Subresultants*

Sebastiaan Joosten, René Thiemann and Akihisa Yamada March 19, 2025

Abstract

We formalize the theory of subresultants and the subresultant polynomial remainder sequence as described by Brown and Traub. As a result, we obtain efficient certified algorithms for computing the resultant and the greatest common divisor of polynomials.

Contents

1	Introduction	2
2	Resultants	2
3	Dichotomous Lazard	5
4	Binary Exponentiation	9
5	Homomorphisms	10
6	Polynomial coefficients with integer index	11
7	Subresultants and the subresultant PRS 7.1 Algorithm	
	7.3 Code Equations	
8	Computing the Gcd via the subresultant PRS 8.1 Algorithm	
	8.2 Soundness Proof for $gcd\text{-}impl = gcd$	

^{*}Supported by FWF (Austrian Science Fund) project Y757.

1 Introduction

Computing the gcd of two polynomials can be done via the Euclidean algorithm, if the domain of the polynomials is a field. For non-field polynomials, one has to replace the modulo operation by the pseudo-modulo operation, which results in the exponential growth of coefficients in the gcd algorithm. To counter this problem, one may divide the intermediate polynomials by their contents in every iteration of the gcd algorithm. This is precisely the way how currently resultants and gcds are computed in Isabelle.

Computing contents in every iteration is a costly operation, and therefore Brown and Traub have developed the subresultant PRS (polynomial remainder sequence) algorithm [1, 2]. It avoids intermediate content computation and at the same time keeps the coefficients small, i.e., the coefficients grow at most polynomially.

The soundness of the subresultant PRS gcd algorithm is in principle similar to the Euclidean algorithm, i.e., the intermediate polynomials that are computed in both algorithms differ only by a constant factor. The major problem is to prove that all the performed divisions are indeed exact divisions. To this end, we formalize the fundamental theorem of Brown and Traub as well as the resulting algorithms by following the original (condensed) proofs. This is in contrast to a similar Coq formalization by Mahboubi [4], which follows another proof based on polynomial determinants.

As a consequence of the new algorithms, we significantly increased the speed of the algebraic number implementation [5] which heavily relies upon the computation of resultants of bivariate polynomials.

2 Resultants

This theory defines the Sylvester matrix and the resultant and contains basic facts about these notions. After the connection between resultants and subresultants has been established, we then use properties of subresultants to transfer them to resultants. Remark: these properties have previously been proven separately for both resultants and subresultants; and this is the reason for splitting the theory of resultants in two parts, namely "Resultant-Prelim" and "Resultant" which is located in the Algebraic-Number AFP-entry.

```
theory Resultant-Prelim
imports
Jordan-Normal-Form.Determinant
Polynomial-Interpolation.Ring-Hom-Poly
begin
```

Sylvester matrix

definition sylvester-mat-sub :: $nat \Rightarrow nat \Rightarrow 'a \ poly \Rightarrow 'a \ poly \Rightarrow 'a :: zero \ mat$ where

```
sylvester-mat-sub\ m\ n\ p\ q \equiv
  mat\ (m+n)\ (m+n)\ (\lambda\ (i,j).
    if i < n then
      if i \leq j \wedge j - i \leq m then coeff p (m + i - j) else 0
    else if i - n \le j \land j \le i then coeff q(i-j) else 0)
definition sylvester-mat :: 'a poly \Rightarrow 'a poly \Rightarrow 'a :: zero mat where
  sylvester-mat \ p \ q \equiv sylvester-mat-sub \ (degree \ p) \ (degree \ q) \ p \ q
lemma sylvester-mat-sub-dim[simp]:
 fixes m \ n \ p \ q
 defines S \equiv sylvester\text{-}mat\text{-}sub \ m \ n \ p \ q
 shows dim\text{-}row S = m+n and dim\text{-}col S = m+n
 unfolding S-def sylvester-mat-sub-def by auto
lemma sylvester-mat-sub-carrier:
 shows sylvester-mat-sub m n p q \in carrier-mat (m+n) (m+n) by auto
lemma sylvester-mat-dim[simp]:
 fixes p q
 defines d \equiv degree \ p + degree \ q
 shows dim\text{-}row (sylvester\text{-}mat \ p \ q) = d \ dim\text{-}col (sylvester\text{-}mat \ p \ q) = d
 unfolding sylvester-mat-def d-def by auto
lemma sylvester-carrier-mat:
 fixes p q
 defines d \equiv degree \ p + degree \ q
 shows sylvester-mat p \in carrier-mat d \in d unfolding d-def by auto
lemma sylvester-mat-sub-index:
 fixes p q
 assumes i: i < m+n and j: j < m+n
 shows sylvester-mat-sub m n p q \$\$ (i,j) =
   (if i < n then
      if i \leq j \wedge j - i \leq m then coeff p (m + i - j) else 0
    else if i - n \le j \land j \le i then coeff q(i-j) else 0)
 unfolding \ sylvester-mat-sub-def
 unfolding index-mat(1)[OF\ i\ j] by auto
lemma sylvester-index-mat:
 fixes p q
 defines m \equiv degree \ p \ and \ n \equiv degree \ q
 assumes i: i < m+n and j: j < m+n
 shows sylvester-mat p \neq \$\$ (i,j) =
   (if i < n then
      if i \leq j \wedge j - i \leq m then coeff p (m + i - j) else 0
    else if i - n \le j \land j \le i then coeff q(i - j) else \theta)
  unfolding sylvester-mat-def
  using sylvester-mat-sub-index[OF\ i\ j] unfolding m-def n-def.
```

```
lemma sylvester-index-mat2:
 fixes p q :: 'a :: comm\text{-}semiring\text{-}1 poly
 defines m \equiv degree \ p \ and \ n \equiv degree \ q
 assumes i: i < m+n and j: j < m+n
 shows sylvester-mat p \neq \$\$ (i,j) =
   (if i < n then coeff (monom 1 (n - i) * p) (m+n-j)
    else coeff (monom 1 (m + n - i) * q) (m+n-j))
 apply(subst sylvester-index-mat)
  unfolding m-def[symmetric] n-def[symmetric]
 \mathbf{using}\ i\ j\ \mathbf{apply}\ (simp, simp)
 unfolding coeff-monom-mult
 apply(cases i < n)
 apply (cases i \leq j \wedge j - i \leq m)
 using j m-def apply (force, force simp: coeff-eq-0)
 apply (cases i - n \le j \land j \le i)
 using i \ j \ coeff\text{-}eq\text{-}\theta[of \ q] \ n\text{-}def by auto
lemma sylvester-mat-sub-0[simp]: sylvester-mat-sub 0 n 0 q = 0_m n n
 unfolding sylvester-mat-sub-def by auto
lemma sylvester-mat-0[simp]: sylvester-mat 0 q = 0_m (degree q) (degree q)
  unfolding sylvester-mat-def by simp
lemma \ sylvester-mat-const[simp]:
  fixes a :: 'a :: semiring-1
 shows sylvester-mat [:a:] q = a \cdot_m 1_m (degree q)
   and sylvester-mat p [:a:] = a \cdot_m 1_m (degree p)
 by(auto simp: sylvester-index-mat)
lemma sylvester-mat-sub-map:
 assumes f\theta: f\theta = \theta
 shows map-mat f (sylvester-mat-sub m n p q) = sylvester-mat-sub m n (map-poly
f p) (map-poly f q)
   (is ? l = ? r)
proof(rule eq-matI)
 note [simp] = coeff-map-poly[of f, OF f0]
 show dim: dim-row ?l = dim-row ?r dim-col ?l = dim-col ?r by auto
 fix i j
 assume ij: i < dim\text{-}row ?r j < dim\text{-}col ?r
 note ij' = this[unfolded sylvester-mat-sub-dim]
 note ij'' = ij[unfolded dim[symmetric] index-map-mat]
 show ?l $$ (i, j) = ?r $$ (i, j)
   unfolding index-map-mat(1)[OF ij'']
   unfolding sylvester-mat-sub-index[OF ij']
   unfolding Let-def
   using f0 by auto
qed
```

```
definition resultant :: 'a poly \Rightarrow 'a poly \Rightarrow 'a :: comm-ring-1 where
  resultant p q = det (sylvester-mat p q)
    Resultant, but the size of the base Sylvester matrix is given.
definition resultant-sub m n p q = det (sylvester-mat-sub m n p q)
lemma resultant-sub: resultant p = resultant-sub (degree p) (degree q) p \neq q
  unfolding resultant-def sylvester-mat-def resultant-sub-def by auto
lemma resultant-const[simp]:
 fixes a :: 'a :: comm-ring-1
 shows resultant [:a:] q = a \cap (degree \ q)
   and resultant p[:a:] = a \land (degree \ p)
 unfolding resultant-def unfolding sylvester-mat-const by simp-all
lemma resultant-1 [simp]:
 fixes p :: 'a :: comm-ring-1 poly
 shows resultant 1 p = 1 resultant p = 1
 using resultant\text{-}const(1) [of 1 p] resultant\text{-}const(2) [of p 1]
 by (auto simp add: pCons-one)
lemma resultant-0[simp]:
  fixes p :: 'a :: comm-ring-1 poly
  assumes degree p > 0
 shows resultant 0 p = 0 resultant p \theta = 0
 using resultant\text{-}const(1)[of \ 0 \ p] resultant\text{-}const(2)[of \ p \ 0]
 using zero-power assms by auto
lemma (in comm-ring-hom) resultant-map-poly: degree (map-poly hom p) = degree
  degree \ (map-poly \ hom \ q) = degree \ q \Longrightarrow resultant \ (map-poly \ hom \ p) \ (map-poly \ hom \ p)
hom \ q) = hom \ (resultant \ p \ q)
 unfolding resultant-def sylvester-mat-def sylvester-mat-sub-def hom-det[symmetric]
 by (rule arg-cong[of - - det], auto)
lemma (in inj-comm-ring-hom) resultant-hom: resultant (map-poly hom p) (map-poly
hom \ q) = hom \ (resultant \ p \ q)
 by (rule resultant-map-poly, auto)
```

3 Dichotomous Lazard

This theory contains Lazard's optimization in the computation of the subresultant PRS as described by Ducos [3, Section 2].

```
\begin{array}{l} \textbf{theory} \ \textit{Dichotomous-Lazard} \\ \textbf{imports} \end{array}
```

end

```
HOL-Computational-Algebra. Polynomial-Factorial
begin
lemma power-fract[simp]: (Fract a b) \hat{n} = Fract (a \hat{n}) (b \hat{n})
 by (induct n, auto simp: fract-collapse)
lemma range-to-fract-dvd-iff: assumes b: b \neq 0
  shows Fract a \ b \in range \ to\text{-}fract \longleftrightarrow b \ dvd \ a
proof
 assume b \ dvd \ a then obtain c where a: a = b * c unfolding dvd-def by auto
 have Fract \ a \ b = Fract \ c \ 1 using b unfolding a by (simp \ add: \ eq\ fract)
 thus Fract \ a \ b \in range \ to-fract unfolding to-fract-def by auto
next
 assume Fract\ a\ b\in range\ to\text{-}fract
 then obtain c where Fract a b = Fract c 1 unfolding to-fract-def by auto
 hence a = b * c using b by (simp add: eq-fract)
 thus b \ dvd \ a \dots
qed
lemma Fract-cases-coprime [cases type: fract]:
 fixes q :: 'a :: factorial-ring-gcd fract
  obtains (Fract) a b where q = Fract \ a \ b \ \neq 0 \ coprime \ a \ b
proof -
  obtain a b where q: q = Fract \ a \ b \ and \ b\theta: b \neq \theta by (cases q, auto)
 define g where g: g = gcd \ a \ b
 define A where A: A = a \ div \ g
 define B where B: B = b \ div \ g
 have a: a = A * g unfolding A g by simp
 have b: b = B * g unfolding B g by simp
 from b\theta b have \theta: B \neq \theta by auto
 have q: q = Fract A B unfolding q a b
   by (subst eq-fract, auto simp: b0 \ 0 \ g)
 have cop: coprime A B unfolding A B g using b\theta
   by (simp add: div-gcd-coprime)
 assume \bigwedge a\ b.\ q = Fract\ a\ b \Longrightarrow b \neq 0 \Longrightarrow coprime\ a\ b \Longrightarrow thesis
 from this[OF \ q \ 0 \ cop] show ?thesis.
qed
lemma to-fract-power-le: fixes a :: 'a :: factorial-ring-gcd fract
 assumes no-fract: a * b \cap e \in range to-fract
 and a: a \in range \ to\text{-}fract
 and le: f \leq e
shows a * b \cap f \in range \ to\text{-}fract
proof -
 obtain bn bd where b: b = Fract \ bn \ bd and bd: bd \neq 0 and copb: coprime \ bn
bd by (cases b, auto)
 obtain an where a: a = Fract an 1 using a unfolding to-fract-def by auto
  have id: a * b ^e = Fract (an * bn^e) (bd^e) unfolding a b power-fract
mult-fract by simp
```

```
have \theta: bd \hat{e} \neq \theta for e using bd by auto
 from no-fract[unfolded id range-to-fract-dvd-iff[OF 0]] have dvd: bd \cap e \ dvd an
* bn ^e .
 from copb have copb: coprime (bd ^e) (bn ^e) for e
   by (simp add: ac-simps)
 from dvd copb [of e] bd have bd ^e dvd an
   by (simp add: coprime-dvd-mult-left-iff)
  hence bd ^f dvd an using le by (rule power-le-dvd)
  hence dvd: bd ^f dvd an * bn ^f by <math>simp
 from le obtain g where e: e = f + g using le-Suc-ex by blast
  have id': a * b \cap f = Fract (an * bn \cap f) (bd \cap f) unfolding a \ b \ power-fract
mult-fract by simp
 show ?thesis unfolding id' range-to-fract-dvd-iff[OF 0] by (rule dvd)
qed
lemma div-divide-to-fract: assumes x \in range \ to-fract
 and x = (y :: 'a :: idom-divide fract) / z
 and x' = y' \operatorname{div} z'
 and y = to-fract y' z = to-fract z'
 shows x = to-fract x'
proof (cases z' = \theta)
  case True
  thus ?thesis using assms by auto
\mathbf{next}
  case False
 from assms obtain r where to-fract y' / to-fract z' = to-fract r by auto
 thus ?thesis using False assms
   by (simp\ add:\ eq\ fract(1)\ to\ fract\ def)
qed
declare Euclidean-Rings.divmod-nat-def [termination-simp]
fun dichotomous-Lazard :: 'a :: idom-divide \Rightarrow 'a \Rightarrow nat \Rightarrow 'a where
  dichotomous-Lazard x y n = (if n \le 1 then if n = 1 then <math>x else 1 else
   let(d,r) = Euclidean-Rings.divmod-nat n 2;
      rec = dichotomous-Lazard x y d;
      recsq = rec * rec div y in
   if r = 0 then recsq else recsq * x \ div \ y)
lemma dichotomous-Lazard-main: fixes x :: 'a :: idom-divide
 assumes \bigwedge i. i \leq n \Longrightarrow (to\text{-}fract\ x) \hat{i} / (to\text{-}fract\ y) \hat{i} - 1) \in range\ to\text{-}fract
 shows to-fract (dichotomous-Lazard x y n) = (to-fract x) n / (to-fract y) (n-1)
 using assms
\mathbf{proof} (induct x \ y \ n \ rule: dichotomous-Lazard.induct)
 case (1 \ x \ y \ n)
 let ?f = to\text{-}fract
 consider (0) n = 0 \mid (1) n = 1 \mid (n) \neg n \le 1 by linarith
 thus ?case
```

```
proof cases
   case n
   obtain d r where n2: Euclidean-Rings.divmod-nat n 2 = (d,r) by force
   from Euclidean-Rings.divmod-nat-def[of n 2] n2 have dr: d = n div 2 r = n
mod 2 by auto
   hence r: r = 0 \lor r = 1 by auto
   define rec where rec = dichotomous-Lazard x y d
   let ?sq = rec * rec div y
   have res: dichotomous-Lazard x y n = (if r = 0 then ?sq else ?sq * x div y)
    unfolding dichotomous-Lazard.simps[of x y n] n2 Let-def rec-def using n by
auto
   have ndr: n = d + d + r unfolding dr by presburger
  from ndr \ r \ n have d\theta: d \neq \theta by auto
   have IH: ?f rec = ?f x ^ d / ?f y ^ (d - 1)
    using 1(1)[OF \ n \ refl \ n2[symmetric] \ 1(2), folded \ rec-def] \ ndr \ by \ auto
   have ?f(rec * rec) = ?fx \land d / ?fy \land (d-1) * ?fx \land d / ?fy \land (d-1)
using IH by simp
  also have ... = ?fx \land (d+d) / ?fy \land (d-1+(d-1)) unfolding power-add
by simp
   also have d-1+(d-1)=d+d-2 using d\theta by simp
   finally have id: ?f(rec * rec) = ?fx ^(d+d) / ?fy ^(d+d-2).
   let ?dd = (?fx \land (d + d) / ?fy \land (d + d - 2)) / ?fy
  let ?d = ?fx (d + d) / ?fy (d + d - 1)
   have dd: ?dd = ?d using d\theta by (cases d, auto)
   have sq: ?f ?sq = ?d unfolding dd[symmetric]
  proof (rule sym, rule div-divide-to-fract[OF - refl refl id[symmetric] refl], unfold
dd
    show ?d \in range ?f by (rule\ 1(2), insert\ ndr, auto)
   qed
   show ?thesis
   proof (cases \ r = \theta)
    case True
    with res sq show ?thesis unfolding ndr by auto
   next
    {f case} False
    with r have r: r = 1 by auto
    let ?sq' = ?sq * x div y
    from False res have res: dichotomous-Lazard x \ y \ n = ?sq' by simp
    from sq have id: ?f(?sq*x) = ?fx^(d+d+r) / ?fy^(d+d-1)
      unfolding r by simp
    let ?dd = (?fx \land (d + d + r) / ?fy \land (d + d - 1)) / ?fy
    let ?d = ?fx (d + d + r) / ?fy (d + d + r - 1)
    have dd: ?dd = ?d using d\theta unfolding r by (cases d, auto)
    have sq': ?f ?sq' = ?d unfolding dd[symmetric]
     proof (rule sym, rule div-divide-to-fract[OF - refl refl id[symmetric] refl],
unfold dd)
      show ?d \in range ?f by (rule 1(2), unfold ndr, auto)
    ged
    show ?thesis unfolding res sq' unfolding ndr by simp
```

```
qed
      qed auto
qed
lemma dichotomous-Lazard: fixes x :: 'a :: factorial-ring-gcd
     assumes (to\text{-}fract\ x)^n / (to\text{-}fract\ y)^n (n-1) \in range\ to\text{-}fract
     shows to-fract (dichotomous-Lazard x y n) = (to-fract x) \hat{n} / (to-fract y) \hat{n} (n-1)
proof (rule dichotomous-Lazard-main)
      \mathbf{fix} i
      assume i: i \leq n
     show to-fract x \hat{i} / \text{to-fract } y \hat{i} = 1  i = 1
      proof (cases i)
           case (Suc j)
          have id: to-fract x \hat{i} / \text{to-fract } y \hat{i} = \text{to-fract } x * (\text{to-fract } x / \text{to-fract } x / \text{t
y) \hat{j}
                  unfolding Suc by (simp add: power-divide)
           from Suc i have n \neq 0 and j: j \leq n - 1 by auto
             hence idd: to-fract x * (to-fract x / to-fract y) ^(n-1) = (to-fract x) ^n /
(to\text{-}fract\ y) \cap (n-1)
                 by (cases n, auto simp: power-divide)
           show ?thesis unfolding id
                  by (rule to-fract-power-le[OF - - j], unfold idd, insert assms, auto)
      next
           case \theta
           have 1 = to-fract 1 by simp
           hence 1 \in range \ to\text{-}fract \ \mathbf{by} \ blast
           thus ?thesis using 0 by auto
     qed
qed
declare dichotomous-Lazard.simps[simp del]
```

4 Binary Exponentiation

end

This theory defines the standard algorithm for binary exponentiation, or exponentiation by squaring.

```
theory Binary-Exponentiation
imports
Main
begin
declare Euclidean-Rings.divmod-nat-def[termination-simp]
context monoid-mult
begin
```

```
fun binary-power :: 'a \Rightarrow nat \Rightarrow 'a where
  binary-power x n = (if n = 0 then 1 else
   let (d,r) = Euclidean-Rings.divmod-nat n 2;
      rec = binary-power(x * x) d in
   if r = 0 then rec else rec * x)
lemma binary-power[simp]: binary-power = ( )
proof (intro ext)
 \mathbf{fix} \ x \ n
 show binary-power x \ n = x \ \hat{} \ n
 proof (induct x n rule: binary-power.induct)
   case (1 \ x \ n)
   show ?case
   proof (cases n = \theta)
     case False
     note IH = 1[OF False]
     obtain d r where n2: Euclidean-Rings.divmod-nat n 2 = (d,r) by force
     from Euclidean-Rings.divmod-nat-def[of n 2] n2 have dr: d = n div 2 r =
n mod 2 by auto
     hence r: r = 0 \lor r = 1 by auto
     let ?rec = binary-power(x * x) d
     have binary-power x n = (if r = 0 then ?rec else ?rec * x)
       unfolding binary-power.simps[of x n] n2 using False by auto
     also have ... = ?rec * x ^r  using r by (cases r = 0, auto)
     also have ?rec = (x * x) ^ d
       \mathbf{by}\ (\mathit{rule}\ \mathit{IH}[\mathit{OF}\ \text{-}\ \mathit{refl}],\ \mathit{simp}\ \mathit{add}\colon \mathit{n2})
     also have \dots = x \cap (d + d) unfolding power-add
       using power2-eq-square power-even-eq power-mult by auto
     also have \dots * x \hat{r} = x \hat{d} + d + r
      by (simp add: power-add)
     also have d + d + r = n unfolding dr by presburger
     finally show ?thesis.
   qed auto
 qed
qed
lemma binary-power-code-unfold[code-unfold]: (^{^{\circ}}) = binary-power
 by simp
declare binary-power.simps[simp del]
end
end
```

5 Homomorphisms

We register two homomorphism, namely lifting constants to polynomials, and lifting elements of some domain into their fraction field.

theory More-Homomorphisms

```
imports Polynomial-Interpolation. Ring-Hom-Poly
  Jordan	ext{-}Normal	ext{-}Form.Determinant
begin
abbreviation (input) coeff-lift == \lambda a. [: a:]
interpretation coeff-lift-hom: inj-comm-monoid-add-hom coeff-lift by (unfold-locales,
interpretation coeff-lift-hom: inj-ab-group-add-hom coeff-lift...
interpretation coeff-lift-hom: inj-comm-semiring-hom coeff-lift
 by standard (simp-all add: ac-simps)
interpretation coeff-lift-hom: inj-comm-ring-hom coeff-lift...
interpretation coeff-lift-hom: inj-idom-hom coeff-lift..
    The following rule is incompatible with existing simp rules.
declare coeff-lift-hom.hom-mult[simp del]
declare coeff-lift-hom.hom-add[simp del]
declare coeff-lift-hom.hom-uminus[simp del]
interpretation to-fract-hom: inj-comm-ring-hom to-fract by (unfold-locales, auto)
interpretation to-fract-hom: idom-hom to-fract..
interpretation to-fract-hom: inj-idom-hom to-fract..
end
```

6 Polynomial coefficients with integer index

We provide a function to access the coefficients of a polynomial via an integer index. Then index-shifting becomes more convenient, e.g., compare in the lemmas for accessing the coefficient of a product with a monomial there is no special case for integer coefficients, whereas for natural number coefficients there is a case-distinction.

```
theory Coeff-Int imports HOL-Combinatorics.Permutations \\ Polynomial-Interpolation.Missing-Polynomial \\ \textbf{begin} \textbf{definition} \ coeff-int :: 'a :: zero \ poly \Rightarrow int \Rightarrow 'a \ \textbf{where} \\ coeff-int \ p \ i = (if \ i < 0 \ then \ 0 \ else \ coeff \ p \ (nat \ i)) \\ \textbf{lemma} \ coeff-int-eq-0: \ i < 0 \ \lor \ i > int \ (degree \ p) \Longrightarrow coeff-int \ p \ i = 0 \\ \textbf{unfolding} \ coeff-int-def \\ \textbf{by} \ (cases \ i < 0, \ auto \ intro: \ coeff-eq-0) \\ \textbf{lemma} \ coeff-int-smult[simp]: \ coeff-int \ (smult \ c \ p) \ i = c * \ coeff-int \ p \ i \\ \textbf{unfolding} \ coeff-int-def \ \textbf{by} \ simp \\ \textbf{optimize} \ coeff-int-def \ \textbf{optim
```

```
lemma coeff-int-signof-mult: coeff-int (of-int (sign x) * f) i = of-int (sign x) *
coeff-int f i
 by (auto simp: coeff-int-def sign-def)
lemma coeff-int-sum: coeff-int (sum p(A)) i = (\sum x \in A. coeff-int (p(x)) i)
 using coeff-sum[of p A nat i] unfolding coeff-int-def
 by (cases i < \theta, auto)
lemma coeff-int-\theta[simp]: coeff-int f \theta = coeff f \theta unfolding coeff-int-def by simp
lemma coeff-int-monom-mult: coeff-int (monom a d * f) i = (a * coeff-int f (i - f))
proof (cases i < \theta)
 {f case}\ {\it True}
 thus ?thesis unfolding coeff-int-def by simp
next
 case False
 hence i \geq 0 by auto
 then obtain j where i: i = int j by (rule nonneg-eq-int)
 show ?thesis
 proof (cases i \ge d)
   case True
   with i have nat (int j - int d) = j - d by auto
   with coeff-monom-mult[of a] show ?thesis unfolding coeff-int-def i
     \mathbf{by} \ simp
 next
   case False
   thus ?thesis unfolding i by (simp add: coeff-int-def coeff-monom-mult)
 qed
qed
lemma coeff-prod-const: assumes finite xs and y \notin xs
 and \bigwedge x. \ x \in xs \Longrightarrow degree \ (f \ x) = 0
shows coeff (prod f (insert y xs)) i = prod (\lambda x. coeff (f x) 0) xs * coeff (f y) i
 using assms
proof (induct xs rule: finite-induct)
 case (insert x xs)
 from insert(2,4) have id: insert \ y \ (insert \ x \ xs) - \{x\} = insert \ y \ xs \ by \ auto
 have prod f (insert y (insert x xs)) = f x * prod f (insert y xs)
   by (subst\ prod.remove[of - x],\ insert\ insert(1,2)\ id,\ auto)
 hence coeff (prod f (insert y (insert x xs))) i = coeff <math>(f x * prod f (insert y xs))
i by simp
 also have ... = coeff(f x) \theta * (coeff(prod f(insert y xs)) i)
 proof -
   from insert(5)[of x] degree 0-coeffs [of f x] obtain c where fx: fx = [: c:] by
   show ?thesis unfolding fx by auto
  qed
 also have (coeff (prod f (insert y xs)) i) = (\prod x \in xs. coeff (f x) \theta) * coeff (f y)
```

```
i using insert by auto
     also have coeff (f x) \ \theta * \ldots = prod (\lambda x. coeff (f x) \theta) (insert x xs) * coeff (f x) equals (f x) equals
y) i
           by (subst prod.insert-remove, insert insert (1,2,4), auto simp: ac-simps)
     finally show ?case.
qed simp
lemma coeff-int-prod-const: assumes finite xs and y \notin xs
     and \bigwedge x. \ x \in xs \Longrightarrow degree \ (f \ x) = 0
shows coeff-int (prod f (insert y xs)) i = prod (\lambda x. coeff-int (f x) 0) xs * coeff-int
(f y) i
     using coeff-prod-const [OF assms] unfolding coeff-int-def by (cases i < 0, auto)
lemma coeff-int[simp]: coeff-int p n = coeff p n unfolding coeff-int-def by auto
lemma coeff-int-minus[simp]:
      coeff-int (a - b) i = coeff-int a i - coeff-int b i
     by (auto simp: coeff-int-def)
lemma coeff-int-pCons-0[simp]: coeff-int (pCons 0 b) i = coeff-int b (i - 1)
     by (auto simp: Nitpick.case-nat-unfold coeff-int-def coeff-pCons nat-diff-distrib')
end
```

7 Subresultants and the subresultant PRS

This theory contains most of the soundness proofs of the subresultant PRS algorithm, where we closely follow the papers of Brown [1] and Brown and Traub [2]. This is in contrast to a similar Coq formalization of Mahboubi [4] which is based on polynomial determinants.

Whereas the current file only contains an algorithm to compute the resultant of two polynomials efficiently, there is another theory "Subresultant-Gcd" which also contains the algorithm to compute the GCD of two polynomials via the subresultant algorithm. In both algorithms we integrate Lazard's optimization in the dichotomous version, but not the second optimization described by Ducos [3].

```
theory Subresultant
imports
Resultant-Prelim
Dichotomous-Lazard
Binary-Exponentiation
More-Homomorphisms
Coeff-Int
begin
```

7.1 Algorithm

```
locale div-exp-param =
  fixes div\text{-}exp :: 'a :: idom\text{-}divide \Rightarrow 'a \Rightarrow nat \Rightarrow 'a
partial-function(tailrec) subresultant-prs-main where
  subresultant-prs-main f g c = (let
   m = degree f;
   n = degree g;
   lf = lead\text{-}coeff f;
   lg = lead\text{-}coeff g;
   \delta = m - n;
   d = div - exp \ lg \ c \ \delta;
   h = pseudo-mod f g
  in if h = 0 then (g,d)
    else subresultant-prs-main g (sdiv-poly h ((-1) \hat{\delta} (\delta + 1) * lf * (c \hat{\delta}))) d)
{\bf definition}\ \mathit{subresultant-prs}\ {\bf where}
  subresultant-prs f g = (let
   h = pseudo-mod f g;
   \delta = (degree \ f - degree \ g);
   d = lead\text{-}coeff g \ \hat{\delta}
   in if h = 0 then (g,d)
       else subresultant-prs-main g((-1) \hat{\delta} (\delta + 1) * h) d)
definition resultant-impl-main where
  resultant-impl-main G1 G2 = (if G2 = 0 then (if degree G1 = 0 then 1 else 0)
else
    case subresultant-prs G1 G2 of
    (Gk,hk) \Rightarrow (if \ degree \ Gk = 0 \ then \ hk \ else \ 0))
definition resultant-impl where
  resultant-impl f g =
    (if length (coeffs f) \ge length (coeffs g) then resultant-impl-main f g
    else\ let\ res = resultant-impl-main\ g\ f\ in
     if even (degree \ f) \lor even \ (degree \ g) \ then \ res \ else - res)
end
locale \ div-exp-sound = \ div-exp-param +
  assumes div\text{-}exp: \bigwedge x y n.
    (to\text{-}fract\ x)^n / (to\text{-}fract\ y)^n (n-1) \in range\ to\text{-}fract
    \implies to-fract (div-exp x y n) = (to-fract x) \hat{n} / (to-fract y) \hat{n} (n-1)
definition basic-div-exp :: 'a :: idom-divide \Rightarrow 'a \Rightarrow nat \Rightarrow 'a where
  basic-div-exp \ x \ y \ n = x^n \ div \ y^{(n-1)}
    We have an instance for arbitrary integral domains.
lemma basic-div-exp: div-exp-sound basic-div-exp
 by (unfold-locales, unfold basic-div-exp-def, rule sym, rule div-divide-to-fract, auto
simp: hom-distribs)
```

```
Lazard's optimization is only proven for factorial rings.
```

lemma dichotomous-Lazard: div-exp-sound (dichotomous-Lazard :: 'a :: factorial-ring-qcd

```
\Rightarrow -)
 by (unfold-locales, rule dichotomous-Lazard)
7.2
       Soundness Proof for div-exp-param.resultant-impl div-exp =
        resultant
abbreviation pdivmod :: 'a::field poly \Rightarrow 'a poly \Rightarrow 'a poly \times 'a poly
where
 pdivmod\ p\ q \equiv (p\ div\ q,\ p\ mod\ q)
lemma even-sum-list: assumes \bigwedge x. x \in set \ xs \implies even \ (f \ x) = even \ (g \ x)
 shows even (sum\text{-}list\ (map\ f\ xs)) = even\ (sum\text{-}list\ (map\ g\ xs))
 using assms by (induct xs, auto)
lemma for-all-Suc: P \ i \Longrightarrow (\forall \ j \ge Suc \ i. \ P \ j) = (\forall \ j \ge i. \ P \ j) for P
 by (metis (full-types) Suc-le-eq less-le)
lemma pseudo-mod-left-0[simp]: pseudo-mod 0 x = 0
 unfolding pseudo-mod-def pseudo-divmod-def
 by (cases x = 0; cases length (coeffs x), auto)
lemma pseudo-mod-right-0[simp]: pseudo-mod x 0 = x
 unfolding pseudo-mod-def pseudo-divmod-def by simp
{\bf lemma}\ snd\hbox{-} pseudo\hbox{-} divmod\hbox{-} main\hbox{-} cong:
 assumes a1 = b1 \ a3 = b3 \ a4 = b4 \ a5 = b5 \ a6 = b6
 shows snd (pseudo-divmod-main\ a1\ a2\ a3\ a4\ a5\ a6) = snd (pseudo-divmod-main\ a1\ a2\ a3\ a4\ a5\ a6)
b1 b2 b3 b4 b5 b6)
using assms snd-pseudo-divmod-main by metis
lemma snd-pseudo-mod-smult-invar-right:
 shows (snd (pseudo-divmod-main (x * lc) q r (smult x d) dr n))
        = snd \ (pseudo-divmod-main \ lc \ q' \ (smult \ (x^n) \ r) \ d \ dr \ n)
\mathbf{proof}(induct\ n\ arbitrary:\ q\ q'\ r\ dr)
  case (Suc \ n)
 let ?q = smult (x * lc) q + monom (coeff r dr) n
 let ?r = smult (x * lc) r - (smult x (monom (coeff r dr) n * d))
```

let ?rec-lhs = pseudo-divmod-main (x * lc) ?q ?r (smult x d) ?dr nlet ?rec-rhs = pseudo-divmod- $main lc q' (smult (x^n) ?r) d ?dr n$

have $[simp]: \bigwedge n. \ x \ \widehat{\ } n * (x * lc) = lc * (x * x \ \widehat{\ } n)$ $\bigwedge n \ c. \ x \ \widehat{\ } n * (x * c) = x * x \ \widehat{\ } n * c$ $\bigwedge n. \ x * x \ \widehat{\ } n * lc = lc * (x * x \ \widehat{\ } n)$

by (auto simp: ac-simps)

let ?dr = dr - 1

have snd (pseudo-divmod-main (x*lc) q r (smult x d) dr (Suc n)) = snd ?rec-lhs by (auto simp:Let-def)

```
also have \dots = snd ?rec-rhs using Suc by auto
 also have ... = snd (pseudo-divmod-main\ lc\ q' (smult\ (x^Suc\ n)\ r) d\ dr\ (Suc
n))
   unfolding pseudo-divmod-main.simps Let-def
   proof(rule snd-pseudo-divmod-main-cong, goal-cases)
     case 2
       show ?case by (auto simp:smult-add-right smult-diff-right smult-monom
smult-monom-mult)
   qed auto
 finally show ?case by auto
qed auto
\mathbf{lemma}\ snd\text{-}pseudo\text{-}mod\text{-}smult\text{-}invar\text{-}left:
 shows snd (pseudo-divmod-main lc q (smult x r) d dr n)
      = smult \ x \ (snd \ (pseudo-divmod-main \ lc \ q' \ r \ d \ dr \ n))
proof(induct n arbitrary:x lc q q' r d dr)
 case (Suc \ n)
 have sm:smult\ lc\ (smult\ x\ r)\ -\ monom\ (coeff\ (smult\ x\ r)\ dr)\ n*d
        = smult \ x \ (smult \ lc \ r - monom \ (coeff \ r \ dr) \ n * d)
  by (auto simp: smult-diff-right smult-monom smult-monom-mult mult.commute of
 let ?q' = smult \ lc \ q' + monom \ (coeff \ r \ dr) \ n
 show ?case unfolding pseudo-divmod-main.simps Let-def Suc(1)[of lc - - - -
?q'| sm by auto
qed auto
lemma snd-pseudo-mod-smult-left[simp]:
 shows snd (pseudo-divmod (smult (x::'a::idom) p) q) = (smult x (snd (pseudo-divmod
p(q)))
 unfolding pseudo-divmod-def
     by (auto\ simp:snd-pseudo-mod-smult-invar-left[of - - - - - 0]\ Polyno-
mial.coeffs-smult)
lemma pseudo-mod-smult-right:
 assumes (x::'a::idom)\neq 0 \ q\neq 0
 shows (pseudo-mod p (smult (x::'a::idom) q)) = (smult (x \cap Suc (length (coeffs
(p)) - length (coeffs (q))) (pseudo-mod (p,q))
 unfolding pseudo-divmod-def pseudo-mod-def
   by (auto simp:snd-pseudo-mod-smult-invar-right[of - - - - - 0]
           snd-pseudo-mod-smult-invar-left[of - - - - - 0] Polynomial.coeffs-smult
assms)
lemma pseudo-mod-zero[simp]:
pseudo-mod \ \theta \ f = (\theta :: 'a :: \{idom\} \ poly)
pseudo-mod\ f\ \theta = f
unfolding pseudo-mod-def snd-pseudo-mod-smult-left[of 0 - f,simplified]
unfolding pseudo-divmod-def by auto
```

```
lemma prod-combine:
  assumes j \leq i
  \mathbf{shows}\ f\ i\ *\ (\prod l \leftarrow [j... < i].\ (f\ l\ ::\ 'a::comm\text{-}monoid\text{-}mult))\ =\ prod\text{-}list\ (map\ f)
[i..<Suc\ i]
\mathbf{proof}(subst\ prod\text{-}list\text{-}map\text{-}remove1[of\ i\ [j...<Suc\ i]\ f], goal\text{-}cases)
  case 2
 have remove1 i([j...< i] @ [i]) = [j...< i] by (simp add: remove1-append)
  thus ?case by auto
qed (insert assms, auto)
lemma prod-list-minus-1-exp: prod-list (map (\lambda i. (-1) \hat{\ } (f i)) xs)
  = (-1) \widehat{\ } (sum\text{-}list\ (map\ f\ xs))
 by (induct xs, auto simp: power-add)
lemma minus-1-power-even: (-(1 :: 'b :: comm-ring-1))^k = (if even k then 1)
else(-1)
 by auto
lemma minus-1-even-eqI: assumes even k = even l shows
   (-(1 :: 'b :: comm-ring-1))^k = (-1)^l
   unfolding minus-1-power-even assms by auto
lemma (in comm-monoid-mult) prod-list-multf:
  (\prod x \leftarrow xs. \ f \ x * g \ x) = prod\text{-}list \ (map \ f \ xs) * prod\text{-}list \ (map \ g \ xs)
  \mathbf{by}\ (induct\ xs)\ (simp-all\ add:\ algebra-simps)
lemma inverse-prod-list: inverse (prod-list xs) = prod-list (map inverse (xs :: 'a ::
field list))
 by (induct xs, auto)
definition pow-int :: 'a :: field \Rightarrow int \Rightarrow 'a where
 pow-int x = (if e < 0 then 1 / (x \cap (nat (-e))) else x \cap (nat e))
lemma pow-int-0[simp]: pow-int x \theta = 1 unfolding pow-int-def by auto
lemma pow-int-1[simp]: pow-int x = 1 = x unfolding pow-int-def by auto
lemma exp\text{-}pow\text{-}int: x \cap n = pow\text{-}int x n
  unfolding pow-int-def by auto
lemma pow-int-add: assumes x: x \neq 0 shows pow-int x (a + b) = pow-int x a *
pow-int x b
proof -
 have *:
   \neg a + b < 0 \Longrightarrow a < 0 \Longrightarrow nat b = nat (a + b) + nat (-a)
   \neg a + b < 0 \Longrightarrow b < 0 \Longrightarrow nat \ a = nat \ (a + b) + nat \ (-b)
   a + b < 0 \Longrightarrow \neg a < 0 \Longrightarrow nat (-b) = nat a + nat (-a - b)
```

```
a + b < 0 \Longrightarrow \neg b < 0 \Longrightarrow nat (-a) = nat b + nat (-a - b)
    by auto
    have pow-eq: l = m \Longrightarrow (x \hat{l} = x \hat{m}) for l m by auto
    from x show ?thesis unfolding pow-int-def
        by (auto split: if-splits simp: power-add[symmetric] simp: * intro!: pow-eq, auto
simp: power-add)
qed
lemma pow-int-mult: pow-int (x * y) a = pow-int x a * pow-int y a
    unfolding pow-int-def by (cases a < 0, auto simp: power-mult-distrib)
lemma pow-int-base-1 [simp]: pow-int 1 a = 1
    unfolding pow-int-def by (cases a < 0, auto)
lemma pow-int-divide: a / pow-int x b = a * pow-int x (-b)
    unfolding pow-int-def by (cases b rule: linorder-cases[of - 0], auto)
lemma divide-prod-assoc: x / (y * z :: 'a :: field) = x / y / z by (simp \ add: y) / (y * z :: 'a :: field) = x / y / z
field-simps)
lemma minus-1-inverse-pow[simp]: x / (-1)^n = (x :: 'a :: field) * (-1)^n
    \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{minus-1-power-even})
definition subresultant-mat :: nat \Rightarrow 'a :: comm\text{-}ring\text{-}1 \ poly \Rightarrow 'a \ poly \Rightarrow 'a \ poly
mat where
     subresultant-mat\ J\ F\ G = (let
           dg = degree \ G; \ df = degree \ F; \ f = coeff-int \ F; \ g = coeff-int \ G; \ n = (df - J)
+ (dg - J)
           in mat n n (\lambda (i,j). if j < dg - J then
               if i = n - 1 then monom 1 (dg - J - 1 - j) * F else [: f (df - int i + int i)]
j):]
              else let jj = j - (dg - J) in
                 if i = n - 1 then monom 1 (df - J - 1 - jj) * G else [: g(dg - int i + jj)]
int \ jj) :]))
lemma subresultant-mat-dim[simp]:
    fixes j p q
    defines S \equiv subresultant-mat j p q
    shows dim-row S = (degree \ p - j) + (degree \ q - j) and dim-col S = (degree \ p)
(-j) + (degree \ q - j)
    unfolding S-def subresultant-mat-def Let-def by auto
definition subresultant'-mat :: nat \Rightarrow nat \Rightarrow 'a :: comm\text{-ring-1 poly} \Rightarrow 'a poly \Rightarrow
'a mat where
     subresultant'-mat\ J\ l\ F\ G = (let
           \gamma = degree \ G; \ \varphi = degree \ F; \ f = coeff-int \ F; \ g = coeff-int \ G; \ n = (\varphi - J) + (\varphi
(\gamma - J)
           in mat n n (\lambda (i,j). if j < \gamma - J then
```

```
if i = n - 1 then (f(l - int(\gamma - J - 1) + int j)) else (f(\varphi - int i + int))
j))
           else let jj = j - (\gamma - J) in
            if i = n - 1 then (g(l - int(\varphi - J - 1) + int jj)) else (g(\varphi - int i + int jj))
jj))))
\mathbf{lemma}\ \mathit{subresultant-index-mat}\colon
    fixes F G
    assumes i: i < (degree \ F - J) + (degree \ G - J) and j: j < (degree \ F - J) +
(degree \ G - J)
    shows subresultant-mat J F G \$\$ (i,j) =
       (if j < degree G - J then
              if i = (degree \ F - J) + (degree \ G - J) - 1 then monom 1 (degree G - J
-1-j * F else ([: coeff-int F ( degree F - int \ i + int \ j):])
           else let jj = j - (degree G - J) in
             if i = (degree\ F-J) + (degree\ G-J) - 1 then monom 1 ( degree F-J
-1-jj * G else ([: coeff-int G (degree G-int\ i+int\ jj):]))
   unfolding subresultant-mat-def Let-def
    unfolding index-mat(1)[OF \ i \ j] split by auto
definition subresultant :: nat \Rightarrow 'a :: comm-ring-1 poly \Rightarrow 'a poly \Rightarrow 'a poly where
    subresultant\ J\ F\ G=det\ (subresultant-mat\ J\ F\ G)
lemma \ subresultant-smult-left: assumes \ (c :: 'a :: \{comm-ring-1, semiring-no-zero-divisors\})
\neq 0
   shows subresultant J (smult c f) q = smult (c \land (degree \ q - J)) (subresultant J
f(g)
proof -
   let ?df = degree f
   let ?dg = degree g
   let ?n = (?df - J) + (?dg - J)
   let ?m = ?dg - J
   let ?M = mat ?n ?n (\lambda (i,j). if i = j then if i < ?m then [:c:] else 1 else 0)
   from \langle c \neq 0 \rangle have deg: degree (smult c f) = ?df by simp
   let ?S = subresultant-mat J f q
   let ?cS = subresultant-mat\ J\ (smult\ c\ f)\ g
   have dim: dim\text{-row }?S = ?n \ dim\text{-col }?S = ?n \ dim\text{-row }?cS = ?n \ dim\text{-col }?cS = ?n \ dim\text{-col }?cS = ?n \ dim\text{-row }?cS = ?n \ dim\text{-col }?
 ?n using deg by auto
    hence C: ?S \in carrier-mat ?n ?n ?cS \in carrier-mat ?n ?n ?M \in carrier-mat
 ?n ?n by auto
   have dim': dim-row (?S * ?M) = ?n dim-col (?S * ?M) = ?n using dim (1,2)
by simp-all
    define S where S = ?S
    have ?cS = ?S * ?M
    proof (rule eq-matI, unfold dim' dim)
       fix i j
       assume ij: i < ?n j < ?n
       have (?S * ?M) $$ (i,j) = row ?S i \cdot col ?M j
```

```
by (rule index-mult-mat, insert ij dim, auto)
    also have ... = (\sum k = 0..<?n. \ row \ S \ i \ \$ \ k * \ col \ ?M \ j \ \$ \ k) unfolding
scalar-prod-def\ S-def[symmetric]
    by simp
   also have ... = (\sum k = 0.. < ?n. \ S \$\$ (i,k) * ?M \$\$ (k,j))
     by (rule sum.cong, insert ij, auto simp: S-def)
   also have ... = S $$ (i,j) * ?M $$ (j,j) + sum (\lambda k. S $$ (i,k) * ?M $$ (k,j)
(\{\theta ... < ?n\} - \{j\})
     by (rule sum.remove, insert ij, auto)
   also have ... = S $$ (i,j) * ?M $$ (j,j)
     by (subst sum.neutral, insert ij, auto)
   also have ... = 2cS $$ (i,j) unfolding subresultant-index-mat [OF \ ij] S-def
     by (subst subresultant-index-mat, unfold deg, insert ij, auto)
   finally show ?cS \$\$ (i,j) = (?S * ?M) \$\$ (i,j) by simp
 qed auto
 from arg\text{-}cong[OF this, of det] det\text{-}mult[OF C(1) C(3)]
 have subresultant J (smult c f) g = subresultant J f g * det ?M
   unfolding subresultant-def by auto
 also have det ?M = [:c ^?m:]
 proof (subst det-upper-triangular[OF - C(3)])
   show upper-triangular ?M
     by (rule upper-triangularI, auto)
   have prod-list (diag-mat ?M) = (\prod k = 0.. < ?n. (?M \$\$ (k,k)))
     unfolding prod-list-diag-prod by simp
    also have ... = (\prod k = 0.. < ?m. ?M \$\$ (k,k)) * (\prod k = ?m.. < ?n. ?M \$\$
(k,k)
     by (subst prod.union-disjoint[symmetric], (auto)[3], rule prod.cong, auto)
   also have (\prod k = 0..<?m. ?M \$\$ (k,k)) = (\prod k = 0..<?m. [: c:])
     by (rule prod.cong, auto)
   also have (\prod k = 0..<?m. [: c:]) = [: c:] ^?m by simp
   also have (\prod k = ?m.. < ?n. ?M \$\$ (k,k)) = (\prod k = ?m.. < ?n. 1)
    by (rule prod.cong, auto)
   finally show prod-list (diag-mat ?M) = [: c^?m:] unfolding poly-const-pow
by simp
 qed
 finally show ?thesis by simp
qed
lemma subresultant-swap:
 shows subresultant J f g = smult ((-1) \cap ((degree f - J) * (degree g - J)))
(subresultant\ J\ g\ f)
proof -
 let ?A = subresultant\text{-}mat\ J\ f\ g
 let ?k = degree f - J
 let ?n = degree g - J
 have nk: ?n + ?k = ?k + ?n by simp
 have change: j < ?k + ?n \Longrightarrow ((if j < ?k then j + ?n else j - ?k) < ?n)
   = (\neg (j < ?k)) for j by auto
 have subresultant J f g = det ?A unfolding subresultant-def by simp
```

```
also have ... = (-1) ?(?k * ?n) * det (mat (?k + ?n) (?k + ?n) (\lambda (i,j)).
   ?A $$ (i,(if j < ?k then j + ?n else j - ?k)))) (is - = - * det ?B)
   by (rule det-swap-cols, auto simp: subresultant-mat-def Let-def)
 also have ?B = subresultant\text{-}mat\ J\ g\ f
   unfolding subresultant-mat-def Let-def
   by (rule eq-mat1, unfold dim-row-mat dim-col-mat nk index-mat split,
     subst index-mat, (auto)[2], unfold split, subst change, force,
     unfold if-conn, rule if-cong[OF refl if-cong if-cong], auto)
 also have det \dots = subresultant J g f unfolding subresultant-def \dots
  also have (-1)^{n}(?k * ?n) * ... = [: (-1)^{n}(?k * ?n) :] * ... by (unfold
hom-distribs, simp)
 also have ... = smult ((-1) \hat{\ } (?k * ?n)) (subresultant J g f) by simp
 finally show ?thesis.
qed
lemma subresultant-smult-right: assumes (c :: 'a :: \{comm-rinq-1, semiring-no-zero-divisors\})
 shows subresultant J f (smult c g) = smult (c \cap (degree f - J)) (subresultant J
 unfolding subresultant-swap[of - f] subresultant-smult-left[OF assms]
   degree-smult-eq using assms by (simp add: ac-simps)
lemma coeff-subresultant: coeff (subresultant J F G) l =
 (if degree F - J + (degree \ G - J) = 0 \land l \neq 0 then 0 else det (subresultant'-mat
J l F G)
proof (cases degree F - J + (degree G - J) = 0)
 show ?thesis unfolding subresultant-def subresultant-mat-def subresultant'-mat-def
Let-def True
   by simp
next
 {f case} False
 let ?n = degree \ F - J + (degree \ G - J)
 define n where n = ?n
 from False have n: n \neq 0 unfolding n-def by auto
 hence id: \{0... < n\} = insert (n-1) \{0... < (n-1)\}  by (cases n, auto)
 have idn: (x = x) = True \text{ for } x :: nat \text{ by } simp
 let ?M = subresultant\text{-}mat\ J\ F\ G
 define M where M = ?M
 let ?L = subresultant'-mat \ J \ l \ F \ G
 define L where L = ?L
 {
   \mathbf{fix} p
   assume p: p permutes \{0..< n\}
   from n p have n1: n - 1 < n p (n - 1) < n by auto
   have coeff-int (\prod i = 0..< n. M \$\$ (i, p i)) l =
    (\prod i = 0 ... < (n-1). coeff-int (M $$ (i, p i)) 0) * coeff-int (M $$ (n-1),
p((n-1))) l
    unfolding id
```

```
proof (rule coeff-int-prod-const, (auto)[2])
    assume i \in \{0 ... < n - 1\}
    with p have i: i \neq n-1 and i < n p i < n by (auto simp: n-def)
    note id = subresultant-index-mat[OF\ this(2-3)[unfolded\ n-def],\ folded\ M-def
n-def
    show degree (M \$\$ (i, p i)) = 0 unfolding id Let-def using i
      by (simp split: if-splits)
   qed
   also have (\prod i = 0 ..< (n-1). coeff-int (M $$ (i, p i)) 0)
     = (\prod i = 0 ..< (n-1). L \$\$ (i, p i))
   proof (rule prod.cong[OF refl])
    \mathbf{fix} i
    assume i \in \{0 .. < n - 1\}
    with p have i: i \neq n-1 and ii: i < n p i < n by (auto simp: n-def)
    note id = subresultant-index-mat[OF\ this(2-3)[unfolded\ n-def],\ folded\ M-def]
n-def
      note id' = L-def[unfolded\ subresultant'-mat-def\ Let-def,\ folded\ n-def[\ in-
dex-mat[OF\ ii]
    show coeff-int (M \$\$ (i, p i)) \theta = L \$\$ (i, p i)
      unfolding id id' split using i proof (simp add: if-splits Let-def)
    qed
   qed
   also have coeff-int (M \$\$ (n-1, p (n-1))) l =
    (if \ p \ (n-1) < degree \ G - J \ then
       coeff-int (monom 1 (degree G - J - 1 - p (n - 1)) * F) l
       else coeff-int (monom 1 (degree F-J-1-(p(n-1)-(degree\ G-
J))) * G) l)
      using subresultant-index-mat[OF n1[unfolded n-def], folded M-def n-def,
unfolded idn if-True Let-def]
    by simp
   also have \dots = (if \ p \ (n-1) < degree \ G - J)
    then coeff-int F (int l – int (degree G – J – 1 – p (n – 1)))
    else coeff-int G (int l – int (degree F – J – 1 – (p (n – 1) – (degree G –
J)))))
      unfolding coeff-int-monom-mult by simp
   also have ... = (if p (n - 1) < degree G - J
    then coeff-int F (int l – int (degree G – J – 1) + p (n – 1))
    else coeff-int G (int l-int (degree F-J-1) + (p\ (n-1)-(degree\ G-int))
J))))
   proof (cases p(n-1) < degree G - J)
    case True
    hence int (degree G-J-1-p (n-1)) = int (degree G-J-1) - p
(n-1) by simp
    hence id: int l - int (degree G - J - 1 - p (n - 1)) = int l - int (degree
G - J - 1) + p (n - 1) by simp
    show ?thesis using True unfolding id by simp
   next
    case False
```

```
from n1 False have degree F - J - 1 \ge p (n - 1) - (degree G - J)
              unfolding n-def by linarith
         \mathbf{hence} \ int \ (\mathit{degree} \ F - J - 1 - (p \ (n-1) - (\mathit{degree} \ G - J))) = \mathit{int} \ (\mathit{degree}
F - J - 1) - (p (n - 1) - (degree G - J))
              by linarith
         hence id: int l - int (degree F - J - 1 - (p(n-1) - (degree G - J))) =
            int l - int (degree F - J - 1) + (p (n - 1) - (degree G - J)) by simp
           show ?thesis unfolding id using False by simp
       qed
       also have ... = L  $$ (n - 1, p (n - 1))
         unfolding L-def subresultant'-mat-def Let-def n-def[symmetric] using n1 by
       also have (\prod i = 0... < n - 1. L \$\$ (i, p i)) * ... = (\prod i = 0... < n. L \$\$ (i, p i))
i))
           unfolding id by simp
       finally have coeff-int (\prod i = 0... < n. M \$\$ (i, p i)) (int l) = (\prod i = 0... < n. L
\$\$ (i, p i).
    } note * = this
   have coeff-int (subresultant J F G) l =
        (\sum p \in \{p. \ p \ permutes \ \{0... < n\}\}. \ sign of \ p * coeff-int \ (\prod i = 0... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$\$ \ (i, \ p \in \{p... < n. \ M \ \$ \ (i, \ p \in \{p... < n. \ M \ \$ \ (i, \ p \in \{p... < n. \ M \ \$ \ (i, \ p \in \{p... < n. \ M \ \$ \ (i, \ p \in \{p... < n. \ M \ \$ \ (i, \ p \in \{p... < n. \ M \ \$ \ (i, \ p \in \{p... < n. \ M \ \ (i, \ p \in \{p... < n. \ M \ \ (i, \ p \in \{p... < n. \ M \ \ (i, \ p \in \{p... < n. \ M \ \ (i, \ p \in \{p... < n. \ M \ \ (i, \ p \in \{p... \ M \ \ ) \ \ (i, \ p \in \{p... < n. \ M \ \ ) \ \ (i, \ p \in \{p... \ M \ \ ) \ \ (i, \ p \in \{p... \ M \ \ ) \ \ (i, \ p \in \{p... \ ) \ \ ) \ \ (i, \ p \in \{p... \ M \ \ ) \ \ ) \ \ (i, \ p \in \{p... \ ) \ \ (i, \ p \in \{p... \ ) \ \ (i, \ p \in \{p... \ ) \ \ ) \ \ (i,
i)) l)
    unfolding subresultant-def det-def subresultant-mat-dim idn if-True n-def [symmetric]
M-def
           coeff-int-sum coeff-int-signof-mult by simp
   also have ... = (\sum p \in \{p. \ p \ permutes \{0... < n\}\}). signof p * (\prod i = 0... < n. L $$
       by (rule sum.cong[OF refl], insert *, simp)
   also have \dots = det L
   proof -
       have id: dim\text{-}row (subresultant'\text{-}mat \ J \ l \ F \ G) = n
              dim\text{-}col\ (subresultant'\text{-}mat\ J\ l\ F\ G) = n\ \mathbf{unfolding}\ subresultant'\text{-}mat\text{-}def
Let-def n-def
          by auto
       show ?thesis unfolding det-def L-def id by simp
   finally show ?thesis unfolding L-def coeff-int-def using False by auto
qed
lemma subresultant'-zero-ge: assumes (degree\ f-J)+(degree\ g-J)\neq 0 and
k \ge degree f + (degree g - J)
   shows det (subresultant'-mat J k f g) = \theta
proof -
    obtain dg where dg: degree g - J = dg by simp
    obtain df where df: degree f - J = df by simp
   obtain ddf where ddf: degree f = ddf by simp
   \mathbf{note} * = assms(2)[unfolded\ ddf\ dg]\ assms(1)
   define M where M = (\lambda \ i \ j. \ if \ j < dg
                      then coeff-int f (degree f - int i + int j)
                      else coeff-int g (degree g - int i + int (j - dg)))
```

```
let ?M = subresultant' - mat J k f g
 have M: det ?M = det (mat (df + dg) (df + dg))
   (\lambda(i, j).
       if i = df + dg - 1 then
        if j < dg
          then coeff-int f (int k - int (dg - 1) + int j)
          else coeff-int g (int k – int (df - 1) + int (j - dg))
       else\ M\ i\ j))\ (\mathbf{is}\ -=\ det\ ?N)
   unfolding subresultant'-mat-def Let-def M-def
   by (rule arg-cong[of - - det], rule eq-matI, auto simp: df dg)
 also have ?N = mat (df + dg) (df + dg)
       if i = df + dg - 1 then 0
       else\ M\ i\ j)
   by (rule cong-mat[OF refl refl], unfold split, rule if-cong[OF refl - refl],
     auto simp add: coeff-int-def df dq ddf intro!: coeff-eq-0, insert *(1),
     unfold ddf[symmetric] dg[symmetric] df[symmetric], linarith+)
 also have ... = mat_r (df + dg) (df + dg) (\lambda i. if i = df + dg - 1 then \theta_v (df
+ dq) else
   vec (df + dg) (\lambda j. M i j)
   by (rule eq-matI, auto)
 also have det \dots = 0
  by (rule det-row-0, insert *, auto simp: df[symmetric] dg[symmetric] ddf[symmetric])
 finally show ?thesis.
qed
lemma subresultant'-zero-lt: assumes
 J: J \leq degree \ f \ J \leq degree \ g \ J < k
 and k: k < degree f + (degree g - J)
 shows det (subresultant'-mat\ J\ k\ f\ g)=0
proof -
 obtain dg where dg: dg = degree g - J by simp
 obtain df where df: df = degree f - J by simp
 note * = assms[folded df dg]
 define M where M = (\lambda \ i \ j. \ if \ j < dg
          then coeff-int f (degree f - int i + int j)
          else coeff-int g (degree g - int i + int (j - dg)))
 define N where N = (\lambda j. if j < dg
          then coeff-int f (int k - int (dg - 1) + int j)
          else coeff-int g (int k - int (df - 1) + int (j - dg)))
 let ?M = subresultant'-mat\ J\ k\ f\ g
 have M: ?M = mat (df + dg) (df + dg)
   (\lambda(i, j).
       if i = df + dg - 1 then N j
       else\ M\ i\ j)
   unfolding subresultant'-mat-def Let-def
   by (rule eq-matI, auto simp: df dg M-def N-def)
 also have \dots = mat (df + dg) (df + dg)
   (\lambda(i, j).
```

```
if i = df + dg - 1 then N j
       else if i = degree f + dg - 1 - k then N j else M i j) (is - = ?N)
   unfolding N-def
   by (rule cong-mat[OF refl refl], unfold split, rule if-cong[OF refl refl], unfold
M-def N-def.
     insert J k, auto simp: df dg intro!: arg-cong[of - - coeff-int -])
  finally have id: ?M = ?N.
 have deg: degree f + dg - 1 - k < df + dg df + dg - 1 < df + dg
   using k J unfolding df dg by auto
 have id: row ?M (degree f + dg - 1 - k) = row ?M (df + dg - 1)
   unfolding arg-cong[OF id, of row]
   by (rule eq-vecI, insert deg, auto)
 show ?thesis
   by (rule det-identical-rows [OF - - - id, of df + dg], insert deg assms,
     auto simp: subresultant'-mat-def Let-def df dg)
qed
lemma subresultant'-mat-sylvester-mat: transpose-mat (subresultant'-mat 0 0 f g)
= sylvester-mat f q
proof -
 obtain dg where dg: degree g = dg by simp
 obtain df where df: degree f = df by simp
 let ?M = transpose-mat (subresultant'-mat 0 0 f g)
 let ?n = degree f + degree g
 have dim: dim-row ?M = ?n dim-col ?M = ?n by (auto simp: subresultant'-mat-def
Let-def)
 show ?thesis
 proof (rule eq-matI, unfold sylvester-mat-dim dim df dq, goal-cases)
   case ij: (1 i j)
   have ?M $$ (i,j) = (if i < dg)
       \textit{then if } j = \textit{df} + \textit{dg} - \textit{1}
            then coeff-int f (- int (dg - 1) + int i)
            else coeff-int f (int df – int j + int i)
       \mathit{else}\ \mathit{if}\ \mathit{j} = \mathit{df} + \mathit{dg} - \mathit{1}
            then coeff-int g (-int (df - 1) + int (i - dg))
            else coeff-int q (int dq - int j + int (i - dq)))
     using ij unfolding subresultant'-mat-def Let-def by (simp add: if-splits df
dg
   also have \dots = (if \ i < dg)
       then coeff-int f (int df – int j + int i)
        else coeff-int g (int dg - int j + int (i - dg)))
   proof -
    have cong: (b \Longrightarrow x = z) \Longrightarrow (\neg b \Longrightarrow y = z) \Longrightarrow (if b then coeff-int f x else
coeff-int f(y) = coeff-int f(z)
      for b x y z and f :: 'a poly by auto
     show ?thesis
       by (rule if-cong[OF refl cong cong], insert ij, auto)
   qed
   also have \dots = sylvester-mat\ f\ g\ \$\$\ (i,j)
```

```
proof -
     have *: i \leq j \Longrightarrow j - i \leq df \Longrightarrow nat (int df - int j + int i) = df - (j - int j + int i)
i) for j i df
       by simp
     show ?thesis unfolding sylvester-index-mat[OF ij[folded df dg]] df dg
     proof (rule if-cong[OF refl])
       assume i: i < dq
       have int df - int j + int i < 0 \longrightarrow \neg j - i \le df by auto
       thus coeff-int f (int df - int j + int i) = (if i \le j \land j - i \le df then coeff f
(df + i - j) else \theta)
       using i ij by (simp add: coeff-int-def *, intro impI coeff-eq-0[of f, unfolded
df, linarith)
     next
       assume i: \neg i < dg
       hence **: i-dg \leq j \Longrightarrow dg-(j+dg-i)=i-j using ij by linarith have int\ dg-int\ j+int\ (i-dg)<0\longrightarrow \neg\ j\leq i by auto
       thus coeff-int g (int dg - int j + int (i - dg)) = (if i - dg \le j \land j \le i
then coeff g(i-j) else \theta)
         using ij i
       by (simp add: coeff-int-def * ** coeff-eq-0 [of g, unfolded dg] nat-diff-distrib')
     qed
   qed
   finally show ?case.
 qed auto
qed
lemma coeff-subresultant-0-0-resultant: coeff (subresultant 0 f g) 0 = resultant f g
proof
 let ?M = transpose-mat (subresultant'-mat 0 0 f g)
 have det (subresultant'-mat \ 0 \ 0 \ f \ g) = det \ ?M
   by (subst det-transpose, auto simp: subresultant'-mat-def Let-def)
 also have ?M = sylvester-mat f g
   by (rule subresultant'-mat-sylvester-mat)
 finally show ?thesis by (simp add: coeff-subresultant resultant-def)
qed
lemma subresultant-zero-ge: assumes k \ge degree \ f + (degree \ g - J)
  and (degree f - J) + (degree g - J) \neq 0
 shows coeff (subresultant J f g) k = 0
 unfolding coeff-subresultant
 by (subst\ subresultant'-zero-ge[OF\ assms(2,1)],\ simp)
lemma subresultant-zero-lt: assumes k < degree \ f + (degree \ g - J)
 and J \leq degree \ f \ J \leq degree \ g \ J < k
 shows coeff (subresultant J f g) k = 0
  unfolding coeff-subresultant
  by (subst\ subresultant'-zero-lt[OF\ assms(2,3,4,1)],\ simp)
\mathbf{lemma} \ \mathit{subresultant-resultant} : \mathit{subresultant} \ 0 \ f \ g = [: \mathit{resultant} \ f \ g :]
```

```
{f case}\ True
   thus ?thesis unfolding subresultant-def subresultant-mat-def resultant-def Let-def
           sylvester-mat-def sylvester-mat-sub-def
       by simp
next
   case \theta: False
   show ?thesis
    proof (rule\ poly-eqI)
       \mathbf{fix} \ k
       show coeff (subresultant 0 f g) k = coeff [:resultant f g:] k
       proof (cases k = 0)
           {f case}\ {\it True}
           thus ?thesis using coeff-subresultant-0-0-resultant[of f g] by auto
       next
           case False
           hence 0 < k \land k < degree f + degree g \lor k \ge degree f + degree g by auto
           thus ?thesis using subresultant-zero-ge[of f g \ 0 \ k] \ 0
               subresultant-zero-lt[of\ k\ f\ g\ 0]\ 0\ False\ {\bf by}\ (cases\ k,\ auto)
       qed
   qed
\mathbf{qed}
lemma (in inj-comm-ring-hom) subresultant-hom:
    map\text{-}poly\ hom\ (subresultant\ J\ f\ g) = subresultant\ J\ (map\text{-}poly\ hom\ f)\ (map\text{-}poly\ hom\ f)
hom g)
proof -
   note d = subresultant-mat-def Let-def
   interpret p: map-poly-inj-comm-ring-hom hom..
   show ?thesis unfolding subresultant-def unfolding p.hom-det[symmetric]
   proof (rule arg-cong[of - - det])
       show p.mat-hom (subresultant-mat J f g) =
           subresultant-mat J (map-poly hom f) (map-poly hom g)
       proof (rule eq-matI, goal-cases)
           case (1 \ i \ j)
          hence ij: i < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g - J) \ j < degree \ f - J + (degree \ g -
J)
               unfolding d degree-map-poly by auto
           show ?case
          by (auto simp add: coeff-int-def d map-mat-def index-mat(1)[OF ij] hom-distribs)
       qed (auto simp: d)
   qed
qed
         We now derive properties of the resultant via the connection to subre-
sultants.
lemma resultant-smult-left: assumes (c :: 'a :: idom) \neq 0
   shows resultant (smult c f) g = c \cap degree g * resultant f g
   \mathbf{unfolding}\ coeff\text{-}subresultant\text{-}0\text{-}0\text{-}resultant[symmetric]}\ subresultant\text{-}smult\text{-}left[OF]
```

proof (cases degree f + degree g = 0)

```
assms] coeff-smult
   by simp
lemma resultant-smult-right: assumes (c :: 'a :: idom) \neq 0
 unfolding coeff-subresultant-0-0-resultant[symmetric] subresultant-smult-right[OF
assms] coeff-smult
 by simp
lemma resultant-swap: resultant f g = (-1) (degree \ f * degree \ g) * (resultant \ g \ f)
 unfolding coeff-subresultant-0-0-resultant[symmetric]
 unfolding arg-cong[OF subresultant-swap[of 0 f g], of \lambda x. coeff x 0] coeff-smult
by simp
    The following equations are taken from Brown-Traub "On Euclid's Al-
gorithm and the Theory of Subresultant" (BT)
lemma fixes F B G H :: 'a :: idom poly and J :: nat
      defines df: df \equiv degree F
 and dg: dg \equiv degree G
 and dh: dh \equiv degree H
 and db: db \equiv degree B
 defines
   n: n \equiv (df - J) + (dq - J)
 and f: f \equiv coeff\text{-}int F
 and b: b \equiv coeff-int B
 and g: g \equiv coeff\text{-}int G
 and h: h \equiv coeff-int H
 assumes FGH: F + B * G = H
 and dfg: df \geq dg
 and choice: dg > dh \lor H = 0 \land F \neq 0 \land G \neq 0
shows BT-eq-18: subresultant J F G = smult ((-1)^{(df - J)} * (dg - J))) (det
(mat \ n \ n
 (\lambda (i,j).
           if j < df - J
           then if i = n - 1 then monom 1 ((df - J) - 1 - j) * G
                else [:g (int dg - int i + int j):]
           else if i = n - 1 then monom 1 ((dg - J) - 1 - (j - (df - J))) * H
                else [:h (int df - int i + int (j - (df - J))):])))
  (is - smult ?m1 ?right)
 and BT-eq-19: dh \leq J \Longrightarrow J < dg \Longrightarrow subresultant\ J\ F\ G = smult\ (
   (-1) ^((df - J) * (dg - J)) * lead-coeff G ^ (df - J) * coeff H J ^ (dg - J)
-1)) H
   (\mathbf{is} - \Longrightarrow - \Longrightarrow - = smult (- * ?G * ?H) H)
 and BT-lemma-1-12: J < dh \Longrightarrow subresultant\ J\ F\ G = smult\ (
   (-1) ((df - J) * (dg - J)) * lead-coeff G (df - dh)) (subresultant J G H)
 and BT-lemma-1-13': J = dh \Longrightarrow dq > dh \lor H \neq 0 \Longrightarrow subresultant dh F G
   (-1)^{(df-dh)} * (dg-dh) * lead-coeff G^{(df-dh)} * lead-coeff H^{(dg-dh)}
-dh-1)) H
```

```
and BT-lemma-1-14: dh < J \Longrightarrow J < dg - 1 \Longrightarrow subresultant\ J\ F\ G = 0
 and BT-lemma-1-15': J = dg - 1 \Longrightarrow dg > dh \lor H \neq 0 \Longrightarrow subresultant (dg
-1) F G = smult (
   (-1) (df - dg + 1) * lead-coeff G (df - dg + 1)) H
proof -
  define dfj where dfj = df - J
 define dgj where dgj = dg - J
 note d = df dq dh db
 have F\theta: F \neq \theta using dfg choice df by auto
 have G\theta: G \neq \theta using choice dg by auto
 have dgh: dg \geq dh using choice unfolding dh by auto
 have B\theta: B \neq \theta using FGH dfg dgh choice F0 G0 unfolding d by auto
 have dfh: df \geq dh using dfg \ dgh by auto
 have df = degree (B * G)
 proof (cases H = \theta)
   case False
   with choice dfg have dfh: df > dh by auto
   show ?thesis using dfh[folded arg-cong[OF FGH, of degree, folded dh]] choice
      unfolding df by (metis \langle degree \ (F + B * G) \ \langle df \rangle degree-add-eq-left de-
gree-add-eq-right df nat-neq-iff)
  next
   case True
   have F = -B * G using arg-cong[OF FGH[unfolded True], of \lambda x. x - B *
   thus ?thesis using F0 G0 B0 unfolding df by simp
  qed
 hence dfbg: df = db + dg using degree-mult-eq[OF\ B0\ G0] by (simp\ add:\ d)
 hence dbfg: db = df - dg by simp
 let ?dfj = df - J
 let ?dgj = dg - J
 have norm: ?dgj + ?dfj = ?dfj + ?dgj by simp
 let ?bij = \lambda \ i \ j. \ b \ (db - int \ i + int \ (j - dfj))
 let ?M = mat \ n \ (\lambda \ (i,j). \ if \ i = j \ then \ 1 \ else \ if \ j < dfj \ then \ 0 \ else \ if \ i < j
   then [:?bij\ i\ j:]\ else\ 0)
 let ?GF = \lambda i j.
            if i < dfi
            then if i = n - 1 then monom 1 (dfj - 1 - j) * G
                 else [:g (int dg - int i + int j):]
            else if i = n - 1 then monom 1 (dgj - 1 - (j - dfj)) * F
                 else\ [:f\ (int\ df\ -\ int\ i\ +\ int\ (j\ -\ dfj)):]
 let ?G-F = mat \ n \ (\lambda \ (i,j). \ ?GF \ i \ j)
 let ?GH = \lambda i j.
            if j < dfj
            then if i = n - 1 then monom 1 (dfj - 1 - j) * G
                 else [:g (int dg - int i + int j):]
            else if i = n - 1 then monom 1 (dgj - 1 - (j - dfj)) * H
                 else [:h (int df - int i + int (j - dfj)):]
 let ?G-H = mat \ n \ n \ (\lambda \ (i,j). \ ?GH \ i \ j)
 have hfg: h \ i = f \ i + coeff-int \ (B * G) \ i \ for \ i
```

```
unfolding FGH[symmetric] f g h unfolding coeff-int-def by simp
 have dM1: det ?M = 1
   by (subst det-upper-triangular, (auto)[2], subst prod-list-diag-prod, auto)
 have subresultant J F G = smult ?m1 (subresultant J G F)
   unfolding subresultant-swap[of - F] d by simp
 also have subresultant\ J\ G\ F=\ det\ ?G-F
  unfolding subresultant-def n norm subresultant-mat-def q f Let-def d[symmetric]
dfj-def dgj-def by simp
 also have \dots = det (?G-F * ?M)
   by (subst\ det\text{-}mult[of\ -\ n],\ unfold\ dM1,\ auto)
 also have ?G-F * ?M = ?G-H
 proof (rule eq-matI, unfold dim-col-mat dim-row-mat)
   fix i j
   assume i: i < n and j: j < n
   have (?G-F * ?M) $$ (i,j) = row (?G-F) i \cdot col ?M j
     using i j by simp
   also have \dots = ?GH \ i \ j
   proof (cases j < dfj)
     case True
     have id: col ?M j = unit\text{-vec } n j
      by (rule eq-vecI, insert True i j, auto)
     show ?thesis unfolding id using True i j by simp
   next
     case False
     define d where d = j - dfj
     from False have jd: j = d + dfj unfolding d-def by auto
     hence idj: \{0 ... < j\} = \{0 ... < dfj\} \cup \{dfj ... < dfj + d\} by auto
     int i + int d):])
     have idr: ?GH ij = ?H unfolding d-def using jd by auto
     let ?bi = \lambda i. b (db - int i + int d)
     let ?m = \lambda i. if i = j then 1 else if i < j then [:?bij \ i \ j:] else 0
     let ?P = \lambda \ k. \ (?GF \ i \ k * ?m \ k)
    let ?Q = \lambda \ k. ?GF \ i \ k * [: ?bi \ k :]
    let ?G = \lambda \ k. if i = n - 1 then monom 1 \ (dfj - 1 - k) * G else [:g \ (int \ dg)]
-int i + int k:
    let ?Gb = \lambda \ k. ?G \ k * [:?bi \ k:]
    let ?off = -(int db - int dfj + 1 + int d)
    have off0: ?off \ge 0 using False dfq j unfolding dfj-def d-def dbfq n by simp
     from nat-0-le[OF this]
     obtain off where off: int off = ?off by blast
     have int off \leq int dfj unfolding off by auto
     hence off \leq dfj by simp
     hence split1: \{0 ... < dfj\} = \{0 ... < off\} \cup \{off ... < dfj\} by auto
     have int off + Suc\ db \le dfj unfolding off by auto
     hence split2: \{off ... < dfj\} = \{off ... off + db\} \cup \{off + Suc db ... < dfj\} by
     let ?g-b = \lambda k. (if i = n - 1 then monom 1 k * G else [:g (int dg - int i + i)]
int (dfj - Suc k)):]) *
```

```
[:b (k - int off):]
     let ?gb = \lambda k. (if i = n - 1 then monom 1 (k + off) * G else [:g (int dg - dg)]
int \ i + int \ (dfj - Suc \ k - off)):]) *
          [:coeff\ B\ k:]
     let ?F = \lambda \ k. if i = n - 1 then monom 1 (dgj - 1 - (k - dfj)) * F
                else [:f (int df - int i + int (k - dfj)):]
     let ?Fb = \lambda \ k. \ ?F \ k * [:?bi \ k:]
     let ?Pj = if \ i = n - 1 \ then \ monom \ 1 \ (dgj - Suc \ d) * F \ else [:f \ (int \ df - I)]
int i + int d):
     from False have id: col ?M j = vec n ?m
       using j i by (intro\ eq\text{-}vecI,\ auto)
     have row ?G-F \ i \cdot col \ ?M \ j = sum \ ?P \ \{0 ... < n\}
       using i j unfolding id by (simp add: scalar-prod-def)
     also have \{\theta ... < n\} = \{\theta ... < j\} \cup \{j\} \cup \{Suc \ j ... < n\} using j by auto
     also have sum ?P ... = sum ?P \{0 ... < j\} + ?P j + sum ?P \{Suc j ... < n\}
       by (simp add: sum.union-disjoint)
     also have sum ?P \{Suc j ... < n\} = 0 by (rule sum.neutral, auto)
     also have ?P j = ?Pj
       unfolding d-def using jd by simp
     also have sum ?P \{0 ... < j\} = sum ?Q \{0 ... < j\}
       by (rule sum.cong[OF refl], unfold d-def, insert jd, auto)
    also have sum ?Q \{0 ... < j\} = sum ?Q \{0 ... < dfj\} + sum ?Q \{dfj ... < dfj+d\}
unfolding idj
       by (simp add: sum.union-disjoint)
     also have sum ?Q \{0 ... < dfj\} = sum ?Gb \{0 ... < dfj\}
       by (rule sum.cong, auto)
     also have sum ?Q \{dfj ... < dfj+d\} = sum ?Fb \{dfj ... < dfj+d\}
       by (rule sum.cong, auto)
     also have \dots = 0
     proof (rule sum.neutral, intro ballI)
       \mathbf{fix} \ k
       assume k: k \in \{dfj ... < dfj+d\}
      hence k: db + d < k using k j False unfolding n db[symmetric] dfbg dfj-def
d-def by auto
      let ?k = (int db - int k + int d)
       have ?k < \theta using k by auto
      hence b ?k = 0 unfolding b by (intro coeff-int-eq-0, auto)
       thus ?Fb \ k = \theta by simp
     qed
     also have sum ?Gb \{0 ... < dfj\} = sum ?g-b \{0 ... < dfj\}
      proof (rule sum.reindex-cong[of \lambda k. dfj - Suc k], (auto simp: inj-on-def
off)[2], goal-cases)
       case (1 k)
       hence k = dfj - (Suc (dfj - Suc k)) and (dfj - Suc k) \in \{0... < dfj\} by
auto
       thus ?case by blast
     next
       case (2 k)
       hence [simp]: dfj - Suc (dfj - Suc k) = k
```

```
int db - int (dfj - Suc k) + int d = int k - off by (auto simp: off)
      show ?case by auto
     qed
     also have ... = sum ?g-b \{0 .. < off\} + sum ?g-b \{off .. < dfj\}  unfolding
split1
      by (simp add: sum.union-disjoint)
     also have sum ?g-b \{0 .. < off\} = 0
      by (rule sum.neutral, intro ballI, auto simp: b coeff-int-def)
     also have sum ?g-b \{off ... < dfj\} = sum ?g-b \{off ... off + db\} + sum ?g-b
\{off + Suc \ db \ .. < dfj\}
      unfolding split2 by (rule sum.union-disjoint, auto)
     also have sum ?g-b \{off + Suc \ db .. < dfj\} = 0
     proof (rule sum.neutral, intro ballI, goal-cases)
      case (1 k)
      hence b (int k - int off) = 0 unfolding b db
        by (intro coeff-int-eq-0, auto)
      thus ?case by simp
     qed
     also have sum ?g-b \{ off ... off + db \} = sum ?gb \{ 0 ... db \}
      using sum.atLeastAtMost-shift-bounds [of ?q-b 0 off db]
      by (auto intro: sum.cong simp add: b ac-simps)
     finally have id: row ?G-F i \cdot col ?M j - ?H = ?Pj + sum ?gb \{0 ... db\} -
?H
       (is - ?E)
      by (simp add: ac-simps)
     define E where E = ?E
     let ?b = coeff B
     have Bsum: (\sum k = 0..db. \ monom \ (?b \ k) \ k) = B \ unfolding \ db
      using atMost-atLeast0 poly-as-sum-of-monoms by auto
     have E = \theta
     proof (cases i = n - 1)
      case i-n: False
      hence id: (i = n - 1) = False by simp
      with i have i: i < n - 1 by auto
      let ?ii = int df - int i + int d
      have ?thesis = ([:f?ii:] +
       (\sum k = 0..db.
        [:g (int dg - int i + int (dfj - Suc k - off)):] * [:?b k:]) -
        [:h ?ii:] = 0) (is -= (?e = 0)) unfolding E-def id if-False by simp
      also have ?e = [: f ?ii +
       (\sum k = \theta ..db.
        g (int dg - int i + int (dfj - Suc k - off)) * ?b k) -
        h ?ii:] (is - = [: ?e :])
      proof (rule poly-eqI, goal-cases)
        case (1 n)
        show ?case unfolding coeff-diff coeff-add coeff-sum coeff-const
          by (cases n, auto simp: ac-simps)
      qed
      also have [:?e:] = 0 \longleftrightarrow ?e = 0 by simp
```

```
also have ?e = (\sum k = 0..db. \ g \ (int \ dg - int \ i + int \ (dfj - Suc \ k - off))
* ?b k)
        - coeff-int (B * G) ?ii
        unfolding hfq by simp
      also have (B*G) = (\sum k = 0..db. \ monom \ (?b \ k) \ k) * G \ {\bf unfolding} \ Bsum
    also have . . . = (\sum k = 0..db. monom (?b k) k * G) by (rule sum-distrib-right)
      also have coeff-int ... ?ii = (\sum k = 0..db. \ g\ (?ii - k) * ?b\ k)
        unfolding coeff-int-sum coeff-int-monom-mult g by (simp add: ac-simps)
      also have ... = (\sum k = 0..db. \ g \ (int \ dg - int \ i + int \ (dfj - Suc \ k - off))
* ?b k)
      proof (rule sum.cong[OF refl], goal-cases)
        case (1 k)
        hence k \leq db by simp
        hence id: int dg - int i + int (dfj - Suc k - off) = ?ii - k
          using False i j off dfg
          unfolding dbfg d-def dfj-def n by linarith
        show ?case unfolding id ..
      finally show ?thesis by simp
     next
       \mathbf{case} \ \mathit{True}
      let ?jj = dgj - Suc d
       have zero: int off -(dgj - Suc d) = 0 using dfg False j unfolding off
dbfg dfj-def d-def dgj-def n
        by linarith
       from True have E = monom \ 1 \ ?jj * F + (\sum k = 0... \ db.
        monom \ 1 \ (k + off) * G * [: ?b \ k :]) - monom \ 1 \ ?jj * H
        (is -= ?A + ?sum - ?mon) unfolding id E-def by simp
      also have ?mon = monom \ 1 \ ?jj * F + monom \ 1 \ ?jj * (B * G)
        unfolding FGH[symmetric] by (simp add: ring-distribs)
      also have ?A + ?sum - \ldots = ?sum - (monom\ 1\ ?jj * G) * B (is - = - -
?GB * B) by simp
      also have ?sum = (\sum k = 0..db.
        (\textit{monom 1 ?jj * G}) * (\textit{monom 1 } (k + \textit{off } - \textit{?jj}) * [: \textit{?b } k :]))
      proof (rule sum.cong[OF refl], goal-cases)
        case (1 k)
        let ?one = 1 :: 'a
        have int off \geq int ?jj using j False i True
          unfolding off d-def dfj-def dgj-def dfbg n by linarith
        hence k + off = ?jj + (k + off - ?jj) by linarith
         hence id: monom ?one (k + off) = monom (1 * 1) (?jj + (k + off - off))
(2jj)) by simp
        show ?case unfolding id[folded mult-monom] by (simp add: ac-simps)
      also have ... = (monom \ 1 \ ?jj * G) * (\sum k = 0..db. \ monom \ 1 \ (k + off - off))
?jj) * [:?b k:])
        (is - = - * ?sum)
        unfolding sum-distrib-left ...
```

```
also have ... – (monom\ 1\ ?jj*\ G)*B = (monom\ 1\ ?jj*\ G)*(?sum\ -
B) by (simp add: ring-distribs)
      also have ?sum = (\sum k = 0..db. \mod 1 \ k * [:?b \ k:])
        by (rule sum.cong[OF refl], insert zero, auto)
      also have \dots = (\sum k = 0..db. \mod (?b \ k) \ k)
        by (rule sum.cong[OF refl], rule poly-eqI, auto)
      also have \dots = B unfolding Bsum \dots
      finally show ?thesis by simp
     qed
     from id[folded E-def, unfolded this]
     show ?thesis using False unfolding d-def by simp
   also have \dots = ?G-H \$\$ (i,j) using i j by simp
   finally show (?G-F * ?M) \$\$ (i,j) = ?G-H \$\$ (i,j).
 qed auto
 finally show eq-18: subresultant J F G = smult ?m1 (det ?G-H) unfolding
dfj-def dgj-def.
 {
   \mathbf{fix} \ i \ j
   assume ij: i < j and j: j < n
   with dgh have int dg - int i + int j > int dg by auto
   hence g (int dg - int i + int j) = \theta unfolding g dg by (intro coeff-int-eq-\theta,
auto)
 } note g\theta = this
 {
   \mathbf{assume} *: dh \leq J J < dg
   have n-dfj: n > dfj using * unfolding n dfj-def by auto
   note eq-18
   also have det ?G-H = prod-list (diag-mat ?G-H)
   proof (rule det-lower-triangular [of n])
     fix i j
    assume ij: i < j and j: j < n
     from ij j have if-e: i = n - 1 \longleftrightarrow False by auto
     have ?G-H $$ (i,j) = ?GH \ i \ j  using ij \ j by auto
     also have \dots = 0
     proof (cases j < dfj)
      case True
      with True g0[OF ij j] show ?thesis unfolding if-e by simp
     next
      case False
      have h (int df - int i + int (j - dfj)) = \theta unfolding h
       by (rule coeff-int-eq-0, insert False * ij j dfg, unfold dfj-def dh[symmetric],
auto)
      with False show ?thesis unfolding if-e by auto
     qed
    finally show ?G-H $$ (i,j) = 0.
   ged auto
   also have ... = (\prod i = \theta ... < n. ?GH i i)
    by (subst prod-list-diag-prod, simp)
```

```
also have \{0 ... < n\} = \{0 ... < dfj\} \cup \{dfj ... < n\} unfolding n dfj-def by auto
    also have prod (\lambda i. ?GH i i) \dots = prod (\lambda i. ?GH i i) \{0 \dots < dfj\} * prod (\lambda i. ?GH i i) \}
i. ?GH i i) \{dfj ... < n\}
      by (simp add: prod.union-disjoint)
   also have prod (\lambda i. ?GH i i) \{0 ... < dfj\} = prod (\lambda i. [: lead-coeff G :]) \{0 ... < dfj\}
dfj
    proof -
      show ?thesis
        by (rule prod.cong[OF refl], insert n-dfj, auto simp: g coeff-int-def dg)
    also have \dots = [: (lead-coeff\ G)^dfj :] by (simp\ add:\ poly-const-pow)
    also have \{dfj ... < n\} = \{dfj ... < n-1\} \cup \{n-1\} using n-dfj by auto
    also have prod (\lambda i. ?GH i i) \dots = prod (\lambda i. ?GH i i) \{dfj \dots < n-1\} * ?GH
(n-1)(n-1)
      by (simp add: prod.union-disjoint)
    also have ?GH(n-1)(n-1) = H
    proof -
      have dgj - 1 - (n - 1 - dfj) = 0 using n-dfj unfolding dgj-def dfj-def n
      with n-dfj show ?thesis by auto
    qed
    also have prod \ (\lambda \ i. \ ?GH \ i \ i) \ \{dfj \ .. < n-1\} = prod \ (\lambda \ i. \ [:h \ (int \ df - \ dfj):])
\{dfj ... < n-1\}
      by (rule prod.cong[OF refl], auto intro!: arg-cong[of - - h])
    also have \dots = [: h (int df - dfj) \cap (n - 1 - dfj) :]
      unfolding prod-constant by (simp add: poly-const-pow)
    also have n-1-dfj=dg-J-1 unfolding n dfj-def by simp
    also have int df - dfj = J using * dfg unfolding dfj-def by auto
    also have h J = coeff H J unfolding h coeff-int-def by simp
    finally show subresultant J F G = smult (?m1 * ?G * ?H) H by (simp add: finally show subresultant J F G = smult (?m1 * ?G * ?H) H by (simp add: finally show subresultant J F G = smult (?m1 * ?G * ?H) H by (simp add: finally show subresultant J F G = smult (?m1 * ?G * ?H) H by (simp add: finally show subresultant J F G = smult (?m1 * ?G * ?H) H by (simp add: finally show subresultant J F G = smult (?m1 * ?G * ?H) H by (simp add: finally show subresultant J F G = smult (?m1 * ?G * ?H) H by (simp add: finally show subresultant J F G = smult (?m1 * ?G * ?H) H by (simp add: finally show subresultant J F G = smult (?m1 * ?G * ?H) H by (simp add: finally show subresultant J F G = smult (?m1 * ?G * ?H) H
dfj-def ac-simps)
  } note eq-19 = this
  {
    assume J: J < dh
    define dhj where dhj = dh - J
    have n-add: n = (df - dh) + (dhj + dqj) unfolding dhj-def dqj-def n using
J dfq dqh by auto
    let ?split = split-block ?G-H (df - dh) (df - dh)
    have dim: dim-row ?G-H = (df - dh) + (dhj + dgj)
      dim\text{-}col ?G\text{-}H = (df - dh) + (dhj + dgj)
      unfolding n-add by auto
    obtain UL UR LL LR where spl: ?split = (UL, UR, LL, LR) by (cases ?split,
    note spl' = spl[unfolded split-block-def Let-def, simplified]
    let ?LR = subresultant\text{-}mat\ J\ G\ H
    have LR = mat (dgj + dhj) (dgj + dhj)
       (\lambda (i,j). ?GH (i + (df - dh)) (j + (df - dh)))
      using spl' by (auto simp: n-add)
    also have \dots = ?LR
```

```
unfolding subresultant-mat-def Let-def dhj-def dqj-def d[symmetric]
   proof (rule eq-matI, unfold dim-row-mat dim-col-mat index-mat split dfj-def,
goal-cases)
     case (1 \ i \ j)
     hence id1: (j + (df - dh) < df - J) = (j < dh - J) using dgh dfg J by
auto
     have id2: (i + (df - dh) = n - 1) = (i = dg - J + (dh - J) - 1)
      unfolding n-add dhj-def dgj-def using dgh dfg J by auto
     have id3: (df - J - 1 - (j + (df - dh))) = (dh - J - 1 - j)
      and id4: (int dg - int (i + (df - dh)) + int (j + (df - dh))) = (int dg - dh)
int i + int j
      and id5: (dg - J - 1 - (j + (df - dh) - (df - J))) = (dg - J - 1 - (j + (df - dh) - (df - J)))
-(dh-J))
      and id\theta: (int df - int (i + (df - dh)) + int (j + (df - dh) - (df - J)))
= (int dh - int i + int (j - (dh - J)))
      using dqh dfq J by auto
     show ?case unfolding q[symmetric] h[symmetric] id3 id4 id5 id6
      by (rule if-cong[OF id1 if-cong[OF id2 refl refl] if-cong[OF id2 refl refl]])
   qed auto
   finally have LR = ?LR.
   note spl = spl[unfolded this]
   let ?UR = \theta_m (df - dh) (dgj + dhj)
   have UR = mat (df - dh) (dgj + dhj)
      (\lambda (i,j). ?GH i (j + (df - dh)))
     using spl' by (auto simp: n-add)
   also have \dots = ?UR
   proof (rule eq-matI, unfold dim-row-mat dim-col-mat index-mat split dfj-def
index-zero-mat, goal-cases)
     case (1 \ i \ j)
     hence in1: i \neq n-1 using J unfolding dgj-def dhj-def n-add by auto
      assume j + (df - dh) < df - J
       hence dg < int dg - int i + int (j + (df - dh)) using 1 J unfolding
dgj-def dhj-def by auto
      hence g \dots = \theta unfolding dg g by (intro coeff-int-eq-0, auto)
     } note q = this
      \mathbf{assume} \, \neg \, (j + (\mathit{df} \, - \, \mathit{dh}) < \mathit{df} \, - \, \mathit{J})
       hence dh < int df - int i + int (j + (df - dh) - (df - J)) using 1 J
unfolding dgj-def dhj-def by auto
      hence h \dots = \theta unfolding dh h by (intro coeff-int-eq-\theta, auto)
     } note h = this
     show ?case using in1 g h by auto
   qed auto
   finally have UR = ?UR.
   note spl = spl[unfolded\ this]
   let ?G = \lambda (i,j). if i = j then [:lead\text{-}coeff\ G:] else if i < j then 0 else ?GH\ i\ j
   let ?UL = mat (df - dh) (df - dh) ?G
   have UL = mat(df - dh)(df - dh)(\lambda(i,j)). ?GH i j)
```

```
using spl' by (auto simp: n-add)
   also have \dots = ?UL
  proof (rule eq-matI, unfold dim-row-mat dim-col-mat index-mat split, goal-cases)
     case (1 \ i \ j)
     {
      assume i = j
      hence int dg - int i + int j = dg using 1 by auto
      hence g (int dg - int i + int j) = lead-coeff G
        unfolding g dg coeff-int-def by simp
     \} note eq = this
      assume i < j
      hence dg < int dg - int i + int j using 1 by auto
      hence g (int dg - int i + int j) = \theta
        unfolding g dg by (intro coeff-int-eq-0, auto)
     } note lt = this
     from 1 have *: j < dfj \ i \neq n-1 using J unfolding n-add dhj-def dgj-def
dfj-def by auto
     hence ?GH \ i \ j = [:g \ (int \ dg - int \ i + int \ j):] by simp
    also have ... = (if i = j then [: lead-coeff G:] else if i < j then 0 else ?GH i
j)
       using eq lt * by auto
     finally show ?case by simp
   qed auto
   finally have UL = ?UL.
   note spl = spl[unfolded this]
   from split-block[OF spl dim]
   have GH: ?G-H = four-block-mat ?UL ?UR LL ?LR
     and C: ?UL \in carrier-mat (df - dh) (df - dh)
     ?UR \in carrier\text{-}mat (df - dh) (dhj + dgj)
     LL \in carrier-mat\ (dhj + dgj)\ (df - dh)
     ?LR \in carrier\text{-}mat\ (dhj + dgj)\ (dhj + dgj)\ \mathbf{by}\ auto
   from arg-cong[OF GH, of det]
  have det ?G-H = det (four-block-mat ?UL ?UR LL ?LR) unfolding GH[symmetric]
   also have \dots = det ?UL * det ?LR
     by (rule det-four-block-mat-upper-right-zero[OF - refl], insert C, auto simp:
ac\text{-}simps)
   also have det ?LR = subresultant J G H unfolding subresultant-def by simp
   also have det ?UL = prod\text{-}list (diag-mat ?UL)
     by (rule det-lower-triangular[of df - dh], auto)
  also have \dots = (\prod i = 0 .. < (df - dh). [: lead-coeff G :]) unfolding prod-list-diag-prod
   also have ... = [: lead\text{-}coeff\ G \cap (df - dh) :] by (simp\ add:\ poly\text{-}const\text{-}pow)
   finally have det: det ?G-H = [:lead-coeff\ G\ \widehat{\ }(df-dh):]* subresultant\ J\ G
H by auto
  show subresultant J F G = smult (?m1 * lead-coeff G ^ (df - dh)) (subresultant
J G H
     unfolding eq-18 det by simp
```

```
assume J: dh < JJ < dg - 1
   hence dh \leq J J < dg by auto
   from eq-19[OF this]
   have subresultant J F G = smult ((-1) \cap ((df - J) * (dg - J)) * lead-coeff
G \cap (df - J) * coeff H J \cap (dg - J - 1)) H
   also have coeff H J = 0 by (rule coeff-eq-0, insert J, auto simp: dh)
   also have ... \hat{} (dg - J - 1) = \theta using J by auto
   finally show subresultant J F G = 0 by simp
 {
   assume J: J = dh and dg > dh \lor H \neq 0
   with choice have dgh: dg > dh by auto
   show subresultant dh F G = smult (
    (-1) (df - dh) * (dg - dh)) * lead-coeff G (df - dh) * lead-coeff H (dg)
-dh - 1)) H
     unfolding eq-19 [unfolded J, OF le-refl dgh] unfolding dh by simp
   assume J: J = dg - 1 and dg > dh \lor H \neq 0
   with choice have dgh: dg > dh by auto
   have *: dh \le dg - 1 dg - 1 < dg using dgh by auto
   have **: df - (dg - 1) = df - dg + 1 dg - (dg - 1) - 1 = 0 dg - (dg - 1)
1) = 1
     using dfq dqh by linarith+
   show subresultant (dg - 1) F G = smult (
     (-1) (df - dg + 1) * lead-coeff G (df - dg + 1)) H
     unfolding eq-19 [unfolded J, OF *] unfolding ** by simp
 }
qed
\mathbf{lemmas} \ BT\text{-}lemma\text{-}1\text{-}13 = BT\text{-}lemma\text{-}1\text{-}13'[OF\text{-}-\text{-}refl]
\mathbf{lemmas} \ BT\text{-}lemma\text{-}1\text{-}15 = BT\text{-}lemma\text{-}1\text{-}15'[OF\text{-}-\text{-}refl]
lemma subresultant-product: fixes F :: 'a :: idom poly
 assumes F = B * G
 and FG: degree F \geq degree G
shows subresultant J F G = (if J < degree G then 0 else
  if J < degree \ F \ then \ smult \ (lead-coeff \ G \ \widehat{\ } (degree \ F - J - 1)) \ G \ else \ 1)
proof (cases J < degree G)
 case J: True
 from assms have eq: F + (-B) * G = 0 by auto
 from J have lt: degree 0 < degree \ G \lor b for b by auto
 from BT-lemma-1-13[OF eq FG lt lt]
 have subresultant \theta F G = \theta using J by auto
 with BT-lemma-1-14 [OF eq FG lt, of J] have 00: J = 0 \lor J < degree G - 1
\implies subresultant J F G = 0 by auto
```

```
from BT-lemma-1-15[OF eq FG lt lt] J have \theta 1: subresultant (degree G-1)
F G = \theta by simp
 from J have (J = 0 \lor J < degree G - 1) \lor J = degree G - 1 by linarith
  with 00 01 have subresultant J F G = 0 by auto
  thus ?thesis using J by simp
\mathbf{next}
  case J: False
 hence dg: degree G - J = \theta by simp
 let ?n = degree F - J
 have *: (j :: nat) < 0 \longleftrightarrow False j - 0 = j for j by auto
 let ?M = mat ?n ?n
        (\lambda(i, j).
            if i = ?n - 1 then monom 1 (?n - 1 - j) * G
            else [:coeff\text{-}int\ G\ (int\ (degree\ G)\ -\ int\ i\ +\ int\ j):])
 have subresultant J F G = det ?M
   unfolding subresultant-def subresultant-mat-def Let-def dq * by auto
 also have det ?M = prod\text{-}list (diag-mat ?M)
   by (rule det-lower-triangular[of ?n], auto intro: coeff-int-eq-0)
 also have ... = (\prod i = 0.. < ?n. ?M \$\$ (i,i)) unfolding prod-list-diag-prod by
  also have ... = (\prod i = 0.. < ?n. \text{ if } i = ?n - 1 \text{ then } G \text{ else } [: \text{lead-coeff } G :])
   by (rule prod.cong[OF refl], auto simp: coeff-int-def)
 also have ... = (if \ J < degree \ F \ then \ smult \ (lead-coeff \ G \ (?n-1)) \ G \ else \ 1)
  proof (cases\ J < degree\ F)
   {f case} True
   hence id: \{ 0 ... < ?n \} = \{ 0 ... < ?n - 1 \} \cup \{ ?n - 1 \} by auto
   have (\prod i = 0... < ?n. if i = ?n - 1 then G else [: lead-coeff G :])
     = (\prod i = 0 ... < ?n - 1. if i = ?n - 1 then G else [: lead-coeff G :]) * G (is
-=?P*G
     unfolding id
     by (subst prod.union-disjoint, auto)
   also have P = (\prod i = 0 ... < Pn - 1. [: lead-coeff G :])
     by (rule prod.cong, auto)
   also have \dots = [: lead\text{-}coeff\ G \ \widehat{\ } (?n-1):]
     by (simp add: poly-const-pow)
   finally show ?thesis by auto
 qed auto
 finally have subresultant J F G =
     (if J < degree F then smult (lead-coeff G \cap (degree F - J - 1)) G else 1).
  thus ?thesis using J by simp
\mathbf{qed}
lemma resultant-pseudo-mod-\theta: assumes pseudo-mod fg = (\theta :: 'a :: idom-divide
poly
 and dfg: degree f \ge degree g
 and f: f \neq 0 and g: g \neq 0
 shows resultant f g = (if degree g = 0 then lead-coeff g degree f else 0)
proof -
 let ?df = degree f let ?dg = degree g
```

```
obtain d r where pd: pseudo-divmod f g = (d,r) by force
  from pd have r: r = pseudo-mod f g unfolding pseudo-mod-def by simp
  with assms pd have pd: pseudo-divmod f g = (d, \theta) by auto
  from pseudo-divmod[OF \ g \ pd] \ g
  obtain a q where prod: smult a f = g * q and a: a \neq 0 a = lead-coeff g \cap (Suc
?df - ?dg)
   by auto
  from a dfg have dfg: degree g \leq degree \ (smult \ a \ f) by auto
  have g\theta: degree g = \theta \implies coeff \ g \ \theta = \theta \implies g = \theta
    using leading-coeff-0-iff by fastforce
  from prod have smult a f = q * g by simp
  from arg-cong[OF subresultant-product[OF this dfg, of 0, unfolded subresul-
tant	ext{-}resultant
    resultant-smult-left[OF a(1)], of \lambda x. coeff x \theta]
 show ?thesis using a g0 by (cases degree f, auto)
qed
locale primitive-remainder-sequence =
  fixes F :: nat \Rightarrow 'a :: idom-divide poly
   and n :: nat \Rightarrow nat
   and \delta :: nat \Rightarrow nat
   and f :: nat \Rightarrow 'a
   and k :: nat
   and \beta :: nat \Rightarrow 'a
  assumes f: \bigwedge i. f i = lead\text{-}coeff (F i)
     and n: \bigwedge i. n \ i = degree \ (F \ i)
     and \delta: \bigwedge i. \delta i = n i - n (Suc i)
     and n12: n \ 1 \ge n \ 2
     and F12: F 1 \neq 0 F 2 \neq 0
     and F\theta: \bigwedge i. i \neq 0 \Longrightarrow F i = 0 \longleftrightarrow i > k
     and \beta\theta: \bigwedge i. \beta i \neq 0
     and pmod: \bigwedge i. \ i \geq 3 \Longrightarrow i \leq Suc \ k \Longrightarrow smult \ (\beta \ i) \ (F \ i) = pseudo-mod \ (F \ i)
(i-2)) (F (i-1))
begin
lemma f10: f1 \neq 0 and f20: f2 \neq 0 unfolding f using F12 by auto
lemma f\theta: i \neq 0 \Longrightarrow f i = 0 \longleftrightarrow i > k
  using F0[of i] unfolding f by auto
lemma n-gt: assumes 2 \le i \ i < k
  shows n \ i > n \ (Suc \ i)
proof -
  from assms have 3 \le Suc \ i \ Suc \ i \le Suc \ k by auto
  note pmod = pmod[OF\ this]
  from assms F0 have F(Suc\ i-1) \neq 0\ F(Suc\ i) \neq 0 by auto
  from pseudo-mod(2)[OF\ this(1),\ of\ F\ (Suc\ i-2),\ folded\ pmod]\ this(2)
  show ?thesis unfolding n using \beta \theta by auto
qed
```

```
lemma n-ge: assumes 1 \le i \ i < k
 shows n \ i \ge n \ (Suc \ i)
  using n12 \ n\text{-}gt[OF - assms(2)] \ assms(1) by (cases i = 1, auto simp: nu-
meral-2-eq-2)
lemma n-ge-trans: assumes 1 \le i \ i \le j \ j \le k
 shows n \ i \ge n \ j
proof -
 from assms(2) have j = i + (j - i) by simp
 then obtain jj where j: j = i + jj by blast
 from assms(3)[unfolded j] show ?thesis unfolding j
 proof (induct jj)
   case (Suc \ j)
   from Suc(2) have i + j \le k by simp
   from Suc(1)[OF this] have IH: n (i + j) \le n i.
   have n (Suc (i + j)) \le n (i + j)
     by (rule n-ge, insert assms(1) Suc(2), auto)
   with IH show ?case by auto
 qed auto
qed
lemma delta-gt: assumes 2 \le i \ i < k
 shows \delta i > 0 using n-gt[OF assms] unfolding \delta by auto
lemma k2:2 \leq k
 by (metis le-cases linorder-not-le F0 F12(2) zero-order(2))
lemma k\theta: k \neq \theta using k\theta by auto
lemma ni2:3 \le i \Longrightarrow i \le k \Longrightarrow n \ i \ne n \ 2
  by (metis Suc-numeral \delta delta-gt k2 le-imp-less-Suc le-less n-ge-trans not-le
one-le-numeral
     semiring-norm(5) zero-less-diff)
end
locale subresultant-prs-locale = primitive-remainder-sequence F n \delta f k \beta for
      F :: nat \Rightarrow 'a :: idom-divide fract poly
   and n :: nat \Rightarrow nat
   and \delta :: nat \Rightarrow nat
   and f :: nat \Rightarrow 'a fract
   and k :: nat
   and \beta :: nat \Rightarrow 'a fract +
  fixes G1 G2 :: 'a poly
 assumes F1: F1 = map-poly to-fract G1
   and F2: F2 = map-poly to-fract G2
```

```
definition \alpha i = (f(i-1)) (Suc(\delta(i-2)))
lemma \alpha \theta: i > 1 \Longrightarrow \alpha \ i = 0 \longleftrightarrow (i - 1) > k
 unfolding \alpha-def using f0[of i - 1] by auto
lemma \alpha-char:
assumes 3 \le i \ i < k + 2
 shows \alpha i = (f(i-1)) \cap (Suc(length(coeffs(F(i-2)))) - length(coeffs(F(i-2)))))
(i-1))))
proof (cases i = 3)
 case True
 have triv:Suc\ (Suc\ \theta) = 2 by auto
 have l:length (coeffs (F 2)) \neq 0 length (coeffs (F 1)) \neq 0 using F12 by auto
 hence length (coeffs (F 2)) < length (coeffs (F (Suc 0))) using n12
   unfolding n degree-eq-length-coeffs One-nat-def by linarith
 hence Suc (length (coeffs (F 1)) -1 - (length (coeffs <math>(F 2)) - 1)) =
       (Suc\ (length\ (coeffs\ (F\ 1))) - length\ (coeffs\ (F\ (3-1)))) using l\ by\ simp
 thus ?thesis unfolding True \alpha-def n \delta degree-eq-length-coeffs by (simp add:triv)
next
  case False
 hence assms: 2 \le i - 2 i - 2 < k \text{ using } assms \text{ by } auto
 have i:i-2 \neq 0 \ i-1 \neq 0 using assms by auto
 hence [simp]: Suc\ (i-2) = i-1 by auto
  from assms(2) F0[OF i(2)] have F(i-1) \neq 0 by auto
  then have length (coeffs (F(i-1)) > 0 by (cases F(i-1)) auto
  with delta-gt[unfolded \delta n degree-eq-length-coeffs, OF assms]
  have *: Suc (\delta (i-2)) = Suc (length (coeffs (F (i-2)))) - (length (coeffs))
(F(Suc(i-2))))
   by (auto simp:\delta n degree-eq-length-coeffs)
 show ?thesis unfolding \alpha-def * by simp
qed
definition Q :: nat \Rightarrow 'a \ fract \ poly \ \mathbf{where}
  Q \ i \equiv smult \ (\alpha \ i) \ (fst \ (pdivmod \ (F \ (i-2)) \ (F \ (i-1))))
lemma beta-F-as-sum:
 assumes 3 \le i \ i \le Suc \ k
 shows smult (\beta i) (F i) = smult (\alpha i) (F (i-2)) + Q i * F (i-1) (is ?t1)
proof -
 have ik:i < k + 2 using assms by auto
 have f0:F(i-1)=0 \longleftrightarrow False\ F(i-Suc\ 0)=0 \longleftrightarrow False
   using F0[of i - 1] assms by auto
 hence f0-b:(inverse\ (coeff\ (F\ (i-1))\ (degree\ (F\ (i-1))))) <math>\neq 0\ F\ (i-1) \neq 0
0 by auto
 have i:i-2 \neq 0 Suc (i-2)=i-1 (k < i-2) \longleftrightarrow False using assms by
```

begin

have $F(i-2) \neq 0$ using F0[of i-2] assms by auto

```
let ?c = (inverse\ (f\ (i-1))\ ^(Suc\ (length\ (coeffs\ (F\ (i-2))))) - length\ (coeffs
(F(i-1))))
    have inv:inverse (\alpha \ i) = ?c unfolding \alpha-char[OF assms(1) ik] power-inverse
by auto
   have alpha\theta:\alpha i \neq 0 unfolding \alpha-def f using f0 by auto
   have \alpha-inv[simp]:\alpha i * inverse (\alpha i) = 1
       using field-class.field-inverse[OF alpha0] mult.commute by metis
    with field-class.field-inverse[OF alpha0,unfolded inv]
    have c-times-Q:smult ?c (Q \ i) = fst \ (pdivmod \ (F \ (i-2)) \ (F \ (i-1)))
       unfolding Q-def by auto
   have pdivmod (F(i-2)) (F(i-1)) = (smult ?c(Qi), smult ?c(smult (\beta i))
(F i)))
       unfolding c-times-Q
       unfolding pdivmod-via-pseudo-divmod pmod[OF assms] f n c-times-Q
                           pseudo-mod-smult-right[OF f0-b, of F (i-2), symmetric] f0 if-False
Let-def
       unfolding pseudo-mod-def by (auto split:prod.split)
   from this [symmetric]
   have pr: \langle F(i-2) = smult ?c(Qi) * F(i-1) + smult ?c(smult(\betai)) (F
i))\rangle
       by (simp only: prod-eq-iff fst-conv snd-conv div-mult-mod-eq)
    then have F(i-2) = smult (inverse(\alpha i)) (Qi) * F(i-1)
                                  + smult (inverse (\alpha \ i)) (smult (\beta \ i) (F \ i)) (is ?l = ?r is - = ?t
+ -)
                                 unfolding inv.
   hence eq:smult (\alpha \ i) \ (?l - ?t) = smult \ (\alpha \ i) \ (?r - ?t) by auto
   have smult (\alpha i) (F(i-2)) - Qi * (F(i-1)) = smult (\alpha i) (?l-?t)
    unfolding smult-diff-right by auto
   also have ... = smult (\alpha i) (?r - ?t) unfolding eq.
   also have ... = smult \ (\beta \ i) \ (F \ i) by (auto \ simp:mult.assoc[symmetric])
   finally show ?t1 by auto
qed
lemma assumes 3 \le i \ i \le k shows
   BT-lemma-2-21: j < n \ i \Longrightarrow smult \ (\alpha \ i \ \widehat{\ } (n \ (i-1) - j)) \ (subresultant \ j \ (F \ (i-1) - j))
(-2)) (F(i-1))
   = smult ((-1) \hat{} ((n(i-2)-j)*(n(i-1)-j))*(f(i-1)) \hat{} (\delta(i-2)
+\delta(i-1) * (\beta i) ^ (n(i-1)-j) (subresultant j (F(i-1)) (F(i))
       (is -\Longrightarrow ?eq-21) and
    BT-lemma-2-22: smult (\alpha i \widehat{\ } (\delta (i - 1))) (subresultant (n i) (F (i - 2)) (F (i
-1)))
    = smult ((-1) \hat{} ((\delta (i-2) + \delta (i-1)) * \delta (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) \hat{} (\delta (i-1)) * f (i-1)) * f (i-1) 
(2) + \delta(i-1) * f i (\delta(i-1) - 1) * (\beta i) \delta(i-1) (F i)
       (is ?eq-22) and
    BT-lemma-2-23: n \ i < j \Longrightarrow j < n \ (i-1)-1 \Longrightarrow subresultant \ j \ (F \ (i-2))
(F(i-1)) = 0
       (is -\Longrightarrow -\Longrightarrow ?eq-23) and
    BT-lemma-2-24: smult (\alpha \ i) (subresultant (n \ (i-1)-1) (F \ (i-2)) (F \ (i-2))
1)))
```

```
= smult ((-1) \hat{\delta}(\delta(i-2)+1) * f(i-1) \hat{\delta}(\delta(i-2)+1) * \beta i) (Fi) (is
?eq-24)
proof -
 from assms have ik:i \leq Suc \ k by auto
 note beta-F-as-sum[OF assms(1) ik, symmetric]
 have s[simp]:Suc\ (i-2)=i-1\ Suc\ (i-1)=i using assms by auto
 have \alpha \theta : \alpha i \neq 0 using assms f0[of i - 1] unfolding \alpha-def f by auto
 hence \alpha \theta pow: \bigwedge x. \alpha i \cap x \neq \theta by auto
  have df: degree\ (F\ (i-1)) \leq degree\ (smult\ (\alpha\ i)\ (F\ (i-2)))
         degree (smult (\beta \ i) \ (F \ i)) < degree (F \ (i-1)) \lor b \ \mathbf{for} \ b
   using n-ge[of i-2] n-gt[of i-1] assms \alpha \theta \beta \theta unfolding n by auto
  have degree-smult-eq: \land c f. (c::::\{idom-divide\}) \neq 0 \implies degree (smult c f) =
degree f by auto
 have n-lt:n \ (i - 1) using n-gt[of \ i-1] assms unfolding n by auto
 from semiring-normalization-rules(30) mult.commute
   have *:\bigwedge x y q. (x * (y::'a fract)) \cap q = y \cap q * x \cap q by metis
 have n(i-1) - ni > 0 using n-lt by auto
 hence **:\beta i (n(i-1) - ni - 1) * \beta i = \beta i (n(i-1) - ni)
   by (subst power-minus-mult) auto
  have max (n (i-2)) (n (i-1)) = n (i-2) using n-ge[of i-2] assms
   unfolding max-def by auto
  with diff-add-assoc[OF n-ge[of i-1], symmetric] assms
  have ns: n(i-2) - n(i-1) + (n(i-1) - ni) = n(i-2) - ni
    by (auto simp:nat-minus-add-max)
  { assume j < n i
   hence j:j < degree (smult (\beta i) (F i)) using \beta \theta unfolding n by auto
   from BT-lemma-1-12[OF beta-F-as-sum df j]
   show ?eq-21
     unfolding subresultant-smult-right[OF \beta\theta] subresultant-smult-left[OF \alpha\theta]
                    degree-smult-eq[OF \alpha \theta] degree-smult-eq[OF \beta \theta] n[symmetric]
f[symmetric] \delta s ns
     using f n
     by auto}
  { from BT-lemma-1-13[OF beta-F-as-sum df df(2)]
   show ?eq-22
     unfolding subresultant-smult-left[OF \alpha \theta] lead-coeff-smult smult-smult
                    degree-smult-eq[OF \alpha \theta] degree-smult-eq[OF \beta \theta] n[symmetric]
f[symmetric] \delta s ns
     by (metis\ (no\text{-types},\ lifting) * ** coeff\text{-smult}\ f\ mult.assoc\ n)
  { assume n \ i < j \ j < n \ (i - 1) - 1
   hence j: degree (smult (\beta i) (F i)) < j j < degree <math>(F (i - 1)) - 1
     using \beta\theta unfolding n by auto
   from BT-lemma-1-14 [OF beta-F-as-sum df j]
    show ?eq-23 unfolding subresultant-smult-left[OF \alpha\theta] smult-eq-0-iff using
\alpha \theta pow  by auto }
  { have ***: n(i-1) - (n(i-1) - 1) = 1 using n-lt by auto
   from BT-lemma-1-15 [OF beta-F-as-sum df df(2)]
   show ?eq-24
   unfolding subresultant-smult-left[OF \alpha \theta] *** degree-smult-eq[OF \alpha \theta] n[symmetric]
```

```
by (auto simp:mult.commute)}
qed
lemma BT-eq-30: 3 < i \implies i < k+1 \implies j < n (i-1) \implies
              smult (\prod l \leftarrow [3..< i]. \alpha l \cap (n(l-1)-j)) (subresultant j(F1)(F2))
        = smult (\prod l \leftarrow [3... < i]. \beta l \cap (n(l-1)-j) * f(l-1) \cap (\delta(l-2)+\delta(l-1)-j) + f(l-1) \cap (\delta(l-1)-\delta(l-1)-j) + f(l-1) \cap (\delta(l-1)-\delta(l-1)-j) + f(l-1) \cap (\delta(l-1)-\delta(l-1)-j) + f(l-1) \cap (\delta(l-1)-\delta(l-1)-j)
 1))
                            * (-1) ^ ((n(l-2)-j)*(n(l-1)-j))) (subresultant j (F (i-2)))
(F(i-1))
proof (induct \ i - 3 \ arbitrary:i)
       case (Suc \ x)
       from Suc.hyps(2) Suc.prems(1-2)
              have prems: x = (i - 1) - 3 \ 3 \le i - 1 \ i - 1 \le k + 1 \ 2 \le i - 1 - 1 \ i - 1
 -1 < k
                                                   i-1 \le k by auto
       from prems(2) have inset:i-1 \in set [3...< i] by auto
     have r1:remove1 (i-1)[3...< i] = [3...< i-1] by (induct\ i, auto\ simp:remove1-append)
       from Suc.prems(1) have Suc.(i-1-1)=i-1 by auto
       from n-qt[OF\ prems(4,5), unfolded\ this]\ Suc.prems(3)\ have\ j:j < n\ (i-1-1)
by auto
       have *: \land c \ d \ e \ x. \ smult \ c \ d = e \Longrightarrow smult \ (x * c) \ d = smult \ x \ e \ by \ auto
       have **: \bigwedge c \ d \ e \ x. smult c \ d = e \Longrightarrow smult \ c \ (smult \ x \ d) = smult \ x \ e \ \mathbf{by} \ (auto
 simp:mult.commute)
       show ?case unfolding prod-list-map-remove1[OF inset(1),unfolded r1]
                     *[OF\ Suc.hyps(1)[OF\ prems(1-3)\ j]]
                     **[OF\ BT-lemma-2-21[OF\ prems(2,6)\ Suc.prems(3)]]
                     by (auto simp: numeral-2-eq-2 ac-simps)
qed auto
lemma nonzero-alphaprod: assumes i \leq k+1 shows (\prod l \leftarrow [3..< i]. \alpha l \cap (p l))
       unfolding prod-list-zero-iff using assms by (auto simp: \alpha\theta)
lemma BT-eq-30': assumes i: 3 \le i \ i \le k+1 \ j < n \ (i-1)
shows subresultant j (F 1) (F 2)
= smult \ ((-1) \ \widehat{)} \ (\sum l \leftarrow [3..<i]. \ (n \ (l-2) - j) * (n \ (l-1) - j)) \\ * (\prod l \leftarrow [3..<i]. \ (\beta \ l \ / \ \alpha \ l) \ \widehat{)} \ (n \ (l-1) - j)) * (\prod l \leftarrow [3..<i]. \ f \ (l-1) \ \widehat{)} \ ((l-2) + \delta \ (l-1))) \ (subresultant \ j \ (F \ (i-2)) \ (F \ (i-1)))
        (is - smult (?mm * ?b * ?f) -)
proof -
       let ?a = \prod l \leftarrow [3.. < i]. \alpha \ l \ (n \ (l-1) - j) let ?d = \prod l \leftarrow [3.. < i]. \beta \ l \ (n \ (l-1) - j) * f \ (l-1) \ (\delta \ (l-2) + \delta \ (l-2) + \delta \ (l-2) \ (\delta \ (l-2) + \delta \ (l-2) + \delta \ (l-2) \ (\delta \ (l-2) + \delta \ (l-
 1)) *
       (-1) \hat{} ((n (l-2) - j) * (n (l-1) - j)) let ?m = \prod l \leftarrow [3... < i]. (-1) \hat{} ((n (l-2) - j) * (n (l-1) - j))
       have a\theta: ?a \neq \theta by (rule nonzero-alphaprod, rule i)
        with arg-cong[OF BT-eq-30[OF i], of smult (inverse ?a), unfolded smult-smult]
       have subresultant j (F 1) (F 2) = smult (inverse ?a * ?d)
```

```
(subresultant \ j \ (F \ (i-2)) \ (F \ (i-1)))
   by simp
 also have inverse ?a * ?d = ?b * ?f * ?m unfolding prod-list-mult inverse-prod-list
map-map o-def
     power-inverse[symmetric] power-mult-distrib divide-inverse-commute
   by simp
 also have ?m = ?mm
   unfolding prod-list-minus-1-exp by simp
 finally show ?thesis by (simp add: ac-simps)
qed
    For defining the subresultant PRS, we mainly follow Brown's "The Sub-
resultant PRS Algorithm" (B).
definition R j = (if j = n \ 2 \ then \ sdiv-poly \ (smult \ ((lead-coeff \ G2) \ \ (\delta \ 1)) \ G2)
(lead-coeff\ G2)\ else\ subresultant\ j\ G1\ G2)
abbreviation ff i \equiv to\text{-}fract (i :: 'a)
abbreviation ffp \equiv map\text{-}poly ff
sublocale map-poly-hom: map-poly-inj-idom-hom to-fract..
definition \sigma i = (\sum l \leftarrow [3.. < Suc \ i]. (n (l - 2) + n (i - 1) + 1) * (n (l - 1) + 1) 
n(i-1)+1)
definition \tau i = (\sum l \leftarrow [3... < Suc \ i]. (n (l-2) + n \ i) * (n (l-1) + n \ i))
definition \gamma i = (-1) \hat{\ } (\sigma \ i) * pow-int ( f (i-1)) (1 - int (\delta (i-1))) *
(\prod l \leftarrow [3.. < Suc \ i].
 (\beta l / \alpha l) (n (l-1) - n (i-1) + 1) * (f (l-1)) (\delta (l-2) + \delta (l-1)))
definition \Theta i = (-1) \hat{\ } (\tau \ i) * pow-int (fi) (int <math>(\delta \ (i-1)) - 1) * (\prod l \leftarrow [3.. < Suc
 (\beta l / \alpha l) (n (l-1) - n i) * (f (l-1)) (\delta (l-2) + \delta (l-1))
lemma fundamental-theorem-eq-4: assumes i: 3 < i i < k
 shows ffp (R (n (i - 1) - 1)) = smult (\gamma i) (F i)
proof -
 have n(i-1) \le n \ 2 by (rule n-ge-trans, insert i, auto)
 with n-gt[of i - 1] i have n(i - 1) - 1 < n 2
   and lt: n(i - 1) - 1 < n(i - 1) by linarith+
 hence R(n(i-1)-1) = subresultant(n(i-1)-1) G1 G2
   unfolding R-def by auto
 from arg-cong[OF this, of ffp, unfolded to-fract-hom.subresultant-hom, folded F1
 have id1: ffp(R(n(i-1)-1)) = subresultant(n(i-1)-1)(F1)(F2).
 note eq-24 = BT-lemma-2-24[OF i]
 let ?o = (-1) :: 'a fract
 let ?m1 = (\delta (i - 2) + 1)
 let ?d1 = f(i-1) \hat{}(\delta(i-2) + 1) * \beta i
```

```
let ?c1 = ?o ^?m1 * ?d1
   let ?c\theta = \alpha i
   have ?c\theta \neq \theta using \alpha\theta[of i] i by auto
   with arg-cong[OF\ eq-24, of smult (inverse ?c0)]
   have id2: subresultant (n (i-1) - 1) (F (i-2)) (F (i-1)) =
        smult (inverse ?c0 * ?c1) (F i)
      by (auto intro: poly-eqI)
   from i have 3 \le i i \le k + 1 by auto
   note id\beta = BT\text{-}eq\text{-}30'[OF this lt]
   let ?f = \lambda l. f (l-1) \hat{\delta} (\delta (l-2) + \delta (l-1))
   let ?b = \lambda l \cdot (\beta l / \alpha l) \cap (n (l - 1) - (n (i - 1) - 1))
   let ?b' = \lambda l. (\beta l / \alpha l) (n (l - 1) - n (i - 1) + 1)
   let ?m = \lambda l. (n(l-2) - (n(i-1) - 1)) * (n(l-1) - (n(i-1) - 1))
   let ?m' = \lambda l. (n(l-2) + n(i-1) + 1) * (n(l-1) + n(i-1) + 1)
  let ?m2 = (\sum l \leftarrow [3..< i]. ?m \ l)
let ?b2 = (\prod l \leftarrow [3..< i]. ?b \ l)
   let ?f2 = (\prod l \leftarrow [3.. < i]. ?f l)
   let ?f1 = pow-int (f (i - 1)) (1 - int (\delta (i - 1)))
   have id_4: \gamma i = ?o (?m1 + ?m2) * (inverse ?c0 * ?d1 * ?b2 * ?f2)
   proof -
      have id: \gamma \ i = (-1)^{\gamma}(\sigma \ i) * (?f1 * (\prod l \leftarrow [3.. < Suc \ i]. ?b' \ l) * (\prod l \leftarrow [3.. < Suc \ i])
i]. ?f(l))
          unfolding \gamma-def prod-list-mult by simp
      have cong: even m1 = even \ m2 \implies c1 = c2 \implies ?o^m1 * c1 = ?o^m2 * c2
for m1 m2 c1 c2
          unfolding minus-1-power-even by auto
      show ?thesis unfolding id
      proof (rule cong)
          from n-gt[of i - 1] i have n1: n (i - 1) \neq 0 by linarith
             \mathbf{fix} \ l
             assume 2 \le l \ l \le i
             hence l: l \geq 2 l - 1 \leq i - 1 l \leq k using i by auto
             from n-ge-trans[OF - l(2)] l i have n2: n (i-1) \le n (l-1) by auto
              from n1 \ n2 have id: n \ (l-1) - (n \ (i-1) - 1) = n \ (l-1) - n \ (i-1) 
1) + 1 by auto
              have even (n(l-1) - (n(i-1) - 1)) = even(n(l-1) + n(i-1))
+ 1)
                 unfolding id using n2 by auto
             note id n2 this
          } note diff = this
          have f\theta: f(i-1) \neq \theta using f\theta[of i-1] i by auto
          have (\prod l \leftarrow [3.. < Suc \ i]. ?b' \ l) = (\prod l \leftarrow [3.. < Suc \ i]. ?b \ l)
             by (rule arg-cong, rule map-cong, use diff(1) in auto)
          also have \dots = ?b2 * ?b i using i by auto
          finally have ?f1 * (\prod l \leftarrow [3... < Suc i]. ?b' l) * (\prod l \leftarrow [3... < Suc i]. ?f l) =
               (?b2 * ?f2) * (?f1 * ?b i * ?f i) using i by simp
          also have ?f1 * ?b i * ?f i = (?f1 * ?f i) * \beta i * inverse ?c0 using n1 by
(simp add: divide-inverse)
```

```
also have ?f1 * ?f i = f (i - 1) ^ (\delta (i - 2) + 1)
      unfolding exp-pow-int pow-int-add[OF f0, symmetric] by simp
    finally
    show ?f1 * (\prod l \leftarrow [3.. < Suc i]. ?b' l) * (\prod l \leftarrow [3.. < Suc i]. ?f l)
       = inverse ?c0 * ?d1 * ?b2 * ?f2 by simp
     have even (\sigma i) = even ((\sum l \leftarrow [3... < i]. ?m'l) + ?m'i) unfolding \sigma-def
using i by simp
    also have ... = (even (\sum l \leftarrow [3..< i]. ?m'l) = even (?m'i)) by simp
    also have even (\sum l \leftarrow [3..< i]. ?m'l) = even ?m2
    proof (rule even-sum-list, goal-cases)
      case (1 l)
      hence l: l \geq 2 l \leq i and l1: l - 1 \geq 2 l - 1 \leq i by auto
      have l2: l - 2 = l - 1 - 1 by simp
      show ?case using diff(3) [OF l] diff(3) [OF l1] l2
        by auto
    qed
    also have even (?m'i) = even ?m1
    proof -
      from i have id: Suc\ (i-1-1)=i-1\ i-2=i-1-1 by auto
      have even ?m1 = even (n (i - 2) + n (i - 1) + 1) unfolding \delta id
        using diff[of i - 1] i by auto
      also have \dots = even (?m'i) by auto
      finally show ?thesis by simp
    qed
    also have (even ?m2 = even ?m1) = even (?m2 + ?m1) unfolding even-add
by simp
    also have ?m2 + ?m1 = ?m1 + ?m2 by simp
    finally show even (\sigma i) = even (?m1 + ?m2).
   qed
 qed
 show ?thesis unfolding id1 id3 id2 smult-smult id4 by (simp add: ac-simps
power-add)
qed
lemma fundamental-theorem-eq-5: assumes i: 3 < i i < k \ n \ i < j \ j < n \ (i-1)
- 1
 shows R j = 0
proof -
 from BT-lemma-2-23[OF i] have id1: subresultant j (F (i-2)) (F (i-1)) =
 have n(i-1) \le n \ 2 by (rule n-ge-trans, insert i, auto)
 with n-gt[of i - 1] i have n(i - 1) - 1 < n 2
   and lt: j < n (i - 1) by linarith+
 with i have R j = subresultant j G1 G2 unfolding R-def by auto
 from arg-cong[OF this, of ffp, unfolded to-fract-hom.subresultant-hom, folded F1
 have id2: ffp(R j) = subresultant j(F 1)(F 2).
 from i have 3 \le i \ i \le k + 1 by auto
```

```
note eq-30 = BT-eq-30[OF this lt]
  let ?c3 = \prod l \leftarrow [3.. < i]. \alpha l \cap (n (l-1) - j)
  let ?c2 = \prod l \leftarrow [3... < i]. \beta l \cap (n(l-1) - j) * f(l-1) \cap (\delta(l-2) + \delta(l-1))
                 (-1) \cap ((n(l-2)-j)*(n(l-1)-j))
  have ?c3 \neq 0 by (rule nonzero-alphaprod, insert i, auto)
  with arg-cong[OF eq-30, of smult (inverse ?c3)]
  have id3: subresultant j (F 1) (F 2) = smult (inverse ?c3 * ?c2)
    (subresultant j (F (i-2)) (F (i-1)))
   by (auto intro: poly-eqI)
  have ffp(R j) = 0 unfolding id1 id2 id3 by simp
  thus ?thesis by simp
qed
lemma fundamental-theorem-eq-6: assumes 3 < i i < k shows ffp (R(n i)) =
smult (\Theta \ i) \ (F \ i)
  (is ?lhs=?rhs)
proof -
  from assms have i1:1 \le i by auto
  from assms have nlt: i \leq k + 1 n i < n (i - 1) using n-gt[of i - 1] by auto
  from assms have \alpha nz:\alpha \ i \ \widehat{\delta} \ (i-1) \neq 0 using \alpha \theta by auto
  have *:\bigwedge a f b. a \neq 0 \Longrightarrow smult \ a f = b \Longrightarrow f = smult \ (inverse \ (a::'a \ fract)) \ b
by auto
  have **: \bigwedge f g xs c. c * prod-list (map f xs) * prod-list (map g xs)
        = c * (\prod x \leftarrow xs. \ f \ x * (g:: - \Rightarrow (- :: comm-monoid-mult)) \ x)
        by (auto simp:ac-simps prod-list-multf)
  have ***:\bigwedge c. \beta i \hat{\delta} (i - Suc \theta) * (inverse (\alpha i \hat{\delta} (i - Suc \theta)) * c) = (\beta i)
/\alpha i) \hat{\delta} (i-1) * c
   by (auto simp:inverse-eq-divide power-divide)
  have ****:int (n (i - Suc 0) - n i) - 1 = int (n (i - 1) - Suc (n i))
   using assms nlt by auto
  from assms n-ge[of i-2] nlt n-ge[of i]
   have nge: n (i - Suc \theta) \le n (i - \theta) n i < n (i - Suc \theta) n i < n (i - \theta) Suc \theta
(i-2)=i-1
   by (cases i, auto simp:numeral-2-eq-2 numeral-3-eq-3)
  have ****:(-1 :: 'a \ fract) \cap ((n \ (i - Suc \ 0) - n \ i) * (n \ (i - Suc \ 0) - n \ i)
+ (n (i - 2) - n (Suc (i - 2))))
       = (-1) \hat{} ((n \ i + n \ (i - Suc \ 0)) * (n \ i + n \ (i - 2))) 
 (-1 :: 'a \ fract) \hat{} (\sum l \leftarrow [3... < i]. \ (n \ (l - Suc \ 0) - n \ i) * (n \ (l - 2) - n \ i)) 
      = (-1) \cap (\sum l \leftarrow [3... < i]. (n \ i + n \ (l - Suc \ 0)) * (n \ i + n \ (l - 2)))
   using nge apply (intro minus-1-even-eqI, auto)
   apply (intro\ minus-1-even-eqI)
   apply (intro even-sum-list)
   \mathbf{proof}(goal\text{-}cases) case (1 \ x)
     with n-ge-trans assms
       have n \ i \le n \ (x - Suc \ \theta) \ n \ (x - 2) \ge n \ i by auto
     with 1 show ?case by auto
   qed
```

```
have ffp(R(n i)) = subresultant(n i)(F 1)(F 2) unfolding R-def F1 F2
        by (auto simp: to-fract-hom.subresultant-hom ni2[OF assms])
    also have \dots = smult
         \begin{array}{l} ((-1) \ \widehat{\ }(\sum l \leftarrow [3..< i]. \ (n \ (l-2) - n \ i) * (n \ (l-1) - n \ i)) * \\ (\prod x \leftarrow [3..< i]. \ (\beta \ x \ / \ \alpha \ x) \ \widehat{\ }(n \ (x-1) - n \ i) * f \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{\ }(\delta \ (x-1) + n \ i)) * (n \ (x-1) \ \widehat{
             \frac{(((\beta^{'i'}/\alpha\ i)\ \hat{\ }\delta\ (i-1))*f\ (i-1)\ \hat{\ }(\delta\ (i-1)+\delta\ (i-2)))*}{((-1)\ \hat{\ }(\delta\ (i-2)+\delta\ (i-1))*\delta\ (i-1))*f\ \hat{\ }\delta\ (i-1)-1) } 
               ))
          (F i)
        unfolding BT-eq-30'[OF assms(1) nlt] **
                     *[OF \ \alpha nz \ BT\text{-}lemma-2-22[OF \ assms]] \ smult-smult \ \mathbf{by} \ (auto \ simp: ac\text{-}simps)
*** )
    also have ... = ?rhs unfolding \Theta-def \tau-def
        using prod\text{-}combine[OF\ assms(1)]\ \delta\ assms
        by (auto simp:ac-simps exp-pow-int[symmetric] power-add *********)
    finally show ?thesis.
qed
lemma fundamental-theorem-eq-7: assumes j: j < n \text{ k shows } R j = 0
proof -
    let ?P = pseudo-divmod (F (k - 1)) (F k)
    from F0[of k] k2 have Fk: Fk \neq 0 by auto
    from pmod[of\ Suc\ k]\ k2\ F0[of\ Suc\ k]
    have pseudo-mod (F(k-1))(F(k)) = 0 by auto
    then obtain Q where P = (Q, \theta)
        unfolding pseudo-mod-def by (cases ?P, auto)
    from pseudo-divmod(1)[OF\ Fk\ this]\ Fk\ obtain\ c\ where\ id:\ smult\ c\ (F\ (k-
1)) = F k * Q
        and c: c \neq \theta by auto
    from id have id: smult c(F(k-1)) = Q * F k by auto
   from n-ge[unfolded n, of k-1] k2 c have degree (F k) \leq degree (smult \ c \ (F \ (k + 1) \leq d))
- 1))) by auto
    from subresultant-product[OF id this, unfolded subresultant-smult-left[OF c], of
   have *: subresultant j (F (k + 1 - 2)) (F (k + 1 - 1)) = \theta using c unfolding
n by simp
    from assms have **:j \neq n 2
        by (meson k2 n-ge-trans not-le one-le-numeral order-refl)
    from k2 assms have 3 \le k + 1 k + 1 \le k + 1 j < n (k + 1 - 1) by auto
    from BT-eq-30[OF this,unfolded *] nonzero-alphaprod[OF le-refl] ** F1 F2
   show ?thesis by (auto simp: R-def F0 to-fract-hom.subresultant-hom[symmetric])
qed
definition G i = R (n (i - 1) - 1)
definition H i = R (n i)
```

```
lemma gamma-delta-beta-3: \gamma \ 3 = (-1) \ \widehat{} (\delta \ 1 + 1) * \beta \ 3
proof -
     have \gamma \beta = (-1) \hat{\sigma} \beta * pow-int (f \beta) (1 - int (\delta \beta)) *
           (\beta \ 3 \ / \ (f \ 2 \ \widehat{} \ Suc \ (\delta \ 1)) * f \ 2 \ \widehat{} \ (\delta \ 1 + \delta \ 2))
           unfolding \gamma-def \delta \alpha-def by (simp add: \delta)
     also have f \ 2 \ (\delta \ 1 + \delta \ 2) = pow-int \ (f \ 2) \ (int \ (\delta \ 1 + \delta \ 2))
           unfolding pow-int-def nat-int by auto
     also have int (\delta 1 + \delta 2) = int (Suc (\delta 1)) + (int (\delta 2) - 1) by simp
     also have pow-int (f 2) \dots = pow\text{-int } (f 2) (Suc (\delta 1)) * pow\text{-int } (f 2) (int (\delta 1)) * 
           by (rule pow-int-add, insert f20, auto)
     also have pow-int (f 2) (Suc (\delta 1)) = f 2 \cap (Suc (\delta 1)) unfolding pow-int-def
nat-int by simp
     also have \beta 3 / (f 2 \hat{} Suc (\delta 1)) *
        (f \ 2 \cap Suc \ (\delta \ 1) * pow-int \ (f \ 2) \ (int \ (\delta \ 2) - 1))
           = (\beta \ 3 \ / \ (f \ 2 \ \widehat{} \ Suc \ (\delta \ 1)) * f \ 2 \ \widehat{} \ Suc \ (\delta \ 1) * pow-int \ (f \ 2) \ (int \ (\delta \ 2) \ - \ 1))
     also have \beta 3 / (f \ 2 \ \widehat{} Suc \ (\delta \ 1)) * f \ 2 \ \widehat{} Suc \ (\delta \ 1) = \beta \ 3 using f20 by auto
      finally have \gamma \beta = ((-1) \hat{\sigma} \beta * \beta \beta) * (pow-int (f 2) (1 - int (\delta 2)) *
pow-int (f 2) (int (\delta 2) - 1))
           by simp
     also have pow-int (f 2) (1 - int (\delta 2)) * pow-int (f 2) (int (\delta 2) - 1)
           by (subst pow-int-add[symmetric], insert f20, auto)
      finally have \gamma \beta = (-1) \hat{\sigma} \beta + \beta \beta by simp
     also have \sigma \beta = (n 1 + n 2 + 1) * (n 2 + n 2 + 1) unfolding \sigma-def
     also have (-(1 :: 'a fract)) \cap ... = (-1) \cap (n 1 - n 2 + 1)
           by (rule minus-1-even-eqI, insert n12, auto)
     also have ... = (-1) (\delta 1 + 1) unfolding \delta by (simp add: numeral-2-eq-2)
     finally show \gamma \beta = (-1) \hat{\delta} (\delta 1 + 1) * \beta \beta.
fun h :: nat \Rightarrow 'a fract where
     h \ i = (if \ (i \leq 1) \ then \ 1 \ else \ if \ i = 2 \ then \ (f \ 2 \ \hat{\delta} \ 1) \ else \ (f \ i \ \hat{\delta} \ (i - 1) \ / \ (h \ i = 1) \ / 
(i-1) \hat{\delta} (\delta (i-1) - 1)))
lemma smult-inverse-sdiv-poly: assumes ffp: p \in range ffp
     and p: p = smult (inverse x) q
     and p': p' = sdiv - poly q' x'
     and xx: x = ff x'
     and qq: q = ffp q'
shows p = ffp p'
proof (rule\ poly-eqI)
     \mathbf{fix} i
     have coeff p i = coeff q i / x unfolding p by (simp add: field-simps)
     also have ... = ff(coeff(q')) / ff(x') unfolding qq(xx) by simp(q')
     finally have cpi: coeff p i = ff (coeff q' i) / ff x'.
     from fp obtain r where pr: p = fp r by auto
```

```
from arg-cong[OF this, of \lambda p. coeff p i, unfolded cpi]
  have ff (coeff q' i) / ff x' \in range ff by auto
  hence id: ff (coeff q' i) / ff x' = ff (coeff q' i div x')
   by (rule div-divide-to-fract, auto)
 show coeff p i = coeff (ffp p') i unfolding cpi id p'
   by (simp add: sdiv-poly-def coeff-map-poly)
qed
end
locale subresultant-prs-locale 2 = subresultant-prs-locale F n \delta f k \beta G1 G2 for
       F:: nat \Rightarrow 'a :: idom-divide fract poly
   and n :: nat \Rightarrow nat
   and \delta :: nat \Rightarrow nat
   and f :: nat \Rightarrow 'a \ fract
   and k :: nat
   and \beta :: nat \Rightarrow 'a fract
   and G1 G2 :: 'a poly +
  assumes \beta 3: \beta 3 = (-1)^{n} (\delta 1 + 1)
 and \beta i: \bigwedge i. 4 \le i \Longrightarrow i \le Suc \ k \Longrightarrow \beta \ i = (-1)^{\widehat{}}(\delta \ (i-2)+1) * f \ (i-2)
* h(i-2)^{(\delta(i-2))}
begin
lemma B-eq-17-main: 2 \le i \Longrightarrow i \le k \Longrightarrow
   h i = (-1) \hat{\ } (n 1 + n i + i + 1) / f i
   * (\prod l \leftarrow [3.. < Suc (Suc i)]. (\alpha l / \beta l)) \land h i \neq 0
proof (induct i rule: less-induct)
  case (less i)
  from less(2-) have fi\theta: f i \neq 0 using f\theta[of i] by simp
  have 1: (-1) \neq (0 :: 'a fract) by simp
  show ?case (is h i = ?r i \land -)
  proof (cases i = 2)
   \mathbf{case} \ \mathit{True}
   have f2\theta: f2 \neq \theta using f2\theta by auto
   have hi: h i = f 2 \hat{\delta} 1 unfolding True h.simps[of 2] by simp
     have id: int (\delta 1) = int (n 1) - int (n 2) using n12 unfolding \delta nu-
meral-2-eq-2 by simp
   have ?r i = (-1) \hat{} (1 + n 1 + n 2)
     * ((f \ 2 \ \widehat{} Suc \ (\delta \ 1)) \ / \ (\beta \ 3)) \ / \ pow-int \ (f \ 2) \ 1 unfolding True \alpha-def by simp
   also have \beta 3 = (-1) (\delta 1 + 1) by (rule \beta3)
   also have f \ 2 \ \widehat{} Suc \ (\delta \ 1) \ / \ldots = \ldots * f \ 2 \ \widehat{} Suc \ (\delta \ 1) by simp
   finally have ?r i = ((-1) \hat{\ } (1 + n 1 + n 2) * ((-1) \hat{\ } (\delta 1 + 1))) *
       pow-int (f 2) (int (Suc (\delta 1)) + (-1)) (is - = ?a * -)
    unfolding pow-int-divide exp-pow-int power-add pow-int-add [OF f20] by (simp
add: ac-simps pow-int-add)
   also have ?a = (-1)^n (1 + n \ 1 + n \ 2 + \delta \ 1 + 1) unfolding power-add by
   also have \dots = (-1)^{\hat{}}\theta
    by (rule minus-1-even-eqI, insert n12, auto simp: \delta numeral-2-eq-2, presburger)
```

```
finally have ri: ?r \ i = pow\text{-}int \ (f \ 2) \ (int \ (\delta \ 1)) by simp
   show ?thesis unfolding ri hi exp-pow-int[symmetric] using f20 by simp
  next
   case False
   hence i: i > 3 and ii: i - 1 < i 2 < i - 1 i - 1 < k using <math>less(2-) by auto
   from i less(2-) have cc: 4 \le Suc \ i Suc \ i \le Suc \ k by auto
   define P where P = (\prod l \leftarrow [3.. < Suc \ i]. \ \alpha \ l \ / \ \beta \ l)
   define Q where Q = P * pow-int (h (i - 1)) (-int (\delta (i - 1)))
   define R where R = f i \hat{\delta} (i - 1)
   define S where S = pow\text{-}int (f (i - 1)) (-1)
   note IH = less(1)[OF\ ii]
   hence hi\theta: h(i-1) \neq \theta by auto
   have hii: h \ i = f \ i \ \hat{\delta} \ (i - 1) \ / \ h \ (i - 1) \ \hat{\delta} \ (i - 1) - 1)
     unfolding h.simps[of\ i] using i by simp
   also have ... = f(i) \delta(i-1) * pow-int(h(i-1)) (-int(\delta(i-1)-1))
     unfolding exp-pow-int pow-int-divide by simp
   also have int (\delta (i-1) - 1) = int (\delta (i-1)) - 1
   proof -
    have \delta (i-1) > 0 unfolding \delta[of i-1] using n\text{-}gt[OF\ ii(2)]\ less(2-) by
auto
     thus ?thesis by simp
   qed
   also have -(int (\delta (i-1)) - 1) = 1 + (-int (\delta (i-1))) by simp finally have hi: h : (-1) ^ (n 1 + n (i-1) + i) * (R * Q * S)
     unfolding pow-int-add[OF hi0] P-def Q-def pow-int-divide[symmetric] R-def
S-def using IH i by (simp add: ac-simps)
   from i have id: [3... < Suc (Suc i)] = [3 ... < Suc i] @ [Suc i] by simp
   have ?r i = (-1) \ (n 1 + n i + i + 1)
     * pow-int (f i) (-1) * P * \alpha (Suc i) / \beta (Suc i)
     \mathbf{unfolding}\ pow-int-divide[symmetric]\ P-def\ id\ Fract-conv-to-fract\ \mathbf{by}\ simp
   also have \beta (Suc i) = (-1) ^(\delta (i - 1) + 1) * f (i - 1) * h (i - 1) ^\delta (i
     using \beta i[OF\ cc] by simp
   also have \alpha (Suc i) = f i \hat{} Suc (\delta (i - 1)) unfolding \alpha-def by simp
   finally have ?r \ i = (-1) \ \hat{\ } (n \ 1 + n \ i + i + 1) * pow-int \ (f \ i) \ (-1) * P *
(fi \cap Suc (\delta (i-1))) /
     (-1) (\delta(i-1)+1)* pow-int (f(i-1))(-1) / h(i-1) <math>\delta(i-1)
     (is - ?a1 * ?fi1 * P * ?fi2 / ?a2 * ?b / ?c)
     unfolding exp-pow-int pow-int-divide[symmetric] by simp
    also have \dots = (?a1 / ?a2) * (?fi1 * ?fi2) * (P / ?c) * ?b by (simp add:
ac\text{-}simps)
   also have ?a1 / ?a2 = (-1) \cap (n \ 1 + n \ i + i + 1 + \delta \ (i - 1) + 1)
     by (simp add: power-add)
   also have ... = (-1) ^ (n \ 1 + n \ i + i + \delta \ (i - 1))
     by (rule minus-1-even-eqI, auto)
   also have n \ 1 + n \ i + i + \delta \ (i - 1) = n \ 1 + n \ (i - 1) + i
     unfolding \delta using i \ less(2-) \ n-ge[of \ i-1] by simp
   also have ?fi1 * ?fi2 = pow-int (f i) (-1 + int (Suc (\delta (i - 1))))
     unfolding exp-pow-int pow-int-add[OF fi0] by simp
```

```
also have ... = pow-int (f i) (int (\delta (i - 1))) by simp
   also have P / ?c = Q unfolding Q-def exp-pow-int pow-int-divide by simp
   also have ?b = S unfolding S-def by simp
   finally have ri: ?r \ i = (-1) \hat{\ } (n \ 1 + n \ (i - 1) + i)
     * (R * Q * S) by (simp \ add: \ exp-pow-int \ R-def)
   have id: h i = ?r i unfolding hi ri ...
   show ?thesis
     by (rule conjI[OF id], unfold hii, insert IH fi0, auto)
 qed
qed
lemma B-eq-17: 2 \leq i \Longrightarrow i \leq k \Longrightarrow
   h \ i = (-1) \ \widehat{\ } (n \ 1 + n \ i + i + 1) \ / \ f \ i * (\prod l \leftarrow [3.. < Suc \ (Suc \ i)]. \ (\alpha \ l \ / \ \beta \ l))
 using B-eq-17-main by blast
lemma B-theorem-2: 3 < i \Longrightarrow i < Suc k \Longrightarrow \gamma i = 1
proof (induct i rule: less-induct)
 case (less\ i)
 show ?case
 proof (cases i = 3)
   case True
   show ?thesis unfolding True unfolding gamma-delta-beta-3 \( \beta \)3 by simp
  next
   case False
   with less(2-)
   have i: i \geq 4 and ii: i - 1 < i 3 \leq i - 1 i - 1 \leq Suc k
     and iii: 4 \le i \ i \le Suc \ k
     and iv: 2 \le i - 2i - 2 \le k by auto
   from less(1)[OF\ ii] have IH: \gamma\ (i-1)=1.
   define L where L = [3... < i]
   have id: [3... < Suc (i-1)] = L [3... < Suc i] = L @ [i] Suc (Suc (i-2)) = i
     unfolding L-def using i by auto
   define B where B = (\lambda l. \beta l / \alpha l)
   define A where A = (\lambda l. \alpha l / \beta l)
   define Q where Q = (\lambda l. f(l-1) \hat{\delta}(\delta(l-2) + \delta(l-1)))
   define R where R = (\lambda i l. B l (n (l-1) - n (i-1) + 1))
   define P where P = (\lambda i l. R i l * Q l)
   have fi\theta: f(i-1) \neq \theta using f\theta[of i-1] less(2-) by auto
   have fi0': f(i-2) \neq 0 using f0[of(i-2)] less(2-) by auto
    {
     \mathbf{fix} \ j
     assume j \in set L
     hence j \geq 3 j < i unfolding L-def by auto
     with less(3) have j: j - 1 \neq 0 \ j - 1 < k by auto
     hence Q: Q j \neq 0 unfolding Q-def using f0[of j - 1] by auto
     from j \alpha \theta \beta \theta [of j] have \theta: \alpha j \neq \theta \beta j \neq \theta by auto
     hence B j \neq 0 A j \neq 0 unfolding B-def A-def by auto
     note Q this
    } note L\theta = this
```

```
let ?exp = \delta (i - 2)
   have \gamma i = \gamma i / \gamma (i - 1) unfolding IH by simp
   also have ... = (-1) \sigma i * pow-int (f (i-1)) (1 - int (\delta (i-1))) *
     (\prod l \leftarrow L. \ P \ i \ l) * P \ i \ i \ /
     ((-1) \hat{\sigma} (i-1) * pow-int (f (i-2)) (1 - int (\delta (i-2))) *
     (\prod l \leftarrow L. \ P(i-1) \ l)) \ (is -= ?a1 * ?f1 * ?L1 * Pii / (?a2 * ?f2 * ?L2))
     unfolding \gamma-def id P-def Q-def R-def B-def by (simp add: numeral-2-eq-2)
   also have ... = (?a1 * ?a2) * (?f1 * P i i) / ?f2 * (?L1 / ?L2) unfolding
divide-prod-assoc by simp
    also have ?a1 * ?a2 = (-1) (\sigma i + \sigma (i - 1)) (is - = ?a) unfolding
power-add by simp
   l) / (\prod l \leftarrow L. Q l)
     unfolding P-def prod-list-multf divide-prod-assoc by simp
   also have ... = (\prod l \leftarrow L. R i l) / (\prod l \leftarrow L. R (i-1) l) (is - = ?L1 / ?L2)
     have (\prod l \leftarrow L. \ Q \ l) \neq 0 unfolding prod-list-zero-iff using L0 by auto
     thus ?thesis by simp
    also have ?f1 * P i i = (?f1 * pow-int (f (i - 1)) (int ?exp + int (\delta (i - 1))))
(1)))) * R i i unfolding P-def Q-def
     exp-pow-int by simp
   also have ?f1 * pow-int (f (i - 1)) (int ?exp + \delta (i - 1)) = pow-int (f (i - 1))
1))
     (1 + int ?exp) (is - = ?f1)
     unfolding pow-int-add[OF fi0, symmetric] by simp
   also have R \ i \ i = \beta \ i \ / \ \alpha \ i \ unfolding \ B-def \ R-def \ Fract-conv-to-fract \ by \ simp
   also have \alpha i = f(i - 1) Suc ?exp unfolding \alpha-def by simp
   also have \beta i / ... = \beta i * pow-int (f (i - 1)) (-1 - ?exp)
     (is - = ?\beta * ?f12)
     unfolding exp-pow-int pow-int-divide by simp
   finally have \gamma i = (?a * (?f1 * ?f12)) * ?\beta / ?f2 * (?L1 / ?L2)
     by simp
   also have ?a * (?f1 * ?f12) = ?a unfolding pow-int-add[OF fi0, symmetric]
   also have ?L1 / ?L2 = pow\text{-}int (\prod l \leftarrow L. A l) (- ?exp)
   proof -
     have id: i - 1 - 1 = i - 2 by simp
     have set L \subseteq \{l. \ 3 \le l \land l \le k \land l < i\} unfolding L-def using less(3) by
auto
     thus ?thesis unfolding R-def id
     \mathbf{proof} (induct L)
       case (Cons\ l\ L)
       from Cons(2) have l: 3 \le l \ l \le k \ l < i \ and \ L: set \ L \subseteq \{l. \ 3 \le l \land l \le k \}
\land l < i} by auto
       note IH = Cons(1)[OF L]
       from l \alpha \theta \beta \theta [of l] have \theta : \alpha l \neq \theta \beta l \neq \theta by auto
       hence B\theta: B \neq \theta unfolding B-def by auto
       have (\prod l \leftarrow l \# L. B l \cap (n (l-1) - n (i-1) + 1)) / (\prod l \leftarrow l \# L. B l)
```

```
(n(l-1)-n(i-2)+1)
                        = (B \ l \ \widehat{\ } (n \ (l-1) - n \ (i-1) + 1) * (\prod l \leftarrow L. \ B \ l \ \widehat{\ } (n \ (l-1) - n \ (i-1) + 1) 
-1)+1))) /
                             (B \ l \ \hat{l} \ \hat{l} \ (n \ (l-1) - n \ (i-2) + 1) * (\prod l \leftarrow L. B \ l \ \hat{l} \ (n \ (l-1) - n \ (i-1) + 1) 
-2)+1)))
                        (is - = (?l1 * ?L1) / (?l2 * ?L2)) by simp
                   also have \dots = (?l1 / ?l2) * (?L1 / ?L2) by simp
                   also have ?L1 / ?L2 = pow-int (prod-list (map A L)) (-int (\delta (i-2)))
by (rule IH)
                  also have ?l1 / ?l2 = pow-int (B l) (int (n (l-1) - n (i-1)) - int (
(l-1)-n (i-2)) unfolding exp-pow-int pow-int-divide pow-int-add OF B0,
symmetric]
                        by simp
                  also have int (n (l - 1) - n (i - 1)) - int (n (l - 1) - n (i - 2)) = int
 ?exp
                      have n(l-1) \ge n(i-2) \ n(l-1) \ge n(i-1) \ n(i-2) \ge n(i-1)
                             using i \ l \ less(3)
                             by (intro n-ge-trans, auto)+
                      hence id: int (n (l-1) - n (i-1)) = int (n (l-1)) - int (n (i-1))
                                       int (n (l-1) - n (i-2)) = int (n (l-1)) - int (n (i-2))
                                       int (n (i - 2) - n (i - 1)) = int (n (i - 2)) - int (n (i - 1))
                             by simp-all
                        have id2: int ?exp = int (n (i - 2) - n (i - 1))
                             unfolding \delta using i by (cases i; cases i-1, auto)
                        show ?thesis unfolding id2 unfolding id by simp
                     also have pow-int (B \ l) \ldots = pow-int \ (inverse \ (B \ l)) \ (- \ldots) unfolding
pow-int-def
                        by (cases int (\delta (i-2)) rule: linorder-cases, auto simp: field-simps)
                   also have inverse (B \ l) = A \ l \ unfolding \ B-def \ A-def \ by \ simp
                     also have pow-int (A \ l) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (prod-list \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (map \ A \ L)) \ (-int \ ?exp) * pow-int \ (map \ A \ L)) * pow-int \ (map \ A \ L) \ (-int \ Pow-int) * pow-int \ (map \ A \ L)) \ (-int \ Pow-int) * pow-int \ (map \ A \ L)) * pow-int \ (map \ A \ L)) * pow-int \ (map \ A \ L)) * pow-int \ (map \ A \ L) * pow-int) * pow-int \ (map \ A \ L) * pow-int) * pow-int \ (map \ A \ L) * pow-
int ?exp)
                         = pow-int (prod-list (map A (l \# L))) (- int ?exp)
                        by (simp add: pow-int-mult)
                   finally show ?case.
              qed simp
         qed
         also have \beta i = (-1) \hat{\ } (?exp + 1) * f (i - 2) * h (i - 2) ^ ?exp
              unfolding \beta i [OF iii] ...
         finally have \gamma i = (((-1) \hat{\sigma} (\sigma i + \sigma (i-1)) * (-1) \hat{\sigma} (?exp + 1))) *
              (pow\text{-}int\ (f\ (i-2))\ 1\ *
              pow-int (f(i-2)) (int ?exp - 1)) *
              h(i-2) ?exp /
               (\prod l \leftarrow L. \ A \ l) ^{?} exp (is - = ?a * ?f1 * ?H / ?L) unfolding pow-int-divide
exp-pow-int by simp
             also have ?f1 = pow\text{-}int (f (i - 2)) (int ?exp) (is - = ?f1) unfolding
pow-int-add[OF fi0', symmetric]
              by simp
```

```
also have h(i-2) = (-1)^{n}(n + n (i-2) + (i-2) + 1) / f(i-2) *
                (\prod l \leftarrow L. \ A \ l) (is -=?a2 \ / ?f2 * ?L) unfolding B-eq-17[OF iv] A-def id
L-def by simp
         also have ((-(1 :: 'a fract)) ^(\sigma i + \sigma (i - 1)) * (-1) ^(?exp + 1)) =
          ((-1) \hat{\sigma} (\sigma i + \sigma (i-1) + ?exp + 1)) (is -= ?a1) by (simp add: power-add)
         finally have \gamma i = ?a1 * ?f1 * (?a2 / ?f2 * ?L) ^?exp / ?L ^?exp by simp
          also have ... = (?a1 * ?a2^?exp) * (?f1 / ?f2 ^ ?exp) * (?L^?exp / ?L ^
              unfolding power-mult-distrib power-divide by auto
         also have ?L ^?exp / ?L ^?exp = 1
        proof -
             have ?L \neq 0 unfolding prod-list-zero-iff using L0 by auto
              thus ?thesis by simp
         also have ?f1 / ?f2 ^ ?exp = 1 unfolding exp-pow-int pow-int-divide
              pow-int-add[OF fi0', symmetric] by simp
         also have ?a2^?exp = (-1)^{(n_1+n_1(i-2)+(i-2)+1)} * ?exp
             by (rule semiring-normalization-rules)
         also have ?a1 * ... = (-1) \hat{} (\sigma i + \sigma (i-1) + ?exp + 1 + (n 1 + n (i-1) + n (i-1
(-2) + (i-2) + 1) * ?exp
             (is - - ?e)
              by (simp add: power-add)
         also have \dots = (-1)^{\hat{}}\theta
         proof -
              define e where e = ?e
              have *: ?e = (2 * ?exp + \sigma i + \sigma (i - 1) + 1 + (n 1 + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i - 1) + n (i - 2) + (i
(2)) * (exp) by simp
              (i-1)+1)
             define B where B = (\lambda i. (n (i - 1) + 1) * (n (i - 1) + 1))
            define C where C = (\lambda l. (n (l - 1) + n (l - 2) + n (l - 1) * n (l - 2)))
              define D where D = (\lambda l. n (l-1) + n (l-2))
              define m2 where m2 = n (i - 2)
              define m1 where m1 = n (i - 1)
              define m\theta where m\theta = n 1
             define i\beta where i\beta = i - \beta
           have m12: m2 \ge m1 unfolding m2-def m1-def using n-ge[of i-2] i less(3)
                  by (cases i, auto)
              have idd: Suc\ (i-2)=i-1\ i-1-1=i-2 using i by auto
              have id4: i - 2 = Suc \ i3 unfolding i3-def using i by auto
              from i have 3 < i by auto
            hence \exists k. sum\text{-}list (map D L) = n 1 + n (i - 2) + 2 * k unfolding L-def
              proof (induct i rule: less-induct)
                  case (less\ i)
                  \mathbf{show}~? case
                  proof (cases i = 4)
                      case True
                       thus ?thesis by (simp add: D-def)
                  next
```

```
case False
                obtain ii where i: i = Suc ii and ii: ii < i 3 < ii using False less(2)
by (cases i, auto)
               from less(1)[OF\ ii] obtain k where IH: sum-list (map\ D\ [3\ ..<\ ii])=n
1 + n(ii - 2) + 2 * k by auto
                have map D[3 ... < i] = map D[3 ... < ii] @[D ii] unfolding i using ii
by auto
              hence sum-list (map D[3..< i]) = n 1 + n (ii - 2) + 2 * k + D ii using
IH by simp
                  also have ... = n \ 1 + n \ (ii - 1) + 2 * (n \ (ii - 2) + k) unfolding
D-def by simp
                also have n(ii - 1) = n(i - 2) unfolding i by simp
                finally show ?thesis by blast
            qed
         qed
          then obtain kk where DL: sum-list (map D L) = n \ 1 + n \ (i - 2) + 2 *
kk ..
         let ?l = i - 3
         have len: length L = i - 3 unfolding L-def using i by auto
         have A: A i l = B i + D l * n (i - 1) + C l for i l
            unfolding A-def B-def C-def D-def ring-distribs by simp
         have id2: [3..< Suc \ i] = 3 \# [Suc \ 3 ..< Suc \ i]
             unfolding L-def using i by (auto simp: upt-rec[of 3])
         have even e = even ?e unfolding e-def by simp
         also have ... = even ((1 + (n \ 1 + n \ (i - 2) + (i - 2)) * ?exp) + (\sigma \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i + n \ i 
\sigma(i-1))
            (is - even (?q + ?j))
            unfolding * by (simp add: ac-simps)
         also have ?j = (\sum l \leftarrow L @ [i]. A i l) + (\sum l \leftarrow L. A (i - 1) l)
            unfolding \sigma-def id A-def by simp
          also have ... = 2 * (\sum l \leftarrow L. \ C \ l) + (Suc \ ?l) * B \ i + (\sum l \leftarrow L \ @ \ [i]. \ D \ l *
n(i-1) + Ci +
                ?l * B (i - 1) + (\sum l \leftarrow L. D l * n (i - 1 - 1))
            unfolding A sum-list-addf by (simp add: sum-list-triv len)
         also have \dots = ((Suc ?l * B i + C i +
                ?l*B(i-1)+Di*n(i-1))+((\sum l\leftarrow L.\ D\ l)*(n(i-1)+n(i-1)))
(-2)) + 2 * (\sum l \leftarrow L. C l))
            (is -= ?i + ?j)
             unfolding sum-list-mult-const by (simp add: ring-distribs numeral-2-eq-2)
         also have ?j =
               (n \ 1 + n \ (i - 2)) * (n \ (i - 1) + n \ (i - 2)) + 2 * (kk * (n \ (i - 1) + n \ (i - 2)) + n))
(i\,-\,2))\,+\,(\textstyle\sum l{\leftarrow}L.\ C\ l))
            (is - = ?h + 2 * ?f)
            unfolding DL by (simp add: ring-distribs)
         finally have even e = even (?g + ?i + ?h + 2 * ?f) by presburger
         also have \dots = even (?g + ?i + ?h) by presburger
         also have ?g + ?i + ?h =
              i3 * (m2 - m1 + m1 * m1 + m2 * m2)
              +(m2-m1+m1+m2)*(m0+m2)
```

```
+ (m1 + m2 + (m2 - m1))
                  +2*(m1*m2+m1*m1+1+i3+m1*Suc~i3+m2*i3)
unfolding idd B-def D-def C-def \delta
             m1-def[symmetric] m2-def[symmetric] m0-def[symmetric]
             unfolding i3-def[symmetric] id4
             by (simp add: ring-distribs)
          also have (m1 + m2 + (m2 - m1)) = 2 * m2 using m12 by simp
         also have (m2 - m1 + m1 + m2) * (m0 + m2) = 2 * (m2 * (m0 + m2))
using m12 by simp
          finally obtain 11 12 13 where
             even\ e = even\ (i3*(m2-m1+m1*m1+m2*m2) + 2*l1 + 2*
l2 + 2 * l3
             by blast
          also have ... = even (i3 * (m2 - m1 + m1 * m1 + m2 * m2)) by simp
         also have ... = even (i3 * (2 * m1 + (m2 - m1 + m1 * m1 + m2 * m2)))
           also have 2 * m1 + (m2 - m1 + m1 * m1 + m2 * m2) = m1 + m2 +
m1 * m1 + m2 * m2
             using m12 by simp
          also have even (i3 * ...) by auto
          finally have even e.
          thus ?thesis unfolding e-def
             by (intro minus-1-even-eqI, auto)
      finally show \gamma i = 1 by simp
   qed
qed
context
   fixes i :: nat
   assumes i: 3 \le i \ i \le k
begin
lemma B-theorem-3-b: \Theta i * f i = ff (lead-coeff (H \ i))
   using arg-cong[OF fundamental-theorem-eq-6[folded H-def, OF i], of lead-coeff]
unfolding f[of i]
    lead-coeff-smult by simp
lemma B-theorem-3-main: \Theta i * fi / \gamma (i + 1) = (-1) (n 1 + n i + i + 1) /
f i * (\prod l \leftarrow [\beta.. < Suc (Suc i)]. (\alpha l / \beta l))
proof (cases f i = \theta)
   \mathbf{case} \ \mathit{True}
    thus ?thesis by simp
   case False note ff\theta = this
   from i(1) have Suc\ (Suc\ i) > 3 by auto
   hence id: [3 .. < Suc (i + 1)] = [3 .. < Suc i] @ [Suc i] [3 .. < Suc (Suc i)] = [3 .. < Suc (Suc i)] = [3 .. < Suc i] @ [Suc i] i] @ [
.. < Suc \ i] @ [Suc i] by auto
   have cong: \bigwedge a \ b \ c \ d. a = c \Longrightarrow b = d \Longrightarrow a * b = c * (d :: 'a \ fract) by auto
   define AB where AB = (\lambda l. \beta l / \alpha l)
```

```
define ABP where ABP = (\lambda l. AB l (n (l-1) - n i) * f (l-1) (\delta (l-1) - n i) * f (l-1) (l-1
(-2) + \delta (l-1))
   define PR where PR = (\prod l \leftarrow [3.. < Suc \ i]. \ ABP \ l)
   define PR2 where PR2 = (\prod l \leftarrow [3.. < Suc \ i]. \ AB \ l)
   from F\theta[of i]
   have \Theta i * f i / \gamma (i + 1) = (
   ((-1) \hat{\tau} i * (-1) \hat{\sigma} (i+1)) * (pow-int (fi) (int (\delta (i-1)) - 1) *
      pow-int (f \ i) \ (1 - int \ (\delta \ i)) \ / \ ((\prod l \leftarrow [3.. < Suc \ i]. \ ABP \ l * AB \ l) *
              AB (Suc \ i) * f \ i \cap (\delta \ (i-1) + \delta \ i))))
      unfolding id prod-list.append map-append \Theta-def \gamma-def divide-prod-assoc
      by (simp add: field-simps power-add AB-def ABP-def PR-def)
   also have (-1 :: 'a fract) \hat{\tau} i * (-1) \hat{\sigma} (i+1) = (-1) \hat{\tau} (\tau i + \sigma (i+1))
1))
       unfolding power-add by (auto simp: field-simps)
   also have ... = (-1) (n 1 + n i + i + 1)
   proof (cases i = 2)
      case True
        show ?thesis unfolding \tau-def \sigma-def True by (auto, rule minus-1-even-eqI,
auto)
   next
      {\bf case}\ \mathit{False}
      define a where a = (\lambda l. n (l - 2) + n i)
      define b where b = (\lambda l. n (l - 1) + n i)
      define c where c = (\sum l \leftarrow [3.. < Suc \ i]. (a \ l * b \ l + n \ i))
      define d where d = c + (\sum l \leftarrow [3... < i]. n (l - 1))
      define e where e = (n (i - 1) + n i + 1) * n i
      have (\tau i + \sigma (i + 1)) =
         ((\sum l \leftarrow [3.. < Suc \ i]. \ (a \ l * b \ l) + (a \ l + 1) * (b \ l + 1))) + (a \ (Suc \ i) + 1) *
(b (Suc i) + 1)
          unfolding \sigma-def \tau-def id a-def b-def sum-list-addf by simp
      also have (\sum l \leftarrow [3.. < Suc \ i]. \ (a \ l * b \ l) + (a \ l + 1) * (b \ l + 1)) =
            \left(\sum l \leftarrow [3.. < Suc \ i]. \ 2 * a \ l * b \ l + (a \ l + b \ l) + 1\right)
          by (rule arg-cong, rule map-cong, auto)
       also have ... = (\sum l \leftarrow [3.. < Suc \ i]. 2 * (a \ l * b \ l + n \ i) + (n \ (l - 1) + n \ (l - 1) + n)
(-2)) + 1)
          by (simp add: field-simps a-def b-def)
      also have \ldots = 2 * c + (\sum l \leftarrow [3.. < Suc \ i]. (n \ (l-1) + n \ (l-2))) + length
[3 ..< Suc i]
          unfolding sum-list-addf c-def sum-list-const-mult sum-list-triv by simp
      also have (\sum l \leftarrow [3.. < Suc \ i]. \ (n \ (l-1) + n \ (l-2)))
          = (\sum l \leftarrow [3.. < Suc \ i]. \ n \ (l-1)) + (\sum l \leftarrow [3.. < Suc \ i]. \ n \ (l-2))
          by (simp add: sum-list-addf)
      also have (\sum l \leftarrow [3.. < Suc \ i]. \ n \ (l-2)) = (\sum l \leftarrow 3 \ \# \ [4.. < Suc \ i]. \ n \ (l-2))
          by (rule arg-cong, rule map-cong, insert i False, auto simp: upt-rec[of 3])
      also have ... = n \ 1 + (\sum l \leftarrow [(Suc \ 3)... < Suc \ i]. \ n \ (l - 2)) by auto
      also have (\sum l \leftarrow [(Suc\ 3)... < Suc\ i].\ n\ (l-2)) = (\sum l \leftarrow [3... < i].\ n\ (l-1))
          proof (rule arg-cong[of - - sum-list], rule nth-equalityI, force, auto simp:
nth-append, goal-cases)
```

```
case (1 \ j)
     hence i - 2 = Suc (Suc j) by simp
     thus ?case by simp
   also have (\sum l \leftarrow [3... < Suc \ i]. \ n \ (l-1)) = (\sum l \leftarrow [3... < i] \ @ \ [i]. \ n \ (l-1))
     by (rule arg-cong, rule map-cong, insert i False, auto)
   finally have \tau i + \sigma (i + 1) =
     i) + 1)
     by (simp\ add:\ d\text{-}def)
   also have length [3 ... < Suc \ i] = i - 2 using i by auto
   also have (a (Suc i) + 1) * (b (Suc i) + 1) = 2 * e + n (i - 1) + n i + 1
unfolding a-def b-def e-def
     by simp
   finally have id: \tau \ i + \sigma \ (i+1) = 2 * (d+n \ (i-1) + e) + n \ 1 + (i-2)
+ n i + 1
     by simp
   show ?thesis
     by (rule minus-1-even-eqI, unfold id, insert i, auto)
 qed
 also have (\prod l \leftarrow [3.. < Suc \ i]. \ ABP \ l * AB \ l) = PR * PR2
   unfolding PR-def prod-list-multf PR2-def by simp
 also have (pow\text{-}int\ (f\ i)\ (int\ (\delta\ (i-1))-1)*PR*fi\ /\ pow\text{-}int\ (f\ i)\ (1-i)
int (\delta i)
   /(PR * PR2 * AB (Suc i) * fi^{(\delta(i-1) + \delta i)}) =
   ((pow\text{-}int\ (f\ i)\ (int\ (\delta\ (i-1))-1)*pow\text{-}int\ (f\ i)\ 1*pow\text{-}int\ (f\ i)\ (int\ (\delta\ i)
-1)
   / pow-int (f i) (int (\delta (i-1) + \delta i)))) * (PR / PR / (PR2 * AB (Suc i)))
   (is ... = ?x * ?y)
   unfolding exp-pow-int[symmetric] by (simp add: pow-int-divide ac-simps)
 also have ?x = pow\text{-}int (f i) (-1)
   unfolding pow-int-divide pow-int-add[OF ff0, symmetric] by simp
 also have \dots = 1 / (f i)
   unfolding pow-int-def by simp
 also have PR / PR = 1
 proof -
   have PR \neq 0 unfolding PR-def prod-list-zero-iff set-map
     assume \theta \in ABP 'set [3 ... < Suc i]
     then obtain j where j: 3 \le j j < Suc i and 0: ABP j = 0 by auto
     with i have jk: j \leq k and j1: j - 1 \neq 0 \ j - 1 < k by auto
     hence 1: \alpha j \neq 0 f (j-1) \neq 0 using \alpha 0 f0 by auto
     with \theta have AB j = \theta unfolding ABP-def by simp
     from this [unfolded AB-def] 1(1) \beta \theta [of j] show False by auto
   qed
   thus ?thesis by simp
 also have PR2 * AB (Suc \ i) = (\prod l \leftarrow [3... < Suc \ (Suc \ i)]. \ AB \ l) unfolding id
PR2-def by auto
```

```
also have 1 / \ldots = inverse \ldots by (simp \ add: inverse-eq-divide)
 also have ... = (\prod l \leftarrow [3.. < Suc \ (Suc \ i)]. \ \alpha \ l \ / \ \beta \ l) unfolding AB-def
   inverse-prod-list map-map o-def
   by (auto cong: map-cong)
 finally show ?thesis by simp
qed
lemma B-theorem-3: h \ i = \Theta \ i * f \ i \ h \ i = ff \ (lead-coeff \ (H \ i))
proof -
 have \Theta i * f i = \Theta i * f i / \gamma (i + 1)
   using B-theorem-2[of i + 1] i by auto
 also have ... = (-1) (n 1 + n i + i + 1) / f i *
   (\prod l \leftarrow [3.. < Suc (Suc i)]. \alpha l / \beta l) by (rule B-theorem-3-main)
 also have \dots = h \ i \ \text{using} \ B\text{-}eq\text{-}17[of \ i] \ i \ \text{by} \ simp
 finally show h i = \Theta i * f i..
 thus h i = ff (lead\text{-}coeff (H i)) using B-theorem-3-b by auto
qed
end
lemma h\theta: i \leq k \Longrightarrow h \ i \neq \theta
proof (induct i)
 case (Suc\ i)
 thus ?case unfolding h.simps[of Suc \ i] using f0 by (auto simp \ del: h.simps)
qed auto
lemma deg-G12: degree G1 \ge degree \ G2 using n12
  unfolding n F1 F2 by auto
lemma R\theta: shows R\theta = [resultant G1 G2 :]
\mathbf{proof}(cases\ n\ 2=0)
 case True
 hence d: degree G2 = 0 unfolding n F2 by auto
 from degree0-coeffs[OF d] F2 F12 obtain a where
   G2: G2 = [:a:] and a: a \neq 0 by auto
 have sdiv-poly [:a * a \land degree \ G1:] \ a = [:a \land degree \ G1:] using a
   unfolding sdiv-poly-def by auto
 note dp = this
 show ?thesis using G2 F12
   unfolding R-def \delta n F1 F2 Suc-1 by (auto split:if-splits simp:mult.commute
dp
\mathbf{next}
 case False
 from False n12 have d:degree G2 \neq 0 degree G2 \leq degree G1 unfolding n F2
F1 by auto
 from False have R \theta = subresultant \theta G1 G2 unfolding R-def by simp
 also have ... = [: resultant \ G1 \ G2 :] unfolding subresultant-resultant by simp
 finally show ?thesis.
qed
```

```
context
 fixes div\text{-}exp :: 'a \Rightarrow 'a \Rightarrow nat \Rightarrow 'a
 assumes div-exp-sound: div-exp-sound div-exp
interpretation div-exp-sound div-exp by (rule div-exp-sound)
lemma subresultant-prs-main: assumes subresultant-prs-main Gi-1 Gi hi-1 =
(Gk, hk)
 and F i = ffp Gi
 and F(i - 1) = ffp \ Gi-1
 and h(i - 1) = ff hi-1
 and i \geq 3 i \leq k
shows F k = ffp Gk \land h k = ff hk \land (\forall j. i \leq j \longrightarrow j \leq k \longrightarrow F j \in range ffp \land j
\beta \ (Suc \ j) \in range \ ff)
proof -
 obtain m where m: m = k - i by auto
 show ?thesis using m assms
 proof (induct m arbitrary: Gi-1 Gi hi-1 i rule: less-induct)
   case (less m Gi-1 Gi hi-1 i)
   note IH = less(1)
   note m = less(2)
   note res = less(3)
   note id = less(4-6)
   note i = less(7-8)
   let ?pmod = pseudo-mod Gi-1 Gi
   let ?ni = degree Gi
   let ?ni-1 = degree Gi-1
   let ?gi = lead\text{-}coeff Gi
   let ?gi-1 = lead\text{-}coeff Gi-1
   let ?d1 = ?ni-1 - ?ni
   obtain hi where hi: hi = div-exp ?gi hi-1 ?d1 by auto
   obtain divisor where div: divisor = (-1) (?d1 + 1) * ?gi-1 * (hi-1) ?d1)
   obtain G1-p1 where G1-p1: G1-p1 = sdiv-poly ?pmod\ divisor\ by\ auto
   note res = res[unfolded subresultant-prs-main.simps[of Gi-1] Let-def,
     folded hi, folded div, folded G1-p1]
    have h-i: h \ i = f \ i \ \hat{\delta} \ (i-1) \ / \ h \ (i-1) \ \hat{\delta} \ (i-1) - 1) unfolding
h.simps[of\ i] using i by simp
   have hi-ff: h \ i \in range \ ff \ using \ B-theorem-3[OF - i(2)] \ i \ by \ auto
   have d1: \delta(i-1) = ?d1 unfolding \delta n using id(1,2) using i by simp
   have fi: f i = ff ?gi unfolding f id by simp
   have fi1: f(i-1) = ff ? gi-1  unfolding fid by simp
   have eq': h \ i = ff \ (lead\text{-}coeff \ Gi) \land \delta \ (i-1) \ / \ ff \ hi\text{-}1 \land (\delta \ (i-1)-1)
     unfolding h-i fi id ...
   have idh: h i = ff hi using hi-ff h-i fi id
     unfolding hi d1[symmetric]
     by (subst div-exp[of ?gi \delta (i - 1) hi-1], unfold eq'[symmetric], insert assms,
blast+)
```

```
have \beta (Suc i) = (-1) ^(\delta (i - 1) + 1) * f (i - 1) * h (i - 1) ^\delta (i - 1)
     using \beta i[of Suc \ i] \ i by auto
   also have . . . = ff ((- 1) ^ (\delta (i - 1) + 1) * lead-coeff Gi-1 * hi-1 ^ \delta (i -
1))
     unfolding id f by (simp add: hom-distribs)
   also have \ldots \in range \ ff \ \mathbf{by} \ blast
   finally have beta: \beta (Suc i) \in range ff.
   have pm: pseudo-mod (F(i-1))(Fi) = ffp ?pmod
     unfolding to-fract-hom.pseudo-mod-hom[symmetric] id by simp
   have eq: (?pmod = 0) = (i = k)
     using pm \ i \ pmod[of Suc \ i] \ F0[of Suc \ i] \ i \ \beta0[of Suc \ i] by auto
   show ?case
   proof (cases i = k)
     {f case}\ {\it True}
     with res eq have res: Gk = Gi hk = hi by auto
     with pmod
    have F k = ffp \ Gk \land h \ k = ff \ hk \ unfolding \ res \ idh[symmetric] \ id[symmetric]
True by auto
     thus ?thesis using beta unfolding True by auto
   next
     case False
     with res eq have res:
        subresultant-prs-main Gi G1-p1 hi = (Gk, hk) by auto
     from m False i have m: m - 1 < m m - 1 = k - Suc i by auto
     have si: Suc\ i-1=i and ii: 3\leq Suc\ i\ Suc\ i\leq k and iii: 3\leq Suc\ i\ Suc
i \leq Suc k
       using False i by auto
      have *: (\forall j \geq Suc \ i. \ j \leq k \longrightarrow F \ j \in range \ ffp \land \beta \ (Suc \ j) \in range \ ff) =
(\forall j \ge i. \ j \le k \longrightarrow F \ j \in range \ ffp \land \beta \ (Suc \ j) \in range \ ff)
       by (rule for-all-Suc, insert id(1) beta, auto)
     show ?thesis
     proof (rule IH[OF \ m \ res, \ unfolded \ si, \ OF - id(1) \ idh \ ii, \ unfolded \ *])
       have F-ffp: F (Suc i) \in range ffp using fundamental-theorem-eq-4[OF ii,
symmetric] B-theorem-2[OF iii] by auto
      from pmod[OF\ iii] have smult\ (\beta\ (Suc\ i))\ (F\ (Suc\ i)) = pseudo-mod\ (F\ (i))
-1)) (F i)
         by simp
       from arg\text{-}cong[OF this, of <math>\lambda x. smult (inverse (\beta (Suc i))) x]
      have Fsi: F(Suc i) = smult(inverse(\beta(Suc i))) (pseudo-mod(F(i-1)))
(F i)
         using \beta\theta[of\ Suc\ i] by auto
       show F(Suc\ i) = ffp\ G1-p1
       proof (rule smult-inverse-sdiv-poly[OF F-ffp Fsi G1-p1 - pm])
         from i ii have iv: 4 \le Suc \ i \ Suc \ i \le Suc \ k by auto
         have *: Suc\ i - 2 = i - 1 by auto
         show \beta (Suc i) = ff divisor unfolding \beta i[OF iv] div d1 * fi1
           using id by (simp add: hom-distribs)
       qed
     qed
```

```
qed
    qed
qed
lemma subresultant-prs: assumes res: subresultant-prs G1 G2 = (Gk, hk)
    shows F k = ffp \ Gk \land h \ k = ff \ hk \land (i \neq 0 \longrightarrow F \ i \in range \ ffp) \land (3 \leq i \longrightarrow ff \ hk \land 
i \leq Suc \ k \longrightarrow \beta \ i \in range \ ff)
proof -
    let ?pmod = pseudo-mod G1 G2
   have pm: pseudo-mod (F 1) (F 2) = ffp ?pmod
       unfolding to-fract-hom.pseudo-mod-hom[symmetric] F1 F2 by simp
    let ?g2 = lead\text{-}coeff G2
    let ?n2 = degree G2
    obtain d1 where d1: d1 = degree G1 - ?n2 by auto
    obtain h2 where h2: h2 = ?q2 \ ^d1 by auto
    have (?pmod = 0) = (pseudo-mod (F 1) (F 2) = 0) using pm by auto
    also have ... = (k < 3) using k2 \ pmod[of 3] \ F0[of 3] \ \beta0[of 3] by auto
    finally have eq: ?pmod = 0 \longleftrightarrow k = 2 using k2 by linarith
    note res = res[unfolded subresultant-prs-def Let-def eq, folded d1, folded h2]
    have idh2: h 2 = ff h2 unfolding h2 d1 h.simps[of 2] \delta n F1
       using F2 by (simp add: numeral-2-eq-2 f hom-distribs)
    have main: F \ k = ffp \ Gk \land h \ k = ff \ hk \land (i \ge 3 \longrightarrow i \le k \longrightarrow F \ i \in range \ ffp
\wedge \beta \ (Suc \ i) \in range \ ff) \ \mathbf{for} \ i
    proof (cases k = 2)
       {f case} True
       with res have Gk = G2 hk = h2 by auto
       thus ?thesis using True idh2 F2 by auto
    next
       case False
       hence (k = 2) = False by simp
       note res = res[unfolded this if-False]
       have F-2: F(3-1) = ffp \ G2 using F2 by simp
       have h2: h(3-1) = ff h2 using idh2 by simp
       have n2: degree G2 = n (3 - 1) unfolding n using F2 by simp
       from False k2 have k3: 3 \le k by auto
       have F k = ffp Gk \land h k = ff hk \land (\forall j > 3. j < k \longrightarrow F j \in range ffp \land \beta (Suc
j) \in range ff
       \mathbf{proof}\ (\mathit{rule}\ \mathit{subresultant-prs-main}[\mathit{OF}\ \mathit{res}\ \text{-}\ \mathit{F-2}\ \mathit{h2}\ \mathit{le-refl}\ \mathit{k3}])
            let ?pow = (-1) \hat{\delta} (\delta 1 + 1) :: 'a fract
            from pmod[of 3] k3
            have smult (\beta \ 3) \ (F \ 3) = pseudo-mod \ (F \ 1) \ (F \ 2) by simp
            also have \dots = pseudo-mod (ffp G1) (ffp G2) using F1 F2 by auto
        also have \dots = ffp \ (pseudo-mod \ G1 \ G2) \ unfolding \ to-fract-hom.pseudo-mod-hom
by simp
            also have \beta \ 3 = (-1) \ \widehat{} (\delta \ 1 + 1) unfolding \beta 3 by simp
          finally have smult ((-1) \hat{\delta} (\delta 1 + 1)) (F 3) = ffp (pseudo-mod G1 G2) by
           also have smult ((-1) \hat{} (\delta 1 + 1)) (F 3) = [: ?pow :] * F 3
               by simp
```

```
also have [:?pow:] = (-1) \hat{\ } (\delta \ 1+1) by (unfold\ hom\ distribs,\ simp) finally have (-1) \hat{\ } (\delta \ 1+1) *F \ 3 = ffp\ (pseudo\ mod\ G1\ G2) by simp
     from arg-cong[OF this, of \lambda i. (-1) (\delta 1 + 1) * i]
     have F 3 = (-1) \hat{\delta} (\delta 1 + 1) * ffp (pseudo-mod G1 G2) by simp
      also have \delta 1 = d1 unfolding \delta n d1 using F1 F2 by (simp add: nu-
meral-2-eq-2)
      finally show F3: F 3 = ffp ((-1) \cap (d1 + 1) * pseudo-mod G1 G2) by
(simp add: hom-distribs)
   qed
   thus ?thesis by auto
 qed
 show ?thesis
 proof (intro conjI impI)
   assume i \neq 0
   then consider (12) i = 1 \lor i = 2 \mid (i3) \ i \ge 3 \land i \le k \mid (ik) \ i > k by linarith
   thus F i \in range ffp
   proof cases
     case 12
     thus ?thesis using F1 F2 by auto
   \mathbf{next}
     case i3
     thus ?thesis using main by auto
   next
     case ik
     hence F i = \theta using F\theta by auto
     thus ?thesis by simp
   qed
 next
   assume 3 \le i and i \le Suc k
   then consider (3) i = 3 \mid (4) \mid 3 \leq i - 1 \mid i - 1 \leq k by linarith
   thus \beta i \in range ff
   proof (cases)
     case 3
       have \beta i = ff((-1) \hat{\delta}(\delta 1 + 1)) unfolding 3 \beta3 by (auto simp:
hom-distribs)
     thus ?thesis by blast
   next
     with main[of i - 1] show ?thesis by auto
   qed
 qed (insert main, auto)
qed
lemma resultant-impl-main: resultant-impl-main G1 G2 = resultant G1 G2
proof -
 from F0[of 2] F12(2) have k2: k \geq 2 by auto
 obtain Gk hk where sub: subresultant-prs G1 G2 = (Gk, hk) by force
 from subresultant-prs[OF\ this] have *: F\ k = ffp\ Gk\ h\ k = ff\ hk by auto
 have resultant-impl-main G1 G2 = (if degree (F k) = 0 then hk else 0)
```

```
unfolding resultant-impl-main-def sub split * using F2 F12 by auto
 also have \dots = resultant \ G1 \ G2
 proof (cases n k = \theta)
   {\bf case}\ \mathit{False}
   with fundamental-theorem-eq-7[of 0] show ?thesis unfolding n[of k] * R0 by
auto
 \mathbf{next}
   case True
   from H-def [of k, unfolded True] have R: R \theta = H k by simp
   show ?thesis
   proof (cases k = 2)
     case False
     with k2 have k3: k \geq 3 by auto
    from B-theorem-3[OF k3] R0 R have h \ k = ff (resultant G1 G2) by simp
     from this[folded *] * have <math>hk = resultant \ G1 \ G2 \ by \ simp
     with True show ?thesis unfolding n by auto
   next
     case 2: True
     have id: (if degree (F k) = 0 then hk else 0) = hk using True unfolding n
     from F0[of 3, unfolded 2] have F3 = 0 by simp
    with pmod[of 3, unfolded 2] \beta \theta[of 3] have pseudo-mod (F 1) (F 2) = \theta by
auto
   hence pm: pseudo-mod\ G1\ G2 = 0 unfolding F1\ F2\ to-fract-hom.pseudo-mod-hom
by simp
     from subresultant-prs-def[of G1 G2, unfolded sub Let-def this]
     have id: Gk = G2 \ hk = lead\text{-}coeff \ G2 \ \hat{\ } (degree \ G1 - degree \ G2) by auto
     from F12 F1 F2 have G1 \neq 0 G2 \neq 0 by auto
     from resultant-pseudo-mod-0[OF pm deg-G12 this]
     have res: resultant G1 G2 = (if degree G2 = 0 then lead-coeff G2 \hat{} degree
G1 \ else \ \theta)
      by simp
     from True[unfolded\ 2\ n\ F2] have degree\ G2=0 by simp
     thus ?thesis unfolding res 2 F2 id by simp
   qed
 qed
 finally show ?thesis.
qed
end
end
```

At this point, we have soundness of the resultant-implementation, provided that we can instantiate the locale by constructing suitable values of F, b, h, etc. Now we show the existence of suitable locale parameters by constructively computing them.

```
context
fixes G1 G2 :: 'a :: idom-divide poly
begin
```

```
private function F and b and h where F i = (if \ i = (\theta :: nat) \ then \ 1
 else if i = 1 then map-poly to-fract G1 else if i = 2 then map-poly to-fract G2
 else (let G = pseudo-mod (F (i - 2)) (F (i - 1))
   in if F(i-1) = 0 \vee G = 0 then 0 else smult (inverse (b \ i)) G)
\mid b \mid i = (if \mid i \leq 2 then \mid 1 else)
  if i = 3 then (-1) ^ (degree (F1) - degree (F2) + 1)
  else if F(i-2) = 0 then 1 else (-1) ^ (degree (F(i-2)) - degree (F(i-2))
(1)) + 1) * lead-coeff (F (i - 2)) *
       h(i-2) \cap (degree(F(i-2)) - degree(F(i-1))))
|h|_{i} = (if (i \leq 1) \text{ then } 1 \text{ else } if i = 2 \text{ then } (lead-coeff (F 2) \cap (degree (F 1) - 1))
degree (F 2)) else
   if F i = 0 then 1 else (lead-coeff (F i) \cap (degree (F (i - 1)) - degree (F i)))
(h (i-1) \cap ((degree (F (i-1)) - degree (F i)) - 1))))
 by pat-completeness auto
termination
proof
 show wf (measure (case-sum (\lambda fi. 3 * fi +1) (case-sum (\lambda bi. 3 * bi) (\lambda hi.
3 * hi + 2)))) by simp
qed (auto simp: termination-simp)
declare h.simps[simp del] b.simps[simp del] F.simps[simp del]
private lemma Fb0: assumes base: G1 \neq 0 G2 \neq 0
 shows (F \ i = 0 \longrightarrow F \ (Suc \ i) = 0) \land b \ i \neq 0 \land h \ i \neq 0
proof (induct i rule: less-induct)
 case (less i)
 \mathbf{note} * [simp] = F.simps[of i] \ b.simps[of i] \ h.simps[of i]
 consider (0) i = 0 \mid (1) \mid i = 1 \mid (2) \mid i \geq 2 by linarith
 thus ?case
 proof cases
   case \theta
   show ?thesis unfolding * unfolding \theta by simp
 next
   case 1
   show ?thesis unfolding * unfolding 1 using assms by simp
 next
   case 2
   have F: F = 0 \Longrightarrow F (Suc \ i) = 0 unfolding F.simps[of Suc \ i] using 2 by
   from assms have F2: F 2 \neq 0 unfolding F.simps[of 2] by simp
   from 2 have i - 1 < i i - 2 < i by auto
   note IH = less[OF this(1)] less[OF this(2)]
   hence b: b(i-1) \neq 0 and h: h(i-1) \neq 0 h (i-2) \neq 0 by auto
   from h have hi: h i \neq 0 unfolding h.simps[of i] using 2 F2 by auto
   have bi: b \ i \neq 0 unfolding b.simps[of \ i] using h(2) by auto
   show ?thesis using hi bi F by blast
 ged
qed
```

```
private definition k = (LEAST i. F (Suc i) = 0)
private lemma k-exists: \exists i. F (Suc i) = 0
proof -
 obtain n i where i \geq 3 length (coeffs (F (Suc i))) = n by blast
 thus ?thesis
 proof (induct n arbitrary: i rule: less-induct)
   case (less \ n \ i)
   let ?ii = Suc (Suc i)
   let ?i = Suc i
   from less(2) have i: ?i \ge 3 by auto
   let ?mod = pseudo-mod (F (?ii - 2)) (F ?i)
   have Fi: F ?ii = (if F ?i = 0 \lor ?mod = 0 then 0 else smult (inverse (b ?ii))
?mod)
     unfolding F.simps[of?ii] using i by auto
   show ?case
   proof (cases F?ii = \theta)
     case False
     hence Fi: F ?ii = smult (inverse (b ?ii)) ?mod and mod: ?mod \neq 0 and
Fi1: F ? i \neq 0
      unfolding Fi by auto
     from pseudo-mod[OF\ Fi1,\ of\ F\ (?ii-2)]\ mod\ {\bf have}\ degree\ ?mod< degree
(F ? i) by simp
     hence deg: degree (F?i) < degree (F?i) unfolding Fi by auto
   hence length (coeffs (F?ii)) < length (coeffs (F?ii)) unfolding degree-eq-length-coeffs
by auto
     from less(1)[OF - i refl, folded less(3), OF this] show ?thesis by auto
   ged blast
 qed
qed
private lemma k: F(Suc \ k) = 0 \ i < k \Longrightarrow F(Suc \ i) \neq 0
proof -
 show F(Suc k) = 0 unfolding k-def using k-exists by (rule Least12-ex)
 assume i < k from not-less-Least[OF this[unfolded k-def]] show F (Suc i) \neq 0
qed
lemma enter-subresultant-prs: assumes len: length (coeffs G1) \geq length (coeffs
G2)
 and G2: G2 \neq 0
shows \exists F n d f k b. subresultant-prs-locale \not \subseteq F n d f k b G1 G2
proof (intro exI)
 from G2 len have G1: G1 \neq 0 by auto
 from len have deg-le: degree (F 2) \leq degree (F 1)
   by (simp add: F.simps degree-eq-length-coeffs)
 from G2 G1 have F1: F 1 \neq 0 and F2: F 2 \neq 0 by (auto simp: F.simps)
 note Fb\theta = Fb\theta [OF G1 G2]
 interpret s: subresultant-prs-locale F \lambda i. degree (F i) \lambda i. degree (F i) - degree
```

```
(F(Suc\ i))
   \lambda i. lead-coeff (F i) k b G1 G2
  proof (unfold-locales, rule refl, rule refl, rule refl, rule deg-le, rule F1, rule F2)
   from k(1) F1 have k0: k \neq 0 by (cases k, auto)
   show Fk: (F i = 0) = (k < i) for i
   proof
     assume F i = 0 with k(2)[of i - 1]
     have \neg (i - 1 < k) by (cases i, auto simp: F.simps)
     thus i > k using k\theta by auto
   next
     assume i > k
     then obtain j l where i: i = j + l and j = Suc k and l = i - Suc k and
Fj: F j = 0 using k(1)
      by auto
     with F1 F2 k0 have j2: j \ge 2 by auto
     show F i = \theta unfolding i
     proof (induct l)
       case (Suc\ l)
       thus ?case unfolding F.simps[of j + Suc l] using j2 by auto
     qed (auto simp: Fj)
   qed
   show b: b \ i \neq 0 for i using Fb\theta by blast
   show F 1 = map\text{-}poly \text{ to-}fract \text{ }G1 \text{ } \mathbf{unfolding} \text{ } F.simps[of 1] \text{ } \mathbf{by} \text{ } simp
   show F 2 = map\text{-}poly \text{ to-}fract \ G2 \text{ unfolding } F.simps[of 2] \text{ by } simp
   \mathbf{fix} i
   let ?mod = pseudo-mod (F (i - 2)) (F (i - 1))
   assume i: 3 \le i \ i \le Suc \ k
   from Fk[of i - 1] i have F(i - 1) \neq 0 by auto
   with i have Fi: F i = (if ? mod = 0 then 0 else smult (inverse (b i)) ? mod)
unfolding F.simps[of\ i]
     Let-def by simp
   show smult (b \ i) \ (F \ i) = ?mod
   proof (cases ?mod = 0)
     {f case}\ True
     thus ?thesis unfolding Fi by simp
   next
     case False
     with Fi have Fi: F i = smult (inverse (b i)) ?mod by simp
     from arg\text{-}cong[OF this, of smult (b i)] b[of i] show ?thesis by <math>simp
   qed
 \mathbf{qed}
 note s.h.simps[simp \ del]
 show subresultant-prs-locale2 F (\lambda i. degree (F i)) (\lambda i. degree (F i) - degree (F
(Suc\ i)))
   (\lambda i. lead\text{-}coeff (F i)) k b G1 G2
    show b \ 3 = (-1) \ \widehat{} (degree \ (F \ 1) - degree \ (F \ (Suc \ 1)) + 1) unfolding
b.simps numeral-2-eq-2 by simp
   \mathbf{fix} i
```

```
assume i: 4 \le i \ i \le Suc \ k
   with s.F0[of i-2] have F(i-2) \neq 0 by auto
   hence bi: b \ i = (-1) \ \hat{} (degree \ (F \ (i-2)) - degree \ (F \ (i-1)) + 1) *
lead\text{-}coeff (F (i-2)) *
                 h(i-2) \cap (degree(F(i-2)) - degree(F(i-1))) unfolding
b.simps
     using i by auto
   have i < k \Longrightarrow s.h \ i = h \ i for i
   proof (induct i)
     case \theta
     thus ?case by (simp add: h.simps s.h.simps)
   next
     case (Suc i)
     from Suc(2) s.F0[of Suc i] have F (Suc i) \neq 0 by auto
      with Suc show ?case unfolding h.simps[of Suc i] s.h.simps[of Suc i] nu-
meral-2-eq-2 by simp
   qed
   hence sh: s.h (i - 2) = h (i - 2) using i by simp
   from i have *: Suc(i-2) = i - 1 by auto
   \mathbf{show}\ b\ i = (-\ 1)\ \widehat{\ } (\mathit{degree}\ (F\ (i\ -\ 2))\ -\ \mathit{degree}\ (F\ (\mathit{Suc}\ (i\ -\ 2)))\ +\ 1)\ *
lead\text{-}coeff (F (i-2)) *
        s.h (i-2) \cap (degree (F (i-2)) - degree (F (Suc (i-2))))
     unfolding sh \ bi * ...
  qed
\mathbf{qed}
end
    Now we obtain the soundness lemma outside the locale.
context div-exp-sound
begin
lemma resultant-impl-main: assumes len: length (coeffs G1) \geq length (coeffs G2)
 shows resultant-impl-main G1 G2 = resultant G1 G2
proof (cases G2 = \theta)
  case G2: False
  \mathbf{from}\ enter\text{-}subresultant\text{-}prs[\mathit{OF}\ len\ \mathit{G2}]\ \mathbf{obtain}\ \mathit{F}\ n\ \mathit{d}\ \mathit{f}\ \mathit{k}\ \mathit{b}
    where subresultant-prs-locale2 F n d f k b G1 G2 by auto
 interpret subresultant-prs-locale 2 F n d f k b G1 G2 by fact
  show ?thesis by (rule resultant-impl-main, standard)
next
  case G2: True
  show ?thesis unfolding G2
    resultant-impl-main-def using resultant-const(2)[of G1 0] by simp
qed
theorem resultant-impl: resultant-impl = resultant
proof (intro ext)
  fix f g :: 'a poly
  show resultant-impl f g = resultant f g
```

```
proof (cases length (coeffs f) \geq length (coeffs g))
case True
thus ?thesis unfolding resultant-impl-def resultant-impl-main[OF True] by
auto
next
case False
hence length (coeffs g) \geq length (coeffs f) by auto
from resultant-impl-main[OF this]
show ?thesis unfolding resultant-impl-def resultant-swap[of f g] using False
by (auto simp: Let-def)
qed
qed
end
```

7.3 Code Equations

In the following code-equations, we only compute the required values, e.g., h_k is not required if $n_k > 0$, we compute $(-1)^{\dots} * \dots$ via a case-analysis, and we perform special cases for $\delta_i = 1$, which is the most frequent case.

```
\begin{array}{ll} \textbf{context} & \textit{div-exp-param} \\ \textbf{begin} & \end{array}
```

```
partial-function(tailrec) subresultant-prs-main-impl where subresultant-prs-main-impl f Gi-1 Gi ni-1 d1-1 hi-2 = (let gi-1 = lead-coeff Gi-1; ni = degree Gi; hi-1 = (if d1-1 = 1 then gi-1 else div-exp gi-1 hi-2 d1-1); d1 = ni-1 - ni; pmod = pseudo-mod Gi-1 Gi in (if pmod = 0 then f (Gi, (if d1 = 1 then lead-coeff Gi else div-exp (lead-coeff Gi) hi-1 d1)) else let gi = lead-coeff Gi; divisor = (-1) ^ (d1 + 1) * gi-1 * (hi-1 ^ d1); Gi-p1 = sdiv-poly pmod divisor in subresultant-prs-main-impl f Gi Gi-p1 ni d1 hi-1))
```

definition subresultant-prs-impl where

```
subresultant-prs-impl f G1 G2 = (let pmod = pseudo-mod <math>G1 G2;

n2 = degree G2;

delta-1 = (degree G1 - n2);

g2 = lead\text{-}coeff G2;

h2 = g2 \land delta-1

in if pmod = 0 then f (G2,h2) else let

G3 = (-1) \land (delta-1 + 1) * pmod;

g3 = lead\text{-}coeff G3;

n3 = degree G3;

d2 = n2 - n3;
```

```
pmod = pseudo-mod G2 G3
   in if pmod = 0 then f(G3, if d2 = 1 then g3 else div-exp g3 h2 d2)
    else let divisor = (-1) (d2 + 1) * g2 * h2 d2; G4 = sdiv-poly pmod
divisor
       in subresultant-prs-main-impl f G3 G4 n3 d2 h2
end
context div-exp-sound
begin
lemma div-exp-1: div-exp g h (Suc \theta) = g
 using div\text{-}exp[of\ g\ Suc\ 0\ h] by simp
lemma subresultant-prs-impl: subresultant-prs-impl f G1 G2 = f (subresultant-prs
G1 G2
proof -
 define h2 where h2 = lead\text{-}coeff\ G2 \cap (degree\ G1 - degree\ G2)
 define G3 where G3 = ((-1) \hat{} (degree\ G1 - degree\ G2 + 1) * pseudo-mod
G1 G2
 define G4 where G4 = sdiv\text{-poly} (pseudo\text{-mod } G2 \ G3)
      ((-1) \cap (degree \ G2 - degree \ G3 + 1) * lead-coeff \ G2 *
      h2 \cap (degree \ G2 - degree \ G3))
 define d2 where d2 = degree G2 - degree G3
 have dl1: (if d = 1 then (g :: 'a) else div-exp g h d) = div-exp g h d for d g h
   by (cases d = 1, auto simp: div-exp-1)
 show ?thesis
   unfolding subresultant-prs-impl-def subresultant-prs-def Let-def
     subresultant-prs-main.simps[of G2]
     if-distrib[of f] dl1
 proof (rule if-cong[OF refl if-cong[OF refl refl]], unfold h2-def[symmetric],
   unfold G3-def[symmetric], unfold G4-def[symmetric], unfold d2-def[symmetric])
  \mathbf{note}\ simp = subresultant\text{-}prs\text{-}main\text{-}impl.simps[off]\ subresultant\text{-}prs\text{-}main.simps}
   show subresultant-prs-main-impl f G3 G4 (degree G3) d2 h2 =
     f (subresultant-prs-main G3 G4 (div-exp (lead-coeff G3) h2 d2))
  proof (induct G4 arbitrary: G3 d2 h2 rule: wf-induct[OF wf-measure[of degree]])
     case (1 G4 G3 d2 h2)
     let ?M = pseudo-mod G3 G4
     show ?case
     proof (cases ?M = 0)
      case True
      thus ?thesis unfolding simp[of G3] Let-def dl1 by simp
     next
      case False
      hence id: (?M = 0) = False by auto
      let ?c = ((-1) \land (degree \ G3 - degree \ G4 + 1) * lead-coeff \ G3 *
          (div\text{-}exp\ (lead\text{-}coeff\ G3)\ h2\ d2)\ \widehat{\ }(degree\ G3\ -\ degree\ G4))
      let ?N = sdiv\text{-poly }?M ?c
      show ?thesis
```

```
proof (cases G_4 = 0)
        case G4: False
           have degree ?N \leq degree ?M unfolding sdiv\text{-}poly\text{-}def by (rule \ def
gree-map-poly-le)
         also have \dots < degree \ G4 \ using \ pseudo-mod[OF \ G4, \ of \ G3] \ False \ by
auto
        finally show ?thesis unfolding simp[of G3] Let-def id if-False dl1
          by (intro\ 1(1)[rule-format],\ auto)
      next
        case \theta: True
        with False have G3 \neq 0 by auto
        show ?thesis unfolding \theta unfolding simp[of G3] Let-def unfolding dl1
simp[of \ \theta] by simp
      qed
     qed
   qed
 qed
qed
 resultant-impl-rec = subresultant-prs-main-impl (\lambda (Gk,hk). if degree Gk = 0 then
hk \ else \ 0)
definition
 resultant-impl-start = subresultant-prs-impl (\lambda (Gk,hk). if degree Gk = 0 then hk
else 0)
lemma resultant-impl-start-code:
 resultant-impl-start~G1~G2~=
    (let\ pmod = pseudo-mod\ G1\ G2;
        n2 = degree G2;
        n1 = degree G1;
        g2 = lead\text{-}coeff G2;
        d1 \,=\, n1 \,-\, n2
       in if pmod = 0 then if n2 = 0 then if d1 = 0 then 1 else if d1 = 1 then g2
else g2 ^ d1 else 0
          else let
              G3 = if \ even \ d1 \ then - pmod \ else \ pmod;
              n3 = degree \ G3;
              pmod = pseudo-mod G2 G3
              in if pmod = 0
                 then if n3 = 0 then
                  let d2 = n2 - n3;
                     g3 = lead\text{-}coeff G3
                    in (if d2 = 1 then g3 else
                        div-exp g3 (if d1 = 1 then g2 else g2 ^d d1) d2) else 0
                 else\ let
                       h2 = (if d1 = 1 then g2 else g2 ^ d1);
                       d2 = n2 - n3;
                       divisor = (if d2 = 1 then g2 * h2 else if even d2 then - g2
```

```
* h2 \hat{\ } d2 \ else \ g2 * h2 \hat{\ } d2);
                        G4 = sdiv\text{-}poly\ pmod\ divisor
                      in resultant-impl-rec G3 G4 n3 d2 h2)
proof -
 obtain d1 where d1: degree G1 - degree G2 = d1 by auto
 have id1: (if even d1 then - pmod else pmod) = (-1) (d1 + 1) * (pmod :: 'a)
poly) for pmod by simp
 have id3: (if d2 = 1 then g2 * h2 else if even d2 then -g2 * h2 ^{^{\circ}}d2 else g2 *
h2 \cap d2) =
   ((-1) \hat{} (d2 + 1) * g2 * h2 \hat{} d2)
   for d2 and g2 h2 :: 'a by auto
 show ?thesis
   {\bf unfolding} \ resultant-impl-start-def \ subresultant-prs-impl-def \ resultant-impl-rec-def \ [symmetric] 
Let	ext{-}def split
   unfolding d1
   unfolding id1
   unfolding id3
   by (rule if-cong [OF refl if-cong if-cong], auto simp: power2-eq-square)
\mathbf{lemma}\ \mathit{resultant}\text{-}\mathit{impl}\text{-}\mathit{rec}\text{-}\mathit{code}\text{:}
  resultant-impl-rec Gi-1 Gi ni-1 d1-1 hi-2 = (
   let \ ni = degree \ Gi;
       pmod = pseudo-mod Gi-1 Gi
    in
    if \ pmod = 0
       then if ni = 0
         then
          let
            d1 = ni-1 - ni;
            gi = lead-coeff Gi
          in if d1 = 1 then gi else
            let gi-1 = lead-coeff Gi-1;
                hi-1 = (if d1-1 = 1 then gi-1 else div-exp gi-1 hi-2 d1-1) in
              div-exp gi hi-1 d1
         else 0
       else let
         d1 = ni-1 - ni;
         gi-1 = lead-coeff Gi-1;
         hi-1 = (if d1-1 = 1 then gi-1 else div-exp gi-1 hi-2 d1-1);
          divisor = if d1 = 1 then gi-1 * hi-1 else if even d1 then - gi-1 * hi-1 ^
d1 else gi-1 * hi-1 \hat{} d1;
         Gi-p1 = sdiv-poly pmod divisor
      in resultant-impl-rec Gi Gi-p1 ni d1 hi-1)
 unfolding resultant-impl-rec-def subresultant-prs-main-impl.simps[of - Gi-1] split
Let-def
 unfolding resultant-impl-rec-def[symmetric]
 by (rule if-cong[OF - if-cong -], auto)
```

```
lemma resultant-impl-main-code: resultant-impl-main G1 G2 =
  (if G2 = 0 then if degree G1 = 0 then 1 else 0
    else resultant-impl-start G1 G2)
  unfolding resultant-impl-main-def
  resultant-impl-start-def subresultant-prs-impl by simp
lemma resultant-impl-code: resultant-impl f g =
  (if length (coeffs f) \ge length (coeffs g) then resultant-impl-main f g)
    else\ let\ res = resultant-impl-main\ g\ f\ in
     if even (degree \ f) \lor even \ (degree \ g) \ then \ res \ else - res)
 \mathbf{unfolding}\ \mathit{resultant\text{-}impl\text{-}} \mathit{def}\ \mathit{resultant\text{-}impl\text{-}} \mathit{def}\ \dots
lemma resultant-code: resultant = resultant-impl
  using resultant-impl by fastforce
lemmas resultant-code-lemmas =
  resultant-impl-code
  resultant	ext{-}impl	ext{-}main	ext{-}code
  resultant\hbox{-}impl\hbox{-}start\hbox{-}code
  resultant-impl-rec-code
end
global-interpretation div-exp-Lazard: div-exp-sound dichotomous-Lazard: 'a::
factorial-ring-gcd \Rightarrow -
 defines
    resultant-impl-Lazard = div-exp-Lazard.resultant-impl and
   resultant-impl-main-Lazard = div-exp-Lazard.resultant-impl-main and
   resultant-impl-start-Lazard = div-exp-Lazard.resultant-impl-start and
    resultant-impl-rec-Lazard = div-exp-Lazard.resultant-impl-rec
  by (rule dichotomous-Lazard)
\mathbf{declare}\ div\text{-}exp\text{-}Lazard.resultant\text{-}code\text{-}lemmas[code]
    As default use Lazard-implementation, which implements resultants on
factorial rings.
declare div-exp-Lazard.resultant-code[code]
    We also provide a second implementation without Lazard's optimization,
which works on integral domains.
global-interpretation div-exp-basic: div-exp-sound basic-div-exp
 defines
    resultant-impl-basic = div-exp-basic.resultant-impl and
   resultant-impl-main-basic = div-exp-basic.resultant-impl-main and
   \mathit{resultant\text{-}impl\text{-}start\text{-}basic} = \mathit{div\text{-}exp\text{-}basic}.\mathit{resultant\text{-}impl\text{-}start} and
    resultant-impl-rec-basic = div-exp-basic.resultant-impl-rec
  by (rule basic-div-exp)
declare div-exp-basic.resultant-code-lemmas[code]
```

end

8 Computing the Gcd via the subresultant PRS

This theory now formalizes how the subresultant PRS can be used to calculate the gcd of two polynomials. Moreover, it proves the connection between resultants and gcd, namely that the resultant is 0 iff the degree of the gcd is non-zero.

```
\begin{tabular}{l} \textbf{theory} & \textit{Subresultant-Gcd} \\ \textbf{imports} \\ & \textit{Subresultant} \\ & \textit{Polynomial-Factorization.Missing-Polynomial-Factorial} \\ \textbf{begin} \\ \end{tabular}
```

8.1 Algorithm

```
locale div\text{-}exp\text{-}sound\text{-}gcd = div\text{-}exp\text{-}sound \ div\text{-}exp \ for \ div\text{-}exp :: 'a :: \{semiring\text{-}gcd\text{-}mult\text{-}normalize,factorial\text{-}ring\text{-}gcd}\} \Rightarrow 'a \Rightarrow nat \Rightarrow 'a \ begin \ definition \ gcd\text{-}impl\text{-}primitive \ where} \ [code \ del]: \ gcd\text{-}impl\text{-}primitive \ G1 \ G2 = normalize \ (primitive\text{-}part \ (fst \ (subresultant\text{-}prs \ G1 \ G2))))
definition \ gcd\text{-}impl\text{-}main \ where} \ [code \ del]: \ gcd\text{-}impl\text{-}main \ G1 \ G2 = (if \ G1 = 0 \ then \ 0 \ else \ if \ G2 = 0 \ then \ normalize \ G1 \ else \ smult \ (gcd \ (content \ G1) \ (content \ G2)) \ (gcd\text{-}impl\text{-}primitive \ (primitive\text{-}part \ G1) \ (primitive\text{-}part \ G2)))
definition \ gcd\text{-}impl \ where} \ gcd\text{-}impl\ f \ g = (if \ length \ (coeffs \ f) \ge length \ (coeffs \ g) \ then \ gcd\text{-}impl\text{-}main \ f \ g \ else \ gcd\text{-}impl\text{-}main \ g \ f)}
```

8.2 Soundness Proof for gcd-impl = gcd

end

```
locale subresultant-prs-gcd = subresultant-prs-locale 2 F n \delta f k \beta G1 G2 for F :: nat \Rightarrow 'a :: \{factorial-ring-gcd,semiring-gcd-mult-normalize\} fract poly and n :: nat \Rightarrow nat and \delta :: nat \Rightarrow nat and f :: nat \Rightarrow 'a \ fract and k :: nat and k :: nat
```

```
and G1 G2 :: 'a poly
begin
    The subresultant PRS computes the gcd up to a scalar multiple.
context
  fixes div\text{-}exp :: 'a \Rightarrow 'a \Rightarrow nat \Rightarrow 'a
 assumes div-exp-sound: div-exp-sound div-exp
begin
interpretation div-exp-sound-gcd div-exp
 using div-exp-sound by (rule div-exp-sound-gcd.intro)
lemma subresultant-prs-qcd: assumes subresultant-prs G1 G2 = (Gk, hk)
 shows \exists a b. a \neq 0 \land b \neq 0 \land smult \ a \ (gcd \ G1 \ G2) = smult \ b \ (normalize \ Gk)
proof -
 from subresultant-prs[OF div-exp-sound assms]
 have Fk: F k = ffp \ Gk \ \text{and} \ \forall \ i. \ \exists \ H. \ i \neq 0 \longrightarrow F \ i = ffp \ H
   and \forall i. \exists b. 3 \leq i \longrightarrow i \leq Suc \ k \longrightarrow \beta \ i = ff \ b \ \mathbf{by} \ auto
 from choice[OF\ this(2)]\ choice[OF\ this(3)] obtain H\ beta where
    FH: \bigwedge i. \ i \neq 0 \Longrightarrow F \ i = ffp \ (H \ i) and
    beta: \bigwedge i. 3 \le i \Longrightarrow i \le Suc \ k \Longrightarrow \beta \ i = ff \ (beta \ i) by auto
  from Fk FH[OF k0] FH[of 1] FH[of 2] FH[of Suc k] F0[of Suc k] F1 F2
 have border: H k = Gk H 1 = G1 H 2 = G2 H (Suc k) = 0 by auto
 have i \neq 0 \Longrightarrow i \leq k \Longrightarrow \exists a \ b. \ a \neq 0 \land b \neq 0 \land smult \ a (gcd \ G1 \ G2) = smult
b (gcd (H i) (H (Suc i))) for i
 proof (induct i rule: less-induct)
   case (less\ i)
   from less(3) have ik: i \leq k.
   from less(2) have i = 1 \lor i \ge 2 by auto
   thus ?case
   proof
     assume i = 1
      thus ?thesis unfolding border[symmetric] by (intro exI[of - 1], auto simp:
numeral-2-eq-2)
   next
     assume i2: i > 2
     with ik have i-1 < i i-1 \neq 0 and imk: i-1 \leq k by auto
     from less(1)[OF this] i2
     obtain a b where a: a \neq 0 and b: b \neq 0 and IH: smult a (gcd G1 G2) =
smult b (gcd (H (i - 1)) (H i)) by auto
     define M where M = pseudo-mod (H (i-1)) (H i)
     define c where c = \beta (Suc i)
    have M: pseudo-mod\ (F\ (i-1))\ (F\ i) = ffp\ M\ unfolding\ to-fract-hom.pseudo-mod-hom[symmetric]
M-def
        using i2 FH by auto
     have c: c \neq 0 using \beta \theta unfolding c\text{-}def.
     from i2 ik have 3: Suc i \ge 3 Suc i \le Suc k by auto
```

from *pmod*[*OF* 3]

```
have pm: smult c (F (Suc i)) = pseudo-mod (F (i - 1)) (F i) unfolding
c-def by simp
     from beta[OF 3, folded c-def] obtain d where cd: c = ff d by auto
     with c have d: d \neq 0 by auto
     from pm[unfolded cd M] FH[of Suc i]
     have ffp (smult d (H (Suc i))) = ffp M by auto
     hence pm: smult \ d \ (H \ (Suc \ i)) = M \ \mathbf{by} \ (rule \ map-poly-hom.injectivity)
     from ik \ F0[of \ i] \ i2 \ FH[of \ i] have Hi0: H \ i \neq 0 by auto
     from pseudo-mod[OF\ this,\ of\ H\ (i-1),\ folded\ M-def]
     obtain c Q where c: c \neq 0 and smult c (H (i-1)) = H i * Q + M by
auto
    from this[folded pm] have smult c(H(i-1)) = Q * H i + smult d(H(Suc
i)) by simp
    from gcd-add-mult[of\ H\ i\ Q\ smult\ d\ (H\ (Suc\ i)),\ folded\ this]
     have gcd\ (H\ i)\ (smult\ c\ (H\ (i\ -\ 1))) = gcd\ (H\ i)\ (smult\ d\ (H\ (Suc\ i))) .
     with gcd-smult-ex[OF\ c,\ of\ H\ (i-1)\ H\ i] obtain e where
       e: e \neq 0 and gcd(H i)(smult d(H (Suc i))) = smult e(gcd(H i)(H (i)
-1)))
      unfolding gcd.commute[of H i] by auto
     with gcd-smult-ex[OF d, of H (Suc i) H i] obtain c where
      c: c \neq 0 and smult \ c \ (gcd \ (H \ i) \ (H \ (Suc \ i))) = smult \ e \ (gcd \ (H \ (i-1)))
(H i)
      unfolding gcd.commute[of H i] by auto
     from arg-cong[OF this(2), of smult b] arg-cong[OF IH, of smult e]
     have smult (e * a) (gcd G1 G2) = smult (b * c) (gcd (H i) (H (Suc i)))
unfolding smult-smult
      by (simp add: ac-simps)
     moreover have e * a \neq 0 b * c \neq 0 using a b c e by auto
     ultimately show ?thesis by blast
   qed
 qed
 from this [OF k0 le-refl, unfolded border]
 obtain a b where a \neq 0 b \neq 0 and smult a (gcd G1 G2) = smult b (normalize
Gk) by auto
 thus ?thesis by auto
qed
lemma qcd-impl-primitive: assumes primitive-part G1 = G1 and primitive-part
G2 = G2
shows gcd-impl-primitive G1 G2 = gcd G1 G2
proof -
 let ?pp = primitive-part
 let ?c = content
 \mathbf{let}~?n = \mathit{normalize}
 from F2 \ F0[of 2] \ k2 have G2: G2 \neq 0 by auto
 obtain Gk hk where sub: subresultant-prs G1 G2 = (Gk, hk) by force
 have impl: qcd-impl-primitive \ G1 \ G2 = ?n \ (?pp \ Gk) \ unfolding \ qcd-impl-primitive-def
sub by auto
```

```
from subresultant-prs-qcd[OF sub]
 obtain a b where a: a \neq 0 and b: b \neq 0 and id: smult a (gcd G1 G2) = smult
b (?n Gk)
   by auto
 define c where c = unit-factor (gcd G1 G2)
 define d where d = smult (unit-factor a) c
 from G2 have c: is-unit c unfolding c-def by auto
  from arg-cong[OF id, of ?pp, unfolded primitive-part-smult primitive-part-gcd
assms
    primitive-part-normalize c-def[symmetric]]
 have id: d * gcd G1 G2 = smult (unit-factor b) (?n (?pp Gk)) unfolding d-def
 have d: is-unit d unfolding d-def using c a
   by (simp add: is-unit-smult-iff)
 from is-unitE[OF d]
 obtain e where e: is-unit e and de: d * e = 1 by metis
 define a where a = smult (unit-factor b) e
 from arg\text{-}cong[OF\ id,\ of\ \lambda\ x.\ e*x]
 have (d * e) * gcd G1 G2 = a * (?n (?pp Gk)) by (simp add: ac\text{-}simps a\text{-}def)
 hence id: gcd\ G1\ G2 = a*(?n\ (?pp\ Gk)) using de by simp
 have a: is-unit a unfolding a-def using b e
   by (simp add: is-unit-smult-iff)
 define b where b = unit-factor (?pp Gk)
 have Gk \neq 0 using subresultant-prs[OF div-exp-sound sub] F0[OF k0] by auto
 hence b: is-unit b unfolding b-def by auto
 from is\text{-}unitE[OF\ b]
 obtain c where c: is-unit c and bc: b * c = 1 by metis
 obtain d where d: is-unit d and dac: d = a * c using c a by auto
 have gcd \ G1 \ G2 = d * (b * ?n \ (?pp \ Gk))
   unfolding id dac using bc by (simp add: ac-simps)
 also have b * ?n (?pp Gk) = ?pp Gk unfolding b-def by simp
 finally have gcd\ G1\ G2 = d*?pp\ Gk by simp
 from arg\text{-}cong[OF this, of ?n]
 have gcd\ G1\ G2 = ?n\ (d * ?pp\ Gk) by simp
 also have \dots = ?n \ (?pp \ Gk) using d
   unfolding normalize-mult by (simp add: is-unit-normalize)
 finally show ?thesis unfolding impl ..
qed
end
end
context div-exp-sound-gcd
begin
lemma gcd-impl-main: assumes len: length (coeffs G1) \geq length (coeffs G2)
 shows gcd-impl-main G1 G2 = gcd G1 G2
proof (cases G1 = 0)
 case G1: False
 show ?thesis
```

```
proof (cases G2 = 0)
   \mathbf{case}\ \mathit{G2}\colon \mathit{False}
   let ?pp = primitive-part
   from G2 have G2: ?pp G2 \neq 0 and id: (G2 = 0) = False by auto
    from len have len: length (coeffs (?pp G1)) \geq length (coeffs (?pp G2)) by
simp
   from enter-subresultant-prs[OF\ len\ G2] obtain F\ n\ d\ f\ k\ b
     where subresultant-prs-locale 2 F n d f k b (?pp G1) (?pp G2) by auto
   interpret subresultant-prs-locale2 F n d f k b ?pp G1 ?pp G2 by fact
   interpret subresultant-prs-gcd F n d f k b ?pp G1 ?pp G2 ..
  \mathbf{show}\ ?the sis\ \mathbf{unfolding}\ gcd\text{-}impl\text{-}main\text{-}def\ gcd\text{-}poly\text{-}decompose}[of\ G1]\ id\ if\text{-}False
     by (subst gcd-impl-primitive, auto intro: div-exp-sound-axioms)
 next
   \mathbf{case} \ \mathit{True}
   thus ?thesis unfolding qcd-impl-main-def by simp
 qed
next
 case True
 with len have G2 = 0 by auto
 thus ?thesis using True unfolding gcd-impl-main-def by simp
\mathbf{qed}
theorem gcd-impl[simp]: gcd-impl = gcd
proof (intro ext)
 fix f g :: 'a poly
 show gcd-impl f g = gcd f g
 proof (cases length (coeffs f) \geq length (coeffs g))
   case True
   thus ?thesis unfolding gcd-impl-def gcd-impl-main[OF True] by auto
 next
   case False
   hence length (coeffs g) \geq length (coeffs f) by auto
   from gcd-impl-main[OF this]
   show ?thesis unfolding qcd-impl-def qcd.commute[of f q] using False by auto
 \mathbf{qed}
qed
    The implementation also reveals an important connection between re-
sultant and gcd.
lemma resultant-0-gcd: resultant (f :: 'a \ poly) \ g = 0 \longleftrightarrow degree (gcd \ f \ g) \neq 0
proof -
   fix f g :: 'a poly
   assume len: length (coeffs f) \geq length (coeffs g)
     assume g: g \neq 0
     with len have f: f \neq 0 by auto
```

```
let ?f = primitive\text{-part } f
     let ?g = primitive\text{-part } g
     let ?c = content
     from len have len: length (coeffs ?f) \geq length (coeffs ?g) by simp
     obtain Gk hk where sub: subresultant-prs ?f ?g = (Gk,hk) by force
     have cf: ?c f \neq 0 and cg: ?c g \neq 0 using f g by auto
     {
      from g have ?g \neq 0 by auto
      from enter-subresultant-prs[OF\ len\ this] obtain F\ n\ d\ f\ k\ b
        where subresultant-prs-locale2 F n d f k b ?f ?g by auto
      interpret subresultant-prs-locale2 F n d f k b ?f ?g by fact
       from subresultant-prs OF div-exp-sound-axioms sub have h k = ff hk by
auto
      with h\theta[\mathit{OF}\ \mathit{le-refl}] have \mathit{hk} \neq \theta by \mathit{auto}
     } note hk\theta = this
     have resultant f g = 0 \longleftrightarrow resultant (smult (?c f) ?f) (smult (?c g) ?g) = 0
     also have ... \longleftrightarrow resultant ?f ?g = 0 unfolding resultant-smult-left[OF cf]
resultant-smult-right[OF cg]
      using cf cq by auto
     also have ... \longleftrightarrow resultant-impl-main ?f ?g = 0
     unfolding resultant-impl[symmetric] resultant-impl-def resultant-impl-main-def
       using len by auto
     also have \dots \longleftrightarrow (degree \ Gk \neq 0)
       unfolding resultant-impl-main-def sub-split using g hk0 by auto
     also have degree Gk = degree (gcd-impl-primitive ?f ?g)
       unfolding gcd-impl-primitive-def sub by simp
     also have \dots = degree (gcd-impl-main f g)
      unfolding gcd-impl-main-def using f g by auto
    also have \dots = degree (gcd f g) unfolding gcd-impl[symmetric] gcd-impl-def
using len by auto
     finally have (resultant f g = 0) = (degree (gcd f g) \neq 0).
   }
   moreover
     assume g: g = 0 and f: degree f \neq 0
     have (resultant f g = 0) = (degree (gcd f g) \neq 0)
       unfolding g using f by auto
   moreover
     assume g: g = \theta and f: degree f = \theta
     have (resultant f g = 0) = (degree (gcd f g) \neq 0)
    unfolding g using f by (auto simp: resultant-def sylvester-mat-def sylvester-mat-sub-def)
   ultimately have (resultant f g = 0) = (degree (gcd f g) \neq 0) by blast
  } note main = this
  show ?thesis
```

```
proof (cases length (coeffs f) \geq length (coeffs g))
   {f case} True
   from main[OF\ True] show ?thesis.
  next
   case False
   hence length (coeffs g) \geq length (coeffs f) by auto
   from main[OF this] show ?thesis
    unfolding gcd.commute[of\ g\ f] resultant-swap[of\ g\ f] by (simp\ split:\ if-splits)
 qed
qed
       Code Equations
8.3
definition gcd-impl-rec = subresultant-prs-main-impl fst
definition gcd\text{-}impl\text{-}start = subresultant\text{-}prs\text{-}impl fst
\mathbf{lemma}\ gcd\text{-}impl\text{-}rec\text{-}code:
 qcd-impl-rec Gi-1 Gi ni-1 d1-1 hi-2 = (
   let \ pmod = pseudo-mod \ Gi-1 \ Gi
    if \ pmod = 0 \ then \ Gi
       else let
         ni = degree Gi;
         d1 = ni-1 - ni;
         gi-1 = lead-coeff Gi-1;
         hi-1 = (if d1-1 = 1 then gi-1 else div-exp gi-1 hi-2 d1-1);
         divisor = if d1 = 1 then gi-1 * hi-1 else if even d1 then - gi-1 * hi-1 ^
d1 else gi-1 * hi-1 ^d1;
         Gi-p1 = sdiv-poly pmod divisor
      in qcd-impl-rec Gi Gi-p1 ni d1 hi-1)
 unfolding gcd-impl-rec-def subresultant-prs-main-impl.simps[of - Gi-1] split Let-def
 unfolding gcd-impl-rec-def[symmetric]
 by (rule if-cong, auto)
\mathbf{lemma}\ \mathit{gcd-impl-start-code} :
  gcd-impl-start~G1~G2~=
    (let\ pmod = pseudo-mod\ G1\ G2
        in \ if \ pmod = 0 \ then \ G2
          else let
              n2 = degree G2;
              n1 = degree G1;
               d1 = n1 - n2;
               G3 = if \ even \ d1 \ then - pmod \ else \ pmod;
              pmod = pseudo-mod G2 G3
               in if pmod = 0
                 then G3
                 else let
                       g2 = lead\text{-}coeff G2;
                       n3 = degree G3;
```

```
h2 = (if d1 = 1 then g2 else g2 \cap d1);
                      d2 = n2 - n3;
                      divisor = (if d2 = 1 then g2 * h2 else if even d2 then - g2
* h2 \hat{\ } d2 \ else \ g2 * h2 \hat{\ } d2);
                      G4 = sdiv\text{-}poly\ pmod\ divisor
                    in gcd-impl-rec G3 G4 n3 d2 h2)
proof -
 obtain d1 where d1: degree G1 - degree G2 = d1 by auto
 have id1: (if\ even\ d1\ then\ -\ pmod\ else\ pmod) = (-1)^(d1+1)*(pmod::'a
poly) for pmod by simp
 show ?thesis
  unfolding gcd-impl-start-def subresultant-prs-impl-def gcd-impl-rec-def [symmetric]
Let-def split
   unfolding d1
   unfolding id1
   by (rule if-conq, auto)
qed
lemma gcd-impl-main-code:
 gcd-impl-main G1 G2 = (if G1 = 0 then 0 else if <math>G2 = 0 then normalize G1 else
   let c1 = content G1;
     c2 = content G2;
     p1 = map-poly (\lambda x. x div c1) G1;
    p2 = map-poly (\lambda x. x div c2) G2
    in smult (gcd c1 c2) (normalize (primitive-part (gcd-impl-start p1 p2))))
 unfolding gcd-impl-main-def Let-def primitive-part-def gcd-impl-start-def gcd-impl-primitive-def
   subresultant-prs-impl by simp
\mathbf{lemmas}\ gcd\text{-}code\text{-}lemmas =
 gcd-impl-main-code
 gcd-impl-start-code
 qcd-impl-rec-code
 gcd-impl-def
corollary gcd-via-subresultant: gcd = gcd-impl by simp
end
global-interpretation div-exp-Lazard-gcd: div-exp-sound-gcd dichotomous-Lazard
:: 'a :: \{semiring-gcd-mult-normalize, factorial-ring-gcd\} \Rightarrow -
 defines
   gcd-impl-Lazard = div-exp-Lazard-gcd.gcd-impl and
   gcd-impl-main-Lazard = div-exp-Lazard-gcd.gcd-impl-main and
   gcd-impl-start-Lazard = div-exp-Lazard-gcd.gcd-impl-start and
   gcd-impl-rec-Lazard = div-exp-Lazard-gcd.gcd-impl-rec
 by (simp add: Subresultant.dichotomous-Lazard div-exp-sound-gcd-def)
declare div-exp-Lazard-gcd.gcd-code-lemmas[code]
lemmas resultant-0-gcd = div-exp-Lazard-gcd.resultant-0-gcd
```

 ${f thm}\ div-exp ext{-}Lazard ext{-}gcd ext{.}gcd ext{-}via ext{-}subresultant$

Note that we did not activate gcd = gcd-impl-Lazard as code-equation, since according to our experiments, the subresultant-gcd algorithm is not always more efficient than the currently active equation. In particular, on int poly gcd-impl-Lazard performs worse, but on multi-variate polynomials, e.g., int poly poly poly, gcd-impl-Lazard is preferable.

end

References

- [1] W. S. Brown. The subresultant PRS algorithm. ACM Trans. Math. Softw., 4(3):237–249, 1978.
- [2] W. S. Brown and J. F. Traub. On Euclid's algorithm and the theory of subresultants. *Journal of the ACM*, 18(4):505–514, 1971.
- [3] L. Ducos. Optimizations of the subresultant algorithm. *Journal of Pure and Applied Algebra*, 145:149–163, 2000.
- [4] A. Mahboubi. Proving formally the implementation of an efficient gcd algorithm for polynomials. In *Proc. IJCAR'06*, volume 4130 of *LNCS*, pages 438–452, 2006.
- [5] R. Thiemann and A. Yamada. Algebraic numbers in Isabelle/HOL. In *Proc. ITP'16*, volume 9807 of *LNCS*, pages 391–408, 2016.