An Isabelle/HOL formalization of Strong Security

Sylvia Grewe, Alexander Lux, Heiko Mantel, Jens Sauer March 17, 2025

Abstract

Research in information-flow security aims at developing methods to identify undesired information leaks within programs from private sources to public sinks. Noninterference captures this intuition. Strong security from [2] formalizes noninterference for concurrent systems.

We present an Isabelle/HOL formalization of strong security for arbitrary security lattices ([2] uses a two-element security lattice). The formalization includes compositionality proofs for strong security and a soundness proof for a security type system that checks strong security for programs in a simple while language with dynamic thread creation.

Our formalization of the security type system is abstract in the language for expressions and in the semantic side conditions for expressions. It can easily be instantiated with different syntactic approximations for these side conditions. The soundness proof of such an instantiation boils down to showing that these syntactic approximations imply the semantic side conditions.

Contents

1	Preliminary definitions				
	1.1	Type synonyms	2		
2	Strong security				
	2.1	Definition of strong security	4		
	2.2	Proof technique for compositionality results	6		
	2.3	Proof of parallel compositionality	7		
3	Example language and compositionality proofs				
	3.1	Example language with dynamic thread creation	8		
	3.2	Proofs of atomic compositionality results	9		
	3.3	Proofs of non-atomic compositionality results	11		

4	Security type system		
	4.1	Abstract security type system with soundness proof	12
	4.2	Example language for Boolean and arithmetic expressions	13
	4.3	Example interpretation of abstract security type system	14

1 Preliminary definitions

1.1 Type synonyms

The formalization is parametric in different aspects. Notably, it is parametric in the security lattice it supports.

For better readability, we use the following type synonyms in our formalization:

theory Types imports Main begin

- type parameters:
- 'exp: expressions (arithmetic, boolean...)
- 'val: values
- 'id: identifier names
- 'com: commands
- 'd: domains

This is a collection of type synonyms. Note that not all of these type synonyms are used within Strong-Security - some are used in WHATandWHERE-Security.

```
type-synonym ('id, 'val) State = 'id \Rightarrow 'val
```

— type for evaluation functions mapping expressions to a values depending on a state

```
type-synonym ('exp, 'id, 'val) Evalfunction = 'exp \Rightarrow ('id, 'val) \ State \Rightarrow 'val
```

- define configurations with threads as pair of commands and states **type-synonym** ('id, 'val, 'com) $TConfig = 'com \times ('id, 'val)$ State
- define configurations with thread pools as pair of command lists (thread pool) and states

```
type-synonym ('id, 'val, 'com) TPConfig = ('com list) × ('id, 'val) State
```

— type for program states (including the set of commands and a symbol for terminating - None)

 ${f type-synonym}$ 'com ProgramState = 'com option

```
— type for configurations with program states
type-synonym ('id, 'val, 'com) PSConfig =
  'com\ ProgramState \times ('id,\ 'val)\ State
— type for labels with a list of spawned threads
type-synonym 'com Label = 'com list
— type for step relations from single commands to a program state, with a label
type-synonym ('exp, 'id, 'val, 'com) TLSteps =
 (('id, 'val, 'com) \ TConfig \times 'com \ Label
   \times ('id, 'val, 'com) PSConfig) set
— curried version of previously defined type
type-synonym ('exp, 'id, 'val, 'com) TLSteps-curry =
'com \Rightarrow ('id, 'val) \ State \Rightarrow 'com \ Label \Rightarrow 'com \ Program State
 \Rightarrow ('id, 'val) State \Rightarrow bool
— type for step relations from thread pools to thread pools
type-synonym ('exp, 'id, 'val, 'com) TPSteps =
  (('id, 'val, 'com) \ TPConfig \times ('id, 'val, 'com) \ TPConfig) \ set
— curried version of previously defined type
type-synonym ('exp, 'id, 'val, 'com) TPSteps-curry =
'com\ list \Rightarrow ('id,\ 'val)\ State \Rightarrow 'com\ list \Rightarrow ('id,\ 'val)\ State \Rightarrow bool
— define type of step relations for single threads to thread pools
type-synonym ('exp, 'id, 'val, 'com) TSteps =
 (('id, 'val, 'com) TConfig × ('id, 'val, 'com) TPConfig) set
— define the same type as TSteps, but in a curried version (allowing syntax abbre-
viations)
type-synonym ('exp, 'id, 'val, 'com) TSteps-curry =
'com \Rightarrow ('id, 'val) \ State \Rightarrow 'com \ list \Rightarrow ('id, 'val) \ State \Rightarrow bool
— type for simple domain assignments; 'd has to be an instance of order (partial
type-synonym ('id, 'd) DomainAssignment = 'id \Rightarrow 'd::order
type-synonym 'com Bisimulation-type = (('com\ list) \times ('com\ list)) set
— type for escape hatches
type-synonym ('d, 'exp) Hatch = 'd \times 'exp
— type for sets of escape hatches
type-synonym ('d, 'exp) Hatches = (('d, 'exp) \; Hatch) \; set
— type for local escape hatches
type-synonym ('d, 'exp) lHatch = 'd \times 'exp \times nat
```

```
— type for sets of local escape hatches type-synonym ('d, 'exp) lHatches = (('d, 'exp) \ lHatch) \ set
```

2 Strong security

2.1 Definition of strong security

We define strong security such that it is parametric in a security lattice ('d). The definition of strong security by itself is language-independent, therefore the definition is parametric in a programming language ('com) in addition.

```
theory Strong-Security
imports Types
begin
locale Strong-Security =
fixes SR :: ('exp, 'id, 'val, 'com) \ TSteps
and DA:: ('id, 'd::order) DomainAssignment
begin
— define when two states are indistinguishable for an observer on domain d
definition d-equal :: 'd::order \Rightarrow ('id, 'val) State
  \Rightarrow ('id, 'val) State \Rightarrow bool
where
d-equal d m m' \equiv \forall x. ((DA x) \leq d \longrightarrow (m x) = (m' x))
abbreviation d-equal' :: ('id, 'val) State
  \Rightarrow 'd::order \Rightarrow ('id, 'val) State \Rightarrow bool
(\langle (-=_- -) \rangle)
where
m =_d m' \equiv d-equal d m m'
— transitivity of d-equality
lemma d-equal-trans:
\llbracket \ m =_d m'; \ m' =_d m'' \ \rrbracket \Longrightarrow m =_d m''
\langle proof \rangle
abbreviation SRabbr :: ('exp, 'id, 'val, 'com) TSteps-curry
(\langle (1\langle -,/-\rangle) \rightarrow / (1\langle -,/-\rangle) \rangle [0,0,0,0] 81)
where
\langle c, m \rangle \rightarrow \langle c', m' \rangle \equiv ((c, m), (c', m')) \in SR
— predicate for strong d-bisimulation
```

```
definition Strong-d-Bisimulation :: 'd \Rightarrow 'com \ Bisimulation-type \Rightarrow bool
where
Strong-d-Bisimulation d R \equiv
  (sym\ R)\ \land
  (\forall (V, V') \in R. length V = length V') \land
  (\forall (V, V') \in R. \ \forall i < length \ V. \ \forall m1 \ m1' \ m2 \ W.
  \langle V!i,m1\rangle \rightarrow \langle W,m2\rangle \wedge m1 =_d m1'
  \longrightarrow (\exists W' \ m2'. \ \langle V'! i, m1' \rangle \rightarrow \langle W', m2' \rangle \land (W, W') \in R \land m2 =_d m2'))
— union of all strong d-bisimulations
definition USdB :: 'd \Rightarrow 'com \ Bisimulation-type
(\langle \approx _{-} \rangle 65)
where
\approx_d \equiv \bigcup \{r. (Strong-d-Bisimulation \ d \ r)\}
abbreviation related by USdB :: 'com \ list \Rightarrow 'd \Rightarrow 'com \ list \Rightarrow bool
(\langle (-\approx_- -)\rangle [66,66] 65)
where V \approx_d V' \equiv (V, V') \in USdB d
— predicate to define when a program is strongly secure
definition Strongly-Secure :: 'com list \Rightarrow bool
where
Strongly-Secure V \equiv (\forall d. \ V \approx_d V)
— auxiliary lemma to obtain central strong d-Bisimulation property as Lemma in
meta logic (allows instantiating all the variables manually if necessary)
lemma strongdB-aux: \bigwedge V V' m1 m1' m2 W i. \llbracket Strong-d-Bisimulation d R;
 i < length \ V \ ; \ (V, V') \in R; \ \langle V!i, m1 \rangle \rightarrow \langle W, m2 \rangle; \ m1 =_d m1' \ ]
 \implies (\exists W' \ m2'. \ \langle V'! i, m1' \rangle \rightarrow \langle W', m2' \rangle \land (W, W') \in R \land m2 =_d m2')
\langle proof \rangle
lemma trivial pair-in-USdB:
[] \approx_d []
\langle proof \rangle
lemma USdBsym: sym (\approx_d)
\langle proof \rangle
lemma USdBeqlen:
  V \approx_d V' \Longrightarrow length V = length V'
\langle proof \rangle
{f lemma} USdB	ext{-}Strong	ext{-}d	ext{-}Bisimulation:
  Strong-d-Bisimulation d \approx_d
\langle proof \rangle
lemma USdBtrans: trans (\approx_d)
```

```
\langle proof \rangle
```

end

2.2 Proof technique for compositionality results

For proving compositionality results for strong security, we formalize the following "up-to technique" and prove it sound:

```
theory Up-To-Technique
imports Strong-Security
begin
context Strong-Security
begin
— define d-bisimulation 'up to' union of strong d-Bisimulations
definition d-Bisimulation-Up-To-USdB ::
'd \Rightarrow 'com \ Bisimulation-type \Rightarrow bool
where
d-Bisimulation-Up-To-USdB d R \equiv
  (sym \ R) \land (\forall (V, V') \in R. \ length \ V = length \ V') \land
  (\forall (V, V') \in R. \ \forall i < length \ V. \ \forall m1 \ m1' \ W \ m2.
  \langle V!i,m1\rangle \rightarrow \langle W,m2\rangle \wedge (m1 =_d m1')
  \longrightarrow (\exists W' m2'. \langle V'!i, m1' \rangle \rightarrow \langle W', m2' \rangle
    \wedge (W, W') \in (R \cup (\approx_d)) \wedge (m2 =_d m2')))
lemma UpTo-aux: \land V V' m1 m1' m2 W i. \llbracket d-Bisimulation-Up-To-USdB d R;
  i < length \ V; \ (V, V') \in R; \ \langle V!i, m1 \rangle \rightarrow \langle W, m2 \rangle; \ m1 =_d m1' \ ]
  \implies (\exists W' m2'. \langle V'! i, m1' \rangle \rightarrow \langle W', m2' \rangle
  \wedge (W, W') \in (R \cup (\approx_d)) \wedge (m2 =_d m2'))
  \langle proof \rangle
lemma RuUSdBeqlen:
\llbracket d\text{-}Bisimulation\text{-}Up\text{-}To\text{-}USdB \ d \ R;
  (V, V') \in (R \cup (\approx_d))
  \implies length V = length V'
\langle proof \rangle
lemma Up-To-Technique:
  assumes upToR: d-Bisimulation-Up-To-USdB d R
  shows R \subseteq \approx_d
\langle proof \rangle
end
```

2.3 Proof of parallel compositionality

We prove that strong security is preserved under composition of strongly secure threads.

```
theory Parallel-Composition
imports Up-To-Technique
begin
context Strong-Security
begin
{\bf theorem}\ \textit{parallel-composition}:
  assumes eqlen: length V = length V'
  assumes parts
related: \forall\,i<\,length\,\,V.\,\,[\,V!i]\approx_d[\,V^{\,\prime}\!!i]
  shows V \approx_d V'
\langle proof \rangle
{\bf lemma}\ parallel-decomposition:
  assumes related: V \approx_d V'
  shows \forall i < length \ V. \ [V!i] \approx_d [V'!i]
\langle proof \rangle
lemma USdB-comp-head-tail:
  assumes relatedhead: [c] \approx_d [c'] assumes relatedtail: V \approx_d V' shows (c\#V) \approx_d (c'\#V')
\langle proof \rangle
{\bf lemma}\ \textit{USdB-decomp-head-tail}:
  assumes related list: (c \# V) \approx_d (c' \# V')
shows [c] \approx_d [c'] \land V \approx_d V'
\langle proof \rangle
end
```

3 Example language and compositionality proofs

3.1 Example language with dynamic thread creation

As in [2], we instantiate the language with a simple while language that supports dynamic thread creation via a fork command (Multi-threaded While Language with fork, MWLf). Note that the language is still parametric in the language used for Boolean and arithmetic expressions ('exp).

```
theory MWLf
imports Types
begin
— SYNTAX
— Commands for the multi-threaded while language with fork (to instantiate 'com)
datatype ('exp, 'id) MWLfCom
  = Skip (\langle skip \rangle)
 | Assign 'id 'exp
      (\langle -:= \rightarrow [70,70] 70)
  | Seq ('exp, 'id) MWLfCom ('exp, 'id) MWLfCom
      (\langle -; - \rangle [61,60] 60)
 | If-Else 'exp ('exp, 'id) MWLfCom ('exp, 'id) MWLfCom
      ((if - then - else - fi) [80,79,79] 70)
  | While-Do 'exp ('exp, 'id) MWLfCom
      (\langle while - do - od \rangle [80,79] 70)
 | Fork ('exp, 'id) MWLfCom (('exp, 'id) MWLfCom) list
      (\langle fork - \rightarrow [70, 70] 70)
— SEMANTICS
locale MWLf-semantics =
fixes E :: ('exp, 'id, 'val) Evalfunction
and BMap :: 'val \Rightarrow bool
begin
— steps semantics, set of deterministic steps from single threads to either single
threads or thread pools
inductive-set
MWLfSteps-det :: ('exp, 'id, 'val, ('exp, 'id) MWLfCom) TSteps
and MWLfSteps-det' :: ('exp, 'id, 'val, ('exp, 'id) MWLfCom) TSteps-curry
  (\langle (1\langle -,/-\rangle) \rightarrow / (1\langle -,/-\rangle) \rangle [0,0,0,0] 81)
\langle c1,m1\rangle \rightarrow \langle c2,m2\rangle \equiv ((c1,m1),(c2,m2)) \in MWLfSteps-det
skip: \langle skip, m \rangle \rightarrow \langle [], m \rangle \mid
```

```
assign: (E \ e \ m) = v \Longrightarrow \langle x := e, m \rangle \to \langle [], m(x := v) \rangle
seq1: \langle c1, m \rangle \to \langle [], m' \rangle \Longrightarrow \langle c1; c2, m \rangle \to \langle [c2], m' \rangle \mid
seq2: \langle c1, m \rangle \rightarrow \langle c1' \# V, m' \rangle \Longrightarrow \langle c1; c2, m \rangle \rightarrow \langle (c1'; c2) \# V, m' \rangle \mid
iftrue: BMap (E \ b \ m) = True \Longrightarrow
      \langle if \ b \ then \ c1 \ else \ c2 \ fi, m \rangle \rightarrow \langle [c1], m \rangle \mid
iffalse: BMap\ (E\ b\ m) = False \Longrightarrow
      \langle if \ b \ then \ c1 \ else \ c2 \ fi,m \rangle \rightarrow \langle [c2],m \rangle \mid
whiletrue: BMap\ (E\ b\ m) = True \Longrightarrow
      \langle while\ b\ do\ c\ od, m \rangle \rightarrow \langle [c; (while\ b\ do\ c\ od)], m \rangle \mid
while false: BMap\ (E\ b\ m) = False \Longrightarrow
      \langle while\ b\ do\ c\ od, m \rangle \to \langle [], m \rangle \mid
fork: \langle fork \ c \ V, m \rangle \rightarrow \langle c \# V, m \rangle
{\bf inductive\text{-}cases}\ \mathit{MWLfSteps\text{-}det\text{-}cases}:
\langle skip, m \rangle \rightarrow \langle W, m' \rangle
\langle x := e, m \rangle \rightarrow \langle W, m' \rangle
\langle c1; c2, m \rangle \rightarrow \langle W, m' \rangle
\langle if \ b \ then \ c1 \ else \ c2 \ fi,m \rangle \rightarrow \langle W,m' \rangle
\langle while \ b \ do \ c \ od, m \rangle \rightarrow \langle W, m' \rangle
\langle fork \ c \ V, m \rangle \rightarrow \langle W, m' \rangle
— non-deterministic, possibilistic system step (added for intuition, not used in the
proofs)
inductive-set
MWLfSteps-ndet :: ('exp, 'id, 'val, ('exp,'id) MWLfCom) TPSteps
and MWLfSteps-ndet':: ('exp, 'id, 'val, ('exp,'id) MWLfCom) TPSteps-curry
(\langle (1\langle -,/-\rangle) \Rightarrow / (1\langle -,/-\rangle) \rangle [0,0,0,0] 81)
where
\langle V1, m1 \rangle \Rightarrow \langle V2, m2 \rangle \equiv ((V1, m1), (V2, m2)) \in MWLfSteps-ndet
\langle ci, m \rangle \rightarrow \langle c, m' \rangle \Longrightarrow \langle Vf @ [ci] @ Va, m \rangle \Rightarrow \langle Vf @ c @ Va, m' \rangle
```

end

3.2 Proofs of atomic compositionality results

We prove for each atomic command of our example programming language (i.e. a command that is not composed out of other commands) that it is strongly secure if the expressions involved are indistinguishable for an observer on security level d.

```
{\bf theory} \ Strongly-Secure-Skip-Assign \\ {\bf imports} \ MWLf \ Parallel-Composition \\ {\bf begin} \\
```

locale Strongly-Secure-Programs =

```
L?: MWLf-semantics E BMap
+ SS?: Strong-Security MWLfSteps-det DA
for E :: ('exp, 'id, 'val) Evalfunction
and BMap :: 'val \Rightarrow bool
and DA:: ('id, 'd::order) DomainAssignment
begin
abbreviation USdBname ::'d \Rightarrow ('exp, 'id) MWLfCom Bisimulation-type
(\langle \approx_{-} \rangle)
where \approx_d \equiv \mathit{USdB} \ \mathit{d}
abbreviation related by USdB :: ('exp,'id) MWLfCom list <math>\Rightarrow 'd
  \Rightarrow ('exp,'id) MWLfCom list \Rightarrow bool (infixr \langle \approx ... \rangle 65)
where V \approx_d V' \equiv (V, V') \in USdB d
— define when two expressions are indistinguishable with respect to a domain d
definition d-indistinguishable :: 'd::order \Rightarrow 'exp <math>\Rightarrow 'exp <math>\Rightarrow bool
where
d-indistinguishable d e1 e2 \equiv
  \forall \; m \; m'. \; ((m =_d m') \; \longrightarrow \; ((E \; e1 \; m) = (E \; e2 \; m')))
abbreviation d-indistinguishable' :: 'exp \Rightarrow 'd::order \Rightarrow 'exp \Rightarrow bool
( ⟨(- ≡_- -)⟩ )
where
e1 \equiv_d e2 \equiv d-indistinguishable d e1 e2
— symmetry of d-indistinguishable
lemma d-indistinguishable-sym:
e \equiv_d e' \Longrightarrow e' \equiv_d e \langle proof \rangle
\mathbf{lemma}\ \textit{d-indistinguishable-trans}:
\llbracket\ e \equiv_d e';\ e' \equiv_d e''\ \rrbracket \Longrightarrow e \equiv_d e''
\langle proof \rangle
theorem Strongly-Secure-Skip:
[skip] \approx_d [skip]
\langle proof \rangle
theorem Strongly-Secure-Assign:
  assumes d-indistinguishable-exp: e \equiv_{DA} x e'
  shows [x := e] \approx_d [x := e']
\langle proof \rangle
end
```

3.3 Proofs of non-atomic compositionality results

We prove compositionality results for each non-atomic command of our example programming language (i.e. a command that is composed out of other commands): If the components are strongly secure and the expressions involved indistinguishable for an observer on security level d, then the composed command is also strongly secure.

```
theory Language-Composition
imports Strongly-Secure-Skip-Assign
begin
context Strongly-Secure-Programs
begin
theorem Compositionality-Seq:
  assumes related part 1: [c1] \approx_d [c1']
 assumes related part 2: [c2] \approx_d [c2']
 shows [c1;c2] \approx_d [c1';c2']
\langle proof \rangle
theorem Compositionality-Fork:
  fixes V::('exp,'id) MWLfCom list
 assumes related main: [c] \approx_d [c']
 assumes related threads: V \approx_d^u V'
 shows [fork c V] \approx_d [fork c' V']
\langle proof \rangle
theorem Compositionality-If:
  assumes dind-or-branchesrelated:
  b \equiv_d b' \vee [c1] \approx_d [c2] \vee [c1'] \approx_d [c2']
 assumes branch1related: [c1] \approx_d [c1']
 assumes branch2related: [c2] \approx_d [c2']
  shows [if\ b\ then\ c1\ else\ c2\ fi]\approx_d [if\ b'\ then\ c1'\ else\ c2'\ fi]
\langle proof \rangle
theorem Compositionality-While:
 assumes dind: b \equiv_d b'
 assumes bodyrelated: [c] \approx_d [c']
  shows [while b do c od] \approx_d [while b' do c' od]
\langle proof \rangle
end
end
```

4 Security type system

4.1 Abstract security type system with soundness proof

We formalize an abstract version of the type system in [2] using locales [1]. Our formalization of the type system is abstract in the sense that the rules specify abstract semantic side conditions on the expressions within a command that satisfy for proving the soundness of the rules. That is, it can be instantiated with different syntactic approximations for these semantic side conditions in order to achieve a type system for a concrete language for Boolean and arithmetic expressions. Obtaining a soundness proof for such a concrete type system then boils down to proving that the concrete type system interprets the abstract type system.

We prove the soundness of the abstract type system by simply applying the compositionality results proven before.

```
theory Type-System
{\bf imports}\ {\it Language-Composition}
begin
locale Type-System =
  SSP?: Strongly-Secure-Programs E BMap DA
  for E :: ('exp, 'id, 'val) Evalfunction
  and BMap :: 'val \Rightarrow bool
  and DA:: ('id, 'd::order) DomainAssignment
fixes
AssignSideCondition :: 'id \Rightarrow 'exp \Rightarrow bool
and WhileSideCondition :: 'exp \Rightarrow bool
and IfSideCondition ::
  'exp \Rightarrow ('exp,'id) \ MWLfCom \Rightarrow ('exp,'id) \ MWLfCom \Rightarrow bool
assumes semAssignSC: AssignSideCondition x e \implies e \equiv_{DA x} e
and semWhileSC: WhileSideCondition\ e \Longrightarrow \forall\ d.\ e \equiv_d e
and semIfSC: IfSideCondition e c1 c2 \Longrightarrow \forall d. e \equiv_d e \lor [c1] \approx_d [c2]
begin
— Security typing rules for the language commands
inductive
ComSecTyping :: ('exp, 'id) \ MWLfCom \Rightarrow bool
and ComSecTypingL :: ('exp,'id) \ MWLfCom \ list \Rightarrow bool
   (\langle \vdash_{\mathcal{V}} \rightarrow )
where
skip: \vdash_{\mathcal{C}} skip
Assign: [\![ AssignSideCondition \ x \ e \ ]\!] \Longrightarrow \vdash_{\mathcal{C}} x := e \mid
Fork: \llbracket \vdash_{\mathcal{C}} c; \vdash_{\mathcal{V}} V \rrbracket \Longrightarrow \vdash_{\mathcal{C}} fork \ c \ V \mid
Seq: \llbracket \vdash_{\mathcal{C}} c1; \vdash_{\mathcal{C}} c2 \rrbracket \Longrightarrow \vdash_{\mathcal{C}} c1; c2 \mid
While: \llbracket \vdash_{\mathcal{C}} c; WhileSideCondition b \rrbracket
```

```
\Rightarrow \vdash_{\mathcal{C}} while \ b \ do \ c \ od \ |
If: \llbracket \vdash_{\mathcal{C}} c1; \vdash_{\mathcal{C}} c2; \ IfSideCondition \ b \ c1 \ c2 \ \rrbracket
\Rightarrow \vdash_{\mathcal{C}} if \ b \ then \ c1 \ else \ c2 \ fi \ |
Parallel: \llbracket \ \forall \ i < length \ V. \vdash_{\mathcal{C}} V!i \ \rrbracket \Rightarrow \vdash_{\mathcal{V}} V
\text{inductive-cases} \ parallel-cases:
\vdash_{\mathcal{V}} V
- \text{ soundness proof of abstract type system}
\text{theorem} \ ComSecTyping-single-is-sound:}
\vdash_{\mathcal{C}} c \Rightarrow Strongly-Secure \ [c]
\langle proof \rangle
\text{theorem} \ ComSecTyping-list-is-sound:}
\vdash_{\mathcal{V}} V \Rightarrow Strongly-Secure \ V
\langle proof \rangle
\text{end}
```

4.2 Example language for Boolean and arithmetic expressions

As and example, we provide a simple example language for instantiating the parameter 'exp for the language for Boolean and arithmetic expressions.

```
theory Expr
imports Types
begin
— type parameters:
— 'val: numbers, boolean constants....
— 'id: identifier names
type-synonym ('val) operation = 'val list \Rightarrow 'val
datatype (dead 'id, dead 'val) Expr =
Const 'val |
Var 'id |
Op 'val operation (('id, 'val) Expr) list
— defining a simple recursive evaluation function on this datatype
primrec ExprEval :: (('id, 'val) Expr, 'id, 'val) Evalfunction
and ExprEvalL :: (('id, 'val) Expr) list \Rightarrow ('id, 'val) State \Rightarrow 'val list
where
ExprEval (Const v) m = v
```

```
 \begin{array}{l} ExprEval \; (Var \; x) \; m = (m \; x) \; | \\ ExprEval \; (Op \; f \; arglist) \; m = (f \; (ExprEvalL \; arglist \; m)) \; | \\ ExprEvalL \; [] \; m = [] \; | \\ ExprEvalL \; (e\# V) \; m = (ExprEval \; e \; m)\#(ExprEvalL \; V \; m) \\ \end{array}
```

4.3 Example interpretation of abstract security type system

Using the example instantiation of the language for Boolean and arithmetic expressions, we give an example instantiation of our abstract security type system, instantiating the parameter for domains d with a two-level security lattice.

```
theory Domain-example imports Expr begin
```

— When interpreting, we have to instantiate the type for domains. As an example, we take a type containing 'low' and 'high' as domains.

```
datatype Dom = low \mid high

instantiation Dom :: order
begin

definition

less\text{-}eq\text{-}Dom\text{-}def : d1 \leq d2 = (if \ d1 = d2 \ then \ True \ else \ (if \ d1 = low \ then \ True \ else \ False))

definition

less\text{-}Dom\text{-}def : d1 < d2 = (if \ d1 = d2 \ then \ False \ else \ (if \ d1 = low \ then \ True \ else \ False))

instance \langle proof \rangle

end

end

theory Type\text{-}System\text{-}example
imports Type\text{-}System\text{-}example
begin
```

- When interpreting, we have to instantiate the type for domains.
- As an example, we take a type containing 'low' and 'high' as domains.

```
consts DA :: ('id,Dom) DomainAssignment
consts BMap :: 'val \Rightarrow bool
abbreviation d-indistinguishable' :: ('id,'val) Expr \Rightarrow Dom
  \Rightarrow ('id,'val) \ Expr \Rightarrow bool
( ⟨(- ≡_- -)⟩ )
where
e1 \equiv_d e2
  \equiv Strongly-Secure-Programs.d-indistinguishable ExprEval DA d e1 e2
abbreviation related by USdB' :: (('id,'val) Expr, 'id) MWLfCom list
  \Rightarrow Dom \Rightarrow (('id,'val) \ Expr, 'id) \ MWLfCom \ list \Rightarrow bool \ (infixr < \approx ... 65)
where V \approx_d V' \equiv (V, V') \in Strong\text{-}Security.USdB
  (MWLf-semantics.MWLfSteps-det ExprEval BMap) DA d
— Security typing rules for expressions - will be part of a side condition
inductive
ExprSecTyping :: ('id, 'val) Expr \Rightarrow Dom set \Rightarrow bool
(\langle \vdash_{\mathcal{E}} -: - \rangle)
where
Consts: \vdash_{\mathcal{E}} (Const \ v) : \{d\} \mid
Vars: \vdash_{\mathcal{E}} (Var \ x) : \{DA \ x\} \mid
Ops: \forall i < length \ arglist. \vdash_{\mathcal{E}} (arglist!i) : (dl!i)
  \Longrightarrow \vdash_{\mathcal{E}} (Op \ f \ arglist) : (\bigcup \{d. \ (\exists \ i < length \ arglist. \ d = (dl!i))\})
definition synAssignSC :: 'id \Rightarrow ('id, 'val) Expr \Rightarrow bool
synAssignSC\ x\ e \equiv \exists\ D.\ (\vdash_{\mathcal{E}}\ e: D \land (\forall\ d \in D.\ (d \leq DA\ x)))
definition synWhileSC :: ('id, 'val) Expr \Rightarrow bool
synWhileSC\ e \equiv \exists\ D.\ (\vdash_{\mathcal{E}} e: D \land (\forall\ d \in D.\ \forall\ d'.\ d \leq d'))
definition synIfSC :: ('id, 'val) Expr \Rightarrow (('id, 'val) Expr, 'id) MWLfCom
  \Rightarrow (('id, 'val) Expr, 'id) MWLfCom \Rightarrow bool
where
synIfSC\ e\ c1\ c2
\forall d. (\neg (e \equiv_d e) \longrightarrow [c1] \approx_d [c2])
{\bf lemma}\ \textit{ExprTypable-with-smallerD-implies-d-indistinguishable}:
\llbracket \vdash_{\mathcal{E}} e : D'; \forall d' \in D'. d' \leq d \rrbracket \Longrightarrow e \equiv_d e
\langle proof \rangle
interpretation Type-System-example: Type-System ExprEval BMap DA
  synAssignSC\ synWhileSC\ synIfSC
\langle proof \rangle
```

References

- [1] C. Ballarin. Locales and Locale Expressions in Isabelle/Isar. In S. Berardi, M. Coppo, and F. Damiani, editors, *TYPES*, volume 3085 of *Lecture Notes in Computer Science*, pages 34–50. Springer, 2003.
- [2] A. Sabelfeld and D. Sands. Probabilistic noninterference for multithreaded programs. In *Computer Security Foundations Workshop*, 2000. CSFW-13. Proceedings. 13th IEEE, pages 200–214. IEEE, 2000.