An Isabelle/HOL formalization of Strong Security

Sylvia Grewe, Alexander Lux, Heiko Mantel, Jens Sauer

March 17, 2025

Abstract

Research in information-flow security aims at developing methods
to identify undesired information leaks within programs from private
sources to public sinks. Noninterference captures this intuition. Strong
security from [2] formalizes noninterference for concurrent systems.

We present an Isabelle/HOL formalization of strong security for
arbitrary security lattices ([2] uses a two-element security lattice). The
formalization includes compositionality proofs for strong security and
a soundness proof for a security type system that checks strong security
for programs in a simple while language with dynamic thread creation.

Our formalization of the security type system is abstract in the
language for expressions and in the semantic side conditions for ex-
pressions. It can easily be instantiated with different syntactic approx-
imations for these side conditions. The soundness proof of such an
instantiation boils down to showing that these syntactic approxima-
tions imply the semantic side conditions.

Contents
1 Preliminary definitions 2
1.1 Typesynonyms vt v v v 2

2 Strong security 4
2.1 Definition of strong security 4
2.2 Proof technique for compositionality results 6
2.3 Proof of parallel compositionality 7

3 Example language and compositionality proofs 8
3.1 Example language with dynamic thread creation 8
3.2 Proofs of atomic compositionality results 9
3.3 Proofs of non-atomic compositionality results 11

4 Security type system 12

4.1 Abstract security type system with soundness proof 12
4.2 Example language for Boolean and arithmetic expressions . . 13
4.3 Example interpretation of abstract security type system . . . 14

1 Preliminary definitions

1.1 Type synonyms

The formalization is parametric in different aspects. Notably, it is paramet-
ric in the security lattice it supports.

For better readability, we use the following type synonyms in our formaliza-
tion:

theory Types
imports Main
begin

— type parameters:

— ’exp: expressions (arithmetic, boolean...)
— ’val: values

— ’id: identifier names

— ’com: commands

— ’d: domains

This is a collection of type synonyms. Note that not all of these type syn-
onyms are used within Strong-Security - some are used in WHATandWHERE-
Security.

type-synonym (’id, 'val) State = 'id = 'val

— type for evaluation functions mapping expressions to a values depending on a
state
type-synonym (‘exp, id, 'val) Evalfunction =

'exp = ('id, 'val) State = 'val

— define configurations with threads as pair of commands and states
type-synonym (’id, "val, ‘com) TConfig = 'com x ('id, 'val) State

— define configurations with thread pools as pair of command lists (thread pool)
and states
type-synonym (’id, 'val, 'com) TPConfig =

("com list) x ('id, 'val) State

— type for program states (including the set of commands and a symbol for ter-
minating - None)
type-synonym ‘com ProgramState = 'com option

— type for configurations with program states
type-synonym ('id, 'val, 'com) PSConfig =
‘com ProgramState x ('id, 'val) State

— type for labels with a list of spawned threads
type-synonym 'com Label = 'com list

— type for step relations from single commands to a program state, with a label
type-synonym (‘exp, 'id, 'val, ‘com) TLSteps =
(("id, "val, 'com) TConfig x 'com Label
x ('id, 'val, 'com) PSConfig) set

— curried version of previously defined type

type-synonym (‘exp, 'id, 'val, ‘com) TLSteps-curry =

‘com = ('id, 'val) State = 'com Label = 'com ProgramState
= ('id, 'val) State = bool

— type for step relations from thread pools to thread pools
type-synonym (‘ezp, ’id, 'val, ‘com) TPSteps =
(("id, "val, 'com) TPConfig x ('id, 'val, 'com) TPConfig) set

— curried version of previously defined type
type-synonym (‘exp, 'id, 'val, 'com) TPSteps-curry =
‘com list = ('id, "val) State = 'com list = ('id, "val) State = bool

— define type of step relations for single threads to thread pools
type-synonym (‘exp, ‘id, 'val, 'com) TSteps =
(("id, "val, 'com) TConfig x ('id, 'val, 'com) TPConfig) set

— define the same type as TSteps, but in a curried version (allowing syntax abbre-
viations)

type-synonym (‘exp, ’id, 'val, 'com) TSteps-curry =

'com = ("id, 'val) State = 'com list = ('id, 'val) State = bool

— type for simple domain assignments; ’d has to be an instance of order (partial
order
type-synonym (’id, 'd) DomainAssignment = "id = 'd::order

type-synonym ’‘com Bisimulation-type = (('com list) x ('com list)) set

— type for escape hatches
type-synonym ('d, 'exp) Hatch = 'd x 'exp

— type for sets of escape hatches
type-synonym ('d, 'exp) Hatches = (('d, 'exp) Hatch) set

— type for local escape hatches
type-synonym (’d, ‘exp) [Hatch = 'd x 'exp x nat

— type for sets of local escape hatches
type-synonym ('d, 'exp) lHatches = (('d, 'exp) [Hatch) set

end

2 Strong security

2.1 Definition of strong security

We define strong security such that it is parametric in a security lattice ('d).
The definition of strong security by itself is language-independent, therefore
the definition is parametric in a programming language (’com) in addition.

theory Strong-Security
imports Types
begin

locale Strong-Security =
fixes SR :: (‘exp, "id, 'val, 'com) TSteps
and DA :: ('id, 'd::order) DomainAssignment

begin

— define when two states are indistinguishable for an observer on domain d
definition d-equal :: 'd::order = ('id, "val) State
= ('id, 'val) State = bool
where
d-equal d m m’' =Vz. (DA z) < d — (m z) = (m’ x))

abbreviation d-equal’ :: (id, 'val) State
= 'd::order = ('id, 'val) State = bool

(=)

where

m =4 m' = d-equal d m m’

— transitivity of d-equality

lemma d-equal-trans:

[m=gmiym =;m"] = m=4m"
(proof)

abbreviation SRabbr :: ('exp, "id, "val, 'com) TSteps-curry

(<i11<-7/->) =/ (1(~/-)) [0,0,0,0] 81)
{e,m) — (c';m") = ((¢,m),(¢’;m")) € SR

— predicate for strong d-bisimulation

definition Strong-d-Bisimulation :: 'd = 'com Bisimulation-type = bool
where
Strong-d-Bisimulation d R =

(sym R) A

(V(V,V") € R. length V = length V') A

(V(V, VY € R.Vi < length V.¥Yml m1’' m2 W.

(Vliym1) = (W,m2) A ml =45 m1’

— @W' m2" (VNim1') — (W m2') N (W,W') € R A m2 =3 m2"))

— union of all strong d-bisimulations

definition USdB :: 'd = 'com Bisimulation-type
(x> 65)

where

~4 = U{r. (Strong-d-Bisimulation d r)}

abbreviation relatedbyUSdB :: 'com list = 'd = 'com list = bool
(«(- =. =) [66,66] 65)
where V ~; V' = (V,V') € USdB d

— predicate to define when a program is strongly secure
definition Strongly-Secure :: 'com list = bool

where

Strongly-Secure V.= (Vd. V =, V)

— auxiliary lemma to obtain central strong d-Bisimulation property as Lemma in
meta logic (allows instantiating all the variables manually if necessary)

lemma strongdB-aux: AV V' m1 m1’ m2 W i. [Strong-d-Bisimulation d R;

i <length V ; (V,V') € R; (Vli,ml) — (W,m2); m1 =45 ml’]

= AW ' m2". (VNlimly — (W' ,m2) A (W,W') € RA m2 =4 m2’)

(proof)

lemma trivialpair-in-USdB:

[~ql
(proof)

lemma USdBsym: sym (=)
(proof)

lemma USdBeglen:
Vag V= length V = length V'’
{proof)

lemma USdB-Strong-d-Bisimulation:
Strong-d-Bisimulation d (=)
(proof)

lemma USdBtrans: trans (= ;)

(proof)

end

end

2.2 Proof technique for compositionality results

For proving compositionality results for strong security, we formalize the
following “up-to technique” and prove it sound:

theory Up-To-Technique
imports Strong-Security
begin

context Strong-Security
begin

— define d-bisimulation 'up to’ union of strong d-Bisimulations
definition d-Bisimulation-Up-To-USdB ::
'd = 'com Bisimulation-type = bool
where
d-Bisimulation-Up-To-USdB d R =
(sym R) A (Y (V,V’) € R. length V = length V') A
(V(V,V) € R.Vi < length V.¥ml ml’' W m2.
(Vliym1) — (W,m2) A (ml =4 m1’)
— (3 W' m2". (Vim1")y — (W' m2’
N (W, W) e (RU (=g) A (m2 =4 m2')))

lemma UpTo-aux: AV V' mi1 m1’ m2 W i. | d-Bisimulation-Up-To-USdB d R;
i < length V; (V,V') € R; (Vlim1) — (W,m2); ml =45 m1']
= 3 W' m2’. (Vliml’) — (W' m2’)
AN (W, W) e (RU (=g) A (m2 =4 m2'))
(proof)

lemma RuUSdBeqlen:
[d-Bisimulation-Up-To-USdB d R;
(V,V) e (RU (=y))]
= length V = length V'
(proof)

lemma Up-To-Technique:
assumes upToR: d-Bisimulation-Up-To-USdB d R
shows R C ~

(proof)

end

end

2.3 Proof of parallel compositionality

We prove that strong security is preserved under composition of strongly
secure threads.

theory Parallel-Composition
imports Up-To-Technique
begin

context Strong-Security
begin

theorem parallel-composition:
assumes eqlen: length V = length V'
assumes partsrelated: Vi < length V. [Vli] ~4 [Vl]
shows V ~; V'

(proof)

lemma parallel-decomposition:
assumes related: V ~; V'
shows Vi < length V. [V1i] =4 [V 4]
(proof)

lemma USdB-comp-head-tail:
assumes relatedhead: [c] =~ [¢]
assumes relatedtail: V ~; V'’
shows (c# V) =4 (¢'# V')

(proof)

lemma USdB-decomp-head-tail:
assumes relatedlist: (¢c# V) =4 (c'# V')
shows [c] = [¢| ANV =g V'

(proof)

end

end

3 Example language and compositionality proofs

3.1 Example language with dynamic thread creation

As in [2], we instantiate the language with a simple while language that sup-
ports dynamic thread creation via a fork command (Multi-threaded While
Language with fork, MWL{). Note that the language is still parametric in
the language used for Boolean and arithmetic expressions (‘exp).

theory MWLf
imports Types
begin

— SYNTAX

— Commands for the multi-threaded while language with fork (to instantiate ’com)
datatype (‘exp, 'id) MWLfCom
= Skip («skip»)
| Assign 'id 'exp
(¢-:== [70,70] 70)

| Seq (‘exp, "id) MWLfCom ('exp, "id) MWLfCom
(¢~ [61,60] 60)

| If-Else 'exp (‘exp, "id) MWLfCom ('exp, "id) MWLfCom
(<if - then - else - fir [80,79,79] 70)

| While-Do 'exp ('exp, "id) MWLfCom
(xwhile - do - ody [80,79] 70)

| Fork ('exp, 'id) MWLfCom (('exp, "id) MWLfCom) list
(<fork - - [70,70] 70)

— SEMANTICS

locale MWLf-semantics =

fixes F :: (‘exp, 'id, "val) Evalfunction
and BMap :: "val = bool

begin

— steps semantics, set of deterministic steps from single threads to either single

threads or thread pools

inductive-set

MWLfSteps-det :: ('exp, "id, "val, ("exp, "id) MWLfCom) TSteps

and MWLfSteps-det’ :: ('exp, "id, 'val, ('exp, 'id) MWLfCom) TSteps-curry
((1(-/)) =/ (1{-/) [0,0,0,0) 81)

where

(c1,m1) — (c2,m2) = ((c1,m1),(c2,m2)) € MWLfSteps-det |

skip: (skip,m) — ([],m) |

assign: (E e m) = v = (z := e,m) — ([],m(z := v)) |
seql: (c1,m) — ([J,m"y = (cI;c2,m) — ([c2],m") |
seq2: (c1,m) — (cl'#V,m") = (cIl;c2,m) — ((c1';c2)#V,m') |
iftrue: BMap (E b m) = True =

(if b then c1 else c2 fiym) — ([cI],m) |
iffalse: BMap (E b m) = False =

(if b then c1 else c2 fi,m) — ([c2],m) |
whiletrue: BMap (E b m) = True =

(while b do ¢ od,m) — ([c;(while b do ¢ od)],m) |
whilefalse: BMap (E b m) = False =

(while b do ¢ od,m) — ([],m) |
fork: (fork ¢ V.m) — (c#V,m)

inductive-cases MWLfSteps-det-cases:
(skip,m) — (W,m")

(x := e,m) = (W,m)

(c1;¢2,m) — (W,m')

(if b then c1 else ¢2 fiym) — (W,m)
(while b do ¢ od,m) — (W,m’)

(fork ¢ V,m) — (W ,m/)

— non-deterministic, possibilistic system step (added for intuition, not used in the
proofs)

inductive-set

MWLfSteps-ndet :: ('exp, 'id, 'val, ('exp,’id) MWLfCom) TPSteps

and MWLfSteps-ndet’ :: (‘exp, 'id, "val, ('exp,’id) MWLfCom) TPSteps-curry
(1)) =/ (1{-/)> 10,0,0,0] 81)

where

(Vi,m1) = (V2,m2) = (VI,m1),(V2,m2)) € MWLfSteps-ndet |

(ci,m) — (¢c,m’) = (Vf Q [ci] @ Va,m) = (Vf @ ¢ @ Va,m’)

end

end

3.2 Proofs of atomic compositionality results

We prove for each atomic command of our example programming language
(i.e. a command that is not composed out of other commands) that it
is strongly secure if the expressions involved are indistinguishable for an
observer on security level d.

theory Strongly-Secure-Skip-Assign
imports MWLf Parallel-Composition
begin

locale Strongly-Secure-Programs =

L?: MWLf-semantics E BMap

+ §5% Strong-Security MWLfSteps-det DA
for F :: (‘exp, 'id, 'val) Fvalfunction

and BMap :: 'val = bool

and DA :: (id, 'd::order) DomainAssignment
begin

abbreviation USdBname ::'d = ('exp, 'id) MWLfCom Bisimulation-type

(=)
where ~; = USdB d

abbreviation relatedbyUSdB :: (‘exp,’id) MWLfCom list = 'd
= (‘exp,’id) MWLfCom list = bool (infixr «=_» 65)
where V =, V' = (V,V’) € USdB d

— define when two expressions are indistinguishable with respect to a domain d
definition d-indistinguishable :: 'd::order = 'exp = 'exp = bool
where
d-indistinguishable d el e2 =
Vmm' ((m=4m) — ((Eelm)=(Ee2m)))

abbreviation d-indistinguishable’ :: 'exp = 'd::order = 'exp = bool
(«(-=--0)

where

el =, e2 = d-indistinguishable d el e2

— symmetry of d-indistinguishable
lemma d-indistinguishable-sym:
e=ge = e =4¢€

(proof)

lemma d-indistinguishable-trans:
[esgeiel=4e"] = e=4¢"

(proof)

theorem Strongly-Secure-Skip:
[skip] ~ g [skip]
(proof)

theorem Strongly-Secure-Assign:
assumes d-indistinguishable-exp: e =py , €
shows [z := ¢] =4 [z := €]

(proof)

/

end

end

10

3.3 Proofs of non-atomic compositionality results

We prove compositionality results for each non-atomic command of our ex-
ample programming language (i.e. a command that is composed out of
other commands): If the components are strongly secure and the expres-
sions involved indistinguishable for an observer on security level d, then the
composed command is also strongly secure.

theory Language-Composition
imports Strongly-Secure-Skip-Assign
begin

context Strongly-Secure-Programs
begin

theorem Compositionality-Seq:
assumes relatedpartl: [c1] =4 [c1]]
assumes relatedpart2: [c2] =4 [c2]]
shows [c1;c2] =4 [c1';c2]]

(proof)

theorem Compositionality-Fork:
fixes V::('exp,’id) MWLfCom list
assumes relatedmain: [c] ~ g [c¢/]
assumes relatedthreads: V ~g4 V'’
shows [fork ¢ V] =~ [fork ¢/ V]

(proof)

theorem Compositionality-If:
assumes dind-or-branchesrelated:
b=40b'V[cl] mglc2] V [cl'] =4 [c2]
assumes branchlrelated: [c1] =~ [c1]]
assumes branch2related: [c2] ~4 [c2]]
shows [if b then c1 else ¢2 fi| =4 [if b’ then c1’ else c2' fi]

(proof)

theorem Compositionality- While:
assumes dind: b =4 b’
assumes bodyrelated: [c] ~ 4 [¢]]
shows [while b do ¢ od] =~ [while b" do ¢’ od]

(proof)

end

end

11

4 Security type system

4.1 Abstract security type system with soundness proof

We formalize an abstract version of the type system in [2] using locales
[1]. Our formalization of the type system is abstract in the sense that the
rules specify abstract semantic side conditions on the expressions within a
command that satisfy for proving the soundness of the rules. That is, it can
be instantiated with different syntactic approximations for these semantic
side conditions in order to achieve a type system for a concrete language for
Boolean and arithmetic expressions. Obtaining a soundness proof for such
a concrete type system then boils down to proving that the concrete type
system interprets the abstract type system.

We prove the soundness of the abstract type system by simply applying the
compositionality results proven before.

theory Type-System
imports Language-Composition
begin

locale Type-System =

SSP? : Strongly-Secure-Programs E BMap DA

for F :: (‘exp, 'id, 'val) Evalfunction

and BMap :: 'val = bool

and DA :: ('id, 'd::order) DomainAssignment
+
fixes
AssignSideCondition :: "id = 'exp = bool
and WhileSideCondition :: 'exp = bool
and IfSideCondition ::

'exp = ('exp,’id) MWLfCom = ('exp,’id) MWLfCom = bool
assumes semAssignSC: AssignSideCondition 1 e = e =py , €
and semWhileSC: WhileSideCondition e = Vd. e = e
and semlIfSC: IfSideCondition e c1 ¢2 = Vd. e =45 e V [c1] =4 [c2]
begin

— Security typing rules for the language commands

inductive

ComSecTyping :: ('exp, 'id) MWLfCom = bool
(¢ =)

and ComSecTypingL :: ("exp,’id) MWLfCom list = bool
(<ky =)

where

skip: ke skip |

Assign: [AssignSideCondition x e | = ko z == e

Fork: [Fo c;Fy V]| = k¢ fork ¢ V|

Seq: [Fe cl;be 2] = Fe cl;c2 |

While: [k¢ ¢; WhileSideCondition b |

12

= k¢ while b do ¢ od |
If: [e cl; Fe c2; IfSideCondition b c1 c2 |
= k¢ if b then cl else c2 fi |
Parallel: [Vi < length V.o Vii] =k, V

inductive-cases parallel-cases:
Fy V

— soundness proof of abstract type system
theorem ComSecTyping-single-is-sound:
Fe ¢ = Strongly-Secure [c]

(proof)

theorem ComSecTyping-list-is-sound:
Fy V= Strongly-Secure V

(proof)

end

end

4.2 Example language for Boolean and arithmetic expres-
sions

As and example, we provide a simple example language for instantiating the
parameter ’exp for the language for Boolean and arithmetic expressions.

theory Fzxpr
imports Types
begin

— type parameters:
— ’val: numbers, boolean constants....
— ’id: identifier names

type-synonym (‘val) operation = 'val list = 'val

datatype (dead 'id, dead 'val) Expr =
Const "val |

Var 'id |

Op "val operation (('id, 'val) Expr) list

— defining a simple recursive evaluation function on this datatype
primrec EzprEval :: (("id, 'val) Ezpr, 'id, "val) Evalfunction

and EzprEvall :: (("id, 'val) Expr) list = ("id, 'val) State = 'val list
where

EzprEval (Const v) m = v |

13

EzprEval (Var) m = (m z) |
EzprEval (Op f arglist) m = (f (ExprEvalL arglist m)) |

EzprEvalL [| m =[] |
ExprEvalL (e V) m = (ExprEval e m)#(ExprEvallL V m)

end

4.3 Example interpretation of abstract security type system

Using the example instantiation of the language for Boolean and arithmetic
expressions, we give an example instantiation of our abstract security type
system, instantiating the parameter for domains ’d with a two-level security
lattice.

theory Domain-example
imports Fxpr

begin

— When interpreting, we have to instantiate the type for domains. As an example,
we take a type containing ’low’ and 'high’ as domains.

datatype Dom = low | high

instantiation Dom :: order
begin

definition

less-eq-Dom-def: d1 < d2 = (if d1 = d2 then True
else (if d1 = low then True else False))

definition

less-Dom-def: d1 < d2 = (if d1 = d2 then False
else (if d1 = low then True else False))

instance (proof)

end

end

theory Type-System-example

imports Type-System Exzpr Domain-example

begin

— When interpreting, we have to instantiate the type for domains.
— As an example, we take a type containing ’low’ and "high’ as domains.

14

consts DA :: (Yid,Dom) DomainAssignment
consts BMap :: "val = bool

abbreviation d-indistinguishable’ :: ('id,"val) Expr = Dom
= ('id,’val) Expr = bool
(=)
where
el =4 €2
= Strongly-Secure- Programs. d-indistinguishable ExprEval DA d el e2

abbreviation relatedbyUSdB’ :: (("id,’val) Expr, "id) MWLfCom list

= Dom = (("id,’val) Ezpr, 'id) MWLfCom list = bool (infixr «=_» 65)
where V =, V' = (V,V’) € Strong-Security. USdB

(MWLf-semantics. MWLfSteps-det ExprEval BMap) DA d

— Security typing rules for expressions - will be part of a side condition
inductive
EzprSecTyping :: ('id, 'val) Exzpr = Dom set = bool
(kg -:9)
where
Consts: F¢ (Const v) : {d} |
Vars: ¢ (Var z) : {DA z} |
Ops: Vi < length arglist. Fg (arglist!?) : (dili)
= k¢ (Op farglist) : (U{d. (37 < length arglist. d = (dl!7))})

definition synAssignSC :: 'id = ('id, "val) Expr = bool
where
synAssignSCz e =3D. (Fg e: DA (Vd € D. (d < DA z)))

definition synWhileSC' :: ('id, 'val) Fxpr = bool
where
synWhileSC e = 3D. (Fg e: D A (VdeD. Vd'. d < d’))

definition synIfSC :: ('id, 'val) Expr = (('id, 'val) Ezxpr, 'id) MWLfCom
= (('id, 'val) Expr, 'id) MWLfCom = bool

where

synlfSC e cl c2 =

Vd. (- (e=ge) — [cl] =4 [c2])

lemma EzprTypable-with-smallerD-implies-d-indistinguishable:

[Fee:DVd' eD . d'<d]=e=ge
(proof)

interpretation Type-System-example: Type-System FExprEval BMap DA
synAssignSC syn WhileSC synIfSC

{(proof)

end

15

References

[1] C. Ballarin. Locales and Locale Expressions in Isabelle/Isar. In S. Be-
rardi, M. Coppo, and F. Damiani, editors, TYPES, volume 3085 of Lec-
ture Notes in Computer Science, pages 34-50. Springer, 2003.

[2] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-
threaded programs. In Computer Security Foundations Workshop, 2000.
CSFW-13. Proceedings. 15th IEEFE, pages 200-214. IEEE, 2000.

16

	Preliminary definitions
	Type synonyms

	Strong security
	Definition of strong security
	Proof technique for compositionality results
	Proof of parallel compositionality

	Example language and compositionality proofs
	Example language with dynamic thread creation
	Proofs of atomic compositionality results
	Proofs of non-atomic compositionality results

	Security type system
	Abstract security type system with soundness proof
	Example language for Boolean and arithmetic expressions
	Example interpretation of abstract security type system

