
Stuttering Equivalence and Stuttering Invariance

Stephan Merz
Inria Nancy & LORIA

Villers-lès-Nancy, France

March 17, 2025

Two ω-sequences are stuttering equivalent if they differ only by finite repe-
titions of elements. For example, the two sequences

(abbccca)ω and (aaaabc)ω

are stuttering equivalent, whereas

(abac)ω and (aaaabcc)ω

are not. Stuttering equivalence is a fundamental concept in the theory of
concurrent and distributed systems. Notably, Lamport [1] argues that re-
finement notions for such systems should be insensitive to finite stuttering.
Peled and Wilke [2] showed that all PLTL (propositional linear-time tem-
poral logic) properties that are insensitive to stuttering equivalence can be
expressed without the next-time operator. Stuttering equivalence is also
important for certain verification techniques such as partial-order reduction
for model checking.

We formalize stuttering equivalence in Isabelle/HOL. Our development
relies on the notion of stuttering sampling functions that may skip blocks of
identical sequence elements. We also encode PLTL and prove the theorem
due to Peled and Wilke [2].

Contents
1 Utility Lemmas 2

2 Stuttering Sampling Functions 2
2.1 Definition and elementary properties 3
2.2 Preservation of properties through stuttering sampling 3
2.3 Maximal stuttering sampling 4

3 Stuttering Equivalence 6

1

4 Stuttering Invariant LTL Formulas 8
4.1 Finite Conjunctions and Disjunctions in PLTL 8
4.2 Next-Free PLTL Formulas . 9
4.3 Stuttering Invariance of PLTL Without “Next” 10
4.4 Atoms, Canonical State Sequences, and Characteristic Formulas 10
4.5 Stuttering Invariant PLTL Formulas Don’t Need Next 13
4.6 Stutter Invariance for LTL with Syntactic Sugar 14

theory Samplers
imports Main HOL−Library.Omega-Words-Fun

begin

1 Utility Lemmas

The following lemmas about strictly monotonic functions could go to the
standard library of Isabelle/HOL.

Strongly monotonic functions over the integers grow without bound.
lemma strict-mono-exceeds:

assumes f : strict-mono (f ::nat ⇒ nat)
shows ∃ k. n < f k
〈proof 〉

More precisely, any natural number n ≥ f 0 lies in the interval between f k
and f (Suc k), for some k.
lemma strict-mono-interval:

assumes f : strict-mono (f ::nat ⇒ nat) and n: f 0 ≤ n
obtains k where f k ≤ n and n < f (Suc k)
〈proof 〉

lemma strict-mono-comp:
assumes g: strict-mono (g:: ′a::order ⇒ ′b::order)

and f : strict-mono (f :: ′b::order ⇒ ′c::order)
shows strict-mono (f ◦ g)
〈proof 〉

2 Stuttering Sampling Functions

Given an ω-sequence σ, a stuttering sampling function is a strictly monotonic
function f ::nat ⇒ nat such that f 0 = 0 and for all i and all f i ≤ k < f
(i+1), the elements σ k are the same. In other words, f skips some (but
not necessarily all) stuttering steps, but never skips a non-stuttering step.
Given such σ and f, the (stuttering-)sampled reduction of σ is the sequence
of elements of σ at the indices f i, which can simply be written as σ ◦ f.

2

2.1 Definition and elementary properties
definition stutter-sampler where

— f is a stuttering sampling function for σ
stutter-sampler (f ::nat ⇒ nat) σ ≡

f 0 = 0
∧ strict-mono f
∧ (∀ k n. f k < n ∧ n < f (Suc k) −→ σ n = σ (f k))

lemma stutter-sampler-0 : stutter-sampler f σ =⇒ f 0 = 0
〈proof 〉

lemma stutter-sampler-mono: stutter-sampler f σ =⇒ strict-mono f
〈proof 〉

lemma stutter-sampler-between:
assumes f : stutter-sampler f σ

and lo: f k ≤ n and hi: n < f (Suc k)
shows σ n = σ (f k)
〈proof 〉

lemma stutter-sampler-interval:
assumes f : stutter-sampler f σ
obtains k where f k ≤ n and n < f (Suc k)
〈proof 〉

The identity function is a stuttering sampling function for any σ.
lemma id-stutter-sampler [iff]: stutter-sampler id σ
〈proof 〉

Stuttering sampling functions compose, sort of.
lemma stutter-sampler-comp:

assumes f : stutter-sampler f σ
and g: stutter-sampler g (σ ◦ f)

shows stutter-sampler (f ◦ g) σ
〈proof 〉

Stuttering sampling functions can be extended to suffixes.
lemma stutter-sampler-suffix:

assumes f : stutter-sampler f σ
shows stutter-sampler (λk. f (n+k) − f n) (suffix (f n) σ)
〈proof 〉

2.2 Preservation of properties through stuttering sampling

Stuttering sampling preserves the initial element of the sequence, as well as
the presence and relative ordering of different elements.
lemma stutter-sampled-0 :

3

assumes stutter-sampler f σ
shows σ (f 0) = σ 0
〈proof 〉

lemma stutter-sampled-in-range:
assumes f : stutter-sampler f σ and s: s ∈ range σ
shows s ∈ range (σ ◦ f)
〈proof 〉

lemma stutter-sampled-range:
range (σ ◦ f) = range σ if stutter-sampler f σ
〈proof 〉

lemma stutter-sampled-precedence:
assumes f : stutter-sampler f σ and ij: i ≤ j
obtains k l where k ≤ l σ (f k) = σ i σ (f l) = σ j
〈proof 〉

2.3 Maximal stuttering sampling

We define a particular sampling function that is maximal in the sense that
it eliminates all finite stuttering. If a sequence ends with infinite stuttering
then it behaves as the identity over the (maximal such) suffix.
fun max-stutter-sampler where

max-stutter-sampler σ 0 = 0
| max-stutter-sampler σ (Suc n) =

(let prev = max-stutter-sampler σ n
in if (∀ k > prev. σ k = σ prev)

then Suc prev
else (LEAST k. prev < k ∧ σ k 6= σ prev))

max-stutter-sampler is indeed a stuttering sampling function.
lemma max-stutter-sampler :

stutter-sampler (max-stutter-sampler σ) σ (is stutter-sampler ?ms -)
〈proof 〉

We write \σ for the sequence σ sampled by the maximal stuttering sampler.
Also, a sequence is stutter free if it contains no finite stuttering: whenever
two subsequent elements are equal then all subsequent elements are the
same.
definition stutter-reduced (‹\-› [100] 100) where
\σ = σ ◦ (max-stutter-sampler σ)

definition stutter-free where
stutter-free σ ≡ ∀ k. σ (Suc k) = σ k −→ (∀n>k. σ n = σ k)

lemma stutter-freeI :
assumes

∧
k n. [[σ (Suc k) = σ k; n>k]] =⇒ σ n = σ k

4

shows stutter-free σ
〈proof 〉

lemma stutter-freeD:
assumes stutter-free σ and σ (Suc k) = σ k and n>k
shows σ n = σ k
〈proof 〉

Any suffix of a stutter free sequence is itself stutter free.
lemma stutter-free-suffix:

assumes sigma: stutter-free σ
shows stutter-free (suffix k σ)
〈proof 〉

lemma stutter-reduced-0 : (\σ) 0 = σ 0
〈proof 〉

lemma stutter-free-reduced:
assumes sigma: stutter-free σ
shows \σ = σ
〈proof 〉

Whenever two sequence elements at two consecutive sampling points of the
maximal stuttering sampler are equal then the sequence stutters infinitely
from the first sampling point onwards. In particular, \σ is stutter free.
lemma max-stutter-sampler-nostuttering:

assumes stut: σ (max-stutter-sampler σ (Suc k)) = σ (max-stutter-sampler σ k)
and n: n > max-stutter-sampler σ k (is - > ?ms k)

shows σ n = σ (?ms k)
〈proof 〉

lemma stutter-reduced-stutter-free: stutter-free (\σ)
〈proof 〉

lemma stutter-reduced-suffix: \ (suffix k (\σ)) = suffix k (\σ)
〈proof 〉

lemma stutter-reduced-reduced: \\σ = \σ
〈proof 〉

One can define a partial order on sampling functions for a given sequence σ
by saying that function g is better than function f if the reduced sequence
induced by f can be further reduced to obtain the reduced sequence corre-
sponding to g, i.e. if there exists a stuttering sampling function h for the
reduced sequence σ ◦ f such that σ ◦ f ◦ h = σ ◦ g. (Note that f ◦ h is indeed
a stuttering sampling function for σ, by theorem stutter-sampler-comp.)
We do not formalize this notion but prove that max-stutter-sampler σ is the
best sampling function according to this order.

5

theorem sample-max-sample:
assumes f : stutter-sampler f σ
shows \(σ ◦ f) = \σ
〈proof 〉

end
theory StutterEquivalence
imports Samplers

begin

3 Stuttering Equivalence

Stuttering equivalence of two sequences is formally defined as the equality
of their maximally reduced versions.
definition stutter-equiv (infix ‹≈› 50) where
σ ≈ τ ≡ \σ = \τ

Stuttering equivalence is an equivalence relation.
lemma stutter-equiv-refl: σ ≈ σ
〈proof 〉

lemma stutter-equiv-sym [sym]: σ ≈ τ =⇒ τ ≈ σ
〈proof 〉

lemma stutter-equiv-trans [trans]: % ≈ σ =⇒ σ ≈ τ =⇒ % ≈ τ
〈proof 〉

In particular, any sequence sampled by a stuttering sampler is stuttering
equivalent to the original one.
lemma sampled-stutter-equiv:

assumes stutter-sampler f σ
shows σ ◦ f ≈ σ
〈proof 〉

lemma stutter-reduced-equivalent: \σ ≈ σ
〈proof 〉

For proving stuttering equivalence of two sequences, it is enough to exhibit
two arbitrary sampling functions that equalize the reductions of the se-
quences. This can be more convenient than computing the maximal stutter-
reduced version of the sequences.
lemma stutter-equivI :

assumes f : stutter-sampler f σ and g: stutter-sampler g τ
and eq: σ ◦ f = τ ◦ g

shows σ ≈ τ

6

〈proof 〉

The corresponding elimination rule is easy to prove, given that the maximal
stuttering sampling function is a stuttering sampling function.
lemma stutter-equivE :

assumes eq: σ ≈ τ
and p:

∧
f g. [[stutter-sampler f σ; stutter-sampler g τ ; σ ◦ f = τ ◦ g]] =⇒ P

shows P
〈proof 〉

Therefore we get the following alternative characterization: two sequences
are stuttering equivalent iff there are stuttering sampling functions that
equalize the two sequences.
lemma stutter-equiv-eq:
σ ≈ τ = (∃ f g. stutter-sampler f σ ∧ stutter-sampler g τ ∧ σ ◦ f = τ ◦ g)
〈proof 〉

The initial elements of stutter equivalent sequences are equal.
lemma stutter-equiv-0 :

assumes σ ≈ τ
shows σ 0 = τ 0
〈proof 〉

abbreviation suffix-notation (‹- [-..]›)
where

suffix-notation w k ≡ suffix k w

Given any stuttering sampling function f for sequence σ, any suffix of σ
starting at index f n is stuttering equivalent to the suffix of the stutter-
reduced version of σ starting at n.
lemma suffix-stutter-equiv:

assumes f : stutter-sampler f σ
shows suffix (f n) σ ≈ suffix n (σ ◦ f)
〈proof 〉

Given a stuttering sampling function f and a point n within the interval
from f k to f (k+1), the suffix starting at n is stuttering equivalent to the
suffix starting at f k.
lemma stutter-equiv-within-interval:

assumes f : stutter-sampler f σ
and lo: f k ≤ n and hi: n < f (Suc k)

shows σ[n ..] ≈ σ[f k ..]
〈proof 〉

Given two stuttering equivalent sequences σ and τ , we obtain a zig-zag
relationship as follows: for any suffix τ [n..] there is a suffix σ[m..] such that:

1. σ[m..] ≈ τ [n..] and

7

2. for every suffix σ[j..] where j<m there is a corresponding suffix τ [k..]
for some k<n.

theorem stutter-equiv-suffixes-left:
assumes σ ≈ τ
obtains m where σ[m..] ≈ τ [n..] and ∀ j<m. ∃ k<n. σ[j..] ≈ τ [k..]
〈proof 〉

theorem stutter-equiv-suffixes-right:
assumes σ ≈ τ
obtains n where σ[m..] ≈ τ [n..] and ∀ j<n. ∃ k<m. σ[k..] ≈ τ [j..]
〈proof 〉

In particular, if σ and τ are stutter equivalent then every element that occurs
in one sequence also occurs in the other.
lemma stutter-equiv-element-left:

assumes σ ≈ τ
obtains m where σ m = τ n and ∀ j<m. ∃ k<n. σ j = τ k
〈proof 〉

lemma stutter-equiv-element-right:
assumes σ ≈ τ
obtains n where σ m = τ n and ∀ j<n. ∃ k<m. σ k = τ j
〈proof 〉

end
theory PLTL

imports Main LTL.LTL Samplers StutterEquivalence
begin

4 Stuttering Invariant LTL Formulas

We show that the next-free fragment of propositional linear-time temporal
logic PLTL is invariant to finite stuttering.

4.1 Finite Conjunctions and Disjunctions in PLTL
definition OR where OR Φ ≡ SOME ϕ. fold-graph Or-ltlp False-ltlp Φ ϕ

definition AND where AND Φ ≡ SOME ϕ. fold-graph And-ltlp True-ltlp Φ ϕ

lemma fold-graph-OR: finite Φ =⇒ fold-graph Or-ltlp False-ltlp Φ (OR Φ)
〈proof 〉

lemma fold-graph-AND: finite Φ =⇒ fold-graph And-ltlp True-ltlp Φ (AND Φ)
〈proof 〉

8

lemma holds-of-OR [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows (σ |=p OR Φ) = (∃ϕ∈Φ. σ |=p ϕ)
〈proof 〉

lemma holds-of-AND [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows (σ |=p AND Φ) = (∀ϕ∈Φ. σ |=p ϕ)
〈proof 〉

4.2 Next-Free PLTL Formulas

A PLTL formula is called next-free if it does not contain any subformula.
fun next-free :: ′a pltl ⇒ bool
where

next-free falsep = True
| next-free (atomp(p)) = True
| next-free (ϕ impliesp ψ) = (next-free ϕ ∧ next-free ψ)
| next-free (Xp ϕ) = False
| next-free (ϕ U p ψ) = (next-free ϕ ∧ next-free ψ)

lemma next-free-not [simp]:
next-free (notp ϕ) = next-free ϕ
〈proof 〉

lemma next-free-true [simp]:
next-free truep
〈proof 〉

lemma next-free-or [simp]:
next-free (ϕ orp ψ) = (next-free ϕ ∧ next-free ψ)
〈proof 〉

lemma next-free-and [simp]: next-free (ϕ andp ψ) = (next-free ϕ ∧ next-free ψ)
〈proof 〉

lemma next-free-eventually [simp]:
next-free (Fp ϕ) = next-free ϕ
〈proof 〉

lemma next-free-always [simp]:
next-free (Gp ϕ) = next-free ϕ
〈proof 〉

lemma next-free-release [simp]:
next-free (ϕ Rp ψ) = (next-free ϕ ∧ next-free ψ)
〈proof 〉

lemma next-free-weak-until [simp]:

9

next-free (ϕ W p ψ) = (next-free ϕ ∧ next-free ψ)
〈proof 〉

lemma next-free-strong-release [simp]:
next-free (ϕ M p ψ) = (next-free ϕ ∧ next-free ψ)
〈proof 〉

lemma next-free-OR [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows next-free (OR Φ) = (∀ϕ∈Φ. next-free ϕ)
〈proof 〉

lemma next-free-AND [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows next-free (AND Φ) = (∀ϕ∈Φ. next-free ϕ)
〈proof 〉

4.3 Stuttering Invariance of PLTL Without “Next”

A PLTL formula is stuttering invariant if for any stuttering equivalent state
sequences σ ≈ τ , the formula holds of σ iff it holds of τ .
definition stutter-invariant where

stutter-invariant ϕ = (∀σ τ. (σ ≈ τ) −→ (σ |=p ϕ) = (τ |=p ϕ))

Since stuttering equivalence is symmetric, it is enough to show an implication
in the above definition instead of an equivalence.
lemma stutter-invariantI [intro!]:

assumes
∧
σ τ. [[σ ≈ τ ; σ |=p ϕ]] =⇒ τ |=p ϕ

shows stutter-invariant ϕ
〈proof 〉

lemma stutter-invariantD [dest]:
assumes stutter-invariant ϕ and σ ≈ τ
shows (σ |=p ϕ) = (τ |=p ϕ)
〈proof 〉

We first show that next-free PLTL formulas are indeed stuttering invariant.
The proof proceeds by straightforward induction on the syntax of PLTL
formulas.
theorem next-free-stutter-invariant:

next-free ϕ =⇒ stutter-invariant (ϕ:: ′a pltl)
〈proof 〉

4.4 Atoms, Canonical State Sequences, and Characteristic
Formulas

We now address the converse implication: any stutter invariant PLTL for-
mula ϕ can be equivalently expressed by a next-free formula. The construc-

10

tion of that formula requires attention to the atomic formulas that appear
in ϕ. We will also prove that the next-free formula does not need any new
atoms beyond those present in ϕ.
The following function collects the atoms (of type ′a ⇒ bool) of a PLTL
formula.
lemma atoms-pltl-OR [simp]:

assumes fin: finite (Φ:: ′a pltl set)
shows atoms-pltl (OR Φ) = (

⋃
ϕ∈Φ. atoms-pltl ϕ)

〈proof 〉

lemma atoms-pltl-AND [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows atoms-pltl (AND Φ) = (

⋃
ϕ∈Φ. atoms-pltl ϕ)

〈proof 〉

Given a set of atoms A as above, we say that two states are A-similar if
they agree on all atoms in A. Two state sequences σ and τ are A-similar if
corresponding states are A-equal.
definition state-sim :: [′a, (′a ⇒ bool) set, ′a] ⇒ bool
(‹- ∼-∼ -› [70 ,100 ,70] 50) where
s ∼A∼ t = (∀ p∈A. p s ←→ p t)

definition seq-sim :: [nat ⇒ ′a, (′a ⇒ bool) set, nat ⇒ ′a] ⇒ bool
(‹- '-' -› [70 ,100 ,70] 50) where
σ 'A' τ = (∀n. (σ n) ∼A∼ (τ n))

These relations are (indexed) equivalence relations. Moreover s ∼A∼ t im-
plies s ∼B∼ t for B ⊆ A, and similar for σ 'A' τ and σ 'B' τ .
lemma state-sim-refl [simp]: s ∼A∼ s
〈proof 〉

lemma state-sim-sym: s ∼A∼ t =⇒ t ∼A∼ s
〈proof 〉

lemma state-sim-trans[trans]: s ∼A∼ t =⇒ t ∼A∼ u =⇒ s ∼A∼ u
〈proof 〉

lemma state-sim-mono:
assumes s ∼A∼ t and B ⊆ A
shows s ∼B∼ t
〈proof 〉

lemma seq-sim-refl [simp]: σ 'A' σ
〈proof 〉

lemma seq-sim-sym: σ 'A' τ =⇒ τ 'A' σ
〈proof 〉

11

lemma seq-sim-trans[trans]: % 'A' σ =⇒ σ 'A' τ =⇒ % 'A' τ
〈proof 〉

lemma seq-sim-mono:
assumes σ 'A' τ and B ⊆ A
shows σ 'B' τ
〈proof 〉

State sequences that are similar w.r.t. the atoms of a PLTL formula evaluate
that formula to the same value.
lemma pltl-seq-sim: σ ' atoms-pltl ϕ ' τ =⇒ (σ |=p ϕ) = (τ |=p ϕ)
(is ?sim σ ϕ τ =⇒ ?P σ ϕ τ)
〈proof 〉

The following function picks an arbitrary representative among A-similar
states. Because the choice is functional, any two A-similar states are mapped
to the same state.
definition canonize where

canonize A s ≡ SOME t. t ∼A∼ s

lemma canonize-state-sim: canonize A s ∼A∼ s
〈proof 〉

lemma canonize-canonical:
assumes st: s ∼A∼ t
shows canonize A s = canonize A t
〈proof 〉

lemma canonize-idempotent:
canonize A (canonize A s) = canonize A s
〈proof 〉

In a canonical state sequence, any two A-similar states are in fact equal.
definition canonical-sequence where

canonical-sequence A σ ≡ ∀m (n::nat). σ m ∼A∼ σ n −→ σ m = σ n

Every suffix of a canonical sequence is canonical, as is any (sampled) subse-
quence, in particular any stutter-sampling.
lemma canonical-suffix:

canonical-sequence A σ =⇒ canonical-sequence A (σ[k..])
〈proof 〉

lemma canonical-sampled:
canonical-sequence A σ =⇒ canonical-sequence A (σ ◦ f)
〈proof 〉

lemma canonical-reduced:

12

canonical-sequence A σ =⇒ canonical-sequence A (\σ)
〈proof 〉

For any sequence σ there exists a canonical A-similar sequence τ . Such a τ
can be obtained by canonizing all states of σ.
lemma canonical-exists:

obtains τ where τ 'A' σ canonical-sequence A τ
〈proof 〉

Given a state s and a set A of atoms, we define the characteristic formula
of s as the conjunction of all atoms in A that hold of s and the negation of
the atoms in A that do not hold of s.
definition characteristic-formula where

characteristic-formula A s ≡
((AND { atomp(p) | p . p ∈ A ∧ p s }) andp (AND { notp (atomp(p)) | p . p ∈

A ∧ ¬(p s) }))

lemma characteristic-holds:
finite A =⇒ σ |=p characteristic-formula A (σ 0)
〈proof 〉

lemma characteristic-state-sim:
assumes fin: finite A
shows (σ 0 ∼A∼ τ 0) = (τ |=p characteristic-formula A (σ (0 ::nat)))
〈proof 〉

4.5 Stuttering Invariant PLTL Formulas Don’t Need Next

The following is the main lemma used in the proof of the completeness
theorem: for any PLTL formula ϕ there exists a next-free formula ψ such that
the two formulas evaluate to the same value over stutter-free and canonical
sequences (w.r.t. some A ⊇ atoms-pltl ϕ).
lemma ex-next-free-stutter-free-canonical:

assumes A: atoms-pltl ϕ ⊆ A and fin: finite A
shows ∃ψ. next-free ψ ∧ atoms-pltl ψ ⊆ A ∧

(∀σ. stutter-free σ ∧ canonical-sequence A σ −→ (σ |=p ψ) = (σ |=p ϕ))
(is ∃ψ. ?P ϕ ψ)

〈proof 〉

Comparing the definition of the next-free formula in the case of formulas Xp

ϕ with the one that appears in [2], there is a subtle difference. Peled and
Wilke define the second disjunct as a disjunction of formulas

(chi val) U p (ψ andp (chi val ′))

for subsets val, val ′⊆ A whereas we conjoin the formula chi val to the “until”
formula. This conjunct is indeed necessary in order to rule out the case of

13

the “until” formula being true because of chi val ′ being true immediately.
The subtle error in the definition of the formula was acknowledged by Peled
and Wilke and apparently had not been noticed since the publication of [2] in
1996 (which has been cited more than a hundred times according to Google
Scholar). Although the error was corrected easily, the fact that authors,
reviewers, and readers appear to have missed it for so long underscores the
usefulness of formal proofs.
We now show that any stuttering invariant PLTL formula can be expressed
without the Xp operator.
theorem stutter-invariant-next-free:

assumes phi: stutter-invariant ϕ
obtains ψ where next-free ψ atoms-pltl ψ ⊆ atoms-pltl ϕ

∀σ. (σ |=p ψ) = (σ |=p ϕ)
〈proof 〉

Combining theorems next-free-stutter-invariant and stutter-invariant-next-free,
it follows that a PLTL formula is stuttering invariant iff it is equivalent to
a next-free formula.
theorem pltl-stutter-invariant:

stutter-invariant ϕ ←→
(∃ψ. next-free ψ ∧ atoms-pltl ψ ⊆ atoms-pltl ϕ ∧ (∀σ. σ |=p ψ ←→ σ |=p ϕ))

〈proof 〉

4.6 Stutter Invariance for LTL with Syntactic Sugar

We lift the results for PLTL to an extensive version of LTL.
primrec ltlc-next-free :: ′a ltlc ⇒ bool

where
ltlc-next-free truec = True
| ltlc-next-free falsec = True
| ltlc-next-free (propc(q)) = True
| ltlc-next-free (notc ϕ) = ltlc-next-free ϕ
| ltlc-next-free (ϕ andc ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ orc ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ impliesc ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (X c ϕ) = False
| ltlc-next-free (Fc ϕ) = ltlc-next-free ϕ
| ltlc-next-free (Gc ϕ) = ltlc-next-free ϕ
| ltlc-next-free (ϕ U c ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ Rc ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ W c ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ M c ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)

lemma ltlc-next-free-iff [simp]: next-free (ltlc-to-pltl ϕ) ←→ ltlc-next-free ϕ
〈proof 〉

A next free formula cannot distinguish between stutter-equivalent runs.

14

theorem ltlc-next-free-stutter-invariant:
assumes next-free: ltlc-next-free ϕ
assumes eq: r ≈ r ′

shows r |=c ϕ ←→ r ′ |=c ϕ
〈proof 〉

end

References

[1] L. Lamport. What good is temporal logic? In R. E. A. Mason, editor,
Information Processing 83: Proceedings of the IFIP 9th World Congress,
pages 657–668, Paris, Sept. 1983. IFIP, North-Holland.

[2] D. Peled and T. Wilke. Stutter-invariant temporal properties are ex-
pressible without the next-time operator. Inf. Proc. Lett., 63(5):243–246,
1997.

15

	Utility Lemmas
	Stuttering Sampling Functions
	Definition and elementary properties
	Preservation of properties through stuttering sampling
	Maximal stuttering sampling

	Stuttering Equivalence
	Stuttering Invariant LTL Formulas
	Finite Conjunctions and Disjunctions in PLTL
	Next-Free PLTL Formulas
	Stuttering Invariance of PLTL Without ``Next''
	Atoms, Canonical State Sequences, and Characteristic Formulas
	Stuttering Invariant PLTL Formulas Don't Need Next
	Stutter Invariance for LTL with Syntactic Sugar

