Sums of two and four squares

Roelof Oosterhuis University of Groningen

March 17, 2025

Abstract

This document gives the formal proofs of the following results about the sums of two and four squares:

- 1. Any prime number $p \equiv 1 \mod 4$ can be written as the sum of two squares.
- 2. (Lagrange) Any natural number can be written as the sum of four squares.

The proofs are largely based on chapters II and III of the book by Weil [Wei83].

The results have been formalised before in the proof assistant HOL Light [Har]. A more complete study of the sum of two squares, including the first result, has been formalised in Coq [The04]. The results can also be found as numbers 20 and 19 on the list of 'top 100 mathematical theorems' [Wie].

This research is part of an M.Sc. thesis under supervision of Jaap Top and Wim H. Hesselink (RU Groningen). For more information see [Oos07].

13

Contents

1 Lagrange's four-square theorem

theory TwoSquares imports HOL-Number-Theory.Number-Theory begin

context

fixes sum2sq-nat :: $nat \Rightarrow nat \Rightarrow nat$ **defines** sum2sq-nat $a \ b \equiv a^2 + b^2$

fixes *is-sum2sq-nat* :: $nat \Rightarrow bool$ **defines** *is-sum2sq-nat* $n \equiv (\exists a b. n = sum2sq-nat a b)$

begin

private lemma best-division-abs: $(n::int) > 0 \implies \exists k. 2 * |a - k*n| \le n$ proof – assume a: n > 0define k where $k = a \ div \ n$ hence $h: a - k * n = a \mod n$ by (simp add: mod-div-mult-eq algebra-simps) thus ?thesis **proof** (cases $2 * (a \mod n) \le n$) case True hence $2 * |a - k*n| \le n$ using h pos-mod-sign a by auto thus ?thesis by blast next case False hence $2 * (n - a \mod n) \le n$ by *auto* have $a - (k+1)*n = a \mod n - n$ using h by (simp add: algebra-simps) hence $2 * |a - (k+1)*n| \le n$ using h pos-mod-bound of n a a False by fastforce thus ?thesis by blast qed qed

```
private definition
```

sum2sq-int :: int × int \Rightarrow int where sum2sq-int = $(\lambda(a,b), a^2+b^2)$

private definition

is-sum2sq-int :: *int* \Rightarrow *bool* where *is-sum2sq-int* $n \leftrightarrow (\exists a \ b. \ n = sum2sq-int(a,b))$

private lemma sum2sq-int-nat-eq: sum2sq-nat $a \ b = sum2sq$ -int $(a, \ b)$ unfolding sum2sq-nat-def sum2sq-int-def by simp

private lemma is-sum2sq-int-nat-eq: is-sum2sq-nat n = is-sum2sq-int (int n)

unfolding is-sum2sq-nat-def is-sum2sq-int-def proof assume $\exists a \ b. \ n = sum2sq-nat \ a \ b$ thus $\exists a \ b. \ int \ n = sum 2sq$ -int (a, b) using sum 2sq-int-nat-eq by force next **assume** $\exists a \ b. \ int \ n = sum2sq-int \ (a, \ b)$ then obtain a b where int n = sum2sq-int (a, b) by blast hence int n = sum 2sq-int (int (nat |a|), int (nat |b|)) unfolding sum 2sq-int-def by simp hence int n = int (sum 2sq-nat (nat |a|) (nat |b|)) using sum 2sq-int-nat-eq by presburger thus $\exists a \ b. \ n = sum 2sq$ -nat $a \ b \ by auto$ qed **private lemma** product-two-squares-aux: sum2sq-int(a, b) * sum2sq-int(c, d) = sum2sq-int(a*c)- b*d, a*d + b*c**unfolding** *power2-eq-square sum2sq-int-def* **by** (*simp add: algebra-simps*) **private lemma** product-two-squares-int: is-sum2sq-int $m \Longrightarrow$ is-sum2sq-int $n \Longrightarrow$ is-sum2sq-int (m*n)by (unfold is-sum2sq-int-def, auto simp only: product-two-squares-aux, blast) **private lemma** product-two-squares-nat: is-sum2sq-nat $m \Longrightarrow$ is-sum2sq-nat $n \Longrightarrow$ is-sum2sq-nat (m*n)using product-two-squares-int is-sum2sq-int-nat-eq by simp private lemma *sots1-aux*: assumes prime (4 * k + 3)assumes odd (multiplicity (4 * k + 3) n) **shows** \neg *is-sum2sq-nat* nproof assume *is-sum2sq-nat* n then obtain a b where $h1: n = a^2 + b^2$ unfolding is-sum2sq-nat-def sum2sq-nat-def by blast have ab-nz: $a \neq 0 \lor b \neq 0$ by (rule ccontr) (insert assms, auto simp: h1) let ?p = 4*k+3let $?g = gcd \ a \ b$ have $h2: ?g \neq 0$ using assms(2) h1 odd-pos by fastforce then obtain a' b' where h3: a = a' * ?q b = b' * ?q coprime a' b' using acd-coprime-exists by blast have $?g^2 dvd n$ using dvd-add h1 by auto then obtain m where h_4 : $m * ?g^2 = n$ using dvd-div-mult-self by blast also have $\ldots = (a' * ?g)^2 + (b' * ?g)^2$ unfolding h1 using h3 by presburger also have $\ldots = ?g^2 * a'^2 + ?g^2 * b'^2$ unfolding power2-eq-square by simp finally have $?g^2 * m = ?g^2 * (a'^2 + b'^2)$ by (simp add: distrib-left mult.commute) hence $h5: m = a'^2 + b'^2$ using h2 by auto let ?mul = multiplicity ?p ?ghave multiplicity $?p(?g^2) = ?mul + ?mul$ unfolding power2-eq-square using h2 assms **by** (subst prime-elem-multiplicity-mult-distrib) simp-all hence even (multiplicity $?p(?q^2)$) by simp moreover have $m \neq 0$ using assms(2) h4 odd-pos by fastforce

ultimately have odd (multiplicity ?p m) using assms ab-nz by (simp-all add: h4 [symmetric] prime-elem-multiplicity-mult-distrib) hence ?p dvd m using not-dvd-imp-multiplicity-0 by force hence $h6: ?p \ dvd \ a'^2+b'^2$ using h5 by auto{ assume $?p dvd a'^2$ moreover hence $p dvd b'^2$ using h6 dvd-add-right-iff by blast ultimately have p dvd a' p dvd b' using assms(1) prime-dvd-power-nat by blast+ hence False using assms(1) h3(3) coprime-common-divisor-nat [of a' b' ?p] not-prime-1 by linarith } hence \neg (?p dvd a'^2)... hence $h7: \neg$ (?p dvd a') using assms(1)**by** (*simp add: power2-eq-square prime-dvd-mult-iff*) hence coprime ?p a'using assms(1) by (simp add: prime-imp-coprime) thm prime-imp-coprime-nat moreover have $a' \neq 0$ using h7 dvd-0-right[of ?p] by meson ultimately obtain ainv aux where a' * ainv = ?p * aux + 1using bezout-nat[of a' ?p] **by** (*auto simp: ac-simps*) hence $[a' * ainv = 1] \pmod{p}$ using cong-to-1'-nat by auto **from** cong-mult [OF this this] have $h11: [1 = ainv^2 * a'^2] \pmod{2p}$ **unfolding** *power2-eq-square* **by** (*simp add: algebra-simps cong-sym*) let ?bdiva = ainv * b'have $[ainv^2 * (a'^2 + b'^2) = 0] \pmod{p}$ using h6 cong-dvd-modulus-nat cong-mult-self-right by blast from cong-add [OF h11 this] have $[1 + ainv^2 * b'^2 = 0] \pmod{2p}$ **unfolding** add-mult-distrib2 **using** cong-add-lcancel-nat[of ainv^2 $* a'^2$] by *fastforce* hence h8: [?bdiva^2 + 1 = 0] (mod ?p) by (simp add: power-mult-distrib) { assume ?p dvd ?bdiva hence p dvd ($bdva^2$) by (simp add: assms(1) prime-dvd-power-nat-iff) hence [?bdiva2 = 0] (mod ?p) using cong-altdef-nat by auto hence $[?bdiva^2 + 1 = 1] \pmod{?p}$ using cong-add-rcancel-0-nat by blast from this h8 have $[0 = 1] \pmod{p}$ using cong-sym cong-trans by blast hence ?p dvd 1 using conq-0-1-nat by auto hence False using assms(1) by simphence \neg (?p dvd ?bdiva) .. hence $h9: [?bdiva^{(?p-1)} = 1] \pmod{?p}$ using assms(1) fermat-theorem [of ?p ?bdiva] by simp have $h10: ?p \ge 3$ by simp have $h11: [?bdiva(4*k+2) = 1] \pmod{?p}$ using h9 by auto have $\left[(?bdiva^2 + 1)^2 = 0\right] \pmod{?p}$ using h8 cong-pow $\left[of ?bdiva^2 + 1 \ 0 ?p \ 2\right]$ by auto moreover have ?bdiva $^4 = (?bdiva ^2) ^2$ by auto hence $(?bdiva^2 + 1)^2 = ?bdiva^4 + ?bdiva^2 + ?bdiva^2 + 1$ **by** (*auto simp: algebra-simps power2-eq-square*) ultimately have [?bdiva^4 + ?bdiva^2 + ?bdiva^2 + 1 = 0] (mod ?p) by simp

moreover have $[?bdiva^4 + ?bdiva^2 + (?bdiva^2 + 1) = ?bdiva^4 + ?bdiva^2 +$ $0 \pmod{p}$ using h8 cong-add-lcancel-nat by blast ultimately have [?bdiva⁴ + ?bdiva² = 0] (mod ?p) by (simp add: cong-def) hence [?bdiva^4 + ?bdiva^2 + 1 = 0 + 1] (mod ?p) using cong-add-rcancel-nat by blastmoreover have $[?bdiva^4 + (?bdiva^2 + 1) = ?bdiva^4 + 0] \pmod{?p}$ using h8 cong-add-lcancel-nat by blast ultimately have [?bdiva $\hat{4} = 1$] (mod ?p) by (simp add: conq-def) hence $[(?bdiva^4)^k = 1^k] \pmod{p}$ using cong-pow by blast hence h12: [?bdiva(4*k) = 1] (mod ?p) by (simp add: power-mult) hence $h13: [?bdiva^{(4*k)*(?bdiva^2 + 1)} = 1*(?bdiva^2 + 1)] \pmod{?p}$ using conq-scalar-right by blast have ?bdiva(4*k)*(?bdiva(2+1)) = ?bdiva(4*k+2)+?bdiva(4*k)unfolding add-mult-distrib2 power-add by simp hence $[?bdiva^{(4*k+2)}+?bdiva^{(4*k)}=?bdiva^2+1] \pmod{?p}$ using h13 unfolding nat-mult-1 by presburger moreover have $[?bdiva(4*k+2) + ?bdiva(4*k) = 1 + 1] \pmod{?p}$ using h11 h12 conq-add by blast ultimately have [?bdiva2 + 1 = 2] (mod ?p) **by** (*auto simp add: conq-def*) hence $[0 = 2] \pmod{p}$ using h8 by (simp add: cong-def) then have $?p \ dvd \ 2$ by (auto dest: cong-dvd-iff) then show False by (auto dest: dvd-imp-le) qed private lemma sots1: assumes is-sum2sq-nat n shows $\bigwedge k$. prime $(4 * k + 3) \longrightarrow even (multiplicity (4 * k + 3) n)$ using sots1-aux assms by blast private lemma aux-lemma: assumes $[(a::nat) = b] \pmod{c}$ b < cshows $\exists k. a = c * k + b$ proof – have a mod c = b using assms by (simp add: cong-def mod-if) hence $b \leq a$ using assms by auto thus ?thesis using cong-le-nat assms(1) by auto qed private lemma Legendre-1mod4: prime $(4*k+1::nat) \implies (Legendre(-1)(4*k+1)) =$ 1 proof – let ?p = 4*k+1let ?L = Legendre(-1) ?p assume p: prime ?p from p have $k \neq 0$ by (intro notI) simp-all hence p2: ?p > 2 by simp with *p* have $[?L = (-1) \widehat{}((?p - 1) div 2)] \pmod{?p}$ **by** (*rule euler-criterion*) hence $[?L = (-1) (2 * nat k)] \pmod{p}$ by auto hence $[?L = 1] \pmod{?p}$ unfolding power-mult by simp

```
using conq-iff-dvd-diff dvd-minus-iff [of ?p ?L-1] by auto
 moreover have ?L=1 \lor ?L=0 \lor ?L=-1 by (simp add: Legendre-def)
 ultimately have ?L = 1 \lor ?p \ dvd \ 1 \lor ?p \ dvd \ (2::int) by auto
 moreover
 { assume ?p \ dvd \ 1 \lor ?p \ dvd \ (2::int)
   with p2 have False by (auto simp add: zdvd-not-zless) }
 ultimately show ?thesis by auto
qed
private lemma qf1-prime-exists: prime (4*k+1) \implies is-sum2sq-nat (4*k+1)
proof –
 let ?p = 4*k+1
 assume p: prime ?p
 hence Legendre (-1) ?p = 1 by (rule Legendre-1mod4)
 moreover
 { assume \neg QuadRes ?p (-1)
  hence Legendre (-1) ?p \neq 1 by (unfold Legendre-def, auto) }
 ultimately have QuadRes ?p(-1) by auto
 then obtain s1 where s1: [s1^2 = -1] \pmod{2p} by (auto simp add: QuadRes-def)
 hence s1': [s1^2 + 1 = 0] \pmod{p} by (simp \ add: \ conq-iff-dvd-diff)
 define s2 where s2 = nat |s1|
 hence int (s2^2 + 1) = s1^2 + 1 by auto
 with s1' have [int (s2^2 + 1) = 0] \pmod{p} by presburger
 hence s2: [s2^2 + 1 = 0] \pmod{2p}
   using cong-int-iff by fastforce
 from p have p0: ?p > 0 by simp
 then obtain s where s0p: 0 \le s \land s < ?p \land [s2 = s] \pmod{?p}
   using cong-less-unique-nat [of ?p] by fastforce
 then have [s^2 = s2^2] \pmod{?p}
   by (simp add: cong-sym cong-pow)
 with s2 have s: [s^2 + 1 = 0] \pmod{2p}
   using conq-trans conq-add-reancel-nat by blast
 hence ?p \ dvd \ s^2 + 1 using cong-altdef-nat by auto
 then obtain t where t: s^2 + 1 = ?p*t by (auto simp add: dvd-def)
 hence ?p*t = sum2sq-nat \ s \ 1 by (simp add: sum2sq-nat-def)
 hence qf1pt: is-sum2sq-nat (?p*t) by (auto simp add: is-sum2sq-nat-def)
 have t-l-p: t < ?p
 proof (rule ccontr)
   assume \neg t < ?p
   hence t > ?p - 1 by simp
   with p\theta have p*(p-1) < p*t by (simp only: mult-less-mono2)
   also with t have \ldots = s^2 + 1 by simp
   also have ... \le ?p*(?p - 1) - ?p + 2
   proof -
    from s0p have s \leq ?p - 1 by (auto simp add: less-le)
    with sOp have s^2 \leq (?p - 1)^2 by (simp only: power-mono)
      also have \ldots = ?p*(?p-1) - 1*(?p-1) by (simp only: power2-eq-square
diff-mult-distrib)
    finally show ?thesis by auto
   qed
   finally have p < 2 by simp
   with p show False by (unfold prime-def, auto)
```

\mathbf{qed}

have tpos: $t \ge 1$ **proof** (*rule ccontr*) assume $\neg t \ge 1$ hence t < 1 by *auto* moreover { assume t = 0 with t have $s^2 + 1 = 0$ by simp } moreover { assume $t < \theta$ with $p\theta$ have $p*t < p*\theta$ by (simp only: zmult-zless-mono2) with t have $s^2 + 1 < 0$ by auto } moreover have $s^2 \ge 0$ by (simp only: zero-le-power2) ultimately show False by (auto simp add: less-le) qed moreover { assume t1: t > 0then obtain tn where tn: tn = t - 1 by auto have is-sum2sq-nat (?p*(1+0)) (is ?Q 0) - So, Q n = there exist x, y such that $x^2 + y^2 = (p * (1 + int(n)))$ **proof** (*rule ccontr*) assume $nQ1: \neg ?Q \theta$ have $(1 + tn) < ?p \implies \neg ?Q tn$ **proof** (*induct tn rule: infinite-descent0*) case θ from nQ1 show $1 + 0 < ?p \implies \neg ?Q \ 0$ by simp \mathbf{next} **case** (smaller n)hence $n\theta$: n > 0 and IH: $1 + n < ?p \land ?Q n$ by auto then obtain x y where $x^2 + y^2 = int (?p*(1+n))$ using *is-sum2sq-int-nat-eq* by (*unfold is-sum2sq-int-def sum2sq-int-def, auto*) hence xy: $x^2 + y^2 = (int ?p)*(int (1+n))$ unfolding of-nat-mult by presburger let ?n1 = int (1 + n)from $n\theta$ have n1pos: $?n1 > \theta$ by simpthen obtain r v where $rv: v = x - r*?n1 \land 2*|v| \le ?n1$ by (frule-tac n = ?n1 in best-division-abs, auto) from *n1pos* obtain *s w* where *sw*: $w = y - s*?n1 \land 2*|w| \le ?n1$ by (frule-tac n = ?n1 in best-division-abs, auto) let $?C = v^2 + w^2$ have $?n1 \ dvd \ ?C$ proof from $rv \ sw$ have $?C = (x - r * ?n1)^2 + (y - s * ?n1)^2$ by simpalso have $\dots = x^2 + y^2 - 2 * x * (r * ?n1) - 2 * y * (s * ?n1) + (r * ?n1)^2 + (r * ?n1)^2$ $(s*?n1)^2$ **unfolding** *power2-eq-square* **by** (*simp add: algebra-simps*) also with xy have ... = $?n1*?p - ?n1*(2*x*r) - ?n1*(2*y*s) + ?n1^2*r^2$ $+ ?n1^2 *s^2$ **by** (simp only: ac-simps power-mult-distrib) finally show $?C = ?n1*(?p - 2*x*r - 2*y*s + ?n1*(r^2 + s^2))$ by (simp only: power-mult-distrib distrib-left ac-simps *left-diff-distrib right-diff-distrib power2-eq-square*) qed then obtain m1 where m1: ?C = ?n1*m1 by (auto simp add: dvd-def)

have mn: m1 < ?n1**proof** (*rule ccontr*) assume $\neg m1 < ?n1$ hence $?n1 - m1 \leq 0$ by simp hence $4 * ?n1 - 4 *m1 \leq 0$ by simp with *n1pos* have 2*?n1 - 4*m1 < 0 by simp with n1pos have ?n1*(2*?n1 - 4*m1) < ?n1*0 by (simp only: zmult-zless-mono2) hence contr: ?n1*(2*?n1 - 4*m1) < 0 by simp have $hlp: 2*|v| \ge 0 \land 2*|w| \ge 0$ by simp from m1 have $4 * ?n1 * m1 = 4 * v^2 + 4 * w^2$ by arith also have ... = $(2*|v|)^2 + (2*|w|)^2$ by (auto simp add: power-mult-distrib) also from rv hlp have $\ldots \leq ?n1^2 + (2*|w|)^2$ using power-mono [of 2*|b| 1 + int n 2 for b] by auto also from sw hlp have $\ldots \leq ?n1^2 + ?n1^2$ using power-mono [of 2*|b| 1 + int n 2 for b] by auto finally have $?n1*m1*4 \leq ?n1*?n1*2$ by (simp add: power2-eq-square ac-simps) hence $?n1*(2*?n1-4*m1) \ge 0$ by (simp only: right-diff-distrib ac-simps) with contr show False by auto qed have $?p*m1 = (r*v + s*w + m1)^2 + (r*w - s*v)^2$ proof from m1 xy have $(?p*?n1)*?C = (x^2+y^2)*(v^2+w^2)$ by simp also have ... = $(x*v + y*w)^2 + (x*w - y*v)^2$ **by** (*simp add: eval-nat-numeral field-simps*) also with $rv \ sw$ have $\dots = ((r*?n1+v)*v + (s*?n1+w)*w)^2 + ((r*?n1+v)*w)^2$ $-(s*?n1+w)*v)^2$ by simp also have ... = $(?n1*(r*v) + ?n1*(s*w) + (v^2+w^2))^2 + (?n1*(r*w) - w^2)^2$ $?n1*(s*v))^2$ **by** (*simp add: eval-nat-numeral field-simps*) also from m1 have ... = $(?n1*(r*v) + ?n1*(s*w) + ?n1*m1)^2 + (?n1*(r*w))^2$ $-?n1*(s*v))^2$ by simp finally have $(?p*?n1)*?C = ?n1^2*(r*v + s*w + m1)^2 + ?n1^2*(r*w - m1)^2$ $s*v)^2$ **by** (*simp add: eval-nat-numeral field-simps*) with m1 have $?n1^2*(?p*m1) = ?n1^2*((r*v + s*w + m1)^2 + (r*w - m1)^2)$ $s*v)^2$ by (simp only: ac-simps power2-eq-square, simp add: distrib-left) hence $2n1^2 * (2p*m1 - (r*v+s*w+m1)^2 - (r*w-s*v)^2) = 0$ **by** (*auto simp add: distrib-left right-diff-distrib*) moreover from *n1pos* have $?n1^2 \neq 0$ by (simp add: power2-eq-square) ultimately show ?thesis by simp qed hence qf1pm1: is-sum2sq-int ((int ?p)*m1) **by** (*unfold is-sum2sq-int-def sum2sq-int-def, auto*) have m1pos: m1 > 0proof -{ assume $v\hat{2} + w\hat{2} = 0$ hence $v = 0 \land w = 0$ using sum-power2-eq-zero-iff by blast with rv sw have $?n1 \, dvd \, x \wedge ?n1 \, dvd \, y$ by (unfold dvd-def, auto) hence $?n1^2 dvd x^2 \wedge ?n1^2 dvd y^2$ by simp

qed

auto

```
hence n1^2 dvd x^2 + y^2 by (simp only: dvd-add)
        with xy have ?n1*?n1 dvd ?n1*?p by (simp only: power2-eq-square ac-simps)
         moreover from n1pos have ?n1 \neq 0 by simp
         ultimately have ?n1 dvd ?p by (rule zdvd-mult-cancel)
         with n1pos have ?n1 \ge 0 \land ?n1 \ dvd \ ?p by simp
         with p have ?n1 = 1 \lor ?n1 = ?p unfolding prime-nat-iff by presburger
         with IH have ?Q \ 0 by auto
         with nQ1 have False by simp }
       moreover
        { assume v^2 + 1 * w^2 \neq 0
         moreover have v^2 + w^2 \ge 0 by simp
         ultimately have vwpos: v^2 + w^2 > 0 by arith
         with m1 have m1 \neq 0 by auto
         moreover have m1 \ge 0
         proof (rule ccontr)
           assume \neg m1 \ge 0
           hence m1 < 0 by simp
           with n1pos have ?n1*m1 < ?n1*0 by (simp only: zmult-zless-mono2)
           with m1 vwpos show False by simp
         qed
         ultimately have ?thesis by auto }
       ultimately show ?thesis by auto
      qed
      hence 1 + int((nat m1) - 1) = m1 by arith
      with qf1pm1 have Qm1: ?Q((nat m1) - 1)
       using is-sum2sq-int-nat-eq by (simp add: algebra-simps)
      then obtain mm where tmp: mm = (nat \ m1) - 1 \land ?Q \ mm by auto
      moreover have mm < n using tmp \ mn \ m1pos by arith
      moreover with IH have 1 + int mm < ?p by auto
      ultimately show ?case by auto
    qed
    hence \neg is-sum2sq-nat (?p*t) using the tpos t-l-p by auto
    with qf1pt show False by simp
   qed
   hence ?thesis by auto }
 ultimately show ?thesis by (auto simp add: less-le)
private lemma fermat-two-squares: assumes prime p (\neg [p = 3] \pmod{4})
 shows is-sum2sq-nat p
proof (cases p=2)
case True
 have (2::nat)=1^2+1^2 using power2-eq-square by simp
 thus ?thesis unfolding is-sum2sq-nat-def sum2sq-nat-def using True by fast
\mathbf{next}
case False
 hence p > 2 using assms(1) unfolding prime-nat-iff by auto
 hence h1: odd \ p \text{ using } assms(1) \ prime-odd-nat \ by \ simp
 hence h2: \neg [p = 0] \pmod{4} unfolding cong-def by fastforce
 have h3: \neg [p=2] \pmod{4} using h1 \operatorname{cong-dvd-iff} [of p \ 2 \ 2] \operatorname{cong-dvd-modulus-nat} by
 obtain x where h_4: [p = x] \pmod{4} \land x < 4 by (meson cong-less-unique-nat zero-less-numeral)
```

```
from h1 h2 h3 h4 assms have x \neq 0 \land x \neq 2 \land x \neq 3 \land x < 4 by meson
 hence x=1 by linarith
 from this h4 have [p = 1] \pmod{4} by simp
 then obtain k where p = 4 * k + 1 using aux-lemma by fastforce
 thus ?thesis using qf1-prime-exists assms by blast
qed
private lemma sots2: assumes \bigwedge k. prime (4*k+3) \longrightarrow even (multiplicity (4*k+3)
n)
 shows is-sum2sq-nat n using assms
proof (induction n rule: nat-less-induct)
case (1 n)
 thus ?case
 proof (cases n > 1)
 case f: False
   thus ?thesis
   proof (cases n=1)
   case True
    have (1::nat) = 0^2 + 1^2 by (simp add: power2-eq-square)
    thus ?thesis using True unfolding is-sum2sq-nat-def sum2sq-nat-def by blast
   next
   case False
    hence n=0 using f by simp
    moreover have (0::nat) = 0^2 + 0^2 by (simp add: power2-eq-square)
     ultimately show ?thesis unfolding is-sum2sq-nat-def sum2sq-nat-def by blast
   qed
 \mathbf{next}
 case True
 then obtain p m where h1: prime p \wedge n = p * m using prime-divisor-exists [of n]
   by (auto elim: dvdE)
 with True have m-nz: m \neq 0 by (intro notI) auto
 from h1 have h2: m < n using n-less-m-mult-n[of m p] prime-gt-Suc-0-nat[of p] True
by linarith
   {
    assume a1: [p = 3] \pmod{4}
     then obtain kp where p = 4 * kp + 3 using aux-lemma by fastforce
    hence even (multiplicity p n) using 1.prems h1 by auto
    moreover have multiplicity p \ n \neq 0 using h1 True m-nz
      by (subst multiplicity-eq-zero-iff) (auto simp: prime-qt-0-nat)
     ultimately have h3: multiplicity p \ n > 2 by presburger
    have p \, dvd \, m
     proof (rule ccontr)
      assume a2: \neg p \ dvd \ m
      hence multiplicity p \ m = 0 by (rule not-dvd-imp-multiplicity-0)
      moreover from h1 have multiplicity p = 1 by (intro multiplicity-prime) auto
      moreover have m > 0 using h1 True by (cases m = 0) simp-all
      ultimately have multiplicity p \ n = 1 using h1
        using prime-elem-multiplicity-mult-distrib [of p p m] m-nz prime-gt-0-nat
        by auto
      thus False using h3 by simp
     qed
     then obtain m' where h_4: m = p * m' using dvdE by blast
```

```
with h1 have h5: n = p^2 * m' by (simp add: power2-eq-square)
    have h6: m' < n
       using dual-order.strict-trans h1 h2 h4 nat-mult-less-cancel1 prime-gt-0-nat[of p]
\mathbf{by} \ blast
    have \bigwedge kq. prime (4*kq + 3) \implies even (multiplicity (4*kq + 3) m')
    proof -
      fix kq::nat
      let ?q = 4 * kq + 3
      assume a2: prime ?q
      {
        assume p: p = ?q
        hence h7: multiplicity ?q(p^2) = 2 using h1
         by (auto intro!: multiplicity-prime-power)
        have even (multiplicity ?q n) using 1(2)[of kq] a2 by blast
        also note h5
        also from p h1 h4 m-nz
         have multiplicity (4 * kq + 3) (p^2 * m') =
                Suc (Suc (multiplicity (4 * kq + 3) m'))
         by (subst prime-elem-multiplicity-mult-distrib) auto
        finally have even (multiplicity ?q m') by simp
      }
      moreover {
        assume p \neq ?q
        from a2 h4 m-nz have multiplicity ?q n =
                          multiplicity (4 * kq + 3) (p^2) + multiplicity (4 * kq + 3) m'
         unfolding h5 by (subst prime-elem-multiplicity-mult-distrib) simp-all
        also from \langle p \neq ?q \rangle a2 h1 have multiplicity ?q (p^2) = 0
         by (intro multiplicity-distinct-prime-power) simp-all
        finally have multiplicity ?q n = multiplicity ?q m' by simp
        moreover have even (multiplicity ?q n) using 1(2)[of kq] a2 by blast
        ultimately have even (multiplicity ?q m') by simp
      }
      ultimately show even (multiplicity ?q m') by blast
     qed
    hence is-sum2sq-nat m' by (simp add: 1 h6)
    moreover have p^2 = p^2 + \theta^2 by simp
    hence is-sum2sq-nat (p^2) unfolding is-sum2sq-nat-def sum2sq-nat-def by blast
     ultimately have ?thesis using product-two-squares-nat h5 by blast
   } moreover
   {
     assume a1: \neg [p = 3] \pmod{4}
    have \bigwedge kq. prime (4*kq+3) \implies even (multiplicity (4*kq+3) m)
     proof –
      fix kq
      let ?q = 4*(kq::nat) + 3
      assume a2: prime ?q
      { assume p = ?q
        then have False using a1 cong-add-rcancel-0-nat [of 4 * kq 3 4]
         by (auto simp add: cong-def)
      }
      hence p \neq ?q..
```

have n = p * m using h1 by simp also from h1 a2 m-nz have multiplicity $?q \ldots =$ multiplicity (4 * kq + 3) p + multiplicity (4 * kq + 3) mby (subst prime-elem-multiplicity-mult-distrib) (simp-all add: prime-gt-0-nat) also from $\langle p \neq ?q \rangle$ a2 h1 have multiplicity ?q p = 0by (intro prime-multiplicity-other) simp-all finally have multiplicity ?q n = multiplicity ?q m by simp moreover have even (multiplicity ?q n) using 1(2)[of kq] a2 by blast ultimately show even (multiplicity ?q m) by simp \mathbf{qed} hence is-sum2sq-nat m by (simp add: 1 h2) moreover have is-sum2sq-nat p using fermat-two-squares at h1 by blast ultimately have ?thesis using product-two-squares-nat h1 by blast } ultimately show ?thesis by blast qed qed **theorem** sum-of-two-squares: is-sum2sq-nat $n \leftrightarrow (\forall k. prime (4*k+3) \rightarrow even (multiplicity (4*k+3) n))$ using sots1[of n] sots2[of n] by blast **private lemma** k-mod-eq: $(\forall p::nat. prime p \land [p = 3] \pmod{4} \longrightarrow P p) = (\forall k. prime$ $(4 * k + 3) \longrightarrow P(4 * k + 3)$ proof **assume** a1: $\forall p. prime p \land [p = 3] \pmod{4} \longrightarrow P p$ { fix k :: natassume prime (4 * k + 3)moreover hence $[4 * k + 3 = 3] \pmod{4}$ by (simp add: cong-add-rcancel-0-nat cong-mult-self-left) ultimately have P(4 * k + 3) using a1 by blast } thus $\forall k. prime (4 * k + 3) \longrightarrow P (4 * k + 3)$ by blast \mathbf{next} assume a1: $\forall k. prime (4 * k + 3) \longrightarrow P (4 * k + 3)$ { fix p :: natassume prime $p \ [p = 3] \pmod{4}$ moreover with aux-lemma obtain k where p = 4 * k + 3 by fastforce ultimately have *P* p using a1 by blast **thus** $\forall p. prime p \land [p = 3] \pmod{4} \longrightarrow P p$ by blast qed **theorem** sum-of-two-squares': is-sum2sq-nat $n \longleftrightarrow (\forall p. prime p \land [p = 3] \pmod{4} \longrightarrow even (multiplicity p n))$ using sum-of-two-squares k-mod-eq by presburger **theorem** sum-of-two-squares-prime: **assumes** prime p shows is-sum2sq-nat $p = \lfloor p \neq 3 \rfloor \pmod{4}$

proof $(cases [p=3] \pmod{4})$

 $\mathbf{case} \ True$

```
have odd (multiplicity p p) using assms by simp
hence ¬ (is-sum2sq-nat p) using assms True sum-of-two-squares' by blast
with True show ?thesis by simp
qed (simp add: fermat-two-squares assms)
```

end

end

1 Lagrange's four-square theorem

```
theory FourSquares
```

```
imports HOL-Number-Theory.Number-Theory begin
```

 $\mathbf{context}$

fixes sum4sq-nat :: $nat \Rightarrow nat \Rightarrow nat \Rightarrow nat \Rightarrow nat$ **defines** sum4sq-nat $a \ b \ c \ d \equiv a^2 + b^2 + c^2 + d^2$

fixes *is-sum4sq-nat* :: *nat* \Rightarrow *bool* **defines** *is-sum4sq-nat* $n \equiv (\exists a b c d. n = sum4sq-nat a b c d)$

begin

private lemma best-division-abs: $(n::int) > 0 \implies \exists k. 2 * |a - k*n| \le n$ proof – assume $a: n > \theta$ define k where $k = a \ div \ n$ have h: $a - k * n = a \mod n$ by (simp add: div-mult-mod-eq algebra-simps k-def) thus ?thesis **proof** (cases $2 * (a \mod n) \le n$) case True hence $2 * |a - k*n| \le n$ using h pos-mod-sign a by auto thus ?thesis by blast \mathbf{next} case False hence $2 * (n - a \mod n) \le n$ by auto have $a - (k+1)*n = a \mod n - n$ using h by (simp add: algebra-simps) hence $2 * |a - (k+1)*n| \le n$ using h pos-mod-bound of n a a False by fastforce thus ?thesis by blast qed qed

Shows that all nonnegative integers can be written as the sum of four squares. The proof consists of the following steps:

• For every prime p = 2n + 1 the two sets of residue classes

$${x^2 \mod p \mid 0 \le x \le n}$$
 and ${-1 - y^2 \mod p \mid 0 \le y \le n}$

both contain n + 1 different elements and therefore they must have at least one element in common.

- Hence there exist x, y such that $x^2 + y^2 + 1^2 + 0^2$ is a multiple of p.
- The next step is to show, by an infinite descent, that *p* itself can be written as the sum of four squares.
- Finally, using the multiplicity of this form, the same holds for all positive numbers.

private definition

sum4sq-int :: int \times int \times int \Rightarrow int where sum4sq-int = $(\lambda(a,b,c,d), a^2+b^2+c^2+d^2)$

private definition

```
is-sum4sq-int :: int \Rightarrow bool where
is-sum4sq-int n \leftrightarrow (\exists a b c d. n = sum4sq-int(a,b,c,d))
```

```
\begin{array}{l} \textbf{private lemma} \ mult-sum4sq\text{-}int: \ sum4sq\text{-}int(a,b,c,d) * sum4sq\text{-}int(p,q,r,s) = \\ sum4sq\text{-}int(a*p+b*q+c*r+d*s, \ a*q-b*p-c*s+d*r, \\ a*r+b*s-c*p-d*q, \ a*s-b*r+c*q-d*p) \\ \textbf{by} \ (unfold \ sum4sq\text{-}int\text{-}def, \ simp \ add: \ eval\text{-}nat\text{-}numeral \ field\text{-}simps) \end{array}
```

private lemma sum4sq-int-nat-eq: sum4sq-nat $a \ b \ c \ d = sum4sq$ -int (a, b, c, d)unfolding sum4sq-nat-def sum4sq-int-def by simp

private lemma is-sum4sq-int-nat-eq: is-sum4sq-nat n = is-sum4sq-int (int n) unfolding is-sum4sq-nat-def is-sum4sq-int-def proof assume $\exists a \ b \ c \ d. \ n = sum4sq$ -nat $a \ b \ c \ d$ thus $\exists a \ b \ c \ d. \ int \ n = sum4sq$ -int ($a, \ b, \ c, \ d$) using sum4sq-int-nat-eq by force next assume $\exists a \ b \ c \ d. \ int \ n = sum4sq$ -int ($a, \ b, \ c, \ d$) then obtain $a \ b \ c \ d. \ int \ n = sum4sq$ -int ($a, \ b, \ c, \ d$) then obtain $a \ b \ c \ d. \ int \ n = sum4sq$ -int ($a, \ b, \ c, \ d$) then obtain $a \ b \ c \ d. \ int \ n = sum4sq$ -int ($a, \ b, \ c, \ d$) then obtain $a \ b \ c \ d. \ int \ n = sum4sq$ -int ($a, \ b, \ c, \ d$) then obtain $a \ b \ c \ d. \ int \ (nat \ |a|), \ int \ (nat \ |b|), \ int \ (nat \ |c|), \ int \ (nat \ |d|)$) unfolding sum4sq-int-def by simphence $int \ n = int \ (sum4sq$ -nat $(nat \ |a|) \ (nat \ |b|) \ (nat \ |c|) \ (nat \ |d|)$) using sum4sq-int-nat-eq by presburger thus $\exists a \ b \ c \ d. \ n = sum4sq$ -nat $a \ b \ c \ d$ by auto qed

private lemma is-mult-sum4sq-int: is-sum4sq-int $x \Longrightarrow$ is-sum4sq-int $y \Longrightarrow$ is-sum4sq-int (x*y)

by (unfold is-sum4sq-int-def, auto simp only: mult-sum4sq-int, blast)

private lemma is-mult-sum4sq-nat: is-sum4sq-nat $x \Longrightarrow$ is-sum4sq-nat $y \Longrightarrow$ is-sum4sq-nat (x*y)

using *is-mult-sum4sq-int is-sum4sq-int-nat-eq* by *simp*

private lemma mult-oddprime-is-sum4sq: \llbracket prime (nat p); odd p $\rrbracket \Longrightarrow \exists t. \ 0 < t \land t < p \land is$ -sum4sq-int (p*t)

```
proof -
 assume p1: prime (nat p)
 then have p\theta: p > 1 and prime p
   by (simp-all add: prime-int-nat-transfer prime-nat-iff)
 assume p2: odd p
 then obtain n where n: p = 2*n+1 using oddE by blast
 with p1 have n0: n > 0 by (auto simp add: prime-nat-iff)
 let ?C = \{0 ... < p\}
 let ?D = \{0 ... n\}
 let ?f = \%x. x^2 \mod p
 let ?g = \%x. (-1 - x^2) \mod p
 let ?A = ?f '?D
 let ?B = ?g ' ?D
 have finC: finite ?C by simp
 have finD: finite ?D by simp
 from p0 have AsubC: ?A \subseteq ?C and BsubC: ?B \subseteq ?C
   by auto
 with finC have finA: finite ?A and finB: finite ?B
   by (auto simp add: finite-subset)
 from AsubC BsubC have AunBsubC: ?A \cup ?B \subset ?C by (rule Un-least)
 from p0 have cardC: card ?C = nat p using card-atLeastZeroLessThan-int by blast
 from n0 have cardD: card ?D = 1 + nat n by simp
 have cardA: card ?A = card ?D
 proof –
   have inj-on ?f ?D
   proof (unfold inj-on-def, auto)
     fix x fix y
    assume x0: 0 \le x and xn: x \le n and y0: 0 \le y and yn: y \le n
      and xyp: x^2 \mod p = y^2 \mod p
     with p\theta have [x^2 = y^2] \pmod{p} using cong-def by blast
    hence p dvd x^2-y^2 using cong-iff-dvd-diff by blast
    hence p dvd (x+y)*(x-y) by (simp add: power2-eq-square algebra-simps)
    hence p \ dvd \ x+y \lor p \ dvd \ x-y using \langle prime \ p \rangle \ p0
      by (auto dest: prime-dvd-multD)
    moreover
     { assume p \, dvd \, x+y
      moreover from xn yn n have x+y < p by auto
      ultimately have \neg x + y > 0 by (auto simp add: zdvd-not-zless)
      with x\theta \ y\theta have x = y by auto } — both are zero
     moreover
     { assume ass: p \, dvd \, x-y
      have x = y
      proof (rule ccontr, case-tac x-y \ge 0)
        assume x-y \ge 0 and x \ne y hence x-y > 0 by auto
        with ass have \neg x - y < p by (auto simp add: zdvd-not-zless)
        with xn \ y\theta \ n \ p\theta show False by auto
      \mathbf{next}
        assume \neg \theta \leq x - y hence y - x > \theta by auto
        moreover from x0 yn n p0 have y-x < p by auto
        ultimately have \neg p \ dvd \ y-x by (auto simp add: zdvd-not-zless)
        moreover from ass have p \ dvd \ -(x-y) by (simp only: dvd-minus-iff)
        ultimately show False by auto
```

qed } ultimately show x=y by *auto* qed with finD show ?thesis by (simp only: inj-on-iff-eq-card) qed have cardB: card ?B = card ?Dproof – have inj-on ?q ?D **proof** (unfold inj-on-def, auto) fix x fix y**assume** $x\theta: \theta \leq x$ and $xn: x \leq n$ and $y\theta: \theta \leq y$ and $yn: y \leq n$ and xyp: $(-1-x^2) \mod p = (-1-y^2) \mod p$ with p0 have $\left[-1-y^2 = -1-x^2\right] \pmod{p}$ by (simp only: cong-def) hence $p \ dvd \ (-1-y^2) - (-1-x^2)$ by (simp only: cong-iff-dvd-diff) moreover have $-1 - y^2 - (-1 - x^2) = x^2 - y^2$ by arith ultimately have $p \ dvd \ x^2 - y^2$ by simphence p dvd (x+y)*(x-y) by (simp add: power2-eq-square algebra-simps) with p1 have p dvd $x+y \lor p$ dvd x-y using $\langle prime p \rangle p\theta$ **by** (*auto dest: prime-dvd-multD*) moreover { assume $p \, dvd \, x+y$ moreover from xn yn n have x+y < p by autoultimately have $\neg x + y > 0$ by (*auto simp add: zdvd-not-zless*) with $x\theta \ y\theta$ have x = y by *auto* } — both are zero moreover { assume ass: $p \, dvd \, x-y$ have x = y**proof** (rule ccontr, case-tac $x-y \ge 0$) assume $x-y \ge 0$ and $x \ne y$ hence x-y > 0 by *auto* with ass have $\neg x - y < p$ by (auto simp add: zdvd-not-zless) with $xn \ y0 \ n \ p0$ show False by auto \mathbf{next} assume $\neg \theta \leq x - y$ hence $y - x > \theta$ by *auto* moreover from $x\theta$ yn n $p\theta$ have y-x < p by *auto* **ultimately have** $\neg p dvd y - x$ **by** (*auto simp add: zdvd-not-zless*) moreover from ass have $p \ dvd \ -(x-y)$ by (simp only: dvd-minus-iff) ultimately show False by auto qed } ultimately show x=y by *auto* qed with finD show ?thesis by (simp only: inj-on-iff-eq-card) qed have $?A \cap ?B \neq \{\}$ **proof** (rule ccontr, auto) assume ABdisj: $?A \cap ?B = \{\}$ from cardA cardB cardD have 2 + 2*(nat n) = card ?A + card ?B by auto also with find find ABdisj have $\ldots = card (?A \cup ?B)$ **by** (*simp only: card-Un-disjoint*) also with finC AunBsubC have $\ldots \leq card ?C$ by (simp only: card-mono) also with cardC have $\ldots = nat p$ by simpfinally have 2 + 2*(nat n) < nat p by simp with *n* show False by arith

\mathbf{qed}

then obtain z where $z \in ?A \land z \in ?B$ by *auto* then obtain x y where xy: $x \in ?D \land y \in ?D \land z = x^2 \mod p \land z = (-1-y^2) \mod p$ p by blast with p0 have $[x^2=-1-y^2] \pmod{p}$ by (simp add: cong-def) hence $p \, dvd \, x^2 - (-1 - y^2)$ by (simp only: cong-iff-dvd-diff) moreover have $x^2 - (-1 - y^2) = x^2 + y^2 + 1$ by arith ultimately have p dvd sum4sq-int(x,y,1,0) by (auto simp add: sum4sq-int-def) then obtain t where t: p * t = sum4sq-int(x,y,1,0) by (auto simp only: dvd-def eq-refl) hence is-sum4sq-int (p*t) by (unfold is-sum4sq-int-def, auto) moreover have $t > 0 \land t < p$ proof have $x\hat{2} \ge 0 \land y\hat{2} \ge 0$ by simp hence $x^2+y^2+1 > 0$ by arith with t have p * t > 0 by (unfold sum4sq-int-def, auto) moreover { assume t < 0 with p0 have p * t by (simp only: zmult-zless-mono2)hence p * t < 0 by simp } moreover { assume t = 0 hence p * t = 0 by simp } ultimately have $\neg t < \theta \land t \neq \theta$ by *auto* thus t > 0 by simp from xy have $x^2 \le n^2 \land y^2 \le n^2$ by (auto simp add: power-mono) hence $x^2+y^2+1 \le 2*n^2+1$ by *auto* with t have contr: $p * t \leq 2 * n^2 + 1$ by (simp add: sum4sq-int-def) moreover { assume t > n+1with p0 have p*(n+1) < p*t by (simp only: zmult-zless-mono2) with n have p*t > (2*n+1)*n + (2*n+1)*1 by (simp only: distrib-left) hence p * t > 2 * n * n + n + 2 * n + 1 by (simp only: distrib-right mult-1-left) with n0 have $p * t > 2 * n^2 + 1$ by (simp add: power2-eq-square) } ultimately have $\neg t > n+1$ by *auto* with $n\theta$ n show t < p by auto qed ultimately show ?thesis by blast qed **private lemma** *zprime-is-sum4sq: prime* (*nat* p) \implies *is-sum4sq-int* p**proof** (*cases*) assume p2: p=2hence p = sum4sq-int(1,1,0,0) by (auto simp add: sum4sq-int-def) thus ?thesis by (auto simp add: is-sum4sq-int-def) next **assume** $\neg p = 2$ and *prp*: *prime* (*nat p*) hence \neg nat p = 2 by simp with prp have 2 < nat p using prime-nat-iff by force moreover with prp have odd (nat p) using prime-odd-nat[of nat p] by blast ultimately have odd p by (simp add: even-nat-iff) with prp have $\exists t. 0 < t \land t < p \land is-sum4sq-int(p*t)$ by (rule mult-oddprime-is-sum4sq) then obtain a b c d t where pt-sol: $0 < t \land t < p \land p * t = sum4sq-int(a,b,c,d)$ by (unfold is-sum4sq-int-def, blast)

hence $Qt: 0 < t \land t < p \land (\exists a1 a2 a3 a4. p*t = sum4sq-int(a1,a2,a3,a4))$ (is ?Q t) by blast have ?Q 1**proof** (*rule ccontr*) assume $nQ1: \neg ?Q 1$ have $\neg ?Q t$ **proof** (induct t rule: infinite-descent0-measure[where $V = \lambda x$. (nat x) - 1], clarify) fix $x \ a \ b \ c \ d$ assume nat x - 1 = 0 and x > 0 and s: p * x = sum4sq-int(a, b, c, d) and x < pmoreover hence x = 1 by arith ultimately have ?Q 1 by *auto* with nQ1 show False by auto \mathbf{next} fix xassume $\theta < nat x - 1$ and $\neg \neg ?Q x$ then obtain a1 a2 a3 a4 where ass: $1 < x \land x < p \land p * x = sum4sq-int(a1,a2,a3,a4)$ by *auto* have $\exists y$. nat $y - 1 < nat x - 1 \land ?Q y$ **proof** (*cases*) **assume** evx: even xhence even (x*p) by simp with ass have ev1234: $even (a1^2+a2^2 + a3^2+a4^2)$ **by** (*auto simp add: sum4sq-int-def ac-simps*) have $\exists b1 b2 b3 b4. p*x=sum4sq-int(b1,b2,b3,b4) \land even(b1+b2) \land even(b3+b4)$ **proof** (*cases*) assume ev12: $even (a1^2+a2^2)$ with ev1234 ass show ?thesis by auto \mathbf{next} assume \neg even $(a1^2+a2^2)$ hence odd12: $odd (a1^2+a2^2)$ by simpwith ev1234 have odd34: $odd (a3^2+a4^2)$ by auto show ?thesis **proof** (*cases*) assume $ev1: even (a1^2)$ with odd12 have odd2: odd ($a2^2$) by simp show ?thesis **proof** (*cases*) assume even $(a3^2)$ moreover from as have p*x = sum4sq-int(a1,a3,a2,a4) by (auto simp add: sum4sq-int-def) ultimately show ?thesis using odd2 odd34 ev1 by auto next assume \neg even $(a3\hat{}2)$ moreover from ass have p*x = sum4sq-int(a1, a4, a2, a3) by (auto simp add: sum4sq-int-def) ultimately show ?thesis using odd34 odd2 ev1 by auto qed next assume $odd1: \neg even (a1^2)$ with odd12 have ev2: $even (a2^2)$ by simpshow ?thesis **proof** (*cases*)

```
assume even (a3^2)
          moreover from ass have sum4sq-int(a1, a4, a2, a3) = p * x by (auto simp add:
sum4sq-int-def)
           ultimately show ?thesis using odd34 odd1 ev2 by force
         \mathbf{next}
           assume \neg even (a3<sup>2</sup>)
          moreover from ass have sum4sq-int(a1, a3, a2, a4) = p * x by (auto simp add:
sum4sq-int-def)
           ultimately show ?thesis using odd34 odd1 ev2 by force
         qed
        qed
      qed
      then obtain b1 b2 b3 b4
        where b: p * x = sum 4 sq - int(b1, b2, b3, b4) \land even(b1 + b2) \land even(b3 + b4) by
auto
      then obtain c1 c3 where c13: b1+b2 = 2*c1 \land b3+b4 = 2*c3
        using evenE[of b1+b2] evenE[of b3+b4] by meson
      from b have even (b1-b2) \wedge even (b3-b4) by simp
      then obtain c2 c4 where c24: b1-b2 = 2*c2 \wedge b3-b4 = 2*c4
        using evenE[of b1-b2] evenE[of b3-b4] by meson
      from evx obtain y where y: x = 2*y using evenE by blast
      hence 4*(p*y) = 2*(p*x) by (simp add: ac-simps)
      also from b have ... = 2*b1^2 + 2*b2^2 + 2*b3^2 + 2*b4^2
        by (auto simp: sum4sq-int-def)
      also have ... = (b1 + b2)^2 + (b1 - b2)^2 + (b3 + b4)^2 + (b3 - b4)^2
        by (auto simp add: power2-eq-square algebra-simps)
      also with c13 c24 have ... = 4*(c1^2 + c2^2 + c3^2 + c4^2)
        by (auto simp add: power-mult-distrib)
      finally have p * y = sum4sq-int(c1,c2,c3,c4) by (auto simp add: sum4sq-int-def)
      moreover from y as have 0 < y \land y < p \land (nat y) - 1 < (nat x) - 1 by arith
      ultimately show ?thesis by blast
    next
      assume xodd: \neg even x
     with ass have \exists c1 c2 c3 c4 . 2*|a1-c1*x| \le x \land 2*|a2-c2*x| \le x \land 2*|a3-c3*x| \le x
\wedge 2*|a4-c4*x| \leq x
        by (simp add: best-division-abs)
      then obtain b1 c1 b2 c2 b3 c3 b4 c4 where
        bc-def: b1 = a1 - c1 + x \land b2 = a2 - c2 + x \land b3 = a3 - c3 + x \land b4 = a4 - c4 + x
        and 2*|b1| < x \land 2*|b2| < x \land 2*|b3| < x \land 2*|b4| < x
        bv blast
       moreover have 2*|b1|\neq x \land 2*|b2|\neq x \land 2*|b3|\neq x \land 2*|b4|\neq x using xodd by
fastforce
      ultimately have bc-abs: 2*|b1| < x \land 2*|b2| < x \land 2*|b3| < x \land 2*|b4| < x by auto
      let ?B = b1^2 + b2^2 + b3^2 + b4^2
      let ?C = c1^2 + c2^2 + c3^2 + c4^2
      have x \, dvd \, ?B
      proof
        from bc-def ass have
          PB = p * x - 2 * (a1 * c1 + a2 * c2 + a3 * c3 + a4 * c4) * x + PC * x^2
         unfolding sum4sq-int-def by (auto simp add: power2-eq-square algebra-simps)
        thus ?B = x*(p - 2*(a1*c1+a2*c2+a3*c3+a4*c4) + ?C*x)
         by (auto simp add: ac-simps power2-eq-square
```

distrib-left right-diff-distrib)

qed then obtain y where y: ?B = x * y by (auto simp add: dvd-def) let ?A1 = a1*b1 + a2*b2 + a3*b3 + a4*b4let ?A2 = a1*b2 - a2*b1 - a3*b4 + a4*b3let ?A3 = a1*b3 + a2*b4 - a3*b1 - a4*b2let ?A4 = a1*b4 - a2*b3 + a3*b2 - a4*b1let ?A = sum4sq-int(?A1,?A2,?A3,?A4)have x dvd $?A1 \land x$ dvd $?A2 \land x$ dvd $?A3 \land x$ dvd ?A4**proof** (*safe*) from *bc-def* have ?A1 = (b1+c1*x)*b1 + (b2+c2*x)*b2 + (b3+c3*x)*b3 + (b4+c4*x)*b4by simp also with y have ... = x*(y + c1*b1 + c2*b2 + c3*b3 + c4*b4)**by** (*auto simp add: distrib-left power2-eq-square ac-simps*) finally show $x \, dvd \, ?A1$ by auto from *bc-def* have A2 = (b1+c1*x)*b2 - (b2+c2*x)*b1 - (b3+c3*x)*b4 + (b4+c4*x)*b3by simp also have $\ldots = x * (c1 * b2 - c2 * b1 - c3 * b4 + c4 * b3)$ **by** (*auto simp add: distrib-left right-diff-distrib ac-simps*) finally show $x \, dvd \, ?A2$ by auto from *bc-def* have A3 = (b1+c1*x)*b3 + (b2+c2*x)*b4 - (b3+c3*x)*b1 - (b4+c4*x)*b2by simp also have $\dots = x*(c1*b3 + c2*b4 - c3*b1 - c4*b2)$ **by** (*auto simp add: distrib-left right-diff-distrib ac-simps*) finally show $x \, dvd \, ?A3$ by auto from *bc-def* have ?A4 = (b1+c1*x)*b4 - (b2+c2*x)*b3 + (b3+c3*x)*b2 - (b4+c4*x)*b1by simp also have $\ldots = x * (c1 * b4 - c2 * b3 + c3 * b2 - c4 * b1)$ **by** (*auto simp add: distrib-left right-diff-distrib ac-simps*) finally show $x \, dvd \, ?A4$ by auto qed then obtain d1 d2 d3 d4 where d: $?A1 = x * d1 \land ?A2 = x * d2 \land ?A3 = x * d3 \land ?A4 = x * d4$ by (auto simp add: dvd-def) let ?D = sum4sq-int(d1, d2, d3, d4)from d have $x^2 * ?D = ?A$ by (auto simp only: sum4sq-int-def power-mult-distrib distrib-left) also have $\ldots = sum4sq$ -int(a1, a2, a3, a4)*sum4sq-int(b1, b2, b3, b4)by (simp only: mult-sum4sq-int) also with y ass have $\ldots = (p*x)*(x*y)$ by (auto simp add: sum4sq-int-def) also have $\ldots = x 2 (p*y)$ by (simp only: power2-eq-square ac-simps) finally have $x^2 * (?D - p * y) = 0$ by (auto simp add: right-diff-distrib) with ass have p*y = ?D by auto moreover have *y*-*l*-*x*: y < xproof have $4*b1^2 = (2*|b1|)^2 \wedge 4*b2^2 = (2*|b2|)^2 \wedge$ $4*b3^2 = (2*|b3|)^2 \wedge 4*b4^2 = (2*|b4|)^2$ by simp with *bc-abs* have $4*b1^2 < x^2 \land 4*b2^2 < x^2 \land 4*b3^2 < x^2 \land 4*b4^2 < x^2$

```
using power-strict-mono [of 2*|b| \ge 2 for b]
         bv auto
        hence ?B < x^2 by auto
        with y have x*(x-y) > 0
         by (auto simp add: power2-eq-square right-diff-distrib)
        moreover from ass have x > 0 by simp
        ultimately show ?thesis using zero-less-mult-pos by fastforce
      qed
      moreover have y > \theta
      proof -
        have b2pos: b1^2 \ge 0 \land b2^2 \ge 0 \land b3^2 \ge 0 \land b4^2 \ge 0 by simp
        hence ?B = 0 \lor ?B > 0 by arith
        moreover
        { assume ?B = 0
         moreover from b2pos have
           (B-b1^2 \ge 0 \land (B-b2^2 \ge 0 \land (B-b3^2 \ge 0 \land (B-b4^2 \ge 0 by arith)))
         ultimately have b1^2 \leq 0 \wedge b2^2 \leq 0 \wedge b3^2 \leq 0 \wedge b4^2 \leq 0 by auto
         with b2pos have b1^2 = 0 \land b2^2 = 0 \land b3^2 = 0 \land b4^2 = 0 by arith
         hence b1 = 0 \land b2 = 0 \land b3 = 0 \land b4 = 0 by auto
         with bc-def have x dvd a1 \wedge x dvd a2 \wedge x dvd a3 \wedge x dvd a4
           bv auto
         hence x^2 dvd a1^2 \wedge x^2 dvd a2^2 \wedge x^2 dvd a3^2 \wedge x^2 dvd a4^2 by simp
         hence x^2 dvd a1^2+a2^2+a3^2+a4^2 by (simp only: dvd-add)
         with ass have x^2 dvd p * x by (auto simp only: sum4sq-int-def)
         hence x*x dvd x*p by (simp only: power2-eq-square ac-simps)
         with ass have nat x dvd nat p
           by (simp add: nat-dvd-iff)
          moreover from ass prp have x \ge 0 \land x \ne 1 \land x \ne p \land prime (nat p) by
simp
         ultimately have False unfolding prime-nat-iff by auto }
        moreover
        { assume ?B > 0
         with y have x * y > 0 by simp
         moreover from ass have x > 0 by simp
         ultimately have ?thesis using zero-less-mult-pos by blast }
        ultimately show ?thesis by auto
      qed
      moreover with y-l-x have (nat y) - 1 < (nat x) - 1 by arith
      moreover from y-l-x ass have y < p by auto
      ultimately show ?thesis by blast
    qed
     thus \exists y. nat y - 1 < nat x - 1 \land \neg \neg ?Q y by blast
   qed
   with Qt show False by simp
 qed
 thus is-sum4sq-int p by (auto simp add: is-sum4sq-int-def)
private lemma prime-is-sum4sq: prime p \implies is-sum4sq-nat p
 using zprime-is-sum4sq is-sum4sq-int-nat-eq by simp
```

theorem sum-of-four-squares: is-sum4sq-nat n

qed

proof (*induction n rule: nat-less-induct*) case (1 n)show ?case **proof** (cases n > 1) case False hence $n = 0 \lor n = 1$ by *auto* moreover have 0 = sum4sq-nat $0 \ 0 \ 0 \ 1 = sum4sq$ -nat $1 \ 0 \ 0 \ 0$ unfolding sum4sq-nat-def by auto ultimately show ?thesis unfolding is-sum4sq-nat-def by blast next case True then obtain p m where dec: prime $p \wedge n = p * m$ using prime-factor-nat[of n] **by** (auto elim: dvdE) **moreover hence** m < n using n-less-m-mult-n[of m p] prime-gt-Suc-0-nat[of p] True by linarith ultimately have *is-sum4sq-nat* m *is-sum4sq-nat* p using 1 prime-*is-sum4sq* by blast+ thus ?thesis using dec is-mult-sum4sq-nat by blast qed qed end

end

References

- [Har] John Harrison. The HOL Light theorem prover. http://www.cl.cam.ac. uk/~jrh13/hol-light/.
- [Oos07] Roelof Oosterhuis. Mechanised theorem proving: Exponents 3 and 4 of Fermat's Last Theorem in Isabelle. Master's thesis, University of Groningen, 2007. http://www.roelofoosterhuis.nl/MScthesis.pdf.
- [The04] Laurent Thery. Numbers equal to the sum of two square numbers. http: //coq.inria.fr/contribs/SumOfTwoSquare.html, 2004.
- [Wei83] André Weil. Number Theory: An Approach Through History; From Hammurapi to Legendre. Birkhäuser, 1983.
- [Wie] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/ 100/.