Subresultants™

Sebastiaan Joosten, René Thiemann and Akihisa Yamada

March 19, 2025

Abstract

We formalize the theory of subresultants and the subresultant poly-
nomial remainder sequence as described by Brown and Traub. As a
result, we obtain efficient certified algorithms for computing the resul-
tant and the greatest common divisor of polynomials.

Contents

1 Introduction

2 Resultants

3 Dichotomous Lazard

4 Binary Exponentiation

5 Homomorphisms

6 Polynomial coefficients with integer index

7 Subresultants and the subresultant PRS
7.1 Algorithm
7.2 Soundness Proof for div-exp-param.resultant-impl div-exp =
resultant oL
7.3 Code Equations

8 Computing the Gced via the subresultant PRS
81 Algorithm
8.2 Soundness Proof for ged-impl = ged
8.3 Code Equations L oo

*Supported by FWF (Austrian Science Fund) project Y757.

10

11

13
14

15
72

1 Introduction

Computing the ged of two polynomials can be done via the Euclidean algo-
rithm, if the domain of the polynomials is a field. For non-field polynomials,
one has to replace the modulo operation by the pseudo-modulo operation,
which results in the exponential growth of coefficients in the ged algorithm.
To counter this problem, one may divide the intermediate polynomials by
their contents in every iteration of the ged algorithm. This is precisely the
way how currently resultants and geds are computed in Isabelle.

Computing contents in every iteration is a costly operation, and therefore
Brown and Traub have developed the subresultant PRS (polynomial remain-
der sequence) algorithm [1, 2]. It avoids intermediate content computation
and at the same time keeps the coefficients small, i.e., the coefficients grow
at most polynomially.

The soundness of the subresultant PRS ged algorithm is in principle sim-
ilar to the Euclidean algorithm, i.e., the intermediate polynomials that are
computed in both algorithms differ only by a constant factor. The major
problem is to prove that all the performed divisions are indeed exact divi-
sions. To this end, we formalize the fundamental theorem of Brown and
Traub as well as the resulting algorithms by following the original (con-
densed) proofs. This is in contrast to a similar Coq formalization by Mah-
boubi [4], which follows another proof based on polynomial determinants.

As a consequence of the new algorithms, we significantly increased the
speed of the algebraic number implementation [5] which heavily relies upon
the computation of resultants of bivariate polynomials.

2 Resultants

This theory defines the Sylvester matrix and the resultant and contains
basic facts about these notions. After the connection between resultants and
subresultants has been established, we then use properties of subresultants
to transfer them to resultants. Remark: these properties have previously
been proven separately for both resultants and subresultants; and this is the
reason for splitting the theory of resultants in two parts, namely “Resultant-
Prelim” and “Resultant” which is located in the Algebraic-Number AFP-
entry.
theory Resultant-Prelim
imports

Jordan-Normal-Form. Determinant

Polynomial-Interpolation. Ring-Hom-Poly
begin

Sylvester matrix

definition sylvester-mat-sub :: nat = nat = ’a poly = ’a poly = 'a :: zero mat
where

sylvester-mat-sub m n p q =
mat (m+n) (m+n) (A (4,5).
if i < n then
ifi <jNj— i< mthen coeff p (m + i — j) else 0
else if i — n < j A j < ithen coeff q (i—j) else 0)

definition sylvester-mat :: 'a poly = 'a poly = 'a :: zero mat where
sylvester-mat p q = sylvester-mat-sub (degree p) (degree q) p q

lemma sylvester-mat-sub-dim|[simp]:
fixes mnpgq
defines S = sylvester-mat-sub m n p q
shows dim-row S = m+n and dim-col S = m+n
unfolding S-def sylvester-mat-sub-def by auto

lemma sylvester-mat-sub-carrier:
shows sylvester-mat-sub m n p q € carrier-mat (m+n) (m+n) by auto

lemma sylvester-mat-dim/[simp]:
fixes p ¢
defines d = degree p + degree q
shows dim-row (sylvester-mat p q) = d dim-col (sylvester-mat p q) = d
unfolding sylvester-mat-def d-def by auto

lemma sylvester-carrier-mat:
fixes p ¢
defines d = degree p + degree q
shows sylvester-mat p q € carrier-mat d d unfolding d-def by auto

lemma sylvester-mat-sub-index:
fixes p ¢
assumes i: ¢ < m+n and j: j < m+n
shows sylvester-mat-sub m n p q $$ (i,j) =
(if i < n then
ifi <jANj— i< mthen coeff p (m + i — j) else 0
else if i — n < j A j < ithen coeff q (i—j) else 0)
unfolding sylvester-mat-sub-def
unfolding indez-mat(1)[OF i j] by auto

lemma sylvester-index-mat:
fixes p ¢
defines m = degree p and n = degree q
assumes i: ¢ < m+n and j: j < m+n
shows sylvester-mat p q $$ (i,5) =
(if i < n then
ifi <jNj— i< mthen coeff p (m + i — j) else 0
else if i — n < j A j<ithen coeff ¢ (i — j) else 0)
unfolding sylvester-mat-def
using sylvester-mat-sub-index[OF i j] unfolding m-def n-def.

lemma sylvester-index-mat2:

fixes p ¢ :: 'a :: comm-semiring-1 poly

defines m = degree p and n = degree q

assumes i: { < m+n and j: j < m+n

shows sylvester-mat p q $$ (i,j) =
(if i < n then coeff (monom 1 (n — @) x p) (m+n—j)
else coeff (monom 1 (m + n — i) * q) (m+n—j))

apply (subst sylvester-index-mat)

unfolding m-def[symmetric] n-def[symmetric]

using i j apply (simp,simp)

unfolding coeff-monom-mult

apply(cases i < n)

apply (cases i <jAj—i<m)

using j m-def apply (force, force simp: coeff-eq-0)

apply (cases i — n < j A j <)

using i j coeff-eq-0[of q] n-def by auto

lemma sylvester-mat-sub-0[simp): sylvester-mat-sub 0n 0 ¢ = 0, n 1
unfolding sylvester-mat-sub-def by auto

lemma sylvester-mat-0[simpl: sylvester-mat 0 ¢ = 0, (degree q) (degree q)
unfolding sylvester-mat-def by simp

lemma sylvester-mat-const|simp]:
fixes a :: 'a :: semiring-1
shows sylvester-mat [:a:] ¢ = a - 1. (degree q)
and sylvester-mat p [:a:] = a -y, 1., (degree p)

by (auto simp: sylvester-index-mat)

lemma sylvester-mat-sub-map:
assumes f0: f0 = 0
shows map-mat f (sylvester-mat-sub m n p q) = sylvester-mat-sub m n (map-poly
fp) (map-poly f q)
(is 2l = ?r)
proof (rule eqg-matl)
note [simp] = coeff-map-poly[of f, OF f0]
show dim: dim-row ?l = dim-row ?r dim-col ?l = dim-col ?r by auto
fix ij
assume 7j: i < dim-row ?r j < dim-col ?r
note ij’ = this[unfolded sylvester-mat-sub-dim]
note i’ = ij[unfolded dim[symmetric] indez-map-mat]
show 21 $$ (i, j) = 2r $%$ (4,))
unfolding indez-map-mat(1)[OF ij"
unfolding sylvester-mat-sub-index| OF ij’]
unfolding Let-def
using f0 by auto
qed

definition resultant :: 'a poly = 'a poly = 'a :: comm-ring-1 where
resultant p ¢ = det (sylvester-mat p q)

Resultant, but the size of the base Sylvester matrix is given.

definition resultant-sub m n p ¢ = det (sylvester-mat-sub m n p q)

lemma resultant-sub: resultant p q = resultant-sub (degree p) (degree q) p q
unfolding resultant-def sylvester-mat-def resultant-sub-def by auto

lemma resultant-const]simp]:
fixes a :: ‘a :: comm-ring-1
shows resultant [:a:] ¢ = a ~ (degree q)
and resultant p [:a:] = a ~ (degree p)
unfolding resultant-def unfolding sylvester-mat-const by simp-all

lemma resultant-1[simp]:
fixes p :: 'a :: comm-ring-1 poly
shows resultant 1 p = 1 resultant p 1 = 1
using resultant-const(1) [of 1 p] resultant-const(2) [of p 1]
by (auto simp add: pCons-one)

lemma resultant-0[simp):
fixes p :: ‘a :: comm-ring-1 poly
assumes degree p > 0
shows resultant 0 p = 0 resultant p 0 = 0
using resultant-const(1)[of 0 p] resultant-const(2)[of p 0]
using zero-power assms by auto

lemma (in comm-ring-hom) resultant-map-poly: degree (map-poly hom p) = degree
p —

degree (map-poly hom q) = degree ¢ = resultant (map-poly hom p) (map-poly
hom ¢q) = hom (resultant p q)

unfolding resultant-def sylvester-mat-def sylvester-mat-sub-def hom-det[symmetric]

by (rule arg-conglof - - det], auto)

lemma (in inj-comm-ring-hom) resultant-hom: resultant (map-poly hom p) (map-poly
hom ¢) = hom (resultant p q)
by (rule resultant-map-poly, auto)

end

3 Dichotomous Lazard
This theory contains Lazard’s optimization in the computation of the sub-
resultant PRS as described by Ducos [3, Section 2].

theory Dichotomous-Lazard
imports

HOL— Computational-Algebra. Polynomial-Factorial
begin

lemma power-fract[simp|: (Fract a b) "n = Fract (a™n) (b"n)
by (induct n, auto simp: fract-collapse)

lemma range-to-fract-dvd-iff: assumes b: b # 0
shows Fract a b € range to-fract «— b dvd a

proof
assume b dvd a then obtain ¢ where a: ¢ = b x ¢ unfolding dvd-def by auto
have Fract a b = Fract ¢ 1 using b unfolding a by (simp add: eq-fract)
thus Fract a b € range to-fract unfolding to-fract-def by auto

next
assume Fract a b € range to-fract
then obtain ¢ where Fract a b = Fract ¢ 1 unfolding to-fract-def by auto
hence a = b x ¢ using b by (simp add: eg-fract)
thus b dvd a ..

qed

lemma Fract-cases-coprime [cases type: fract]:
fixes ¢ :: 'a :: factorial-ring-gcd fract
obtains (Fract) a b where ¢ = Fract a b b # 0 coprime a b
proof —
obtain a b where ¢: ¢ = Fract a b and b0: b # 0 by (cases q, auto)
define g where ¢g: g = ged a b
define A where A: A =a div g
define B where B: B= 10 div g
have a: a = A * g unfolding A ¢ by simp
have b: b = B x g unfolding B ¢ by simp
from b0 b have 0: B # 0 by auto
have ¢: ¢ = Fract A B unfolding ¢q a b
by (subst eg-fract, auto simp: b0 0 g)
have cop: coprime A B unfolding A B g using b0
by (simp add: div-gcd-coprime)
assume Aa b. ¢ = Fract a b = b # 0 = coprime a b = thesis
from this[OF q 0 cop] show ?Zthesis .
qed

lemma to-fract-power-le: fixes a :: 'a :: factorial-ring-ged fract
assumes no-fract: a * b ~ e € range to-fract
and a: a € range to-fract
and le: f < e
shows a x b ~ f € range to-fract
proof —
obtain bn bd where b: b = Fract bn bd and bd: bd # 0 and copb: coprime bn
bd by (cases b, auto)
obtain an where a: a = Fract an 1 using o unfolding to-fract-def by auto
have id: a * b ~ e = Fract (an * bn"e) (bd"e) unfolding a b power-fract
mult-fract by simp

have 0: bd"e # 0 for e using bd by auto
from no-fract[unfolded id range-to-fract-dvd-iff[OF 0]] have dvd: bd ~ e dvd an
x bn "e.
from copb have copb: coprime (bd ~e) (bn ~e) for e
by (simp add: ac-simps)
from duvd copb [of €] bd have bd ~ e dvd an
by (simp add: coprime-dvd-mult-left-iff)
hence bd ~ f dvd an using le by (rule power-le-dvd)
hence dvd: bd ~ f dvd an x bn ~ f by simp
from e obtain g where e: e = f + g using le-Suc-ex by blast
have id" a x b ~ f = Fract (an x bn"f) (bd"f) unfolding a b power-fract
mult-fract by simp
show ?thesis unfolding id’ range-to-fract-dvd-iff[OF 0] by (rule dvd)
qed

lemma div-divide-to-fract: assumes x € range to-fract
and z = (y :: 'a :: idom-divide fract) /| z
and z’ = y’ div 2’
and y = to-fract y' z = to-fract z’
shows z = to-fract =’
proof (cases z' = 0)
case True
thus ?thesis using assms by auto
next
case Fulse
from assms obtain r where to-fract y' / to-fract z' = to-fract r by auto
thus ?thesis using False assms
by (simp add: eq-fract(1) to-fract-def)
qed

declare Euclidean-Rings.divmod-nat-def [termination-simp]

fun dichotomous-Lazard :: 'a :: idom-divide = 'a = nat = 'a where
dichotomous-Lazard x y n = (if n < 1 then if n = 1 then x else 1 else
let (d,r) = Euclidean-Rings.divmod-nat n 2;
rec = dichotomous-Lazard © y d;
recsq = rec * rec div Yy in
if T = 0 then recsq else recsq x x div y)
lemma dichotomous-Lazard-main: fixes z :: 'a :: idom-divide
assumes A i. i < n = (to-fract)i / (to-fract y) (i — 1) € range to-fract
shows to-fract (dichotomous-Lazard x y n) = (to-fract x) "n / (to-fract y) (n—1)

using assms
proof (induct x y n rule: dichotomous-Lazard.induct)
case (1 zyn)
let ?f = to-fract
consider (0) n =01 (1) n=1 1 (n) - n < 1 by linarith
thus ?case

proof cases
case n
obtain d r where n2: Fuclidean-Rings.divmod-nat n 2 = (d,r) by force
from FEuclidean-Rings.divmod-nat-def[of n 2] n2 have dr: d = n div 2r = n
mod 2 by auto
hence r: r = 0 vV r = 1 by auto
define rec where rec = dichotomous-Lazard x y d
let ?sq = rec x rec div y
have res: dichotomous-Lazard z y n = (if r = 0 then ?sq else ?sq x = div y)
unfolding dichotomous-Lazard.simps|[of x y n] n2 Let-def rec-def using n by
auto
have ndr: n = d + d + r unfolding dr by presburger
from ndr r n have d0: d # 0 by auto
have IH: ?frec = %fx ~d [/ ?%fy ~(d — 1)
using 1(1)[OF n refl n2[symmetric] 1(2), folded rec-def] ndr by auto
have ?f (rec x rec) = ?fx ~d / ?%fy “(d— 1) % %z "d /) ?%fy " (d— 1)
using IH by simp
alsohave ... = ?fz " (d+d) / ?fy ~(d — 1 + (d — 1)) unfolding power-add
by simp
alsohave d — 1 + (d — 1) = d + d — 2 using d0 by simp
finally have id: ?f (rec *x rec) = ?fx ~(d+d) / %y "~ (d+ d — 2)
let 2dd = (?fz " (d+d)/ %y “(d+d—2)/ 2y
let 9d = ?fz " (d+d)/ %y ~(d+d—1)
have dd: ?dd = ?d using d0 by (cases d, auto)
have sq: ?f ?sq = ?d unfolding dd[symmetric]
proof (rule sym, rule div-divide-to-fract] OF - refl refl id[symmetric] refl], unfold
dd)
show ?d € range ?f by (rule 1(2), insert ndr, auto)
qed
show ?thesis
proof (cases r = 0)
case True
with res sq show ¢thesis unfolding ndr by auto
next
case Fulse
with r have r: r = 1 by auto
let 2sq’ = ?sq * x div y
from False res have res: dichotomous-Lazard x y n = ?sq’ by simp
from sq have id: ?f (%sq«xz) = %z " (d+d+r)/ %y " (d+d—-1)
unfolding r by simp
let 2dd = (?fz " (d+d+7r)/ %y “(d+d—1))/ %y
let 9d =2z " (d+d+7r)/ %y " (d+d+r—1)
have dd: ?dd = ?d using d0 unfolding r by (cases d, auto)
have sq" ?f 9sq¢’ = ?d unfolding dd[symmetric]
proof (rule sym, rule div-divide-to-fract|OF - refl refl id[symmetric] refl],
unfold dd)
show ?2d € range ?f by (rule 1(2), unfold ndr, auto)
qed
show ?thesis unfolding res sq’ unfolding ndr by simp

qed
qged auto
qed
lemma dichotomous-Lazard: fixes z :: 'a :: factorial-ring-gcd
assumes (to-fract) "n / (to-fract y) (n—1) € range to-fract
shows to-fract (dichotomous-Lazard x y n) = (to-fract) "n / (to-fract y) (n—1)

proof (rule dichotomous-Lazard-main)
fix ¢
assume i: 1 < n
show to-fract x ~ i / to-fract y ~ (i — 1) € range to-fract
proof (cases)
case (Suc j)
have id: to-fract x " i / to-fract y ~ (i — 1) = to-fract z x (to-fract x / to-fract

~ .

y)
unfolding Suc by (simp add: power-divide)
from Suc i have n # 0 and j: j < n — 1 by auto
hence idd: to-fract x * (to-fract x / to-fract y) ~ (n — 1) = (to-fract z) n /
(to-fract y) (n—1)
by (cases n, auto simp: power-divide)
show ?thesis unfolding id
by (rule to-fract-power-le]OF - - j], unfold idd, insert assms, auto)
next
case (
have 1 = to-fract 1 by simp
hence 1 € range to-fract by blast
thus ?thesis using 0 by auto
qed
qed

declare dichotomous-Lazard.simps[simp del]

end

4 Binary Exponentiation

This theory defines the standard algorithm for binary exponentiation, or
exponentiation by squaring.
theory Binary-FExponentiation
imports
Main
begin

declare Euclidean-Rings.divmod-nat-def [termination-simp]

context monoid-mult
begin

fun binary-power :: 'a = nat = 'a where
binary-power x n = (if n = 0 then 1 else
let (d,r) = Euclidean-Rings.divmod-nat n 2;
rec = binary-power (z * x) d in
if = 0 then rec else rec * x)

lemma binary-power[simp|: binary-power = (7)
proof (intro ext)
fix zn
show binary-power zn =z " n
proof (induct x n rule: binary-power.induct)
case (1 zn)
show ?case
proof (cases n = 0)
case Fulse
note /H = 1[OF False]
obtain d r where n2: Fuclidean-Rings.divmod-nat n 2 = (d,r) by force
from Euclidean-Rings.divmod-nat-def[of n 2] n2 have dr: d = n div 2 r =
n mod 2 by auto
hence r: r = 0 V r = 1 by auto
let %rec = binary-power (z * x) d
have binary-power © n = (if r = 0 then ?rec else ?rec x x)
unfolding binary-power.simps|of n] n2 using False by auto
also have ... = %rec x ¢ ~ r using r by (cases r = 0, auto)
also have %rec = (z x z) ~d
by (rule IH[OF - refl], simp add: n2)
also have ... = z ~ (d + d) unfolding power-add
using power2-eq-square power-even-eq power-mult by auto
alsohave ... xz "r=2 " (d+d+r)
by (simp add: power-add)
also have d + d + r = n unfolding dr by presburger
finally show ?thesis .
qed auto
qed
qed

lemma binary-power-code-unfold|code-unfold]: (7) = binary-power
by simp

declare binary-power.simps[simp del]

end
end

5 Homomorphisms

We register two homomorphism, namely lifting constants to polynomials,
and lifting elements of some domain into their fraction field.

theory More-Homomorphisms

10

imports Polynomial-Interpolation.Ring-Hom-Poly
Jordan-Normal-Form.Determinant
begin

abbreviation (input) coeff-lift == Aa. [: a]

interpretation coeff-lift-hom: inj-comm-monoid-add-hom coeff-lift by (unfold-locales,
auto)
interpretation coeff-lift-hom: inj-ab-group-add-hom coeff-lift..
interpretation coeff-lift-hom: inj-comm-semiring-hom coeff-lift
by standard (simp-all add: ac-simps)
interpretation coeff-lift-hom: inj-comm-ring-hom coeff-lift..
interpretation coeff-lift-hom: inj-idom-hom coeff-lift..

The following rule is incompatible with existing simp rules.

declare coeff-lift-hom.hom-mult[simp del]
declare coeff-lift-hom.hom-add[simp del]
declare coeff-lift-hom.hom-uminus|[simp del]

interpretation to-fract-hom: inj-comm-ring-hom to-fract by (unfold-locales, auto)
interpretation to-fract-hom: idom-hom to-fract..
interpretation to-fract-hom: inj-idom-hom to-fract..

end

6 Polynomial coefficients with integer index

We provide a function to access the coefficients of a polynomial via an in-
teger index. Then index-shifting becomes more convenient, e.g., compare
in the lemmas for accessing the coeffiencent of a product with a monomial
there is no special case for integer coefficients, whereas for natural number
coeflicients there is a case-distinction.

theory Coeff-Int
imports
HOL— Combinatorics. Permutations
Polynomial-Interpolation. Missing- Polynomial
begin

definition coeff-int :: 'a :: zero poly = int = 'a where
coeff-int p i = (if i < 0 then 0 else coeff p (nat 7))

lemma coeff-int-eq-0: i < 0 V { > int (degree p) = coeff-int p i = 0
unfolding coeff-int-def
by (cases i < 0, auto intro: coeff-eq-0)

lemma coeff-int-smult[simp|: coeff-int (smult ¢ p) i = ¢ * coeff-int p i
unfolding coeff-int-def by simp

11

lemma coeff-int-signof-mult: coeff-int (of-int (sign z) * f) i = of-int (sign x) *
coeff-int f ¢
by (auto simp: coeff-int-def sign-def)

lemma coeff-int-sum: coeff-int (sum p A) i = (O z€A. coeff-int (p z) 7)
using coeff-sum[of p A nat i) unfolding coeff-int-def
by (cases i < 0, auto)

lemma coeff-int-0[simp): coeff-int f 0 = coeff f 0 unfolding coeff-int-def by simp

lemma coeff-int-monom-mult: coeff-int (monom a d x f) i = (a * coeff-int f (i —
4))
proof (cases i < 0)
case True
thus “thesis unfolding coeff-int-def by simp
next
case Fulse
hence i > 0 by auto
then obtain j where i: i = int j by (rule nonneg-eg-int)
show ?thesis
proof (cases i > d)
case True
with ¢ have nat (int j — int d) = j — d by auto
with coeff-monom-mult[of a] show ?thesis unfolding coeff-int-def i
by simp
next
case Fulse
thus ?thesis unfolding i by (simp add: coeff-int-def coeff-monom-mult)
qed
qed

lemma coeff-prod-const: assumes finite xs and y ¢ s
and A\ z. z € xs = degree (fz) = 0
shows coeff (prod f (insert y xzs)) i = prod (A . coeff (fz) 0) xs x coeff (fy) @
using assms
proof (induct zs rule: finite-induct)
case (insert z xs)
from insert(2,4) have id: insert y (insert z xs) — {z} = insert y zs by auto
have prod [(insert y (insert x xs)) = fz * prod f (insert y xs)
by (subst prod.removelof - x|, insert insert(1,2) id, auto)
hence coeff (prod f (insert y (insert x xs))) i = coeff (f x * prod f (insert y xs))
i by simp
also have ... = coeff (fz) 0 * (coeff (prod f (insert y xs)) i)
proof —
from insert(5)[of] degree0-coeffs[of f x] obtain ¢ where fz: fz = [: ¢ :] by
auto
show ?thesis unfolding fr by auto
qged
also have (coeff (prod f (insert y xzs)) i) = ([] z€xs. coeff (f x) 0) * coeff (fy)

12

i using insert by auto
also have coeff (fz) 0 % ... = prod (A z. coeff (fx) 0) (insert x zs) * coeff (f
y) i
by (subst prod.insert-remove, insert insert(1,2,4), auto simp: ac-simps)
finally show ?case .
qed simp

lemma coeff-int-prod-const: assumes finite zs and y ¢ xs
and A\ z. z € s = degree (fz) = 0
shows coeff-int (prod f (insert y xs)) i = prod (X z. coeff-int (f) 0) zs * coeff-int

(fy) i
using coeff-prod-const[OF assms] unfolding coeff-int-def by (cases i < 0, auto)

lemma coeff-int[simp]: coeff-int p n = coeff p n unfolding coeff-int-def by auto

lemma coeff-int-minus[simp):
coeff-int (a — b) i = coeff-int a i — coeff-int b i
by (auto simp: coeff-int-def)

lemma coeff-int-pCons-0[simp]: coeff-int (pCons 0 b) i = coeff-int b (i — 1)
by (auto simp: Nitpick.case-nat-unfold coeff-int-def coeff-pCons nat-diff-distrib”)

end

7 Subresultants and the subresultant PRS

This theory contains most of the soundness proofs of the subresultant PRS
algorithm, where we closely follow the papers of Brown [1] and Brown and
Traub [2]. This is in contrast to a similar Coq formalization of Mahboubi
[4] which is based on polynomial determinants.

Whereas the current file only contains an algorithm to compute the re-
sultant of two polynomials efficiently, there is another theory “Subresultant-
Gced” which also contains the algorithm to compute the GCD of two poly-
nomials via the subresultant algorithm. In both algorithms we integrate
Lazard’s optimization in the dichotomous version, but not the second opt-
mization described by Ducos [3].

theory Subresultant

imports
Resultant-Prelim
Dichotomous-Lazard
Binary-Ezxponentiation
More-Homomorphisms
Coeff-Int

begin

13

7.1 Algorithm

locale div-exp-param =

fixes div-exp :: 'a :: idom-divide = 'a = nat = 'a
begin
partial-function(tailrec) subresultant-prs-main where

subresultant-prs-main f g ¢ = (let

m = degree f;

n = degree g;

If = lead-coeff f;

lg = lead-coeff g;

d=m — m;

d = div-exp lg ¢ 0;

h = pseudo-mod f g

in if h = 0 then (g,d)

else subresultant-prs-main g (sdiv-poly h ((—1) ~ (8 + 1) = Iif = (¢ ~9))) d)

definition subresultant-prs where
subresultant-prs f g = (let
h = pseudo-mod f g;
0 = (degree f — degree g);
d = lead-coeff g ~ 0
in if h = 0 then (g,d)
else subresultant-prs-main g ((— 1) ~ (6 + 1) = h) d)

definition resultant-impl-main where
resultant-impl-main G1 G2 = (if G2 = 0 then (if degree G1 = 0 then 1 else 0)
else
case subresultant-prs G1 G2 of
(Gk,hk) = (if degree Gk = 0 then hk else 0))

definition resultant-impl where
resultant-impl f g =
(if length (coeffs) > length (coeffs g) then resultant-impl-main f g
else let res = resultant-impl-main g f in
if even (degree f) V even (degree g) then res else — res)
end

locale div-exp-sound = div-exp-param +
assumes div-ezp: \ z y n.
(to-fract x)"n / (to-fract y) (n—1) € range to-fract
= to-fract (div-exp © y n) = (to-fract) "n / (to-fract y) (n—1)

definition basic-div-exp :: 'a :: idom-divide = 'a = nat = 'a where
basic-div-exp x y n = " n div y (n—1)
We have an instance for arbitrary integral domains.

lemma basic-div-exp: div-exp-sound basic-div-exp
by (unfold-locales, unfold basic-div-exp-def, rule sym, rule div-divide-to-fract, auto
stmp: hom-distribs)

14

Lazard’s optimization is only proven for factorial rings.

lemma dichotomous-Lazard: div-exp-sound (dichotomous-Lazard :: 'a :: factorial-ring-ged
=)
by (unfold-locales, rule dichotomous-Lazard)

7.2 Soundness Proof for div-exp-param.resultant-impl div-exp =
resultant

abbreviation pdivmod :: 'a::field poly = 'a poly = ’a poly x 'a poly
where
pdivmod p q¢ = (p div g, p mod q)

lemma even-sum-list: assumes A z. © € set s = even (f) = even (g z)
shows even (sum-list (map f xs)) = even (sum-list (map g xs))
using assms by (induct zs, auto)

lemma for-all-Suc: Pi = (V j > Suci. Pj) = (Vv j > i. Pj) for P
by (metis (full-types) Suc-le-eq less-le)

lemma pseudo-mod-left-0[simpl: pseudo-mod 0 x = 0
unfolding pseudo-mod-def pseudo-divmod-def
by (cases x = 0; cases length (coeffs), auto)

lemma pseudo-mod-right-0[simp]: pseudo-mod z 0 = x
unfolding pseudo-mod-def pseudo-divmod-def by simp

lemma snd-pseudo-divmod-main-cong:

assumes al = bl a8 = b3 a4 = b4 a5 = b5 ab = b6

shows snd (pseudo-divmod-main al a2 a8 a4 a5 a6) = snd (pseudo-divmod-main
b1 b2 b3 b4 b5 b6)

using assms snd-pseudo-divmod-main by metis

lemma snd-pseudo-mod-smult-invar-right:
shows (snd (pseudo-divmod-main (z * lc) ¢ r (smult z d) dr n))
= snd (pseudo-divmod-main lc ¢’ (smult (z™n) r) d dr n)
proof (induct n arbitrary: q q' r dr)
case (Suc n)
let ¢ = smult (z % lc) ¢ + monom (coeff r dr) n
let 2r = smult (x x le) r — (smult © (monom (coeff r dr) n * d))
let 2dr = dr — 1
let ?rec-lhs = pseudo-divmod-main (z * Ic) ?q ?r (smult = d) ?dr n
let ?rec-rhs = pseudo-divmod-main lc q' (smult (z7n) 9r) d ?dr n
have [simp]: A n.xz "nx (z*xlc) =lc* (zxz " n)
Ancz nx(zxc)=z*x1 nxc
Anzxz " nxle=lex(xxz n)
by (auto simp: ac-simps)
have snd (pseudo-divmod-main (z * lc) g r (smult x d) dr (Suc n)) = snd ?rec-lhs
by (auto simp:Let-def)

15

also have ... = snd ?rec-rhs using Suc by auto
also have ... = snd (pseudo-divmod-main lc ¢’ (smult (z7Suc n) r) d dr (Suc
n)
unfolding pseudo-divmod-main.simps Let-def
proof (rule snd-pseudo-divmod-main-cong,goal-cases)
case 2
show %case by (auto simp:smult-add-right smult-diff-right smult-monom
smult-monom-mult)
qed auto
finally show ?case by auto
qged auto

lemma snd-pseudo-mod-smult-invar-left:
shows snd (pseudo-divmod-main lc ¢ (smult z r) d dr n)
= smult z (snd (pseudo-divmod-main lc q' r d dr n))
proof (induct n arbitrary:x lc q ¢’ v d dr)
case (Suc n)
have sm:smult lc (smult x) — monom (coeff (smult z r) dr) n * d
=smult (smult lc r — monom (coeff r dr) n * d)
by (auto simp:smult-diff-right smult-monom smult-monom-mult mult.commute[of
le x))
let 2q’ = smult lc ¢ + monom (coeff r dr) n
show ?case unfolding pseudo-divmod-main.simps Let-def Suc(1)[of lc - - - - -
?q’] sm by auto
qed auto

lemma snd-pseudo-mod-smult-left[simp]:
shows snd (pseudo-divmod (smult (z::'a::idom) p) q) = (smult z (snd (pseudo-divmod
P q))
unfolding pseudo-divmod-def
by (auto simp:snd-pseudo-mod-smult-invar-leftlof - - - - - - - 0] Polyno-
mial. coeffs-smult)

lemma pseudo-mod-smult-right:

assumes (z::'a::idom)#£0 q#£0

shows (pseudo-mod p (smult (z::’a::idom) q)) = (smult (z7(Suc (length (coeffs
p)) — length (coeffs q))) (pseudo-mod p q))

unfolding pseudo-divmod-def pseudo-mod-def

by (auto simp:snd-pseudo-mod-smult-invar-right|of - - - - - - - 0]
snd-pseudo-mod-smult-invar-leftlof - - - - - - - 0] Polynomial.coeffs-smult

assms)

lemma pseudo-mod-zero[simp):

pseudo-mod 0 f = (0::'a :: {idom} poly)

pseudo-mod f 0 = f

unfolding pseudo-mod-def snd-pseudo-mod-smult-left[of 0 - f,simplified]
unfolding pseudo-divmod-def by auto

16

lemma prod-combine:
assumes j < ¢
shows f i = ([[I«[j..<i]. (f 1 :: 'a::comm-monoid-mult)) = prod-list (map f
[j..<Suc 7))
proof (subst prod-list-map-removel [of i [j..<Suc i f],goal-cases)
case 2
have removel i ([j..<i] Q [i]) = [j..<i] by (simp add: removel-append)
thus ?case by auto
qed (insert assms, auto)

lemma prod-list-minus-1-exp: prod-list (map (A i. (—1)7(f©)) xs)
= (—1) (sum-list (map f xs))
by (induct zs, auto simp: power-add)

lemma minus-1-power-even: (— (1 = 'b :: comm-ring-1))" k = (if even k then 1
else (—1))
by auto

lemma minus-1-even-eql: assumes even k = even | shows
(= (1 =2 'b 2 comm-ring-1)) "k = (— 1)71
unfolding minus-1-power-even assms by auto

lemma (in comm-monoid-mult) prod-list-multf:
([T z¢=xs. fz * g) = prod-list (map f zs) * prod-list (map g xs)
by (induct xs) (simp-all add: algebra-simps)

lemma inverse-prod-list: inverse (prod-list xs) = prod-list (map inverse (zs :: 'a ::
field list))
by (induct zs, auto)

definition pow-int :: 'a :: field = int = 'a where
pow-int x e = (if e < O then 1 / (x ~ (nat (—e))) else z ~ (nat e))

lemma pow-int-0[simpl: pow-int x 0 = 1 unfolding pow-int-def by auto
lemma pow-int-1[simp|: pow-int x 1 = x unfolding pow-int-def by auto

lemma exp-pow-int: £ ~ n = pow-int T n
unfolding pow-int-def by auto

lemma pow-int-add: assumes z: x # 0 shows pow-int (a + b) = pow-int x a
pow-int x b
proof —
have *:
“a+b< 0= a< 0= nat b= nat (a + b)) + nat (—a)
“a+b< 0= b< 0= nata= nat (a + b) + nat (—b)
a+b< 0= —4a< 0= nat (—b) = nat a + nat (—a —b)

17

a+b< 0= —-b< 0= nat (—a) = nat b + nat (—a —b)
by auto
have pow-eq: | = m = (z ~ 1 =z = m) for | m by auto
from z show ?thesis unfolding pow-int-def
by (auto split: if-splits simp: power-add[symmetric|] simp: * introl: pow-eq, auto
sitmp: power-add)
qed

lemma pow-int-mult: pow-int (z * y) a = pow-int & a * pow-int y a
unfolding pow-int-def by (cases a < 0, auto simp: power-mult-distrib)

lemma pow-int-base-1[simpl: pow-int 1 a = 1
unfolding pow-int-def by (cases a < 0, auto)

lemma pow-int-divide: a | pow-int x b = a % pow-int x (—b)
unfolding pow-int-def by (cases b rule: linorder-cases|of - 0], auto)

lemma divide-prod-assoc: © [/ (y x z :: 'a =2 field) = x |/ y / z by (simp add:

field-simps)

lemma minus-1-inverse-pow[simpl: © / (—1)"n = (z :: 'a :: field) x (—1)"n
by (simp add: minus-1-power-even)

definition subresultant-mat :: nat = ’a :: comm-ring-1 poly = 'a poly = 'a poly
mat where
subresultant-mat J F G = (let
dg = degree G; df = degree F'; f = coeff-int F; g = coeff-int G; n = (df — J)
+ (dg — J)
in mat nn (A (4,5). if § < dg — J then
ifi=mn— 1then monom 1 (dg — J — 1 — j) x Felse[: f (df — int i+ int
e
else let jj = j — (dg — J) in
if i =n — 1then monom 1 (df — J — 1 — jj) * G else [: g (dg — int i +
int 3j) 1))

lemma subresultant-mat-dim][simp]:

fixes jp ¢

defines S = subresultant-mat j p q

shows dim-row S = (degree p — j) + (degree ¢ — j) and dim-col S = (degree p
—) + (degree q — j)

unfolding S-def subresultant-mat-def Let-def by auto

definition subresultant’-mat :: nat = nat = 'a :: comm-ring-1 poly = 'a poly =
'a mat where
subresultant’-mat J I F G = (let
v = degree G; ¢ = degree F; f = coeff-int F; g = coeff-int G; n= (¢ — J) +
(v =)
in mat nn (A (4,5). if j <~y — J then

18

ifi=mn— 1then (f (I —int (v — J — 1) + int j)) else (f (¢ — int i + int
7))

elseletjj=45—(y—J) in

ifi=n— 1then (g (I —int (p —J — 1) + int jj)) else (g (v — int i + int
i)

lemma subresultant-index-mat:
fixes FF G
assumes i: § < (degree F' — J) + (degree G — J) and j: j < (degree F — J) +
(degree G — J)
shows subresultant-mat J F G $$ (i,j) =
(if § < degree G — J then
if i = (degree F' — J) + (degree G — J) — 1 then monom 1 (degree G — J
— 1 — j) = Felse ([: coeff-int F (degree F — int i + int j) :])
else let jj = j — (degree G — J) in
if i = (degree F — J) + (degree G — J) — 1 then monom 1 (degree F — J
— 1 — %) % G else ([: coeff-int G (degree G — int i + int jj) :]))
unfolding subresultant-mat-def Let-def
unfolding indez-mat(1)[OF i j] split by auto

definition subresultant :: nat = ’a :: comm-ring-1 poly = 'a poly = 'a poly where
subresultant J F G = det (subresultant-mat J F G)

lemma subresultant-smult-left: assumes (¢ :: 'a :: {comm-ring-1, semiring-no-zero-divisors})
#£ 0
shows subresultant J (smult ¢ f) g = smult (¢ ~ (degree g — J)) (subresultant J
f9)
proof —
let ?df = degree f
let ?dg = degree g
let ?n = (2df — J) + (2dg — J)
let ?m = 2dg — J
let ?M = mat ?n ?n (X (4,5). if i = j then if i < ?m then [:c] else 1 else 0)
from <«c¢ # 0» have deg: degree (smult ¢ f) = ?df by simp
let 2S5 = subresultant-mat J f g
let ?¢S = subresultant-mat J (smult ¢ f) g
have dim: dim-row ?S = ?n dim-col ?S = ?n dim-row ?c¢S = ?n dim-col ?c¢S =
?n using deg by auto
hence C: 25 € carrier-mat ?n %n 2¢S € carrier-mat ?n n ¢M € carrier-mat
?n ?n by auto
have dim’”. dim-row (25 x ?M) = n dim-col (25 % ?M) = ?n using dim (1,2)
by simp-all
define S where S = 25
have 7¢S = 25 « ?M
proof (rule eq-matl, unfold dim’ dim)
fix ij
assume i: i < nj < n
have (25 * ?M) $$ (i,j) = row 25 i - col ?M j

19

by (rule index-mult-mat, insert ©j dim, auto)

also have ... = Ok = 0.<%. row S ¢ $ k x col ?M j $ k) unfolding
scalar-prod-def S-def [symmetric]
by simp
also have ... = 3k = 0..<%n. S $$ (i,k) = ?M $$ (k,j))
by (rule sum.cong, insert ij, auto simp: S-def)
also have ... = 5 $$ (i,j) x ?M $3 (j,j) + sum (A k. S $$ (i,k) = ?2M $$ (k.7))

({0..<?n} = {j})

by (rule sum.remove, insert ij, auto)

also have ... = S5 $$ (i,j) = ?M $$ (j.j)
by (subst sum.neutral, insert ij, auto)
also have ... = 2¢S $$ (i,j) unfolding subresultant-indez-mat[OF ij] S-def

by (subst subresultant-index-mat, unfold deg, insert ij, auto)
finally show ?2¢S $$ (i,j) = (25 = ?M) $$ (i,j) by simp
qed auto
from arg-cong[OF this, of det] det-mult[OF C(1) C(3)]
have subresultant J (smult ¢ f) g = subresultant J f g x det ¢M
unfolding subresultant-def by auto
also have det ?M = [:c ~ ?m :]
proof (subst det-upper-triangular|OF - C(3)])
show upper-triangular ?M
by (rule upper-triangularl, auto)
have prod-list (diag-mat ?M) = ([[k = 0..<%n. (?M $$ (k,k)))
unfolding prod-list-diag-prod by simp
also have ... = ([[k = 0..<?m. ?M $$ (k,k)) = ([[k = ?m..<?n. ?M $%
(k.k))
by (subst prod.union-disjoint[symmetric], (auto)[3], rule prod.cong, auto)
also have ([[k = 0..<?m. ?M $$ (k.k)) = (J[[k = 0..<?m. [: ¢ :])
by (rule prod.cong, auto)
also have ([[k = 0..<?m. [z c:]) =] c:] ~ ?m by simp
also have ([[k = ?m..<?n. ?M $$ (k.,k)) = ([[k = ?m..<?n. 1)
by (rule prod.cong, auto)
finally show prod-list (diag-mat ?M) = [: ¢~ ?m :] unfolding poly-const-pow
by simp
qed
finally show ?thesis by simp
qed

lemma subresultant-swap:

shows subresultant J f g = smult ((— 1) ~ ((degree f — J) * (degree g — J)))
(subresultant J g f)
proof —

let ?A = subresultant-mat J f g

let 2k = degree f — J

let %n = degree g — J

have nk: ?n + %k = %k + ?n by simp

have change: j < 2%k + n = ((if j < ?k then j + ?n else j — k) < ?n)

= (= (j < %k)) for j by auto
have subresultant J f g = det ?A unfolding subresultant-def by simp

20

also have ... = (—1)7(?k x ?n) x det (mat (%k + ?n) (%k + ?n) (X (4,9).
24 88 (4,(if 7 < %k then j + ?n else j — %2k)))) (is - = - * det ?B)
by (rule det-swap-cols, auto simp: subresultant-mat-def Let-def)
also have ?B = subresultant-mat J g f
unfolding subresultant-mat-def Let-def
by (rule eg-matl, unfold dim-row-mat dim-col-mat nk index-mat split,
subst index-mat, (auto)[2], unfold split, subst change, force,
unfold if-conn, rule if-cong|OF refl if-cong if-cong|, auto)

also have det ... = subresultant J g f unfolding subresultant-def ..

also have (—1)7(%k % %n) = ... = [(=1)(% * %n)] * ... by (unfold
hom-distribs, simp)

also have ... = smult ((—1) (% * ?n)) (subresultant J g f) by simp

finally show ?thesis .
qed

lemma subresultant-smult-right:assumes (¢ :: ‘a :: {comm-ring-1, semiring-no-zero-divisors})
0
shows subresultant J f (smult ¢ g) = smult (¢ ~ (degree f — J)) (subresultant J
f9)
unfolding subresultant-swaplof - f] subresultant-smult-left{ OF assms]
degree-smult-eq using assms by (simp add: ac-simps)

lemma coeff-subresultant: coeff (subresultant J F G) | =
(if degree F — J + (degree G — J) = 0 A 1 # 0 then 0 else det (subresultant’-mat
JIF G))
proof (cases degree F — J + (degree G — J) = 0)
case True
show ?thesis unfolding subresultant-def subresultant-mat-def subresultant’-mat-def
Let-def True
by simp
next
case Fulse
let ?n = degree F — J + (degree G — J)
define n where n = n
from False have n: n # 0 unfolding n-def by auto
hence id: {0..<n} = insert (n — 1) {0..< (n — 1)} by (cases n, auto)
have idn: (z = z) = True for z :: nat by simp
let ?M = subresultant-mat J F G
define M where M = ?M
let ?L = subresultant’-mat J I F G
define L where L = 7L
{
fix p
assume p: p permutes {0..<n}
from nphave ni:n— 1 <np(n— 1
have coeff-int ([[i = 0..<n. M $$ (i, p i
(ITi=0 .< (n — 1). coeff-int (M $$
p(n 1)1

unfolding id

21

proof (rule coeff-int-prod-const, (auto)[2])
fix ¢
assume i € {0 .< n — 1}
with p have i: i # n — 1 and { < n p i < n by (auto simp: n-def)
note id = subresultant-indez-mat|OF this(2—3)[unfolded n-def), folded M-def
n-def]
show degree (M $$ (i, p i)) = 0 unfolding id Let-def using i
by (simp split: if-splits)
qed
also have ([[i = 0 ..< (n — 1). coeff-int (M $$ (i, p i)) 0)
=(li=0.<(n—-1). LSS (i, p1))
proof (rule prod.cong[OF refl])
fix ¢
assume i € {0 .< n — 1}
with p have i: i # n — 1 and ii: i < n p i < n by (auto simp: n-def)
note id = subresultant-indez-mat|OF this(2—3)[unfolded n-def), folded M-def
n-def]
note id’ = L-def[unfolded subresultant’-mat-def Let-def, folded n-def] in-
dex-mat[OF ii]
show coeff-int (M $$ (i, p 7)) 0 = L $$ (i, p ©)
unfolding id id’ split using ¢ proof (simp add: if-splits Let-def)
qed
qed
also have coeff-int (M $$ (n — 1, p (n — 1))) | =
(if p (n — 1) < degree G — J then
coeff-int (monom 1 (degree G — J — 1 —p(n — 1)) = F) 1
else coeff-int (monom 1 (degree F — J — 1 — (p (n — 1) — (degree G —
)+ G) 1)
using subresultant-index-mat[OF nllunfolded n-def], folded M-def n-def,
unfolded idn if-True Let-def]
by simp
also have ... = (if p (n — 1) < degree G — J
then coeff-int F' (int I — int (degree G — J — 1 — p (n — 1)))
else coeff-int G (int | — int (degree F — J — 1 — (p(n — 1) —
I)))
unfolding coeff-int-monom-mult by simp
also have ... = (if p (n — 1) < degree G — J
then coeff-int F (int | — int (degree G — J — 1) + p (n — 1))
else coeff-int G (int | — int (degree F — J — 1) + (p (n — 1) — (degree G —
7))
proof (cases p (n — 1) < degree G — J)
case True
hence int (degree G — J — 1 — p (n — 1)) = int (degree G — J — 1) — p
(n — 1) by simp
hence id: int | — int (degree G — J — 1 — p (n — 1)) = int | — int (degree
G—-—J—1)+p(n— 1) by simp
show ?thesis using True unfolding id by simp
next
case Fulse

(degree G —

22

from n1 False have degree ' — J — 1 > p (n — 1) — (degree G — J)
unfolding n-def by linarith
hence int (degree F — J — 1 — (p (n — 1) — (degree G — J))) = int (degree
F—J—-1)—(p(n—1)— (degree G — J))
by linarith
hence id: int | — int (degree F — J — 1 — (p (n — 1) — (degree G — J))) =
int | — int (degree F — J — 1) + (p (n — 1) — (degree G — J)) by simp
show ?thesis unfolding id using Fulse by simp
qed
alsohave ... =L$$(n—1,p(n— 1))
unfolding L-def subresultant’-mat-def Let-def n-def[symmetric] using nl by
simp

also have ([[i=0..<n — 1. L33 (i,p7) *...=(][¢=0..<n. L $$ (¢, p

)
unfolding id by simp
finally have coeff-int ([[7 = 0..<n. M $$ (i, p4)) (int 1) = ([[i = 0..<n. L
$$ (4, p 7)) .
} note x = this
have coeff-int (subresultant J F' G) | =
(3" pe{p. p permutes {0..<n}}. signof p x coeff-int ([[i = 0..<n. M 3% (i, p
i) 1)
unfolding subresultant-def det-def subresultant-mat-dim idn if- True n-def[symmetric]
M-def
coeff-int-sum coeff-int-signof-mult by simp

also have ... = (3_ pe{p. p permutes {0..<n}}. signof p x ([[i = 0..<n. L $$
(4, p 1))
by (rule sum.cong|OF refl], insert %, simp)
also have ... = det L
proof —

have id: dim-row (subresultant’-mat JI F G) = n
dim-col (subresultant’-mat J I F G) = n unfolding subresultant’-mat-def
Let-def n-def
by auto
show ?thesis unfolding det-def L-def id by simp
qed
finally show ?thesis unfolding L-def coeff-int-def using Fualse by auto
qed

lemma subresultant’-zero-ge: assumes (degree f — J) + (degree ¢ — J) # 0 and
k > degree f + (degree g — J)
shows det (subresultant’-mat J k f g) = 0
proof —
obtain dg where dg: degree ¢ — J = dg by simp
obtain df where df: degree f — J = df by simp
obtain ddf where ddf: degree f = ddf by simp
note x = assms(2)[unfolded ddf dg] assms(1)
define M where M = (A i j. if j < dg
then coeff-int f (degree f — int i + int j)
else coeff-int g (degree g — int i + int (j — dg)))

23

let M = subresultant’-mat J k f g
have M: det M = det (mat (df + dg) (df + dg)

(A, 7).
ifi =df + dg — 1 then
ifj < dg

then coeff-int f (int k — int (dg — 1) + int j)
else coeff-int g (int k — int (df — 1) + int (j — dg))
else M ij)) (is - = det ?N)
unfolding subresultant’-mat-def Let-def M-def
by (rule arg-conglof - - det], rule eq-matl, auto simp: df dg)
also have ?N = mat (df + dg) (df + dg)

(A (i, 9)-
ifi =df + dg — 1 then 0
else M i j)

by (rule cong-mat|OF refl refl], unfold split, rule if-cong|OF refl - refl],
auto simp add: coeff-int-def df dg ddf intro!: coeff-eq-0, insert (1),
unfold ddf[symmetric] dg[symmetric] df [symmetric], linarith+)
also have ... = mat, (df + dg) (df + dg) (\i. if i = df + dg — 1 then 0, (df
+ dg) else
vec (df + dg) (X j. M ij))
by (rule eg-matl, auto)
also have det ... = 0
by (rule det-row-0, insert *, auto simp: df [symmetric| dg[symmetric] ddf[symmetric])
finally show ?thesis .
qed

lemma subresultant’-zero-lt: assumes
J: J < degree fJ < degree g J < k
and k: k < degree f + (degree g — J)
shows det (subresultant’-mat Jk fg) = 0
proof —
obtain dg where dg: dg = degree ¢ — J by simp
obtain df where df: df = degree f — J by simp
note x = assms|folded df dg]
define M where M = (A ij. if j < dg
then coeff-int f (degree f — int i + int j)
else coeff-int g (degree g — int i + int (j — dg)))
define N where N = (\ j. if j < dg
then coeff-int f (int k — int (dg — 1) + int j)
else coeff-int g (int k — int (df — 1) + int (j — dg)))
let ?M = subresultant’-mat J k f g
have M: ?M = mat (df + dg) (df + dg)

(A, 5)-
ifi=df + dg — 1 then N j
else M i j)

unfolding subresultant’-mat-def Let-def

by (rule eg-matl, auto simp: df dg M-def N-def)
also have ... = mat (df + dg) (df + dg)

(A4,).

24

ifi=df + dg — I then Nj
else if i = degree f + dg — 1 — k then N j else M i j) (is - = ?N)
unfolding N-def
by (rule cong-mat[OF refl refl], unfold split, rule if-cong|OF refl refl], unfold
M-def N-def,
insert J k, auto simp: df dg intro!: arg-cong|of - - coeff-int -])
finally have id: ?M = ?N .
have deg: degree f + dg — 1 — k < df + dg df + dg — 1 < df + dyg
using k J unfolding df dg by auto
have id: row ?M (degree f + dg — 1 — k) = row ?M (df + dg — 1)
unfolding arg-cong[OF id, of row]
by (rule eg-vecl, insert deg, auto)
show ?thesis
by (rule det-identical-rows[OF - - - - id, of df + dg|, insert deg assms,
auto simp: subresultant’-mat-def Let-def df dg)
qed

lemma subresultant’-mat-sylvester-mat: transpose-mat (subresultant’-mat 0 0 f g)
= sylvester-mat f g
proof —
obtain dg where dg: degree g = dg by simp
obtain df where df: degree f = df by simp
let M = transpose-mat (subresultant’-mat 0 0 f g)
let ?n = degree f + degree g
have dim: dim-row ?M = ?n dim-col M = ?n by (auto simp: subresultant’-mat-def
Let-def)
show ?thesis
proof (rule eq-matl, unfold sylvester-mat-dim dim df dg, goal-cases)
case ij: (11j)
have ?M $$ (i.j) = (if i < dg
then if j = df + dg — 1
then coeff-int f (— int (dg — 1) + int 7)
else coeff-int f (int df — int j + int ©)
else if j = df + dg — 1
then coeff-int g (— int (df — 1) + int (¢ — dg))
else coeff-int g (int dg — int j + int (i — dg)))
using ¢j unfolding subresultant’-mat-def Let-def by (simp add: if-splits df
dg)
also have ... = (if i < dg
then coeff-int f (int df — int j + int ©)
else coeff-int g (int dg — int j + int (i — dg)))
proof —
have cong: (b = z = 2) = (- b = y = 2) = (if b then coeff-int f = else
coeff-int f y) = coeff-int f z
for b x y z and f :: 'a poly by auto
show ?thesis
by (rule if-cong|OF refl cong congl, insert ij, auto)
qed
also have ... = sylvester-mat f g $$ (4.,5)

25

proof —
have x: i < j=— j — i < df = nat (intdf —intj+ inti)=df — (j —
i) for j i df
by simp
show ?thesis unfolding sylvester-index-mat[OF ij[folded df dg]] df dg
proof (rule if-cong[OF refl])
assume i: 1 < dg
have int df — intj + int i < 0 — = j — i < df by auto
thus coeff-int f (int df — int j + int i) = (if i < j AN j — i < df then coeff f
(df + i —j) else 0)
using 7 ij by (simp add: coeff-int-def *, intro impl coeff-eq-0|of f, unfolded
df], linarith)
next
assume i: 7 i < dg
hence xx: i — dg < j = dg — (j + dg — i) = © — j using ¢ by linarith
have int dg — int j + int (i — dg) < 0 — — j < i by auto
thus coeff-int g (int dg — int j + int (i — dg)) = (if i — dg < jANj<i
then coeff g (i — j) else 0)
using ij 7
by (simp add: coeff-int-def * xx coeff-eq-0]of g, unfolded dg] nat-diff-distrib’)
qed
qed
finally show ?case .
qged auto
qed

lemma coeff-subresultant-0-0-resultant: coeff (subresultant 0 f g) 0 = resultant f g
proof —
let ?M = transpose-mat (subresultant’-mat 0 0 f g)
have det (subresultant’-mat 0 0 f g) = det ?M
by (subst det-transpose, auto simp: subresultant’-mat-def Let-def)
also have ?M = sylvester-mat f g
by (rule subresultant’-mat-sylvester-mat)
finally show ?thesis by (simp add: coeff-subresultant resultant-def)
qed

lemma subresultant-zero-ge: assumes k > degree f + (degree g — J)
and (degree f — J) + (degree g — J) # 0
shows coeff (subresultant J fg) k = 0
unfolding coeff-subresultant
by (subst subresultant’-zero-ge[OF assms(2,1)], simp)

lemma subresultant-zero-it: assumes k < degree f + (degree g — J)
and J < degree f J < degree g J < k
shows coeff (subresultant J fg) k = 0
unfolding coeff-subresultant
by (subst subresultant’-zero-lt[OF assms(2,3,4,1)], simp)

lemma subresultant-resultant: subresultant 0 f g = [: resultant f g]

26

proof (cases degree f + degree g = 0)
case True
thus ?thesis unfolding subresultant-def subresultant-mat-def resultant-def Let-def
sylvester-mat-def sylvester-mat-sub-def
by simp
next
case 0: Fualse
show ?thesis
proof (rule poly-eql)
fix k
show coeff (subresultant 0 f g) k = coeff [:resultant f g:] k
proof (cases k = 0)
case True
thus ?thesis using coeff-subresultant-0-0-resultant|of f g] by auto
next
case Fulse
hence 0 < k A k < degree f + degree g V k > degree f + degree g by auto
thus %thesis using subresultant-zero-gelof f g 0 k] 0
subresultant-zero-lt[of k f g 0] 0 False by (cases k, auto)
qed
qged
qged

lemma (in inj-comm-ring-hom) subresultant-hom:
map-poly hom (subresultant J f g) = subresultant J (map-poly hom f) (map-poly
hom g)
proof —
note d = subresultant-mat-def Let-def
interpret p: map-poly-inj-comm-ring-hom hom..
show ?thesis unfolding subresultant-def unfolding p.hom-det[symmetric)
proof (rule arg-cong[of - - det])
show p.mat-hom (subresultant-mat J f g) =
subresultant-mat J (map-poly hom f) (map-poly hom g)
proof (rule eq-matl, goal-cases)
case (11 j)
hence ij: i < degree f — J + (degree g — J) j < degree f — J + (degree g —
J)
unfolding d degree-map-poly by auto
show ?case
by (auto simp add: coeff-int-def d map-mat-def index-mat(1)[OF ij] hom-distribs)
qged (auto simp: d)
qed
qed

We now derive properties of the resultant via the connection to subre-
sultants.

lemma resultant-smult-left: assumes (c :: ‘a :: idom) # 0
shows resultant (smult ¢ f) g = ¢ ~ degree g * resultant f g
unfolding coeff-subresultant-0-0-resultant[symmetric] subresultant-smult-left{ OF

27

assms| coeff-smult
by simp

lemma resultant-smult-right: assumes (¢ :: 'a :: idom) # 0

shows resultant f (smult ¢ g) = ¢ ~ degree f * resultant f g

unfolding coeff-subresultant-0-0-resultant[symmetric] subresultant-smult-right| OF
assms] coeff-smult

by simp

lemma resultant-swap: resultant f g = (—1) (degree f * degree g) % (resultant g f)
unfolding coeff-subresultant-0-0-resultant[symmetric]
unfolding arg-cong[OF subresultant-swaplof 0 f g], of A x. coeff x 0] coeff-smult
by simp

The following equations are taken from Brown-Traub “On Euclid’s Al-
gorithm and the Theory of Subresultant” (BT)

lemma fixes F B G H :: 'a :: idom poly and J :: nat
defines df: df = degree F
and dg: dg = degree G
and dh: dh = degree H
and db: db = degree B
defines
nn=(df —J)+ (dg — J)
and f: f = coeff-int F
and b: b = coeff-int B
and g: g = coeff-int G
and h: h = coeff-int H
assumes FGH: F + Bx G = H
and dfg: df > dg
and choice: dg > dhV H=0ANF #0NG#0
shows BT-eq-18: subresultant J F G = smult ((—1) ((df — J) * (dg — J))) (det
(mat n n
(A (2.)-
ifj<df —J
then if i = n — 1 then monom 1 ((df — J) — 1 —j) x G
else [:g (int dg — int i + int j):]
else if i =n — 1 then monom 1 ((dg— J) — 1 — (G — (df — J)))« H
else [th (int df — int i + int (j — (df — J))):]))
(is - = smult ?m1 ?right)
and BT-eq-19: dh < J = J < dg = subresultant J F G = smult (
(1) (df — J) = (dg — J)) * lead-coeff G ~ (df — J) * coeff HJ ~(dg — J
— 1) H
(is-= -= -=smult (- ?G « ?H) H)
and BT-lemma-1-12: J < dh = subresultant J F G = smult (
(=) (df — J) = (dg — J)) * lead-coeff G ~ (df — dh)) (subresultant J G H)
and BT-lemma-1-13": J = dh = dg > dh V H # 0 = subresultant dh F G
= smult (
(—=1)7(df — dh) = (dg — dh)) * lead-coeff G ~ (df — dh) * lead-coeff H ~ (dg
—dh— 1) H

28

and BT-lemma-1-14: dh < J = J < dg — 1 = subresultant J F G = 0
and BT-lemma-1-15" J = dg — 1 = dg > dh V H # 0 = subresultant (dg
— 1) F G = smult (
(=1)7df — dg + 1) * lead-coeff G ~ (df — dg + 1)) H
proof —
define dfj where dfj = df — J
define dgj where dgj = dg — J
note d = df dg dh db
have F0: F # 0 using dfg choice df by auto
have G0: G # 0 using choice dg by auto
have dgh: dg > dh using choice unfolding dh by auto
have B0: B # 0 using FGH dfg dgh choice FO G0 unfolding d by auto
have dfh: df > dh using dfg dgh by auto
have df = degree (B x Q)
proof (cases H = 0)
case Fulse
with choice dfg have dfh: df > dh by auto
show ?thesis using dfh[folded arg-cong|OF FGH, of degree, folded dh]] choice
unfolding df by (metis «degree (F + B x G) < df) degree-add-eg-left de-
gree-add-eq-right df nat-neq-iff)
next
case True
have F = — B x G using arg-cong|OF FGH [unfolded True], of A z. x — B *
G| by auto
thus %thesis using F0 G0 B0 unfolding df by simp
qged
hence dfbg: df = db + dg using degree-mult-eq|OF B0 GO] by (simp add: d)
hence dbfg: db = df — dg by simp
let 2dfj = df — J
let ?dgj = dg — J
have norm: ?dgj + ?dfj = ?dfj + ?dgj by simp
let 2bij = X ij. b (db — int i + int (j — dff))
let M = mat nn (X (i,j). if i = j then 1 else if j < dfj then 0 else if i < j
then [: ?bij i j :] else 0)
let ?GF = X\ ij.
ifj < dfj
then if i = n — 1 then monom 1 (dfj — 1 — j) x G
else [:g (int dg — int i + int j):]
else if i = n — 1 then monom 1 (dgj — 1 — (j — dfj)) = F
else [:f (int df — int i + int (j — dff)):]
let ?G-F = mat nn (A (4,j). ?GF i j)
let YGH = X\ ij.
ifj < dfj
then if i = n — 1 then monom 1 (dfj — 1 — j) * G
else [:g (int dg — int © + int j):]
else if i = n — 1 then monom 1 (dgj — 1 — (j — dfj)) « H
else [:h (int df — int ¢ + int (§ — dfj)):]
let ?G-H = mat n n (A (i,j). ?GH i j)
have hfg: h i = fi + coeff-int (B x G) i for i

29

unfolding FGH|[symmetric] f g h unfolding coeff-int-def by simp
have dM1: det ?M = 1
by (subst det-upper-triangular, (auto)[2], subst prod-list-diag-prod, auto)
have subresultant J F G = smult m1 (subresultant J G F)
unfolding subresultant-swaplof - F] d by simp
also have subresultant J G F = det ?G-F
unfolding subresultant-def n norm subresultant-mat-def g f Let-def d[symmetric]
dfj-def dgj-def by simp
also have ... = det (?G-F * ?M)
by (subst det-mult[of - n], unfold dM1, auto)
also have ?G-F x ¢M = ?G-H
proof (rule eq-matl, unfold dim-col-mat dim-row-mat)
fix ij
assume i: 1 < nand j j<n
have (?G-F x ?M) $$ (i,j) = row (?G-F) i - col ?M j
using 7 j by simp

also have ... = ?GH i j
proof (cases j < dfj)
case True

have id: col ?M j = unit-vec n j
by (rule eq-vecl, insert True i j, auto)
show ?thesis unfolding id using True i j by simp
next

case Fualse

define d where d = j — dfj

from Fulse have jd: j = d + dfj unfolding d-def by auto

hence idj: {0 ..< j} = {0 ..< dfj} U {dfj ..< dfj + d} by auto

let ?H = (if i = n — 1 then monom 1 (dgj — Suc d) = H else [:h (int df —
int ¢ + int d):])

have idr: ?GH i j = ?H unfolding d-def using jd by auto

let 2bi = X 4. b (db — int i + int d)

let #m = X i. if i = j then 1 else if i < j then [:?bij i j:] else O

let P =X k. (GF ik« ?mk)

let 2Q =Xk ?GF ik [2bik]

let /G =Xk if i =n — 1 then monom 1 (dfj — 1 — k) * G else [:g (int dg
— int i + int k)]

let Gb = X k. ?G k « [:2bi k]

let 2off = — (int db — int dfj + 1 + int d)

have off0: ?off > 0 using Fulse dfg j unfolding dfj-def d-def dbfg n by simp

from nat-0-le[OF this)

obtain off where off: int off = ?off by blast

have int off < int dfj unfolding off by auto

hence off < dfj by simp

hence split1: {0 ..< dfj} = {0 ..< off} U {off ..< dfj} by auto

have int off + Suc db < dfj unfolding off by auto

hence split2: {off ..< dfji} = {off .. off + db} U {off + Suc db ..< dfj} by
auto

let %g-b = Ak. (if i = n — 1 then monom 1 k x G else [:g (int dg — int i +
int (dfi — Suc k)):]) *

30

[:b (k — int off):]
let %gb = Ak. (if i = n — 1 then monom 1 (k + off) = G else [:g (int dg —
int ¢ + int (dfi — Suc k — off)):]) *
[:coeff B k:
let F = X k. if i = n — I then monom 1 (dgj — 1 — (k — dfj)) = F
else [:f (int df — int i + int (k — dfj)):]
let 2Fb = X k. ?F k * [:9bi k]
let ?Pj = if i = n — 1 then monom 1 (dgj — Suc d) = F else [:f (int df —
int { + int d):]
from Fulse have id: col M j = vec n ?m
using j i by (intro eq-vecl, auto)
have row ?G-F i - col ?M j = sum ?P {0 ..< n}
using i j unfolding id by (simp add: scalar-prod-def)
also have {0 ..< n} = {0 ..< j} U {j} U {Suc j ..< n} using j by auto
also have sum ?P ... = sum ?P {0 .< j} + P j + sum ?P {Sucj ..< n}
by (simp add: sum.union-disjoint)
also have sum ?P {Suc j ..< n} = 0 by (rule sum.neutral, auto)
also have ?P j = ?Pj
unfolding d-def using jd by simp
also have sum 7P {0 ..< j} = sum ?Q {0 ..< j}
by (rule sum.cong|OF refl], unfold d-def, insert jd, auto)
also have sum ?2Q {0 ..< j} = sum 2Q {0 ..< dfi} + sum ?2Q {dfj ..< dfji+d}
unfolding idj
by (simp add: sum.union-disjoint)
also have sum ?Q {0 ..< dfj} = sum ?Gb {0 ..< dfj}
by (rule sum.cong, auto)
also have sum ?Q {dfj ..< dfj+d} = sum ?Fb {dfj ..< dfj+d}

by (rule sum.cong, auto)

also have ... =0
proof (rule sum.neutral, intro balll)
fix k

assume k: k € {dfj ..< dfj+d}
hence k: db + d < k using k j False unfolding n db[symmetric] dfbg dfj-def
d-def by auto
let %k = (int db — int k + int d)
have %k < 0 using k by auto
hence b %k = 0 unfolding b by (intro coeff-int-eq-0, auto)
thus 7Fb k = 0 by simp
qed
also have sum ?Gb {0 ..< dfj} = sum ?¢g-b {0 ..< dfj}
proof (rule sum.reindez-conglof \ k. dfj — Suc k], (auto simp: inj-on-def
off)[2], goal-cases)
case (1k)
hence k = dfj — (Suc (dfj — Suc k)) and (dfj — Suc k) € {0..<dfi} by
auto
thus ?case by blast
next
case (2 k)
hence [simp]: dfj — Suc (dfj — Suc k) =k

31

int db — int (dfj — Suc k) + int d = int k — off by (auto simp: off)
show ?case by auto
qed
also have ... = sum %¢-b {0 ..< off} + sum ?g-b {off ..< dfj} unfolding
split1
by (simp add: sum.union-disjoint)
also have sum ?¢g-b {0 ..< off} = 0
by (rule sum.neutral, intro balll, auto simp: b coeff-int-def)
also have sum ?g-b {off ..< dfj} = sum ?2¢g-b {off .. off + db} + sum ?¢-b
{off + Suc db ..< dfj}
unfolding split2 by (rule sum.union-disjoint, auto)
also have sum %g-b {off + Suc db ..< dfj} = 0
proof (rule sum.neutral, intro balll, goal-cases)
case (1 k)
hence b (int k — int off) = 0 unfolding b db
by (intro coeff-int-eq-0, auto)
thus ?case by simp
qed
also have sum ?g-b {off .. off + db} = sum ?¢b {0 .. db}
using sum.atLeastAtMost-shift-bounds [of ?g-b 0 off db]
by (auto intro: sum.cong simp add: b ac-simps)
finally have id: row ?G-F i - col M j — ?H = ?Pj + sum ?gb {0 .. db} —
?H
(is - = 7E)
by (simp add: ac-simps)
define F where F = ?F
let ?b = coeff B
have Bsum: (3" k = 0..db. monom (?b k) k) = B unfolding db
using atMost-atLeast0 poly-as-sum-of-monoms by auto
have £ = 0
proof (casesi=mn — 1)
case i-n: False
hence id: (i = n — 1) = False by simp
with ¢ have i: i < n — I by auto
let 2ii = int df — int i + int d
have ?thesis = ([:f ?ii:] +
>k = 0..db.
[:g (int dg — int i + int (dfj — Suc k — off)):] = [:2b k:]) —
[:h %ii:] = 0) (is - = (?e = 0)) unfolding E-def id if-False by simp

also have ?%e = [: f %ii +

(X k = 0..db.
g (int dg — int i + int (dfj — Suc k — off)) = ?b k) —
h 2ii:] (is - = [: 2e:])

proof (rule poly-eql, goal-cases)

case (1 n)

show ?case unfolding coeff-diff coeff-add coeff-sum coeff-const
by (cases n, auto simp: ac-simps)
qged
also have [: ?e ;] = 0 +— %e = 0 by simp

32

also have %e = (3" k = 0..db. g (int dg — int i + int (dfj — Suc k — off))
x 70 k)

— coeff-int (B *x G) ?%ii
unfolding hfg by simp
also have (B x G) = (3_k = 0..db. monom (?b k) k) * G unfolding Bsum
by simp
also have ... = (> k = 0..db. monom (?b k) k = G) by (rule sum-distrib-right)
also have coeff-int ... 2ii = (3 k= 0..db. g (%ii — k) x 2b k)
unfolding coeff-int-sum coeff-int-monom-mult g by (simp add: ac-simps)

also have ... = (D k = 0..db. g (int dg — int i + int (dfj — Suc k — off))
x 20 k)
proof (rule sum.cong[OF refl], goal-cases)
case (1 k)

hence k£ < db by simp
hence id: int dg — int i + int (dfj — Suc k — off) = %ii — k
using False i j off dfg
unfolding dbfg d-def dfj-def n by linarith
show ?case unfolding id ..
qed
finally show ?thesis by simp
next
case True
let 9jj = dgj — Suc d
have zero: int off — (dgj — Suc d) = 0 using dfg False j unfolding off
dbfg dfj-def d-def dgj-def n
by linarith
from True have E = monom 1 ?jj « F + (O_k = 0.. db.
monom 1 (k + off) * G x [: 2b k :]) — monom 1 2jj x H
(is - = ?A + Zsum — ?mon) unfolding id E-def by simp
also have ?mon = monom 1 2jj + F + monom 1 %jj x (B * G)
unfolding FGH [symmetric] by (simp add: ring-distribs)
also have 74 + Zsum — ... = %sum — (monom 1 ?jj x G) * B (is - = - —
?GB x B) by simp
also have ?sum = (> k = 0..db.
(monom 1 ?jj x G) * (monom 1 (k + off — %jj) = [: ?b k :]))
proof (rule sum.cong[OF refl], goal-cases)
case (1k)
let 2one =1 ::'a
have int off > int ?jj using j False i True
unfolding off d-def dfj-def dgj-def dfbg n by linarith
hence k + off = 2jj + (k + off — ?jj) by linarith
hence id: monom ?one (k + off) = monom (1 = 1) (2 + (k + off —
2jj)) by simp
show ?case unfolding id[folded mult-monom| by (simp add: ac-simps)

qed
also have ... = (monom 1 2jj * G) * 3.k = 0..db. monom 1 (k + off —
2ij) * [:2b k:])
(is - = - x Zsum)

unfolding sum-distrib-left ..

33

also have ... — (monom 1 2jj * G) x B = (monom 1 2jj x G) x (Zsum —
B) by (simp add: ring-distribs)
also have Zsum = (> k = 0..db. monom 1k x [:9b k:])
by (rule sum.cong|OF refl], insert zero, auto)

also have ... = (3 k = 0..db. monom (?b k) k)
by (rule sum.cong[OF refl], rule poly-eql, auto)
also have ... = B unfolding Bsum ..
finally show ?thesis by simp
qed

from id[folded E-def, unfolded this]
show ?thesis using False unfolding d-def by simp

qed

also have ... = ?G-H $$ (4,j) using ¢ j by simp

finally show (?G-F = ?M) $$ (i,j) = ?G-H $$ (i.j) .
qed auto

finally show eg-18: subresultant J F G = smult ?m1 (det ?G-H) unfolding
dfj-def dgj-def .
{
fix ij
assume 7j: { < jand j: j < n
with dgh have int dg — int ¢ + int j > int dg by auto
hence g (int dg — int i + int j) = 0 unfolding g dg by (intro coeff-int-eq-0,
auto)
} note g0 = this
{
assume *: dh < J J < dg
have n-dfj: n > dfj using * unfolding n dfj-def by auto
note eq-18
also have det ?G-H = prod-list (diag-mat ?G-H)
proof (rule det-lower-triangular|of n])
fix ij
assume 4j: i < jand j: j < n
from ¢j j have if-e: i = n — 1 <— False by auto
have ?G-H $$ (i,j) = ?GH i j using ij j by auto

also have ... = 0
proof (cases j < dfj)

case True

with True g0[OF ij j] show ?thesis unfolding if-e by simp
next

case Fulse

have h (int df — int i + int (j — dfj)) = 0 unfolding h
by (rule coeff-int-eq-0, insert False * ij j dfg, unfold dfj-def dh[symmetric],
auto)
with False show ?thesis unfolding if-e by auto
qed
finally show ?G-H $$ (i,j) = 0 .
qed auto
also have ... = ([[i = 0..<n. ¢GH i 7)
by (subst prod-list-diag-prod, simp)

34

also have {0 ..< n} = {0 ..< dfj} U {dfj ..< n} unfolding n dfj-def by auto
also have prod (A i. ?GH i) ... = prod (A i. GH i 1) {0 ..< dfj} % prod (A
i. ?GH i 1) {dfj ..< n}
by (simp add: prod.union-disjoint)
also have prod (A i. ?GH i 1) {0 ..< dfj} = prod (X i. [: lead-coeff G :]) {0 ..<
dfj}
proof —
show ?thesis
by (rule prod.cong|OF refl], insert n-dfj, auto simp: g coeff-int-def dg)
qed
also have ... = [: (lead-coeff G)7dfj :] by (simp add: poly-const-pow)
also have {dfj ..< n} = {dfj ..< n—1} U {n — 1} using n-dfj by auto
also have prod (A i. ?GH i i) ... = prod (A i. ?GH i i) {dfj .< n—1} * ?GH
(n— 1) (n— 1)
by (simp add: prod.union-disjoint)
also have ?GH (n — 1) (n — 1) = H
proof —
have dgj — 1 — (n — 1 — dfj) = 0 using n-dfj unfolding dgj-def dfj-def n
by auto
with n-dfj show ?thesis by auto
qed
also have prod (A i. ?GH i i) {dfj ..< n—1} = prod (X i. [:h (int df — dfj):])
{dfj .< n—1}
by (rule prod.cong|OF refl], auto introl: arg-conglof - - h])
also have ... = [: h (int df — dfj) ~(n — 1 — dfj) {]
unfolding prod-constant by (simp add: poly-const-pow)
also have n — 1 — dfj = dg — J — 1 unfolding n dfj-def by simp
also have int df — dfj = J using * dfg unfolding dfj-def by auto
also have h J = coeff H J unfolding h coeff-int-def by simp
finally show subresultant J F G = smult (?m1 = ?G x ?H) H by (simp add:
dfj-def ac-simps)
} note eq-19 = this
{
assume J: J < dh
define dhj where dhj = dh — J
have n-add: n = (df — dh) + (dhj + dgj) unfolding dhj-def dgj-def n using
J dfg dgh by auto
let ?split = split-block ?G-H (df — dh) (df — dh)
have dim: dim-row ?G-H = (df — dh) + (dhj + dgj)
dim-col ?G-H = (df — dh) + (dhj + dgj)
unfolding n-add by auto
obtain UL UR LL LR where spl: ?split = (UL,UR,LL,LR) by (cases ?split,
auto)
note spl’ = spllunfolded split-block-def Let-def, simplified)
let LR = subresultant-mat J G H
have LR = mat (dgj + dhj) (dgj + dhj)
(A (4,§). ?GH (i + (df — dh)) (j + (df — dh)))
using spl’ by (auto simp: n-add)
also have ... = ?LR

35

unfolding subresultant-mat-def Let-def dhj-def dgj-def d[symmetric]
proof (rule eg-matl, unfold dim-row-mat dim-col-mat index-mat split dfj-def,
goal-cases)
case (11ij)
hence id1: (j + (df — dh) < df — J) = (j < dh — J) using dgh dfg J by
auto
have id2: (i + (df —dh)=n—1)=(i=dg—J+ (dh — J) — 1)
unfolding n-add dhj-def dgj-def using dgh dfg J by auto
have id3: (df — J — 1 — (j + (df — dh))) = (dh — J — 1 —)
and id4: (int dg — int (i + (df — dh)) + int (j + (df — dh))) = (int dg —
int i + int j)
and id5: (dg—J — 1 — G+ (df —dh)—(df — J))=(dg—J —1—-(
— (dh - J))
and id6: (int df — int (i + (df — dh)) + int (j + (df — dh) — (df — J)))
= (int dh — int i + int (j — (dh — J)))
using dgh dfg J by auto
show ?case unfolding g[symmetric] h[symmetric] id3 id4 id5 id6
by (rule if-cong[OF id1 if-cong[OF id2 refl refl] if-cong[OF id2 refl refl]])
qed auto
finally have LR = ?LR .
note spl = splunfolded this
let YUR = 0,, (df — dh) (dgj + dhj)
have UR = mat (df — dh) (dgj + dhj)
(\ (i), 7GH i (j + (df — dh))
using spl’ by (auto simp: n-add)
also have ... = YUR
proof (rule eg-matl, unfold dim-row-mat dim-col-mat index-mat split dfj-def
indez-zero-mat, goal-cases)
case (1 1)
hence ini: i # n — 1 using J unfolding dgj-def dhj-def n-add by auto
{
assume j + (df — dh) < df — J
hence dg < int dg — int i + int (j + (df — dh)) using ! J unfolding
dgj-def dhj-def by auto
hence g ... = 0 unfolding dg g by (intro coeff-int-eq-0, auto)
} note g = this
{
assume - (j + (df — dh) < df — J)
hence dh < int df — int i + int (j + (df — dh) — (df — J)) using 1 J
unfolding dgj-def dhj-def by auto
hence % ... = 0 unfolding dh h by (intro coeff-int-eq-0, auto)
} note h = this
show ?case using inl g h by auto
qed auto
finally have UR = ?UR .
note spl = spl[unfolded this
let G = X (i,j). if i = j then [:lead-coeff G:] else if i < j then 0 else ?GH i j
let UL = mat (df — dh) (df — dh) ?G
have UL = mat (df — dh) (df — dh) (X (4,j). ?GH i j)

36

using spl’ by (auto simp: n-add)

also have ... = UL

proof (rule eq-matl, unfold dim-row-mat dim-col-mat indez-mat split, goal-cases)
case (11ij)
{

assume i = j
hence int dg — int i + int j = dg using 1 by auto
hence g (int dg — int i + int j) = lead-coeff G
unfolding g dg coeff-int-def by simp
} note eq = this
{ . .
assume 1 < j
hence dg < int dg — int i 4+ int j using 1 by auto
hence g (int dg — int ¢ + int j) = 0
unfolding ¢ dg by (intro coeff-int-eq-0, auto)
} note It = this
from 1 have x: j < dfj i # n — 1 using J unfolding n-add dhj-def dgj-def
dfj-def by auto
hence ?GH i j = [:g (int dg — int i + int j):] by simp
also have ... = (if i = j then [: lead-coeff G :] else if i < j then 0 else ?GH 1
7)
using eq lt * by auto
finally show ?case by simp
qed auto
finally have UL = ?UL .
note spl = splunfolded this
from split-block[OF spl dim]
have GH: ?G-H = four-block-mat UL UR LL ?LR
and C: UL € carrier-mat (df — dh) (df — dh)
?UR € carrier-mat (df — dh) (dhj + dgj)
LL € carrier-mat (dhj + dgj) (df — dh)
?LR € carrier-mat (dhj + dgj) (dhj + dgj) by auto
from arg-cong[OF GH, of det]
have det YG-H = det (four-block-mat UL ?UR LL ?LR) unfolding GH [symmetric|

also have ... = det UL * det ?LR
by (rule det-four-block-mat-upper-right-zero|OF - refl], insert C, auto simp:
ac-simps)

also have det ?LR = subresultant J G H unfolding subresultant-def by simp
also have det ?UL = prod-list (diag-mat ?UL)
by (rule det-lower-triangular|of df — dh], auto)

alsohave ... = ([[i= 0..< (df — dh). [: lead-coeff G :]) unfolding prod-list-diag-prod
by simp
also have ... = [: lead-coeff G ~ (df — dh) :] by (simp add: poly-const-pow)

finally have det: det ?G-H = [:lead-coeff G ~ (df — dh):] * subresultant J G
H by auto
show subresultant J F G = smult (?m1 * lead-coeff G ~ (df — dh)) (subresultant
J G H)
unfolding eq-18 det by simp

37

e

assume J: dh < J J < dg — 1
hence dh < J J < dg by auto
from eq-19[OF this]
have subresultant J F G = smult ((— 1) ~ ((df — J) * (dg — J)) * lead-coeff
G (df —J)*xcoeff HJ “(dg—J — 1)) H
by simp
also have coeff H J = 0 by (rule coeff-eq-0, insert J, auto simp: dh)
also have ... “(dg — J — 1) = 0 using J by auto
finally show subresultant J F G = 0 by simp
}
{
assume J: J = dh and dg > dh vV H # 0
with choice have dgh: dg > dh by auto
show subresultant dh F G = smult (
(=1)7((df — dh) = (dg — dh)) * lead-coeff G ~ (df — dh) * lead-coeff H ~ (dg
—dh — 1)) H
unfolding eq-19[unfolded J, OF le-refl dgh] unfolding dh by simp
}
{
assume J: J =dg — 1 and dg > dh V H # 0
with choice have dgh: dg > dh by auto
have x: dh < dg — 1 dg — 1 < dg using dgh by auto
have #+: df — (dg — 1) =df —dg+ 1dg— (dg— 1) — 1 =04dg — (dg —
1) =1
using dfg dgh by linarith+
show subresultant (dg — 1) F G = smult (
(=1)7df — dg + 1) * lead-coeff G ~ (df — dg + 1)) H
unfolding eq-19[unfolded J, OF %] unfolding *x by simp

}

qed

lemmas BT-lemma-1-13 = BT-lemma-1-13'[OF - - - refl]
lemmas BT-lemma-1-15 = BT-lemma-1-15"[OF - - - refl]

lemma subresultant-product: fixes F :: 'a :: idom poly

assumes ' = B x G

and FG: degree F > degree G
shows subresultant J F G = (if J < degree G then 0 else

if J < degree F then smult (lead-coeff G ~ (degree F — J — 1)) G else 1)
proof (cases J < degree G)

case J: True

from assms have eq: F + (—B) * G = 0 by auto

from J have lt: degree 0 < degree G V b for b by auto

from BT-lemma-1-13[OF eq FG It lt]

have subresultant 0 F G = 0 using J by auto

with BT-lemma-1-14[OF eq FG lt, of J] have 00: J = 0 V J < degree G — 1
= subresultant J F G = 0 by auto

38

from BT-lemma-1-15[OF eq FG It It] J have 01: subresultant (degree G — 1)
F G = 0 by simp
from J have (J = 0V J < degree G — 1) V J = degree G — 1 by linarith
with 00 01 have subresultant J F G = 0 by auto
thus ?thesis using J by simp
next
case J: Fualse
hence dg: degree G — J = 0 by simp
let ?n = degree F — J
have *: (j :: nat) < 0 +— False j — 0 = j for j by auto
let ?M = mat ?n ?n
(A, j)-
if i = %n — 1 then monom 1 (%n — 1 — j) * G
else [:coeff-int G (int (degree G) — int i + int j):])
have subresultant J F G = det ?M
unfolding subresultant-def subresultant-mat-def Let-def dg * by auto
also have det M = prod-list (diag-mat ?M)
by (rule det-lower-triangular|of ?n], auto intro: coeff-int-eq-0)

also have ... = ([[i = 0..< ?n. ?M $$ (4,7)) unfolding prod-list-diag-prod by
stmp
also have ... = ([[i = 0..< ?n. if i = ?n — 1 then G else [: lead-coeff G :])
by (rule prod.cong|OF refl], auto simp: coeff-int-def)
also have ... = (if J < degree F then smult (lead-coeff G ~ (%n — 1)) G else 1)
proof (cases J < degree F)
case True

hence id: { 0 .< n} ={ 0 .< ?n— 1} U {% — 1} by auto
have (J[[i= 0..< ?n. if i = ?n — 1 then G else [: lead-coeff G :])
=((]i=0.< % — 1.ifi= %n — 1 then G else [: lead-coeff G :]) * G (is
-=9%P x Q)
unfolding id
by (subst prod.union-disjoint, auto)
also have ?P = ([[i =0 ..< %n — 1. [: lead-coeff G :])
by (rule prod.cong, auto)
also have ... = [: lead-coeff G ~(n — 1)]
by (simp add: poly-const-pow)
finally show ?thesis by auto
ged auto
finally have subresultant J F G =
(if J < degree F then smult (lead-coeff G ~ (degree F — J — 1)) G else 1) .
thus ?thesis using J by simp
qed

lemma resultant-pseudo-mod-0: assumes pseudo-mod f g = (0 :: 'a :: idom-divide
poly)

and dfg: degree f > degree g

and f: f # 0 and ¢g: g # 0

shows resultant f g = (if degree g = 0 then lead-coeff g degree f else 0)
proof —

let ?df = degree f let ?dg = degree g

39

obtain d r where pd: pseudo-divmod f g = (d,r) by force
from pd have r: r = pseudo-mod f g unfolding pseudo-mod-def by simp
with assms pd have pd: pseudo-divmod f g = (d,0) by auto
from pseudo-divmod[OF g pd] g
obtain a ¢ where prod: smult a f = g x ¢ and a: a # 0 a = lead-coeff g ~ (Suc
2df — ?2dg)
by auto
from a dfg have dfg: degree g < degree (smult a f) by auto
have g0: degree g = 0 = coeff g 0 = 0 = g =0
using leading-coeff-0-iff by fastforce
from prod have smult o f = ¢ * g by simp
from arg-cong[OF subresultant-product|OF this dfg, of 0, unfolded subresul-
tant-resultant
resultant-smult-left|OF a(1)]], of X z. coeff z 0]
show ?thesis using a g0 by (cases degree f, auto)
qed

locale primitive-remainder-sequence =
fixes F :: nat = 'a :: idom-divide poly
and n :: nat = nat
and ¢ :: nat = nat
and f :: nat = ‘a
and £ :: nat
and S :: nat = a
assumes f: A i. fi = lead-coeff (F 1)
and n: A\ i. n i = degree (F i)
and 0: A i. 6 i=ni— n (Suci)
and n12: n1 >n2
and FI12: F1 #0F2 # 0
and FO: Ni. i 240 = Fi=0+—1i>k
and 80: N i. Bi# 0
and pmod: \ i. 1> 3 = i < Suc k = smult (B i) (F i) = pseudo-mod (F
(i - 2) (F (i - 1))

begin
lemma f10: f 1 # 0 and f20: f 2 # 0 unfolding f using F12 by auto

lemma f0: i # 0 = fi=0<+—i>k
using F0[of i| unfolding f by auto

lemma n-gt: assumes 2 < i¢ < k
shows n i > n (Suc 0)
proof —
from assms have 8 < Suc i Suc i < Suc k by auto
note pmod = pmod[OF' this
from assms F'0 have F (Suc i — 1) # 0 F (Suc i) # 0 by auto
from pseudo-mod(2)[OF this(1), of F (Suc i — 2), folded pmod] this(2)
show ?thesis unfolding n using 50 by auto
qed

40

lemma n-ge: assumes 1 < 77 < k

shows n i > n (Suc 1)

using n12 n-gt|OF - assms(2)] assms(1) by (cases i = 1, auto simp: nu-
meral-2-eq-2)

lemma n-ge-trans: assumes 1 <77 < jj <k
shows ni > nj
proof —
from assms(2) have j = i + (j — i) by simp
then obtain jj where j: j = ¢ + jj by blast
from assms(3)[unfolded j] show ?thesis unfolding j
proof (induct jj)
case (Suc j)
from Suc(2) have i + j < k by simp
from Suc(1)[OF this] have IH: n (i +j) < ni.
have n (Suc (i + j)) < n (i + j)
by (rule n-ge, insert assms(1) Suc(2), auto)
with IH show ?case by auto
ged auto
qed

lemma delta-gt: assumes 2 < i i < k
shows § 7 > 0 using n-gt|OF assms] unfolding ¢ by auto

lemma k2:2 < k
by (metis le-cases linorder-not-le FO F12(2) zero-order(2))

lemma k0: k # 0 using k2 by auto

lemma ni2:3 <i—=i<k=ni#*n2
by (metis Suc-numeral ¢ delta-gt k2 le-imp-less-Suc le-less n-ge-trans not-le
one-le-numeral
semiring-norm(5) zero-less-diff)
end

locale subresultant-prs-locale = primitive-remainder-sequence F'n § f k § for
F :: nat = 'a :: idom-divide fract poly

and n :: nat = nat
and ¢ :: nat = nat
and [:: nat = ’a fract
and £ :: nat
and S :: nat = ’a fract +

fixes G1 G2 :: 'a poly

assumes F1: F 1 = map-poly to-fract G1
and F2: F 2 = map-poly to-fract G2

41

begin
definition o i = (f (¢ — 1)) (Suc (§ (i — 2)))

lemma af:i> 1= ai=0+—(i—1)>k
unfolding «a-def using f0[of i — 1] by auto

lemma «-char:
assumes 3 < i1 < k + 2

shows a i = (f (i — 1)) ~ (Suc (length (coeffs (F (i — 2)))) — length (coeffs (F
(i — 1))
proof (cases i = 3)

case True

have triv:Suc (Suc 0) = 2 by auto

have l:length (coeffs (F 2)) # 0 length (coeffs (F 1)) # 0 using F12 by auto

hence length (coeffs (F 2)) < length (coeffs (F (Suc 0))) using n12

unfolding n degree-eq-length-coeffs One-nat-def by linarith
hence Suc (length (coeffs (F' 1)) — 1 — (length (coeffs (F 2)) — 1)) =
(Suc (length (coeffs (F' 1))) — length (coeffs (F (3 — 1)))) using [by simp

thus ?thesis unfolding True a-def n 0 degree-eg-length-coeffs by (simp add:triv)
next

case Fulse

hence assms:2 < i — 21i — 2 < k using assms by auto

have i:¢ — 2 # 0i — 1 # 0 using assms by auto

hence [simp]: Suc (i — 2) = i — 1 by auto

from assms(2) FO[OF i(2)] have F (i — 1) # 0 by auto

then have length (coeffs (F (i — 1))) > 0 by (cases F (i — 1)) auto

with delta-gt[unfolded § n degree-eq-length-coeffs,OF assms]

have * : Suc (§ (i — 2)) = Suc (length (coeffs (F (i — 2)))) — (length (coeffs
(F (Suc (i — 2)))))

by (auto simp:6 n degree-eq-length-coeffs)

show ?thesis unfolding a-def * by simp

qed

definition Q :: nat = ‘a fract poly where
Q i = smult (« i) (fst (pdivmod (F (i — 2)) (F (i — 1))))

lemma beta-F-as-sum:

assumes 3 < i1 < Suc k

shows smult (5 1) (F i) = smult (i) (F (i —2))+— Qix*xF (i— 1) (is 71)
proof —

have ik:i < k + 2 using assms by auto

have f0:F (i — 1) = 0 +— False F (i — Suc 0) = 0 +— False

using FO[of i — 1] assms by auto

hence f0-b:(inverse (coeff (F (i — 1)) (degree (F' (i — 1))))) # 0 F (i — 1) #
0 by auto

have i:i — 2 # 0 Suc (i — 2) =i — 1 (k < i — 2) +— False using assms by
auto

have F (i — 2) # 0 using FO[of i — 2] assms by auto

42

let ?c = (inverse (f (i — 1)) ~ (Suc (length (coeffs (F (i — 2)))) — length (coeffs
(F (i — 1))
have inv:inverse (a i) = ?c unfolding a-char|OF assms(1) ik] power-inverse
by auto
have alpha0:a ¢ # 0 unfolding «-def f using f0 by auto
have a-inv[simp|:a i * inverse («a i) = 1
using field-class. field-inverse[OF alpha0] mult.commute by metis
with field-class.field-inverse| OF alpha0,unfolded inv)
have c-times-Q:smult ?c (Q i) = fst (pdivmod (F (i — 2)) (F (i — 1)))
unfolding Q-def by auto
have pdivmod (F (i — 2)) (F (i — 1)) = (smult ¢ (Q 1), smult ?c (smult (8 1)
(F 1))
unfolding c-times-Q
unfolding pdivmod-via-pseudo-divmod pmod|OF assms| f n c-times-Q
pseudo-mod-smult-right|OF f0-b, of F (i — 2),symmetric] fO if-False
Let-def
unfolding pseudo-mod-def by (auto split:prod.split)
from this [symmetric]
have pr: <F (i — 2) = smult ?¢ (Q i) x F (i — 1) + smult ?c (smult (B i) (F
7))
by (simp only: prod-eq-iff fst-conv snd-conv div-mult-mod-eq)
then have F (i — 2) = smult (inverse (« 7)) (Q i) x F (i — 1)
+ smult (inverse (a 1)) (smult (8 7)) (F4)) (is 9l = %ris -= %
+9)
unfolding inv.
hence eq:smult (« @) (71 — ?t) = smult (« ©) (9r — ?t) by auto
have smult (i) (F (i — 2)) — Qi * (F (i — 1)) = smult (« @) (21 — %)
unfolding smult-diff-right by auto

also have ... = smult (a) (9r — ?t) unfolding eq..
also have ... = smult (8 i) (F i) by (auto simp:mult.assoc[symmetric])
finally show ?t1 by auto

qed

lemma assumes 3 < i { < k shows
BT-lemma-2-21: j < ni= smult (o ¢ " (n (¢ — 1) — 7)) (subresultant j (F (i
—2) (F (i - 1))]
— smadt (= 1) ~((n (i = 2) —) * (n (i = 1) —) *
+o(G—1)x(B1i) " (n(i—1)—7) (subresultant j (F (i —1)(Fz
(is - = %eq-21) and
BT-lemma-2-22: smult (o ¢ ~ (0 (i — 1))) (subresultant (n i) (F (i — 2)) (F (i
1))
zsmult((—l)A((é(i—?)—i—é(z’—]))*&(z—1))*f(z—1) (6 (i —
2)+0 (1)« fi (6(i—1)—1)x(Bi) "6 (- 1)) (Fi)
(is %eg-22) and
BT-lemma-2-23: ni < j=j<n(i— 1) — 1 = subresultant j (F (i — 2))
(F(i—1)) =0
(is - = - = ?e¢-23) and
BT-lemma-2-24: smult (o) (subresultant (n (i — 1) — 1) (F (i — 2)) (F (i —
1))

43

=smult (1) @0 GE—-2)+1)xf(i—1) "0 (GE—2)+1)*814) (Fi)(is
Peq-24)
proof —
from assms have ik:i < Suc k by auto
note beta-F-as-sum = beta-F-as-sum[OF assms(1) ik, symmetric|
have s[simp]:Suc (i — 2) = i — 1 Suc (i — 1) = ¢ using assms by auto
have a0:a i # 0 using assms f0[of i — 1] unfolding «a-def f by auto
hence aOpow:\ z. a i ~x # 0 by auto
have df:degree (F (i — 1)) < degree (smult (o i) (F (i — 2)))
degree (smult (B 1) (F 1)) < degree (F (i — 1)) V b for b
using n-gelof i—2] n-gt[of i—1] assms a0 S0 unfolding n by auto
have degree-smult-eq:\ ¢ f. (c::-::{idom-divide}) # 0 = degree (smult c f) =
degree f by auto
have n-lt:n i < n (i — 1) using n-gt[of i—1] assms unfolding n by auto
from semiring-normalization-rules(30) mult.commute
have x:A\ zy q. (z % (y::/a fract)) “qg=y "¢ x x ~ q by metis
have n (i — 1) — n i > 0 using n-lt by auto
hence xx: ¢ " (n(i—1)—ni—1)xBi=014i (n(i—1)— ni
by (subst power-minus-mult) auto
have maz (n (i — 2)) (n (i — 1)) = n (i — 2) using n-ge[of i—2] assms
unfolding maz-def by auto
with diff-add-assoc[OF n-ge[of i—1],symmetric] assms
havens:n (i —2)—n(Gi—1)+(n(i—1)—ni)=n({—2)—ni
by (auto simp:nat-minus-add-maz)
{ assume j < n i
hence j:j < degree (smult (8 i) (F i)) using 50 unfolding n by auto
from BT-lemma-1-12[OF beta-F-as-sum df j]
show ?eq-21
unfolding subresultant-smult-right|OF 0] subresultant-smult-left{ OF a0
degree-smult-eq[OF «0] degree-smult-eqOF B0] n[symmetric]
flsymmetric] § s ns
using fn
by auto}
{ from BT-lemma-1-13[OF beta-F-as-sum df df(2)]
show %eq-22
unfolding subresultant-smult-left| OF 0] lead-coeff-smult smult-smult
degree-smult-eqOF 0] degree-smult-eq[OF (0] n[symmetric]
flsymmetric] § s ns
by (metis (no-types, lifting) = ** coeff-smult f mult.assoc n)}
{assumeni<jj<n(i—1)—1
hence j:degree (smult (8 7) (F i) < jj < degree (F (i — 1)) — 1
using 50 unfolding n by auto
from BT-lemma-1-14[OF beta-F-as-sum df j]
show %e¢-23 unfolding subresultant-smult-left|OF «0] smult-eq-0-iff using
alOpow by auto}
{ have xxx:n (i — 1) — (n (i — 1) — 1) = I using n-lt by auto
from BT-lemma-1-15[OF beta-F-as-sum df df(2)]
show ?Zeq-2/
unfolding subresultant-smult-left{ OF 0] x** degree-smult-eq| OF a0] n[symmetric]

44

fo
by (auto simp:mult.commute)}
qed

lemma BT-e¢-30: 3 < i=i<k+1=j<n(i—1)=
smult (JTI+[3..<i]. al ~(n (I — 1) — j)) (subresultant j (F 1) (F 2))
=smult (JJI[3.<i]. BI1 " (n(U—1)—i*xfU—-1)"6UT-2)+6(1—-

1)
x(— 1) " ((n(l—=2)—j) =x(n({—1)—7)) (subresultant j (F (i — 2))
(F (i - 1))
proof (induct i — 8 arbitrary:i)
case (Suc)
from Suc.hyps(2) Suc.prems(1—2)
have premsx = ({ — 1) — 383 <i—1i—1<k+12<i—-1—-1i—-1
- 1<k
i — 1 < k by auto
from prems(2) have inset:i — 1 € set [3..<i] by auto
have r1:removel (i — 1) [3..<i] = [3..<i—1] by (induct i,auto simp:removel-append)
from Suc.prems(1) have Suc (i — 1 — 1) =i — 1 by auto
from n-gt[OF prems(4,5),unfolded this] Suc.prems(3) have jij < n (i — 1 — 1)
by auto
have x:\ ¢ dez. smult c d = e = smult (z * ¢) d = smult z e by auto
have xx:\ ¢ d e z. smult ¢ d = e = smult ¢ (smult x d) = smult © e by (auto
stmp:mult.commute)
show ?Zcase unfolding prod-list-map-removel [OF inset(1),unfolded r1]
*[OF Suc.hyps(1)[OF prems(1—23) j]]
xx[OF BT-lemma-2-21[OF prems(2,6) Suc.prems(3)]]
by (auto simp: numeral-2-eg-2 ac-simps)
qed auto

lemma nonzero-alphaprod: assumes i < k + 1 shows ([[lI+[3..<i]. a1l " (p 1))

£ 0

unfolding prod-list-zero-iff using assms by (auto simp: «0)

lemma BT-eq-30" assumes i: § < ii<k+ 1j<n(i— 1)
shows subresultant j (F 1) (F 2)

=smult (= 1) Q- [8.<i]. (m(Il—=2)—j)x(n(l—=1)—17)
« ([TI[3..<d). (Bl/al) " (n(l—1)—34) «(J[[3.<i]. f{—-1) (0
(I1—2)+46 (U —-1)))) (subresultant j (F (i — 2)) (F (i — 1)))
(is - = smult (?mm = 2b = 2f) -)
proof —

let 20 = [[I+[3.<i].al " (n(l—1)—j)
let 2d = [[l[8.<i]. Bl " (n(I—1)—4)«xf(l—1) @ U—-2)+6(—

1)) *
(= 1) “((n(I=2)—j) = (n(—1)—7j)
let ?m =[[l+[3.<i]. (= 1) "(n(I—=2) =45 x(n(l—-1)—3j)
have a0: ?a # 0 by (rule nonzero-alphaprod, rule i)
with arg-cong[OF BT-eq-30[OF i), of smult (inverse ?a), unfolded smult-smult]
have subresultant j (F 1) (F 2) = smult (inverse ?a x 2d)

45

(subresultant j (F (i — 2)) (F (i — 1)))
by simp

also have inverse ?a x 2d = ?b * ?f x ?m unfolding prod-list-multf inverse-prod-list

map-map o-def
power-inverse[symmetric] power-mult-distrib divide-inverse-commute
by simp
also have ?m = ?mm
unfolding prod-list-minus-1-exp by simp
finally show ?thesis by (simp add: ac-simps)
qed

For defining the subresultant PRS, we mainly follow Brown’s “The Sub-
resultant PRS Algorithm” (B).

definition R j = (if j = n 2 then sdiv-poly (smult ((lead-coeff G2)7(d 1)) G2)
(lead-coeff G2) else subresultant j G1 G2)

abbreviation ff ¢ = to-fract (i :: 'a)
abbreviation ffp = map-poly ff

sublocale map-poly-hom: map-poly-inj-idom-hom to-fract..

definition o i = (> I« [3..<Suci]. (n (Il = 2)+n(i—1)+ 1)« (n({—1)+
n(i— 1)+ 1))
definition 7 i = (D I« [3..<Suci]. (n (I — 2)+ni)x (n (I — 1) + ni))

definition v i = (—1) (o i) * pow-int (f (i — 1)) (I — int (6 ({ — 1))) =
(IT1+[3..<Suc 1.
Bl/ah) -1 —n(i-1)+ 1) (fU-1)61-2)+d(-1))
%eﬁnition O i=(—1)7(7 1) * pow-int (fi) (int (6 (i — 1)) — 1) % (] I+[3..<Suc
B/ (= 1) = ni)x(f (1=)6 (L= 2)+3 (1 - 1))

lemma fundamental-theorem-eq-4: assumes i: 3 < 7 < k
shows ffp (R (n (i — 1) — 1)) = smult (y i) (F7)
proof —
have n (i — 1) < n 2 by (rule n-ge-trans, insert i, auto)
with n-gtfof i — I] ihave n (i — 1) — 1 <n 2
and lt: n (¢ — 1) — 1 < n (i — 1) by linarith+
hence R (n (i — 1) — 1) = subresultant (n (i — 1) — 1) G1 G2
unfolding R-def by auto
from arg-cong[OF this, of ffp, unfolded to-fract-hom.subresultant-hom, folded F'1
F2)
have id1: ffp (R (n (i — 1) — 1)) = subresultant (n (i — 1) — 1) (F 1) (F 2) .
note eq-24 = BT-lemma-2-2/[OF i
let %0 = (— 1) :: 'a fract
let #m1 = (6 (i — 2) + 1)
let 2dl = f (i— 1) (6 (i—2)+ 1) =B i

46

let 2cl = %0 ~ ?m1 x ?d1
let 2c0 = a1
have ?c0 # 0 using a0[of i| i by auto
with arg-cong[OF eq-24, of smult (inverse ?c0)]
have id2: subresultant (n (i — 1) — 1) (F (i = 2)) (F (i — 1)) =
smult (inverse 2¢0 x ?cl) (F 1)
by (auto intro: poly-eql)
from ¢ have 3 < ii < k + 1 by auto
note id3 = BT-eq-30'[OF this lt]
let 2f =XLf(l—-1)"0I=-2)+5(1—-1))
let 20 =X1(B81/al) " (n(l—1)—(n(i—
let 26'=X1.(B1/al) " (n(l—1)—n(i
let ‘rm=A10. (n(l—2)—(n(i—1)—1))
let 2m’ =Xl (n(I—-2)+n(i—1)+ 1) *
let ?m2 = (3 I+[3..<i]. ?m 1)
let 262 = (J]1+[3..<i]. ?b 1)
let 2f2 = ([]1+[3..<i]. 2f 1)
let 2f1 = pow-int (f (i — 1)) (1 — int (0 (¢ — 1)))
have id{: v i = %0 ~ (?ml + ?m2) * (inverse ?c0 x 2d1 = ?2b2 x ?f2)
proof —
have id: v i = (—=1) (o) * (?f1 = (J[I+<[3..<Suc i]. 2b" 1) = (] I+[3..<Suc
. 7 1)
unfolding ~-def prod-list-multf by simp
have cong: even m1 = even m2 = ¢l = ¢2 = 20 ml * c1 = 20"m2 * c2
for m1 m2 c1 c2
unfolding minus-1-power-even by auto
show ?thesis unfolding id
proof (rule cong)
from n-gt[of ¢ — 1] i have nl: n (i — 1) # 0 by linarith
{
fix [
assume 2 <[] <3
hence l: | > 21— 1 <i— 11< k using 7 by auto
from n-ge-trans[OF - 1(2)] i have n2: n (i — 1) < n (I — 1) by auto
from ni n2 haveid:n (I — 1) —(n(t —1)—1)=n({l—1)—n (i —
1) + 1 by auto
have even (n (I — 1) = (n(i — 1) — 1)) =even (n (I — 1)+ n (i — 1)
+ 1)
unfolding id using n2 by auto
note id n2 this
} note diff = this
have f0: f (i — 1) # 0 using f0[of i — 1] © by auto
have ([]l+[3..<Suc i]. 2b" 1) = (][I+[3..<Suc i]. ?b 1)
by (rule arg-cong, rule map-cong, use diff (1) in auto)
also have ... = 202 x ?b i using 7 by auto
finally have 2f1 x (J]l+[5..<Suc i]. 20’ 1) % (J][+[58..<Suc i]. ?f1) =
(202 = 2f2) * (2f1 % ?b i = ?f i) using ¢ by simp
also have 2f1 x 2b i x 2f i = (2f1 * 2f i) x B i * inverse ?c0 using nl by
(simp add: divide-inverse)

47

also have 2f1 x ?fi=f(i—1) ~(6 (i — 2) + 1)
unfolding exp-pow-int pow-int-add[OF f0, symmetric|] by simp
finally
show 2f1 = ([l«[5..<Suc i]. 20" 1) = (][1+[3..<Suc i]. 2f1)
= inverse 7c0 x 2d1 x ?b2 x ?f2 by simp
have even (o i) = even ((3_ I+[3..<i]. ?m’ l) + ?m’ {) unfolding o-def
using i by simp
also have ... = (even (3 I+[3..<i]. m’ 1) = even (?m’ i)) by simp
also have even (Y [+[3..<i]. #m’ 1) = even ?m2
proof (rule even-sum-list, goal-cases)
case (11)
hence l: | > 21 <idiand ll:] — 1 > 21— 1 < i by auto
have [2: | — 2 =1—-1 — 1 by simp
show ?case using diff (3) [OF] diff (3) [OF 1] 12
by auto
qed
also have even (?m’ i) = even ¢ml
proof —
from ¢ have id: Suc (i — 1 —1)=i¢—1i— 2=1i— 1 — 1 by auto
have even ?mi1 = even (n (i — 2) + n (i — 1) + 1) unfolding 0 id
using diff[of i — 1] i by auto

also have ... = even (¢m’ i) by auto
finally show ?thesis by simp
qed

also have (even ?m2 = even ?m1) = even (?m2 + ?m1) unfolding even-add
by simp
also have m2 + ?m1 = ?ml1 + ?m2 by simp
finally show even (o i) = even (?m1 + ?m2) .
qed
qed
show ?thesis unfolding id1 id3 id2 smult-smult idj by (simp add: ac-simps
power-add)
qed

lemma fundamental-theorem-eq-5: assumes i: 3 < ii<kni<jj<n(i—1)
— 1

shows Rj =0
proof —

from BT-lemma-2-23|OF i] have idl: subresultant j (F (i — 2)) (F (i — 1)) =
0.
have n (i — 1) < n 2 by (rule n-ge-trans, insert i, auto)
with n-gt[of i — 1] i haven (i — 1) — 1 <n 2

and It: j < n (i — 1) by linarith+
with 7 have R j = subresultant j G1 G2 unfolding R-def by auto
from arg-cong[OF this, of ffp, unfolded to-fract-hom.subresultant-hom, folded F'1
F2)

have id2: ffp (R j) = subresultant j (F 1) (F 2) .

from i have 8 < ii¢ < k + 1 by auto

48

note eq-30 = BT-eq-30[OF this lt]
let 2¢8 = [[lI+[3.<i].al " (n (I —1)—7)
let 2¢2 = [[l[58.<i]. Bl " (n(I—1)—§)xf(U—1)"@U-2)+6(—

1)) *
(1) (=2 —) n(d—1) =)
have ?¢3 # 0 by (rule nonzero-alphaprod, insert i, auto)
with arg-cong[OF eq-30, of smult (inverse ?¢3)]
have id3: subresultant j (F' 1) (F 2) = smult (inverse ?c3 x 7c2)
(subresultant j (F (i — 2)) (F (i — 1)))
by (auto intro: poly-eql)
have ffp (R j) = 0 unfolding id! id2 id3 by simp
thus ?thesis by simp
qed

lemma fundamental-theorem-eq-6: assumes 3 < i i < k shows ffp (R (ni)) =
smult (© i) (F 1)
(is ?lhs=?rhs)
proof —
from assms have i1:1 < ¢ by auto
from assms have nlt:i <k + 1 ni<n (i — 1) using n-gt[of i — 1] by auto
from assms have anz:a i ~§ (i — 1) # 0 using a0 by auto
have «:\ a fb. a # 0 = smult o f = b = f = smult (inverse (a::'a fract)) b
by auto
have #x:/\ f g zs c¢. ¢ * prod-list (map f xs) * prod-list (map g xs)
= cx ([[a+uzs. fz * (g:: - = (- = comm-monoid-mult)) x)
by (auto simp:ac-simps prod-list-multf)
have xxx:\ ¢. 8¢ 79 (i — Suc 0) * (inverse (i~ (i — Suc 0)) x ¢) = (B i
Jai) Td(i—1)x*c
by (auto simp:inverse-eq-divide power-divide)
have sxxx:int (n (i — Suc 0) — ni) — 1 =int (n (i — 1) — Suc (n 7))
using assms nlt by auto
from assms n-ge[of i—2] nlt n-ge[of {]
have nge:n (i — Suc 0) <n (i —2)ni<n(i— SucO0)ni<n(i— 1) Suc
(i—2)=i—1
by (cases i,auto simp:numeral-2-eq-2 numeral-3-eq-3)
have sk (— 1 0 'a fract) = ((n (i — Suc 0) — ni) * (n (i — Suc 0) — n i
+ (n (i = 2) — n (Suc (i — 2)))))
=(—1) "((ni+n(i—Suc0)*(ni+n(i—2))
(=1 ‘afract) TS —[3.<d]. (n (I — Suc0) —ni)x(n(l—2)—ni)
=(-1) " Kk[8.<i.- ni+n(l—S8uc0)*(ni+n(l—2)
using nge apply (intro minus-1-even-eql ,auto)
apply (intro minus-1-even-eql)
apply (intro even-sum-list)
proof(goal-cases) case (1 z)
with n-ge-trans assms
have n i < n (z — Suc 0) n (x — 2) > n i by auto
with 1 show Zcase by auto
qed

49

have ffp (R (n 7)) = subresultant (n i) (F 1) (F 2) unfolding R-def F1 F2
by (auto simp: to-fract-hom.subresultant-hom ni2[OF assms)|)
also have ... = smult
(1) "0 I[3.<i].(n(I=2)—ni)x(n(I—1)—ni)=*
(IJz<[3.<i. Bz /azx) " (n(z—1)—ni)xfea—1) " (x—-1)+
§(z— 2))) *
((Bi/aid) 6@ —1))«f(i—1) " ((i—1)+6(i—2)) =
(1) " ((6GE—2)+6G—1)x6@GE—1)xfi (0 (—1)—1)
)
(Fi)
unfolding BT-eq-30'[OF assms(1) nlt] %%
*[OF anz BT-lemma-2-22[OF assms]] smult-smult by (auto simp:ac-simps
Kok
)
also have ... = ?rhs unfolding ©-def 7-def
using prod-combine[OF assms(1)] 6 assms
by (auto simp:ac-simps exp-pow-int[symmetric] power-add sk)
finally show ?thesis.
qed

lemma fundamental-theorem-eq-7: assumes j: j < n k shows R j = 0
proof —
let 7P = pseudo-divmod (F (k — 1)) (F k)
from FO[of k] k2 have Fk: F k # 0 by auto
from pmod[of Suc k] k2 FO0[of Suc k]
have pseudo-mod (F (k — 1)) (F k) = 0 by auto
then obtain @ where ?P = (Q,0)
unfolding pseudo-mod-def by (cases ?P, auto)
from pseudo-divmod(1)[OF Fk this| Fk obtain ¢ where id: smult ¢ (F (k —
1) =Fkx*Q
and c: ¢ # 0 by auto
from id have id: smult ¢ (F (k — 1)) = Q * F k by auto
from n-ge[unfolded n, of k — 1] k2 ¢ have degree (F k) < degree (smult ¢ (F (k
— 1))) by auto
from subresultant-product[OF id this, unfolded subresultant-smult-left[OF c|, of
i
have x:subresultant j (F (k+ 1 — 2)) (F (k+ 1 — 1)) = 0 using c unfolding
n by simp
from assms have xx:j # n 2
by (meson k2 n-ge-trans not-le one-le-numeral order-refl)
from k2 assmshave 8 <k + 1k+ 1 <k+1j<n(k+ 1 — 1)by auto
from BT-eq-30[OF this,unfolded x| nonzero-alphaprod|OF le-refl] xx F1 F2
show ?thesis by (auto simp:R-def F0 to-fract-hom.subresultant-hom[symmetric])
qed

definition Gi =R (n (i — 1) — 1)
definition Hi = R (n i)

50

lemma gamma-delta-beta-3: v 3 = (— 1) (601 + 1)« 8 3
proof —
have v 3 = (— 1) "o 8 % pow-int (f 2) (1 — int (§ 2)) *
B3/ (f2 " Suc(61)xf27(01+462)
unfolding v-def § a-def by (simp add: §)
also have f2 7 (6§ 1 + § 2) = pow-int (f 2) (int (6 1 +§ 2))
unfolding pow-int-def nat-int by auto
also have int (6 1 + 6 2) = int (Suc (§ 1)) + (int (0 2) — 1) by simp
also have pow-int (f 2) ... = pow-int (f 2) (Suc (§ 1)) * pow-int (f 2) (int (&
2)—1)
by (rule pow-int-add, insert f20, auto)
also have pow-int (f 2) (Suc (0 1)) = f2 ~ (Suc (§ 1)) unfolding pow-int-def
nat-int by simp
also have 8 3 / (f2 ~ Suc (§ 1)) *
(f2 7 Suc (6 1) * pow-int (f 2) (int (6 2) — 1))
=(B3/(f2 Suc(d1))* f2 Suc(d1)x* pow-int (f2) (int (6 2) — 1))
by simp
also have 8 3 / (f2 " Suc (6 1)) x f2 " Suc (6 1) = 8 3 using f20 by auto
finally have v 3 = ((— 1) "o 3 * 8 3) * (pow-int (f 2) (1 — int (0 2)) =
pow-int (f 2) (int (§ 2) — 1))
by simp
also have pow-int (f 2) (1 — int (§ 2)) * pow-int (f 2) (int (0 2) — 1)
=1
by (subst pow-int-add[symmetric], insert f20, auto)
finally have vy 3 = (— 1) "o 8 x § 8 by simp
alsohaveoc 3 =(n1+n2+1)*(n2+ n 2+ 1) unfolding o-def
by simp

also have (— (1 :: 'a fract)) ~...=(—1) "(n1 —n2+ 1)
by (rule minus-1-even-eql, insert n12, auto)
also have ... = (— 1)7(d 1 + 1) unfolding ¢ by (simp add: numeral-2-eq-2)
finally show v 3 =(—1) “(01+1)*x3 8.
qed

fun h :: nat = 'a fract where
hi=(if (1¢<1)then1elseifi= 2then (f2 "0 1)else(fi "0 (i —1)/(h
(i—1) (6 (i—1)— 1))

lemma smult-inverse-sdiv-poly: assumes ffp: p € range ffp
and p: p = smult (inverse x) q
and p”: p’ = sdiv-poly q' x’
and zz: z = ff 2’
and qq: ¢ = ffp ¢’
shows p = ffp p’
proof (rule poly-eql)

fix ¢
have coeff p i = coeff q i / x unfolding p by (simp add: field-simps)
also have ... = ff (coeff ¢’ ©) / ff ' unfolding qq zx by simp

finally have cpi: coeff p i = ff (coeff ¢' @) / ff='.
from ffp obtain r where pr: p = ffp r by auto

o1

from arg-cong|OF this, of X p. coeff p i, unfolded cpi]
have ff (coeff ¢’ i) / ff ©' € range ff by auto
hence id: ff (coeff ¢' i) | ffz' = ff (coeff ¢’ i div z”)
by (rule div-divide-to-fract, auto)
show coeff p i = coeff (ffp p’) i unfolding cpi id p’
by (simp add: sdiv-poly-def coeff-map-poly)
qed

end

locale subresultant-prs-locale2 = subresultant-prs-locale F n § fk 3 GI G2 for
F :: nat = 'a :: idom-divide fract poly
and n :: nat = nat
and ¢ :: nat = nat
and [:: nat = ’a fract
and k :: nat
and 3 :: nat = 'a fract
and GI G2 :: 'a poly +
assumes $3: 3 3 =(—1)(0 1+ 1)
and fi: Ni. 4 <i= i< Suck=pi=(-1)W0GE—-2)+1)*f(i—2)
xh(i—2) (0 (i— 2))
begin

lemma B-eq-17-main: 2 < i —= 1 < k =
hi=(—1) "(ni+ni+i+1)/fi
* ([T1+]3..< Suc (Suc9)]. (wl/BU)ANKhi#0
proof (induct i rule: less-induct)
case (less)
from less(2—) have fi0: fi # 0 using f0[of i] by simp
have 1: (— 1) # (0 :: 'a fract) by simp
show ?Zcase (ishi= %riA -)
proof (cases i = 2)
case True
have f20: f 2 # 0 using f20 by auto
have hi: h i = f 2 ~ 6 1 unfolding True h.simps[of 2] by simp
have id: int (§ 1) = int (n 1) — int (n 2) using ni12 unfolding § nu-
meral-2-eq-2 by simp
have ?ri=(—1) (1 + n 1
* ((f2 " Suc (6 1)) /(B 3))/ pow-int (f 2) 1 unfolding True a-def by simp
also have 8 3 =(— 1) (6 1 + 1) by (rule 53)
also have f2 " Suc (6§ 1) /... =...x f2 " Suc (6 1) by simp
finally have ?ri=((— 1) "(I +n1 +n2)*x((—1) "1+ 1)) =
pow-int (f 2) (int (Suc (6 1)) + (—1)) (is - = %a * -)
unfolding pow-int-divide exp-pow-int power-add pow-int-add[OF f20] by (simp
add: ac-simps pow-int-add)
also have %a = (—1) (I + n1 +n 2 + 0 1 + 1) unfolding power-add by
simp
also have ... = (—=1)70
by (rule minus-1-even-eql, insert n12, auto simp: 6 numeral-2-eq-2, presburger)

+n2)

52

finally have ri: ?r i = pow-int (f 2) (int (§ 1)) by simp
show ?thesis unfolding ri hi exp-pow-int[symmetric] using f20 by simp
next
case Fualse
hencei:i> 3and #:i— 1 <i2<i—1i— 1<k using less(2—) by auto
from i less(2—) have cc: 4 < Suc i Suc i < Suc k by auto
define P where P = ([[I+[3..< Suci]. a1/ B 1)
define @) where @ = P x pow-int (h (¢ — 1)) (— int (§ (i — 1)))
define R where R = fi "0 (i — 1)
define S where S = pow-int (f (i — 1)) (— 1)
note IH = less(1)[OF i
hence hi0: h (i — 1) # 0 by auto
have hii: hi=fi "6 (i—1)/h(i—1) (@@ (i—1)—1)
unfolding h.simps|of i] using i by simp
also have ... =f7 76 (i — 1) * pow-int (h (i — 1)) (—int (6 (1 — 1) — 1))
unfolding exp-pow-int pow-int-divide by simp
also have int (0 (i — 1) — 1) =int (6 (1 — 1)) — 1
proof —
have ¢ (i — 1) > 0 unfolding 6[of i — 1] using n-gt[OF ii(2)] less(2—) by
auto
thus “thesis by simp
qed
also have — (int (6 (i — 1)) — 1) =1 + (— int (6§ (i — 1))) by simp
finally have hi: hi=(—1) "(n1 +n(i— 1)+ i) * (R* Q*S9)
unfolding pow-int-add[OF hi0] P-def Q-def pow-int-divide[symmetric] R-def
S-def using IH i by (simp add: ac-simps)
from ¢ have id: [8..<Suc (Suc)] = [3 ..< Suc i] @ [Suc 7] by simp
have ?ri=(—1) " (nl1+ni+i+ 1)
x pow-int (fi) (— 1) % P x a (Suc i) / B (Suc 7)
unfolding pow-int-divide[symmetric] P-def id Fract-conv-to-fract by simp
also have g (Suci)=(—1) "0 (G —1)+ 1)« f (@G —1)xh(i—1) "0 (i
— 1)
using Bi[OF cc] by simp
also have a (Suc i) = fi = Suc (6 (¢ — 1)) unfolding a-def by simp
finally have ?ri=(—1) "(n1 4+ ni+ i+ 1) * pow-int (fi) (— 1) *x P
(fi ™ Suc (6 (1 — 1)) /
(—1) @@ —=1)+1)*xpow-int (f (i—1))(=1)/h(i—1)"6({—-1)
(is - = 2al % 2fil x P x 2fi2 / 202 % 2b | %¢)
unfolding exp-pow-int pow-int-divide[symmetric] by simp
also have ... = (%al / %a2) % (2fil * 2fi2) x (P / ?c) * ?b by (simp add:
ac-simps)
also have %al / %02 =(—1) "(nl1+ni+i+14+6(G—1)+1)
by (simp add: power-add)
alsohave ... =(—-1) " (nl1+ni+ i+ (G —1))
by (rule minus-1-even-eql, auto)
alsohaveni +ni+i+d(i—1)=n1+n(i—1)+1¢
unfolding ¢ using i less(2—) n-ge[of i — 1] by simp
also have ?2fi1 x ?fi2 = pow-int (f i) (—1 + int (Suc (§ (i — 1))))
unfolding exp-pow-int pow-int-add[OF fi0] by simp

93

also have ... = pow-int (f) (int (6 (i — 1))) by simp
also have P / ?c = @ unfolding Q-def exp-pow-int pow-int-divide by simp
also have ?b = S unfolding S-def by simp
finally have ri: 9ri=(—1)"(n1 +n (i — 1) + i)
* (R % Q * S) by (simp add: exp-pow-int R-def)
have id: h ¢ = %r i unfolding hi ri ..
show ?thesis
by (rule conjI[OF id), unfold hii, insert IH fi0, auto)
qed
qed

lemma B-eq-17: 2 < i = i < k =
hi=(—=1) "(nl1+ni+i+1)/fix*([[l][3..< Suc (Suci)]. («l/p1I)
using B-eq-17-main by blast

lemma B-theorem-2: 3 < i = (< Suck = vy i=1
proof (induct i rule: less-induct)
case (less)
show Zcase
proof (cases i = 3)
case True
show ?thesis unfolding True unfolding gamma-delta-beta-3 3 by simp
next
case Fulse
with less(2—)
havei: 7> Jjand di: i — 1 <i83<i—1i— 1< Suck
and 7i: 4 < i1 < Suck
and w: 2 <i— 2i— 2 <k by auto
from less(1)[OF ii]| have IH: v (i — 1) = 1 .
define L where L = [3..< i
have id: [3..<Suc (i — 1)] = L [3..<Suc i]| = L @ [i] Suc (Suc (i — 2)) =i
unfolding L-def using i by auto
define Bwhere B=(A1.81/al)
define A where A= (A1l al/B1)
define @ where Q= (A1 f (I —1) "6 (U —-2)+6(l— 1))
define R where R=(A4il. Bl " (n(l—1)—n(i— 1)+ 1))
define P where P = (A il. Rilx Q1)
have fi0: f (i — 1) # 0 using f0[of i — 1] less(2—) by auto
have fi0" f (i — 2) # 0 using f0[of i — 2] less(2—) by auto
{
fix j
assume j € set L
hence j > 3 j < i unfolding L-def by auto
with less(3) have j: j — 1 # 0j — 1 < k by auto
hence @Q: @ j # 0 unfolding Q-def using f0[of j — 1] by auto
from j a0 S0]of j] have 0: a j # 0 5 j # 0 by auto
hence B j # 0 A j # 0 unfolding B-def A-def by auto
note () this
} note L0 = this

54

let %exp =0 (i — 2)

have v i = v i / 5 (z — 1) unfolding IH by simp

also have ... 1) "o i x pow-int (f (i — 1)) (1 —int (6 (i — 1))) *
(ITl+L. Pi l) Pii/
((=1) "o (i = 1) * pow-int (f (i — 2)) (I — int (§ (i — 2))) *
(JTl+L. P (i — 1) 1) (is-= %al * 2f1 x ?L1 « Pii / (?a2 * 2f2 x ?L2))
unfolding v-def id P-def Q-def R-def B-def by (simp add: numeral-2-eq-2)

also have ... = (%al * %a2) % (?f1 « Pi14) / 22 x (L1 / ?L2) unfolding
divide-prod-assoc by simp
also have %al x %a2 = (—1) (o i + o (i — 1)) (is - = ?a) unfolding

power-add by simp
also have ?L1 / ?L2 = ([[I«~L. Ril) / (JII«L.- R (i— 1) 1)« ([Tl+<L. Q
D / (L. Q1)
unfolding P-def prod-list-multf divide-prod-assoc by simp
also have ... = (J[[lI«~L. Ril) / (JI+~L. R (i — 1) 1) (is-= ?2L1 /] ?L2)
proof —
have ([]l+L. Q1) # 0 unfolding prod-list-zero-iff using L0 by auto
thus ?thesis by simp
qed
also have ?2f1 x P i i = (2f1 % pow-int (f (i — 1)) (int ?exp + int (6 (i —
1)))) * R i i unfolding P-def Q-def
exp-pow-int by simp
also have ?f1 * pow-int (f (i — 1)) (int %exp + 0 (¢ — 1)) = pow-int (f (i —
1)
(1 + int Zexp) (is - = 9f1)
unfolding pow-int-add[OF fi0, symmetric] by simp
also have R ii = i / a i unfolding B-def R-def Fract-conv-to-fract by simp
also have a i = f (i — 1) ~ Suc ?exp unfolding «-def by simp
alsohave i /... =0 i % pow-int (f (i — 1)) (— 1 — Zexp)
(is - = 98 = 9f12)
unfolding exp-pow-int pow-int-divide by simp
finally have v i = (%a * (9f1 * 2f12)) = 28/ 2f2 = (?L1 / ?L2)
by simp
also have ?a * (2f1 % 9f12) = ?a unfolding pow-int-add|[OF fi0, symmetric]
by simp
also have ?L1 / ?L2 = pow-int ([[I+L. A1) (— %exp)
proof —
have id: i — 1 — 1 =i — 2 by simp
have set L C {l. 8 < I A1 <k Al < i} unfolding L-def using less(3) by
auto
thus ?thesis unfolding R-def id
proof (induct L)
case (Cons [L)
from Cons(2) have I: 3 < ll<kl<iand L: set LC{l. 3 <INI<k
Al < i} by auto
note IH = Cons(1)[OF L]
from [a0 50[of I) have 0: ol # 0 8 1 # 0 by auto
hence B0: Bl # 0 unfolding B-def by auto
have ([[l+-1# L.Bl " (n(l—1)—n(i— 1)+ 1))/ ([[l+1# L. Bl

95

“n(l—1)—-n(i—-2)+1)
=Bl " (n(l—-1)—-n(G—-1)+1)*x([Ik-L.Bl " (n(l—1)—mn (¢
- 1)+1))/
Bl "(n(l-1)—-n(i—-2)+1)*«([I+L.Bl"(n(l—-1)—n (i
- 2)+ 1))
(is - = (%1 = ?L1) / (712 % ?L2)) by simp
also have ... = (211 / 212) = (?L1 / ?L2) by simp

also have ?L1 / ?L2 = pow-int (prod-list (map A L)) (— int (§ (i — 2)))
by (rule IH)
also have %1 / 212 = pow-int (B1l) (int (n I — 1) —n (i — 1)) — int (n
(I = 1) —n (i — 2))) unfolding ezp-pow-int pow-int-divide pow-int-add[OF B0,
symmetric]
by simp
alsohave int (n (I— 1) —n(i—1))—int(n(l—1)—n (i — 2)) = int

Zexp
proof —
haven(I—-1)>n(i—-2)n(l—-1)>2n(i—1)n(i—2)>n(i—1)
using i [less(3)
by (intro n-ge-trans, auto)+
hence id: int (n (I — 1) —n(i—1))=int (n (I — 1)) —int (n (i — 1))
int(n(l—1)—n(i—=2)=int(n(I—-1)) —int (n (i — 2))
int(n(i—2)—n(—1))=1dnt (n (i — 2)) —int (n (i — 1))
by simp-all
have d2: int %exp = int (n (1 — 2) — n (i — 1))
unfolding ¢ using ¢ by (cases i; cases i — 1, auto)
show ?thesis unfolding id2 unfolding id by simp
ged
also have pow-int (B l) ... = pow-int (inverse (B 1)) (— ...) unfolding
pow-int-def

by (cases int (6 (i — 2)) rule: linorder-cases, auto simp: field-simps)
also have inverse (B 1) = A | unfolding B-def A-def by simp
also have pow-int (A 1) (— int ?exp) * pow-int (prod-list (map A L)) (—
int Zexp)
= pow-int (prod-list (map A (I # L))) (— int Zexp)
by (simp add: pow-int-mult)
finally show ?case .
qed simp
qed
alsohave f i = (—1) " (Pexp+ 1) xf (i — 2) «h (i — 2) " Pexp
unfolding 3i[OF] ..
finally have v i = (((— 1) "(ci+o (i —1))*(—=1) (%exp+ 1))) =
(pow-int (f (i — 2)) 1 *
pow-int (f (i — 2)) (int Zexp — 1)) *
h(i—2)" %exp /
(JTL. Al) ~ %exp (is - = 2a x 9f1 x ?H / ?L) unfolding pow-int-divide
exp-pow-int by simp

also have ?2f1 = pow-int (f (i — 2)) (int ?exp) (is - = ?f1) unfolding
pow-int-add|OF fi0', symmetric]
by simp

o6

alsohave h (i — 2)=(—1) "(n1+n(E@E—-2)+({—-2)+1)/f(E—2) =
(ITl«+L. Al) (is - = 2a2 / 22 * ?L) unfolding B-eq-17[OF iv] A-def id
L-def by simp
also have ((— (1 :: 'a fract)) " (ci+o (i — 1))« (— 1) " (%exp + 1)) =
(1) “(ci+o(i—1)+ %exp+ 1)) (is - = ?al) by (simp add: power-add)
finally have v i = 2al * 2f1 % (2a2 | 2f2 x ¢L) ~ %exp /| 2L ~ %exp by simp
also have ... = (%al * %a2 %exp) = (9f1 | 92f2 ~ Zexp) * (2L %exp | 2L ~
Zexp)
unfolding power-mult-distrib power-divide by auto
also have ?L ~ Zexp / ?L ~ %exp = 1
proof —
have ?L # 0 unfolding prod-list-zero-iff using L0 by auto
thus ?thesis by simp
qed
also have ?2f1 / ?f2 ~ ?exp = 1 unfolding exp-pow-int pow-int-divide
pow-int-add[OF fi0', symmetric] by simp
also have %42 %exp = (— 1) " ((n1 +n (i —2)+ (i — 2) + 1) * Zexp)
by (rule semiring-normalization-rules)
also have %al x...=(—=1) " (ci+o(i—1)+ %eap+ 1+ (nl1+n (s
—2)+ (i —2)+ 1) * Zexp)
(is - = - 7 ?e)
by (simp add: power-add)
also have ... = (—1)70
proof —
define e where e = %e
have x: e = (2« %eap+ci+o(i— 1)+ 1 +(nl+n(i—2) + (i—
2)) * ?exp) by simp
define A where A= (Ail.(n(Il—2)+n(Gi—1)+1)x(n({l—1)+n
(i— 1)+ 1))
define B where B=(Adé. (n(i— 1)+ 1)x(n(i— 1)+ 1))
define C where C = (AL (n(I—-1)+n(l—-2)+n(l—-1)xn(l—2)))
define D where D=\l n(l—1)+n(l—2))
define m2 where m2 =n ({ — 2)
define m! where m1 =n (i — 1)
define m0 where m0 = n 1
define i3 where i3 =i — 3
have m12: m2 > m1 unfolding m2-def m1-def using n-ge[of i — 2] i less(3)
by (cases i, auto)
have idd: Suc (i — 2) =i — 17— 1 — 1 =4 — 2 using { by auto
have id4: i — 2 = Suc i3 unfolding i3-def using i by auto
from i have 3 < i by auto
hence 3 k. sum-list (map D L) =n1 + n (i — 2) + 2 % k unfolding L-def
proof (induct i rule: less-induct)
case (less)
show ?Zcase
proof (cases i = 4)
case True
thus ?thesis by (simp add: D-def)
next

o7

case Fulse

obtain i where i: ¢ = Suc il and : @i < { 3 < 7 using Fualse less(2)
by (cases i, auto)

from less(1)[OF ii] obtain k where IH: sum-list (map D [3 ..< ii]) = n
14+ n(ii— 2)+ 2 %k by auto

have map D [3 ..< i] = map D [3 ..< ii] @ [D 4] unfolding ¢ using ii
by auto

hence sum-list (map D [3..<i]) =n1 + n (it — 2) + 2 x k + D i using
IH by simp

alsohave ... =n1 +n (i — 1)+ 2 x (n (4 — 2) + k) unfolding

D-def by simp

also have n (i — 1) = n ({ — 2) unfolding i by simp

finally show ?thesis by blast

qed
qed
then obtain kk where DL: sum-list (map D L) =n 1+ n (i — 2) + 2 %
kk ..
let 21 =17¢— 3
have len: length L = i — 3 unfolding L-def using i by auto
have A: Ail=Bi+Dlixn(i— 1)+ Clforil
unfolding A-def B-def C-def D-def ring-distribs by simp
have d2: [3..<Suc i] = 8 # [Suc 3 ..< Suc {]
unfolding L-def using i by (auto simp: upt-rec|of 3])
have even e = even ?e unfolding e-def by simp
alsohave ... =even (I + (n1 +n(i—2)+ (i — 2)) % %exp) + (0 i +
o (i— 1))

(is - = even (%9 + %))
unfolding * by (simp add: ac-simps)
also have 2/ = O I+LQ[i]. Ail)+ O I+L. A(i—1)1)
unfolding o-def id A-def by simp
alsohave ... =2 % (3 I«L. Cl) 4+ (Suc 2)) « Bi + (O I«~L @Q[{]. DI«
n(i—1)+ Ci+
ZlxB(i— 1)+ (O I+L.Dlxn(i—1-1))
unfolding A sum-list-addf by (simp add: sum-list-triv len)
also have ... = ((Suc 2« Bi+ Ci +
AxB(i—1)+Dixn(i—1)+ (SIL DI)*(n(i—1)+n(i
—2)+ 2% (O I+L. Cl))
(is - = % + %))
unfolding sum-list-mult-const by (simp add: ring-distribs numeral-2-eg-2)
also have 7] =
nmlI+n(@—-2)*xMnGE—-—1)+nGE—-2)+2*«xkkxn(—1)+n
(i—2)+ QL. CI))
(is-= %h 4+ 2 % 7f)
unfolding DL by (simp add: ring-distribs)
finally have even e = even (%9 + %i + ?h + 2 x ?f) by presburger
also have ... = even (%9 + % + %h) by presburger
also have %9 + %1 + %h =
i3« (m2 — ml + ml * m1 + m2 x m2)
+ (m2 — m1 + mi1 + m2) *x (m0 + m2)

o8

+ (m1 + m2 4+ (m2 — ml1))
+ 2% (ml xm2 4+ ml x ml + 1 + i3 + ml * Suc i3 + m2 * i3)
unfolding idd B-def D-def C-def §
m1-def[symmetric] m2-def[symmetric] mO-def [symmetric)
unfolding 3-def[symmetric] id4
by (simp add: ring-distribs)
also have (m1 + m2 + (m2 — m1)) = 2 * m2 using m12 by simp
also have (m2 — m1 + ml + m2) x (m0 + m2) = 2 x (m2 x (m0 + m2))
using m12 by simp
finally obtain [1 I2 |3 where
even e = even (i3 x (m2 — ml + ml x ml + m2 xm2) + 2«11 + 2 «

12 + 2 % 13)
by blast
also have ... = even (i3 * (m2 — m1 + ml * m1 + m2 x m2)) by simp
also have ... = even (i3 * (2 x m1 + (m2 — m1 + ml x mI + m2 x m2)))
by simp

also have 2 x m1 + (m2 — m1 + ml * m1 + m2 * m2) = ml + m2 +
ml x m1 + m2 x m2
using m12 by simp
also have even (i3 * ...) by auto
finally have even e .
thus ?thesis unfolding e-def
by (intro minus-1-even-eql, auto)
qed
finally show ~ i = 1 by simp
qged
qged

context
fixes ¢ :: nat
assumes 7: 3 < 117 <k
begin
lemma B-theorem-3-b: © i x fi = ff (lead-coeff (H 7))
using arg-cong[OF fundamental-theorem-eq-6[folded H-def, OF i], of lead-coeff]
unfolding f[of i]
lead-coeff-smult by simp

lemma B-theorem-3-main: © (« fi /v (i+1)=(-1)"(nl1+ni+i+ 1)/
fix (JI[3..< Suc (Suc 9)]. (a1l / B 1))
proof (cases fi = 0)
case True
thus %thesis by simp
next
case Fulse note ff0 = this
from (1) have Suc (Suc i) > 3 by auto
hence id: [3 ..< Suc (i + 1)] = [3 ..< Suc] Q [Suc i) [§ ..< Suc (Suc i)] = [3
..< Suc i) Q [Suc i] by auto
have cong: Nabcd. a=c=b=d= axb=cx*(d: 'afract) by auto
define AB where AB=(A1.81/al)

99

define ABP where ABP = (A l. ABl " (n(l—1)—ni)*xf({—1) (0

-2)4+46 (- 1))

define PR where PR = ([[+[3..<Suc i]. ABP)
define PR2 where PR2 = ([[I+[5..<Suc i]. ABI)
from FO[of i]

have © i x fi / v (i
(1) "7ix(—1)

+1)=(
To (i+ 1)) x (pow-int (fi) (int (6 (1 — 1)) — 1) *
PR x fi/

pow-int (fi) (1 —int (6 ©)) / ((J]I+[3..<Suc i]. ABPlx AB) %

B (Suci)*fi (0 (i—1)+01))))
unfolding id prod-list.append map-append ©-def ~y-def divide-prod-assoc
by (simp add: field-simps power-add AB-def ABP-def PR-def)

also have (— 1 :: ‘a fract) "7ix(—1) "o (i+1)=(—1) "(ti+o (i +

1))

unfolding power-add by (auto simp: field-simps)

alsohave ...=(—1) "(nl1+ni+i+ 1)
proof (cases i = 2)

case True
show ?thesis unfolding 7-def o-def True by (auto, rule minus-1-even-eql,

auto)
next

(b

case False
define a where a = (A I. n (I — 2) + n)
define b where b= (A l.n (Il — 1)+ ni)
define ¢ where ¢ = (> I+ [3..<Suci]. (al* bl + ni))
define d where d = ¢ + (3 I«[3..<i]. n (I — 1))
define e where e = (n (i — 1)+ ni+ 1) xni
have (ri+ o0 (i + 1)) =
(Ol [3.<Suct]. (al*xbl)+(al+1)*(bl+ 1))+ (a(Suci)+ 1)

(Suci) + 1)
unfolding o-def T-def id a-def b-def sum-list-addf by simp
also have (> I+ [3.<Sucid]. (al*bl)+ (al+ 1)x (bl + 1)) =
O l[3..<Sucil. 2% al*xbl+(al+0bl)+ 1)
by (rule arg-cong, rule map-cong, auto)
also have ... = DI« [8.<Suci]. 2* (alxbl+ni)+(n(l—1)+n(
—2) + 1)
by (simp add: field-simps a-def b-def)
also have ... = 2 x c + (O I«[3..<Suci]. (n (I — 1) + n (I — 2))) + length
< Suc 1

E

unfolding sum-list-addf c-def sum-list-const-mult sum-list-triv by simp
also have (3 I« [3..<Suci]. (n (I — 1) + n (I — 2)))
= (D l[3.<Suci]l. n (I — 1))+ (O I[3..<Suc i]. n (I — 2))
by (simp add: sum-list-addyf)
also have (3" I« [3..<Suci]. n (I — 2)) = O I+3 # [4..<Suc {]. n (I — 2))
by (rule arg-cong, rule map-cong, insert i False, auto simp: upt-rec|of 3])

also have ... = n 1 + (3 I+ [(Suc 8)..<Suc i]. n (I — 2)) by auto
also have (> I+ [(Suc 8)..<Suc i]. n (I — 2)) = O I+[3..<i]. n (I — 1))
proof (rule arg-conglof - - sum-list], rule nth-equalityl, force, auto simp:

nth-append, goal-cases)

60

case (1 j)
hence i — 2 = Suc (Suc j) by simp
thus ?case by simp
qed
also have (D" I+ [3.<Suci]. n (I — 1)) = O I«[3.<i] Q[{]. n (I — 1))
by (rule arg-cong, rule map-cong, insert i False, auto)
finally have 7 i + o (i + 1) =
2xd+mn(i—1)+n1+ length [3..<Suci] + (a (Suc i)+ 1) * (b (Suc
i)+ 1)
by (simp add: d-def)
also have length [3 ..< Suc i] = i — 2 using 7 by auto
also have (a (Suc i) + 1)« (b (Suci)+ 1) =2xe+n (i — 1)+ ni+ 1
unfolding a-def b-def e-def
by simp
finally have id: T i+ o (i+ 1) =2*x(d+n(i—1)+e)+nl+ (i—2)
+ni+ 1
by simp
show ?thesis
by (rule minus-1-even-eql, unfold id, insert i, auto)
qed
also have ([]i«[5..<Suc i]. ABP |« ABl) = PR x PR2
unfolding PR-def prod-list-multf PR2-def by simp
also have (pow-int (f i) (int (6 (1 — 1)) — 1) x PR * fi / pow-int (f4) (1 —
int (0 7))
/ (PR x PR2 x AB (Suc i) fi (6 (i — 1)+ 4§ 1)) =
((pow-int (f i) (int (§ (i — 1)) — 1) % pow-int (f i) I % pow-int (f 1) (int (0)
— 1)
/ pow-int (f i) (int (6 (i — 1) + 6 i)))) * (PR / PR / (PR2 x AB (Suc i)))
(is ... = %z *x ?y)
unfolding exp-pow-int[symmetric] by (simp add: pow-int-divide ac-simps)
also have %z = pow-int (f i) (—1)
unfolding pow-int-divide pow-int-add[OF ff0, symmetric] by simp
also have ... =1 / (f 1)
unfolding pow-int-def by simp
also have PR / PR = 1
proof —
have PR # 0 unfolding PR-def prod-list-zero-iff set-map
proof
assume 0 € ABP ‘set [3 ..< Suc i]
then obtain j where j: 8 < jj < Suc i and 0: ABP j = 0 by auto
with ¢ have jk: j < kand ji1:j— 1 # 0j — 1 < k by auto
hence 1: a«j# 0f (j — 1) # 0 using a0 f0 by auto
with 0 have AB j = 0 unfolding ABP-def by simp
from this[unfolded AB-def] 1(1) B0[of j| show Fulse by auto
qed
thus ?thesis by simp
qed
also have PR2 x AB (Suc i) = ([]I+[3..<Suc (Suc i)]. AB l) unfolding id
PR2-def by auto

61

also have 1 / ... = inverse ... by (simp add: inverse-eq-divide)
also have ... = (J] l+<-[3..<Suc (Suc 7)]. « | / p I) unfolding AB-def
inverse-prod-list map-map o-def
by (auto cong: map-cong)
finally show ?thesis by simp
qed

lemma B-theorem-3: hi =0 i * fih i = [f (lead-coeff (H 7))
proof —
have © i x fi =0 ixfi /v (i+ 1)
using B-theorem-2[of i + 1] i by auto

alsohave ... =(—1) "(nl14+ni+i+1)/fix
(TT1[3..<Suc (Suc i)]. a« 1/ B 1) by (rule B-theorem-3-main)
also have ... = h i using B-eq-17[of i] i by simp

finally show h ¢ =0© i % f i ..

thus h i = ff (lead-coeff (H 7)) using B-theorem-3-b by auto
qed
end

lemma ho: i < k= hi#0
proof (induct i)

case (Suc 17)

thus ?case unfolding h.simps|of Suc i] using f0 by (auto simp del: h.simps)
qed auto

lemma deg-G12: degree G1 > degree G2 using ni2
unfolding n F1 F2 by auto

lemma R0: shows R 0 = [: resultant G1 G2 :]
proof(cases n 2 = 0)
case True
hence d:degree G2 = 0 unfolding n F2 by auto
from degree0-coeffs|OF d] F2 F12 obtain a where
G2: G2 = [:a:] and a: a # 0 by auto
have sdiv-poly [:a * a ~ degree G1:] a = [:a ~ degree G1:] using a
unfolding sdiv-poly-def by auto
note dp = this
show ?thesis using G2 F12
unfolding R-def 6 n F1 F2 Suc-1 by (auto split:if-splits simp:mult.commute
dp)
next
case Fulse
from Fulse n12 have d:degree G2 # 0 degree G2 < degree G1 unfolding n F2
F1 by auto
from False have R 0 = subresultant 0 G1 G2 unfolding R-def by simp

also have ... = [: resultant G1 G2 :] unfolding subresultant-resultant by simp
finally show ?thesis .
qed

62

context
fixes div-exp :: 'a = 'a = nat = 'a
assumes div-exp-sound: div-exp-sound div-exp
begin

interpretation div-exp-sound div-exp by (rule div-exp-sound)

lemma subresultant-prs-main: assumes subresultant-prs-main Gi-1 Gi hi-1 =
(Gk, hk)
and Fi= ffp Gi
and F (i — 1) = ffp Gi-1
and h (i — 1) = ff hi-1
and 1 > 317 <k
shows Fk=ffp GkAhk=ffhk NN ji<j—j<k— Fjc range ffp A
B (Suc j) € range ff)
proof —
obtain m where m: m = k — i by auto
show ?thesis using m assms
proof (induct m arbitrary: Gi-1 Gi hi-1 i rule: less-induct)
case (less m Gi-1 Gi hi-1 7)
note TH = less(1)
note m = less(2)
note res = less(3)
note id = less(4—6)
note i = less(7—8)
let ?pmod = pseudo-mod Gi-1 Gi
let ?ni = degree Gi
let ?ni-1 = degree Gi-1
let ?gi = lead-coeff Gi
let ?gi-1 = lead-coeff Gi-1
let 2d1 = %ni-1 — ?ni
obtain hi where hi: hi = div-exp ?gi hi-1 ?d1 by auto
obtain divisor where div: divisor = (—1) ~(2d1 + 1) x %gi-1 % (hi-1 ~ 2d1)
by auto
obtain GI-p! where GI-pl: G1-pl = sdiv-poly ?pmod divisor by auto
note res = res[unfolded subresultant-prs-main.simps|of Gi-1]| Let-def,
folded hi, folded div, folded G1-p1]
have h-i: hi=fi "6 (i — 1)/ h(i—1) " (0 (i — 1) — 1) unfolding
h.simps|of i| using i by simp
have hi-ff: h i € range ff using B-theorem-3[OF - i(2)] i by auto
have dI: 6 (i — 1) = ?d1 unfolding § n using id(1,2) using ¢ by simp
have fi: fi = ff ?gi unfolding f id by simp
have fi1: f (i — 1) = ff ?gi-1 unfolding f id by simp
have eq” h i = ff (lead-coeff Gi) =6 (i — 1) / ffhi-1 (6 (i —1)— 1)
unfolding h-i fi id ..
have idh: h i = [f hi using hi-ff h-i fi id
unfolding hi d1[symmetric]
by (subst div-explof ?gi 6 (i — 1) hi-1], unfold eq’[symmetric], insert assms,
blast+)

63

have 8 (Suci)=(—1) "0 (G —-1)+1)xf(i—1)«xh(i—1) "d(i—1)
using Siof Suc i] i by auto
also have ... = ff ((— 1) ~(0 (1 — 1) + 1) * lead-coeff Gi-1 * hi-1 6 (i —

1)
unfolding id f by (simp add: hom-distribs)
also have ... € range ff by blast
finally have beta: 8 (Suc i) € range ff .
have pm: pseudo-mod (F (i — 1)) (F i) = ffp ?pmod
unfolding to-fract-hom.pseudo-mod-hom|[symmetric| id by simp
have eq: (?pmod = 0) = (i = k)
using pm i pmod[of Suc i] FOlof Suc i) i f0[of Suc i] by auto
show ?case
proof (cases i = k)
case True
with res eq have res: Gk = Gi hk = hi by auto
with pmod
have F k = ffp Gk A h k = [f hk unfolding res idh[symmetric] id][symmetric]
True by auto
thus ?thesis using beta unfolding True by auto
next
case Fulse
with res eq have res:
subresultant-prs-main Gi G1-p1 hi = (Gk, hk) by auto
from m False i have m: m — 1 < mm — 1 = k — Suc i by auto
have si: Suci — 1 =7 and #: 8 < Suc i Suc i < k and #i: 3 < Suc ¢ Suc
1 < Suc k
using Fulse i by auto
have x: (Vj>Suc i. j < k — F j € range ffp A B (Suc j) € range ff) =
(Vj>i.j <k — Fj€ range ffp A B (Sucj) € range [f)
by (rule for-all-Suc, insert id(1) beta, auto)
show ?thesis
proof (rule IH[OF m res, unfolded si, OF - id(1) idh ii, unfolded x])
have F-ffp: F (Suc i) € range ffp using fundamental-theorem-eq-4|OF ii,
symmetric] B-theorem-2[OF iii] by auto
from pmod|OF iii] have smult (8 (Suc 7)) (F (Suc i)) = pseudo-mod (F (i
—) (F i)
by simp
from arg-cong[OF this, of A z. smult (inverse (8 (Suc 7))) x]
have Fsi: F (Suc i) = smult (inverse (5 (Suc ©))) (pseudo-mod (F (i — 1))
(F 1))
using S0[of Suc i] by auto
show F (Suc i) = ffp G1-pl
proof (rule smult-inverse-sdiv-poly|OF F-ffp Fsi G1-p1 - pm])
from ¢ # have iv: 4 < Suc i Suc i < Suc k by auto
have x: Suci — 2 =i — 1 by auto
show S (Suc i) = ff divisor unfolding Bi[OF iv] div d1 * fil
using id by (simp add: hom-distribs)
qged
qed

64

qed
qed
qed

lemma subresultant-prs: assumes res: subresultant-prs G1 G2 = (Gk, hk)
shows F k=ffp Gk ANhk=[ffhkN(i#0— Fié€ range ffp) N (8 < i —
i < Suck — B i € range ff)
proof —
let ?pmod = pseudo-mod G1 G2
have pm: pseudo-mod (F 1) (F 2) = ffp ?pmod
unfolding to-fract-hom.pseudo-mod-hom|[symmetric] F1 F2 by simp
let 992 = lead-coeff G2
let ?n2 = degree G2
obtain dI where dI: d1I = degree GI — ?n2 by auto
obtain h2 where h2: h2 = 292 ~ d1 by auto
have (?pmod = 0) = (pseudo-mod (F 1) (F 2) = 0) using pm by auto
also have ... = (k < 3) using k2 pmod[of 3] FO[of 3] B0[of 3] by auto
finally have eq: ?pmod = 0 <— k = 2 using k2 by linarith
note res = res[unfolded subresultant-prs-def Let-def eq, folded d1, folded h2]
have idh2: h 2 = ff h2 unfolding h2 d1 h.simps[of 2] 6 n F1
using F2 by (simp add: numeral-2-eq-2 f hom-distribs)
have main: Fk=ffp GkAhk=[ffhkAN(i >3 —i<k— Fi€ range ffp
A B (Suc i) € range ff) for ¢
proof (cases k = 2)
case True
with res have Gk = G2 hk = h2 by auto
thus ?thesis using True idh2 F2 by auto
next
case Fulse
hence (k = 2) = False by simp
note res = res[unfolded this if-False)
have F-2: F (3 — 1) = ffp G2 using F2 by simp
have h2: h (8 — 1) = ff h2 using idh2 by simp
have n2: degree G2 = n (83 — 1) unfolding n using F2 by simp
from False k2 have k3: 3 < k by auto
have Fk=ffp GEkANhk=ffhkN(Nj>3.j<k— Fjé€ range ffp N 8 (Suc
j) € range [f)
proof (rule subresultant-prs-main[OF res - F-2 h2 le-refl k3])
let pow = (— 1) ~(6 1 + 1) == 'a fract
from pmod|of 3] k3
have smult (8 3) (F 3) = pseudo-mod (F 1) (F 2) by simp

also have ... = pseudo-mod (ffp G1) (ffp G2) using F1 F2 by auto
also have ... = ffp (pseudo-mod G1 G2) unfolding to-fract-hom.pseudo-mod-hom
by simp

also have § 8 = (= 1) (6 1 4+ 1) unfolding 53 by simp
finally have smult ((— 1) ~(6 1 + 1)) (F 3) = ffp (pseudo-mod G1 G2) by
simp
also have smult ((— 1) (61 + 1)) (F3) =1 %pow:] x F 3
by simp

65

also have [: Zpow :] = (— 1) ~ (0 1 + 1) by (unfold hom-distribs, simp)
finally have (— 1) (6 1 + 1) * F 3 = ffp (pseudo-mod G1 G2) by simp
from arg-cong[OF this, of X i. (— 1) ~(0 1 + 1) * 1]
have F3 =(—1) (6 1 + 1) * ffp (pseudo-mod G1 G2) by simp
also have § 1 = dI unfolding 6 n dI using F1 F2 by (simp add: nu-
meral-2-eq-2)
finally show F3: F 3 = ffp ((— 1) ~(dl +
(simp add: hom-distribs)
qed
thus ?thesis by auto
qed
show ?thesis
proof (intro conjl impI)
assume i # 0
then consider (12) i=1Vi=2](i3)i> 3 Ni< k]| (ik) i > k by linarith
thus F' i € range ffp
proof cases
case 12
thus ?thesis using F1 F2 by auto
next
case 13
thus ?thesis using main by auto
next
case ik
hence F' i = 0 using F0 by auto
thus “thesis by simp
qed
next
assume 3 < i and 7 < Suc
then consider (3) { = 3 |
thus g @ € range ff
proof (cases)
case 3
have g i = ff (- 1) ~ (6 1 + 1)) unfolding 3 3 by (auto simp:
hom-distribs)
thus “thesis by blast

1) * pseudo-mod G1 G2) by

()3§i—1i—1§kbylinam’th

next
case 4
with mainfof i — 1] show ?thesis by auto
qed
qed (insert main, auto)
qed

lemma resultant-impl-main: resultant-impl-main G1 G2 = resultant G1 G2

proof —
from FO[of 2] F12(2) have k2: k > 2 by auto
obtain Gk hk where sub: subresultant-prs G1 G2 = (Gk, hk) by force

from subresultant-prs|OF this| have x: F k = ffp Gk h k = ff hk by auto
have resultant-impl-main G1 G2 = (if degree (F' k) = 0 then hk else 0)

66

unfolding resultant-impl-main-def sub split x using F2 F12 by auto
also have ... = resultant G1 G2
proof (cases n k = 0)
case Fualse
with fundamental-theorem-eq-7[of 0] show ?thesis unfolding n[of k] * R0 by
auto
next
case True
from H-def|of k, unfolded True] have R: R 0 = H k by simp
show ?thesis
proof (cases k = 2)
case Fulse
with k2 have k3: k£ > 3 by auto
from B-theorem-3[OF k3] RO R have h k = ff (resultant GI G2) by simp
from this|[folded] * have hk = resultant G1 G2 by simp
with True show ?thesis unfolding n by auto
next
case 2: True
have id: (if degree (F' k) = 0 then hk else 0) = hk using True unfolding n
by simp
from FO[of 3, unfolded 2] have F 3 = 0 by simp
with pmod[of 3, unfolded 2] 50[of 8] have pseudo-mod (F 1) (F 2) = 0 by
auto
hence pm: pseudo-mod G1 G2 = 0 unfolding F1 F2 to-fract-hom.pseudo-mod-hom
by simp
from subresultant-prs-deflof G1 G2, unfolded sub Let-def this
have id: Gk = G2 hk = lead-coeff G2 ~ (degree G1 — degree G2) by auto
from F12 F1 F2 have G1 # 0 G2 # 0 by auto
from resultant-pseudo-mod-0[OF pm deg-G12 this
have res: resultant G1 G2 = (if degree G2 = 0 then lead-coeff G2 ~ degree
G1 else 0)
by simp
from True[unfolded 2 n F2] have degree G2 = 0 by simp
thus ?thesis unfolding res 2 F2 id by simp
qed
qed
finally show ?thesis .
qged
end
end

At this point, we have soundness of the resultant-implementation, pro-
vided that we can instantiate the locale by constructing suitable values of
F, b, h, etc. Now we show the existence of suitable locale parameters by
constructively computing them.

context
fixes GI G2 :: 'a :: idom-divide poly
begin

67

private function F and b and h where F i = (if i = (0 :: nat) then 1
else if i = 1 then map-poly to-fract G1 else if i = 2 then map-poly to-fract G2
else (let G = pseudo-mod (F (i — 2)) (F (i — 1))
inif F(i—1)=0V G = 0then 0 else smult (inverse (b 7)) G))
| bi=(if i < 2then 1 else
if i = 8 then (— 1) " (degree (F 1) — degree (F 2) + 1)
else if F' (i — 2) = 0 then 1 else (— 1) ~ (degree (F (i — 2)) — degree (F (i —
1)) + 1) = lead-coeff (F (i — 2)) =
h (i — 2) ~(degree (F (i — 2)) — degree (F (i — 1))))
| hi=(if ({ < 1) then I else if i = 2 then (lead-coeff (F 2) ~ (degree (F 1) —
degree (F' 2))) else
if F'i = 0then 1 else (lead-coeff (F i) ~ (degree (F (i — 1)) — degree (F 7)) /
(h (i — 1) " ((degree (F (i — 1)) — degree (F 7)) — 1))))
by pat-completeness auto
termination
proof
show wf (measure (case-sum (X fi. 3 % fi +1) (case-sum (X bi. 8 % bi) (A hi.
3 * hi + 2)))) by simp
qed (auto simp: termination-simp)

declare h.simps[simp del] b.simps[simp del] F.simps[simp del]

private lemma Fb0: assumes base: G1 # 0 G2 # 0
shows (Fi=0— F (Suci) =0)ANbi#0ANhi#0
proof (induct i rule: less-induct)
case (less i)
note * [simp] = F.simps[of i] b.simps[of i] h.simps|of 1]
consider (0) i =0 | (1) i=1|(2) i > 2 by linarith
thus ?case
proof cases
case (
show ?thesis unfolding * unfolding 0 by simp
next
case I
show ?thesis unfolding * unfolding I using assms by simp
next
case 2
have F: F{ = 0 = F (Suc i) = 0 unfolding F.simps[of Suc i] using 2 by
stmp
from assms have F2: F 2 # (0 unfolding F.simps|[of 2] by simp
from 2 have i — 1 < ii — 2 < ¢ by auto
note IH = less|OF this(1)] less|OF this(2)]
hence b: b (i — 1) # 0 and h: h (i — 1) # 0 h (i — 2) # 0 by auto
from h have hi: h i # 0 unfolding h.simps[of i| using 2 F2 by auto
have bi: b i # 0 unfolding b.simps|of i] using h(2) by auto
show ?thesis using hi bi F' by blast
qed
qed

68

private definition k = (LEAST i. F (Suc i) = 0)

private lemma k-exists: 3 i. F (Suc i) = 0
proof —
obtain n ¢ where ¢ > 3 length (coeffs (F (Suc i))) = n by blast
thus ?thesis
proof (induct n arbitrary: i rule: less-induct)
case (less n 1)
let %ii = Suc (Suc i)
let 20 = Suc i
from less(2) have i: i > 3 by auto
let ?mod = pseudo-mod (F (%ii — 2)) (F %)
have Fi: F' ?2ii = (if F %0 = 0 V ?mod = 0 then 0 else smult (inverse (b ?it))
?mod)
unfolding F.simps[of ?ii] using i by auto
show ?case
proof (cases F %ii = 0)
case Fulse
hence Fi: F ?%ii = smult (inverse (b %ii)) ?mod and mod: ?mod # 0 and
Fil: F % # 0
unfolding Fi by auto
from pseudo-mod[OF Fil, of F (?ii — 2)] mod have degree ?mod < degree
(F %) by simp
hence deg: degree (F' ?ii) < degree (F ?i) unfolding Fi by auto
hence length (coeffs (F ?2ii)) < length (coeffs (F ?i)) unfolding degree-eg-length-coeffs
by auto
from less(1)[OF - i refl, folded less(3), OF this] show ?thesis by auto
qed blast
qed
qed

private lemma k: F (Suc k) = 0i < k= F (Suci) # 0

proof —
show F' (Suc k) = 0 unfolding k-def using k-exists by (rule LeastI2-ex)
assume i < k from not-less-Least| OF this[unfolded k-def]] show F (Suc i) # 0

qed
lemma enter-subresultant-prs: assumes len: length (coeffs G1) > length (coeffs
G2)

and G2: G2 # 0
shows 3 F n d fkb. subresultant-prs-locale2 Fn d fkb Gl G2
proof (intro exl)

from G2 len have G1: G1 # 0 by auto

from len have deg-le: degree (F' 2) < degree (F' 1)

by (simp add: F.simps degree-eq-length-coeffs)
from G2 GI have FI1: F 1 # 0 and F2: F 2 # 0 by (auto simp: F.simps)

note Fb0 = FbO[OF G1 G2]
interpret s: subresultant-prs-locale F' X i. degree (F i) X i. degree (F i) — degree

69

(F (Suc 7))
A 4. lead-coeff (F'i) kb G1 G2
proof (unfold-locales, rule refl, rule refl, rule refl, rule deg-le, rule F1, rule F2)
from k(1) F1 have k0: k # 0 by (cases k, auto)
show Fk: (Fi=0) = (k < 1) for {
proof
assume F i = 0 with k(2)[of i — 1]
have - (i — 1 < k) by (cases i, auto simp: F.simps)
thus ¢ > k using k0 by auto
next
assume i > k
then obtain j [where i: i = j + l and j = Suc k and | = i — Suc k and
Fj: Fj = 0 using k(1)
by auto
with F1 F2 k0 have j2: j > 2 by auto
show F' i = 0 unfolding i
proof (induct [)
case (Suc)
thus ?case unfolding F.simps|of j + Suc] using j2 by auto
qed (auto simp: Fj)
qed
show b: b i # 0 for i using Fb0 by blast
show F 1 = map-poly to-fract G1 unfolding F.simps|[of 1] by simp
show F' 2 = map-poly to-fract G2 unfolding F.simps[of 2] by simp
fix i
let ?mod = pseudo-mod (F (i — 2)) (F (i — 1))
assume 7: 3 < 17 < Suc k
from Fk[ofi — 1] i have F (i — 1) # 0 by auto
with ¢ have Fi: F i = (if ?mod = 0 then 0 else smult (inverse (b 7)) ?mod)
unfolding F'.simps|of i]
Let-def by simp
show smult (b i) (F i) = ?mod
proof (cases ?mod = 0)
case True
thus ?thesis unfolding Fi by simp
next
case Fulse
with Fi have Fi: F i = smult (inverse (b 7)) ?mod by simp
from arg-cong[OF this, of smult (b)] blof i| show Zthesis by simp
qed
qed
note s.h.simps[simp del]
show subresultant-prs-locale2 F (X i. degree (F 7)) (X i. degree (F i) — degree (F
(Suc)
(X 1. lead-coeff (F 1)) kb G1 G2
proof
show b 8 = (— 1) ~ (degree (F 1) — degree (F (Suc 1)) + 1) unfolding
b.simps numeral-2-eq-2 by simp
fix ¢

70

assume i: 4 < 77 < Suck
with s.F0[of i — 2] have F (i — 2
hence bi: b i = (— 1) ~ (degree (
lead-coeff (F (i — 2)) =
h (i — 2) " (degree (F (i — 2)) — degree (F (i — 1))) unfolding

0 by auto
(

)
F (i —2)) — degree (F (i — 1)) + 1) =

b.simps
using 7 by auto
have i < k = s.hi = h i for ¢
proof (induct 7)
case (
thus ?case by (simp add: h.simps s.h.simps)
next
case (Suc 1)
from Suc(2) s.FO[of Suc i] have F (Suc i) # 0 by auto
with Suc show ?case unfolding h.simps[of Suc i) s.h.simps|[of Suc i] nu-
meral-2-eq-2 by simp
qed
hence sh: s.h (i — 2) = h (i —) using ¢ by simp
from ¢ have x: Suc (i — 2) =i — 1 by auto
show b i = (— 1) ~ (degree (F (z — 2)) — degree (F (Suc (i — 2))) + 1) =
lead-coeff (F (i — 2)) *
(

s.h (i — 2) " (degree (F (i — 2)) — degree (F (Suc (i — 2))))
unfolding sh bi * ..
qed
qed
end

Now we obtain the soundness lemma outside the locale.

context div-exp-sound
begin

lemma resultant-impl-main: assumes len: length (coeffs G1) > length (coeffs G2)
shows resultant-impl-main G1 G2 = resultant G1 G2
proof (cases G2 = 0)
case G2: Fulse
from enter-subresultant-prs[OF len G2] obtain Fn d fkb
where subresultant-prs-locale2 Fn d fk b GI G2 by auto
interpret subresultant-prs-locale2 F n d fk b G1 G2 by fact
show ?thesis by (rule resultant-impl-main, standard)
next
case G2: True
show ?thesis unfolding G2
resultant-impl-main-def using resultant-const(2)[of G1 0] by simp
qed

theorem resultant-impl: resultant-impl = resultant
proof (intro ext)

fix fg:: 'a poly

show resultant-impl f g = resultant f g

71

proof (cases length (coeffs f) > length (coeffs g))
case True
thus ?thesis unfolding resultant-impl-def resultant-impl-main[OF True] by
auto
next
case Fulse
hence length (coeffs g) > length (coeffs f) by auto
from resultant-impl-main[OF this
show ?thesis unfolding resultant-impl-def resultant-swap|of f g] using False
by (auto simp: Let-def)
qed
qed
end

7.3 Code Equations

In the following code-equations, we only compute the required values, e.g.,
hy is not required if ny > 0, we compute (—1) ... via a case-analysis, and
we perform special cases for d; = 1, which is the most frequent case.

context div-exp-param
begin

partial-function(tailrec) subresultant-prs-main-impl where
subresultant-prs-main-impl f Gi-1 Gi ni-1 d1-1 hi-2 = (let
gi-1 = lead-coeff Gi-1;
ni = degree Gi;
hi-1 = (if d1-1 = 1 then gi-1 else div-exp gi-1 hi-2 d1-1);
dl = ni-1 — ni;
pmod = pseudo-mod Gi-1 Gi
in (if pmod = 0 then f (Gi, (if d1 = 1 then lead-coeff Gi
else div-exp (lead-coeff Gi) hi-1 d1)) else
let
gi = lead-coeff Gf;
dwisor = (—1) ~(d1 + 1) * gi-1 * (hi-1 ~d1) ;
Gi-p1 = sdiv-poly pmod divisor
in subresultant-prs-main-impl f Gi Gi-p1 ni d1 hi-1))

definition subresultant-prs-impl where
subresultant-prs-impl f G1 G2 = (let

pmod = pseudo-mod G1 G2;

n2 = degree G2;

delta-1 = (degree G1 — n2);

g2 = lead-coeff G2;

h2 = ¢2 ~ delta-1

in if pmod = 0 then f (G2,h2) else let
G3 = (— 1) " (delta-1 + 1) x pmod,
g3 = lead-coeff G3;
n3 = degree G3;
d2 = n2 — n3,

72

pmod = pseudo-mod G2 G3
in if pmod = 0 then f (G3, if d2 = 1 then ¢3 else div-exp g3 h2 d2)
else let divisor = (— 1) ~(d2 + 1) * g2 x h2 ~ d2; G4 = sdiv-poly pmod
divisor
in subresultant-prs-main-impl f G3 G4 n8 d2 h2
)

end

context div-exp-sound
begin

lemma div-exp-1: div-exp g h (Suc 0) = g
using div-exp[of g Suc 0 h] by simp

lemma subresultant-prs-impl: subresultant-prs-impl f G1 G2 = f (subresultant-prs
G1 G2)
proof —
define h2 where h2 = lead-coeff G2 ~ (degree G1 — degree G2)
define G3 where G3 = ((— 1) ~ (degree G1 — degree G2 + 1) * pseudo-mod
G1 G2)
define G4 where G/ = sdiv-poly (pseudo-mod G2 G3)
((— 1) " (degree G2 — degree G3 + 1) * lead-coeff G2 %
h2 ~ (degree G2 — degree G3))
define d2 where d2 = degree G2 — degree G3
have di1: (if d = 1 then (g :: 'a) else div-exp g h d) = div-exp g h d for d g h
by (cases d = 1, auto simp: div-exp-1)
show ?thesis
unfolding subresultant-prs-impl-def subresultant-prs-def Let-def
subresultant-prs-main.simps[of G2]
if-distrib[of f] dl1
proof (rule if-cong[OF refl refl if-cong|OF refl refl]], unfold h2-def[symmetric],
unfold G3-def[symmetric], unfold G4-def[symmetric], unfold d2-def[symmetric])
note simp = subresultant-prs-main-impl.simps|of f] subresultant-prs-main.simps
show subresultant-prs-main-impl f G8 G4 (degree G3) d2 h2 =
f (subresultant-prs-main G3 G4 (div-exp (lead-coeff G3) h2 d2))
proof (induct G4 arbitrary: G3 d2 h2 rule: wf-induct| OF wf-measure|of degree]])
case (1 G/ G3 d2 h2)
let ?M = pseudo-mod G3 G4
show ?case
proof (cases ?M = 0)
case True
thus ?thesis unfolding simplof G3] Let-def dl1 by simp
next
case Fulse
hence id: (?M = 0) = False by auto
let 2c = ((— 1) ~ (degree G8 — degree G4 + 1) x lead-coeff G3 *
(div-exp (lead-coeff G3) h2 d2) ~ (degree G3 — degree G/))
let ?N = sdiv-poly ?M ?c
show ?thesis

73

proof (cases G4 = 0)
case G4: Fualse
have degree YN < degree ?M unfolding sdiv-poly-def by (rule de-
gree-map-poly-le)
also have ... < degree G4 using pseudo-mod|OF G4, of G3] Fulse by
auto
finally show ?thesis unfolding simp[of G3| Let-def id if-False dl1
by (intro 1(1)[rule-format], auto)
next
case 0: True
with False have G3 # 0 by auto
show ?thesis unfolding 0 unfolding simp[of G3] Let-def unfolding di1
simplof 0] by simp
qed
qed
qed
qed
qed

definition

resultant-impl-rec = subresultant-prs-main-impl (A (Gk,hk). if degree Gk = 0 then
hk else 0)
definition

resultant-impl-start = subresultant-prs-impl (A (Gk,hk). if degree Gk = 0 then hk
else 0)

lemma resultant-impl-start-code:
resultant-impl-start G1 G2 =
(let pmod = pseudo-mod G1 G2;
n2 = degree G2;
nl = degree G1;
g2 = lead-coeff G2;
dl = nl — n2
in if pmod = 0 then if n2 = 0 then if d1 = 0 then 1 else if d1 = 1 then g2
else g2 ~ d1 else 0
else let
G3 = if even d1 then — pmod else pmod;
nd = degree G3;
pmod = pseudo-mod G2 G3
in if pmod = 0
then if n8 = 0 then
let d2 = n2 — n3;
g3 = lead-coeff G3
in (if d2 = 1 then ¢3 else
div-exp g8 (if d1 = 1 then g2 else g2 ~ d1) d2) else 0

else let
h2 = (if d1 = 1 then g2 else g2 ~ d1);
d2 = n2 — n3,;

divisor = (if d2 = 1 then g2 * h2 else if even d2 then — g2

74

x h2 ~ d2 else g2 * h2 ~ d2);
G4 = sdiv-poly pmod divisor
in resultant-impl-rec G8 G4 n3 d2 h2)
proof —
obtain dI where dI: degree G1 — degree G2 = d1 by auto
have id1: (if even d1 then — pmod else pmod) = (—1)" (d1 + 1) * (pmod :: 'a
poly) for pmod by simp
have id3: (if d2 = 1 then g2 x h2 else if even d2 then — g2 * h2 ~ d2 else g2 x
h2 ~d2) =
((—1) 7 (d2+1)*g2xh2 " d2)
for d2 and ¢2 h2 :: 'a by auto
show ?thesis
unfolding resultant-impl-start-def subresultant-prs-impl-def resultant-impl-rec-def[symmetric]
Let-def split
unfolding d1
unfolding id1
unfolding id3
by (rule if-cong[OF refl if-cong if-cong|, auto simp: power2-eq-square)
qed

lemma resultant-impl-rec-code:
resultant-impl-rec Gi-1 Gi ni-1 d1-1 hi-2 = (
let ni = degree Gf;
pmod = pseudo-mod Gi-1 Gi

mn
if pmod = 0
then if ni = 0
then
let

dl = ni-1 — ni;
gi = lead-coeff Gi
in if dI = 1 then gi else
let gi-1 = lead-coeff Gi-1,;
hi-1 = (if d1-1 = 1 then gi-1 else div-exp gi-1 hi-2 d1-1) in
div-exp gi hi-1 d1
else 0
else let
dl = ni-1 — ni;
gi-1 = lead-coeff Gi-1;
hi-1 = (if d1-1 = 1 then gi-1 else div-exp gi-1 hi-2 d1-1);
divisor = if d1 = 1 then gi-1 * hi-1 else if even d1 then — g¢i-1 * hi-1 —
d1 else gi-1 * hi-1 ~ d1;
Gi-pl = sdiv-poly pmod divisor
in resultant-impl-rec Gi Gi-p1 ni d1 hi-1)
unfolding resultant-impl-rec-def subresultant-prs-main-impl.simps|of - Gi-1] split
Let-def
unfolding resultant-impl-rec-def [symmetric]
by (rule if-cong[OF - if-cong -], auto)

75

lemma resultant-impl-main-code: resultant-impl-main G1 G2 =
(if G2 = 0 then if degree GI = 0 then 1 else 0
else resultant-impl-start G1 G2)
unfolding resultant-impl-main-def
resultant-impl-start-def subresultant-prs-impl by simp

lemma resultant-impl-code: resultant-impl f g =
(if length (coeffs f) > length (coeffs g) then resultant-impl-main f g
else let res = resultant-impl-main g f in
if even (degree f) V even (degree g) then res else — res)
unfolding resultant-impl-def resultant-impl-def ..

lemma resultant-code: resultant = resultant-impl
using resultant-impl by fastforce

lemmas resultant-code-lemmas =
resultant-impl-code
resultant-impl-main-code
resultant-impl-start-code
resultant-impl-rec-code

end

global-interpretation div-exp-Lazard: div-exp-sound dichotomous-Lazard :: 'a ::
factorial-ring-ged = -
defines
resultant-impl-Lazard = div-exp-Lazard.resultant-impl and
resultant-impl-main-Lazard = div-exp-Lazard.resultant-impl-main and
resultant-impl-start-Lazard = div-exp-Lazard.resultant-impl-start and
resultant-impl-rec-Lazard = div-exp-Lazard.resultant-impl-rec
by (rule dichotomous-Lazard)

declare div-exp-Lazard.resultant-code-lemmas|code]

As default use Lazard-implementation, which implements resultants on
factorial rings.

declare div-exp-Lazard.resultant-code[code]

We also provide a second implementation without Lazard’s optimization,
which works on integral domains.

global-interpretation div-exp-basic: div-exp-sound basic-div-exp
defines
resultant-impl-basic = div-exp-basic.resultant-impl and
resultant-impl-main-basic = div-exp-basic.resultant-impl-main and
resultant-impl-start-basic = div-exp-basic.resultant-impl-start and
resultant-impl-rec-basic = div-exp-basic.resultant-impl-rec
by (rule basic-div-exp)

declare div-exp-basic.resultant-code-lemmas|code)

76

thm div-exp-basic.resultant-code

end

8 Computing the Gcd via the subresultant PRS

This theory now formalizes how the subresultant PRS can be used to calcu-
late the ged of two polynomials. Moreover, it proves the connection between
resultants and gcd, namely that the resultant is 0 iff the degree of the ged
is non-zero.

theory Subresultant-Gcd
imports
Subresultant
Polynomial-Factorization. Missing- Polynomial-Factorial
begin

8.1 Algorithm

locale div-exp-sound-ged = div-exp-sound div-exp for
div-exp :: 'a = {semiring-gcd-mult-normalize,factorial-ring-ged} = 'a = nat =
!
a
begin
definition gcd-impl-primitive where
[code del): ged-impl-primitive G1 G2 = normalize (primitive-part (fst (subresultant-prs

G1 G2)))

definition gcd-impl-main where
[code del]: ged-impl-main G1 G2 = (if G1 = 0 then 0 else if G2 = 0 then
normalize G1 else
smult (ged (content G1) (content G2))
(ged-impl-primitive (primitive-part G1) (primitive-part G2)))

definition gcd-impl where
ged-impl f g = (if length (coeffs f) > length (coeffs g) then ged-impl-main f g else
ged-impl-main g f)

8.2 Soundness Proof for gcd-impl = gcd

end

locale subresultant-prs-gcd = subresultant-prs-locale2 Fn § fk 8 G1 G2 for
F :: nat = 'a :: {factorial-ring-ged,semiring-gcd-mult-normalize} fract poly
and n :: nat = nat
and ¢ :: nat = nat
and f :: nat = ‘a fract
and k :: nat
and S :: nat = ’a fract

77

and G1 G2 :: 'a poly
begin

The subresultant PRS computes the gcd up to a scalar multiple.

context
fixes div-exp :: 'a = 'a = nat = 'a
assumes div-exp-sound: div-exp-sound div-exp
begin

interpretation div-exp-sound-gcd div-exp
using div-exp-sound by (rule div-exp-sound-gcd.intro)

lemma subresultant-prs-gcd: assumes subresultant-prs G1 G2 = (Gk, hk)
shows 3 ab.a# 0 Ab# 0 A smult a (ged GI G2) = smult b (normalize Gk)
proof —
from subresultant-prs|OF div-exp-sound assms]
have Fk: Fk=ffp GkandV .3 H. i# 0 — Fi=[ffjp H
andV 4.3 0. 8<i— i< Suck — B i=ffbby auto
from choice|OF this(2)] choice|OF this(3)] obtain H beta where
FH: Ni.i# 0= Fi=ffp (Hi) and
beta: \ i. 8 < i =i < Suc k = B i = ff (beta i) by auto
from Fk FH[OF k0] FH|of 1] FH|of 2] FH|of Suc k] F0[of Suc k| F1 F2
have border: Hk = Gk H1 = G1 H 2 = G2 H (Suc k) = 0 by auto
have i 420 = i<k= 3 ab.a#0ANb#0 A smulta(ged G1 G2) = smult
b (ged (H i) (H (Suc 7)) for ¢
proof (induct i rule: less-induct)
case (less ©)
from less(3) have ik: i < k .
from less(2) have i = 1 V i > 2 by auto
thus “case
proof
assume i = 1
thus ?thesis unfolding border|[symmetric] by (intro exI[of - 1], auto simp:
numeral-2-eq-2)
next
assume 2: 1 > 2
with ik have i — 1 < ii — 1 # 0 and imk: 1 — 1 < k by auto
from less(1)[OF this] i2
obtain a b where a: a # 0 and b: b # 0 and IH: smult a (ged G1 G2) =
smult b (ged (H (i — 1)) (H 7)) by auto
define M where M = pseudo-mod (H (i — 1)) (H i)
define ¢ where ¢ = (3 (Suc i)
have M: pseudo-mod (F (i — 1)) (F i) = ffp M unfolding to-fract-hom.pseudo-mod-hom|symmetric]
M-def
using 2 FH by auto
have c: ¢ # 0 using 50 unfolding c-def .
from 2 ik have 3: Suc i > 8 Suc i < Suc k by auto
from pmod|OF 3]

78

have pm: smult ¢ (F (Suc 7)) = pseudo-mod (F (i — 1)) (F) unfolding
c-def by simp
from beta|OF 3, folded c-def] obtain d where cd: ¢ = ff d by auto
with ¢ have d: d # 0 by auto
from pm[unfolded cd M) FH]of Suc i]
have ffp (smult d (H (Suc 7))) = ffp M by auto
hence pm: smult d (H (Suc 7)) = M by (rule map-poly-hom.injectivity)
from ik FO[of 7] i2 FH|of i] have Hi0: H i # 0 by auto
from pseudo-mod|OF this, of H (i — 1), folded M-def]
obtain ¢ @ where ¢: ¢ # 0 and smult ¢ (H (i — 1)) = Hi*x Q + M by
auto
from this[folded pm| have smult ¢ (H (i — 1)) = Q * H i + smult d (H (Suc
1)) by simp
from gcd-add-mult[of H i Q smult d (H (Suc 7)), folded this]
have ged (H i) (smult ¢ (H (i — 1))) = ged (H %) (smult d (H (Suc 7)) .
with ged-smult-ex[OF ¢, of H (i — 1) H i] obtain e where
e: e # 0 and ged (H i) (smult d (H (Suc ©))) = smult e (ged (H i) (H (i
— 1)
unfolding gcd.commutelof H i] by auto
with ged-smult-ex[OF d, of H (Suc i) H i] obtain ¢ where
c: ¢ # 0 and smult ¢ (ged (H i) (H (Suc i))) = smult e (ged (H (i — 1))
(#)
unfolding gcd.commute[of H i] by auto
from arg-cong|OF this(2), of smult b] arg-cong[OF IH, of smult €]
have smult (e * a) (ged G1 G2) = smult (b % ¢) (ged (H 7) (H (Suc 1))
unfolding smult-smult
by (simp add: ac-simps)
moreover have ¢ x a # 0 b x ¢ # 0 using a b ¢ e by auto
ultimately show ?thesis by blast
qed
qed
from this[OF kO le-refl, unfolded border]
obtain a b where a # 0 b # 0 and smult a (ged G1 G2) = smult b (normalize
Gk) by auto
thus ?thesis by auto
qed

lemma gcd-impl-primitive: assumes primitive-part G1 = G1 and primitive-part
G2 = G2
shows gcd-impl-primitive G1 G2 = ged G1 G2
proof —

let ?pp = primitive-part

let ?c = content

let %n = normalize

from F2 FO[of 2] k2 have G2: G2 # 0 by auto

obtain Gk hk where sub: subresultant-prs G1 G2 = (Gk, hk) by force

have impl: gcd-impl-primitive G1 G2 = ?n (?pp Gk) unfolding ged-impl-primitive-def
sub by auto

79

from subresultant-prs-gcd[OF sub]
obtain a b where a: a # 0 and b: b # 0 and id: smult a (gcd G1 G2) = smult
b (?n Gk)
by auto
define ¢ where ¢ = unit-factor (ged G1 G2)
define d where d = smult (unit-factor a) ¢
from G2 have c: is-unit ¢ unfolding c-def by auto
from arg-cong[OF id, of ?pp, unfolded primitive-part-smult primitive-part-gcd
assms
primitive-part-normalize c-def [symmetric])
have id: d * gcd G1 G2 = smult (unit-factor b) (?n (?pp Gk)) unfolding d-def
by simp
have d: is-unit d unfolding d-def using c a
by (simp add: is-unit-smult-iff)
from is-unitE[OF d]
obtain e where e: is-unit e and de: d x e = 1 by metis
define a where a = smult (unit-factor b) e
from arg-cong[OF id, of X\ x. e * 1
have (d * e) * gcd G1 G2 = a = (?n (?pp Gk)) by (simp add: ac-simps a-def)
hence id: ged G1 G2 = a = (?n (?pp Gk)) using de by simp
have a: is-unit a unfolding a-def using b e
by (simp add: is-unit-smult-iff)
define b where b = unit-factor (?pp Gk)
have Gk # 0 using subresultant-prs|OF div-exp-sound sub] FO[OF k0] by auto
hence b: is-unit b unfolding b-def by auto
from is-unitE[OF b
obtain ¢ where c: is-unit ¢ and bc: b x ¢ = 1 by metis
obtain d where d: is-unit d and dac: d = a * ¢ using c a by auto
have ged G1 G2 = d * (b * ?n (?pp Gk))
unfolding id dac using bc by (simp add: ac-simps)
also have b x ?n (?pp Gk) = ?pp Gk unfolding b-def by simp
finally have ged G1 G2 = d = ?pp Gk by simp
from arg-cong|[OF this, of ?n|
have ged G1 G2 = ?n (d * ?pp Gk) by simp
also have ... = ?n (?pp Gk) using d
unfolding normalize-mult by (simp add: is-unit-normalize)
finally show ?thesis unfolding impl ..
qed
end
end

context div-exp-sound-gcd
begin

lemma gcd-impl-main: assumes len: length (coeffs G1) > length (coeffs G2)
shows gcd-impl-main G1 G2 = ged G1 G2

proof (cases GI = 0)
case G1: Fulse
show ?thesis

80

proof (cases G2 = 0)
case G2: Fulse
let ?pp = primitive-part
from G2 have G2: %pp G2 # 0 and id: (G2 = 0) = False by auto
from len have len: length (coeffs (?pp G1)) > length (coeffs (?pp G2)) by
stmp
from enter-subresultant-prs[OF len G2] obtain F'n d fkb
where subresultant-prs-locale2 F n d fk b (¢pp G1) (?pp G2) by auto
interpret subresultant-prs-locale2 Fn d fk b ?pp G1 ?pp G2 by fact
interpret subresultant-prs-gcd Fn d fkb ?pp G1 ?pp G2 ..
show ?Zthesis unfolding gcd-impl-main-def ged-poly-decompose[of G1] id if-False
using G1
by (subst ged-impl-primitive, auto intro: div-exp-sound-axioms)
next
case True
thus ?thesis unfolding gcd-impl-main-def by simp
qed
next
case True
with len have G2 = 0 by auto
thus ?thesis using True unfolding gcd-impl-main-def by simp
qed

theorem gcd-impl[simp]: ged-impl = ged
proof (intro ext)
fix fg:: 'a poly
show gcd-impl f g = ged f g
proof (cases length (coeffs f) > length (coeffs g))
case True
thus ?thesis unfolding ged-impl-def ged-impl-main|OF True] by auto
next
case Fulse
hence length (coeffs g) > length (coeffs f) by auto
from gcd-impl-main|OF this]
show ?thesis unfolding gcd-impl-def ged.commutelof f g] using False by auto
qged
qed

The implementation also reveals an important connection between re-
sultant and ged.

lemma resultant-0-ged: resultant (f :: 'a poly) g = 0 +— degree (ged f g) # 0
proof —
{
fix fg:: 'a poly
assume len: length (coeffs) > length (coeffs g)
{
assume g: g # 0
with len have f: f # 0 by auto

81

let ?f = primitive-part f

let ?g = primitive-part g

let ?c = content

from len have len: length (coeffs ?f) > length (coeffs ?g) by simp
obtain Gk hk where sub: subresultant-prs ?f ?g = (Gk,hk) by force
have cf: ?c f # 0 and cg: ?c g # 0 using f g by auto

from g have ?g # 0 by auto
from enter-subresultant-prs|OF len this] obtain Fn d fk b
where subresultant-prs-locale2 F n d fk b ?f 29 by auto
interpret subresultant-prs-locale2 F'n d fk b ?f ?g by fact
from subresultant-prs|OF div-exp-sound-axioms sub] have h k = ff hk by
auto
with h0[OF le-refl] have hk # 0 by auto
} note hk0 = this
have resultant f g = 0 «— resultant (smult (?c f) ?f) (smult (?c g) ?g9) = 0
by simp
also have ... «+— resultant ?f ?g = 0 unfolding resultant-smult-left{OF cf]
resultant-smult-right| OF cg]
using cf c¢g by auto
also have ... «— resultant-impl-main ?f 29 = 0
unfolding resultant-impl[symmetric| resultant-impl-def resultant-impl-main-def

using len by auto
also have ... «— (degree Gk # 0)
unfolding resultant-impl-main-def sub split using g hk0 by auto
also have degree Gk = degree (ged-impl-primitive ?f 2q)
unfolding gcd-impl-primitive-def sub by simp

also have ... = degree (ged-impl-main f g)
unfolding gcd-impl-main-def using f g by auto
also have ... = degree (ged f g) unfolding ged-impl[symmetric] ged-impl-def

using len by auto
finally have (resultant f g = 0) = (degree (gcd f g) # 0) .

}

moreover

{

assume g: ¢ = 0 and f: degree f # 0
have (resultant f g = 0) = (degree (ged f g) # 0)
unfolding ¢ using f by auto
}

moreover

{

assume g: ¢ = 0 and f: degree f = 0
have (resultant f g = 0) = (degree (ged f g) # 0)
unfolding g using f by (auto simp: resultant-def sylvester-mat-def sylvester-mat-sub-def)

ultimately have (resultant f g = 0) = (degree (ged f g) # 0) by blast

} note main = this
show ?thesis

82

proof (cases length (coeffs f) > length (coeffs g))
case True
from main[OF True] show ?thesis .
next
case Fulse
hence length (coeffs g) > length (coeffs f) by auto
from main][OF this] show ?thesis
unfolding gcd.commute|of g f] resultant-swaplof g f] by (simp split: if-splits)
qed
qged

8.3 Code Equations

definition gcd-impl-rec = subresultant-prs-main-impl fst
definition gcd-impl-start = subresultant-prs-impl fst

lemma gcd-impl-rec-code:
ged-impl-rec Gi-1 Gi ni-1 d1-1 hi-2 = (
let pmod = pseudo-mod Gi-1 Gi
m
if pmod = 0 then Gi
else let
ni = degree Gi;
dl = ni-1 — ni;
gi-1 = lead-coeff Gi-1;
hi-1 = (if d1-1 = 1 then gi-1 else div-exp gi-1 hi-2 d1-1);
divisor = if d1 = 1 then ¢i-1 * hi-1 else if even d1 then — g¢i-1 * hi-1 —
d1 else gi-1 * hi-1 ~ d1;
Gi-pl = sdiv-poly pmod divisor
in ged-impl-rec Gi Gi-p1 ni d1 hi-1)
unfolding ged-impl-rec-def subresultant-prs-main-impl.simps|of - Gi-1] split Let-def
unfolding gcd-impl-rec-def[symmetric]
by (rule if-cong, auto)

lemma gcd-impl-start-code:
ged-impl-start G1 G2 =
(let pmod = pseudo-mod G1 G2
in if pmod = 0 then G2
else let
n2 = degree G2;
nl = degree G1;
dl = nl — n2;
G3 = if even dI then — pmod else pmod,
pmod = pseudo-mod G2 G3
in if pmod = 0
then G3
else let
92 = lead-coeff G2;
n3 = degree G3;

83

h2 = (if d1 = 1 then g2 else g2 ~ d1);
d2 = n2 — n3;
divisor = (if d2 = 1 then g2 * h2 else if even d2 then — g2
x h2 T d2 else g2 x h2 T d2);
G4 = sdiv-poly pmod divisor
in ged-impl-rec G3 G4 n8 d2 h2)
proof —
obtain d! where d1: degree G1 — degree G2 = d1 by auto
have id1: (if even d1 then — pmod else pmod) = (—1)" (dl + 1) * (pmod :: 'a
poly) for pmod by simp
show ?thesis
unfolding ged-impl-start-def subresultant-prs-impl-def ged-impl-rec-def[symmetric]
Let-def split
unfolding d1
unfolding id1
by (rule if-cong, auto)
qed

lemma gcd-impl-main-code:
ged-impl-main G1 G2 = (if G1 = 0 then 0 else if G2 = 0 then normalize G1 else
let ¢1 = content G1;
c2 = content G2;
pl = map-poly (A z. z div c1) G1;
p2 = map-poly (A z. z div ¢2) G2
in smult (ged ¢l ¢2) (normalize (primitive-part (ged-impl-start p1 p2))))
unfolding gcd-impl-main-def Let-def primitive-part-def ged-impl-start-def ged-impl-primitive-def
subresultant-prs-impl by simp

lemmas gcd-code-lemmas =
ged-impl-main-code
gcd-impl-start-code
ged-impl-rec-code
gcd-impl-def

corollary gcd-via-subresultant: ged = ged-impl by simp
end

global-interpretation div-ezp-Lazard-gcd: div-exp-sound-ged dichotomous-Lazard
i 'a i {semiring-ged-mult-normalize, factorial-ring-ged} = -
defines
ged-impl-Lazard = div-exp-Lazard-ged.ged-impl and
ged-impl-main-Lazard = div-exp-Lazard-ged. ged-impl-main and
ged-impl-start-Lazard = div-exp-Lazard-ged.ged-impl-start and
ged-impl-rec-Lazard = div-exp-Lazard-ged.ged-impl-rec
by (simp add: Subresultant.dichotomous-Lazard div-exp-sound-gcd-def)

declare div-exp-Lazard-ged.ged-code-lemmas|code]

lemmas resultant-0-gcd = div-exp-Lazard-gced.resultant-0-ged

84

thm div-exp-Lazard-gcd. ged-via-subresultant

Note that we did not activate ged = ged-impl-Lazard as code-equation,
since according to our experiments, the subresultant-ged algorithm is not
always more efficient than the currently active equation. In particular, on
int poly gcd-impl-Lazard performs worse, but on multi-variate polynomials,
e.g., int poly poly poly, gcd-impl-Lazard is preferable.

end

References

[1] W. S. Brown. The subresultant PRS algorithm. ACM Trans. Math.
Softw., 4(3):237-249, 1978.

[2] W. S. Brown and J. F. Traub. On Euclid’s algorithm and the theory of
subresultants. Journal of the ACM, 18(4):505-514, 1971.

[3] L. Ducos. Optimizations of the subresultant algorithm. Journal of Pure
and Applied Algebra, 145:149-163, 2000.

[4] A. Mahboubi. Proving formally the implementation of an efficient ged
algorithm for polynomials. In Proc. IJCAR’06, volume 4130 of LNCS,
pages 438-452, 2006.

[5] R. Thiemann and A. Yamada. Algebraic numbers in Isabelle/HOL. In
Proc. ITP’16, volume 9807 of LNCS, pages 391-408, 2016.

85

	Introduction
	Resultants
	Dichotomous Lazard
	Binary Exponentiation
	Homomorphisms
	Polynomial coefficients with integer index
	Subresultants and the subresultant PRS
	Algorithm
	Soundness Proof for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 div-exp-param.resultant-impl div-exp = resultant
	Code Equations

	Computing the Gcd via the subresultant PRS
	Algorithm
	Soundness Proof for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 gcd-impl = gcd
	Code Equations

