
Substitutions for λ-free higher-order terms

Vincent Trélat

March 17, 2025

Abstract

This theory provides a formalization of substitutions on λ-free higher-
order terms, establishing a structured framework with the expected
algebraic properties. It introduces a type construction for the rigorous
definition and manipulation of substitutions. The main theorem of this
theory proves the existence of fixed-point substitutions under acyclic-
ity, a theorem that is too often regarded as trivial in the literature [1, 3].

Contents
1 Introduction 2

1.1 Preliminary lemmas . 2

2 Substitutions 3
2.1 Substitutions for terms . 3
2.2 Substitutions as a monoid . 5

3 Acyclic substitutions 6
3.1 Definitions and auxiliary lemmas 6
3.2 Acyclicity . 9
3.3 Fixed-point substitution . 9

1

1 Introduction

This theory is based on J. Blanchette’s Formalization of Recursive Path
Orders for Lambda-Free Higher-Order Terms [2] which defines λ-free higher-
order terms.

1.1 Preliminary lemmas

The following lemma and definitions would be worth adding in the theory
Lambda-Free-RPOs.Lambda-Free-Term.
lemma sub-trans: ‹sub x y =⇒ sub y z =⇒ sub x z›
〈proof 〉

definition subterms :: ‹(′s, ′v) tm ⇒ (′s, ′v) tm set› where
‹subterms t ≡ {u. sub u t}›

definition proper-subterms :: ‹(′s, ′v) tm ⇒ (′s, ′v) tm set› where
‹proper-subterms t ≡ {u. proper-sub u t}›

The following lemmas are also helpful in the following and could be easily
lifted higher in the hierarchy of theories.
lemmas mult-Suc-left =

mult-Suc-right[unfolded add.commute[of m ‹m∗n› for m n]]
— Although this result is immediate, it might be worth adding it to Nat symmet-
rically.

lemma inject-nat-in-fset-ninj:
‹finite S =⇒ (range (f ::nat⇒-) ⊆ S) =⇒ (∃ x y. x 6= y ∧ f x = f y)›
〈proof 〉

lemma wfPD: ‹wfP P =⇒ wfp-on P A›
— This destruction rule for wfP could be added to the theory Open-Induction.Restricted-Predicates
〈proof 〉

lemma set-decr-chain-empty:
fixes u :: ‹nat ⇒ ′a set›
assumes pord: ‹

∧
n. u n 6= ∅ =⇒ u (n+1) ⊂ u n›

and fin: ‹
∧

n. finite (u n)›
shows ‹∃ k. u k = ∅›

— This lemma could easily be generalized to any partial order and any minimal
element and integrated to the theory Well-Quasi-Orders.Minimal-Elements.
〈proof 〉

lemma distinct-in-fset:
‹finite E =⇒ card E = n =⇒ distinct xs =⇒ set xs ⊆ E =⇒ length xs ≤ n›
〈proof 〉

2

2 Substitutions

This section embeds substitutions in a proper type, lifting basic operations
like substitution application (i.e. substitution as an operation on terms) and
composition.

2.1 Substitutions for terms

Substitutions in Lambda-Free-RPOs.Lambda-Free-RPOs [2] are not defined
as a type, they are implicitly used as functions from variables to terms.
However, not all functions from variables to terms are substitutions, which
motivates the introduction of a proper type subst fitting the specification of
a substitution, namely that only finitely many variables are not mapped to
themselves.
abbreviation V where ‹V ≡ Hd ◦ Var›

lemma inj-V: ‹inj V›
〈proof 〉

lemma fin-var-restr :‹finite (V ‘ E) =⇒ finite E›
〈proof 〉

definition is-subst :: ‹(′v ⇒ (′s, ′v) tm) ⇒ bool› where
‹is-subst σ ≡ finite {t. is-Hd t ∧ is-Var (head t) ∧ subst σ t 6= t}›

If type-checking on terms was enforced in is-subst, the above definition could
be expressed as follows in a more concise way:
is-subst σ ≡ finite {subst σ t 6= t}
Without type-checking, the definition must range over variables and not
over terms since App x x is a valid term, even though it does not type check.
If xσ = x, then (x(x))σ = x(x). This inductively allows infinitely many
fixpoints of the substitution σ.
With type-checking, the second definition would only add finitely many
terms, namely type-correct applied terms of the form App y x where x and
y are substitutable variables.
lemma subst-V: ‹is-subst V›
〈proof 〉

typedef (′s, ′v) subst = ‹{σ::(′v ⇒ (′s, ′v) tm). is-subst σ}›
〈proof 〉

setup-lifting type-definition-subst

lift-definition V ′ :: ‹(′s, ′v) subst› is ‹V›
〈proof 〉

3

Informally, V is almost the identity function since it casts variables to them-
selves (as terms), but it has the type ′v ⇒ (′s, ′v) tm. V is thus lifted to
V ′ that applies on substitutions. The fact that V ′ leaves ground terms un-
changed follows from the definition of subst and is obtained by lifting. V ′ is
the identity substitution.
lift-definition

subst-app :: ‹(′s, ′v) tm ⇒ (′s, ′v) subst ⇒ (′s, ′v) tm› (‹-·-› [56 ,55] 55) is
‹λ x σ. subst σ x›〈proof 〉

lemma sub-subst ′: ‹sub x t =⇒ sub (x·σ) (t·σ)›
— This lemma is a lifted version of sub ?s ?t =⇒ sub (subst ?% ?s) (subst ?% ?t).
〈proof 〉

Application for substitutions (i.e. substitution) is lifted from the function
subst and denoted as usual in the literature with a post-fix notation: subst
σ x is denoted by x·σ.
lemma subst-alt-def :‹finite {t. (V t)·σ 6= V t}›
〈proof 〉

The lemma above provides an alternative definition for substitution. Yet,
there is a subtlety since Isabelle does not provide support for dependent
types: one shall understand this lemma as the meta-implication "if σ is of
type subst then the aforementioned set is finite". A true alternative definition
should state an equivalence, however the converse implication makes no sense
in Isabelle.
lemma subst-eq-sub:‹sub s t =⇒ t·σ = t·ϑ =⇒ s·σ = s·ϑ›
〈proof 〉

Composition for substitutions is also lifted as follows.
lift-definition

rcomp :: ‹(′s, ′v) subst ⇒ (′s, ′v) subst ⇒ (′s, ′v) subst›
(infixl ‹◦› 55) is ‹λ σ ϑ. subst ϑ ◦ (subst σ ◦ V)›
〈proof 〉

lemma rcomp-subst-simp:
‹(x::(′s, ′v) tm)·(σ ◦ ϑ) = (x·σ)·ϑ›
〈proof 〉

lift-definition
set-image-subst :: ‹(′s, ′v) tm set ⇒ (′s, ′v) subst ⇒ (′s, ′v) tm set›
(infixl ‹·› 90) is ‹λ S σ. subst σ ‘ S› 〈proof 〉

lemma set-image-subst-collect:
‹S ·σ = {x·σ | x. x ∈ S}›
〈proof 〉

4

2.2 Substitutions as a monoid

First, we state two introduction lemmas for allowing extensional reasoning
on substitutions. The first one is on terms and the second one is for terms
that are variables.
lemma subst-ext-tmI :

fixes σ::‹(′s, ′v) subst› and ϑ::‹(′s, ′v) subst›
shows ‹∀ (x::(′s, ′v) tm). (x·σ) = (x·ϑ) =⇒ σ = ϑ›
〈proof 〉

lemma subst-ext-tmI ′:
fixes σ::‹(′s, ′v) subst› and ϑ::‹(′s, ′v) subst›
shows ‹∀ x. (V x)·σ = (V x)·ϑ =⇒ σ = ϑ›
〈proof 〉

lemmas subst-extI = subst-ext-tmI subst-ext-tmI ′

The three following lemmas state that V ′ is the neutral element for compo-
sition. Although uniqueness follows from the definition of a neutral element,
the proof of this claim is given below.
lemma V ′-id-tm [simp]:

fixes x::‹(-,-) tm›
shows ‹(x·V ′) = x›
〈proof 〉

lemma V ′-neutral-rcomp[simp]:
‹σ ◦ V ′ = σ›
‹V ′ ◦ σ = σ›
〈proof 〉

lemma unique-V ′:
‹(
∧
σ. σ ◦ η = σ) =⇒ η = V ′›

‹(
∧
σ. η ◦ σ = σ) =⇒ η = V ′›

〈proof 〉

lemma V ′-iff :‹σ = V ′←→ (∀ x. (V x)·σ = (V x))›
〈proof 〉

lemma rcomp-assoc[simp]:
fixes σ::‹(′s, ′v) subst›

and ϑ::‹(′s, ′v) subst›
and γ::‹(′s, ′v) subst›

shows ‹(σ ◦ ϑ) ◦ γ = σ ◦ (ϑ ◦ γ)›
〈proof 〉

Knowing that the composition of substitutions (◦) is associative and has a
neutral element V ′, we may embed substitutions in an algebraic structure
with a monoid structure and enjoy Isabelle’s lemmas on monoids.

5

global-interpretation subst-monoid: monoid rcomp V ′

〈proof 〉

3 Acyclic substitutions
3.1 Definitions and auxiliary lemmas

The iteration on substitutions is defined below and is followed by several
algebraic properties.
In order to show these properties, we give three different definitions for
iterated substitutions. In short, the first one is simply the iteration of com-
position using Isabelle’s (^^) operator. This can be understood as follows:

σn , (σ ◦ (σ ◦ (. . . (σ︸ ︷︷ ︸
n times

◦ V ′) . . .))

Using properties from the monoid structure, this can be written as

σn , σ ◦ · · · ◦ σ︸ ︷︷ ︸
n times

The two other definitions are inductively defined using those two schemes:

σn+1 = σ ◦ σn

σn+1 = σn ◦ σ

We prove that these three definitions are equivalent and use them in the
proofs of the properties that follow.
definition iter-rcomp :: ‹(′s, ′v) subst ⇒ nat ⇒ (′s, ′v) subst›
(‹--› [200 , 0] 1000) where ‹σn ≡ ((◦) σ ^^ n) V ′›

lemma iter-rcomp-Suc-right:‹σSuc n = σn ◦ σ›
〈proof 〉

lemma iter-rcomp-Suc-left:‹σSuc n = σ ◦ σn›
〈proof 〉

fun iter-rcomp ′ :: ‹(′s, ′v) subst ⇒ nat ⇒ (′s, ′v) subst›
where
‹iter-rcomp ′ σ 0 = V ′›
| ‹iter-rcomp ′ σ (Suc n) = σ ◦ (iter-rcomp ′ σ n)›
lemma iter-rcomp-eq-iter-rcomp ′:‹σn = iter-rcomp ′ σ n›
〈proof 〉

fun iter-rcomp ′′ :: ‹(′s, ′v) subst ⇒ nat ⇒ (′s, ′v) subst›

6

where
‹iter-rcomp ′′ σ 0 = V ′›
| ‹iter-rcomp ′′ σ (Suc n) = (iter-rcomp ′′ σ n) ◦ σ›

lemma iter-rcomp-eq-iter-rcomp ′′:‹σn = iter-rcomp ′′ σ n›
〈proof 〉

lemmas iter-rcomp ′-eq-iter-rcomp ′′ =
iter-rcomp-eq-iter-rcomp ′[symmetric, simplified iter-rcomp-eq-iter-rcomp ′′]

The following lemmas show some algebraic properties on iterations of sub-
stitutions, namely that for any σ, the function n 7→ σn i.e. iter-rcomp σ is
a magma homomorphism between (N,+) and (subst, ◦). Since σ0 ≡ V ′, it
is even a (commutative) monoid homomorphism.

lemma iter-comp-add-morphism: ‹(σn) ◦ (σk) = σn+k›
〈proof 〉

lemmas iter-comp-com-add-morphism =
iter-comp-add-morphism[

of σ n k for σ n k,
simplified add.commute,
unfolded iter-comp-add-morphism[of σ k n, symmetric]]

There is a similar property with multiplication, stated as follows:

∀σ, n, k.(σn)k = σn×k

This is shown by the following lemma. The next one shows commutativity.
lemma iter-comp-mult-morphism: ‹(σn)k = σn∗k›
〈proof 〉

lemmas iter-comp-com-mult-morphism =
iter-comp-mult-morphism[

of σ n k for σ k n,
simplified mult.commute,
unfolded iter-comp-mult-morphism[of σ k n, symmetric]]

Some simplification rules are added to the rules to help automatize subse-
quent proofs.
lemma iter-rcomp-V ′[simp]: ‹V ′n = V ′›
〈proof 〉

lemma iter-rcomp-0 [simp]: ‹σ0 = V ′›
〈proof 〉

lemma iter-rcomp-1 [simp]: ‹σSuc 0 = σ›
〈proof 〉

7

definition dom :: ‹(′s, ′v) subst ⇒ (′s, ′v) tm set› where
‹dom σ ≡ {V x | x. (V x)·σ 6= V x}›

definition ran :: ‹(′s, ′v) subst ⇒ (′s, ′v) tm set› where
‹ran σ ≡ (λx. x·σ) ‘ dom σ›

lemma no-sub-in-dom-subst-eq: ‹(∀ x ∈ dom σ. ¬ sub x t) =⇒ t = t·σ›
〈proof 〉

lemma subst-eq-on-domI :
‹(∀ x. x ∈ dom σ ∨ x ∈ dom ϑ −→ x·σ = x·ϑ) =⇒ σ = ϑ›
〈proof 〉

lemma subst-finite-dom:‹finite (dom σ)›
〈proof 〉

lemma V ′-emp-dom: ‹dom V ′ = ∅›
〈proof 〉

lemma var-not-in-dom [simp]: ‹V x /∈ dom σ =⇒ ((V x)·σn) = V x›
〈proof 〉

lemma ran-alt-def :‹ran σ = {(V x)·σ | x. (V x)·σ 6= V x}›
〈proof 〉

definition is-ground-subst :: ‹(′s, ′v) subst ⇒ bool› where
‹is-ground-subst σ ≡ (ground ‘ ran σ) = {True}›

lemma is-ground-subst-alt-def :
‹is-ground-subst σ ←→ (ran σ 6= ∅) ∧ (∀ x. (V x)·σ 6= V x −→ ground ((V x)·σ))›
〈proof 〉

lemma ground-subst-grounds:‹is-ground-subst σ =⇒ x ∈ dom σ =⇒ ground (x·σ)›
〈proof 〉

lemma iter-on-ground:‹ground (x·σ) =⇒ n > 0 =⇒ x·σn = x·σ›
〈proof 〉

lemma true-subst-nempty-vars:
‹σ 6= V =⇒ {t. is-Hd t ∧ is-Var (head t) ∧ subst σ t 6= t} 6= {}›
〈proof 〉

lemma true-subst-nemp-im:‹ran σ = {} =⇒ σ = V ′›
〈proof 〉

lemma ground-subst-imp-no-var-mapped-on-var :
‹is-ground-subst σ =⇒ (∀ x y. x 6= y −→ (V x)·σ 6= (V y))›
〈proof 〉

8

lemma ran-V ′-empty:‹ran V ′ = ∅›
〈proof 〉

lemma non-ground-V ′: ‹¬ is-ground-subst V ′›
〈proof 〉

3.2 Acyclicity

A substitution is said to be acyclic if no variable x in the domain of σ occurs
as a subterm of x·σn for any 0 < n.
definition is-acyclic :: ‹(′s, ′v) subst ⇒ bool› where

‹is-acyclic σ ≡ (∀ x ∈ dom σ. ∀ n > 0 . x /∈ subterms (x·σn))›

lemma is-acyclicE :‹ is-acyclic σ =⇒ x ∈ dom σ =⇒ n > 0 =⇒ x /∈ subterms
(x·σn)›
〈proof 〉

lemma non-acyclic-V ′: ‹is-acyclic V ′›
〈proof 〉

lemma acyclic-iter-dom-eq:‹is-acyclic σ =⇒ dom σ = dom σn› if ‹n > 0 › for n
〈proof 〉

lemma acyclic-iter : ‹is-acyclic σ =⇒ n > 0 =⇒ is-acyclic σn›
〈proof 〉

3.3 Fixed-point substitution

We define the fixed-point substitution of a substitution σ as the substitution
σi where i = inf{k ∈ N | σk = σk+1}.
definition fp-subst :: ‹(′s, ′v) subst ⇒ (′s, ′v) subst› (‹-?› 1000) where

‹σ? ≡ iter-rcomp σ (LEAST n . σn = σn+1)›

lemma ground-subst-is-fp:‹is-ground-subst σ =⇒ σ? = σ›
— Ground substitutions have no effect and are therefore fixed-points substitutions.
The converse is not true.
〈proof 〉

In the following, we prove that fixed-point substitutions are well-defined for
acyclic substitutions. To help visualise how the proofs are carried out, for
any terms x and y and any substitution σ, we denote the fact that x is
substituted by y after one application of σ, i.e. that sub y (x·σ), by x →σ y.

Remark. In fact, automata could be used to model substitutions with vari-
ables in the domain as the initial states and variables outside of the domain
and constants as final states. The transitions would be given by the succes-
sive substitutions. Acyclic substitutions would be represented by a DAG.

9

lemma dom-sub-subst: ‹x ∈ dom σ =⇒ sub x (t·σ) =⇒ ∃ y ∈ dom σ. sub x (y·σ)›
— If x →σ t for x ∈ dom σ and a term t, then there is a variable y ∈ dom σ such
that x →σ y.
〈proof 〉

lemma dom-sub-subst-contrapos:
— For x in the domain, if there is no z in the domain such that x →σ z, then there
is not term t such that x →σ t.

‹x ∈ dom σ =⇒ ∀ z ∈ dom σ. ¬ sub x (z·σ) =⇒ ∀ t. ¬ sub x (t·σ)›
〈proof 〉

lemma dom-sub-subst-iter :
‹x ∈ dom σ =⇒ ∀ z ∈ dom σ. ¬ sub x (z·σn) =⇒ ¬ sub x (t·σn)›
〈proof 〉

lemma
assumes ‹x ∈ dom σ› ‹∀ y ∈ dom σ. sub y t −→ ¬ sub x (y·σ)›
shows not-sub-subst-if :‹¬ sub x (t·σ)›

— For x in the domain and any term t, if there is no variable y occurring in t such
that x →σ y, then x 6→σ t.
〈proof 〉

lemma dom-sub-subst-iter-Suc:
‹x ∈ dom σ =⇒ sub x (t·σn+1) =⇒
∃ y z. y ∈ dom σ ∧ z ∈ dom σ ∧ sub x (z·σ) ∧ sub z (y·σn)›

— If x→n+1
σ t, then there are variables y and z such that y →n

σ z →σ x.
〈proof 〉

lemma sub-Suc-n-sub-n-sub:
‹(∃ x ∈ dom σ. sub z (x·σn+1)) ←→
(∃ x y. x ∈ dom σ ∧ y ∈ dom σ ∧ sub z (y·σ) ∧ sub y (x·σn))› if ‹z ∈ dom σ›
〈proof 〉

The following theorem is the main result of this theory and states that for
acyclic substitutions, the fixed-point substitution exists and is well defined.
The main idea of the proof is to define a non-negative quantity and show
that successively applying the substitution makes it decrease.
For any such iteration n, we define the set of variables that will be substi-
tuted by the next iteration of the substitution and denote it by Sn. Formally,
Sn is defined as follows:

Sn := {z ∈ dom σ | ∃x ∈ dom σ. x→n
σ z}

There is a clear recurrence relation between Sn+1 and Sn, namely that the
variables in Sn+1 are exactly the variables in Sn that are not sources in
Sn, i.e. that have a predecessor – for the subterm relation – in Sn. This is

10

formalized as follows:

Sn+1 = Sn − {z ∈ Sn | ∀x ∈ Sn. x 6→σ z}

This implies that the sequence (Sn)n∈N is strictly monotone for inclusion.
Since it is bounded and has its values in finite sets, it is convergent and there
is a rank k from which it is constant and equal to the infimum of the range,
the empty set.
theorem fp-subst: ‹is-acyclic σ =⇒ ∃n. σn = σn+1›
〈proof 〉

lemma fp-subst-comp-stable: ‹is-acyclic σ =⇒ (σ?) ◦ (σ?) = σ?›
〈proof 〉

lemma fp-subst-stable-iter : ‹is-acyclic σ =⇒ n > 0 =⇒ (σ?)n = σ?›
〈proof 〉

lemma fp-subst-stable-fp: ‹is-acyclic σ =⇒ (σ?)? = σ?›
〈proof 〉

end

References

[1] H. Barbosa, P. Fontaine, and A. Reynolds. Congruence closure with free
variables. In A. Legay and T. Margaria, editors, TACAS 2017, volume
10206 of LNCS, pages 214–230, 2017.

[2] J. C. Blanchette, U. Waldmann, and D. Wand. Formalization of re-
cursive path orders for lambda-free higher-order terms. Archive of
Formal Proofs, September 2016. https://isa-afp.org/entries/Lambda_
Free_RPOs.html, Formal proof development.

[3] S. Tourret, P. Fontaine, D. E. Ouraoui, and H. Barbosa. Lifting con-
gruence closure with free variables to λ-free higher-order logic via SAT
encoding. In F. Bobot and T. Weber, editors, SMT 2020, volume 2854
of CEUR Workshop Proceedings, pages 3–14. CEUR-WS.org, 2020.

11

https://isa-afp.org/entries/Lambda_Free_RPOs.html
https://isa-afp.org/entries/Lambda_Free_RPOs.html

	Introduction
	Preliminary lemmas

	Substitutions
	Substitutions for terms
	Substitutions as a monoid

	Acyclic substitutions
	Definitions and auxiliary lemmas
	Acyclicity
	Fixed-point substitution

