
A Formalisation of Sturm’s Theorem

Manuel Eberl

March 19, 2025

Abstract

Sturm sequences are a method for computing the number of real
roots of a real polynomial inside a given interval efficiently. In this
project, this fact and a number of methods to construct Sturm se-
quences efficiently have been formalised with the interactive theorem
prover Isabelle/HOL. Building upon this, an Isabelle/HOL proof method
was then implemented to prove statements about the number of roots
of a real polynomial and related properties.

1

Contents
1 Miscellaneous 3

1.1 Analysis . 3
1.2 Polynomials . 3

1.2.1 General simplification lemmas 3
1.2.2 Divisibility of polynomials 4
1.2.3 Sign changes of a polynomial 7
1.2.4 Limits of polynomials 8
1.2.5 Signs of polynomials for sufficiently large values 16
1.2.6 Positivity of polynomials 17

2 Proof of Sturm’s Theorem 22
2.1 Sign changes of polynomial sequences 22
2.2 Definition of Sturm sequences locale 23
2.3 Auxiliary lemmas about roots and sign changes 25
2.4 Constructing Sturm sequences 37
2.5 The canonical Sturm sequence 37

2.5.1 Canonical squarefree Sturm sequence 43
2.5.2 Optimisation for multiple roots 44

2.6 Root-counting functions . 50

3 The “sturm” proof method 56
3.1 Preliminary lemmas . 56
3.2 Reification . 65
3.3 Setup for the “sturm” method 68

4 Example usage of the “sturm” method 68

2

1 Miscellaneous

theory Misc-Polynomial
imports HOL−Computational-Algebra.Polynomial HOL−Computational-Algebra.Polynomial-Factorial
Pure−ex.Guess
begin

1.1 Analysis
lemma fun-eq-in-ivl:

assumes a ≤ b ∀ x::real. a ≤ x ∧ x ≤ b −→ eventually (λξ. f ξ = f x) (at x)
shows f a = f b

proof (rule connected-local-const)
show connected {a..b} a ∈ {a..b} b ∈ {a..b} using ‹a ≤ b› by (auto intro:

connected-Icc)
show ∀ aa∈{a..b}. eventually (λb. f aa = f b) (at aa within {a..b})
proof

fix x assume x ∈ {a..b}
with assms(2)[rule-format, of x]
show eventually (λb. f x = f b) (at x within {a..b})

by (auto simp: eventually-at-filter elim: eventually-mono)
qed

qed

1.2 Polynomials
1.2.1 General simplification lemmas
lemma pderiv-div:

assumes [simp]: q dvd p q 6= 0
shows pderiv (p div q) = (q ∗ pderiv p − p ∗ pderiv q) div (q ∗ q)

q∗q dvd (q ∗ pderiv p − p ∗ pderiv q)
proof−

from assms obtain r where p = q ∗ r unfolding dvd-def by blast
hence q ∗ pderiv p − p ∗ pderiv q = (q ∗ q) ∗ pderiv r

by (simp add: algebra-simps pderiv-mult)
thus q∗q dvd (q ∗ pderiv p − p ∗ pderiv q) by simp
note 0 = pderiv-mult[of q p div q]
have 1 : q ∗ (p div q) = p

by (metis assms(1) assms(2) dvd-def nonzero-mult-div-cancel-left)
have f1 : pderiv (p div q) ∗ (q ∗ q) div (q ∗ q) = pderiv (p div q)

by simp
have f2 : pderiv p = q ∗ pderiv (p div q) + p div q ∗ pderiv q

by (metis 0 1)
have p ∗ pderiv q = pderiv q ∗ (q ∗ (p div q))

by (metis 1 mult.commute)
then have p ∗ pderiv q = q ∗ (p div q ∗ pderiv q)

by fastforce
then have q ∗ pderiv p − p ∗ pderiv q = q ∗ (q ∗ pderiv (p div q))

3

using f2 by (metis add-diff-cancel-right ′ distrib-left)
then show pderiv (p div q) = (q ∗ pderiv p − p ∗ pderiv q) div (q ∗ q)

using f1 by (metis mult.commute mult.left-commute)
qed

1.2.2 Divisibility of polynomials

Two polynomials that are coprime have no common roots.
lemma coprime-imp-no-common-roots:
¬ (poly p x = 0 ∧ poly q x = 0) if coprime p q

for x :: ′a :: field
proof clarify

assume poly p x = 0 poly q x = 0
then have [:−x, 1 :] dvd p [:−x, 1 :] dvd q

by (simp-all add: poly-eq-0-iff-dvd)
with that have is-unit [:−x, 1 :]

by (rule coprime-common-divisor)
then show False

by (auto simp add: is-unit-pCons-iff)
qed

lemma poly-div:
assumes poly q x 6= 0 and (q:: ′a :: field poly) dvd p
shows poly (p div q) x = poly p x / poly q x

proof−
from assms have [simp]: q 6= 0 by force
have poly q x ∗ poly (p div q) x = poly (q ∗ (p div q)) x by simp
also have q ∗ (p div q) = p

using assms by (simp add: div-mult-swap)
finally show poly (p div q) x = poly p x / poly q x

using assms by (simp add: field-simps)
qed

lemma poly-div-gcd-squarefree-aux:
assumes pderiv (p::(′a::{field-char-0 ,field-gcd}) poly) 6= 0
defines d ≡ gcd p (pderiv p)
shows coprime (p div d) (pderiv (p div d)) and∧

x. poly (p div d) x = 0 ←→ poly p x = 0
proof −

obtain r s where bezout-coefficients p (pderiv p) = (r , s)
by (auto simp add: prod-eq-iff)

then have r ∗ p + s ∗ pderiv p = gcd p (pderiv p)
by (rule bezout-coefficients)

then have rs: d = r ∗ p + s ∗ pderiv p
by (simp add: d-def)

define t where t = p div d
define p ′ where [simp]: p ′ = pderiv p
define d ′ where [simp]: d ′ = pderiv d

4

define u where u = p ′ div d
have A: p = t ∗ d and B: p ′ = u ∗ d

by (simp-all add: t-def u-def d-def algebra-simps)
from poly-squarefree-decomp[OF assms(1) A B[unfolded p ′-def] rs]

show
∧

x. poly (p div d) x = 0 ←→ poly p x = 0 by (auto simp: t-def)

from rs have C : s∗t∗d ′ = d ∗ (1 − r∗t − s∗pderiv t)
by (simp add: A B algebra-simps pderiv-mult)

from assms have [simp]: p 6= 0 d 6= 0 t 6= 0
by (force, force, subst (asm) A, force)

have
∧

x. [[x dvd t; x dvd (pderiv t)]] =⇒ x dvd 1
proof −

fix x assume x dvd t x dvd (pderiv t)
then obtain v w where vw:

t = x∗v pderiv t = x∗w unfolding dvd-def by blast
define x ′ v ′ where [simp]: x ′ = pderiv x and [simp]: v ′ = pderiv v
from vw have x∗v ′ + v∗x ′ = x∗w by (simp add: pderiv-mult)
hence v∗x ′ = x∗(w − v ′) by (simp add: algebra-simps)
hence x dvd v∗pderiv x by simp
then obtain y where y: v∗x ′ = x∗y unfolding dvd-def by force
from ‹t 6= 0 › and vw have x 6= 0 by simp

have x-pow-n-dvd-d:
∧

n. x^n dvd d
proof−

fix n show x ^ n dvd d
proof (induction n, simp, rename-tac n, case-tac n)

fix n assume n = (0 ::nat)
from vw and C have d = x∗(d∗r∗v + d∗s∗w + s∗v∗d ′)

by (simp add: algebra-simps)
with ‹n = 0 › show x^Suc n dvd d by (force intro: dvdI)

next
fix n n ′ assume IH : x^n dvd d and n = Suc n ′

hence [simp]: Suc n ′ = n x ∗ x^n ′ = x^n by simp-all
define c :: ′a poly where c = [:of-nat n:]
from pderiv-power-Suc[of x n ′]

have [simp]: pderiv (x^n) = c∗x^n ′ ∗ x ′ unfolding c-def
by simp

from IH obtain z where d: d = x^n ∗ z unfolding dvd-def by blast
define z ′ where [simp]: z ′ = pderiv z
from d ‹d 6= 0 › have x^n 6= 0 z 6= 0 by force+
from C d have x^n∗z = z∗r∗v∗x^Suc n + z∗s∗c∗x^n∗(v∗x ′) +

s∗v∗z ′∗x^Suc n + s∗z∗(v∗x ′)∗x^n + s∗z∗v ′∗x^Suc n
by (simp add: algebra-simps vw pderiv-mult)

also have ... = x^n∗x ∗ (z∗r∗v + z∗s∗c∗y + s∗v∗z ′ + s∗z∗y + s∗z∗v ′)
by (simp only: y, simp add: algebra-simps)

finally have z = x∗(z∗r∗v+z∗s∗c∗y+s∗v∗z ′+s∗z∗y+s∗z∗v ′)
using ‹x^n 6= 0 › by force

5

hence x dvd z by (metis dvd-triv-left)
with d show x^Suc n dvd d by simp

qed
qed

have degree x = 0
proof (cases degree x, simp)

case (Suc n)
hence x 6= 0 by auto
with Suc have degree (x ^ (Suc (degree d))) > degree d

by (subst degree-power-eq, simp-all)
moreover from x-pow-n-dvd-d[of Suc (degree d)] and ‹d 6= 0 ›

have degree (x^Suc (degree d)) ≤ degree d
by (simp add: dvd-imp-degree-le)

ultimately show ?thesis by simp
qed
then obtain c where [simp]: x = [:c:] by (cases x, simp split: if-split-asm)
moreover from ‹x 6= 0 › have c 6= 0 by simp
ultimately show x dvd 1 using dvdI [of 1 x [:inverse c:]]

by simp
qed

then show coprime t (pderiv t)
by (rule coprimeI)

qed

lemma normalize-field:
normalize (x :: ′a :: {field,normalization-semidom}) = (if x = 0 then 0 else 1)
by (auto simp: is-unit-normalize dvd-field-iff)

lemma normalize-field-eq-1 [simp]:
x 6= 0 =⇒ normalize (x :: ′a :: {field,normalization-semidom}) = 1
by (simp add: normalize-field)

lemma unit-factor-field [simp]:
unit-factor (x :: ′a :: {field,normalization-semidom}) = x
by (cases x = 0) (auto simp: is-unit-unit-factor dvd-field-iff)

Dividing a polynomial by its gcd with its derivative yields a squarefree poly-
nomial with the same roots.
lemma poly-div-gcd-squarefree:

assumes (p :: (′a::{field-char-0 ,field-gcd}) poly) 6= 0
defines d ≡ gcd p (pderiv p)
shows coprime (p div d) (pderiv (p div d)) (is ?A) and∧

x. poly (p div d) x = 0 ←→ poly p x = 0 (is
∧

x. ?B x)
proof−

have ?A ∧ (∀ x. ?B x)
proof (cases pderiv p = 0)

case False

6

from poly-div-gcd-squarefree-aux[OF this] show ?thesis
unfolding d-def by auto

next
case True

then obtain c where [simp]: p = [:c:] using pderiv-iszero by blast
from assms(1) have c 6= 0 by simp
from True have d = smult (inverse c) p

by (simp add: d-def normalize-poly-def map-poly-pCons field-simps)
with ‹p 6= 0 › ‹c 6= 0 › have p div d = [:c:]

by (simp add: pCons-one)
with ‹c 6= 0 › show ?thesis

by (simp add: normalize-const-poly is-unit-triv)
qed
thus ?A and

∧
x. ?B x by simp-all

qed

1.2.3 Sign changes of a polynomial

If a polynomial has different signs at two points, it has a root inbetween.
lemma poly-different-sign-imp-root:

assumes a < b and sgn (poly p a) 6= sgn (poly p (b::real))
shows ∃ x. a ≤ x ∧ x ≤ b ∧ poly p x = 0

proof (cases poly p a = 0 ∨ poly p b = 0)
case True

thus ?thesis using assms(1)
by (elim disjE , rule-tac exI [of - a], simp,

rule-tac exI [of - b], simp)
next

case False
hence [simp]: poly p a 6= 0 poly p b 6= 0 by simp-all
show ?thesis
proof (cases poly p a < 0)

case True
hence sgn (poly p a) = −1 by simp
with assms True have poly p b > 0

by (auto simp: sgn-real-def split: if-split-asm)
from poly-IVT-pos[OF ‹a < b› True this] guess x ..
thus ?thesis by (intro exI [of - x], simp)

next
case False

hence poly p a > 0 by (simp add: not-less less-eq-real-def)
hence sgn (poly p a) = 1 by simp
with assms False have poly p b < 0

by (auto simp: sgn-real-def not-less
less-eq-real-def split: if-split-asm)

from poly-IVT-neg[OF ‹a < b› ‹poly p a > 0 › this] guess x ..
thus ?thesis by (intro exI [of - x], simp)

qed
qed

7

lemma poly-different-sign-imp-root ′:
assumes sgn (poly p a) 6= sgn (poly p (b::real))
shows ∃ x. poly p x = 0

using assms by (cases a < b, auto dest!: poly-different-sign-imp-root
simp: less-eq-real-def not-less)

lemma no-roots-inbetween-imp-same-sign:
assumes a < b ∀ x. a ≤ x ∧ x ≤ b −→ poly p x 6= (0 ::real)
shows sgn (poly p a) = sgn (poly p b)
using poly-different-sign-imp-root assms by auto

1.2.4 Limits of polynomials
lemma poly-neighbourhood-without-roots:

assumes (p :: real poly) 6= 0
shows eventually (λx. poly p x 6= 0) (at x0)

proof−
{

fix ε :: real assume ε > 0
have fin: finite {x. |x−x0| < ε ∧ x 6= x0 ∧ poly p x = 0}

using poly-roots-finite[OF assms] by simp
with ‹ε > 0 ›have ∃ δ>0 . δ≤ε ∧ (∀ x. |x−x0| < δ ∧ x 6= x0 −→ poly p x 6= 0)
proof (induction card {x. |x−x0| < ε ∧ x 6= x0 ∧ poly p x = 0}

arbitrary: ε rule: less-induct)
case (less ε)
let ?A = {x. |x − x0| < ε ∧ x 6= x0 ∧ poly p x = 0}
show ?case

proof (cases card ?A)
case 0

hence ?A = {} using less by auto
thus ?thesis using less(2) by (rule-tac exI [of - ε], auto)

next
case (Suc -)
with less(3) have {x. |x − x0| < ε ∧ x 6= x0 ∧ poly p x = 0} 6= {} by force
then obtain x where x-props: |x − x0| < ε x 6= x0 poly p x = 0 by blast
define ε ′ where ε ′ = |x − x0| / 2
have ε ′ > 0 ε ′ < ε unfolding ε ′-def using x-props by simp-all
from x-props(1 ,2) and ‹ε > 0 ›

have x /∈ {x ′. |x ′ − x0| < ε ′ ∧ x ′ 6= x0 ∧ poly p x ′ = 0} (is - /∈ ?B)
by (auto simp: ε ′-def)

moreover from x-props
have x ∈ {x. |x − x0| < ε ∧ x 6= x0 ∧ poly p x = 0} by blast

ultimately have ?B ⊂ ?A by auto
hence card ?B < card ?A finite ?B

by (rule psubset-card-mono[OF less(3)],
blast intro: finite-subset[OF - less(3)])

from less(1)[OF this(1) ‹ε ′ > 0 › this(2)]

8

show ?thesis using ‹ε ′ < ε› by force
qed

qed
}
from this[of 1]

show ?thesis by (auto simp: eventually-at dist-real-def)
qed

lemma poly-neighbourhood-same-sign:
assumes poly p (x0 :: real) 6= 0
shows eventually (λx. sgn (poly p x) = sgn (poly p x0)) (at x0)

proof −
have cont: isCont (λx. sgn (poly p x)) x0

by (rule isCont-sgn, rule poly-isCont, rule assms)
then have eventually (λx. |sgn (poly p x) − sgn (poly p x0)| < 1) (at x0)

by (auto simp: isCont-def tendsto-iff dist-real-def)
then show ?thesis

by (rule eventually-mono) (simp add: sgn-real-def split: if-split-asm)
qed

lemma poly-lhopital:
assumes poly p (x::real) = 0 poly q x = 0 q 6= 0
assumes (λx. poly (pderiv p) x / poly (pderiv q) x) −x→ y
shows (λx. poly p x / poly q x) −x→ y

using assms
proof (rule-tac lhopital)

have isCont (poly p) x isCont (poly q) x by simp-all
with assms(1 ,2) show poly p −x→ 0 poly q −x→ 0

by (simp-all add: isCont-def)
from ‹q 6= 0 › and ‹poly q x = 0 › have pderiv q 6= 0

by (auto dest: pderiv-iszero)
from poly-neighbourhood-without-roots[OF this]

show eventually (λx. poly (pderiv q) x 6= 0) (at x) .
qed (auto intro: poly-DERIV poly-neighbourhood-without-roots)

lemma poly-roots-bounds:
assumes p 6= 0
obtains l u
where l ≤ (u :: real)

and poly p l 6= 0
and poly p u 6= 0
and {x. x > l ∧ x ≤ u ∧ poly p x = 0 } = {x. poly p x = 0}
and

∧
x. x ≤ l =⇒ sgn (poly p x) = sgn (poly p l)

and
∧

x. x ≥ u =⇒ sgn (poly p x) = sgn (poly p u)
proof

from assms have finite {x. poly p x = 0} (is finite ?roots)
using poly-roots-finite by fast

9

let ?roots ′ = insert 0 ?roots

define l where l = Min ?roots ′ − 1
define u where u = Max ?roots ′ + 1

from ‹finite ?roots› have A: finite ?roots ′ by auto
from Min-le[OF this, of 0] and Max-ge[OF this, of 0]

show l ≤ u by (simp add: l-def u-def)
from Min-le[OF A] have l-props:

∧
x. x≤l =⇒ poly p x 6= 0

by (fastforce simp: l-def)
from Max-ge[OF A] have u-props:

∧
x. x≥u =⇒ poly p x 6= 0

by (fastforce simp: u-def)
from l-props u-props show [simp]: poly p l 6= 0 poly p u 6= 0 by auto

from l-props have
∧

x. poly p x = 0 =⇒ x > l by (metis not-le)
moreover from u-props have

∧
x. poly p x = 0 =⇒ x ≤ u by (metis linear)

ultimately show {x. x > l ∧ x ≤ u ∧ poly p x = 0} = ?roots by auto

{
fix x assume A: x < l sgn (poly p x) 6= sgn (poly p l)
with poly-IVT-pos[OF A(1), of p] poly-IVT-neg[OF A(1), of p] A(2)

have False by (auto split: if-split-asm
simp: sgn-real-def l-props not-less less-eq-real-def)

}
thus

∧
x. x ≤ l =⇒ sgn (poly p x) = sgn (poly p l)

by (case-tac x = l, auto simp: less-eq-real-def)

{
fix x assume A: x > u sgn (poly p x) 6= sgn (poly p u)
with u-props poly-IVT-neg[OF A(1), of p] poly-IVT-pos[OF A(1), of p] A(2)

have False by (auto split: if-split-asm
simp: sgn-real-def l-props not-less less-eq-real-def)

}
thus

∧
x. x ≥ u =⇒ sgn (poly p x) = sgn (poly p u)

by (case-tac x = u, auto simp: less-eq-real-def)
qed

definition poly-inf :: (′a::real-normed-vector) poly ⇒ ′a where
poly-inf p ≡ sgn (coeff p (degree p))

definition poly-neg-inf :: (′a::real-normed-vector) poly ⇒ ′a where
poly-neg-inf p ≡ if even (degree p) then sgn (coeff p (degree p))

else −sgn (coeff p (degree p))
lemma poly-inf-0-iff [simp]:

poly-inf p = 0 ←→ p = 0 poly-neg-inf p = 0 ←→ p = 0
by (auto simp: poly-inf-def poly-neg-inf-def sgn-zero-iff)

lemma poly-inf-mult[simp]:

10

fixes p :: (′a::real-normed-field) poly
shows poly-inf (p∗q) = poly-inf p ∗ poly-inf q

poly-neg-inf (p∗q) = poly-neg-inf p ∗ poly-neg-inf q
unfolding poly-inf-def poly-neg-inf-def
by ((cases p = 0 ∨ q = 0 ,auto simp: sgn-zero-iff

degree-mult-eq[of p q] coeff-mult-degree-sum Real-Vector-Spaces.sgn-mult)[])+

lemma poly-neq-0-at-infinity:
assumes (p :: real poly) 6= 0
shows eventually (λx. poly p x 6= 0) at-infinity

proof−
from poly-roots-bounds[OF assms] guess l u .
note lu-props = this
define b where b = max (−l) u
show ?thesis
proof (subst eventually-at-infinity, rule exI [of - b], clarsimp)

fix x assume A: |x| ≥ b and B: poly p x = 0
show False
proof (cases x ≥ 0)

case True
with A have x ≥ u unfolding b-def by simp
with lu-props(3 , 6) show False by (metis sgn-zero-iff B)

next
case False

with A have x ≤ l unfolding b-def by simp
with lu-props(2 , 5) show False by (metis sgn-zero-iff B)

qed
qed

qed

lemma poly-limit-aux:
fixes p :: real poly
defines n ≡ degree p
shows ((λx. poly p x / x ^ n) −−−→ coeff p n) at-infinity

proof (subst filterlim-cong, rule refl, rule refl)
show eventually (λx. poly p x / x^n = (

∑
i≤n. coeff p i / x^(n−i)))

at-infinity
proof (rule eventually-mono)

show eventually (λx::real. x 6= 0) at-infinity
by (simp add: eventually-at-infinity, rule exI [of - 1], auto)

fix x :: real assume [simp]: x 6= 0
show poly p x / x ^ n = (

∑
i≤n. coeff p i / x ^ (n − i))

by (simp add: n-def sum-divide-distrib power-diff poly-altdef)
qed

11

let ?a = λi. if i = n then coeff p n else 0
have ∀ i∈{..n}. ((λx. coeff p i / x ^ (n − i)) −−−→ ?a i) at-infinity
proof

fix i assume i ∈ {..n}
hence i ≤ n by simp
show ((λx. coeff p i / x ^ (n − i)) −−−→ ?a i) at-infinity
proof (cases i = n)

case True
thus ?thesis by (intro tendstoI , subst eventually-at-infinity,

intro exI [of - 1], simp add: dist-real-def)
next

case False
hence n − i > 0 using ‹i ≤ n› by simp
from tendsto-inverse-0 and divide-real-def [of 1]

have ((λx. 1 / x :: real) −−−→ 0) at-infinity by simp
from tendsto-power [OF this, of n − i]

have ((λx::real. 1 / x ^ (n − i)) −−−→ 0) at-infinity
using ‹n − i > 0 › by (simp add: power-0-left power-one-over)

from tendsto-mult-right-zero[OF this, of coeff p i]
have ((λx. coeff p i / x ^ (n − i)) −−−→ 0) at-infinity

by (simp add: field-simps)
thus ?thesis using False by simp

qed
qed
hence ((λx.

∑
i≤n. coeff p i / x^(n−i)) −−−→ (

∑
i≤n. ?a i)) at-infinity

by (force intro!: tendsto-sum)
also have (

∑
i≤n. ?a i) = coeff p n by (subst sum.delta, simp-all)

finally show ((λx.
∑

i≤n. coeff p i / x^(n−i)) −−−→ coeff p n) at-infinity .
qed

lemma poly-at-top-at-top:
fixes p :: real poly
assumes degree p ≥ 1 coeff p (degree p) > 0
shows LIM x at-top. poly p x :> at-top

proof−
let ?n = degree p
define f g where f x = poly p x / x^?n and g x = x ^ ?n for x :: real

from poly-limit-aux have (f −−−→ coeff p (degree p)) at-top
using tendsto-mono at-top-le-at-infinity unfolding f-def by blast

moreover from assms
have LIM x at-top. g x :> at-top

by (auto simp add: g-def intro!: filterlim-pow-at-top filterlim-ident)
ultimately have LIM x at-top. f x ∗ g x :> at-top

using filterlim-tendsto-pos-mult-at-top assms by simp
also have eventually (λx. f x ∗ g x = poly p x) at-top

unfolding f-def g-def

12

by (subst eventually-at-top-linorder , rule exI [of - 1],
simp add: poly-altdef field-simps sum-distrib-left power-diff)

note filterlim-cong[OF refl refl this]
finally show ?thesis .

qed

lemma poly-at-bot-at-top:
fixes p :: real poly
assumes degree p ≥ 1 coeff p (degree p) < 0
shows LIM x at-top. poly p x :> at-bot

proof−
from poly-at-top-at-top[of −p] and assms

have LIM x at-top. −poly p x :> at-top by simp
thus ?thesis by (simp add: filterlim-uminus-at-bot)

qed

lemma poly-lim-inf :
eventually (λx::real. sgn (poly p x) = poly-inf p) at-top

proof (cases degree p ≥ 1)
case False

hence degree p = 0 by simp
then obtain c where p = [:c:] by (cases p, auto split: if-split-asm)
thus ?thesis

by (simp add: eventually-at-top-linorder poly-inf-def)
next

case True
note deg = this
let ?lc = coeff p (degree p)
from True have ?lc 6= 0 by force
show ?thesis
proof (cases ?lc > 0)

case True
from poly-at-top-at-top[OF deg this]

obtain x0 where
∧

x. x ≥ x0 =⇒ poly p x ≥ 1
by (fastforce simp: filterlim-at-top

eventually-at-top-linorder less-eq-real-def)
hence

∧
x. x ≥ x0 =⇒ sgn (poly p x) = 1 by force

thus ?thesis by (simp only: eventually-at-top-linorder poly-inf-def ,
intro exI [of - x0], simp add: True)

next
case False

hence ?lc < 0 using ‹?lc 6= 0 › by linarith
from poly-at-bot-at-top[OF deg this]

obtain x0 where
∧

x. x ≥ x0 =⇒ poly p x ≤ −1
by (fastforce simp: filterlim-at-bot

eventually-at-top-linorder less-eq-real-def)
hence

∧
x. x ≥ x0 =⇒ sgn (poly p x) = −1 by force

thus ?thesis by (simp only: eventually-at-top-linorder poly-inf-def ,
intro exI [of - x0], simp add: ‹?lc < 0 ›)

13

qed
qed

lemma poly-at-top-or-bot-at-bot:
fixes p :: real poly
assumes degree p ≥ 1 coeff p (degree p) > 0
shows LIM x at-bot. poly p x :> (if even (degree p) then at-top else at-bot)

proof−
let ?n = degree p
define f g where f x = poly p x / x ^ ?n and g x = x ^ ?n for x :: real

from poly-limit-aux have (f −−−→ coeff p (degree p)) at-bot
using tendsto-mono at-bot-le-at-infinity by (force simp: f-def [abs-def])

moreover from assms
have LIM x at-bot. g x :> (if even (degree p) then at-top else at-bot)

by (auto simp add: g-def split: if-split-asm intro: filterlim-pow-at-bot-even
filterlim-pow-at-bot-odd filterlim-ident)

ultimately have LIM x at-bot. f x ∗ g x :>
(if even ?n then at-top else at-bot)

by (auto simp: assms intro: filterlim-tendsto-pos-mult-at-top
filterlim-tendsto-pos-mult-at-bot)

also have eventually (λx. f x ∗ g x = poly p x) at-bot
unfolding f-def g-def
by (subst eventually-at-bot-linorder , rule exI [of - −1],

simp add: poly-altdef field-simps sum-distrib-left power-diff)
note filterlim-cong[OF refl refl this]
finally show ?thesis .

qed

lemma poly-at-bot-or-top-at-bot:
fixes p :: real poly
assumes degree p ≥ 1 coeff p (degree p) < 0
shows LIM x at-bot. poly p x :> (if even (degree p) then at-bot else at-top)

proof−
from poly-at-top-or-bot-at-bot[of −p] and assms

have LIM x at-bot. −poly p x :>
(if even (degree p) then at-top else at-bot) by simp

thus ?thesis by (auto simp: filterlim-uminus-at-bot)
qed

lemma poly-lim-neg-inf :
eventually (λx::real. sgn (poly p x) = poly-neg-inf p) at-bot

proof (cases degree p ≥ 1)
case False

hence degree p = 0 by simp
then obtain c where p = [:c:] by (cases p, auto split: if-split-asm)
thus ?thesis

by (simp add: eventually-at-bot-linorder poly-neg-inf-def)

14

next
case True

note deg = this
let ?lc = coeff p (degree p)
from True have ?lc 6= 0 by force
show ?thesis
proof (cases ?lc > 0)

case True
note lc-pos = this
show ?thesis
proof (cases even (degree p))

case True
from poly-at-top-or-bot-at-bot[OF deg lc-pos] and True

obtain x0 where
∧

x. x ≤ x0 =⇒ poly p x ≥ 1
by (fastforce simp add: filterlim-at-top filterlim-at-bot

eventually-at-bot-linorder less-eq-real-def)
hence

∧
x. x ≤ x0 =⇒ sgn (poly p x) = 1 by force

thus ?thesis
by (simp add: True eventually-at-bot-linorder poly-neg-inf-def ,

intro exI [of - x0], simp add: lc-pos)
next

case False
from poly-at-top-or-bot-at-bot[OF deg lc-pos] and False

obtain x0 where
∧

x. x ≤ x0 =⇒ poly p x ≤ −1
by (fastforce simp add: filterlim-at-bot

eventually-at-bot-linorder less-eq-real-def)
hence

∧
x. x ≤ x0 =⇒ sgn (poly p x) = −1 by force

thus ?thesis
by (simp add: False eventually-at-bot-linorder poly-neg-inf-def ,

intro exI [of - x0], simp add: lc-pos)
qed

next
case False

hence lc-neg: ?lc < 0 using ‹?lc 6= 0 › by linarith
show ?thesis
proof (cases even (degree p))

case True
with poly-at-bot-or-top-at-bot[OF deg lc-neg]

obtain x0 where
∧

x. x ≤ x0 =⇒ poly p x ≤ −1
by (fastforce simp: filterlim-at-bot

eventually-at-bot-linorder less-eq-real-def)
hence

∧
x. x ≤ x0 =⇒ sgn (poly p x) = −1 by force

thus ?thesis
by (simp only: True eventually-at-bot-linorder poly-neg-inf-def ,

intro exI [of - x0], simp add: lc-neg)
next

case False
with poly-at-bot-or-top-at-bot[OF deg lc-neg]

obtain x0 where
∧

x. x ≤ x0 =⇒ poly p x ≥ 1

15

by (fastforce simp: filterlim-at-top
eventually-at-bot-linorder less-eq-real-def)

hence
∧

x. x ≤ x0 =⇒ sgn (poly p x) = 1 by force
thus ?thesis

by (simp only: False eventually-at-bot-linorder poly-neg-inf-def ,
intro exI [of - x0], simp add: lc-neg)

qed
qed

qed

1.2.5 Signs of polynomials for sufficiently large values
lemma polys-inf-sign-thresholds:

assumes finite (ps :: real poly set)
obtains l u
where l ≤ u

and
∧

p. [[p ∈ ps; p 6= 0]] =⇒
{x. l < x ∧ x ≤ u ∧ poly p x = 0} = {x. poly p x = 0}

and
∧

p x. [[p ∈ ps; x ≥ u]] =⇒ sgn (poly p x) = poly-inf p
and

∧
p x. [[p ∈ ps; x ≤ l]] =⇒ sgn (poly p x) = poly-neg-inf p

proof goal-cases
case prems: 1
have ∃ l u. l ≤ u ∧ (∀ p x. p ∈ ps ∧ x ≥ u −→ sgn (poly p x) = poly-inf p) ∧

(∀ p x. p ∈ ps ∧ x ≤ l −→ sgn (poly p x) = poly-neg-inf p)
(is ∃ l u. ?P ps l u)

proof (induction rule: finite-subset-induct[OF assms(1), where A = UNIV])
case 1

show ?case by simp
next

case 2
show ?case by (intro exI [of - 42], simp)

next
case prems: (3 p ps)

from prems(4) obtain l u where lu-props: ?P ps l u by blast
from poly-lim-inf obtain u ′

where u ′-props: ∀ x≥u ′. sgn (poly p x) = poly-inf p
by (force simp add: eventually-at-top-linorder)

from poly-lim-neg-inf obtain l ′
where l ′-props: ∀ x≤l ′. sgn (poly p x) = poly-neg-inf p
by (force simp add: eventually-at-bot-linorder)

show ?case
by (rule exI [of - min l l ′], rule exI [of - max u u ′],

insert lu-props l ′-props u ′-props, auto)
qed
then obtain l u where lu-props: l ≤ u∧

p x. p ∈ ps =⇒ u ≤ x =⇒ sgn (poly p x) = poly-inf p∧
p x. p ∈ ps =⇒ x ≤ l =⇒ sgn (poly p x) = poly-neg-inf p by blast

moreover {
fix p x assume A: p ∈ ps p 6= 0 poly p x = 0

16

from A have l < x x < u
by (auto simp: not-le[symmetric] dest: lu-props(2 ,3))

}
note A = this
have

∧
p. p ∈ ps =⇒ p 6= 0 =⇒
{x. l < x ∧ x ≤ u ∧ poly p x = 0} = {x. poly p x = 0}

by (auto dest: A)

from prems[OF lu-props(1) this lu-props(2 ,3)] show thesis .
qed

1.2.6 Positivity of polynomials
lemma poly-pos:
(∀ x::real. poly p x > 0) ←→ poly-inf p = 1 ∧ (∀ x. poly p x 6= 0)

proof (intro iffI conjI)
assume A: ∀ x::real. poly p x > 0
have

∧
x. poly p (x::real) > 0 =⇒ poly p x 6= 0 by simp

with A show ∀ x::real. poly p x 6= 0 by simp

from poly-lim-inf obtain x where sgn (poly p x) = poly-inf p
by (auto simp: eventually-at-top-linorder)

with A show poly-inf p = 1
by (simp add: sgn-real-def split: if-split-asm)

next
assume poly-inf p = 1 ∧ (∀ x. poly p x 6= 0)
hence A: poly-inf p = 1 and B: (∀ x. poly p x 6= 0) by simp-all
from poly-lim-inf obtain x where C : sgn (poly p x) = poly-inf p

by (auto simp: eventually-at-top-linorder)
show ∀ x. poly p x > 0
proof (rule ccontr)

assume ¬(∀ x. poly p x > 0)
then obtain x ′ where poly p x ′ ≤ 0 by (auto simp: not-less)
with A and C have sgn (poly p x ′) 6= sgn (poly p x)

by (auto simp: sgn-real-def split: if-split-asm)
from poly-different-sign-imp-root ′[OF this] and B

show False by blast
qed

qed

lemma poly-pos-greater :
(∀ x::real. x > a −→ poly p x > 0) ←→

poly-inf p = 1 ∧ (∀ x. x > a −→ poly p x 6= 0)
proof (intro iffI conjI)

assume A: ∀ x::real. x > a −→ poly p x > 0
have

∧
x. poly p (x::real) > 0 =⇒ poly p x 6= 0 by simp

with A show ∀ x::real. x > a −→ poly p x 6= 0 by auto

from poly-lim-inf obtain x0 where

17

∀ x≥x0. sgn (poly p x) = poly-inf p
by (auto simp: eventually-at-top-linorder)

hence poly-inf p = sgn (poly p (max x0 (a + 1))) by simp
also from A have ... = 1 by force
finally show poly-inf p = 1 .

next
assume poly-inf p = 1 ∧ (∀ x. x > a −→ poly p x 6= 0)
hence A: poly-inf p = 1 and

B: (∀ x. x > a −→ poly p x 6= 0) by simp-all
from poly-lim-inf obtain x0 where

C : ∀ x≥x0. sgn (poly p x) = poly-inf p
by (auto simp: eventually-at-top-linorder)

hence sgn (poly p (max x0 (a+1))) = poly-inf p by simp
with A have D: sgn (poly p (max x0 (a+1))) = 1 by simp
show ∀ x. x > a −→ poly p x > 0
proof (rule ccontr)

assume ¬(∀ x. x > a −→ poly p x > 0)
then obtain x ′ where x ′ > a poly p x ′ ≤ 0 by (auto simp: not-less)
with A and D have E : sgn (poly p x ′) 6= sgn (poly p (max x0(a+1)))

by (auto simp: sgn-real-def split: if-split-asm)
show False

apply (cases x ′ max x0 (a+1) rule: linorder-cases)
using B E ‹x ′ > a›

apply (force dest!: poly-different-sign-imp-root[of - - p])+
done

qed
qed

lemma poly-pos-geq:
(∀ x::real. x ≥ a −→ poly p x > 0) ←→

poly-inf p = 1 ∧ (∀ x. x ≥ a −→ poly p x 6= 0)
proof (intro iffI conjI)

assume A: ∀ x::real. x ≥ a −→ poly p x > 0
hence ∀ x::real. x > a −→ poly p x > 0 by simp
also note poly-pos-greater
finally have poly-inf p = 1 (∀ x>a. poly p x 6= 0) by simp-all
moreover from A have poly p a > 0 by simp
ultimately show poly-inf p = 1 ∀ x≥a. poly p x 6= 0

by (auto simp: less-eq-real-def)
next

assume poly-inf p = 1 ∧ (∀ x. x ≥ a −→ poly p x 6= 0)
hence A: poly-inf p = 1 and

B: poly p a 6= 0 and C : ∀ x>a. poly p x 6= 0 by simp-all
from A and C and poly-pos-greater have ∀ x>a. poly p x > 0 by simp
moreover with B C poly-IVT-pos[of a a+1 p] have poly p a > 0 by force
ultimately show ∀ x≥a. poly p x > 0 by (auto simp: less-eq-real-def)

qed

lemma poly-pos-less:

18

(∀ x::real. x < a −→ poly p x > 0) ←→
poly-neg-inf p = 1 ∧ (∀ x. x < a −→ poly p x 6= 0)

proof (intro iffI conjI)
assume A: ∀ x::real. x < a −→ poly p x > 0
have

∧
x. poly p (x::real) > 0 =⇒ poly p x 6= 0 by simp

with A show ∀ x::real. x < a −→ poly p x 6= 0 by auto

from poly-lim-neg-inf obtain x0 where
∀ x≤x0. sgn (poly p x) = poly-neg-inf p
by (auto simp: eventually-at-bot-linorder)

hence poly-neg-inf p = sgn (poly p (min x0 (a − 1))) by simp
also from A have ... = 1 by force
finally show poly-neg-inf p = 1 .

next
assume poly-neg-inf p = 1 ∧ (∀ x. x < a −→ poly p x 6= 0)
hence A: poly-neg-inf p = 1 and

B: (∀ x. x < a −→ poly p x 6= 0) by simp-all
from poly-lim-neg-inf obtain x0 where

C : ∀ x≤x0. sgn (poly p x) = poly-neg-inf p
by (auto simp: eventually-at-bot-linorder)

hence sgn (poly p (min x0 (a − 1))) = poly-neg-inf p by simp
with A have D: sgn (poly p (min x0 (a − 1))) = 1 by simp
show ∀ x. x < a −→ poly p x > 0
proof (rule ccontr)

assume ¬(∀ x. x < a −→ poly p x > 0)
then obtain x ′ where x ′ < a poly p x ′ ≤ 0 by (auto simp: not-less)
with A and D have E : sgn (poly p x ′) 6= sgn (poly p (min x0 (a − 1)))

by (auto simp: sgn-real-def split: if-split-asm)
show False

apply (cases x ′ min x0 (a − 1) rule: linorder-cases)
using B E ‹x ′ < a›

apply (auto dest!: poly-different-sign-imp-root[of - - p])+
done

qed
qed

lemma poly-pos-leq:
(∀ x::real. x ≤ a −→ poly p x > 0) ←→

poly-neg-inf p = 1 ∧ (∀ x. x ≤ a −→ poly p x 6= 0)
proof (intro iffI conjI)

assume A: ∀ x::real. x ≤ a −→ poly p x > 0
hence ∀ x::real. x < a −→ poly p x > 0 by simp
also note poly-pos-less
finally have poly-neg-inf p = 1 (∀ x<a. poly p x 6= 0) by simp-all
moreover from A have poly p a > 0 by simp
ultimately show poly-neg-inf p = 1 ∀ x≤a. poly p x 6= 0

by (auto simp: less-eq-real-def)
next

assume poly-neg-inf p = 1 ∧ (∀ x. x ≤ a −→ poly p x 6= 0)

19

hence A: poly-neg-inf p = 1 and
B: poly p a 6= 0 and C : ∀ x<a. poly p x 6= 0 by simp-all

from A and C and poly-pos-less have ∀ x<a. poly p x > 0 by simp
moreover with B C poly-IVT-neg[of a − 1 a p] have poly p a > 0 by force
ultimately show ∀ x≤a. poly p x > 0 by (auto simp: less-eq-real-def)

qed

lemma poly-pos-between-less-less:
(∀ x::real. a < x ∧ x < b −→ poly p x > 0) ←→
(a ≥ b ∨ poly p ((a+b)/2) > 0) ∧ (∀ x. a < x ∧ x < b −→ poly p x 6= 0)

proof (intro iffI conjI)
assume A: ∀ x. a < x ∧ x < b −→ poly p x > 0
have

∧
x. poly p (x::real) > 0 =⇒ poly p x 6= 0 by simp

with A show ∀ x::real. a < x ∧ x < b −→ poly p x 6= 0 by auto
from A show a ≥ b ∨ poly p ((a+b)/2) > 0 by (cases a < b, auto)

next
assume (b ≤ a ∨ 0 < poly p ((a+b)/2)) ∧ (∀ x. a<x ∧ x<b −→ poly p x 6= 0)
hence A: b ≤ a ∨ 0 < poly p ((a+b)/2) and

B: ∀ x. a<x ∧ x<b −→ poly p x 6= 0 by simp-all
show ∀ x. a < x ∧ x < b −→ poly p x > 0
proof (cases a ≥ b, simp, clarify, rule-tac ccontr ,

simp only: not-le not-less)
fix x assume a < b a < x x < b poly p x ≤ 0
with B have poly p x < 0 by (simp add: less-eq-real-def)
moreover from A and ‹a < b› have poly p ((a+b)/2) > 0 by simp
ultimately have sgn (poly p x) 6= sgn (poly p ((a+b)/2)) by simp
thus False using B

apply (cases x (a+b)/2 rule: linorder-cases)
apply (drule poly-different-sign-imp-root[of - - p], assumption,

insert ‹a < b› ‹a < x› ‹x < b› , force) []
apply simp
apply (drule poly-different-sign-imp-root[of - - p], simp,

insert ‹a < b› ‹a < x› ‹x < b› , force)
done

qed
qed

lemma poly-pos-between-less-leq:
(∀ x::real. a < x ∧ x ≤ b −→ poly p x > 0) ←→
(a ≥ b ∨ poly p b > 0) ∧ (∀ x. a < x ∧ x ≤ b −→ poly p x 6= 0)

proof (intro iffI conjI)
assume A: ∀ x. a < x ∧ x ≤ b −→ poly p x > 0
have

∧
x. poly p (x::real) > 0 =⇒ poly p x 6= 0 by simp

with A show ∀ x::real. a < x ∧ x ≤ b −→ poly p x 6= 0 by auto
from A show a ≥ b ∨ poly p b > 0 by (cases a < b, auto)

next
assume (b ≤ a ∨ 0 < poly p b) ∧ (∀ x. a<x ∧ x≤b −→ poly p x 6= 0)
hence A: b ≤ a ∨ 0 < poly p b and B: ∀ x. a<x ∧ x≤b −→ poly p x 6= 0

by simp-all

20

show ∀ x. a < x ∧ x ≤ b −→ poly p x > 0
proof (cases a ≥ b, simp, clarify, rule-tac ccontr ,

simp only: not-le not-less)
fix x assume a < b a < x x ≤ b poly p x ≤ 0
with B have poly p x < 0 by (simp add: less-eq-real-def)
moreover from A and ‹a < b› have poly p b > 0 by simp
ultimately have x < b using ‹x ≤ b› by (auto simp: less-eq-real-def)
from ‹poly p x < 0 › and ‹poly p b > 0 ›

have sgn (poly p x) 6= sgn (poly p b) by simp
from poly-different-sign-imp-root[OF ‹x < b› this] and B and ‹x > a›

show False by auto
qed

qed

lemma poly-pos-between-leq-less:
(∀ x::real. a ≤ x ∧ x < b −→ poly p x > 0) ←→
(a ≥ b ∨ poly p a > 0) ∧ (∀ x. a ≤ x ∧ x < b −→ poly p x 6= 0)

proof (intro iffI conjI)
assume A: ∀ x. a ≤ x ∧ x < b −→ poly p x > 0
have

∧
x. poly p (x::real) > 0 =⇒ poly p x 6= 0 by simp

with A show ∀ x::real. a ≤ x ∧ x < b −→ poly p x 6= 0 by auto
from A show a ≥ b ∨ poly p a > 0 by (cases a < b, auto)

next
assume (b ≤ a ∨ 0 < poly p a) ∧ (∀ x. a≤x ∧ x<b −→ poly p x 6= 0)
hence A: b ≤ a ∨ 0 < poly p a and B: ∀ x. a≤x ∧ x<b −→ poly p x 6= 0

by simp-all
show ∀ x. a ≤ x ∧ x < b −→ poly p x > 0
proof (cases a ≥ b, simp, clarify, rule-tac ccontr ,

simp only: not-le not-less)
fix x assume a < b a ≤ x x < b poly p x ≤ 0
with B have poly p x < 0 by (simp add: less-eq-real-def)
moreover from A and ‹a < b› have poly p a > 0 by simp
ultimately have x > a using ‹x ≥ a› by (auto simp: less-eq-real-def)
from ‹poly p x < 0 › and ‹poly p a > 0 ›

have sgn (poly p a) 6= sgn (poly p x) by simp
from poly-different-sign-imp-root[OF ‹x > a› this] and B and ‹x < b›

show False by auto
qed

qed

lemma poly-pos-between-leq-leq:
(∀ x::real. a ≤ x ∧ x ≤ b −→ poly p x > 0) ←→
(a > b ∨ poly p a > 0) ∧ (∀ x. a ≤ x ∧ x ≤ b −→ poly p x 6= 0)

proof (intro iffI conjI)
assume A: ∀ x. a ≤ x ∧ x ≤ b −→ poly p x > 0
have

∧
x. poly p (x::real) > 0 =⇒ poly p x 6= 0 by simp

with A show ∀ x::real. a ≤ x ∧ x ≤ b −→ poly p x 6= 0 by auto
from A show a > b ∨ poly p a > 0 by (cases a ≤ b, auto)

next

21

assume (b < a ∨ 0 < poly p a) ∧ (∀ x. a≤x ∧ x≤b −→ poly p x 6= 0)
hence A: b < a ∨ 0 < poly p a and B: ∀ x. a≤x ∧ x≤b −→ poly p x 6= 0

by simp-all
show ∀ x. a ≤ x ∧ x ≤ b −→ poly p x > 0
proof (cases a > b, simp, clarify, rule-tac ccontr ,

simp only: not-le not-less)
fix x assume a ≤ b a ≤ x x ≤ b poly p x ≤ 0
with B have poly p x < 0 by (simp add: less-eq-real-def)
moreover from A and ‹a ≤ b› have poly p a > 0 by simp
ultimately have x > a using ‹x ≥ a› by (auto simp: less-eq-real-def)
from ‹poly p x < 0 › and ‹poly p a > 0 ›

have sgn (poly p a) 6= sgn (poly p x) by simp
from poly-different-sign-imp-root[OF ‹x > a› this] and B and ‹x ≤ b›

show False by auto
qed

qed

end

2 Proof of Sturm’s Theorem
theory Sturm-Theorem

imports HOL−Computational-Algebra.Polynomial
Lib/Sturm-Library HOL−Computational-Algebra.Field-as-Ring

begin

2.1 Sign changes of polynomial sequences

For a given sequence of polynomials, this function computes the number of
sign changes of the sequence of polynomials evaluated at a given position
x. A sign change is a change from a negative value to a positive one or vice
versa; zeros in the sequence are ignored.
definition sign-changes where
sign-changes ps (x::real) =

length (remdups-adj (filter (λx. x 6= 0) (map (λp. sgn (poly p x)) ps))) − 1

The number of sign changes of a sequence distributes over a list in the sense
that the number of sign changes of a sequence p1, . . . , pi, . . . , pn at x is the
same as the sum of the sign changes of the sequence p1, . . . , pi and pi, . . . , pn
as long as pi(x) 6= 0.
lemma sign-changes-distrib:

poly p x 6= 0 =⇒
sign-changes (ps1 @ [p] @ ps2) x =
sign-changes (ps1 @ [p]) x + sign-changes ([p] @ ps2) x

by (simp add: sign-changes-def sgn-zero-iff , subst remdups-adj-append, simp)

The following two congruences state that the number of sign changes is the
same if all the involved signs are the same.

22

lemma sign-changes-cong:
assumes length ps = length ps ′

assumes ∀ i < length ps. sgn (poly (ps!i) x) = sgn (poly (ps ′!i) y)
shows sign-changes ps x = sign-changes ps ′ y

proof−
from assms(2) have A: map (λp. sgn (poly p x)) ps = map (λp. sgn (poly p y))

ps ′

proof (induction rule: list-induct2 [OF assms(1)])
case 1

then show ?case by simp
next

case (2 p ps p ′ ps ′)
from 2 (3)
have ∀ i<length ps. sgn (poly (ps ! i) x) =

sgn (poly (ps ′ ! i) y) by auto
from 2 (2)[OF this] 2 (3) show ?case by auto

qed
show ?thesis unfolding sign-changes-def by (simp add: A)

qed

lemma sign-changes-cong ′:
assumes ∀ p ∈ set ps. sgn (poly p x) = sgn (poly p y)
shows sign-changes ps x = sign-changes ps y

using assms by (intro sign-changes-cong, simp-all)

For a sequence of polynomials of length 3, if the first and the third polyno-
mial have opposite and nonzero sign at some x, the number of sign changes
is always 1, irrespective of the sign of the second polynomial.
lemma sign-changes-sturm-triple:

assumes poly p x 6= 0 and sgn (poly r x) = − sgn (poly p x)
shows sign-changes [p,q,r] x = 1

unfolding sign-changes-def by (insert assms, auto simp: sgn-real-def)

Finally, we define two additional functions that count the sign changes “at
infinity”.
definition sign-changes-inf where
sign-changes-inf ps =

length (remdups-adj (filter (λx. x 6= 0) (map poly-inf ps))) − 1

definition sign-changes-neg-inf where
sign-changes-neg-inf ps =

length (remdups-adj (filter (λx. x 6= 0) (map poly-neg-inf ps))) − 1

2.2 Definition of Sturm sequences locale

We first define the notion of a “Quasi-Sturm sequence”, which is a weakening
of a Sturm sequence that captures the properties that are fulfilled by a
nonempty suffix of a Sturm sequence:

23

• The sequence is nonempty.

• The last polynomial does not change its sign.

• If the middle one of three adjacent polynomials has a root at x, the
other two have opposite and nonzero signs at x.

locale quasi-sturm-seq =
fixes ps :: (real poly) list
assumes last-ps-sgn-const[simp]:∧

x y. sgn (poly (last ps) x) = sgn (poly (last ps) y)
assumes ps-not-Nil[simp]: ps 6= []
assumes signs:

∧
i x. [[i < length ps − 2 ; poly (ps ! (i+1)) x = 0]]

=⇒ (poly (ps ! (i+2)) x) ∗ (poly (ps ! i) x) < 0

Now we define a Sturm sequence p1, . . . , pn of a polynomial p in the following
way:

• The sequence contains at least two elements.

• p is the first polynomial, i. e. p1 = p.

• At any root x of p, p2 and p have opposite sign left of x and the same
sign right of x in some neighbourhood around x.

• The first two polynomials in the sequence have no common roots.

• If the middle one of three adjacent polynomials has a root at x, the
other two have opposite and nonzero signs at x.

locale sturm-seq = quasi-sturm-seq +
fixes p :: real poly
assumes hd-ps-p[simp]: hd ps = p
assumes length-ps-ge-2 [simp]: length ps ≥ 2
assumes deriv:

∧
x0. poly p x0 = 0 =⇒

eventually (λx. sgn (poly (p ∗ ps!1) x) =
(if x > x0 then 1 else −1)) (at x0)

assumes p-squarefree:
∧

x. ¬(poly p x = 0 ∧ poly (ps!1) x = 0)
begin

Any Sturm sequence is obviously a Quasi-Sturm sequence.
lemma quasi-sturm-seq: quasi-sturm-seq ps ..

end

Any suffix of a Quasi-Sturm sequence is again a Quasi-Sturm sequence.
lemma quasi-sturm-seq-Cons:

assumes quasi-sturm-seq (p#ps) and ps 6= []
shows quasi-sturm-seq ps

24

proof (unfold-locales)
show ps 6= [] by fact

next
from assms(1) interpret quasi-sturm-seq p#ps .
fix x y
from last-ps-sgn-const and ‹ps 6= []›

show sgn (poly (last ps) x) = sgn (poly (last ps) y) by simp-all
next

from assms(1) interpret quasi-sturm-seq p#ps .
fix i x
assume i < length ps − 2 and poly (ps ! (i+1)) x = 0
with signs[of i+1]

show poly (ps ! (i+2)) x ∗ poly (ps ! i) x < 0 by simp
qed

2.3 Auxiliary lemmas about roots and sign changes
lemma sturm-adjacent-root-aux:

assumes i < length (ps :: real poly list) − 1
assumes poly (ps ! i) x = 0 and poly (ps ! (i + 1)) x = 0
assumes

∧
i x. [[i < length ps − 2 ; poly (ps ! (i+1)) x = 0]]
=⇒ sgn (poly (ps ! (i+2)) x) = − sgn (poly (ps ! i) x)

shows ∀ j≤i+1 . poly (ps ! j) x = 0
using assms
proof (induction i)

case 0 thus ?case by (clarsimp, rename-tac j, case-tac j, simp-all)
next

case (Suc i)
from Suc.prems(1 ,2)

have sgn (poly (ps ! (i + 2)) x) = − sgn (poly (ps ! i) x)
by (intro assms(4)) simp-all

with Suc.prems(3) have poly (ps ! i) x = 0 by (simp add: sgn-zero-iff)
with Suc.prems have ∀ j≤i+1 . poly (ps ! j) x = 0

by (intro Suc.IH , simp-all)
with Suc.prems(3) show ?case

by (clarsimp, rename-tac j, case-tac j = Suc (Suc i), simp-all)
qed

This function splits the sign list of a Sturm sequence at a position x that is
not a root of p into a list of sublists such that the number of sign changes
within every sublist is constant in the neighbourhood of x, thus proving that
the total number is also constant.
fun split-sign-changes where
split-sign-changes [p] (x :: real) = [[p]] |
split-sign-changes [p,q] x = [[p,q]] |
split-sign-changes (p#q#r#ps) x =

(if poly p x 6= 0 ∧ poly q x = 0 then
[p,q,r] # split-sign-changes (r#ps) x

else

25

[p,q] # split-sign-changes (q#r#ps) x)

lemma (in quasi-sturm-seq) split-sign-changes-subset[dest]:
ps ′ ∈ set (split-sign-changes ps x) =⇒ set ps ′ ⊆ set ps

apply (insert ps-not-Nil)
apply (induction ps x rule: split-sign-changes.induct)
apply (simp, simp, rename-tac p q r ps x,

case-tac poly p x 6= 0 ∧ poly q x = 0 , auto)
done

A custom induction rule for split-sign-changes that uses the fact that all
the intermediate parameters in calls of split-sign-changes are quasi-Sturm
sequences.
lemma (in quasi-sturm-seq) split-sign-changes-induct:
[[
∧

p x. P [p] x;
∧

p q x. quasi-sturm-seq [p,q] =⇒ P [p,q] x;∧
p q r ps x. quasi-sturm-seq (p#q#r#ps) =⇒
[[poly p x 6= 0 =⇒ poly q x = 0 =⇒ P (r#ps) x;
poly q x 6= 0 =⇒ P (q#r#ps) x;
poly p x = 0 =⇒ P (q#r#ps) x]]

=⇒ P (p#q#r#ps) x]] =⇒ P ps x
proof goal-cases

case prems: 1
have quasi-sturm-seq ps ..
with prems show ?thesis
proof (induction ps x rule: split-sign-changes.induct)

case (3 p q r ps x)
show ?case
proof (rule 3 (5)[OF 3 (6)])

assume A: poly p x 6= 0 poly q x = 0
from 3 (6) have quasi-sturm-seq (r#ps)

by (force dest: quasi-sturm-seq-Cons)
with 3 A show P (r # ps) x by blast

next
assume A: poly q x 6= 0
from 3 (6) have quasi-sturm-seq (q#r#ps)

by (force dest: quasi-sturm-seq-Cons)
with 3 A show P (q # r # ps) x by blast

next
assume A: poly p x = 0
from 3 (6) have quasi-sturm-seq (q#r#ps)

by (force dest: quasi-sturm-seq-Cons)
with 3 A show P (q # r # ps) x by blast

qed
qed simp-all

qed

The total number of sign changes in the split list is the same as the number
of sign changes in the original list.
lemma (in quasi-sturm-seq) split-sign-changes-correct:

26

assumes poly (hd ps) x0 6= 0
defines sign-changes ′ ≡ λps x.∑

ps ′←split-sign-changes ps x. sign-changes ps ′ x
shows sign-changes ′ ps x0 = sign-changes ps x0

using assms(1)
proof (induction x0 rule: split-sign-changes-induct)
case (3 p q r ps x0)

hence poly p x0 6= 0 by simp
note IH = 3 (2 ,3 ,4)
show ?case
proof (cases poly q x0 = 0)

case True
from 3 interpret quasi-sturm-seq p#q#r#ps by simp
from signs[of 0] and True have

sgn-r-x0 : poly r x0 ∗ poly p x0 < 0 by simp
with 3 have poly r x0 6= 0 by force
from sign-changes-distrib[OF this, of [p,q] ps]

have sign-changes (p#q#r#ps) x0 =
sign-changes ([p, q, r]) x0 + sign-changes (r # ps) x0 by simp

also have sign-changes (r#ps) x0 = sign-changes ′ (r#ps) x0

using ‹poly q x0 = 0 › ‹poly p x0 6= 0 › 3 (5)‹poly r x0 6= 0 ›
by (intro IH (1)[symmetric], simp-all)

finally show ?thesis unfolding sign-changes ′-def
using True ‹poly p x0 6= 0 › by simp

next
case False

from sign-changes-distrib[OF this, of [p] r#ps]
have sign-changes (p#q#r#ps) x0 =

sign-changes ([p,q]) x0 + sign-changes (q#r#ps) x0 by simp
also have sign-changes (q#r#ps) x0 = sign-changes ′ (q#r#ps) x0

using ‹poly q x0 6= 0 › ‹poly p x0 6= 0 › 3 (5)
by (intro IH (2)[symmetric], simp-all)

finally show ?thesis unfolding sign-changes ′-def
using False by simp

qed
qed (simp-all add: sign-changes-def sign-changes ′-def)

We now prove that if p(x) 6= 0, the number of sign changes of a Sturm
sequence of p at x is constant in a neighbourhood of x.
lemma (in quasi-sturm-seq) split-sign-changes-correct-nbh:

assumes poly (hd ps) x0 6= 0
defines sign-changes ′ ≡ λx0 ps x.∑

ps ′←split-sign-changes ps x0. sign-changes ps ′ x
shows eventually (λx. sign-changes ′ x0 ps x = sign-changes ps x) (at x0)

proof (rule eventually-mono)
show eventually (λx. ∀ p∈{p ∈ set ps. poly p x0 6= 0}. sgn (poly p x) = sgn (poly

p x0)) (at x0)
by (rule eventually-ball-finite, auto intro: poly-neighbourhood-same-sign)

next

27

fix x
show (∀ p∈{p ∈ set ps. poly p x0 6= 0}. sgn (poly p x) = sgn (poly p x0)) =⇒

sign-changes ′ x0 ps x = sign-changes ps x
proof −

fix x assume nbh: ∀ p∈{p ∈ set ps. poly p x0 6= 0}. sgn (poly p x) = sgn (poly
p x0)

thus sign-changes ′ x0 ps x = sign-changes ps x using assms(1)
proof (induction x0 rule: split-sign-changes-induct)
case (3 p q r ps x0)

hence poly p x0 6= 0 by simp
note IH = 3 (2 ,3 ,4)
show ?case
proof (cases poly q x0 = 0)

case True
from 3 interpret quasi-sturm-seq p#q#r#ps by simp
from signs[of 0] and True have

sgn-r-x0 : poly r x0 ∗ poly p x0 < 0 by simp
with 3 have poly r x0 6= 0 by force
with nbh 3 (5) have poly r x 6= 0 by (auto simp: sgn-zero-iff)
from sign-changes-distrib[OF this, of [p,q] ps]

have sign-changes (p#q#r#ps) x =
sign-changes ([p, q, r]) x + sign-changes (r # ps) x by simp

also have sign-changes (r#ps) x = sign-changes ′ x0 (r#ps) x
using ‹poly q x0 = 0 › nbh ‹poly p x0 6= 0 › 3 (5)‹poly r x0 6= 0 ›
by (intro IH (1)[symmetric], simp-all)

finally show ?thesis unfolding sign-changes ′-def
using True ‹poly p x0 6= 0 ›by simp

next
case False

with nbh 3 (5) have poly q x 6= 0 by (auto simp: sgn-zero-iff)
from sign-changes-distrib[OF this, of [p] r#ps]

have sign-changes (p#q#r#ps) x =
sign-changes ([p,q]) x + sign-changes (q#r#ps) x by simp

also have sign-changes (q#r#ps) x = sign-changes ′ x0 (q#r#ps) x
using ‹poly q x0 6= 0 › nbh ‹poly p x0 6= 0 › 3 (5)
by (intro IH (2)[symmetric], simp-all)

finally show ?thesis unfolding sign-changes ′-def
using False by simp

qed
qed (simp-all add: sign-changes-def sign-changes ′-def)

qed
qed

lemma (in quasi-sturm-seq) hd-nonzero-imp-sign-changes-const-aux:
assumes poly (hd ps) x0 6= 0 and ps ′ ∈ set (split-sign-changes ps x0)
shows eventually (λx. sign-changes ps ′ x = sign-changes ps ′ x0) (at x0)

using assms

28

proof (induction x0 rule: split-sign-changes-induct)
case (1 p x)

thus ?case by (simp add: sign-changes-def)
next

case (2 p q x0)
hence [simp]: ps ′ = [p,q] by simp
from 2 have poly p x0 6= 0 by simp
from 2 (1) interpret quasi-sturm-seq [p,q] .
from poly-neighbourhood-same-sign[OF ‹poly p x0 6= 0 ›]

have eventually (λx. sgn (poly p x) = sgn (poly p x0)) (at x0) .
moreover from last-ps-sgn-const

have sgn-q:
∧

x. sgn (poly q x) = sgn (poly q x0) by simp
ultimately have A: eventually (λx. ∀ p∈set[p,q]. sgn (poly p x) =

sgn (poly p x0)) (at x0) by simp
thus ?case by (force intro: eventually-mono[OF A]

sign-changes-cong ′)
next

case (3 p q r ps ′′ x0)
hence p-not-0 : poly p x0 6= 0 by simp
note sturm = 3 (1)
note IH = 3 (2 ,3)
note ps ′′-props = 3 (6)
show ?case
proof (cases poly q x0 = 0)

case True
note q-0 = this
from sturm interpret quasi-sturm-seq p#q#r#ps ′′ .
from signs[of 0] and q-0

have signs ′: poly r x0 ∗ poly p x0 < 0 by simp
with p-not-0 have r-not-0 : poly r x0 6= 0 by force
show ?thesis
proof (cases ps ′ ∈ set (split-sign-changes (r # ps ′′) x0))

case True
show ?thesis by (rule IH (1), fact, fact, simp add: r-not-0 , fact)

next
case False

with ps ′′-props p-not-0 q-0 have ps ′-props: ps ′ = [p,q,r] by simp
from signs[of 0] and q-0

have sgn-r : poly r x0 ∗ poly p x0 < 0 by simp
from p-not-0 sgn-r

have A: eventually (λx. sgn (poly p x) = sgn (poly p x0) ∧
sgn (poly r x) = sgn (poly r x0)) (at x0)

by (intro eventually-conj poly-neighbourhood-same-sign,
simp-all add: r-not-0)

show ?thesis
proof (rule eventually-mono[OF A], clarify,

subst ps ′-props, subst sign-changes-sturm-triple)
fix x assume A: sgn (poly p x) = sgn (poly p x0)

and B: sgn (poly r x) = sgn (poly r x0)

29

have prod-neg:
∧

a (b::real). [[a>0 ; b>0 ; a∗b<0]] =⇒ False∧
a (b::real). [[a<0 ; b<0 ; a∗b<0]] =⇒ False

by (drule mult-pos-pos, simp, simp,
drule mult-neg-neg, simp, simp)

from A and ‹poly p x0 6= 0 › show poly p x 6= 0
by (force simp: sgn-zero-iff)

with sgn-r p-not-0 r-not-0 A B
have poly r x ∗ poly p x < 0 poly r x 6= 0
by (metis sgn-less sgn-mult, metis sgn-0-0)

with sgn-r show sgn-r ′: sgn (poly r x) = − sgn (poly p x)
apply (simp add: sgn-real-def not-le not-less

split: if-split-asm, intro conjI impI)
using prod-neg[of poly r x poly p x] apply force+
done

show 1 = sign-changes ps ′ x0

by (subst ps ′-props, subst sign-changes-sturm-triple,
fact, metis A B sgn-r ′, simp)

qed
qed

next
case False

note q-not-0 = this
show ?thesis
proof (cases ps ′ ∈ set (split-sign-changes (q # r # ps ′′) x0))

case True
show ?thesis by (rule IH (2), fact, simp add: q-not-0 , fact)

next
case False

with ps ′′-props and q-not-0 have ps ′ = [p, q] by simp
hence [simp]: ∀ p∈set ps ′. poly p x0 6= 0

using q-not-0 p-not-0 by simp
show ?thesis
proof (rule eventually-mono)

fix x assume ∀ p∈set ps ′. sgn (poly p x) = sgn (poly p x0)
thus sign-changes ps ′ x = sign-changes ps ′ x0

by (rule sign-changes-cong ′)
next

show eventually (λx. ∀ p∈set ps ′.
sgn (poly p x) = sgn (poly p x0)) (at x0)

by (force intro: eventually-ball-finite
poly-neighbourhood-same-sign)

qed
qed

qed
qed

30

lemma (in quasi-sturm-seq) hd-nonzero-imp-sign-changes-const:
assumes poly (hd ps) x0 6= 0
shows eventually (λx. sign-changes ps x = sign-changes ps x0) (at x0)

proof−
let ?pss = split-sign-changes ps x0

let ?f = λpss x.
∑

ps ′←pss. sign-changes ps ′ x
{

fix pss assume
∧

ps ′. ps ′∈set pss =⇒
eventually (λx. sign-changes ps ′ x = sign-changes ps ′ x0) (at x0)

hence eventually (λx. ?f pss x = ?f pss x0) (at x0)
proof (induction pss)

case (Cons ps ′ pss)
then show ?case

apply (rule eventually-mono[OF eventually-conj])
apply (auto simp add: Cons.prems)
done

qed simp
}
note A = this[of ?pss]
have B: eventually (λx. ?f ?pss x = ?f ?pss x0) (at x0)

by (rule A, rule hd-nonzero-imp-sign-changes-const-aux[OF assms], simp)
note C = split-sign-changes-correct-nbh[OF assms]
note D = split-sign-changes-correct[OF assms]
note E = eventually-conj[OF B C]
show ?thesis by (rule eventually-mono[OF E], auto simp: D)

qed

lemma (in sturm-seq) p-nonzero-imp-sign-changes-const:
poly p x0 6= 0 =⇒

eventually (λx. sign-changes ps x = sign-changes ps x0) (at x0)
using hd-nonzero-imp-sign-changes-const by simp

If x is a root of p and p is not the zero polynomial, the number of sign
changes of a Sturm chain of p decreases by 1 at x.
lemma (in sturm-seq) p-zero:

assumes poly p x0 = 0 p 6= 0
shows eventually (λx. sign-changes ps x =

sign-changes ps x0 + (if x<x0 then 1 else 0)) (at x0)
proof−

from ps-first-two obtain q ps ′ where [simp]: ps = p#q#ps ′ .
hence ps!1 = q by simp
have eventually (λx. x 6= x0) (at x0)

by (simp add: eventually-at, rule exI [of - 1], simp)
moreover from p-squarefree and assms(1) have poly q x0 6= 0 by simp
{

have A: quasi-sturm-seq ps ..
with quasi-sturm-seq-Cons[of p q#ps ′]

interpret quasi-sturm-seq q#ps ′ by simp
from ‹poly q x0 6= 0 › have eventually (λx. sign-changes (q#ps ′) x =

31

sign-changes (q#ps ′) x0) (at x0)
using hd-nonzero-imp-sign-changes-const[where x0=x0] by simp

}
moreover note poly-neighbourhood-without-roots[OF assms(2)] deriv[OF assms(1)]
ultimately

have A: eventually (λx. x 6= x0 ∧ poly p x 6= 0 ∧
sgn (poly (p∗ps!1) x) = (if x > x0 then 1 else −1) ∧
sign-changes (q#ps ′) x = sign-changes (q#ps ′) x0) (at x0)

by (simp only: ‹ps!1 = q›, intro eventually-conj)
show ?thesis
proof (rule eventually-mono[OF A], clarify, goal-cases)

case prems: (1 x)
from zero-less-mult-pos have zero-less-mult-pos ′:∧

a b. [[(0 ::real) < a∗b; 0 < b]] =⇒ 0 < a
by (subgoal-tac a∗b = b∗a, auto)

from prems have poly q x 6= 0 and q-sgn: sgn (poly q x) =
(if x < x0 then −sgn (poly p x) else sgn (poly p x))

by (auto simp add: sgn-real-def elim: linorder-neqE-linordered-idom
dest: mult-neg-neg zero-less-mult-pos
zero-less-mult-pos ′ split: if-split-asm)

from sign-changes-distrib[OF ‹poly q x 6= 0 ›, of [p] ps ′]
have sign-changes ps x = sign-changes [p,q] x + sign-changes (q#ps ′) x

by simp
also from q-sgn and ‹poly p x 6= 0 ›

have sign-changes [p,q] x = (if x<x0 then 1 else 0)
by (simp add: sign-changes-def sgn-zero-iff split: if-split-asm)

also note prems(4)
also from assms(1) have sign-changes (q#ps ′) x0 = sign-changes ps x0

by (simp add: sign-changes-def)
finally show ?case by simp

qed
qed

With these two results, we can now show that if p is nonzero, the number
of roots in an interval of the form (a; b] is the difference of the sign changes
of a Sturm sequence of p at a and b.
First, however, we prove the following auxiliary lemma that shows that if a
function f : R→ N is locally constant at any x ∈ (a; b], it is constant across
the entire interval (a; b]:
lemma count-roots-between-aux:

assumes a ≤ b
assumes ∀ x::real. a < x ∧ x ≤ b −→ eventually (λξ. f ξ = (f x::nat)) (at x)
shows ∀ x. a < x ∧ x ≤ b −→ f x = f b

proof (clarify)
fix x assume x > a x ≤ b
with assms have ∀ x ′. x ≤ x ′ ∧ x ′ ≤ b −→

eventually (λξ. f ξ = f x ′) (at x ′) by auto
from fun-eq-in-ivl[OF ‹x ≤ b› this] show f x = f b .

qed

32

Now we can prove the actual root-counting theorem:
theorem (in sturm-seq) count-roots-between:

assumes [simp]: p 6= 0 a ≤ b
shows sign-changes ps a − sign-changes ps b =

card {x. x > a ∧ x ≤ b ∧ poly p x = 0}
proof−

have sign-changes ps a − int (sign-changes ps b) =
card {x. x > a ∧ x ≤ b ∧ poly p x = 0} using ‹a ≤ b›

proof (induction card {x. x > a ∧ x ≤ b ∧ poly p x = 0} arbitrary: a b
rule: less-induct)

case (less a b)
show ?case
proof (cases ∃ x. a < x ∧ x ≤ b ∧ poly p x = 0)

case False
hence no-roots: {x. a < x ∧ x ≤ b ∧ poly p x = 0} = {}

(is ?roots=-) by auto
hence card-roots: card ?roots = (0 ::int) by (subst no-roots, simp)
show ?thesis
proof (simp only: card-roots eq-iff-diff-eq-0 [symmetric] of-nat-eq-iff ,

cases poly p a = 0)
case False

with no-roots show sign-changes ps a = sign-changes ps b
by (force intro: fun-eq-in-ivl ‹a ≤ b›

p-nonzero-imp-sign-changes-const)
next

case True
have A: ∀ x. a < x ∧ x ≤ b −→ sign-changes ps x = sign-changes ps b

apply (rule count-roots-between-aux, fact, clarify)
apply (rule p-nonzero-imp-sign-changes-const)
apply (insert False, simp)
done

have eventually (λx. x > a −→
sign-changes ps x = sign-changes ps a) (at a)

apply (rule eventually-mono [OF p-zero[OF ‹poly p a = 0 › ‹p 6=
0 ›]])

apply force
done

then obtain δ where δ-props:
δ > 0 ∀ x. x > a ∧ x < a+δ −→

sign-changes ps x = sign-changes ps a
by (auto simp: eventually-at dist-real-def)

show sign-changes ps a = sign-changes ps b
proof (cases a = b)

case False
define x where x = min (a+δ/2) b
with False have a < x x < a+δ x ≤ b

using ‹δ > 0 › ‹a ≤ b› by simp-all
from δ-props ‹a < x› ‹x < a+δ›

33

have sign-changes ps a = sign-changes ps x by simp
also from A ‹a < x› ‹x ≤ b› have ... = sign-changes ps b

by blast
finally show ?thesis .

qed simp
qed

next
case True

from poly-roots-finite[OF assms(1)]
have fin: finite {x. x > a ∧ x ≤ b ∧ poly p x = 0}
by (force intro: finite-subset)

from True have {x. x > a ∧ x ≤ b ∧ poly p x = 0} 6= {} by blast
with fin have card-greater-0 :

card {x. x > a ∧ x ≤ b ∧ poly p x = 0} > 0 by fastforce

define x2 where x2 = Min {x. x > a ∧ x ≤ b ∧ poly p x = 0}
from Min-in[OF fin] and True

have x2-props: x2 > a x2 ≤ b poly p x2 = 0
unfolding x2-def by blast+

from Min-le[OF fin] x2-props
have x2-le:

∧
x ′. [[x ′ > a; x ′ ≤ b; poly p x ′ = 0]] =⇒ x2 ≤ x ′

unfolding x2-def by simp

have left: {x. a < x ∧ x ≤ x2 ∧ poly p x = 0} = {x2}
using x2-props x2-le by force

hence [simp]: card {x. a < x ∧ x ≤ x2 ∧ poly p x = 0} = 1 by simp

from p-zero[OF ‹poly p x2 = 0 › ‹p 6= 0 ›,
unfolded eventually-at dist-real-def] guess ε ..

hence ε-props: ε > 0
∀ x. x 6= x2 ∧ |x − x2| < ε −→

sign-changes ps x = sign-changes ps x2 +
(if x < x2 then 1 else 0) by auto

define x1 where x1 = max (x2 − ε / 2) a
have |x1 − x2| < ε using ‹ε > 0 › x2-props by (simp add: x1-def)
hence sign-changes ps x1 =

(if x1 < x2 then sign-changes ps x2 + 1 else sign-changes ps x2)
using ε-props(2) by (cases x1 = x2, auto)

hence sign-changes ps x1 − sign-changes ps x2 = 1
unfolding x1-def using x2-props ‹ε > 0 › by simp

also have x2 /∈ {x. a < x ∧ x ≤ x1 ∧ poly p x = 0}
unfolding x1-def using ‹ε > 0 › by force

with left have {x. a < x ∧ x ≤ x1 ∧ poly p x = 0} = {} by force
with less(1)[of a x1] have sign-changes ps x1 = sign-changes ps a

unfolding x1-def ‹ε > 0 › by (force simp: card-greater-0)

finally have signs-left:

34

sign-changes ps a − int (sign-changes ps x2) = 1 by simp

have {x. x > a ∧ x ≤ b ∧ poly p x = 0} =
{x. a < x ∧ x ≤ x2 ∧ poly p x = 0} ∪
{x. x2 < x ∧ x ≤ b ∧ poly p x = 0} using x2-props by auto

also note left
finally have A: card {x. x2 < x ∧ x ≤ b ∧ poly p x = 0} + 1 =

card {x. a < x ∧ x ≤ b ∧ poly p x = 0} using fin by simp
hence card {x. x2 < x ∧ x ≤ b ∧ poly p x = 0} <

card {x. a < x ∧ x ≤ b ∧ poly p x = 0} by simp
from less(1)[OF this x2-props(2)] and A

have signs-right: sign-changes ps x2 − int (sign-changes ps b) + 1 =
card {x. a < x ∧ x ≤ b ∧ poly p x = 0} by simp

from signs-left and signs-right show ?thesis by simp
qed

qed
thus ?thesis by simp

qed

By applying this result to a sufficiently large upper bound, we can effectively
count the number of roots “between a and infinity”, i. e. the roots greater
than a:
lemma (in sturm-seq) count-roots-above:

assumes p 6= 0
shows sign-changes ps a − sign-changes-inf ps =

card {x. x > a ∧ poly p x = 0}
proof−

have p ∈ set ps using hd-in-set[OF ps-not-Nil] by simp
have finite (set ps) by simp
from polys-inf-sign-thresholds[OF this] guess l u .
note lu-props = this
let ?u = max a u
{fix x assume poly p x = 0 hence x ≤ ?u
using lu-props(3)[OF ‹p ∈ set ps›, of x] ‹p 6= 0 ›

by (cases u ≤ x, auto simp: sgn-zero-iff)
} note [simp] = this

from lu-props
have map (λp. sgn (poly p ?u)) ps = map poly-inf ps by simp

hence sign-changes ps a − sign-changes-inf ps =
sign-changes ps a − sign-changes ps ?u

by (simp-all only: sign-changes-def sign-changes-inf-def)
also from count-roots-between[OF assms] lu-props

have ... = card {x. a < x ∧ x ≤ ?u ∧ poly p x = 0} by simp
also have {x. a < x ∧ x ≤ ?u ∧ poly p x = 0} = {x. a < x ∧ poly p x = 0}

using lu-props by auto
finally show ?thesis .

qed

35

The same works analogously for the number of roots below a and the total
number of roots.
lemma (in sturm-seq) count-roots-below:

assumes p 6= 0
shows sign-changes-neg-inf ps − sign-changes ps a =

card {x. x ≤ a ∧ poly p x = 0}
proof−

have p ∈ set ps using hd-in-set[OF ps-not-Nil] by simp
have finite (set ps) by simp
from polys-inf-sign-thresholds[OF this] guess l u .
note lu-props = this
let ?l = min a l
{fix x assume poly p x = 0 hence x > ?l
using lu-props(4)[OF ‹p ∈ set ps›, of x] ‹p 6= 0 ›

by (cases l < x, auto simp: sgn-zero-iff)
} note [simp] = this

from lu-props
have map (λp. sgn (poly p ?l)) ps = map poly-neg-inf ps by simp

hence sign-changes-neg-inf ps − sign-changes ps a =
sign-changes ps ?l − sign-changes ps a

by (simp-all only: sign-changes-def sign-changes-neg-inf-def)
also from count-roots-between[OF assms] lu-props

have ... = card {x. ?l < x ∧ x ≤ a ∧ poly p x = 0} by simp
also have {x. ?l < x ∧ x ≤ a ∧ poly p x = 0} = {x. a ≥ x ∧ poly p x = 0}

using lu-props by auto
finally show ?thesis .

qed

lemma (in sturm-seq) count-roots:
assumes p 6= 0
shows sign-changes-neg-inf ps − sign-changes-inf ps =

card {x. poly p x = 0}
proof−

have finite (set ps) by simp
from polys-inf-sign-thresholds[OF this] guess l u .
note lu-props = this

from lu-props
have map (λp. sgn (poly p l)) ps = map poly-neg-inf ps

map (λp. sgn (poly p u)) ps = map poly-inf ps by simp-all
hence sign-changes-neg-inf ps − sign-changes-inf ps =

sign-changes ps l − sign-changes ps u
by (simp-all only: sign-changes-def sign-changes-inf-def

sign-changes-neg-inf-def)
also from count-roots-between[OF assms] lu-props

have ... = card {x. l < x ∧ x ≤ u ∧ poly p x = 0} by simp
also have {x. l < x ∧ x ≤ u ∧ poly p x = 0} = {x. poly p x = 0}

using lu-props assms by simp

36

finally show ?thesis .
qed

2.4 Constructing Sturm sequences
2.5 The canonical Sturm sequence

In this subsection, we will present the canonical Sturm sequence construc-
tion for a polynomial p without multiple roots that is very similar to the
Euclidean algorithm:

pi =


p for i = 1

p′ for i = 2

−pi−2 mod pi−1 otherwise

We break off the sequence at the first constant polynomial.

function sturm-aux where
sturm-aux (p :: real poly) q =

(if degree q = 0 then [p,q] else p # sturm-aux q (−(p mod q)))
by (pat-completeness, simp-all)

termination by (relation measure (degree ◦ snd),
simp-all add: o-def degree-mod-less ′)

definition sturm where sturm p = sturm-aux p (pderiv p)

Next, we show some simple facts about this construction:
lemma sturm-0 [simp]: sturm 0 = [0 ,0]

by (unfold sturm-def , subst sturm-aux.simps, simp)

lemma [simp]: sturm-aux p q = [] ←→ False
by (induction p q rule: sturm-aux.induct, subst sturm-aux.simps, auto)

lemma sturm-neq-Nil[simp]: sturm p 6= [] unfolding sturm-def by simp

lemma [simp]: hd (sturm p) = p
unfolding sturm-def by (subst sturm-aux.simps, simp)

lemma [simp]: p ∈ set (sturm p)
using hd-in-set[OF sturm-neq-Nil] by simp

lemma [simp]: length (sturm p) ≥ 2
proof−

{fix q have length (sturm-aux p q) ≥ 2
by (induction p q rule: sturm-aux.induct, subst sturm-aux.simps, auto)

}
thus ?thesis unfolding sturm-def .

qed

37

lemma [simp]: degree (last (sturm p)) = 0
proof−

{fix q have degree (last (sturm-aux p q)) = 0
by (induction p q rule: sturm-aux.induct, subst sturm-aux.simps, simp)

}
thus ?thesis unfolding sturm-def .

qed

lemma [simp]: sturm-aux p q ! 0 = p
by (subst sturm-aux.simps, simp)

lemma [simp]: sturm-aux p q ! Suc 0 = q
by (subst sturm-aux.simps, simp)

lemma [simp]: sturm p ! 0 = p
unfolding sturm-def by simp

lemma [simp]: sturm p ! Suc 0 = pderiv p
unfolding sturm-def by simp

lemma sturm-indices:
assumes i < length (sturm p) − 2
shows sturm p!(i+2) = −(sturm p!i mod sturm p!(i+1))

proof−
{fix ps q
have [[ps = sturm-aux p q; i < length ps − 2]]

=⇒ ps!(i+2) = −(ps!i mod ps!(i+1))
proof (induction p q arbitrary: ps i rule: sturm-aux.induct)

case (1 p q)
show ?case
proof (cases i = 0)

case False
then obtain i ′ where [simp]: i = Suc i ′ by (cases i, simp-all)
hence length ps ≥ 4 using 1 by simp
with 1 (2) have deg: degree q 6= 0

by (subst (asm) sturm-aux.simps, simp split: if-split-asm)
with 1 (2) obtain ps ′ where [simp]: ps = p # ps ′

by (subst (asm) sturm-aux.simps, simp)
with 1 (2) deg have ps ′: ps ′ = sturm-aux q (−(p mod q))

by (subst (asm) sturm-aux.simps, simp)
from ‹length ps ≥ 4 › and ‹ps = p # ps ′› 1 (3) False

have i − 1 < length ps ′ − 2 by simp
from 1 (1)[OF deg ps ′ this]

show ?thesis by simp
next

case True
with 1 (3) have length ps ≥ 3 by simp
with 1 (2) have degree q 6= 0

by (subst (asm) sturm-aux.simps, simp split: if-split-asm)

38

with 1 (2) have [simp]: sturm-aux p q ! Suc (Suc 0) = −(p mod q)
by (subst sturm-aux.simps, simp)

from True have ps!i = p ps!(i+1) = q ps!(i+2) = −(p mod q)
by (simp-all add: 1 (2))

thus ?thesis by simp
qed

qed}
from this[OF sturm-def assms] show ?thesis .

qed

If the Sturm sequence construction is applied to polynomials p and q, the
greatest common divisor of p and q a divisor of every element in the sequence.
This is obvious from the similarity to Euclid’s algorithm for computing the
GCD.
lemma sturm-aux-gcd: r ∈ set (sturm-aux p q) =⇒ gcd p q dvd r
proof (induction p q rule: sturm-aux.induct)

case (1 p q)
show ?case
proof (cases r = p)

case False
with 1 (2) have r : r ∈ set (sturm-aux q (−(p mod q)))

by (subst (asm) sturm-aux.simps, simp split: if-split-asm,
subst sturm-aux.simps, simp)

show ?thesis
proof (cases degree q = 0)

case False
hence q 6= 0 by force
with 1 (1) [OF False r] show ?thesis

by (simp add: gcd-mod-right ac-simps)
next

case True
with 1 (2) and ‹r 6= p› have r = q

by (subst (asm) sturm-aux.simps, simp)
thus ?thesis by simp

qed
qed simp

qed

lemma sturm-gcd: r ∈ set (sturm p) =⇒ gcd p (pderiv p) dvd r
unfolding sturm-def by (rule sturm-aux-gcd)

If two adjacent polynomials in the result of the canonical Sturm chain con-
struction both have a root at some x, this x is a root of all polynomials in
the sequence.
lemma sturm-adjacent-root-propagate-left:

assumes i < length (sturm (p :: real poly)) − 1
assumes poly (sturm p ! i) x = 0

and poly (sturm p ! (i + 1)) x = 0

39

shows ∀ j≤i+1 . poly (sturm p ! j) x = 0
using assms(2)
proof (intro sturm-adjacent-root-aux[OF assms(1 ,2 ,3)], goal-cases)

case prems: (1 i x)
let ?p = sturm p ! i
let ?q = sturm p ! (i + 1)
let ?r = sturm p ! (i + 2)
from sturm-indices[OF prems(2)] have ?p = ?p div ?q ∗ ?q − ?r

by (simp add: div-mult-mod-eq)
hence poly ?p x = poly (?p div ?q ∗ ?q − ?r) x by simp
hence poly ?p x = −poly ?r x using prems(3) by simp
thus ?case by (simp add: sgn-minus)

qed

Consequently, if this is the case in the canonical Sturm chain of p, p must
have multiple roots.
lemma sturm-adjacent-root-not-squarefree:

assumes i < length (sturm (p :: real poly)) − 1
poly (sturm p ! i) x = 0 poly (sturm p ! (i + 1)) x = 0

shows ¬rsquarefree p
proof−

from sturm-adjacent-root-propagate-left[OF assms]
have poly p x = 0 poly (pderiv p) x = 0 by auto

thus ?thesis by (auto simp: rsquarefree-roots)
qed

Since the second element of the sequence is chosen to be the derivative of p,
p1 and p2 fulfil the property demanded by the definition of a Sturm sequence
that they locally have opposite sign left of a root x of p and the same sign
to the right of x.
lemma sturm-firsttwo-signs-aux:

assumes (p :: real poly) 6= 0 q 6= 0
assumes q-pderiv:

eventually (λx. sgn (poly q x) = sgn (poly (pderiv p) x)) (at x0)
assumes p-0 : poly p (x0::real) = 0
shows eventually (λx. sgn (poly (p∗q) x) = (if x > x0 then 1 else −1)) (at x0)

proof−
have A: eventually (λx. poly p x 6= 0 ∧ poly q x 6= 0 ∧

sgn (poly q x) = sgn (poly (pderiv p) x)) (at x0)
using ‹p 6= 0 › ‹q 6= 0 ›
by (intro poly-neighbourhood-same-sign q-pderiv

poly-neighbourhood-without-roots eventually-conj)
then obtain ε where ε-props: ε > 0 ∀ x. x 6= x0 ∧ |x − x0| < ε −→

poly p x 6= 0 ∧ poly q x 6= 0 ∧ sgn (poly (pderiv p) x) = sgn (poly q x)
by (auto simp: eventually-at dist-real-def)

have sqr-pos:
∧

x::real. x 6= 0 =⇒ sgn x ∗ sgn x = 1
by (auto simp: sgn-real-def)

show ?thesis

40

proof (simp only: eventually-at dist-real-def , rule exI [of - ε],
intro conjI , fact ‹ε > 0 ›, clarify)

fix x assume x 6= x0 |x − x0| < ε
with ε-props have [simp]: poly p x 6= 0 poly q x 6= 0

sgn (poly (pderiv p) x) = sgn (poly q x) by auto
show sgn (poly (p∗q) x) = (if x > x0 then 1 else −1)
proof (cases x ≥ x0)

case True
with ‹x 6= x0› have x > x0 by simp
from poly-MVT [OF this, of p] guess ξ ..
note ξ-props = this
with ‹|x − x0| < ε› ‹poly p x0 = 0 › ‹x > x0› ε-props

have |ξ − x0| < ε sgn (poly p x) = sgn (x − x0) ∗ sgn (poly q ξ)
by (auto simp add: q-pderiv sgn-mult)

moreover from ξ-props ε-props ‹|x − x0| < ε›
have ∀ t. ξ ≤ t ∧ t ≤ x −→ poly q t 6= 0 by auto

hence sgn (poly q ξ) = sgn (poly q x) using ξ-props ε-props
by (intro no-roots-inbetween-imp-same-sign, simp-all)

ultimately show ?thesis using True ‹x 6= x0› ε-props ξ-props
by (auto simp: sgn-mult sqr-pos)

next
case False

hence x < x0 by simp
hence sgn: sgn (x − x0) = −1 by simp
from poly-MVT [OF ‹x < x0›, of p] guess ξ ..
note ξ-props = this
with ‹|x − x0| < ε› ‹poly p x0 = 0 › ‹x < x0› ε-props

have |ξ − x0| < ε poly p x = (x − x0) ∗ poly (pderiv p) ξ
poly p ξ 6= 0 by (auto simp: field-simps)

hence sgn (poly p x) = sgn (x − x0) ∗ sgn (poly q ξ)
using ε-props ξ-props by (auto simp: q-pderiv sgn-mult)

moreover from ξ-props ε-props ‹|x − x0| < ε›
have ∀ t. x ≤ t ∧ t ≤ ξ −→ poly q t 6= 0 by auto

hence sgn (poly q ξ) = sgn (poly q x) using ξ-props ε-props
by (rule-tac sym, intro no-roots-inbetween-imp-same-sign, simp-all)

ultimately show ?thesis using False ‹x 6= x0›
by (auto simp: sgn-mult sqr-pos)

qed
qed

qed

lemma sturm-firsttwo-signs:
fixes ps :: real poly list
assumes squarefree: rsquarefree p
assumes p-0 : poly p (x0::real) = 0
shows eventually (λx. sgn (poly (p ∗ sturm p ! 1) x) =

(if x > x0 then 1 else −1)) (at x0)
proof−

from assms have [simp]: p 6= 0 by (auto simp add: rsquarefree-roots)

41

with squarefree p-0 have [simp]: pderiv p 6= 0
by (auto simp add:rsquarefree-roots)

from assms show ?thesis
by (intro sturm-firsttwo-signs-aux,

simp-all add: rsquarefree-roots)
qed

The construction also obviously fulfils the property about three adjacent
polynomials in the sequence.
lemma sturm-signs:

assumes squarefree: rsquarefree p
assumes i-in-range: i < length (sturm (p :: real poly)) − 2
assumes q-0 : poly (sturm p ! (i+1)) x = 0 (is poly ?q x = 0)
shows poly (sturm p ! (i+2)) x ∗ poly (sturm p ! i) x < 0

(is poly ?p x ∗ poly ?r x < 0)
proof−

from sturm-indices[OF i-in-range]
have sturm p ! (i+2) = − (sturm p ! i mod sturm p ! (i+1))

(is ?r = − (?p mod ?q)) .
hence −?r = ?p mod ?q by simp
with div-mult-mod-eq[of ?p ?q] have ?p div ?q ∗ ?q − ?r = ?p by simp
hence poly (?p div ?q) x ∗ poly ?q x − poly ?r x = poly ?p x

by (metis poly-diff poly-mult)
with q-0 have r-x: poly ?r x = −poly ?p x by simp
moreover have sqr-pos:

∧
x::real. x 6= 0 =⇒ x ∗ x > 0 apply (case-tac x ≥ 0)

by (simp-all add: mult-neg-neg)
from sturm-adjacent-root-not-squarefree[of i p] assms r-x

have poly ?p x ∗ poly ?p x > 0 by (force intro: sqr-pos)
ultimately show poly ?r x ∗ poly ?p x < 0 by simp

qed

Finally, if p contains no multiple roots, sturm p, i.e. the canonical Sturm
sequence for p, is a Sturm sequence and can be used to determine the number
of roots of p.
lemma sturm-seq-sturm[simp]:

assumes rsquarefree p
shows sturm-seq (sturm p) p

proof
show sturm p 6= [] by simp
show hd (sturm p) = p by simp
show length (sturm p) ≥ 2 by simp
from assms show

∧
x. ¬(poly p x = 0 ∧ poly (sturm p ! 1) x = 0)

by (simp add: rsquarefree-roots)
next

fix x :: real and y :: real
have degree (last (sturm p)) = 0 by simp
then obtain c where last (sturm p) = [:c:]

by (cases last (sturm p), simp split: if-split-asm)
thus

∧
x y. sgn (poly (last (sturm p)) x) =

42

sgn (poly (last (sturm p)) y) by simp
next

from sturm-firsttwo-signs[OF assms]
show

∧
x0. poly p x0 = 0 =⇒

eventually (λx. sgn (poly (p∗sturm p ! 1) x) =
(if x > x0 then 1 else −1)) (at x0) by simp

next
from sturm-signs[OF assms]

show
∧

i x. [[i < length (sturm p) − 2 ; poly (sturm p ! (i + 1)) x = 0]]
=⇒ poly (sturm p ! (i + 2)) x ∗ poly (sturm p ! i) x < 0 by simp

qed

2.5.1 Canonical squarefree Sturm sequence

The previous construction does not work for polynomials with multiple
roots, but we can simply “divide away” multiple roots by dividing p by
the GCD of p and p′. The resulting polynomial has the same roots as p, but
with multiplicity 1, allowing us to again use the canonical construction.
definition sturm-squarefree where

sturm-squarefree p = sturm (p div (gcd p (pderiv p)))

lemma sturm-squarefree-not-Nil[simp]: sturm-squarefree p 6= []
by (simp add: sturm-squarefree-def)

lemma sturm-seq-sturm-squarefree:
assumes [simp]: p 6= 0
defines [simp]: p ′ ≡ p div gcd p (pderiv p)
shows sturm-seq (sturm-squarefree p) p ′

proof
have rsquarefree p ′

proof (subst rsquarefree-roots, clarify)
fix x assume poly p ′ x = 0 poly (pderiv p ′) x = 0
hence [:−x,1 :] dvd gcd p ′ (pderiv p ′) by (simp add: poly-eq-0-iff-dvd)
also from poly-div-gcd-squarefree(1)[OF assms(1)]

have gcd p ′ (pderiv p ′) = 1 by simp
finally show False by (simp add: poly-eq-0-iff-dvd[symmetric])

qed

from sturm-seq-sturm[OF ‹rsquarefree p ′›]
interpret sturm-seq: sturm-seq sturm-squarefree p p ′

by (simp add: sturm-squarefree-def)

show
∧

x y. sgn (poly (last (sturm-squarefree p)) x) =
sgn (poly (last (sturm-squarefree p)) y) by simp

show sturm-squarefree p 6= [] by simp
show hd (sturm-squarefree p) = p ′ by (simp add: sturm-squarefree-def)
show length (sturm-squarefree p) ≥ 2 by simp

43

have [simp]: sturm-squarefree p ! 0 = p ′

sturm-squarefree p ! Suc 0 = pderiv p ′

by (simp-all add: sturm-squarefree-def)

from ‹rsquarefree p ′›
show

∧
x. ¬ (poly p ′ x = 0 ∧ poly (sturm-squarefree p ! 1) x = 0)

by (simp add: rsquarefree-roots)

from sturm-seq.signs show
∧

i x. [[i < length (sturm-squarefree p) − 2 ;
poly (sturm-squarefree p ! (i + 1)) x = 0]]
=⇒ poly (sturm-squarefree p ! (i + 2)) x ∗

poly (sturm-squarefree p ! i) x < 0 .

from sturm-seq.deriv show
∧

x0. poly p ′ x0 = 0 =⇒
eventually (λx. sgn (poly (p ′ ∗ sturm-squarefree p ! 1) x) =

(if x > x0 then 1 else −1)) (at x0) .
qed

2.5.2 Optimisation for multiple roots

We can also define the following non-canonical Sturm sequence that is ob-
tained by taking the canonical Sturm sequence of p (possibly with multiple
roots) and then dividing the entire sequence by the GCD of p and its deriva-
tive.
definition sturm-squarefree ′ where
sturm-squarefree ′ p = (let d = gcd p (pderiv p)

in map (λp ′. p ′ div d) (sturm p))

This construction also has all the desired properties:
lemma sturm-squarefree ′-adjacent-root-propagate-left:

assumes p 6= 0
assumes i < length (sturm-squarefree ′ (p :: real poly)) − 1
assumes poly (sturm-squarefree ′ p ! i) x = 0

and poly (sturm-squarefree ′ p ! (i + 1)) x = 0
shows ∀ j≤i+1 . poly (sturm-squarefree ′ p ! j) x = 0

proof (intro sturm-adjacent-root-aux[OF assms(2 ,3 ,4)], goal-cases)
case prems: (1 i x)

define q where q = sturm p ! i
define r where r = sturm p ! (Suc i)
define s where s = sturm p ! (Suc (Suc i))
define d where d = gcd p (pderiv p)
define q ′ r ′ s ′ where q ′ = q div d and r ′ = r div d and s ′ = s div d
from ‹p 6= 0 › have d 6= 0 unfolding d-def by simp
from prems(1) have i-in-range: i < length (sturm p) − 2

unfolding sturm-squarefree ′-def Let-def by simp
have [simp]: d dvd q d dvd r d dvd s unfolding q-def r-def s-def d-def

using i-in-range by (auto intro: sturm-gcd)

44

hence qrs-simps: q = q ′ ∗ d r = r ′ ∗ d s = s ′ ∗ d
unfolding q ′-def r ′-def s ′-def by (simp-all)

with prems(2) i-in-range have r ′-0 : poly r ′ x = 0
unfolding r ′-def r-def d-def sturm-squarefree ′-def Let-def by simp

hence r-0 : poly r x = 0 by (simp add: ‹r = r ′ ∗ d›)
from sturm-indices[OF i-in-range] have q = q div r ∗ r − s

unfolding q-def r-def s-def by (simp add: div-mult-mod-eq)
hence q ′ = (q div r ∗ r − s) div d by (simp add: q ′-def)
also have ... = (q div r ∗ r) div d − s ′

by (simp add: s ′-def poly-div-diff-left)
also have ... = q div r ∗ r ′ − s ′

using dvd-div-mult[OF ‹d dvd r›, of q div r]
by (simp add: algebra-simps r ′-def)

also have q div r = q ′ div r ′ by (simp add: qrs-simps ‹d 6= 0 ›)
finally have poly q ′ x = poly (q ′ div r ′ ∗ r ′ − s ′) x by simp
also from r ′-0 have ... = −poly s ′ x by simp
finally have poly s ′ x = −poly q ′ x by simp
thus ?case using i-in-range

unfolding q ′-def s ′-def q-def s-def sturm-squarefree ′-def Let-def
by (simp add: d-def sgn-minus)

qed

lemma sturm-squarefree ′-adjacent-roots:
assumes p 6= 0

i < length (sturm-squarefree ′ (p :: real poly)) − 1
poly (sturm-squarefree ′ p ! i) x = 0
poly (sturm-squarefree ′ p ! (i + 1)) x = 0

shows False
proof−

define d where d = gcd p (pderiv p)
from sturm-squarefree ′-adjacent-root-propagate-left[OF assms]

have poly (sturm-squarefree ′ p ! 0) x = 0
poly (sturm-squarefree ′ p ! 1) x = 0 by auto

hence poly (p div d) x = 0 poly (pderiv p div d) x = 0
using assms(2)
unfolding sturm-squarefree ′-def Let-def d-def by auto

moreover from div-gcd-coprime assms(1)
have coprime (p div d) (pderiv p div d) unfolding d-def by auto

ultimately show False using coprime-imp-no-common-roots by auto
qed

lemma sturm-squarefree ′-signs:
assumes p 6= 0
assumes i-in-range: i < length (sturm-squarefree ′ (p :: real poly)) − 2
assumes q-0 : poly (sturm-squarefree ′ p ! (i+1)) x = 0 (is poly ?q x = 0)
shows poly (sturm-squarefree ′ p ! (i+2)) x ∗

poly (sturm-squarefree ′ p ! i) x < 0
(is poly ?r x ∗ poly ?p x < 0)

proof−

45

define d where d = gcd p (pderiv p)
with ‹p 6= 0 › have [simp]: d 6= 0 by simp
from poly-div-gcd-squarefree(1)[OF ‹p 6= 0 ›]

coprime-imp-no-common-roots
have rsquarefree: rsquarefree (p div d)
by (auto simp: rsquarefree-roots d-def)

from i-in-range have i-in-range ′: i < length (sturm p) − 2
unfolding sturm-squarefree ′-def by simp

hence d dvd (sturm p ! i) (is d dvd ?p ′)
d dvd (sturm p ! (Suc i)) (is d dvd ?q ′)
d dvd (sturm p ! (Suc (Suc i))) (is d dvd ?r ′)

unfolding d-def by (auto intro: sturm-gcd)
hence pqr-simps: ?p ′ = ?p ∗ d ?q ′ = ?q ∗ d ?r ′ = ?r ∗ d

unfolding sturm-squarefree ′-def Let-def d-def using i-in-range ′

by (auto simp: dvd-div-mult-self)
with q-0 have q ′-0 : poly ?q ′ x = 0 by simp
from sturm-indices[OF i-in-range ′]

have sturm p ! (i+2) = − (sturm p ! i mod sturm p ! (i+1)) .
hence −?r ′ = ?p ′ mod ?q ′ by simp
with div-mult-mod-eq[of ?p ′ ?q ′] have ?p ′ div ?q ′ ∗ ?q ′ − ?r ′ = ?p ′ by simp
hence d∗(?p div ?q ∗ ?q − ?r) = d∗ ?p by (simp add: pqr-simps algebra-simps)
hence ?p div ?q ∗ ?q − ?r = ?p by simp
hence poly (?p div ?q) x ∗ poly ?q x − poly ?r x = poly ?p x

by (metis poly-diff poly-mult)
with q-0 have r-x: poly ?r x = −poly ?p x by simp

from sturm-squarefree ′-adjacent-roots[OF ‹p 6= 0 ›] i-in-range q-0
have poly ?p x 6= 0 by force

moreover have sqr-pos:
∧

x::real. x 6= 0 =⇒ x ∗ x > 0 apply (case-tac x ≥ 0)
by (simp-all add: mult-neg-neg)

ultimately show ?thesis using r-x by simp
qed

This approach indeed also yields a valid squarefree Sturm sequence for the
polynomial p/gcd(p, p′).
lemma sturm-seq-sturm-squarefree ′:

assumes (p :: real poly) 6= 0
defines d ≡ gcd p (pderiv p)
shows sturm-seq (sturm-squarefree ′ p) (p div d)

(is sturm-seq ?ps ′ ?p ′)
proof

show ?ps ′ 6= [] hd ?ps ′ = ?p ′ 2 ≤ length ?ps ′

by (simp-all add: sturm-squarefree ′-def d-def hd-map)

from assms have d 6= 0 by simp
{

have d dvd last (sturm p) unfolding d-def
by (rule sturm-gcd, simp)

46

hence ∗: last (sturm p) = last ?ps ′ ∗ d
by (simp add: sturm-squarefree ′-def last-map d-def dvd-div-mult-self)

then have last ?ps ′ dvd last (sturm p) by simp
with ∗ dvd-imp-degree-le[OF this] have degree (last ?ps ′) ≤ degree (last (sturm

p))
using ‹d 6= 0 › by (cases last ?ps ′ = 0) auto

hence degree (last ?ps ′) = 0 by simp
then obtain c where last ?ps ′ = [:c:]

by (cases last ?ps ′, simp split: if-split-asm)
thus

∧
x y. sgn (poly (last ?ps ′) x) = sgn (poly (last ?ps ′) y) by simp

}

have squarefree: rsquarefree ?p ′ using ‹p 6= 0 ›
by (subst rsquarefree-roots, unfold d-def ,

intro allI coprime-imp-no-common-roots poly-div-gcd-squarefree)
have [simp]: sturm-squarefree ′ p ! Suc 0 = pderiv p div d

unfolding sturm-squarefree ′-def Let-def sturm-def d-def
by (subst sturm-aux.simps, simp)

have coprime: coprime ?p ′ (pderiv p div d)
unfolding d-def using div-gcd-coprime ‹p 6= 0 › by blast

thus squarefree ′:∧
x. ¬ (poly (p div d) x = 0 ∧ poly (sturm-squarefree ′ p ! 1) x = 0)

using coprime-imp-no-common-roots by simp

from sturm-squarefree ′-signs[OF ‹p 6= 0 ›]
show

∧
i x. [[i < length ?ps ′ − 2 ; poly (?ps ′ ! (i + 1)) x = 0]]
=⇒ poly (?ps ′ ! (i + 2)) x ∗ poly (?ps ′ ! i) x < 0 .

have [simp]: ?p ′ 6= 0 using squarefree by (simp add: rsquarefree-def)
have A: ?p ′ = ?ps ′ ! 0 pderiv p div d = ?ps ′ ! 1

by (simp-all add: sturm-squarefree ′-def Let-def d-def sturm-def ,
subst sturm-aux.simps, simp)

have [simp]: ?ps ′ ! 0 6= 0 using squarefree
by (auto simp: A rsquarefree-def)

fix x0 :: real
assume poly ?p ′ x0 = 0
hence poly p x0 = 0 using poly-div-gcd-squarefree(2)[OF ‹p 6= 0 ›]

unfolding d-def by simp
hence pderiv p 6= 0 using ‹p 6= 0 › by (auto dest: pderiv-iszero)
with ‹p 6= 0 › ‹poly p x0 = 0 ›

have A: eventually (λx. sgn (poly (p ∗ pderiv p) x) =
(if x0 < x then 1 else −1)) (at x0)

by (intro sturm-firsttwo-signs-aux, simp-all)
note ev = eventually-conj[OF A poly-neighbourhood-without-roots[OF ‹d 6= 0 ›]]

show eventually (λx. sgn (poly (p div d ∗ sturm-squarefree ′ p ! 1) x) =
(if x0 < x then 1 else −1)) (at x0)

proof (rule eventually-mono[OF ev], goal-cases)

47

have [intro]:∧
a (b::real). b 6= 0 =⇒ a < 0 =⇒ a / (b ∗ b) < 0∧
a (b::real). b 6= 0 =⇒ a > 0 =⇒ a / (b ∗ b) > 0

by ((case-tac b > 0 ,
auto simp: mult-neg-neg field-simps) [])+

case prems: (1 x)
hence [simp]: poly d x ∗ poly d x > 0

by (cases poly d x > 0 , auto simp: mult-neg-neg)
from poly-div-gcd-squarefree-aux(2)[OF ‹pderiv p 6= 0 ›]

have poly (p div d) x = 0 ←→ poly p x = 0 by (simp add: d-def)
moreover have d dvd p d dvd pderiv p unfolding d-def by simp-all
ultimately show ?case using prems

by (auto simp: sgn-real-def poly-div not-less[symmetric]
zero-less-divide-iff split: if-split-asm)

qed
qed

This construction is obviously more expensive to compute than the one that
first divides p by gcd(p, p′) and then applies the canonical construction. In
this construction, we first compute the canonical Sturm sequence of p as
if it had no multiple roots and then divide by the GCD. However, it can
be seen quite easily that unless x is a multiple root of p, i. e. as long as
gcd(P, P ′) 6= 0, the number of sign changes in a sequence of polynomials
does not actually change when we divide the polynomials by gcd(p, p′).
Therefore we can use the canonical Sturm sequence even in the non-square-
free case as long as the borders of the interval we are interested in are not
multiple roots of the polynomial.
lemma sign-changes-mult-aux:

assumes d 6= (0 ::real)
shows length (remdups-adj (filter (λx. x 6= 0) (map ((∗) d ◦ f) xs))) =

length (remdups-adj (filter (λx. x 6= 0) (map f xs)))
proof−

from assms have inj: inj ((∗) d) by (auto intro: injI)
from assms have [simp]: filter (λx. ((∗) d ◦ f) x 6= 0) = filter (λx. f x 6= 0)

filter ((λx. x 6= 0) ◦ f) = filter (λx. f x 6= 0)
by (simp-all add: o-def)

have filter (λx. x 6= 0) (map ((∗) d ◦ f) xs) =
map ((∗) d ◦ f) (filter (λx. ((∗) d ◦ f) x 6= 0) xs)

by (simp add: filter-map o-def)
thus ?thesis using remdups-adj-map-injective[OF inj] assms

by (simp add: filter-map map-map[symmetric] del: map-map)
qed

lemma sturm-sturm-squarefree ′-same-sign-changes:
fixes p :: real poly
defines ps ≡ sturm p and ps ′ ≡ sturm-squarefree ′ p
shows poly p x 6= 0 ∨ poly (pderiv p) x 6= 0 =⇒

sign-changes ps ′ x = sign-changes ps x

48

p 6= 0 =⇒ sign-changes-inf ps ′ = sign-changes-inf ps
p 6= 0 =⇒ sign-changes-neg-inf ps ′ = sign-changes-neg-inf ps

proof−
define d where d = gcd p (pderiv p)
define p ′ where p ′ = p div d
define s ′ where s ′ = poly-inf d
define s ′′ where s ′′ = poly-neg-inf d

{
fix x :: real and q :: real poly
assume q ∈ set ps
hence d dvd q unfolding d-def ps-def using sturm-gcd by simp
hence q-prod: q = (q div d) ∗ d unfolding p ′-def d-def

by (simp add: algebra-simps dvd-mult-div-cancel)

have poly q x = poly d x ∗ poly (q div d) x by (subst q-prod, simp)
hence s1 : sgn (poly q x) = sgn (poly d x) ∗ sgn (poly (q div d) x)

by (subst q-prod, simp add: sgn-mult)
from poly-inf-mult have s2 : poly-inf q = s ′ ∗ poly-inf (q div d)

unfolding s ′-def by (subst q-prod, simp)
from poly-inf-mult have s3 : poly-neg-inf q = s ′′ ∗ poly-neg-inf (q div d)

unfolding s ′′-def by (subst q-prod, simp)
note s1 s2 s3

}
note signs = this

{
fix f :: real poly ⇒ real and s :: real
assume f :

∧
q. q ∈ set ps =⇒ f q = s ∗ f (q div d) and s: s 6= 0

hence inverse s 6= 0 by simp
{fix q assume q ∈ set ps
hence f (q div d) = inverse s ∗ f q

by (subst f [of q], simp-all add: s)
} note f ′ = this
have length (remdups-adj [x←map f (map (λq. q div d) ps). x 6= 0]) − 1 =

length (remdups-adj [x←map (λq. f (q div d)) ps . x 6= 0]) − 1
by (simp only: sign-changes-def o-def map-map)

also have map (λq. q div d) ps = ps ′

by (simp add: ps-def ps ′-def sturm-squarefree ′-def Let-def d-def)
also from f ′ have map (λq. f (q div d)) ps =

map (λx. ((∗)(inverse s) ◦ f) x) ps by (simp add: o-def)
also note sign-changes-mult-aux[OF ‹inverse s 6= 0 ›, of f ps]
finally have

length (remdups-adj [x←map f ps ′ . x 6= 0]) − 1 =
length (remdups-adj [x←map f ps . x 6= 0]) − 1 by simp

}
note length-remdups-adj = this

{

49

fix x assume A: poly p x 6= 0 ∨ poly (pderiv p) x 6= 0
have d dvd p d dvd pderiv p unfolding d-def by simp-all
with A have sgn (poly d x) 6= 0

by (auto simp add: sgn-zero-iff elim: dvdE)
thus sign-changes ps ′ x = sign-changes ps x using signs(1)

unfolding sign-changes-def
by (intro length-remdups-adj[of λq. sgn (poly q x)], simp-all)

}

assume p 6= 0
hence d 6= 0 unfolding d-def by simp
hence s ′ 6= 0 s ′′ 6= 0 unfolding s ′-def s ′′-def by simp-all
from length-remdups-adj[of poly-inf s ′, OF signs(2) ‹s ′ 6= 0 ›]

show sign-changes-inf ps ′ = sign-changes-inf ps
unfolding sign-changes-inf-def .

from length-remdups-adj[of poly-neg-inf s ′′, OF signs(3) ‹s ′′ 6= 0 ›]
show sign-changes-neg-inf ps ′ = sign-changes-neg-inf ps
unfolding sign-changes-neg-inf-def .

qed

2.6 Root-counting functions

With all these results, we can now define functions that count roots in
bounded and unbounded intervals:
definition count-roots-between where
count-roots-between p a b = (if a ≤ b ∧ p 6= 0 then
(let ps = sturm-squarefree p

in sign-changes ps a − sign-changes ps b) else 0)

definition count-roots where
count-roots p = (if (p::real poly) = 0 then 0 else
(let ps = sturm-squarefree p

in sign-changes-neg-inf ps − sign-changes-inf ps))

definition count-roots-above where
count-roots-above p a = (if (p::real poly) = 0 then 0 else
(let ps = sturm-squarefree p

in sign-changes ps a − sign-changes-inf ps))

definition count-roots-below where
count-roots-below p a = (if (p::real poly) = 0 then 0 else
(let ps = sturm-squarefree p

in sign-changes-neg-inf ps − sign-changes ps a))

lemma count-roots-between-correct:
count-roots-between p a b = card {x. a < x ∧ x ≤ b ∧ poly p x = 0}

proof (cases p 6= 0 ∧ a ≤ b)
case False

50

note False ′ = this
hence card {x. a < x ∧ x ≤ b ∧ poly p x = 0} = 0
proof (cases a < b)

case True
with False have [simp]: p = 0 by simp
have subset: {a<..<b} ⊆ {x. a < x ∧ x ≤ b ∧ poly p x = 0} by auto
from infinite-Ioo[OF True] have ¬finite {a<..<b} .
hence ¬finite {x. a < x ∧ x ≤ b ∧ poly p x = 0}

using finite-subset[OF subset] by blast
thus ?thesis by simp

next
case False

with False ′ show ?thesis by (auto simp: not-less card-eq-0-iff)
qed
thus ?thesis unfolding count-roots-between-def Let-def using False by auto

next
case True
hence p 6= 0 a ≤ b by simp-all
define p ′ where p ′ = p div (gcd p (pderiv p))
from poly-div-gcd-squarefree(1)[OF ‹p 6= 0 ›] have p ′ 6= 0

unfolding p ′-def by clarsimp

from sturm-seq-sturm-squarefree[OF ‹p 6= 0 ›]
interpret sturm-seq sturm-squarefree p p ′

unfolding p ′-def .
from poly-roots-finite[OF ‹p ′ 6= 0 ›]

have finite {x. a < x ∧ x ≤ b ∧ poly p ′ x = 0} by fast
have count-roots-between p a b = card {x. a < x ∧ x ≤ b ∧ poly p ′ x = 0}

unfolding count-roots-between-def Let-def
using True count-roots-between[OF ‹p ′ 6= 0 › ‹a ≤ b›] by simp

also from poly-div-gcd-squarefree(2)[OF ‹p 6= 0 ›]
have {x. a < x ∧ x ≤ b ∧ poly p ′ x = 0} =

{x. a < x ∧ x ≤ b ∧ poly p x = 0} unfolding p ′-def by blast
finally show ?thesis .

qed

lemma count-roots-correct:
fixes p :: real poly
shows count-roots p = card {x. poly p x = 0} (is - = card ?S)

proof (cases p = 0)
case True

with finite-subset[of {0<..<1} ?S]
have ¬finite {x. poly p x = 0} by (auto simp: infinite-Ioo)
thus ?thesis by (simp add: count-roots-def True)

next
case False
define p ′ where p ′ = p div (gcd p (pderiv p))
from poly-div-gcd-squarefree(1)[OF ‹p 6= 0 ›] have p ′ 6= 0

unfolding p ′-def by clarsimp

51

from sturm-seq-sturm-squarefree[OF ‹p 6= 0 ›]
interpret sturm-seq sturm-squarefree p p ′

unfolding p ′-def .
from count-roots[OF ‹p ′ 6= 0 ›]

have count-roots p = card {x. poly p ′ x = 0}
unfolding count-roots-def Let-def by (simp add: ‹p 6= 0 ›)

also from poly-div-gcd-squarefree(2)[OF ‹p 6= 0 ›]
have {x. poly p ′ x = 0} = {x. poly p x = 0} unfolding p ′-def by blast

finally show ?thesis .
qed

lemma count-roots-above-correct:
fixes p :: real poly
shows count-roots-above p a = card {x. x > a ∧ poly p x = 0}

(is - = card ?S)
proof (cases p = 0)

case True
with finite-subset[of {a<..<a+1} ?S]

have ¬finite {x. x > a ∧ poly p x = 0} by (auto simp: infinite-Ioo subset-eq)
thus ?thesis by (simp add: count-roots-above-def True)

next
case False
define p ′ where p ′ = p div (gcd p (pderiv p))
from poly-div-gcd-squarefree(1)[OF ‹p 6= 0 ›] have p ′ 6= 0

unfolding p ′-def by clarsimp

from sturm-seq-sturm-squarefree[OF ‹p 6= 0 ›]
interpret sturm-seq sturm-squarefree p p ′

unfolding p ′-def .
from count-roots-above[OF ‹p ′ 6= 0 ›]

have count-roots-above p a = card {x. x > a ∧ poly p ′ x = 0}
unfolding count-roots-above-def Let-def by (simp add: ‹p 6= 0 ›)

also from poly-div-gcd-squarefree(2)[OF ‹p 6= 0 ›]
have {x. x > a ∧ poly p ′ x = 0} = {x. x > a ∧ poly p x = 0}
unfolding p ′-def by blast

finally show ?thesis .
qed

lemma count-roots-below-correct:
fixes p :: real poly
shows count-roots-below p a = card {x. x ≤ a ∧ poly p x = 0}

(is - = card ?S)
proof (cases p = 0)

case True
with finite-subset[of {a − 1<..<a} ?S]

have ¬finite {x. x ≤ a ∧ poly p x = 0} by (auto simp: infinite-Ioo subset-eq)
thus ?thesis by (simp add: count-roots-below-def True)

next

52

case False
define p ′ where p ′ = p div (gcd p (pderiv p))
from poly-div-gcd-squarefree(1)[OF ‹p 6= 0 ›] have p ′ 6= 0

unfolding p ′-def by clarsimp

from sturm-seq-sturm-squarefree[OF ‹p 6= 0 ›]
interpret sturm-seq sturm-squarefree p p ′

unfolding p ′-def .
from count-roots-below[OF ‹p ′ 6= 0 ›]

have count-roots-below p a = card {x. x ≤ a ∧ poly p ′ x = 0}
unfolding count-roots-below-def Let-def by (simp add: ‹p 6= 0 ›)

also from poly-div-gcd-squarefree(2)[OF ‹p 6= 0 ›]
have {x. x ≤ a ∧ poly p ′ x = 0} = {x. x ≤ a ∧ poly p x = 0}
unfolding p ′-def by blast

finally show ?thesis .
qed

The optimisation explained above can be used to prove more efficient code
equations that use the more efficient construction in the case that the interval
borders are not multiple roots:
lemma count-roots-between[code]:

count-roots-between p a b =
(let q = pderiv p

in if a > b ∨ p = 0 then 0
else if (poly p a 6= 0 ∨ poly q a 6= 0) ∧ (poly p b 6= 0 ∨ poly q b 6= 0)

then (let ps = sturm p
in sign-changes ps a − sign-changes ps b)

else (let ps = sturm-squarefree p
in sign-changes ps a − sign-changes ps b))

proof (cases a > b ∨ p = 0)
case True

thus ?thesis by (auto simp add: count-roots-between-def Let-def)
next

case False
note False1 = this
hence a ≤ b p 6= 0 by simp-all
thus ?thesis
proof (cases (poly p a 6= 0 ∨ poly (pderiv p) a 6= 0) ∧

(poly p b 6= 0 ∨ poly (pderiv p) b 6= 0))
case False

thus ?thesis using False1
by (auto simp add: Let-def count-roots-between-def)

next
case True

hence A: poly p a 6= 0 ∨ poly (pderiv p) a 6= 0 and
B: poly p b 6= 0 ∨ poly (pderiv p) b 6= 0 by auto

define d where d = gcd p (pderiv p)
from ‹p 6= 0 › have [simp]: p div d 6= 0

using poly-div-gcd-squarefree(1)[OF ‹p 6= 0 ›] by (auto simp add: d-def)

53

from sturm-seq-sturm-squarefree ′[OF ‹p 6= 0 ›]
interpret sturm-seq sturm-squarefree ′ p p div d
unfolding sturm-squarefree ′-def Let-def d-def .

note count-roots-between-correct
also have {x. a < x ∧ x ≤ b ∧ poly p x = 0} =

{x. a < x ∧ x ≤ b ∧ poly (p div d) x = 0}
unfolding d-def using poly-div-gcd-squarefree(2)[OF ‹p 6= 0 ›] by simp

also note count-roots-between[OF ‹p div d 6= 0 › ‹a ≤ b›, symmetric]
also note sturm-sturm-squarefree ′-same-sign-changes(1)[OF A]
also note sturm-sturm-squarefree ′-same-sign-changes(1)[OF B]
finally show ?thesis using True False by (simp add: Let-def)

qed
qed

lemma count-roots-code[code]:
count-roots (p::real poly) =
(if p = 0 then 0
else let ps = sturm p

in sign-changes-neg-inf ps − sign-changes-inf ps)
proof (cases p = 0 , simp add: count-roots-def)

case False
define d where d = gcd p (pderiv p)
from ‹p 6= 0 › have [simp]: p div d 6= 0

using poly-div-gcd-squarefree(1)[OF ‹p 6= 0 ›] by (auto simp add: d-def)
from sturm-seq-sturm-squarefree ′[OF ‹p 6= 0 ›]

interpret sturm-seq sturm-squarefree ′ p p div d
unfolding sturm-squarefree ′-def Let-def d-def .

note count-roots-correct
also have {x. poly p x = 0} = {x. poly (p div d) x = 0}

unfolding d-def using poly-div-gcd-squarefree(2)[OF ‹p 6= 0 ›] by simp
also note count-roots[OF ‹p div d 6= 0 ›, symmetric]
also note sturm-sturm-squarefree ′-same-sign-changes(2)[OF ‹p 6= 0 ›]
also note sturm-sturm-squarefree ′-same-sign-changes(3)[OF ‹p 6= 0 ›]
finally show ?thesis using False unfolding Let-def by simp

qed

lemma count-roots-above-code[code]:
count-roots-above p a =

(let q = pderiv p
in if p = 0 then 0
else if poly p a 6= 0 ∨ poly q a 6= 0

then (let ps = sturm p
in sign-changes ps a − sign-changes-inf ps)

else (let ps = sturm-squarefree p
in sign-changes ps a − sign-changes-inf ps))

proof (cases p = 0)

54

case True
thus ?thesis by (auto simp add: count-roots-above-def Let-def)

next
case False

note False1 = this
hence p 6= 0 by simp-all
thus ?thesis
proof (cases (poly p a 6= 0 ∨ poly (pderiv p) a 6= 0))
case False

thus ?thesis using False1
by (auto simp add: Let-def count-roots-above-def)

next
case True

hence A: poly p a 6= 0 ∨ poly (pderiv p) a 6= 0 by simp
define d where d = gcd p (pderiv p)
from ‹p 6= 0 › have [simp]: p div d 6= 0

using poly-div-gcd-squarefree(1)[OF ‹p 6= 0 ›] by (auto simp add: d-def)
from sturm-seq-sturm-squarefree ′[OF ‹p 6= 0 ›]

interpret sturm-seq sturm-squarefree ′ p p div d
unfolding sturm-squarefree ′-def Let-def d-def .

note count-roots-above-correct
also have {x. a < x ∧ poly p x = 0} =

{x. a < x ∧ poly (p div d) x = 0}
unfolding d-def using poly-div-gcd-squarefree(2)[OF ‹p 6= 0 ›] by simp

also note count-roots-above[OF ‹p div d 6= 0 ›, symmetric]
also note sturm-sturm-squarefree ′-same-sign-changes(1)[OF A]
also note sturm-sturm-squarefree ′-same-sign-changes(2)[OF ‹p 6= 0 ›]
finally show ?thesis using True False by (simp add: Let-def)

qed
qed

lemma count-roots-below-code[code]:
count-roots-below p a =

(let q = pderiv p
in if p = 0 then 0
else if poly p a 6= 0 ∨ poly q a 6= 0

then (let ps = sturm p
in sign-changes-neg-inf ps − sign-changes ps a)

else (let ps = sturm-squarefree p
in sign-changes-neg-inf ps − sign-changes ps a))

proof (cases p = 0)
case True

thus ?thesis by (auto simp add: count-roots-below-def Let-def)
next

case False
note False1 = this
hence p 6= 0 by simp-all
thus ?thesis
proof (cases (poly p a 6= 0 ∨ poly (pderiv p) a 6= 0))

55

case False
thus ?thesis using False1

by (auto simp add: Let-def count-roots-below-def)
next
case True

hence A: poly p a 6= 0 ∨ poly (pderiv p) a 6= 0 by simp
define d where d = gcd p (pderiv p)
from ‹p 6= 0 › have [simp]: p div d 6= 0

using poly-div-gcd-squarefree(1)[OF ‹p 6= 0 ›] by (auto simp add: d-def)
from sturm-seq-sturm-squarefree ′[OF ‹p 6= 0 ›]

interpret sturm-seq sturm-squarefree ′ p p div d
unfolding sturm-squarefree ′-def Let-def d-def .

note count-roots-below-correct
also have {x. x ≤ a ∧ poly p x = 0} =

{x. x ≤ a ∧ poly (p div d) x = 0}
unfolding d-def using poly-div-gcd-squarefree(2)[OF ‹p 6= 0 ›] by simp

also note count-roots-below[OF ‹p div d 6= 0 ›, symmetric]
also note sturm-sturm-squarefree ′-same-sign-changes(1)[OF A]
also note sturm-sturm-squarefree ′-same-sign-changes(3)[OF ‹p 6= 0 ›]
finally show ?thesis using True False by (simp add: Let-def)

qed
qed

end

3 The “sturm” proof method
theory Sturm-Method
imports Sturm-Theorem
begin

3.1 Preliminary lemmas

In this subsection, we prove lemmas that reduce root counting and related
statements to simple, computable expressions using the count-roots function
family.
lemma poly-card-roots-less-leq:

card {x. a < x ∧ x ≤ b ∧ poly p x = 0} = count-roots-between p a b
by (simp add: count-roots-between-correct)

lemma poly-card-roots-leq-leq:
card {x. a ≤ x ∧ x ≤ b ∧ poly p x = 0} =

(count-roots-between p a b +
(if (a ≤ b ∧ poly p a = 0 ∧ p 6= 0) ∨ (a = b ∧ p = 0) then 1 else 0))

proof (cases (a ≤ b ∧ poly p a = 0 ∧ p 6= 0) ∨ (a = b ∧ p = 0))
case False

note False ′ = this
thus ?thesis

56

proof (cases p = 0)
case False

with False ′ have poly p a 6= 0 ∨ a > b by auto
hence {x. a ≤ x ∧ x ≤ b ∧ poly p x = 0} =

{x. a < x ∧ x ≤ b ∧ poly p x = 0}
by (auto simp: less-eq-real-def)
thus ?thesis using poly-card-roots-less-leq False ′

by (auto split: if-split-asm)
next

case True
have {x. a ≤ x ∧ x ≤ b} = {a..b}
{x. a < x ∧ x ≤ b} = {a<..b} by auto

with True False have card {x. a < x ∧ x ≤ b} = 0 card {x. a ≤ x ∧ x ≤
b} = 0

by (auto simp add: card-eq-0-iff infinite-Ioc infinite-Icc)
with True False show ?thesis

using count-roots-between-correct by simp
qed

next
case True

note True ′ = this
have fin: finite {x. a ≤ x ∧ x ≤ b ∧ poly p x = 0}
proof (cases p = 0)

case True
with True ′ have a = b by simp
hence {x. a ≤ x ∧ x ≤ b ∧ poly p x = 0} = {b} using True by auto
thus ?thesis by simp

next
case False

from poly-roots-finite[OF this] show ?thesis by fast
qed
with True have {x. a ≤ x ∧ x ≤ b ∧ poly p x = 0} =

insert a {x. a < x ∧ x ≤ b ∧ poly p x = 0} by auto
hence card {x. a ≤ x ∧ x ≤ b ∧ poly p x = 0} =

Suc (card {x. a < x ∧ x ≤ b ∧ poly p x = 0}) using fin by force
thus ?thesis using True count-roots-between-correct by simp

qed

lemma poly-card-roots-less-less:
card {x. a < x ∧ x < b ∧ poly p x = 0} =

(count-roots-between p a b −
(if poly p b = 0 ∧ a < b ∧ p 6= 0 then 1 else 0))

proof (cases poly p b = 0 ∧ a < b ∧ p 6= 0)
case False

note False ′ = this
show ?thesis
proof (cases p = 0)

case True
have [simp]: {x. a < x ∧ x < b} = {a<..<b}

57

{x. a < x ∧ x ≤ b} = {a<..b} by auto
with True False have card {x. a < x ∧ x ≤ b} = 0 card {x. a < x ∧ x <

b} = 0
by (auto simp add: card-eq-0-iff infinite-Ioo infinite-Ioc)

with True False ′ show ?thesis
by (auto simp: count-roots-between-correct)

next
case False

with False ′ have {x. a < x ∧ x < b ∧ poly p x = 0} =
{x. a < x ∧ x ≤ b ∧ poly p x = 0}

by (auto simp: less-eq-real-def)
thus ?thesis using poly-card-roots-less-leq False by auto

qed
next

case True
with poly-roots-finite

have fin: finite {x. a < x ∧ x < b ∧ poly p x = 0} by fast
from True have {x. a < x ∧ x ≤ b ∧ poly p x = 0} =

insert b {x. a < x ∧ x < b ∧ poly p x = 0} by auto
hence Suc (card {x. a < x ∧ x < b ∧ poly p x = 0}) =

card {x. a < x ∧ x ≤ b ∧ poly p x = 0} using fin by force
also note count-roots-between-correct[symmetric]
finally show ?thesis using True by simp

qed

lemma poly-card-roots-leq-less:
card {x::real. a ≤ x ∧ x < b ∧ poly p x = 0} =

(count-roots-between p a b +
(if p 6= 0 ∧ a < b ∧ poly p a = 0 then 1 else 0) −
(if p 6= 0 ∧ a < b ∧ poly p b = 0 then 1 else 0))

proof (cases p = 0 ∨ a ≥ b)
case True

note True ′ = this
show ?thesis
proof (cases a ≥ b)

case False
hence {x. a < x ∧ x ≤ b} = {a<..b}

{x. a ≤ x ∧ x < b} = {a..<b} by auto
with True False have card {x. a < x ∧ x ≤ b} = 0 card {x. a ≤ x ∧ x <

b} = 0
by (auto simp add: card-eq-0-iff infinite-Ico infinite-Ioc)

with False True ′ show ?thesis
by (simp add: count-roots-between-correct)

next
case True

with True ′ have {x. a ≤ x ∧ x < b ∧ poly p x = 0} =
{x. a < x ∧ x ≤ b ∧ poly p x = 0}

by (auto simp: less-eq-real-def)
thus ?thesis using poly-card-roots-less-leq True by simp

58

qed
next

case False
let ?A = {x. a ≤ x ∧ x < b ∧ poly p x = 0}
let ?B = {x. a < x ∧ x ≤ b ∧ poly p x = 0}
let ?C = {x. x = b ∧ poly p x = 0}
let ?D = {x. x = a ∧ poly p a = 0}
have CD-if : ?C = (if poly p b = 0 then {b} else {})

?D = (if poly p a = 0 then {a} else {}) by auto
from False poly-roots-finite

have [simp]: finite ?A finite ?B finite ?C finite ?D
by (fast, fast, simp-all)

from False have ?A = (?B ∪ ?D) − ?C by (auto simp: less-eq-real-def)
with False have card ?A = card ?B + (if poly p a = 0 then 1 else 0) −

(if poly p b = 0 then 1 else 0) by (auto simp: CD-if)
also note count-roots-between-correct[symmetric]
finally show ?thesis using False by simp

qed

lemma poly-card-roots:
card {x::real. poly p x = 0} = count-roots p
using count-roots-correct by simp

lemma poly-no-roots:
(∀ x. poly p x 6= 0) ←→ (p 6= 0 ∧ count-roots p = 0)

by (auto simp: count-roots-correct dest: poly-roots-finite)

lemma poly-pos:
(∀ x. poly p x > 0) ←→ (

p 6= 0 ∧ poly-inf p = 1 ∧ count-roots p = 0)
by (simp only: Let-def poly-pos poly-no-roots, blast)

lemma poly-card-roots-greater :
card {x::real. x > a ∧ poly p x = 0} = count-roots-above p a
using count-roots-above-correct by simp

lemma poly-card-roots-leq:
card {x::real. x ≤ a ∧ poly p x = 0} = count-roots-below p a
using count-roots-below-correct by simp

lemma poly-card-roots-geq:
card {x::real. x ≥ a ∧ poly p x = 0} = (

count-roots-above p a + (if poly p a = 0 ∧ p 6= 0 then 1 else 0))
proof (cases poly p a = 0 ∧ p 6= 0)

case False
hence card {x. x ≥ a ∧ poly p x = 0} = card {x. x > a ∧ poly p x = 0}
proof (cases rule: disjE)

59

assume p = 0
have ¬finite {a<..<a+1}

by (metis infinite-Ioo less-add-one)
moreover have {a<..<a+1} ⊆ {x. x ≥ a ∧ poly p x = 0}

{a<..<a+1} ⊆ {x. x > a ∧ poly p x = 0}
using ‹p = 0 › by auto

ultimately have ¬finite {x. x ≥ a ∧ poly p x = 0}
¬finite {x. x > a ∧ poly p x = 0}

by (auto dest!: finite-subset[of {a<..<a+1}] simp: infinite-Ioo)
thus ?thesis by simp

next
assume poly p a 6= 0
hence {x. x ≥ a ∧ poly p x = 0} = {x. x > a ∧ poly p x = 0}

by (auto simp: less-eq-real-def)
thus ?thesis by simp

qed auto
thus ?thesis using False

by (auto intro: poly-card-roots-greater)
next

case True
hence finite {x. x > a ∧ poly p x = 0} using poly-roots-finite by force
moreover have {x. x ≥ a ∧ poly p x = 0} =

insert a {x. x > a ∧ poly p x = 0} using True by auto
ultimately have card {x. x ≥ a ∧ poly p x = 0} =

Suc (card {x. x > a ∧ poly p x = 0})
using card-insert-disjoint by auto

thus ?thesis using True by (auto intro: poly-card-roots-greater)
qed

lemma poly-card-roots-less:
card {x::real. x < a ∧ poly p x = 0} =

(count-roots-below p a − (if poly p a = 0 ∧ p 6= 0 then 1 else 0))
proof (cases poly p a = 0 ∧ p 6= 0)

case False
hence card {x. x < a ∧ poly p x = 0} = card {x. x ≤ a ∧ poly p x = 0}
proof (cases rule: disjE)

assume p = 0
have ¬finite {a − 1<..<a}

by (metis infinite-Ioo diff-add-cancel less-add-one)
moreover have {a − 1<..<a} ⊆ {x. x ≤ a ∧ poly p x = 0}

{a − 1<..<a} ⊆ {x. x < a ∧ poly p x = 0}
using ‹p = 0 › by auto

ultimately have ¬finite {x. x ≤ a ∧ poly p x = 0}
¬finite {x. x < a ∧ poly p x = 0}

by (auto dest: finite-subset[of {a − 1<..<a}] simp: infinite-Ioo)
thus ?thesis by simp

next
assume poly p a 6= 0
hence {x. x < a ∧ poly p x = 0} = {x. x ≤ a ∧ poly p x = 0}

60

by (auto simp: less-eq-real-def)
thus ?thesis by simp

qed auto
thus ?thesis using False

by (auto intro: poly-card-roots-leq)
next

case True
hence finite {x. x < a ∧ poly p x = 0} using poly-roots-finite by force
moreover have {x. x ≤ a ∧ poly p x = 0} =

insert a {x. x < a ∧ poly p x = 0} using True by auto
ultimately have Suc (card {x. x < a ∧ poly p x = 0}) =

(card {x. x ≤ a ∧ poly p x = 0})
using card-insert-disjoint by auto

also note count-roots-below-correct[symmetric]
finally show ?thesis using True by simp

qed

lemma poly-no-roots-less-leq:
(∀ x. a < x ∧ x ≤ b −→ poly p x 6= 0) ←→
((a ≥ b ∨ (p 6= 0 ∧ count-roots-between p a b = 0)))

by (auto simp: count-roots-between-correct card-eq-0-iff not-le
dest: poly-roots-finite)

lemma poly-pos-between-less-leq:
(∀ x. a < x ∧ x ≤ b −→ poly p x > 0) ←→
((a ≥ b ∨ (p 6= 0 ∧ poly p b > 0 ∧ count-roots-between p a b = 0)))

by (simp only: poly-pos-between-less-leq Let-def
poly-no-roots-less-leq, blast)

lemma poly-no-roots-leq-leq:
(∀ x. a ≤ x ∧ x ≤ b −→ poly p x 6= 0) ←→
((a > b ∨ (p 6= 0 ∧ poly p a 6= 0 ∧ count-roots-between p a b = 0)))

apply (intro iffI)
apply (force simp add: count-roots-between-correct card-eq-0-iff)
apply (elim conjE disjE , simp, intro allI)
apply (rename-tac x, case-tac x = a)
apply (auto simp add: count-roots-between-correct card-eq-0-iff

dest: poly-roots-finite)
done

lemma poly-pos-between-leq-leq:
(∀ x. a ≤ x ∧ x ≤ b −→ poly p x > 0) ←→
((a > b ∨ (p 6= 0 ∧ poly p a > 0 ∧

count-roots-between p a b = 0)))
by (simp only: poly-pos-between-leq-leq Let-def poly-no-roots-leq-leq, force)

61

lemma poly-no-roots-less-less:
(∀ x. a < x ∧ x < b −→ poly p x 6= 0) ←→
((a ≥ b ∨ p 6= 0 ∧ count-roots-between p a b =

(if poly p b = 0 then 1 else 0)))
proof (standard, goal-cases)

case A: 1
show ?case
proof (cases a ≥ b)

case True
with A show ?thesis by simp

next
case False
with A have [simp]: p 6= 0 using dense[of a b] by auto
have B: {x. a < x ∧ x ≤ b ∧ poly p x = 0} =

{x. a < x ∧ x < b ∧ poly p x = 0} ∪
(if poly p b = 0 then {b} else {}) using A False by auto

have count-roots-between p a b =
card {x. a < x ∧ x < b ∧ poly p x = 0} +
(if poly p b = 0 then 1 else 0)

by (subst count-roots-between-correct, subst B, subst card-Un-disjoint,
rule finite-subset[OF - poly-roots-finite], blast, simp-all)

also from A have {x. a < x ∧ x < b ∧ poly p x = 0} = {} by simp
finally show ?thesis by auto

qed
next

case prems: 2
hence card {x. a < x ∧ x < b ∧ poly p x = 0} = 0

by (subst poly-card-roots-less-less, auto simp: count-roots-between-def)
thus ?case using prems

by (cases p = 0 , simp, subst (asm) card-eq-0-iff ,
auto dest: poly-roots-finite)

qed

lemma poly-pos-between-less-less:
(∀ x. a < x ∧ x < b −→ poly p x > 0) ←→
((a ≥ b ∨ (p 6= 0 ∧ poly p ((a+b)/2) > 0 ∧

count-roots-between p a b = (if poly p b = 0 then 1 else 0))))
by (simp only: poly-pos-between-less-less Let-def

poly-no-roots-less-less, blast)

lemma poly-no-roots-leq-less:
(∀ x. a ≤ x ∧ x < b −→ poly p x 6= 0) ←→
((a ≥ b ∨ p 6= 0 ∧ poly p a 6= 0 ∧ count-roots-between p a b =

(if a < b ∧ poly p b = 0 then 1 else 0)))
proof (standard, goal-cases)

case prems: 1
hence ∀ x. a < x ∧ x < b −→ poly p x 6= 0 by simp
thus ?case using prems by (subst (asm) poly-no-roots-less-less, auto)

62

next
case prems: 2

hence (b ≤ a ∨ p 6= 0 ∧ count-roots-between p a b =
(if poly p b = 0 then 1 else 0)) by auto

thus ?case using prems unfolding Let-def
by (subst (asm) poly-no-roots-less-less[symmetric, unfolded Let-def],
auto split: if-split-asm simp: less-eq-real-def)

qed

lemma poly-pos-between-leq-less:
(∀ x. a ≤ x ∧ x < b −→ poly p x > 0) ←→
((a ≥ b ∨ (p 6= 0 ∧ poly p a > 0 ∧ count-roots-between p a b =

(if a < b ∧ poly p b = 0 then 1 else 0))))
by (simp only: poly-pos-between-leq-less Let-def

poly-no-roots-leq-less, force)

lemma poly-no-roots-greater :
(∀ x. x > a −→ poly p x 6= 0) ←→

((p 6= 0 ∧ count-roots-above p a = 0))
proof−

have ∀ x. ¬ a < x =⇒ False by (metis gt-ex)
thus ?thesis by (auto simp: count-roots-above-correct card-eq-0-iff

intro: poly-roots-finite)
qed

lemma poly-pos-greater :
(∀ x. x > a −→ poly p x > 0) ←→ (

p 6= 0 ∧ poly-inf p = 1 ∧ count-roots-above p a = 0)
unfolding Let-def
by (subst poly-pos-greater , subst poly-no-roots-greater , force)

lemma poly-no-roots-leq:
(∀ x. x ≤ a −→ poly p x 6= 0) ←→

((p 6= 0 ∧ count-roots-below p a = 0))
by (auto simp: Let-def count-roots-below-correct card-eq-0-iff

intro: poly-roots-finite)

lemma poly-pos-leq:
(∀ x. x ≤ a −→ poly p x > 0) ←→
(p 6= 0 ∧ poly-neg-inf p = 1 ∧ count-roots-below p a = 0)

by (simp only: poly-pos-leq Let-def poly-no-roots-leq, blast)

lemma poly-no-roots-geq:
(∀ x. x ≥ a −→ poly p x 6= 0) ←→

((p 6= 0 ∧ poly p a 6= 0 ∧ count-roots-above p a = 0))
proof (standard, goal-cases)

63

case prems: 1
hence ∀ x>a. poly p x 6= 0 by simp
thus ?case using prems by (subst (asm) poly-no-roots-greater , auto)

next
case prems: 2
hence (p 6= 0 ∧ count-roots-above p a = 0) by simp
thus ?case using prems

by (subst (asm) poly-no-roots-greater [symmetric, unfolded Let-def],
auto simp: less-eq-real-def)

qed

lemma poly-pos-geq:
(∀ x. x ≥ a −→ poly p x > 0) ←→
(p 6= 0 ∧ poly-inf p = 1 ∧ poly p a 6= 0 ∧ count-roots-above p a = 0)

by (simp only: poly-pos-geq Let-def poly-no-roots-geq, blast)

lemma poly-no-roots-less:
(∀ x. x < a −→ poly p x 6= 0) ←→

((p 6= 0 ∧ count-roots-below p a = (if poly p a = 0 then 1 else 0)))
proof (standard, goal-cases)

case prems: 1
hence {x. x ≤ a ∧ poly p x = 0} = (if poly p a = 0 then {a} else {})

by (auto simp: less-eq-real-def)
moreover have ∀ x. ¬ x < a =⇒ False by (metis lt-ex)
ultimately show ?case using prems by (auto simp: count-roots-below-correct)

next
case prems: 2
have A: {x. x ≤ a ∧ poly p x = 0} = {x. x < a ∧ poly p x = 0} ∪

(if poly p a = 0 then {a} else {}) by (auto simp: less-eq-real-def)
have count-roots-below p a = card {x. x < a ∧ poly p x = 0} +

(if poly p a = 0 then 1 else 0) using prems
by (subst count-roots-below-correct, subst A, subst card-Un-disjoint,

auto intro: poly-roots-finite)
with prems have card {x. x < a ∧ poly p x = 0} = 0 by simp
thus ?case using prems

by (subst (asm) card-eq-0-iff , auto intro: poly-roots-finite)
qed

lemma poly-pos-less:
(∀ x. x < a −→ poly p x > 0) ←→
(p 6= 0 ∧ poly-neg-inf p = 1 ∧ count-roots-below p a =

(if poly p a = 0 then 1 else 0))
by (simp only: poly-pos-less Let-def poly-no-roots-less, blast)

lemmas sturm-card-substs = poly-card-roots poly-card-roots-less-leq
poly-card-roots-leq-less poly-card-roots-less-less poly-card-roots-leq-leq
poly-card-roots-less poly-card-roots-leq poly-card-roots-greater
poly-card-roots-geq

64

lemmas sturm-prop-substs = poly-no-roots poly-no-roots-less-leq
poly-no-roots-leq-leq poly-no-roots-less-less poly-no-roots-leq-less
poly-no-roots-leq poly-no-roots-less poly-no-roots-geq
poly-no-roots-greater
poly-pos poly-pos-greater poly-pos-geq poly-pos-less poly-pos-leq
poly-pos-between-leq-less poly-pos-between-less-leq
poly-pos-between-leq-leq poly-pos-between-less-less

3.2 Reification

This subsection defines a number of equations to automatically convert
statements about roots of polynomials into a canonical form so that they
can be proven using the above substitutions.
definition PR-TAG x ≡ x

lemma sturm-id-PR-prio0 :
{x::real. P x} = {x::real. (PR-TAG P) x}
(∀ x::real. f x < g x) = (∀ x::real. PR-TAG (λx. f x < g x) x)
(∀ x::real. P x) = (∀ x::real. ¬(PR-TAG (λx. ¬P x)) x)
by (simp-all add: PR-TAG-def)

lemma sturm-id-PR-prio1 :
{x::real. x < a ∧ P x} = {x::real. x < a ∧ (PR-TAG P) x}
{x::real. x ≤ a ∧ P x} = {x::real. x ≤ a ∧ (PR-TAG P) x}
{x::real. x ≥ b ∧ P x} = {x::real. x ≥ b ∧ (PR-TAG P) x}
{x::real. x > b ∧ P x} = {x::real. x > b ∧ (PR-TAG P) x}
(∀ x::real < a. f x < g x) = (∀ x::real < a. PR-TAG (λx. f x < g x) x)
(∀ x::real ≤ a. f x < g x) = (∀ x::real ≤ a. PR-TAG (λx. f x < g x) x)
(∀ x::real > a. f x < g x) = (∀ x::real > a. PR-TAG (λx. f x < g x) x)
(∀ x::real ≥ a. f x < g x) = (∀ x::real ≥ a. PR-TAG (λx. f x < g x) x)
(∀ x::real < a. P x) = (∀ x::real < a. ¬(PR-TAG (λx. ¬P x)) x)
(∀ x::real > a. P x) = (∀ x::real > a. ¬(PR-TAG (λx. ¬P x)) x)
(∀ x::real ≤ a. P x) = (∀ x::real ≤ a. ¬(PR-TAG (λx. ¬P x)) x)
(∀ x::real ≥ a. P x) = (∀ x::real ≥ a. ¬(PR-TAG (λx. ¬P x)) x)
by (simp-all add: PR-TAG-def)

lemma sturm-id-PR-prio2 :
{x::real. x > a ∧ x ≤ b ∧ P x} =
{x::real. x > a ∧ x ≤ b ∧ PR-TAG P x}

{x::real. x ≥ a ∧ x ≤ b ∧ P x} =
{x::real. x ≥ a ∧ x ≤ b ∧ PR-TAG P x}

{x::real. x ≥ a ∧ x < b ∧ P x} =
{x::real. x ≥ a ∧ x < b ∧ PR-TAG P x}

{x::real. x > a ∧ x < b ∧ P x} =
{x::real. x > a ∧ x < b ∧ PR-TAG P x}

(∀ x::real. a < x ∧ x ≤ b −→ f x < g x) =
(∀ x::real. a < x ∧ x ≤ b −→ PR-TAG (λx. f x < g x) x)

(∀ x::real. a ≤ x ∧ x ≤ b −→ f x < g x) =

65

(∀ x::real. a ≤ x ∧ x ≤ b −→ PR-TAG (λx. f x < g x) x)
(∀ x::real. a < x ∧ x < b −→ f x < g x) =

(∀ x::real. a < x ∧ x < b −→ PR-TAG (λx. f x < g x) x)
(∀ x::real. a ≤ x ∧ x < b −→ f x < g x) =

(∀ x::real. a ≤ x ∧ x < b −→ PR-TAG (λx. f x < g x) x)
(∀ x::real. a < x ∧ x ≤ b −→ P x) =

(∀ x::real. a < x ∧ x ≤ b −→ ¬(PR-TAG (λx. ¬P x)) x)
(∀ x::real. a ≤ x ∧ x ≤ b −→ P x) =

(∀ x::real. a ≤ x ∧ x ≤ b −→ ¬(PR-TAG (λx. ¬P x)) x)
(∀ x::real. a ≤ x ∧ x < b −→ P x) =

(∀ x::real. a ≤ x ∧ x < b −→ ¬(PR-TAG (λx. ¬P x)) x)
(∀ x::real. a < x ∧ x < b −→ P x) =

(∀ x::real. a < x ∧ x < b −→ ¬(PR-TAG (λx. ¬P x)) x)
by (simp-all add: PR-TAG-def)

lemma PR-TAG-intro-prio0 :
fixes P :: real ⇒ bool and f :: real ⇒ real
shows
PR-TAG P = P ′ =⇒ PR-TAG (λx. ¬(¬P x)) = P ′

[[PR-TAG P = (λx. poly p x = 0); PR-TAG Q = (λx. poly q x = 0)]]
=⇒ PR-TAG (λx. P x ∧ Q x) = (λx. poly (gcd p q) x = 0) and

[[PR-TAG P = (λx. poly p x = 0); PR-TAG Q = (λx. poly q x = 0)]]
=⇒ PR-TAG (λx. P x ∨ Q x) = (λx. poly (p∗q) x = 0) and

[[PR-TAG f = (λx. poly p x); PR-TAG g = (λx. poly q x)]]
=⇒ PR-TAG (λx. f x = g x) = (λx. poly (p−q) x = 0)

[[PR-TAG f = (λx. poly p x); PR-TAG g = (λx. poly q x)]]
=⇒ PR-TAG (λx. f x 6= g x) = (λx. poly (p−q) x 6= 0)

[[PR-TAG f = (λx. poly p x); PR-TAG g = (λx. poly q x)]]
=⇒ PR-TAG (λx. f x < g x) = (λx. poly (q−p) x > 0)

[[PR-TAG f = (λx. poly p x); PR-TAG g = (λx. poly q x)]]
=⇒ PR-TAG (λx. f x ≤ g x) = (λx. poly (q−p) x ≥ 0)

PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. −f x) = (λx. poly (−p) x)
[[PR-TAG f = (λx. poly p x); PR-TAG g = (λx. poly q x)]]

=⇒ PR-TAG (λx. f x + g x) = (λx. poly (p+q) x)
[[PR-TAG f = (λx. poly p x); PR-TAG g = (λx. poly q x)]]

=⇒ PR-TAG (λx. f x − g x) = (λx. poly (p−q) x)
[[PR-TAG f = (λx. poly p x); PR-TAG g = (λx. poly q x)]]

=⇒ PR-TAG (λx. f x ∗ g x) = (λx. poly (p∗q) x)
PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. (f x)^n) = (λx. poly (p^n) x)
PR-TAG (λx. poly p x :: real) = (λx. poly p x)
PR-TAG (λx. x::real) = (λx. poly [:0 ,1 :] x)
PR-TAG (λx. a::real) = (λx. poly [:a:] x)
by (simp-all add: PR-TAG-def poly-eq-0-iff-dvd field-simps)

66

lemma PR-TAG-intro-prio1 :
fixes f :: real ⇒ real
shows
PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. f x = 0) = (λx. poly p x = 0)
PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. f x 6= 0) = (λx. poly p x 6= 0)
PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. 0 = f x) = (λx. poly p x = 0)
PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. 0 6= f x) = (λx. poly p x 6= 0)
PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. f x ≥ 0) = (λx. poly p x ≥ 0)
PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. f x > 0) = (λx. poly p x > 0)
PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. f x ≤ 0) = (λx. poly (−p) x ≥ 0)
PR-TAG f = (λx. poly p x) =⇒ PR-TAG (λx. f x < 0) = (λx. poly (−p) x > 0)
PR-TAG f = (λx. poly p x) =⇒

PR-TAG (λx. 0 ≤ f x) = (λx. poly (−p) x ≤ 0)
PR-TAG f = (λx. poly p x) =⇒

PR-TAG (λx. 0 < f x) = (λx. poly (−p) x < 0)
PR-TAG f = (λx. poly p x)

=⇒ PR-TAG (λx. a ∗ f x) = (λx. poly (smult a p) x)
PR-TAG f = (λx. poly p x)

=⇒ PR-TAG (λx. f x ∗ a) = (λx. poly (smult a p) x)
PR-TAG f = (λx. poly p x)

=⇒ PR-TAG (λx. f x / a) = (λx. poly (smult (inverse a) p) x)
PR-TAG (λx. x^n :: real) = (λx. poly (monom 1 n) x)

by (simp-all add: PR-TAG-def field-simps poly-monom)

lemma PR-TAG-intro-prio2 :
PR-TAG (λx. 1 / b) = (λx. inverse b)
PR-TAG (λx. a / b) = (λx. a / b)
PR-TAG (λx. a / b ∗ x^n :: real) = (λx. poly (monom (a/b) n) x)
PR-TAG (λx. x^n ∗ a / b :: real) = (λx. poly (monom (a/b) n) x)
PR-TAG (λx. a ∗ x^n :: real) = (λx. poly (monom a n) x)
PR-TAG (λx. x^n ∗ a :: real) = (λx. poly (monom a n) x)
PR-TAG (λx. x^n / a :: real) = (λx. poly (monom (inverse a) n) x)

PR-TAG (λx. f x^(Suc (Suc 0)) :: real) = (λx. poly p x)
=⇒ PR-TAG (λx. f x ∗ f x :: real) = (λx. poly p x)

PR-TAG (λx. (f x)^Suc n :: real) = (λx. poly p x)
=⇒ PR-TAG (λx. (f x)^n ∗ f x :: real) = (λx. poly p x)

PR-TAG (λx. (f x)^Suc n :: real) = (λx. poly p x)
=⇒ PR-TAG (λx. f x ∗ (f x)^n :: real) = (λx. poly p x)

PR-TAG (λx. (f x)^(m+n) :: real) = (λx. poly p x)
=⇒ PR-TAG (λx. (f x)^m ∗ (f x)^n :: real) = (λx. poly p x)

by (simp-all add: PR-TAG-def field-simps poly-monom power-add)

lemma sturm-meta-spec: (
∧

x::real. P x) =⇒ P x by simp
lemma sturm-imp-conv:
(a < x −→ x < b −→ c) ←→ (a < x ∧ x < b −→ c)
(a ≤ x −→ x < b −→ c) ←→ (a ≤ x ∧ x < b −→ c)
(a < x −→ x ≤ b −→ c) ←→ (a < x ∧ x ≤ b −→ c)
(a ≤ x −→ x ≤ b −→ c) ←→ (a ≤ x ∧ x ≤ b −→ c)

67

(x < b −→ a < x −→ c) ←→ (a < x ∧ x < b −→ c)
(x < b −→ a ≤ x −→ c) ←→ (a ≤ x ∧ x < b −→ c)
(x ≤ b −→ a < x −→ c) ←→ (a < x ∧ x ≤ b −→ c)
(x ≤ b −→ a ≤ x −→ c) ←→ (a ≤ x ∧ x ≤ b −→ c)
by auto

3.3 Setup for the “sturm” method
ML-file ‹sturm.ML›

method-setup sturm = ‹
Scan.succeed (fn ctxt => SIMPLE-METHOD ′ (Sturm.sturm-tac ctxt true))

›

end

theory Sturm
imports Sturm-Method
begin

end

4 Example usage of the “sturm” method
theory Sturm-Ex
imports ../Sturm
begin

In this section, we give a variety of statements about real polynomials that
can b proven by the sturm method.
lemma
∀ x::real. x^2 + 1 6= 0

by sturm

lemma
fixes x :: real
shows x^2 + 1 6= 0 by sturm

lemma (x::real) > 1 =⇒ x^3 > 1 by sturm

lemma ∀ x::real. x∗x 6= −1 by sturm

schematic-goal A:
card {x::real. −0 .010831 < x ∧ x < 0 .010831 ∧

1/120∗x^5 + 1/24∗x^4 +1/6∗x^3 − 49/16777216∗x^2 − 17/2097152∗x =
0}
= ?n
by sturm

68

lemma card {x::real. x^3 + x = 2∗x^2 ∧ x^3 − 6∗x^2 + 11∗x = 6} = 1
by sturm

schematic-goal card {x::real. x^3 + x = 2∗x^2 ∨ x^3 − 6∗x^2 + 11∗x = 6}
= ?n by sturm

lemma
card {x::real. −0 .010831 < x ∧ x < 0 .010831 ∧

poly [:0 , −17/2097152 , −49/16777216 , 1/6 , 1/24 , 1/120 :] x = 0} = 3
by sturm

lemma ∀ x::real. x∗x 6= 0 ∨ x∗x − 1 6= 2∗x by sturm

lemma (x::real)∗x+1 6= 0 ∧ (x^2+1)∗(x^2+2) 6= 0 by sturm

3 examples related to continued fraction approximants to exp: LCP
lemma fixes x::real

shows −7 .29347719 ≤ x =⇒ 0 < x^5 + 30∗x^4 + 420∗x^3 + 3360∗x^2 +
15120∗x + 30240
by sturm

lemma fixes x::real
shows 0 < x^6 + 42∗x^5 + 840∗x^4 + 10080∗x^3 + 75600∗x2 + 332640∗x

+ 665280
by sturm

schematic-goal card {x::real. x^7 + 56∗x^6 + 1512∗x^5 + 25200∗x^4 + 277200∗x^3
+ 1995840∗x^2 + 8648640∗x = −17297280} = ?n
by sturm

end

69

	Miscellaneous
	Analysis
	Polynomials
	General simplification lemmas
	Divisibility of polynomials
	Sign changes of a polynomial
	Limits of polynomials
	Signs of polynomials for sufficiently large values
	Positivity of polynomials

	Proof of Sturm's Theorem
	Sign changes of polynomial sequences
	Definition of Sturm sequences locale
	Auxiliary lemmas about roots and sign changes
	Constructing Sturm sequences
	The canonical Sturm sequence
	Canonical squarefree Sturm sequence
	Optimisation for multiple roots

	Root-counting functions

	The ``sturm'' proof method
	Preliminary lemmas
	Reification
	Setup for the ``sturm'' method

	Example usage of the ``sturm'' method

