
Stuttering Equivalence and Stuttering Invariance

Stephan Merz
Inria Nancy & LORIA

Villers-lès-Nancy, France

March 17, 2025

Two ω-sequences are stuttering equivalent if they differ only by finite repe-
titions of elements. For example, the two sequences

(abbccca)ω and (aaaabc)ω

are stuttering equivalent, whereas

(abac)ω and (aaaabcc)ω

are not. Stuttering equivalence is a fundamental concept in the theory of
concurrent and distributed systems. Notably, Lamport [1] argues that re-
finement notions for such systems should be insensitive to finite stuttering.
Peled and Wilke [2] showed that all PLTL (propositional linear-time tem-
poral logic) properties that are insensitive to stuttering equivalence can be
expressed without the next-time operator. Stuttering equivalence is also
important for certain verification techniques such as partial-order reduction
for model checking.

We formalize stuttering equivalence in Isabelle/HOL. Our development
relies on the notion of stuttering sampling functions that may skip blocks of
identical sequence elements. We also encode PLTL and prove the theorem
due to Peled and Wilke [2].

Contents
1 Utility Lemmas 2

2 Stuttering Sampling Functions 3
2.1 Definition and elementary properties 3
2.2 Preservation of properties through stuttering sampling 5
2.3 Maximal stuttering sampling 6

3 Stuttering Equivalence 13

1

4 Stuttering Invariant LTL Formulas 17
4.1 Finite Conjunctions and Disjunctions in PLTL 17
4.2 Next-Free PLTL Formulas . 18
4.3 Stuttering Invariance of PLTL Without “Next” 20
4.4 Atoms, Canonical State Sequences, and Characteristic Formulas 21
4.5 Stuttering Invariant PLTL Formulas Don’t Need Next 25
4.6 Stutter Invariance for LTL with Syntactic Sugar 32

theory Samplers
imports Main HOL−Library.Omega-Words-Fun

begin

1 Utility Lemmas

The following lemmas about strictly monotonic functions could go to the
standard library of Isabelle/HOL.

Strongly monotonic functions over the integers grow without bound.
lemma strict-mono-exceeds:

assumes f : strict-mono (f ::nat ⇒ nat)
shows ∃ k. n < f k

proof (induct n)
from f have f 0 < f 1 by (rule strict-monoD) simp
hence 0 < f 1 by simp
thus ∃ k. 0 < f k ..

next
fix n
assume ∃ k. n < f k
then obtain k where n < f k ..
hence Suc n ≤ f k by simp
also from f have f k < f (Suc k) by (rule strict-monoD) simp
finally show ∃ k. Suc n < f k ..

qed

More precisely, any natural number n ≥ f 0 lies in the interval between f k
and f (Suc k), for some k.
lemma strict-mono-interval:

assumes f : strict-mono (f ::nat ⇒ nat) and n: f 0 ≤ n
obtains k where f k ≤ n and n < f (Suc k)

proof −
from f [THEN strict-mono-exceeds] obtain m where m: n < f m ..
have m 6= 0
proof

assume m = 0
with m n show False by simp

qed
with m obtain m ′ where m ′: n < f (Suc m ′) by (auto simp: gr0-conv-Suc)
let ?k = LEAST k. n < f (Suc k)

2

from m ′ have 1 : n < f (Suc ?k) by (rule LeastI)
have f ?k ≤ n
proof (rule ccontr)

assume ¬ ?thesis
hence k: n < f ?k by simp
show False
proof (cases ?k)

case 0 with k n show False by simp
next

case Suc with k show False by (auto dest: Least-le)
qed

qed
with 1 that show ?thesis by simp

qed

lemma strict-mono-comp:
assumes g: strict-mono (g:: ′a::order ⇒ ′b::order)

and f : strict-mono (f :: ′b::order ⇒ ′c::order)
shows strict-mono (f ◦ g)
using assms by (auto simp: strict-mono-def)

2 Stuttering Sampling Functions

Given an ω-sequence σ, a stuttering sampling function is a strictly monotonic
function f ::nat ⇒ nat such that f 0 = 0 and for all i and all f i ≤ k < f
(i+1), the elements σ k are the same. In other words, f skips some (but
not necessarily all) stuttering steps, but never skips a non-stuttering step.
Given such σ and f, the (stuttering-)sampled reduction of σ is the sequence
of elements of σ at the indices f i, which can simply be written as σ ◦ f.

2.1 Definition and elementary properties
definition stutter-sampler where

— f is a stuttering sampling function for σ
stutter-sampler (f ::nat ⇒ nat) σ ≡

f 0 = 0
∧ strict-mono f
∧ (∀ k n. f k < n ∧ n < f (Suc k) −→ σ n = σ (f k))

lemma stutter-sampler-0 : stutter-sampler f σ =⇒ f 0 = 0
by (simp add: stutter-sampler-def)

lemma stutter-sampler-mono: stutter-sampler f σ =⇒ strict-mono f
by (simp add: stutter-sampler-def)

lemma stutter-sampler-between:
assumes f : stutter-sampler f σ

and lo: f k ≤ n and hi: n < f (Suc k)

3

shows σ n = σ (f k)
using assms by (auto simp: stutter-sampler-def less-le)

lemma stutter-sampler-interval:
assumes f : stutter-sampler f σ
obtains k where f k ≤ n and n < f (Suc k)

using f [THEN stutter-sampler-mono] proof (rule strict-mono-interval)
from f show f 0 ≤ n by (simp add: stutter-sampler-0)

qed

The identity function is a stuttering sampling function for any σ.
lemma id-stutter-sampler [iff]: stutter-sampler id σ

by (auto simp: stutter-sampler-def strict-mono-def)

Stuttering sampling functions compose, sort of.
lemma stutter-sampler-comp:

assumes f : stutter-sampler f σ
and g: stutter-sampler g (σ ◦ f)

shows stutter-sampler (f ◦ g) σ
proof (auto simp: stutter-sampler-def)

from f g show f (g 0) = 0 by (simp add: stutter-sampler-0)
next

from g[THEN stutter-sampler-mono] f [THEN stutter-sampler-mono]
show strict-mono (f ◦ g) by (rule strict-mono-comp)

next
fix i k
assume lo: f (g i) < k and hi: k < f (g (Suc i))
from f obtain m where 1 : f m ≤ k and 2 : k < f (Suc m)

by (rule stutter-sampler-interval)
with f have 3 : σ k = σ (f m) by (rule stutter-sampler-between)
from lo 2 have f (g i) < f (Suc m) by simp
with f [THEN stutter-sampler-mono] have 4 : g i ≤ m by (simp add: strict-mono-less)
from 1 hi have f m < f (g (Suc i)) by simp
with f [THEN stutter-sampler-mono] have 5 : m < g (Suc i)by (simp add:

strict-mono-less)
from g 4 5 have (σ ◦ f) m = (σ ◦ f) (g i) by (rule stutter-sampler-between)
with 3 show σ k = σ (f (g i)) by simp

qed

Stuttering sampling functions can be extended to suffixes.
lemma stutter-sampler-suffix:

assumes f : stutter-sampler f σ
shows stutter-sampler (λk. f (n+k) − f n) (suffix (f n) σ)

proof (auto simp: stutter-sampler-def strict-mono-def)
fix i j
assume ij: (i::nat) < j
from f have mono: strict-mono f by (rule stutter-sampler-mono)

from mono[THEN strict-mono-mono] have f n ≤ f (n+i)

4

by (rule monoD) simp
moreover
from mono[THEN strict-mono-mono] have f n ≤ f (n+j)

by (rule monoD) simp
moreover
from mono ij have f (n+i) < f (n+j) by (auto intro: strict-monoD)
ultimately
show f (n+i) − f n < f (n+j) − f n by simp

next
fix i k
assume lo: f (n+i) − f n < k and hi: k < f (Suc (n+i)) − f n
from lo have f (n+i) ≤ f n + k by simp
moreover
from hi have f n + k < f (Suc (n + i)) by simp
moreover
from f [THEN stutter-sampler-mono, THEN strict-mono-mono]
have f n ≤ f (n+i) by (rule monoD) simp
ultimately show σ (f n + k) = σ (f n + (f (n+i) − f n))

by (auto dest: stutter-sampler-between[OF f])
qed

2.2 Preservation of properties through stuttering sampling

Stuttering sampling preserves the initial element of the sequence, as well as
the presence and relative ordering of different elements.
lemma stutter-sampled-0 :

assumes stutter-sampler f σ
shows σ (f 0) = σ 0
using assms[THEN stutter-sampler-0] by simp

lemma stutter-sampled-in-range:
assumes f : stutter-sampler f σ and s: s ∈ range σ
shows s ∈ range (σ ◦ f)

proof −
from s obtain n where n: σ n = s by auto
from f obtain k where f k ≤ n n < f (Suc k) by (rule stutter-sampler-interval)
with f have σ n = σ (f k) by (rule stutter-sampler-between)
with n show ?thesis by auto

qed

lemma stutter-sampled-range:
range (σ ◦ f) = range σ if stutter-sampler f σ
using that stutter-sampled-in-range [of f σ] by auto

lemma stutter-sampled-precedence:
assumes f : stutter-sampler f σ and ij: i ≤ j
obtains k l where k ≤ l σ (f k) = σ i σ (f l) = σ j

proof −
from f obtain k where k: f k ≤ i i < f (Suc k) by (rule stutter-sampler-interval)

5

with f have 1 : σ i = σ (f k) by (rule stutter-sampler-between)
from f obtain l where l: f l ≤ j j < f (Suc l) by (rule stutter-sampler-interval)
with f have 2 : σ j = σ (f l) by (rule stutter-sampler-between)
from k l ij have f k < f (Suc l) by simp
with f [THEN stutter-sampler-mono] have k ≤ l by (simp add: strict-mono-less)
with 1 2 that show ?thesis by simp

qed

2.3 Maximal stuttering sampling

We define a particular sampling function that is maximal in the sense that
it eliminates all finite stuttering. If a sequence ends with infinite stuttering
then it behaves as the identity over the (maximal such) suffix.
fun max-stutter-sampler where

max-stutter-sampler σ 0 = 0
| max-stutter-sampler σ (Suc n) =

(let prev = max-stutter-sampler σ n
in if (∀ k > prev. σ k = σ prev)

then Suc prev
else (LEAST k. prev < k ∧ σ k 6= σ prev))

max-stutter-sampler is indeed a stuttering sampling function.
lemma max-stutter-sampler :

stutter-sampler (max-stutter-sampler σ) σ (is stutter-sampler ?ms -)
proof −

have ?ms 0 = 0 by simp
moreover
have ∀n. ?ms n < ?ms (Suc n)
proof

fix n
show ?ms n < ?ms (Suc n) (is ?prev < ?next)
proof (cases ∀ k > ?prev. σ k = σ ?prev)

case True thus ?thesis by (simp add: Let-def)
next

case False
hence ∃ k. ?prev < k ∧ σ k 6= σ ?prev by simp
from this[THEN LeastI-ex]
have ?prev < (LEAST k. ?prev < k ∧ σ k 6= σ ?prev) ..
with False show ?thesis by (simp add: Let-def)

qed
qed
hence strict-mono ?ms

unfolding strict-mono-def by (blast intro: lift-Suc-mono-less)
moreover
have ∀n k. ?ms n < k ∧ k < ?ms (Suc n) −→ σ k = σ (?ms n)
proof (clarify)

fix n k
assume lo: ?ms n < k (is ?prev < k)

6

and hi: k < ?ms (Suc n) (is k < ?next)
show σ k = σ ?prev
proof (cases ∀ k > ?prev. σ k = σ ?prev)

case True
hence ?next = Suc ?prev by (simp add: Let-def)
with lo hi show ?thesis by simp — no room for intermediate index

next
case False
hence ?next = (LEAST k. ?prev < k ∧ σ k 6= σ ?prev)

by (auto simp add: Let-def)
with lo hi show ?thesis by (auto dest: not-less-Least)

qed
qed
ultimately show ?thesis unfolding stutter-sampler-def by blast

qed

We write \σ for the sequence σ sampled by the maximal stuttering sampler.
Also, a sequence is stutter free if it contains no finite stuttering: whenever
two subsequent elements are equal then all subsequent elements are the
same.
definition stutter-reduced (‹\-› [100] 100) where
\σ = σ ◦ (max-stutter-sampler σ)

definition stutter-free where
stutter-free σ ≡ ∀ k. σ (Suc k) = σ k −→ (∀n>k. σ n = σ k)

lemma stutter-freeI :
assumes

∧
k n. [[σ (Suc k) = σ k; n>k]] =⇒ σ n = σ k

shows stutter-free σ
using assms unfolding stutter-free-def by blast

lemma stutter-freeD:
assumes stutter-free σ and σ (Suc k) = σ k and n>k
shows σ n = σ k
using assms unfolding stutter-free-def by blast

Any suffix of a stutter free sequence is itself stutter free.
lemma stutter-free-suffix:

assumes sigma: stutter-free σ
shows stutter-free (suffix k σ)

proof (rule stutter-freeI)
fix j n
assume j: (suffix k σ) (Suc j) = (suffix k σ) j and n: j < n
from j have σ (Suc (k+j)) = σ (k+j) by simp
moreover from n have k+n > k+j by simp
ultimately have σ (k+n) = σ (k+j) by (rule stutter-freeD[OF sigma])
thus (suffix k σ) n = (suffix k σ) j by simp

qed

7

lemma stutter-reduced-0 : (\σ) 0 = σ 0
by (simp add: stutter-reduced-def stutter-sampled-0 max-stutter-sampler)

lemma stutter-free-reduced:
assumes sigma: stutter-free σ
shows \σ = σ

proof −
{

fix n
have max-stutter-sampler σ n = n (is ?ms n = n)
proof (induct n)

show ?ms 0 = 0 by simp
next

fix n
assume ih: ?ms n = n
show ?ms (Suc n) = Suc n
proof (cases σ (Suc n) = σ (?ms n))

case True
with ih have σ (Suc n) = σ n by simp
with sigma have ∀ k > n. σ k = σ n

unfolding stutter-free-def by blast
with ih show ?thesis by (simp add: Let-def)

next
case False
with ih have (LEAST k. k>n ∧ σ k 6= σ (?ms n)) = Suc n

by (auto intro: Least-equality)
with ih False show ?thesis by (simp add: Let-def)

qed
qed

}
thus ?thesis by (auto simp: stutter-reduced-def)

qed

Whenever two sequence elements at two consecutive sampling points of the
maximal stuttering sampler are equal then the sequence stutters infinitely
from the first sampling point onwards. In particular, \σ is stutter free.
lemma max-stutter-sampler-nostuttering:

assumes stut: σ (max-stutter-sampler σ (Suc k)) = σ (max-stutter-sampler σ k)
and n: n > max-stutter-sampler σ k (is - > ?ms k)

shows σ n = σ (?ms k)
proof (rule ccontr)

assume contr : ¬ ?thesis
with n have ?ms k < n ∧ σ n 6= σ (?ms k) (is ?diff n) ..
hence ?diff (LEAST n. ?diff n) by (rule LeastI)
with contr have σ (?ms (Suc k)) 6= σ (?ms k) by (auto simp add: Let-def)
from this stut show False ..

qed

lemma stutter-reduced-stutter-free: stutter-free (\σ)

8

proof (rule stutter-freeI)
fix k n
assume k: (\σ) (Suc k) = (\σ) k and n: k < n
from n have max-stutter-sampler σ k < max-stutter-sampler σ n

using max-stutter-sampler [THEN stutter-sampler-mono, THEN strict-monoD]
by blast

with k show (\σ) n = (\σ) k
unfolding stutter-reduced-def
by (auto elim: max-stutter-sampler-nostuttering

simp del: max-stutter-sampler .simps)
qed

lemma stutter-reduced-suffix: \ (suffix k (\σ)) = suffix k (\σ)
proof (rule stutter-free-reduced)

have stutter-free (\σ) by (rule stutter-reduced-stutter-free)
thus stutter-free (suffix k (\σ)) by (rule stutter-free-suffix)

qed

lemma stutter-reduced-reduced: \\σ = \σ
by (insert stutter-reduced-suffix[of 0 σ, simplified])

One can define a partial order on sampling functions for a given sequence σ
by saying that function g is better than function f if the reduced sequence
induced by f can be further reduced to obtain the reduced sequence corre-
sponding to g, i.e. if there exists a stuttering sampling function h for the
reduced sequence σ ◦ f such that σ ◦ f ◦ h = σ ◦ g. (Note that f ◦ h is indeed
a stuttering sampling function for σ, by theorem stutter-sampler-comp.)
We do not formalize this notion but prove that max-stutter-sampler σ is the
best sampling function according to this order.
theorem sample-max-sample:

assumes f : stutter-sampler f σ
shows \(σ ◦ f) = \σ

proof −
let ?mss = max-stutter-sampler σ
let ?mssf = max-stutter-sampler (σ ◦ f)
from f have mssf : stutter-sampler (f ◦ ?mssf) σ

by (blast intro: stutter-sampler-comp max-stutter-sampler)

The following is the core invariant of the proof: the sampling functions max-stutter-sampler
σ and f ◦ (max-stutter-sampler (σ ◦ f)) work in lock-step (i.e., sample the same
points), except if σ ends in infinite stuttering, at which point function f may make
larger steps than the maximal sampling functions.

{
fix k
have ?mss k = f (?mssf k)

∨ ?mss k ≤ f (?mssf k) ∧ (∀n ≥ ?mss k. σ (?mss k) = σ n)
(is ?P k is ?A k ∨ ?B k)

proof (induct k)

9

from f mssf have ?mss 0 = f (?mssf 0)
by (simp add: max-stutter-sampler stutter-sampler-0)

thus ?P 0 ..
next

fix k
assume ih: ?P k
have b: ?B k −→ ?B (Suc k)
proof

assume 0 : ?B k hence 1 : ?mss k ≤ f (?mssf k) ..

from 0 have 2 : ∀n ≥ ?mss k. σ (?mss k) = σ n ..
hence ∀n > ?mss k. σ (?mss k) = σ n by auto
hence ∀n > ?mss k. σ n = σ (?mss k) by auto
hence 3 : ?mss (Suc k) = Suc (?mss k) by (simp add: Let-def)
with 2 have σ (?mss k) = σ (?mss (Suc k))

by (auto simp del: max-stutter-sampler .simps)
from sym[OF this] 2 3 have ∀n ≥ ?mss (Suc k). σ (?mss (Suc k)) = σ n

by (auto simp del: max-stutter-sampler .simps)
moreover
from mssf [THEN stutter-sampler-mono, THEN strict-monoD]
have f (?mssf k) < f (?mssf (Suc k))

by (simp del: max-stutter-sampler .simps)
with 1 3 have ?mss (Suc k) ≤ f (?mssf (Suc k))

by (simp del: max-stutter-sampler .simps)
ultimately show ?B (Suc k) by blast

qed
from ih show ?P (Suc k)
proof

assume a: ?A k
show ?thesis
proof (cases ∀n > ?mss k. σ n = σ (?mss k))

case True
hence ∀n ≥ ?mss k. σ (?mss k) = σ n by (auto simp: le-less)
with a have ?B k by simp
with b show ?thesis by (simp del: max-stutter-sampler .simps)

next
case False
hence diff : σ (?mss (Suc k)) 6= σ (?mss k)

by (blast dest: max-stutter-sampler-nostuttering)
have ?A (Suc k)
proof (rule antisym)

show f (?mssf (Suc k)) ≤ ?mss (Suc k)
proof (rule ccontr)

assume ¬ ?thesis
hence contr : ?mss (Suc k) < f (?mssf (Suc k)) by simp
from mssf have σ (?mss (Suc k)) = σ ((f ◦ ?mssf) k)
proof (rule stutter-sampler-between)

from max-stutter-sampler [of σ, THEN stutter-sampler-mono]
have ?mss k < ?mss (Suc k) by (rule strict-monoD) simp

10

with a show (f ◦ ?mssf) k ≤ ?mss (Suc k)
by (simp add: o-def del: max-stutter-sampler .simps)

next
from contr show ?mss (Suc k) < (f ◦ ?mssf) (Suc k) by simp

qed
with a have σ (?mss (Suc k)) = σ (?mss k)

by (simp add: o-def del: max-stutter-sampler .simps)
with diff show False ..

qed
next

have ∃m > ?mssf k. f m = ?mss (Suc k)
proof (rule ccontr)

assume ¬ ?thesis
hence contr : ∀ i. f ((?mssf k) + Suc i) 6= ?mss (Suc k) by simp
{

fix i
have f (?mssf k + i) < ?mss (Suc k) (is ?F i)
proof (induct i)

from a have f (?mssf k + 0) = ?mss k by (simp add: o-def)
also from max-stutter-sampler [of σ, THEN stutter-sampler-mono]

have ... < ?mss (Suc k)
by (rule strict-monoD) simp

finally show ?F 0 .
next

fix i
assume ih: ?F i
show ?F (Suc i)
proof (rule ccontr)

assume ¬ ?thesis
then have ?mss (Suc k) ≤ f (?mssf k + Suc i)

by (simp add: o-def)
moreover from contr have f (?mssf k + Suc i) 6= ?mss (Suc k)

by blast
ultimately have i: ?mss (Suc k) < f (?mssf k + Suc i)

by (simp add: less-le)
from f have σ (?mss (Suc k)) = σ (f (?mssf k + i))
proof (rule stutter-sampler-between)

from ih show f (?mssf k + i) ≤ ?mss (Suc k)
by (simp add: o-def)

next
from i show ?mss (Suc k) < f (Suc (?mssf k + i))

by simp
qed
also from max-stutter-sampler have ... = σ (?mss k)
proof (rule stutter-sampler-between)

from f [THEN stutter-sampler-mono, THEN strict-mono-mono]
have f (?mssf k) ≤ f (?mssf k + i) by (rule monoD) simp
with a show ?mss k ≤ f (?mssf k + i) by (simp add: o-def)

qed (rule ih)

11

also note diff
finally show False by simp

qed
qed

} note bounded = this
from f [THEN stutter-sampler-mono]
have strict-mono (λi. f (?mssf k + i))

by (auto simp: strict-mono-def)
then obtain i where i: ?mss (Suc k) < f (?mssf k + i)

by (blast dest: strict-mono-exceeds)
from bounded have f (?mssf k + i) < ?mss (Suc k) .
with i show False by (simp del: max-stutter-sampler .simps)

qed
then obtain m where m: m > ?mssf k and m ′: f m = ?mss (Suc k)

by blast
show ?mss (Suc k) ≤ f (?mssf (Suc k))
proof (rule ccontr)

assume ¬ ?thesis
hence contr : f (?mssf (Suc k)) < ?mss (Suc k) by simp
from mssf [THEN stutter-sampler-mono]
have (f ◦ ?mssf) k < (f ◦ ?mssf) (Suc k)

by (rule strict-monoD) simp
with a have ?mss k ≤ f (?mssf (Suc k))

by (simp add: o-def)
from this contr have σ (f (?mssf (Suc k))) = σ (?mss k)

by (rule stutter-sampler-between[OF max-stutter-sampler])
with a have stut: (σ ◦ f) (?mssf (Suc k)) = (σ ◦ f) (?mssf k)

by (simp add: o-def)
from this m have (σ ◦ f) m = (σ ◦ f) (?mssf k)

by (blast intro: max-stutter-sampler-nostuttering)
with diff m ′ a show False

by (simp add: o-def)
qed

qed
thus ?thesis ..

qed
next
assume ?B k with b show ?thesis by (simp del: max-stutter-sampler .simps)
qed

qed
}
hence \σ = \(σ ◦ f) unfolding stutter-reduced-def by force
thus ?thesis by (rule sym)

qed

end
theory StutterEquivalence
imports Samplers

12

begin

3 Stuttering Equivalence

Stuttering equivalence of two sequences is formally defined as the equality
of their maximally reduced versions.
definition stutter-equiv (infix ‹≈› 50) where
σ ≈ τ ≡ \σ = \τ

Stuttering equivalence is an equivalence relation.
lemma stutter-equiv-refl: σ ≈ σ

unfolding stutter-equiv-def ..

lemma stutter-equiv-sym [sym]: σ ≈ τ =⇒ τ ≈ σ
unfolding stutter-equiv-def by (rule sym)

lemma stutter-equiv-trans [trans]: % ≈ σ =⇒ σ ≈ τ =⇒ % ≈ τ
unfolding stutter-equiv-def by simp

In particular, any sequence sampled by a stuttering sampler is stuttering
equivalent to the original one.
lemma sampled-stutter-equiv:

assumes stutter-sampler f σ
shows σ ◦ f ≈ σ
using assms unfolding stutter-equiv-def by (rule sample-max-sample)

lemma stutter-reduced-equivalent: \σ ≈ σ
unfolding stutter-equiv-def by (rule stutter-reduced-reduced)

For proving stuttering equivalence of two sequences, it is enough to exhibit
two arbitrary sampling functions that equalize the reductions of the se-
quences. This can be more convenient than computing the maximal stutter-
reduced version of the sequences.
lemma stutter-equivI :

assumes f : stutter-sampler f σ and g: stutter-sampler g τ
and eq: σ ◦ f = τ ◦ g

shows σ ≈ τ
proof −

from f have \σ = \(σ ◦ f) by (rule sample-max-sample[THEN sym])
also from eq have ... = \(τ ◦ g) by simp
also from g have ... = \τ by (rule sample-max-sample)
finally show ?thesis by (unfold stutter-equiv-def)

qed

The corresponding elimination rule is easy to prove, given that the maximal
stuttering sampling function is a stuttering sampling function.

13

lemma stutter-equivE :
assumes eq: σ ≈ τ
and p:

∧
f g. [[stutter-sampler f σ; stutter-sampler g τ ; σ ◦ f = τ ◦ g]] =⇒ P

shows P
proof (rule p)

from eq show σ ◦ (max-stutter-sampler σ) = τ ◦ (max-stutter-sampler τ)
by (unfold stutter-equiv-def stutter-reduced-def)

qed (rule max-stutter-sampler)+

Therefore we get the following alternative characterization: two sequences
are stuttering equivalent iff there are stuttering sampling functions that
equalize the two sequences.
lemma stutter-equiv-eq:
σ ≈ τ = (∃ f g. stutter-sampler f σ ∧ stutter-sampler g τ ∧ σ ◦ f = τ ◦ g)
by (blast intro: stutter-equivI elim: stutter-equivE)

The initial elements of stutter equivalent sequences are equal.
lemma stutter-equiv-0 :

assumes σ ≈ τ
shows σ 0 = τ 0

proof −
have σ 0 = (\σ) 0 by (rule stutter-reduced-0 [THEN sym])
with assms[unfolded stutter-equiv-def] show ?thesis

by (simp add: stutter-reduced-0)
qed

abbreviation suffix-notation (‹- [-..]›)
where

suffix-notation w k ≡ suffix k w

Given any stuttering sampling function f for sequence σ, any suffix of σ
starting at index f n is stuttering equivalent to the suffix of the stutter-
reduced version of σ starting at n.
lemma suffix-stutter-equiv:

assumes f : stutter-sampler f σ
shows suffix (f n) σ ≈ suffix n (σ ◦ f)

proof −
from f have stutter-sampler (λk. f (n+k) − f n) (σ[f n ..])

by (rule stutter-sampler-suffix)
moreover
have stutter-sampler id ((σ ◦ f)[n ..])

by (rule id-stutter-sampler)
moreover
have (σ[f n ..]) ◦ (λk. f (n+k) − f n) = ((σ ◦ f)[n ..]) ◦ id
proof (rule ext, auto)

fix i
from f [THEN stutter-sampler-mono, THEN strict-mono-mono]
have f n ≤ f (n+i) by (rule monoD) simp

14

thus σ (f n + (f (n+i) − f n)) = σ (f (n+i)) by simp
qed
ultimately show ?thesis

by (rule stutter-equivI)
qed

Given a stuttering sampling function f and a point n within the interval
from f k to f (k+1), the suffix starting at n is stuttering equivalent to the
suffix starting at f k.
lemma stutter-equiv-within-interval:

assumes f : stutter-sampler f σ
and lo: f k ≤ n and hi: n < f (Suc k)

shows σ[n ..] ≈ σ[f k ..]
proof −

have stutter-sampler id (σ[n ..]) by (rule id-stutter-sampler)
moreover
from lo have stutter-sampler (λi. if i=0 then 0 else n + i − f k) (σ[f k ..])
(is stutter-sampler ?f -)

proof (auto simp: stutter-sampler-def strict-mono-def)
fix i
assume i: i < Suc n − f k
from f show σ (f k + i) = σ (f k)
proof (rule stutter-sampler-between)

from i hi show f k + i < f (Suc k) by simp
qed simp

qed
moreover
have (σ[n ..]) ◦ id = (σ[f k ..]) ◦ ?f
proof (rule ext, auto)

from f lo hi show σ n = σ (f k) by (rule stutter-sampler-between)
next

fix i
from lo show σ (n+i) = σ (f k + (n + i − f k)) by simp

qed
ultimately show ?thesis by (rule stutter-equivI)

qed

Given two stuttering equivalent sequences σ and τ , we obtain a zig-zag
relationship as follows: for any suffix τ [n..] there is a suffix σ[m..] such that:

1. σ[m..] ≈ τ [n..] and

2. for every suffix σ[j..] where j<m there is a corresponding suffix τ [k..]
for some k<n.

theorem stutter-equiv-suffixes-left:
assumes σ ≈ τ
obtains m where σ[m..] ≈ τ [n..] and ∀ j<m. ∃ k<n. σ[j..] ≈ τ [k..]

using assms proof (rule stutter-equivE)

15

fix f g
assume f : stutter-sampler f σ

and g: stutter-sampler g τ
and eq: σ ◦ f = τ ◦ g

from g obtain i where i: g i ≤ n n < g (Suc i)
by (rule stutter-sampler-interval)

with g have τ [n..] ≈ τ [g i ..]
by (rule stutter-equiv-within-interval)

also from g have ... ≈ (τ ◦ g)[i ..]
by (rule suffix-stutter-equiv)

also from eq have ... = (σ ◦ f)[i ..]
by simp

also from f have ... ≈ σ[f i ..]
by (rule suffix-stutter-equiv[THEN stutter-equiv-sym])

finally have σ[f i ..] ≈ τ [n ..]
by (rule stutter-equiv-sym)

moreover
{

fix j
assume j: j < f i
from f obtain a where a: f a ≤ j j < f (Suc a)

by (rule stutter-sampler-interval)
from a j have f a < f i by simp
with f [THEN stutter-sampler-mono] have a < i

by (simp add: strict-mono-less)
with g[THEN stutter-sampler-mono] have g a < g i

by (simp add: strict-mono-less)
with i have 1 : g a < n by simp

from f a have σ[j..] ≈ σ[f a ..]
by (rule stutter-equiv-within-interval)

also from f have ... ≈ (σ ◦ f)[a ..]
by (rule suffix-stutter-equiv)

also from eq have ... = (τ ◦ g)[a ..] by simp
also from g have ... ≈ τ [g a ..]

by (rule suffix-stutter-equiv[THEN stutter-equiv-sym])
finally have σ[j ..] ≈ τ [g a ..] .
with 1 have ∃ k<n. σ[j..] ≈ τ [k ..] by blast

}
moreover
note that
ultimately show ?thesis by blast

qed

theorem stutter-equiv-suffixes-right:
assumes σ ≈ τ
obtains n where σ[m..] ≈ τ [n..] and ∀ j<n. ∃ k<m. σ[k..] ≈ τ [j..]

proof −
from assms have τ ≈ σ

16

by (rule stutter-equiv-sym)
then obtain n where τ [n..] ≈ σ[m..] ∀ j<n. ∃ k<m. τ [j..] ≈ σ[k..]

by (rule stutter-equiv-suffixes-left)
with that show ?thesis

by (blast dest: stutter-equiv-sym)
qed

In particular, if σ and τ are stutter equivalent then every element that occurs
in one sequence also occurs in the other.
lemma stutter-equiv-element-left:

assumes σ ≈ τ
obtains m where σ m = τ n and ∀ j<m. ∃ k<n. σ j = τ k

proof −
from assms obtain m where σ[m..] ≈ τ [n..] ∀ j<m. ∃ k<n. σ[j..] ≈ τ [k..]

by (rule stutter-equiv-suffixes-left)
with that show ?thesis

by (force dest: stutter-equiv-0)
qed

lemma stutter-equiv-element-right:
assumes σ ≈ τ
obtains n where σ m = τ n and ∀ j<n. ∃ k<m. σ k = τ j

proof −
from assms obtain n where σ[m..] ≈ τ [n..] ∀ j<n. ∃ k<m. σ[k..] ≈ τ [j..]

by (rule stutter-equiv-suffixes-right)
with that show ?thesis

by (force dest: stutter-equiv-0)
qed

end
theory PLTL

imports Main LTL.LTL Samplers StutterEquivalence
begin

4 Stuttering Invariant LTL Formulas

We show that the next-free fragment of propositional linear-time temporal
logic PLTL is invariant to finite stuttering.

4.1 Finite Conjunctions and Disjunctions in PLTL
definition OR where OR Φ ≡ SOME ϕ. fold-graph Or-ltlp False-ltlp Φ ϕ

definition AND where AND Φ ≡ SOME ϕ. fold-graph And-ltlp True-ltlp Φ ϕ

lemma fold-graph-OR: finite Φ =⇒ fold-graph Or-ltlp False-ltlp Φ (OR Φ)
unfolding OR-def by (rule someI2-ex[OF finite-imp-fold-graph])

17

lemma fold-graph-AND: finite Φ =⇒ fold-graph And-ltlp True-ltlp Φ (AND Φ)
unfolding AND-def by (rule someI2-ex[OF finite-imp-fold-graph])

lemma holds-of-OR [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows (σ |=p OR Φ) = (∃ϕ∈Φ. σ |=p ϕ)

proof −
{

fix ψ:: ′a pltl
assume fold-graph Or-ltlp False-ltlp Φ ψ
hence (σ |=p ψ) = (∃ϕ∈Φ. σ |=p ϕ)

by (rule fold-graph.induct) auto
}
with fold-graph-OR[OF fin] show ?thesis by simp

qed

lemma holds-of-AND [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows (σ |=p AND Φ) = (∀ϕ∈Φ. σ |=p ϕ)

proof −
{

fix ψ:: ′a pltl
assume fold-graph And-ltlp True-ltlp Φ ψ
hence (σ |=p ψ) = (∀ϕ∈Φ. σ |=p ϕ)

by (rule fold-graph.induct) auto
}
with fold-graph-AND[OF fin] show ?thesis by simp

qed

4.2 Next-Free PLTL Formulas

A PLTL formula is called next-free if it does not contain any subformula.
fun next-free :: ′a pltl ⇒ bool
where

next-free falsep = True
| next-free (atomp(p)) = True
| next-free (ϕ impliesp ψ) = (next-free ϕ ∧ next-free ψ)
| next-free (Xp ϕ) = False
| next-free (ϕ U p ψ) = (next-free ϕ ∧ next-free ψ)

lemma next-free-not [simp]:
next-free (notp ϕ) = next-free ϕ
by (simp add: Not-ltlp-def)

lemma next-free-true [simp]:
next-free truep
by (simp add: True-ltlp-def)

lemma next-free-or [simp]:

18

next-free (ϕ orp ψ) = (next-free ϕ ∧ next-free ψ)
by (simp add: Or-ltlp-def)

lemma next-free-and [simp]: next-free (ϕ andp ψ) = (next-free ϕ ∧ next-free ψ)
by (simp add: And-ltlp-def)

lemma next-free-eventually [simp]:
next-free (Fp ϕ) = next-free ϕ
by (simp add: Eventually-ltlp-def)

lemma next-free-always [simp]:
next-free (Gp ϕ) = next-free ϕ
by (simp add: Always-ltlp-def)

lemma next-free-release [simp]:
next-free (ϕ Rp ψ) = (next-free ϕ ∧ next-free ψ)
by (simp add: Release-ltlp-def)

lemma next-free-weak-until [simp]:
next-free (ϕ W p ψ) = (next-free ϕ ∧ next-free ψ)
by (auto simp: WeakUntil-ltlp-def)

lemma next-free-strong-release [simp]:
next-free (ϕ M p ψ) = (next-free ϕ ∧ next-free ψ)
by (auto simp: StrongRelease-ltlp-def)

lemma next-free-OR [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows next-free (OR Φ) = (∀ϕ∈Φ. next-free ϕ)

proof −
{

fix ψ:: ′a pltl
assume fold-graph Or-ltlp False-ltlp Φ ψ
hence next-free ψ = (∀ϕ∈Φ. next-free ϕ)

by (rule fold-graph.induct) auto
}
with fold-graph-OR[OF fin] show ?thesis by simp

qed

lemma next-free-AND [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows next-free (AND Φ) = (∀ϕ∈Φ. next-free ϕ)

proof −
{

fix ψ:: ′a pltl
assume fold-graph And-ltlp True-ltlp Φ ψ
hence next-free ψ = (∀ϕ∈Φ. next-free ϕ)

by (rule fold-graph.induct) auto
}

19

with fold-graph-AND[OF fin] show ?thesis by simp
qed

4.3 Stuttering Invariance of PLTL Without “Next”

A PLTL formula is stuttering invariant if for any stuttering equivalent state
sequences σ ≈ τ , the formula holds of σ iff it holds of τ .
definition stutter-invariant where

stutter-invariant ϕ = (∀σ τ. (σ ≈ τ) −→ (σ |=p ϕ) = (τ |=p ϕ))

Since stuttering equivalence is symmetric, it is enough to show an implication
in the above definition instead of an equivalence.
lemma stutter-invariantI [intro!]:

assumes
∧
σ τ. [[σ ≈ τ ; σ |=p ϕ]] =⇒ τ |=p ϕ

shows stutter-invariant ϕ
proof −

{
fix σ τ
assume st: σ ≈ τ and f : σ |=p ϕ
hence τ |=p ϕ by (rule assms)

}
moreover

{
fix σ τ
assume st: σ ≈ τ and f : τ |=p ϕ
from st have τ ≈ σ by (rule stutter-equiv-sym)
from this f have σ |=p ϕ by (rule assms)

}
ultimately show ?thesis by (auto simp: stutter-invariant-def)
qed

lemma stutter-invariantD [dest]:
assumes stutter-invariant ϕ and σ ≈ τ
shows (σ |=p ϕ) = (τ |=p ϕ)
using assms by (auto simp: stutter-invariant-def)

We first show that next-free PLTL formulas are indeed stuttering invariant.
The proof proceeds by straightforward induction on the syntax of PLTL
formulas.
theorem next-free-stutter-invariant:

next-free ϕ =⇒ stutter-invariant (ϕ:: ′a pltl)
proof (induct ϕ)

show stutter-invariant falsep by auto
next

fix p :: ′a ⇒ bool
show stutter-invariant (atomp(p))
proof

fix σ τ

20

assume σ ≈ τ σ |=p atomp(p)
thus τ |=p atomp(p) by (simp add: stutter-equiv-0)

qed
next

fix ϕ ψ :: ′a pltl
assume ih: next-free ϕ =⇒ stutter-invariant ϕ

next-free ψ =⇒ stutter-invariant ψ
assume next-free (ϕ impliesp ψ)
with ih show stutter-invariant (ϕ impliesp ψ) by auto

next
fix ϕ :: ′a pltl
assume next-free (Xp ϕ) — hence contradiction
thus stutter-invariant (Xp ϕ) by simp

next
fix ϕ ψ :: ′a pltl
assume ih: next-free ϕ =⇒ stutter-invariant ϕ

next-free ψ =⇒ stutter-invariant ψ
assume next-free (ϕ U p ψ)
with ih have stinv: stutter-invariant ϕ stutter-invariant ψ by auto
show stutter-invariant (ϕ U p ψ)
proof

fix σ τ
assume st: σ ≈ τ and unt: σ |=p ϕ U p ψ
from unt obtain m

where 1 : σ[m..] |=p ψ and 2 : ∀ j<m. (σ[j..] |=p ϕ) by auto
from st obtain n

where 3 : (σ[m..]) ≈ (τ [n..]) and 4 : ∀ i<n. ∃ j<m. (σ[j..]) ≈ (τ [i..])
by (rule stutter-equiv-suffixes-right)

from 1 3 stinv have τ [n..] |=p ψ by auto
moreover
from 2 4 stinv have ∀ i<n. (τ [i..] |=p ϕ) by force
ultimately show τ |=p ϕ U p ψ by auto

qed
qed

4.4 Atoms, Canonical State Sequences, and Characteristic
Formulas

We now address the converse implication: any stutter invariant PLTL for-
mula ϕ can be equivalently expressed by a next-free formula. The construc-
tion of that formula requires attention to the atomic formulas that appear
in ϕ. We will also prove that the next-free formula does not need any new
atoms beyond those present in ϕ.
The following function collects the atoms (of type ′a ⇒ bool) of a PLTL
formula.
lemma atoms-pltl-OR [simp]:

assumes fin: finite (Φ:: ′a pltl set)
shows atoms-pltl (OR Φ) = (

⋃
ϕ∈Φ. atoms-pltl ϕ)

21

proof −
{

fix ψ:: ′a pltl
assume fold-graph Or-ltlp False-ltlp Φ ψ
hence atoms-pltl ψ = (

⋃
ϕ∈Φ. atoms-pltl ϕ)

by (rule fold-graph.induct) auto
}
with fold-graph-OR[OF fin] show ?thesis by simp

qed

lemma atoms-pltl-AND [simp]:
assumes fin: finite (Φ:: ′a pltl set)
shows atoms-pltl (AND Φ) = (

⋃
ϕ∈Φ. atoms-pltl ϕ)

proof −
{

fix ψ:: ′a pltl
assume fold-graph And-ltlp True-ltlp Φ ψ
hence atoms-pltl ψ = (

⋃
ϕ∈Φ. atoms-pltl ϕ)

by (rule fold-graph.induct) auto
}
with fold-graph-AND[OF fin] show ?thesis by simp

qed

Given a set of atoms A as above, we say that two states are A-similar if
they agree on all atoms in A. Two state sequences σ and τ are A-similar if
corresponding states are A-equal.
definition state-sim :: [′a, (′a ⇒ bool) set, ′a] ⇒ bool
(‹- ∼-∼ -› [70 ,100 ,70] 50) where
s ∼A∼ t = (∀ p∈A. p s ←→ p t)

definition seq-sim :: [nat ⇒ ′a, (′a ⇒ bool) set, nat ⇒ ′a] ⇒ bool
(‹- '-' -› [70 ,100 ,70] 50) where
σ 'A' τ = (∀n. (σ n) ∼A∼ (τ n))

These relations are (indexed) equivalence relations. Moreover s ∼A∼ t im-
plies s ∼B∼ t for B ⊆ A, and similar for σ 'A' τ and σ 'B' τ .
lemma state-sim-refl [simp]: s ∼A∼ s

by (simp add: state-sim-def)

lemma state-sim-sym: s ∼A∼ t =⇒ t ∼A∼ s
by (auto simp: state-sim-def)

lemma state-sim-trans[trans]: s ∼A∼ t =⇒ t ∼A∼ u =⇒ s ∼A∼ u
unfolding state-sim-def by blast

lemma state-sim-mono:
assumes s ∼A∼ t and B ⊆ A
shows s ∼B∼ t
using assms unfolding state-sim-def by auto

22

lemma seq-sim-refl [simp]: σ 'A' σ
by (simp add: seq-sim-def)

lemma seq-sim-sym: σ 'A' τ =⇒ τ 'A' σ
by (auto simp: seq-sim-def state-sim-sym)

lemma seq-sim-trans[trans]: % 'A' σ =⇒ σ 'A' τ =⇒ % 'A' τ
unfolding seq-sim-def by (blast intro: state-sim-trans)

lemma seq-sim-mono:
assumes σ 'A' τ and B ⊆ A
shows σ 'B' τ
using assms unfolding seq-sim-def by (blast intro: state-sim-mono)

State sequences that are similar w.r.t. the atoms of a PLTL formula evaluate
that formula to the same value.
lemma pltl-seq-sim: σ ' atoms-pltl ϕ ' τ =⇒ (σ |=p ϕ) = (τ |=p ϕ)
(is ?sim σ ϕ τ =⇒ ?P σ ϕ τ)

proof (induct ϕ arbitrary: σ τ)
fix σ τ
show ?P σ falsep τ by simp

next
fix p σ τ
assume ?sim σ (atomp(p)) τ thus ?P σ (atomp(p)) τ

by (auto simp: seq-sim-def state-sim-def)
next

fix ϕ ψ σ τ
assume ih:

∧
σ τ. ?sim σ ϕ τ =⇒ ?P σ ϕ τ∧

σ τ. ?sim σ ψ τ =⇒ ?P σ ψ τ
and sim: ?sim σ (ϕ impliesp ψ) τ

from sim have ?sim σ ϕ τ ?sim σ ψ τ
by (auto elim: seq-sim-mono)

with ih show ?P σ (ϕ impliesp ψ) τ by simp
next

fix ϕ σ τ
assume ih:

∧
σ τ. ?sim σ ϕ τ =⇒ ?P σ ϕ τ

and sim: σ ' atoms-pltl (Xp ϕ) ' τ
from sim have (σ[1 ..]) ' atoms-pltl ϕ ' (τ [1 ..])

by (auto simp: seq-sim-def)
with ih show ?P σ (Xp ϕ) τ by auto

next
fix ϕ ψ σ τ
assume ih:

∧
σ τ. ?sim σ ϕ τ =⇒ ?P σ ϕ τ∧

σ τ. ?sim σ ψ τ =⇒ ?P σ ψ τ
and sim: ?sim σ (ϕ U p ψ) τ

from sim have ∀ i. (σ[i..]) ' atoms-pltl ϕ ' (τ [i..]) ∀ j. (σ[j..]) ' atoms-pltl ψ
' (τ [j..])

by (auto simp: seq-sim-def state-sim-def)

23

with ih have ∀ i. ?P (σ[i..]) ϕ (τ [i..]) ∀ j. ?P (σ[j..]) ψ (τ [j..])
by blast+

thus ?P σ (ϕ U p ψ) τ
by (meson semantics-pltl.simps(5))

qed

The following function picks an arbitrary representative among A-similar
states. Because the choice is functional, any two A-similar states are mapped
to the same state.
definition canonize where

canonize A s ≡ SOME t. t ∼A∼ s

lemma canonize-state-sim: canonize A s ∼A∼ s
unfolding canonize-def by (rule someI , rule state-sim-refl)

lemma canonize-canonical:
assumes st: s ∼A∼ t
shows canonize A s = canonize A t

proof −
from st have ∀ u. (u ∼A∼s) = (u ∼A∼ t)

by (auto elim: state-sim-sym state-sim-trans)
thus ?thesis unfolding canonize-def by simp

qed

lemma canonize-idempotent:
canonize A (canonize A s) = canonize A s
by (rule canonize-canonical[OF canonize-state-sim])

In a canonical state sequence, any two A-similar states are in fact equal.
definition canonical-sequence where

canonical-sequence A σ ≡ ∀m (n::nat). σ m ∼A∼ σ n −→ σ m = σ n

Every suffix of a canonical sequence is canonical, as is any (sampled) subse-
quence, in particular any stutter-sampling.
lemma canonical-suffix:

canonical-sequence A σ =⇒ canonical-sequence A (σ[k..])
by (auto simp: canonical-sequence-def)

lemma canonical-sampled:
canonical-sequence A σ =⇒ canonical-sequence A (σ ◦ f)
by (auto simp: canonical-sequence-def)

lemma canonical-reduced:
canonical-sequence A σ =⇒ canonical-sequence A (\σ)
unfolding stutter-reduced-def by (rule canonical-sampled)

For any sequence σ there exists a canonical A-similar sequence τ . Such a τ
can be obtained by canonizing all states of σ.

24

lemma canonical-exists:
obtains τ where τ 'A' σ canonical-sequence A τ

proof −
have (canonize A ◦ σ) 'A' σ

by (simp add: seq-sim-def canonize-state-sim)
moreover
have canonical-sequence A (canonize A ◦ σ)

by (auto simp: canonical-sequence-def canonize-idempotent
dest: canonize-canonical)

ultimately
show ?thesis using that by blast

qed

Given a state s and a set A of atoms, we define the characteristic formula
of s as the conjunction of all atoms in A that hold of s and the negation of
the atoms in A that do not hold of s.
definition characteristic-formula where

characteristic-formula A s ≡
((AND { atomp(p) | p . p ∈ A ∧ p s }) andp (AND { notp (atomp(p)) | p . p ∈

A ∧ ¬(p s) }))

lemma characteristic-holds:
finite A =⇒ σ |=p characteristic-formula A (σ 0)
by (auto simp: characteristic-formula-def)

lemma characteristic-state-sim:
assumes fin: finite A
shows (σ 0 ∼A∼ τ 0) = (τ |=p characteristic-formula A (σ (0 ::nat)))

proof
assume sim: σ 0 ∼A∼ τ 0
{

fix p
assume p ∈ A
with sim have p (τ 0) = p (σ 0) by (auto simp: state-sim-def)

}
with fin show τ |=p characteristic-formula A (σ 0)

by (auto simp: characteristic-formula-def) (blast+)
next

assume τ |=p characteristic-formula A (σ 0)
with fin show σ 0 ∼A∼ τ 0

by (auto simp: characteristic-formula-def state-sim-def)
qed

4.5 Stuttering Invariant PLTL Formulas Don’t Need Next

The following is the main lemma used in the proof of the completeness
theorem: for any PLTL formula ϕ there exists a next-free formula ψ such that
the two formulas evaluate to the same value over stutter-free and canonical

25

sequences (w.r.t. some A ⊇ atoms-pltl ϕ).
lemma ex-next-free-stutter-free-canonical:

assumes A: atoms-pltl ϕ ⊆ A and fin: finite A
shows ∃ψ. next-free ψ ∧ atoms-pltl ψ ⊆ A ∧

(∀σ. stutter-free σ ∧ canonical-sequence A σ −→ (σ |=p ψ) = (σ |=p ϕ))
(is ∃ψ. ?P ϕ ψ)

using A proof (induct ϕ)

The cases of false and atomic formulas are trivial.

have ?P falsep falsep by auto
thus ∃ψ. ?P falsep ψ ..

next
fix p
assume atoms-pltl (atomp(p)) ⊆ A
hence ?P (atomp(p)) (atomp(p)) by auto
thus ∃ψ. ?P (atomp(p)) ψ ..

next

Implication is easy, using the induction hypothesis.

fix ϕ ψ
assume atoms-pltl ϕ ⊆ A =⇒ ∃ϕ ′. ?P ϕ ϕ ′

and atoms-pltl ψ ⊆ A =⇒ ∃ψ ′. ?P ψ ψ ′

and atoms-pltl (ϕ impliesp ψ) ⊆ A
then obtain ϕ ′ ψ ′ where ?P ϕ ϕ ′ ?P ψ ψ ′ by auto
hence ?P (ϕ impliesp ψ) (ϕ ′ impliesp ψ ′) by auto
thus ∃χ. ?P (ϕ impliesp ψ) χ ..

next

The case of until follows similarly.

fix ϕ ψ
assume atoms-pltl ϕ ⊆ A =⇒ ∃ϕ ′. ?P ϕ ϕ ′

and atoms-pltl ψ ⊆ A =⇒ ∃ψ ′. ?P ψ ψ ′

and atoms-pltl (ϕ U p ψ) ⊆ A
then obtain ϕ ′ ψ ′ where 1 : ?P ϕ ϕ ′ and 2 : ?P ψ ψ ′ by auto
{

fix σ
assume sigma: stutter-free σ canonical-sequence A σ
hence

∧
k. stutter-free (σ[k..])

∧
k. canonical-sequence A (σ[k..])

by (auto simp: stutter-free-suffix canonical-suffix)
with 1 2
have

∧
k. (σ[k..] |=p ϕ

′) = (σ[k..] |=p ϕ)
and

∧
k. (σ[k..] |=p ψ

′) = (σ[k..] |=p ψ)
by (blast+)

hence (σ |=p ϕ
′ U p ψ

′) = (σ |=p ϕ U p ψ)
by auto

}
with 1 2 have ?P (ϕ U p ψ) (ϕ

′ U p ψ
′) by auto

thus ∃χ. ?P (ϕ U p ψ) χ ..
next

26

The interesting case is the one of the next-operator.

fix ϕ
assume ih: atoms-pltl ϕ ⊆ A =⇒ ∃ψ. ?P ϕ ψ and at: atoms-pltl (Xp ϕ) ⊆ A
then obtain ψ where psi: ?P ϕ ψ by auto

A valuation (over A) is a set val ⊆ A of atoms. We define some auxiliary notions:
the valuation corresponding to a state and the characteristic formula for a valuation.
Finally, we define the formula psi ′ that we will prove to be equivalent to Xp ϕ over
the stutter-free and canonical sequence σ.

define stval where stval = (λs. { p ∈ A . p s })
define chi where chi = (λval. ((AND {atomp(p) | p . p ∈ val}) andp

(AND {notp (atomp(p)) | p . p ∈ A − val})))
define psi ′ where psi ′ = ((ψ andp (OR {Gp (chi val) | val . val ⊆ A })) orp

(OR {(chi val) andp ((chi val) U p (ψ andp (chi val ′))) | val val ′.
val ⊆ A ∧ val ′ ⊆ A ∧ val ′ 6= val }))

(is - = ((- andp (OR ?ALW)) orp (OR ?UNT)))

have
∧

s. {notp (atomp(p)) | p . p ∈ A − stval s}
= {notp (atomp(p)) | p . p ∈ A ∧ ¬(p s)}

by (auto simp: stval-def)
hence chi1 :

∧
s. chi (stval s) = characteristic-formula A s

by (auto simp: chi-def stval-def characteristic-formula-def)
{

fix val τ
assume val: val ⊆ A and tau: τ |=p chi val
with fin have val = stval (τ 0)

by (auto simp: stval-def chi-def finite-subset)
}
note chi2 = this

have ?UNT ⊆ (λ(val,val ′). (chi val) andp ((chi val) U p (ψ andp (chi val ′))))
‘ (Pow A × Pow A)

(is - ⊆ ?S)
by auto

with fin have fin-UNT : finite ?UNT
by (auto simp: finite-subset)

have nf : next-free psi ′
proof −

from fin have
∧

val. val ⊆ A =⇒ next-free (chi val)
by (auto simp: chi-def finite-subset)

with fin fin-UNT psi show ?thesis
by (force simp: psi ′-def finite-subset)

qed

have atoms-pltl: atoms-pltl psi ′ ⊆ A
proof −

from fin have at-chi:
∧

val. val ⊆ A =⇒ atoms-pltl (chi val) ⊆ A
by (auto simp: chi-def finite-subset)

27

with fin psi have at-alw: atoms-pltl (ψ andp (OR ?ALW)) ⊆ A
by auto blast?

from fin fin-UNT psi at-chi have atoms-pltl (OR ?UNT) ⊆ A
by auto (blast+)?

with at-alw show ?thesis by (auto simp: psi ′-def)
qed

{
fix σ
assume st: stutter-free σ and can: canonical-sequence A σ
have (σ |=p Xp ϕ) = (σ |=p psi ′)
proof (cases σ (Suc 0) = σ 0)

case True

In the case of a stuttering transition at the beginning, we must have infinite stut-
tering, and the first disjunct of psi ′ holds, whereas the second does not.

{
fix n
have σ n = σ 0
proof (cases n)

case 0 thus ?thesis by simp
next

case Suc
hence n > 0 by simp
with True st show ?thesis unfolding stutter-free-def by blast

qed
}
note alleq = this
have suffix:

∧
n. σ[n..] = σ

proof (rule ext)
fix n i
have (σ[n..]) i = σ 0 by (auto intro: alleq)
moreover have σ i = σ 0 by (rule alleq)
ultimately show (σ[n..]) i = σ i by simp

qed
with st can psi have 1 : (σ |=p Xp ϕ) = (σ |=p ψ) by simp

from fin have σ |=p chi (stval (σ 0)) by (simp add: chi1 characteristic-holds)
with suffix have σ |=p Gp (chi (stval (σ 0))) (is - |=p ?alw) by simp
moreover have ?alw ∈ ?ALW by (auto simp: stval-def)
ultimately have 2 : σ |=p OR ?ALW

using fin by (auto simp: finite-subset simp del: semantics-pltl-sugar)

have 3 : ¬(σ |=p OR ?UNT)
proof

assume unt: σ |=p OR ?UNT
with fin-UNT obtain val val ′ k where

val: val ⊆ A val ′ ⊆ A val ′ 6= val and
now: σ |=p chi val and k: σ[k..] |=p chi val ′

28

by auto (blast+)?
from ‹val ⊆ A› now have val = stval (σ 0) by (rule chi2)
moreover
from ‹val ′ ⊆ A› k suffix have val ′ = stval (σ 0) by (simp add: chi2)
moreover note ‹val ′ 6= val›
ultimately show False by simp

qed

from 1 2 3 show ?thesis by (simp add: psi ′-def)

next
case False

Otherwise, σ |=p Xp ϕ is equivalent to σ satisfying the second disjunct of psi ′. We
show both implications separately.

let ?val = stval (σ 0)
let ?val ′ = stval (σ 1)
from False can have vals: ?val ′ 6= ?val

by (auto simp: canonical-sequence-def state-sim-def stval-def)

show ?thesis
proof

assume phi: σ |=p Xp ϕ
from fin have 1 : σ |=p chi ?val by (simp add: chi1 characteristic-holds)

from st can have stutter-free (σ[1 ..]) canonical-sequence A (σ[1 ..])
by (auto simp: stutter-free-suffix canonical-suffix)

with phi psi have 2 : σ[1 ..] |=p ψ by auto

from fin have σ[1 ..] |=p characteristic-formula A ((σ[1 ..]) 0)
by (rule characteristic-holds)

hence 3 : σ[1 ..] |=p chi ?val ′ by (simp add: chi1)

from 1 2 3 have σ |=p And-ltlp (chi ?val) ((chi ?val) U p (And-ltlp ψ (chi
?val ′)))

(is - |=p ?unt)
by auto

moreover from vals have ?unt ∈ ?UNT
by (auto simp: stval-def)

ultimately have σ |=p OR ?UNT
using fin-UNT [THEN holds-of-OR] by blast

thus σ |=p psi ′ by (simp add: psi ′-def)

next
assume psi ′: σ |=p psi ′
have ¬(σ |=p OR ?ALW)
proof

assume σ |=p OR ?ALW
with fin obtain val where 1 : val ⊆ A and 2 : ∀n. (σ[n..] |=p chi val)

29

by (force simp: finite-subset)
from 2 have σ[0 ..] |=p chi val ..
with 1 have val = ?val by (simp add: chi2)
moreover
from 2 have σ[1 ..] |=p chi val ..
with 1 have val = ?val ′ by (force dest: chi2)
ultimately
show False using vals by simp

qed
with psi ′ have σ |=p OR ?UNT by (simp add: psi ′-def)
with fin-UNT obtain val val ′ k where

val: val ⊆ A val ′ ⊆ A val ′ 6= val and
now: σ |=p chi val and
k: σ[k..] |=p ψ σ[k..] |=p chi val ′ and
i: ∀ i<k. (σ[i..] |=p chi val)
by auto (blast+)?

from val now have 1 : val = ?val by (simp add: chi2)

have 2 : k 6= 0
proof

assume k=0
with val k have val ′ = ?val by (simp add: chi2)
with 1 ‹val ′ 6= val› show False by simp

qed

have 3 : k ≤ 1
proof (rule ccontr)

assume ¬(k ≤ 1)
with i have σ[1 ..] |=p chi val by simp
with 1 have σ[1 ..] |=p characteristic-formula A (σ 0)

by (simp add: chi1)
hence (σ 0) ∼A∼ ((σ[1 ..]) 0)

using characteristic-state-sim[OF fin] by blast
with can have σ 0 = σ 1

by (simp add: canonical-sequence-def)
with ‹σ (Suc 0) 6= σ 0 › show False by simp

qed

from 2 3 have k=1 by simp
moreover
from st can have stutter-free (σ[1 ..]) canonical-sequence A (σ[1 ..])

by (auto simp: stutter-free-suffix canonical-suffix)
ultimately show σ |=p Xp ϕ using ‹σ[k..] |=p ψ› psi by auto

qed
qed

}
with nf atoms-pltl show ∃ψ ′. ?P (Xp ϕ) ψ

′ by blast
qed

30

Comparing the definition of the next-free formula in the case of formulas Xp

ϕ with the one that appears in [2], there is a subtle difference. Peled and
Wilke define the second disjunct as a disjunction of formulas

(chi val) U p (ψ andp (chi val ′))

for subsets val, val ′⊆ A whereas we conjoin the formula chi val to the “until”
formula. This conjunct is indeed necessary in order to rule out the case of
the “until” formula being true because of chi val ′ being true immediately.
The subtle error in the definition of the formula was acknowledged by Peled
and Wilke and apparently had not been noticed since the publication of [2] in
1996 (which has been cited more than a hundred times according to Google
Scholar). Although the error was corrected easily, the fact that authors,
reviewers, and readers appear to have missed it for so long underscores the
usefulness of formal proofs.
We now show that any stuttering invariant PLTL formula can be expressed
without the Xp operator.
theorem stutter-invariant-next-free:

assumes phi: stutter-invariant ϕ
obtains ψ where next-free ψ atoms-pltl ψ ⊆ atoms-pltl ϕ

∀σ. (σ |=p ψ) = (σ |=p ϕ)
proof −

have atoms-pltl ϕ ⊆ atoms-pltl ϕ finite (atoms-pltl ϕ) by simp-all
then obtain ψ where

psi: next-free ψ atoms-pltl ψ ⊆ atoms-pltl ϕ and
equiv: ∀σ. stutter-free σ ∧ canonical-sequence (atoms-pltl ϕ) σ −→ (σ |=p ψ)

= (σ |=p ϕ)
by (blast dest: ex-next-free-stutter-free-canonical)

from ‹next-free ψ› have sinv: stutter-invariant ψ
by (rule next-free-stutter-invariant)

{
fix σ
obtain τ where 1 : τ ' atoms-pltl ϕ ' σ and 2 : canonical-sequence (atoms-pltl

ϕ) τ
by (rule canonical-exists)

from 1 ‹atoms-pltl ψ ⊆ atoms-pltl ϕ› have 3 : τ ' atoms-pltl ψ ' σ
by (rule seq-sim-mono)

from 1 have (σ |=p ϕ) = (τ |=p ϕ) by (simp add: pltl-seq-sim)
also from phi stutter-reduced-equivalent have ... = (\τ |=p ϕ) by auto
also from 2 [THEN canonical-reduced] equiv stutter-reduced-stutter-free
have ... = (\τ |=p ψ) by auto
also from sinv stutter-reduced-equivalent have ... = (τ |=p ψ) by auto
also from 3 have ... = (σ |=p ψ) by (simp add: pltl-seq-sim)
finally have (σ |=p ψ) = (σ |=p ϕ) by (rule sym)

}
with psi that show ?thesis by blast

31

qed

Combining theorems next-free-stutter-invariant and stutter-invariant-next-free,
it follows that a PLTL formula is stuttering invariant iff it is equivalent to
a next-free formula.
theorem pltl-stutter-invariant:

stutter-invariant ϕ ←→
(∃ψ. next-free ψ ∧ atoms-pltl ψ ⊆ atoms-pltl ϕ ∧ (∀σ. σ |=p ψ ←→ σ |=p ϕ))

proof −
{

assume stutter-invariant ϕ
hence ∃ψ. next-free ψ ∧ atoms-pltl ψ ⊆ atoms-pltl ϕ ∧ (∀σ. σ |=p ψ ←→ σ

|=p ϕ)
by (rule stutter-invariant-next-free) blast

}
moreover
{

fix ψ
assume 1 : next-free ψ and 2 : ∀σ. σ |=p ψ ←→ σ |=p ϕ
from 1 have stutter-invariant ψ by (rule next-free-stutter-invariant)
with 2 have stutter-invariant ϕ by blast

}
ultimately show ?thesis by blast

qed

4.6 Stutter Invariance for LTL with Syntactic Sugar

We lift the results for PLTL to an extensive version of LTL.
primrec ltlc-next-free :: ′a ltlc ⇒ bool

where
ltlc-next-free truec = True
| ltlc-next-free falsec = True
| ltlc-next-free (propc(q)) = True
| ltlc-next-free (notc ϕ) = ltlc-next-free ϕ
| ltlc-next-free (ϕ andc ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ orc ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ impliesc ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (X c ϕ) = False
| ltlc-next-free (Fc ϕ) = ltlc-next-free ϕ
| ltlc-next-free (Gc ϕ) = ltlc-next-free ϕ
| ltlc-next-free (ϕ U c ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ Rc ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ W c ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)
| ltlc-next-free (ϕ M c ψ) = (ltlc-next-free ϕ ∧ ltlc-next-free ψ)

lemma ltlc-next-free-iff [simp]: next-free (ltlc-to-pltl ϕ) ←→ ltlc-next-free ϕ
by (induction ϕ) auto

A next free formula cannot distinguish between stutter-equivalent runs.

32

theorem ltlc-next-free-stutter-invariant:
assumes next-free: ltlc-next-free ϕ
assumes eq: r ≈ r ′

shows r |=c ϕ ←→ r ′ |=c ϕ
proof −

{
fix r r ′

assume eq: r ≈ r ′ and holds: r |=c ϕ
then have r |=p (ltlc-to-pltl ϕ)by simp

from next-free-stutter-invariant[of ltlc-to-pltl ϕ] next-free
have PLTL.stutter-invariant (ltlc-to-pltl ϕ) by simp
from stutter-invariantD[OF this eq] holds have r ′ |=c ϕ by simp

} note aux=this

from aux[of r r ′] aux[of r ′ r] eq stutter-equiv-sym[OF eq] show ?thesis
by blast

qed

end

References

[1] L. Lamport. What good is temporal logic? In R. E. A. Mason, editor,
Information Processing 83: Proceedings of the IFIP 9th World Congress,
pages 657–668, Paris, Sept. 1983. IFIP, North-Holland.

[2] D. Peled and T. Wilke. Stutter-invariant temporal properties are ex-
pressible without the next-time operator. Inf. Proc. Lett., 63(5):243–246,
1997.

33

	Utility Lemmas
	Stuttering Sampling Functions
	Definition and elementary properties
	Preservation of properties through stuttering sampling
	Maximal stuttering sampling

	Stuttering Equivalence
	Stuttering Invariant LTL Formulas
	Finite Conjunctions and Disjunctions in PLTL
	Next-Free PLTL Formulas
	Stuttering Invariance of PLTL Without ``Next''
	Atoms, Canonical State Sequences, and Characteristic Formulas
	Stuttering Invariant PLTL Formulas Don't Need Next
	Stutter Invariance for LTL with Syntactic Sugar

