def)
next
assume $\neg p=2$ and prp: prime (nat p)
hence \neg nat $p=2$ by simp
with prp have $2<n a t p$ using prime-nat-iff by force
moreover with prp have odd (nat p) using prime-odd-nat[of nat p] by blast
ultimately have odd p by (simp add: even-nat-iff)
with prp have $\exists t .0<t \wedge t<p \wedge i s$-sum4sq-int ($p * t$) by (rule mult-oddprime-is-sum4sq)
then obtain $a b c d t$ where pt-sol: $0<t \wedge t<p \wedge p * t=\operatorname{sum} 4 \operatorname{sq-int}(a, b, c, d)$
by (unfold is-sum4sq-int-def, blast)
hence $Q t: 0<t \wedge t<p \wedge(\exists a 1$ a2 a3 a4. $p * t=\operatorname{sum} 4 \operatorname{sq-int}(a 1, a 2, a 3, a 4))$
(is ? $Q t$) by blast
have ? $Q 1$
proof (rule ccontr)
assume $n Q 1$: \neg ? Q 1
have \neg ? $Q t$
proof (induct trule: infinite-descent0-measure[where $V=\lambda x$. (nat $x)-1]$, clarify)

$$
\text { fix } x a b c d
$$

assume nat $x-1=0$ and $x>0$ and $s: p * x=\operatorname{sum4sq-int}(a, b, c, d)$ and $x<p$
moreover hence $x=1$ by arith
ultimately have ?Q 1 by auto
with $n Q 1$ show False by auto

next

fix x
assume $0<n$ nat $x-1$ and $\neg \neg$? $Q x$
then obtain a1 a2 a3 a4 where ass: $1<x \wedge x<p \wedge p * x=\operatorname{sum} 4 s q-i n t(a 1, a 2, a 3, a 4)$
by auto
have $\exists y$. nat $y-1<$ nat $x-1 \wedge$? $Q y$
proof (cases)
assume evx: even x
hence even ($x * p$) by simp
with ass have ev1234: even (a1^2+a2^2 + a3^2+a4^2)
by (auto simp add: sum4sq-int-def ac-simps)
have $\exists b 1$ b2 b3 b4. $p * x=\operatorname{sum} 4 \operatorname{sq-int}\left(b 1, b 2, b 3, b_{4}\right) \wedge \operatorname{even}(b 1+b 2) \wedge \operatorname{even}\left(b 3+b_{4}\right)$ proof (cases)
assume ev12: even (a1^2+a2^2)
with ev1234 ass show ?thesis by auto
next
assume \neg even $\left(a 1 \wedge 2+a 2 \wedge^{2}\right)$
hence odd12: odd ($a 1^{\wedge} 2+a$ 2 $\left.^{\wedge} 2\right)$ by simp
with ev1234 have odd34: odd ($a 3$ へ2 $+a 4^{\wedge} 2$) by auto
show ?thesis
proof (cases)
assume ev1: even (a1^2)
with odd12 have odd2: odd ($a 2^{\wedge}$ 2) by simp
show ?thesis
proof (cases)
assume even (a3^2)
moreover from ass have $p * x=\operatorname{sum} 4 \operatorname{sq-int}(a 1, a 3, a 2, a 4)$ by (auto simp
add: sum4sq-int-def)
ultimately show ?thesis using odd2 odd34 ev1 by auto
next
assume \neg even (a3^2)
moreover from ass have $p * x=\operatorname{sum4sq-int(a1,a4,a2,a3)}$ by (auto simp
add: sum4sq-int-def)
ultimately show ?thesis using odd34 odd2 ev1 by auto
qed
next
assume odd1: ᄀ even (a1~2)
with odd12 have ev2: even (a2^2) by simp
show ?thesis
proof (cases)
assume even (a3^2)
moreover from ass have sum\&sq-int (a1, a4, a2, a3) $=p * x$ by (auto simp add: sum\&sq-int-def)
ultimately show ?thesis using odd34 odd1 ev2 by force
next
assume \neg even (a3^2)
moreover from ass have sum4sq-int $(a 1, a 3, a 2, a 4)=p * x$ by (auto simp add: sum4sq-int-def)
ultimately show ?thesis using odd34 odd1 ev2 by force
qed
qed
qed
then obtain b1 b2 b3 b4
where $b: p * x=\operatorname{sum} 4 \operatorname{sq-int}(b 1, b 2, b 3, b 4) \wedge$ even $(b 1+b 2) \wedge$ even $(b 3+b 4)$ by
auto
then obtain $c 1 c 3$ where $c 13: b 1+b 2=2 * c 1 \wedge b 3+b 4=2 * c 3$
using even $E[o f b 1+b 2]$ even $E[o f ~ b 3+b 4]$ by meson
from b have even ($b 1-b 2$) \wedge even ($b 3-b 4$) by simp
then obtain $c 2 c 4$ where $c 24: b 1-b 2=2 * c 2 \wedge b 3-b 4=2 * c 4$
using evenE[of b1-b2] evenE[of b3-b4] by meson
from evx obtain y where $y: x=2 * y$ using evenE by blast
hence $4 *(p * y)=2 *(p * x)$ by (simp add: ac-simps)

by (auto simp: sum4sq-int-def)
also have $\ldots=(b 1+b 2) \wedge_{2}+(b 1-b 2)^{\wedge} 2+\left(b 3+b_{4}\right) \wedge_{2}^{2}+\left(b 3-b_{4}\right) \wedge_{2}^{2}$
by (auto simp add: power2-eq-square algebra-simps)
also with $c 13 c 24$ have $\ldots=4 *\left(c 1\right.$ ^2 $+c$ 2^2 $^{2}+c 3$-2 $2+c 4$ へ2 $)$
by (auto simp add: power-mult-distrib)
finally have $p * y=\operatorname{sum} 4$ sq-int $(c 1, c 2, c 3, c 4)$ by (auto simp add: sum4sq-int-def)
moreover from y ass have $0<y \wedge y<p \wedge($ nat $y)-1<($ nat $x)-1$ by arith ultimately show ?thesis by blast
next
assume xodd: \neg even x
with ass have $\exists c 1 c 2 c 3 c 4 \cdot 2 *|a 1-c 1 * x| \leq x \wedge 2 *|a 2-c 2 * x| \leq x \wedge 2 *|a 3-c 3 * x| \leq x$ $\wedge 2 *|a 4-c 4 * x| \leq x$
by (simp add: best-division-abs)
then obtain $b 1 c 1 b 2 c 2 b 3 c 3 b_{4} c 4$ where
$b c-d e f: b 1=a 1-c 1 * x \wedge b 2=a 2-c 2 * x \wedge b 3=a 3-c 3 * x \wedge b_{4}=a 4-c 4 * x$
and $2 *|b 1| \leq x \wedge 2 *|b 2| \leq x \wedge 2 *|b 3| \leq x \wedge 2 *|b 4| \leq x$
by blast
moreover have $2 *|b 1| \neq x \wedge 2 *|b 2| \neq x \wedge 2 *|b 3| \neq x \wedge 2 *|b 4| \neq x$ using x odd by fastforce
ultimately have $b c-a b s: 2 *|b 1|<x \wedge 2 *|b 2|<x \wedge 2 *|b 3|<x \wedge 2 *|b 4|<x$ by auto
let $? B=b 1^{\wedge} 2+b 2$ ^2 $+b 3$ ^2 $2+b 4$ ^2

have $x d v d$? B
proof
from bc-def ass have
$? B=p * x-2 *(a 1 * c 1+a 2 * c 2+a 3 * c 3+a 4 * c 4) * x+? C * x$ ^2
unfolding sum4sq-int-def by (auto simp add: power2-eq-square algebra-simps)
thus ? $B=x *(p-2 *(a 1 * c 1+a 2 * c 2+a 3 * c 3+a 4 * c 4)+? C * x)$
by (auto simp add: ac-simps power2-eq-square
distrib-left right-diff-distrib)
qed
then obtain y where $y: ? B=x * y$ by (auto simp add: dvd-def)
let ? $A 1=a 1 * b 1+a 2 * b 2+a 3 * b 3+a 4 * b 4$
let?A2 $=a 1 * b 2-a 2 * b 1-a 3 * b 4+a 4 * b 3$
let ? A3 $=a 1 * b 3+a 2 * b 4-a 3 * b 1-a 4 * b 2$
let ? $A_{4}=a 1 * b 4-a 2 * b 3+a 3 * b 2-a 4 * b 1$
let ? $A=\operatorname{sum} 4 s q-\operatorname{int}(? A 1, ? A 2, ? A 3, ? A 4)$
have $x d v d ? A 1 \wedge x d v d ? A 2 \wedge x d v d ? A 3 \wedge x d v d ? A 4$
proof (safe)
from $b c$-def have
? $A 1=(b 1+c 1 * x) * b 1+(b 2+c 2 * x) * b 2+(b 3+c 3 * x) * b 3+(b 4+c 4 * x) * b 4$
by simp
also with y have $\ldots=x *(y+c 1 * b 1+c 2 * b 2+c 3 * b 3+c 4 * b 4)$
by (auto simp add: distrib-left power2-eq-square ac-simps)
finally show $x d v d$?A1 by auto
from $b c$-def have $? A 2=(b 1+c 1 * x) * b 2-(b 2+c 2 * x) * b 1-(b 3+c 3 * x) * b 4+(b 4+c 4 * x) * b 3$
by simp
also have $\ldots=x *(c 1 * b 2-c 2 * b 1-c 3 * b 4+c 4 * b 3)$
by (auto simp add: distrib-left right-diff-distrib ac-simps)
finally show $x d v d$?A2 by auto
from $b c$-def have $? A 3=(b 1+c 1 * x) * b 3+(b 2+c 2 * x) * b 4-(b 3+c 3 * x) * b 1-(b 4+c 4 * x) * b 2$ by simp
also have $\ldots=x *(c 1 * b 3+c 2 * b 4-c 3 * b 1-c 4 * b 2)$
by (auto simp add: distrib-left right-diff-distrib ac-simps)
finally show $x d v d$?A3 by auto
from $b c$-def have $? A 4=(b 1+c 1 * x) * b 4-(b 2+c 2 * x) * b 3+(b 3+c 3 * x) * b 2-(b 4+c 4 * x) * b 1$ by simp
also have $\ldots=x *(c 1 * b 4-c 2 * b 3+c 3 * b 2-c 4 * b 1)$
by (auto simp add: distrib-left right-diff-distrib ac-simps)
finally show x dvd? $A 4$ by auto
qed
then obtain $d 1 d 2 d 3 d 4$ where d :
$? A 1=x * d 1 \wedge ? A 2=x * d 2 \wedge ? A 3=x * d 3 \wedge ? A 4=x * d 4$
by (auto simp add: dvd-def)
let $? D=\operatorname{sum} 4 \operatorname{sq-int}(d 1, d 2, d 3, d 4)$
from d have $x \wedge 2 * ? D=$? A
by (auto simp only: sum4sq-int-def power-mult-distrib distrib-left)
also have $\ldots=\operatorname{sum} 4 \operatorname{sq-int}(a 1, a 2, a 3, a 4) * \operatorname{sum} 4 \operatorname{sq-int}(b 1, b 2, b 3, b 4)$
by (simp only: mult-sum 4 sq-int)
also with y ass have $\ldots=(p * x) *(x * y)$ by (auto simp add: sum4sq-int-def)
also have $\ldots=x^{\wedge} 2 *(p * y)$ by (simp only: power2-eq-square ac-simps)
finally have $x^{\wedge} 2 *(? D-p * y)=0$ by (auto simp add: right-diff-distrib)
with ass have $p * y=? D$ by auto
moreover have y - $-x: y<x$
proof -
have $4 * b 1$ ^2 $=(2 *|b 1|) \wedge 2 \wedge 4 * b 2^{\wedge} 2=(2 *|b 2|) \wedge 2 \wedge$


```
                using power-strict-mono [of 2*|b| x 2 for b]
                by auto
```



```
            with }y\mathrm{ have }x*(x-y)>
                    by (auto simp add: power2-eq-square right-diff-distrib)
            moreover from ass have }x>0\mathrm{ by simp
            ultimately show ?thesis using zero-less-mult-pos by fastforce
            qed
            moreover have y>0
            proof -
            have b2pos: b1^2 \geq0 ^b2^2 \geq0 ^ b3^2 \geq0^b4^2 \geq0 by simp
            hence ? B=0\vee ? B>0 by arith
            moreover
            { assume ? B = 0
                moreover from b2pos have
                    ?B-b1^2 \geq0^?B-b2^2 \geq0^? B-b3^2 \geq0 ^ ?B-b4^2 \geq0 by arith
                    ultimately have b1^2 \leq 0 ^ b2^2 \leq 0 ^ b3^2 \leq 0 ^ b4^2 \leq0 by auto
                    with b2pos have b1^2 = 0 ^ b2`2 = 0 ^b3^2 = 0 ^ b4^2 = 0 by arith
                    hence b1 = 0 ^b2 = 0^b3=0 ^ b4 = 0 by auto
                    with bc-def have x dvd a1 ^x dvd a2 ^ x dvd a3 ^ x dvd a4
                    by auto
                            hence x^2 dvd a1^2 ^ x^2 dvd a2`2 ^ x^2 dvd a3`2 ^ x`2 dvd a4^2 by simp
                            hence x^2 dvd a1^2+a2^2+a3^2+a4^2 by (simp only:dvd-add)
                with ass have x^2 dvd p*x by (auto simp only: sum4sq-int-def)
                hence }x*xdvd x*p\mathrm{ by (simp only: power2-eq-square ac-simps)
                with ass have nat x dvd nat p
                    by (simp add: nat-dvd-iff)
                moreover from ass prp have }x\geq0\wedgex\not=1\wedgex\not=p\wedge prime (nat p) by
simp
            ultimately have False unfolding prime-nat-iff by auto }
            moreover
            { assume ?B > 0
                    with }y\mathrm{ have }x*y>0\mathrm{ by simp
                    moreover from ass have x>0 by simp
                    ultimately have ?thesis using zero-less-mult-pos by blast }
                    ultimately show ?thesis by auto
            qed
            moreover with y-l-x have (nat y) - 1< (nat x) - 1 by arith
            moreover from y-l-x ass have y<p by auto
            ultimately show ?thesis by blast
            qed
            thus \exists y.nat y-1<nat }x-1\wedge\neg\neg?QQy\mathrm{ by blast
        qed
        with Qt show False by simp
    qed
    thus is-sum&sq-int p by (auto simp add:is-sum&sq-int-def)
qed
private lemma prime-is-sum4sq: prime p\Longrightarrowis-sum4sq-nat p
    using zprime-is-sum4sq is-sum4sq-int-nat-eq by simp
theorem sum-of-four-squares: is-sum&sq-nat n
```

```
proof (induction \(n\) rule: nat-less-induct)
case (1 \(n\) )
    show ?case
    proof (cases \(n>1\) )
    case False
        hence \(n=0 \vee n=1\) by auto
            moreover have \(0=\) sum4sq-nat \(00001=\operatorname{sum} 4\) sq-nat 1000 unfolding
sum4sq-nat-def by auto
            ultimately show ?thesis unfolding is-sum4sq-nat-def by blast
    next
    case True
            then obtain \(p m\) where dec: prime \(p \wedge n=p * m\) using prime-factor-nat[of \(n\) ]
            by (auto elim: \(d v d E\) )
    moreover hence \(m<n\) using \(n\)-less-m-mult- \(n[\) of \(m p]\) prime-gt-Suc- 0 -nat \([\) of \(p]\) True
by linarith
    ultimately have is-sum4sq-nat \(m\) is-sum4sq-nat p using 1 prime-is-sum4sq by blast+
    thus ?thesis using dec is-mult-sum4sq-nat by blast
    qed
qed
end
end
```


References

[Har] John Harrison. The HOL Light theorem prover. http://www.cl.cam.ac. uk/~jrh13/hol-light/.
[Oos07] Roelof Oosterhuis. Mechanised theorem proving: Exponents 3 and 4 of Fermat's Last Theorem in Isabelle. Master's thesis, University of Groningen, 2007. http://www.roelofoosterhuis.nl/MScthesis.pdf.
[The04] Laurent Thery. Numbers equal to the sum of two square numbers. http: //coq.inria.fr/contribs/SumOfTwoSquare.html, 2004.
[Wei83] André Weil. Number Theory: An Approach Through History; From Hammurapi to Legendre. Birkhäuser, 1983.
[Wie] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/ 100/.

