
Strict Omega Categories

Anthony Bordg Adrián Doña Mateo

March 17, 2025

Abstract

This theory formalises a definition of strict ω-categories and the
strict ω-category of pasting diagrams, following [1]. It is the first
step towards a formalisation of weak infinity categories à la Batanin–
Leinster.

Contents
1 Background material on extensional functions 1

2 Globular sets 3
2.1 Globular sets . 3
2.2 Maps between globular sets 7
2.3 The terminal globular set . 9

3 Strict ω-categories 9

4 The category of pasting diagrams 11
4.1 Rooted trees . 11
4.2 The strict ω-category of pasting diagrams 20

5 Acknowledgements 29
theory Globular-Set

imports HOL−Library.FuncSet

begin

1 Background material on extensional functions
lemma PiE-imp-Pi: f ∈ A →E B =⇒ f ∈ A → B by fast

lemma PiE-iff ′: f ∈ A →E B = (f ∈ A → B ∧ f ∈ extensional A)
by (simp add: PiE-iff Pi-iff)

1

abbreviation composing (‹- ◦ - ↓ -› [60 ,0 ,60]59)
where g ◦ f ↓ D ≡ compose D g f

lemma compose-PiE : f ∈ A → B =⇒ g ∈ B → C =⇒ g ◦ f ↓ A ∈ A →E C
by (metis funcset-compose compose-extensional PiE-iff ′)

lemma compose-eq-iff : (g ◦ f ↓ A = k ◦ h ↓ A) = (∀ x ∈ A. g (f x) = k (h x))
proof (safe)

fix x assume g ◦ f ↓ A = k ◦ h ↓ A x ∈ A
then show g (f x) = k (h x) by (metis compose-eq)

next
assume ∀ x ∈ A. g (f x) = k (h x)
hence

∧
x. x ∈ A =⇒ (g ◦ f ↓ A) x = (k ◦ h ↓ A) x by (metis compose-eq)

then show g ◦ f ↓ A = k ◦ h ↓ A by (metis extensionalityI compose-extensional)
qed

lemma compose-eq-if : (
∧

x. x ∈ A =⇒ g (f x) = k (h x)) =⇒ g ◦ f ↓ A = k ◦ h
↓ A

using compose-eq-iff by blast

lemma compose-compose-eq-iff2 : (h ◦ (g ◦ f ↓ A) ↓ A = h ′ ◦ (g ′ ◦ f ′ ↓ A) ↓ A) =
(∀ x ∈ A. h (g (f x)) = h ′ (g ′ (f ′ x)))
by (simp add: compose-eq compose-eq-iff)

lemma compose-compose-eq-iff1 : assumes f ∈ A → B f ′ ∈ A → B
shows ((h ◦ g ↓ B) ◦ f ↓ A = (h ′ ◦ g ′ ↓ B) ◦ f ′ ↓ A) = (∀ x ∈ A. h (g (f x)) =

h ′ (g ′ (f ′ x)))
proof −
have (h ◦ g ↓ B) ◦ f ↓ A = h ◦ (g ◦ f ↓ A) ↓ A by (metis assms(1) compose-assoc)
moreover have (h ′ ◦ g ′ ↓ B) ◦ f ′ ↓ A = h ′ ◦ (g ′ ◦ f ′ ↓ A) ↓ A by (metis

assms(2) compose-assoc)
ultimately have h: ((h ◦ g ↓ B) ◦ f ↓ A = (h ′ ◦ g ′ ↓ B) ◦ f ′ ↓ A) =
(h ◦ (g ◦ f ↓ A) ↓ A = h ′ ◦ (g ′ ◦ f ′ ↓ A) ↓ A) by presburger

then show ?thesis by (simp only: h compose-compose-eq-iff2)
qed

lemma compose-compose-eq-if1 : [[f ∈ A → B; f ′ ∈ A → B; ∀ x ∈ A. h (g (f x))
= h ′ (g ′ (f ′ x))]] =⇒
(h ◦ g ↓ B) ◦ f ↓ A = (h ′ ◦ g ′ ↓ B) ◦ f ′ ↓ A
using compose-compose-eq-iff1 by blast

lemma compose-compose-eq-if2 : ∀ x ∈ A. h (g (f x)) = h ′ (g ′ (f ′ x)) =⇒
h ◦ (g ◦ f ↓ A) ↓ A = h ′ ◦ (g ′ ◦ f ′ ↓ A) ↓ A
using compose-compose-eq-iff2 by blast

lemma compose-restrict-eq1 : f ∈ A → B =⇒ restrict g B ◦ f ↓ A = g ◦ f ↓ A
by (smt (verit) PiE compose-eq-iff restrict-apply ′)

lemma compose-restrict-eq2 : g ◦ (restrict f A) ↓ A = g ◦ f ↓ A

2

by (metis (mono-tags, lifting) compose-eq-if restrict-apply ′)

lemma compose-Id-eq-restrict: g ◦ (λx ∈ A. x) ↓ A = restrict g A
by (smt (verit) compose-restrict-eq1 compose-def restrict-apply ′ restrict-ext)

2 Globular sets
2.1 Globular sets
We define a locale globular-set that encodes the cell data of a strict ω-
category [1, Def 1.4.5]. The elements of X n are the n-cells, and the maps s
and t give the source and target of a cell, respectively.
locale globular-set =

fixes X :: nat ⇒ ′a set and s :: nat ⇒ ′a ⇒ ′a and t :: nat ⇒ ′a ⇒ ′a
assumes s-fun: s n ∈ X (Suc n) → X n

and t-fun: t n ∈ X (Suc n) → X n
and s-comp: x ∈ X (Suc (Suc n)) =⇒ s n (t (Suc n) x) = s n (s (Suc n) x)
and t-comp: x ∈ X (Suc (Suc n)) =⇒ t n (s (Suc n) x) = t n (t (Suc n) x)

begin

lemma s-comp ′: s n ◦ t (Suc n) ↓ X (Suc (Suc n)) = s n ◦ s (Suc n) ↓ X (Suc
(Suc n))

by (metis (full-types) compose-eq-if s-comp)

lemma t-comp ′: t n ◦ s (Suc n) ↓ X (Suc (Suc n)) = t n ◦ t (Suc n) ↓ X (Suc
(Suc n))

by (metis (full-types) compose-eq-if t-comp)

These are the generalised source and target maps. The arguments are
the dimension of the input and output, respectively. They allow notation
similar to sm−p in [1].
fun s ′ :: nat ⇒ nat ⇒ ′a ⇒ ′a where
s ′ 0 0 = id |
s ′ 0 (Suc n) = undefined |
s ′ (Suc m) n = (if Suc m < n then undefined

else if Suc m = n then id
else s ′ m n ◦ s m)

fun t ′ :: nat ⇒ nat ⇒ ′a ⇒ ′a where
t ′ 0 0 = id |
t ′ 0 (Suc n) = undefined |
t ′ (Suc m) n = (if Suc m < n then undefined

else if Suc m = n then id
else t ′ m n ◦ t m)

lemma s ′-n-n [simp]: s ′ n n = id
by (cases n, simp-all)

3

lemma s ′-Suc-n-n [simp]: s ′ (Suc n) n = s n
by simp

lemma s ′-Suc-Suc-n-n [simp]: s ′ (Suc (Suc n)) n = s n ◦ s (Suc n)
by simp

lemma s ′-Suc [simp]: n ≤ m =⇒ s ′ (Suc m) n = s ′ m n ◦ s m
by simp

lemma s ′-Suc ′: n < m =⇒ s ′ m n = s n ◦ s ′ m (Suc n)
proof (induction m arbitrary: n)

case 0
then show ?case by blast

next
case (Suc m)
hence n ≤ m by fastforce
show ?case proof (cases n = m, simp)

assume n 6= m
then show s ′ (Suc m) n = s n ◦ s ′ (Suc m) (Suc n) using Suc by fastforce

qed
qed

lemma t ′-n-n [simp]: t ′ n n = id
by (cases n, simp-all)

lemma t ′-Suc-n-n [simp]: t ′ (Suc n) n = t n
by simp

lemma t ′-Suc-Suc-n-n [simp]: t ′ (Suc (Suc n)) n = t n ◦ t (Suc n)
by simp

lemma t ′-Suc [simp]: n ≤ m =⇒ t ′ (Suc m) n = t ′ m n ◦ t m
by simp

lemma t ′-Suc ′: n < m =⇒ t ′ m n = t n ◦ t ′ m (Suc n)
proof (induction m arbitrary: n)

case 0
then show ?case by blast

next
case (Suc m)
hence n ≤ m by fastforce
show ?case proof (cases n = m, simp)

assume n 6= m
then show t ′ (Suc m) n = t n ◦ t ′ (Suc m) (Suc n) using Suc by fastforce

qed
qed

lemma s ′-fun: n ≤ m =⇒ s ′ m n ∈ X m → X n
proof (induction m arbitrary: n)

4

case 0
thus ?case by force

next
case (Suc m)
thus ?case proof (cases n = Suc m)

case True
then show ?thesis by auto

next
case False
hence n ≤ m using ‹n ≤ Suc m› by force
thus ?thesis using Suc.IH s-fun s ′-Suc by auto

qed
qed

lemma t ′-fun: n ≤ m =⇒ t ′ m n ∈ X m → X n
proof (induction m arbitrary: n)

case 0
thus ?case by force

next
case (Suc m)
thus ?case proof (cases n = Suc m)

case True
then show ?thesis by auto

next
case False
hence n ≤ m using ‹n ≤ Suc m› by force
thus ?thesis using Suc.IH t-fun t ′-Suc by auto

qed
qed

lemma s ′-comp: [[n < m; x ∈ X m]] =⇒ s n (t ′ m (Suc n) x) = s ′ m n x
proof (induction m − n arbitrary: n)

case 0
then show ?case by force

next
case IH : (Suc k)
show ?case proof (cases k)

case 0
with IH (2) have m = Suc n by fastforce
then show ?thesis using s ′-Suc ′ by auto

next
case (Suc k ′)
with ‹Suc k = m − n› have hle: Suc (Suc n) ≤ m by simp
hence Suc n < m by force
hence Suc (Suc n) ≤ m by fastforce
have s n (t ′ m (Suc n) x)
= s n (t (Suc n) (t ′ m (Suc (Suc n)) x)) using t ′-Suc ′ ‹Suc n < m› by simp

also have . . . = s n (s (Suc n) (t ′ m (Suc (Suc n)) x))
using t ′-fun ‹Suc (Suc n) ≤ m› s-comp IH (4) by blast

5

also have . . . = s n (s ′ m (Suc n) x)
using IH Suc-diff-Suc Suc-inject ‹Suc n < m› by presburger

finally show ?thesis using ‹n < m› s ′-Suc ′ by simp
qed

qed

lemma t ′-comp: [[n < m; x ∈ X m]] =⇒ t n (s ′ m (Suc n) x) = t ′ m n x
proof (induction m − n arbitrary: n)

case 0
then show ?case by force

next
case IH : (Suc k)
show ?case proof (cases k)

case 0
with IH (2) have m = Suc n by fastforce
then show ?thesis using IH .prems(1) by auto

next
case (Suc k ′)
with ‹Suc k = m − n› have hle: Suc (Suc n) ≤ m by simp
hence Suc n < m by force
hence Suc (Suc n) ≤ m by fastforce
have t n (s ′ m (Suc n) x)
= t n (s (Suc n) (s ′ m (Suc (Suc n)) x)) using s ′-Suc ′ ‹Suc n < m› by simp

also have . . . = t n (t (Suc n) (s ′ m (Suc (Suc n)) x))
using s ′-fun ‹Suc (Suc n) ≤ m› t-comp IH (4) by blast

also have . . . = t n (t ′ m (Suc n) x)
using IH Suc-diff-Suc Suc-inject ‹Suc n < m› by presburger

finally show ?thesis using ‹n < m› t ′-Suc ′ by simp
qed

qed

The following predicates and sets are needed to define composition in an
ω-category.
definition is-parallel-pair :: nat ⇒ nat ⇒ ′a ⇒ ′a ⇒ bool where
is-parallel-pair m n x y ≡ n ≤ m ∧ x ∈ X m ∧ y ∈ X m ∧ s ′ m n x = s ′ m n y ∧
t ′ m n x = t ′ m n y

[1, p. 44]
definition is-composable-pair :: nat ⇒ nat ⇒ ′a ⇒ ′a ⇒ bool where
is-composable-pair m n y x ≡ n < m ∧ y ∈ X m ∧ x ∈ X m ∧ t ′ m n x = s ′ m n
y

definition composable-pairs :: nat ⇒ nat ⇒ (′a × ′a) set where
composable-pairs m n = {(y, x). is-composable-pair m n y x}

lemma composable-pairs-empty: m ≤ n =⇒ composable-pairs m n = {}
using is-composable-pair-def composable-pairs-def by simp

end

6

2.2 Maps between globular sets
We define maps between globular sets to be natural transformations of the
corresponding functors [1, Def 1.4.5].
locale globular-map = source: globular-set X sX tX + target: globular-set Y sY tY

for X sX tX Y sY tY +
fixes ϕ :: nat ⇒ ′a ⇒ ′b
assumes map-fun: ϕ m ∈ X m → Y m

and is-natural-wrt-s: x ∈ X (Suc m) =⇒ ϕ m (sX m x) = sY m (ϕ (Suc m)
x)

and is-natural-wrt-t: x ∈ X (Suc m) =⇒ ϕ m (tX m x) = tY m (ϕ (Suc m)
x)
begin

lemma is-natural-wrt-s ′: [[n ≤ m; x ∈ X m]] =⇒ ϕ n (source.s ′ m n x) = target.s ′

m n (ϕ m x)
proof (induction m − n arbitrary: n)

case 0
hence m = n by simp
then show ?case by fastforce

next
case (Suc k)
hence n < m by force
hence Suc n ≤ m by auto
have ϕ n (source.s ′ m n x) = ϕ n (sX n (source.s ′ m (Suc n) x))

using source.s ′-Suc ′ ‹n < m› by simp
also have . . . = sY n (ϕ (Suc n) (source.s ′ m (Suc n) x))

using source.s ′-fun ‹Suc n ≤ m› Suc(1) Suc(4) is-natural-wrt-s by blast
also have . . . = sY n (target.s ′ m (Suc n) (ϕ m x))

using Suc ‹Suc n ≤ m› Suc-diff-Suc Suc-inject ‹n < m› by presburger
finally show ?case using target.s ′-Suc ′ ‹n < m› by simp

qed

lemma is-natural-wrt-t ′: [[n ≤ m; x ∈ X m]] =⇒ ϕ n (source.t ′ m n x) = target.t ′

m n (ϕ m x)
proof (induction m − n arbitrary: n)

case 0
hence m = n by simp
then show ?case by fastforce

next
case (Suc k)
hence n < m by force
hence Suc n ≤ m by auto
have ϕ n (source.t ′ m n x) = ϕ n (tX n (source.t ′ m (Suc n) x))

using source.t ′-Suc ′ ‹n < m› by simp
also have . . . = tY n (ϕ (Suc n) (source.t ′ m (Suc n) x))

using source.t ′-fun ‹Suc n ≤ m› Suc(1) Suc(4) is-natural-wrt-t by blast
also have . . . = tY n (target.t ′ m (Suc n) (ϕ m x))

using Suc ‹Suc n ≤ m› Suc-diff-Suc Suc-inject ‹n < m› by presburger

7

finally show ?case using target.t ′-Suc ′ ‹n < m› by simp
qed

end

The composition of two globular maps is itself a globular map. This
intermediate locale gathers the data needed for such a statement.
locale two-globular-maps = fst: globular-map X sX tX Y sY tY ϕ + snd: globu-
lar-map Y sY tY Z sZ tZ ψ

for X sX tX Y sY tY Z sZ tZ ϕ ψ

sublocale two-globular-maps ⊆ comp: globular-map X sX tX Z sZ tZ λm. ψ m ◦
ϕ m
proof (unfold-locales)

fix m
show ψ m ◦ ϕ m ∈ X m → Z m using fst.map-fun snd.map-fun by fastforce

next
fix x m assume x ∈ X (Suc m)
then show (ψ m ◦ ϕ m) (sX m x) = sZ m ((ψ (Suc m) ◦ ϕ (Suc m)) x)

using fst.is-natural-wrt-s snd.is-natural-wrt-s comp-apply fst.map-fun by fast-
force
next

fix x m assume x ∈ X (Suc m)
then show (ψ m ◦ ϕ m) (tX m x) = tZ m ((ψ (Suc m) ◦ ϕ (Suc m)) x)

using fst.is-natural-wrt-t snd.is-natural-wrt-t comp-apply fst.map-fun by fast-
force
qed

sublocale two-globular-maps ⊆ compose: globular-map X sX tX Z sZ tZ λm. ψ
m ◦ ϕ m ↓ X m
proof (unfold-locales)

fix m
show ψ m ◦ ϕ m ↓ X m ∈ X m → Z m using funcset-compose fst.map-fun

snd.map-fun by fast
next

fix x m assume x ∈ X (Suc m)
then show (ψ m ◦ ϕ m ↓ X m) (sX m x) = sZ m ((ψ (Suc m) ◦ ϕ (Suc m) ↓

X (Suc m)) x)
by (metis PiE fst.is-natural-wrt-s snd.is-natural-wrt-s fst.map-fun compose-eq

fst.source.s-fun)
next

fix x m assume x ∈ X (Suc m)
then show (ψ m ◦ ϕ m ↓ X m) (tX m x) = tZ m ((ψ (Suc m) ◦ ϕ (Suc m) ↓

X (Suc m)) x)
by (metis PiE fst.is-natural-wrt-t snd.is-natural-wrt-t fst.map-fun compose-eq

fst.source.t-fun)
qed

8

2.3 The terminal globular set
The terminal globular set, with a unique m-cell for each m [1, p. 264].
interpretation final-glob: globular-set λm. {()} λm. id λm. id

by (unfold-locales, auto)

context globular-set
begin

[1, p. 272]
interpretation map-to-final-glob: globular-map X s t
λm. {()} λm. id λm. id
λm. (λx. ())
by (unfold-locales, simp-all)

end

end
theory Strict-Omega-Category
imports Globular-Set

begin

3 Strict ω-categories
First, we define a locale pre-strict-omega-category that holds the data of a
strict ω-category without the associativity, unity and exchange axioms [1,
Def 1.4.8 (a) - (b)]. We do this in order to set up convenient notation before
we state the remaining axioms.
locale pre-strict-omega-category = globular-set +

fixes comp :: nat ⇒ nat ⇒ ′a ⇒ ′a ⇒ ′a
and i :: nat ⇒ ′a ⇒ ′a

assumes comp-fun: is-composable-pair m n x ′ x =⇒ comp m n x ′ x ∈ X m
and i-fun: i n ∈ X n → X (Suc n)
and s-comp-Suc: is-composable-pair (Suc m) m x ′ x =⇒ s m (comp (Suc m)

m x ′ x) = s m x
and t-comp-Suc: is-composable-pair (Suc m) m x ′ x =⇒ t m (comp (Suc m) m

x ′ x) = t m x ′

and s-comp: [[is-composable-pair (Suc m) n x ′ x; n < m]] =⇒
s m (comp (Suc m) n x ′ x) = comp m n (s m x ′) (s m x)

and t-comp: [[is-composable-pair (Suc m) n x ′ x; n < m]] =⇒
t m (comp (Suc m) n x ′ x) = comp m n (t m x ′) (s m x)

and s-i: x ∈ X n =⇒ s n (i n x) = x
and t-i: x ∈ X n =⇒ t n (i n x) = x

begin

Similar to the generalised source and target maps in globular-set, we
defined a generalised identity map. The first argument gives the dimension

9

of the resulting identity cell, while the second gives the dimension of the
input cell.
fun i ′ :: nat ⇒ nat ⇒ ′a ⇒ ′a where
i ′ 0 0 = id |
i ′ 0 (Suc n) = undefined |
i ′ (Suc m) n = (if Suc m < n then undefined

else if Suc m = n then id
else i m ◦ i ′ m n)

lemma i ′-n-n [simp]: i ′ n n = id
by (metis i ′.elims i ′.simps(1) less-irrefl-nat)

lemma i ′-Suc-n-n [simp]: i ′ (Suc n) n = i n
by simp

lemma i ′-Suc [simp]: n ≤ m =⇒ i ′ (Suc m) n = i m ◦ i ′ m n
by fastforce

lemma i ′-Suc ′: n < m =⇒ i ′ m n = i ′ m (Suc n) ◦ i n
proof (induction m arbitrary: n)

case 0
then show ?case by blast

next
case (Suc m)
then show ?case by force

qed

lemma i ′-fun: n ≤ m =⇒ i ′ m n ∈ X n → X m
proof (induction m arbitrary: n)

case 0
then show ?case by fastforce

next
case (Suc m)
thus ?case proof (cases n = Suc m)

case True
then show ?thesis by auto

next
case False
hence n ≤ m using ‹n ≤ Suc m› by force
thus ?thesis using Suc.IH i-fun by auto

qed
qed

end

Now we may define a strict ω-category including the composition, unity
and exchange axioms [1, Def 1.4.8 (c) - (f)].
locale strict-omega-category = pre-strict-omega-category +

assumes comp-assoc: [[is-composable-pair m n x ′ x; is-composable-pair m n x ′′

10

x ′]] =⇒
comp m n (comp m n x ′′ x ′) x = comp m n x ′′ (comp m n x ′ x)

and i-comp: [[n < m; x ∈ X m]] =⇒ comp m n (i ′ m n (t ′ m n x)) x = x
and comp-i: [[n < m; x ∈ X m]] =⇒ comp m n x (i ′ m n (s ′ m n x)) = x
and bin-interchange: [[q < p; p < m;

is-composable-pair m p y ′ y; is-composable-pair m p x ′ x;
is-composable-pair m q y ′ x ′; is-composable-pair m q y x]] =⇒
comp m q (comp m p y ′ y) (comp m p x ′ x) = comp m p (comp m q y ′ x ′)

(comp m q y x)
and null-interchange: [[q < p; is-composable-pair p q x ′ x]] =⇒

comp (Suc p) q (i p x ′) (i p x) = i p (comp p q x ′ x)

locale strict-omega-functor = globular-map +
source: strict-omega-category X sX tX compX iX +
target: strict-omega-category Y sY tY compY iY
for compX iX compY iY +
assumes commute-with-comp: is-composable-pair m n x ′ x =⇒

ϕ m (compX m n x ′ x) = compY m n (ϕ m x ′) (ϕ m x)
and commute-with-id: x ∈ X n =⇒ ϕ (Suc n) (iX n x) = iY n (ϕ n x)

end
theory Pasting-Diagram
imports Strict-Omega-Category

begin

4 The category of pasting diagrams
We define the strict ω-category of pasting diagrams, ’pd’. We encode its
cells as rooted trees. First we develop some basic theory of trees.

4.1 Rooted trees
datatype tree = Node (subtrees: tree list) — [1, p. 268]

abbreviation Leaf :: tree where
Leaf ≡ Node []

fun subtree :: tree ⇒ nat list ⇒ tree (‹- !t -› [59 ,60]59) where
t !t [] = t |
t !t (i#xs) = subtrees (t !t xs) ! i

value Leaf !t []
value Node [Node [Leaf , Leaf , Leaf], Leaf , Node [Leaf]] !t [0]
value Node [Node [Leaf , Leaf , Leaf], Leaf , Node [Leaf]] !t [2 ,0]
value Node [Node [Leaf , Leaf , Leaf], Leaf , Node [Leaf]] !t [1]
value Node [Node [Leaf , Leaf , Leaf], Leaf , Node [Leaf]] !t [0 ,2]

11

lemma subtrees-Leaf : (t = Leaf) = (subtrees t = [])
by (metis tree.collapse tree.sel)

fun is-subtree-index :: tree ⇒ nat list ⇒ bool where
is-subtree-index t [] = True |
is-subtree-index t (i#xs) = (is-subtree-index t xs ∧ i < length (subtrees (t !t xs)))

lemma subtree-append: ts ! i !t xs = Node ts !t xs @ [i]
by (induction xs, auto)

lemma is-subtree-index-append [iff]: is-subtree-index (Node ts) (xs @ [i]) =
(i < length ts ∧ is-subtree-index (ts!i) xs)

proof
show is-subtree-index (Node ts) (xs @ [i]) =⇒ i < length ts ∧ is-subtree-index

(ts ! i) xs
by (induction xs, auto simp: subtree-append)

next
show i < length ts ∧ is-subtree-index (ts ! i) xs =⇒ is-subtree-index (Node ts)

(xs @ [i])
by (induction xs, auto simp: subtree-append)

qed

lemma is-subtree-index-append ′ [iff]: is-subtree-index t (xs @ [i]) =
(is-subtree-index t [i] ∧ is-subtree-index (t !t [i]) xs)
by (metis is-subtree-index-append is-subtree-index.simps subtree.simps tree.collapse)

lemma max-set-upt [simp]: Max {0 ..<Suc n} = n
by (simp add: Max-eq-iff)

lemma length-subtrees-eq-Max: assumes is-subtree-index t xs subtrees (t !t xs) 6=
[]

shows length (subtrees (t !t xs)) = Suc (Max {i. is-subtree-index t (i # xs)})
proof −

have
∧

i. is-subtree-index t (i # xs) = (i < length (subtrees (t !t xs))) using
assms(1) by simp

hence {i. is-subtree-index t (i # xs)} = {0 ..<length (subtrees (t !t xs))} by
fastforce

moreover have length (subtrees (t !t xs)) > 0 using assms(2) by simp
ultimately show length (subtrees (t !t xs)) = Suc (Max {i. is-subtree-index t (i

xs)})
by (metis max-set-upt gr0-implies-Suc)

qed

lemma tree-eq-iff-subtree-eq: (t = u) = (length (subtrees t) = length (subtrees u)
∧
(∀ i < length (subtrees t). t !t [i] = u !t [i]))
by (cases t, cases u, auto simp add: list-eq-iff-nth-eq)

We define the height of a rooted tree. A tree with only one node has
height 0. The trees of height at most n encode the n-cells in ’pd’.

12

fun height :: tree ⇒ nat where
height Leaf = 0 |
height (Node ts) = Suc (fold (max ◦ height) ts 0)

value height Leaf
value height (Node [Leaf , Leaf])
value height (Node [Node [Leaf , Leaf], Leaf])
value height (Node [Node [Leaf , Node [Leaf]]])

lemma height-Node [simp]: ts 6= [] =⇒ height (Node ts) = Suc (fold (max ◦ height)
ts 0)

by (metis height.simps(2) neq-Nil-conv)

lemma fold-eq-Max [simp]: ts 6= [] =⇒ fold (max ◦ height) ts 0 = Max (set (map
height ts))

using Max.set-eq-fold fold-map list.exhaust
by (metis (no-types, lifting) fold-simps(2) map-is-Nil-conv max-nat.right-neutral)

lemma height-Node-Max: ts 6= [] =⇒ height (Node ts) = Suc (Max (set (map
height ts)))

by simp

lemma height-Node-pos : ts 6= [] =⇒ 0 < height (Node ts)
proof (induction Node ts rule: height.induct)

case 1
then show ?case by blast

next
case (2 t ts ′)
then show ?case by fastforce

qed

lemma height-exists:
assumes height (Node ts) = Suc n
shows ∃ t. t ∈ set ts ∧ height t = n

proof (cases ts = [])
case True
then show ?thesis using assms by simp

next
case False
hence n = Max (set (map height ts)) using assms height-Node-Max by force
hence n ∈ set (map height ts) using Max-in ‹ts 6= []› by auto
then show ?thesis by auto

qed

lemma height-lt: assumes t ∈ set ts shows height t < height (Node ts)
proof −

from assms have nemp: ts 6= [] by fastforce
have height t ≤ Max (set (map height ts)) using assms by fastforce
also have . . . = fold (max ◦ height) ts 0 using nemp fold-eq-Max by simp

13

finally show ?thesis using nemp by simp
qed

lemma height-le-imp-le-Suc:
assumes ∀ t ∈ set ts. height t ≤ n
shows height (Node ts) ≤ Suc n

proof (cases ts = [])
case True
then show ?thesis by simp

next
case False
hence height (Node ts) = Suc (Max (set (map height ts))) using height-Node-Max

by blast
also have . . . ≤ Suc (Max (height ‘ set ts)) using set-map by fastforce
finally show ?thesis using ‹ts 6= []› assms by simp

qed

lemma height-zero [simp]: height t = 0 =⇒ t = Leaf
by (metis height.cases height-Node-pos less-nat-zero-code)

lemma is-subtree-index-length-le: is-subtree-index t xs =⇒ length xs ≤ height t
proof (induction xs arbitrary: t rule: rev-induct)

case Nil
then show ?case by force

next
case (snoc i xs)
hence hi: i < length (subtrees t) by (metis is-subtree-index-append tree.exhaust-sel)
hence length xs ≤ height (subtrees t ! i)

by (metis snoc is-subtree-index-append tree.exhaust-sel)
moreover have subtrees t ! i ∈ set (subtrees t) using hi by simp
ultimately show ?case using height-lt by fastforce

qed

lemma height-subtree: is-subtree-index t xs =⇒ height (t !t xs) ≤ height t − length
xs
proof (induction xs arbitrary: t rule: rev-induct)

case Nil
then show ?case by simp

next
case (snoc i xs)
hence is-subtree-index (t !t [i]) xs using is-subtree-index-append ′ by fastforce
hence height (t !t [i] !t xs) ≤ height (t !t [i]) − length xs using snoc.IH by blast
moreover have height (t !t [i]) < height t

by (metis height-lt is-subtree-index.simps(2) is-subtree-index-append ′ nth-mem
snoc.prems

subtree.simps tree.collapse)
moreover have t !t [i] !t xs = t !t xs @ [i] using subtree-append by simp
ultimately show ?case by auto

qed

14

lemma height-induct: (
∧

t. ∀ u. height u < height t −→ P u =⇒ P t) =⇒ P t
by (metis Nat.measure-induct)

lemma subtree-index-induct [case-names Index Step]:
assumes

is-subtree-index t xs∧
xs. [[is-subtree-index t xs; ∀ i < length (subtrees (t !t xs)). P (i#xs)]] =⇒ P xs

shows P xs
proof −

have hl: length xs ≤ height t by (simp add: assms(1) is-subtree-index-length-le)
then show P xs using assms
proof (induction height t − length xs arbitrary: xs)

case 0
hence height (t !t xs) = 0 using height-subtree by fastforce
hence ∀ i < length (subtrees (t !t xs)). P (i # xs)

by (metis height-zero length-0-conv less-nat-zero-code tree.sel)
then show ?case using 0 .prems by blast

next
case (Suc n)
have ∀ i < length (subtrees (t !t xs)). P (i # xs)
proof (safe)

fix i assume i < length (subtrees (t !t xs))
hence is-subtree-index t (i # xs) using Suc(4) by simp
moreover hence length (i # xs) ≤ height t using is-subtree-index-length-le

by blast
moreover have n = height t − length (i # xs) using Suc(2) by simp
ultimately show P (i # xs) using Suc(1) Suc(5) by blast

qed
then show ?case using Suc.prems by blast

qed
qed

The function trim keeps the first n layers of a tree and removes the
remaining ones.
fun trim :: nat ⇒ tree ⇒ tree where
trim 0 t = Leaf |
trim (Suc n) (Node ts) = Node (map (trim n) ts)

lemma trim-Leaf [simp]: trim n Leaf = Leaf
by (metis list.simps(8) trim.elims trim.simps(2))

lemma height-trim-le: height (trim n t) ≤ n
proof (induction n t rule: trim.induct)

case (1 t)
then show ?case by auto

next
case (2 n ts)
hence ∀ t ′ ∈ set (map (trim n) ts). height t ′ ≤ n by auto

15

then show ?case using height-le-imp-le-Suc trim.simps(2) by presburger
qed

lemma trim-const: height t ≤ n =⇒ trim n t = t
proof (induction n t rule: trim.induct)

case (1 t)
then show ?case using height-zero trim-Leaf by blast

next
case (2 n ts)
hence

∧
t. t ∈ set ts =⇒ trim n t = t using height-lt by fastforce

hence map (trim n) ts = ts using map-idI by blast
then show ?case by fastforce

qed

lemma height-trim-le ′: n ≤ height t =⇒ height (trim n t) = n
proof (induction n t rule: trim.induct)

case (1 t)
then show ?case by fastforce

next
case (2 n ts)
hence ∃m. height (Node ts) = Suc m by presburger
then obtain m where hm: height (Node ts) = Suc m by presburger
then obtain t where ht: t ∈ set ts ∧ height t = m using height-exists by meson
have n ≤ m using 2 hm by fastforce
hence hn: height (trim n t) = n using 2 ht by blast
have trim n t ∈ set (subtrees (trim (Suc n) (Node ts))) using ht by simp
then show ?case using hn height-lt by (metis height-trim-le leD le-SucE tree.collapse)

qed

lemma height-trim: height (trim n t) = (if n ≤ height t then n else height t)
using height-trim-le ′ trim-const by auto

value trim 1 Leaf
value trim 1 (Node [Leaf , Leaf])
value trim 2 (Node [Node [Leaf , Leaf], Leaf])
value trim 1 (Node [Node [Leaf , Node [Leaf]], Node [Leaf]])

lemma trim-trim ′ [simp]: trim n ◦ trim n = trim n
proof (induction n)

case 0
then show ?case by simp

next
case (Suc n)
then show ?case apply (simp add: fun-eq-iff) proof

fix t
show trim (Suc n) (trim (Suc n) t) = trim (Suc n) t

using Suc by (metis list.map-comp tree.exhaust trim.simps(2))
qed

qed

16

lemma trim-trim-Suc [simp]: trim n ◦ trim (Suc n) = trim n
proof (induction n)

case 0
then show ?case by simp

next
case (Suc n)
then show ?case apply (simp add: fun-eq-iff) proof

fix t
show trim (Suc n) (trim (Suc (Suc n)) t) = trim (Suc n) t

using Suc by (metis list.map-comp tree.exhaust trim.simps(2))
qed

qed

lemma trim-trim [simp]: n ≤ m =⇒ trim n ◦ trim m = trim n
proof (induction m arbitrary: n)

case 0
then show ?case by force

next
case (Suc m)
then show ?case proof (cases n = Suc m)

case True
then show ?thesis by auto

next
case False
hence n ≤ m using Suc.prems by auto
hence ih: trim n = trim n ◦ trim m using Suc by presburger
hence trim n ◦ trim (Suc m) = (trim n ◦ trim m) ◦ trim (Suc m) by simp
also have . . . = trim n ◦ trim m by (metis fun.map-comp trim-trim-Suc)
finally show ?thesis using ih by auto

qed
qed

lemma trim-eq-imp-trim-eq [simp]: [[n ≤ m; trim m t = trim m u]] =⇒ trim n t
= trim n u

by (metis trim-trim comp-apply)

lemma trim-1-eq: assumes trim 1 (Node ts) = trim 1 (Node us) shows length ts
= length us
proof −

have
∧

vs. trim 1 (Node vs) = Node (map (λx. Leaf) vs) by force
then show ?thesis using assms map-eq-imp-length-eq by auto

qed

lemma length-subtrees-trim-Suc: length (subtrees (trim (Suc n) t)) = length (subtrees
t)

by (induction t, simp)

lemma trim-eq-Leaf : trim n t = Leaf =⇒ n = 0 ∨ t = Leaf

17

by (induction n t rule: trim.induct, simp-all)

lemma map-eq-imp-pairs-eq: map f xs = map g ys =⇒ (
∧

x y. (x, y) ∈ set (zip xs
ys) =⇒ f x = g y)

by (metis fst-eqD in-set-zip nth-map snd-eqD)

lemma trim-eq-subtree-eq:
assumes trim (Suc n) (Node ts) = trim (Suc n) (Node us)
shows

∧
t u. (t, u) ∈ set (zip ts us) =⇒ trim n t = trim n u

proof −
fix t u assume (t, u) ∈ set (zip ts us)
moreover from assms have map (trim n) ts = map (trim n) us by fastforce
ultimately show trim n t = trim n u using map-eq-imp-pairs-eq by fast

qed

lemma pairs-eq-imp-map-eq:
assumes length xs = length ys ∀ (x, y) ∈ set (zip xs ys). f x = g y
shows map f xs = map g ys

proof −
have

∧
x y. (x, y) ∈ set (zip (map f xs) (map g ys)) =⇒ x = y proof −

fix x y assume h: (x, y) ∈ set (zip (map f xs) (map g ys))
hence ∃n. (map f xs)!n = x ∧ (map g ys)!n = y ∧ n < length xs ∧ n < length

ys
by (metis in-set-zip fst-conv length-map snd-conv)

then obtain n where hn: (map f xs)!n = x (map g ys)!n = y n < length xs n
< length ys

by blast
hence (xs!n, ys!n) ∈ set (zip xs ys) using in-set-zip by fastforce
with hn assms(2) show x = y by auto

qed
hence ∀ (x, y) ∈ set (zip (map f xs) (map g ys)). x = y by force
with assms(1) list-eq-iff-zip-eq show map f xs = map g ys by fastforce

qed

lemma map-eq-iff-pairs-eq: (map f xs = map g ys) =
(length xs = length ys ∧ (∀ (x, y) ∈ set (zip xs ys). f x = g y))

proof −
have map f xs = map g ys =⇒ ∀ (x, y) ∈ set (zip xs ys). f x = g y using

map-eq-imp-pairs-eq
by fast

thus ?thesis by (metis pairs-eq-imp-map-eq length-map)
qed

lemma subtree-eq-trim-eq:
assumes length ts = length us ∀ (t, u) ∈ set (zip ts us). trim n t = trim n u
shows trim (Suc n) (Node ts) = trim (Suc n) (Node us)
by (auto simp add: assms map-eq-iff-pairs-eq)

lemma subtree-trim-1 : is-subtree-index t [i] =⇒ trim (Suc n) t !t [i] = trim n (t

18

!t [i])
by (smt (verit) Suc-inject is-subtree-index.simps(2) list.distinct(1) nat.distinct(1)

nth-map
subtree.elims subtree.simps(2) tree.sel trim.elims)

lemma is-subtree-index-trim:
is-subtree-index (trim n t) xs = (is-subtree-index t xs ∧ length xs ≤ n)

proof (induction n t arbitrary: xs rule: trim.induct)
case (1 t)
then show ?case using is-subtree-index-length-le by fastforce

next
case (2 n ts)
then show ?case proof (induction xs rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x xs)
then show ?case by fastforce

qed
qed

lemma subtree-trim: [[is-subtree-index t xs; length xs ≤ n]] =⇒
trim n t !t xs = trim (n − length xs) (t !t xs)

proof (induction n t arbitrary: xs rule: trim.induct)
case (1 t)
then show ?case by simp

next
case (2 n ts)
then show ?case proof (cases length xs = Suc n)

case True
hence is-subtree-index (trim (Suc n) (Node ts)) xs using is-subtree-index-trim

2 by blast
hence height (trim (Suc n) (Node ts) !t xs) ≤ 0

by (metis height-subtree height-trim-le True diff-is-0-eq ′)
then show ?thesis using True height-zero by fastforce

next
case False
then show ?thesis proof (cases xs rule: rev-cases)

case Nil
then show ?thesis by simp

next
case (snoc ys i)
have hi: ts ! i ∈ set ts is-subtree-index (ts ! i) ys using snoc 2 (2) by simp-all
have hl: length ys ≤ n using snoc 2 (3) by simp
have Node (map (trim n) ts) !t ys @ [i] = trim n (ts ! i) !t ys
by (metis 2 .prems(1) is-subtree-index-append nth-map snoc subtree-append)

also have . . . = trim (n − length ys) (ts ! i !t ys) using 2 (1) hi hl by blast
finally show trim (Suc n) (Node ts) !t xs = trim (Suc n − length xs) (Node

ts !t xs)

19

by (simp add: snoc subtree-append)
qed

qed
qed

lemma length-subtrees-trim: [[is-subtree-index t xs; length xs < n]] =⇒
length (subtrees (trim n t !t xs)) = length (subtrees (t !t xs))
by (metis subtree-trim length-subtrees-trim-Suc Suc-diff-Suc less-imp-le-nat)

lemma subtree-trim-Leaf : assumes is-subtree-index (trim n t) xs t !t xs = Leaf
shows trim n t !t xs = Leaf

proof (cases length xs < n)
case True
then show ?thesis
using length-subtrees-trim assms is-subtree-index-trim subtrees-Leaf by fastforce

next
case False
hence length xs = n using assms(1) by (simp add: is-subtree-index-trim)
then show ?thesis using assms(1) is-subtree-index-trim subtree-trim by auto

qed

4.2 The strict ω-category of pasting diagrams
The function δ acts as both the source and target map in the globular set
of pasting diagrams. It is denoted ∂ in Leinster [1, p. 264].
abbreviation δ where
δ ≡ trim

value δ 1 (Node [Node [Leaf , Leaf , Leaf], Leaf , Node [Leaf]])
value δ 2 (Node [Node [Node [Leaf , Leaf]], Node [Leaf , Leaf]])

abbreviation PD :: nat ⇒ tree set where
PD n ≡ {t. height t ≤ n}

interpretation pd: globular-set PD δ δ
by (unfold-locales, auto simp add: height-trim-le)

The generalised source and target maps have simple interpretations in
terms of trim.
lemma s ′-eq-trim: assumes n ≤ m height t ≤ m shows pd.s ′ m n t = trim n t

using assms
proof (induction m arbitrary: t)

case 0
moreover hence n = 0 by force
ultimately show ?case using pd.s ′-n-n trim-const by simp

next
case (Suc m)
then show ?case proof (cases n = Suc m)

case True

20

then show ?thesis using pd.s ′-n-n Suc(3) trim-const by simp
next

case False
with Suc(2) have n ≤ m by simp
hence pd.s ′ (Suc m) n t = pd.s ′ m n (δ m t) using Suc(3) by force
also have . . . = δ n (δ m t) using Suc.IH height-trim-le ‹n ≤ m› by blast
finally show ?thesis by (metis trim-trim ‹n ≤ m› comp-apply)

qed
qed

lemma s ′-eq-t ′: pd.s ′ = pd.t ′

proof (clarsimp simp add: fun-eq-iff)
fix m n t
show pd.s ′ m n t = pd.t ′ m n t proof (induction m arbitrary: n t)

case 0
then show ?case

using pd.s ′-n-n pd.t ′-n-n pd.s ′.simps(2) pd.t ′.simps(2) by (cases n, pres-
burger+)

next
case (Suc m)
then show ?case by (cases Suc m rule: linorder-cases, simp-all)

qed
qed

lemma t ′-eq-trim: assumes n ≤ m height t ≤ m shows pd.t ′ m n t = trim n t
by (metis (mono-tags, lifting) assms s ′-eq-trim s ′-eq-t ′)

Next we define identities and composition [1, p. 266]. The identity of a
tree with height at most n is the same tree seen as a tree of height at most
n + 1.
fun tree-comp :: nat ⇒ tree ⇒ tree ⇒ tree where
tree-comp 0 (Node ts) (Node us) = Node (ts @ us) |
tree-comp (Suc n) (Node ts) (Node us) = Node (map2 (tree-comp n) ts us)

value tree-comp 1
(Node [Node [Leaf , Leaf], Leaf , Node [Leaf]])
(Node [Leaf , Leaf , Node [Leaf , Leaf]])

value tree-comp 0
(Node [Node [Node [Leaf , Leaf]]])
(Node [Node [Leaf , Leaf]])

value tree-comp 0
(tree-comp 0
(tree-comp 1

21

(Node [Leaf , Leaf])
(Node [Node [Leaf], Node [Leaf , Leaf , Leaf]]))

(Node [Leaf , Node [Leaf , Leaf]]))
(Node [Leaf , Leaf , Leaf])

lemma tree-comp-0-Leaf1 [simp]: tree-comp 0 Leaf t = t
by (metis eq-Nil-appendI tree.exhaust tree-comp.simps(1))

lemma tree-comp-0-Leaf2 [simp]: tree-comp 0 t Leaf = t
by (metis append-Nil2 tree.exhaust tree-comp.simps(1))

lemma tree-comp-Suc-Leaf1 [simp]: tree-comp (Suc n) Leaf t = Leaf
by (cases t, simp)

lemma tree-comp-Suc-Leaf2 [simp]: tree-comp (Suc n) t Leaf = Leaf
by (cases t, simp)

lemma height-tree-comp-0 [simp]: height (tree-comp 0 t u) = max (height t) (height
u)
proof (cases t = Leaf ∨ u = Leaf)

case True
then show ?thesis by auto

next
case False
hence nempt: subtrees t 6= [] ∧ subtrees u 6= [] by (metis tree.exhaust-sel)
have height (tree-comp 0 t u) = height (Node (subtrees t @ subtrees u))

by (metis tree.collapse tree-comp.simps(1))
also have . . . = Suc (Max (set (map height (subtrees t @ subtrees u))))

using nempt height-Node-Max by blast
also have . . . = Suc (Max (set (map height (subtrees t)) ∪ set (map height

(subtrees u))))
by simp

also have . . . = Suc (max (Max (set (map height (subtrees t))))
(Max (set (map height (subtrees u)))))

using nempt Max-Un by (metis List.finite-set map-is-Nil-conv set-empty2)
also have . . . = max (Suc (Max (set (map height (subtrees t)))))

(Suc (Max (set (map height (subtrees u)))))
by linarith

finally show height (tree-comp 0 t u) = max (height t) (height u)
using nempt height-Node-Max by (metis tree.collapse)

qed

An alternative description of being composable for trees. Defined so that
tree-comp n t u is defined if and only if composable-tree n t u.
fun composable-tree :: nat ⇒ tree ⇒ tree ⇒ bool where
composable-tree 0 (Node ts) (Node us) = True |
composable-tree (Suc n) (Node ts) (Node us) = (length ts = length us ∧

22

(∀ i < length ts. composable-tree n (ts!i) (us!i)))

lemma sym-composable-tree: composable-tree n t u = composable-tree n u t
by (induction n t u rule: composable-tree.induct, simp, fastforce)

lemma is-composable-pair-imp-composable-tree: pd.is-composable-pair m n t u =⇒
composable-tree n t u

proof (induction n t u rule: composable-tree.induct)
case (1 ts us)
then show ?case by fastforce

next
case (2 n ts us)
with pd.is-composable-pair-def have h: Suc n < m height (Node ts) ≤ m height

(Node us) ≤ m
pd.t ′ m (Suc n) (Node us) = pd.s ′ m (Suc n) (Node ts) by blast+

moreover hence Suc n ≤ m by linarith
ultimately have htrim: trim (Suc n) (Node ts) = trim (Suc n) (Node us)

by (metis (mono-tags, lifting) s ′-eq-trim t ′-eq-trim)
hence trim 1 (Node ts) = trim 1 (Node us)

by (metis One-nat-def Suc-le-mono le0 trim-eq-imp-trim-eq)
with trim-1-eq have hl: length ts = length us by blast
moreover have ∀ i < length ts. composable-tree n (ts!i) (us!i) proof (safe)

fix i assume hi: i < length ts
hence height (ts!i) ≤ m using h(2) height-lt nth-mem by fastforce
moreover have height (us!i) ≤ m using hi h(3) height-lt nth-mem hl by

fastforce
moreover have n < m using h(1) by simp
moreover have trim n (ts!i) = trim n (us!i) proof −

have map (trim n) ts = map (trim n) us using htrim by auto
thus trim n (ts!i) = trim n (us!i) using nth-map hi hl by metis

qed
ultimately have pd.t ′ m n (us!i) = pd.s ′ m n (ts!i)

using s ′-eq-trim t ′-eq-trim order-less-imp-le[of n m] by presburger
hence pd.is-composable-pair m n (ts!i) (us!i)

using pd.is-composable-pair-def ‹n < m› ‹height (ts!i) ≤ m› ‹height (us!i) ≤
m› by blast

with 2 (1) hi show composable-tree n (ts!i) (us!i) by fast
qed
ultimately show ?case by fastforce

qed

lemma composable-tree-imp-trim-eq: composable-tree n t u =⇒ trim n t = trim n
u
proof (induction n t u rule: composable-tree.induct)

case (1 ts us)
then show ?case by simp

next
case (2 n ts us)
then show ?case

23

by (metis (mono-tags, lifting) nth-map trim.simps(2) length-map nth-equalityI
composable-tree.simps(2))

qed

lemma composable-tree-imp-is-composable-pair :
assumes n < m height t ≤ m height u ≤ m composable-tree n t u
shows pd.is-composable-pair m n t u
using assms

proof (induction m arbitrary: n t u)
case 0
then show ?case by blast

next
case (Suc m)
hence trim n u = trim n t using composable-tree-imp-trim-eq by presburger
hence pd.t ′ (Suc m) n u = pd.s ′ (Suc m) n t

using Suc(2−4) s ′-eq-trim t ′-eq-trim less-imp-le-nat by presburger
with Suc(2−4) pd.is-composable-pair-def show ?case by blast

qed

lemma is-composable-pair-iff-composable-tree: pd.is-composable-pair m n t u =
(n < m ∧ height t ≤ m ∧ height u ≤ m ∧ composable-tree n t u)
by (metis (mono-tags, lifting) composable-tree-imp-is-composable-pair

is-composable-pair-imp-composable-tree mem-Collect-eq pd.is-composable-pair-def)

lemma composable-tree-imp-composable-tree-subtrees:
composable-tree (Suc n) (Node ts) (Node us) =⇒ ∀ (t, u) ∈ set (zip ts us). com-

posable-tree n t u
by (metis in-set-zip case-prod-beta composable-tree.simps(2))

lemma composable-tree-nth-subtrees:
[[composable-tree (Suc n) (Node ts) (Node us); i < length ts]] =⇒ composable-tree

n (ts!i) (us!i)
by fastforce

lemma is-composable-pair-imp-is-composable-pair-subtrees:
assumes pd.is-composable-pair (Suc m) (Suc n) (Node ts) (Node us)
shows ∀ (t, u) ∈ set (zip ts us). pd.is-composable-pair m n t u

proof
have pd.is-composable-pair m n (fst p) (snd p) if hp: p ∈ set (zip ts us) for p

proof −
have composable-tree (Suc n) (Node ts) (Node us)

using is-composable-pair-iff-composable-tree assms by blast
hence h: composable-tree n (fst p) (snd p)

using hp composable-tree-imp-composable-tree-subtrees by fastforce
have fst p ∈ set ts snd p ∈ set us by (metis hp in-set-zipE prod.exhaust-sel)+
hence height (fst p) ≤ m height (snd p) ≤ m

by (meson hp height-lt assms less-Suc-eq-le order-less-le-trans
is-composable-pair-iff-composable-tree)+

with h is-composable-pair-iff-composable-tree assms

24

show pd.is-composable-pair m n (fst p) (snd p) by force
qed
then show

∧
x. x ∈ set (zip ts us) =⇒ case x of (t, u) ⇒ pd.is-composable-pair

m n t u
by force

qed

lemma in-set-map2 : (z ∈ set (map2 f xs ys)) = (∃ (x, y) ∈ set (zip xs ys). z = f
x y)

by auto

lemma height-tree-comp-le: [[height t ≤ m; height u ≤ m]] =⇒ height (tree-comp n
t u) ≤ m
proof (induction n t u arbitrary: m rule: tree-comp.induct)

case (1 ts us)
then show ?case using height-tree-comp-0 by presburger

next
case (2 n ts us)
show ?case proof (cases ts 6= [] ∧ us 6= [])

case True
hence ∃m ′. m = Suc m ′ using height-zero 2 .prems(1) not0-implies-Suc by

auto
then obtain m ′ where m = Suc m ′ by blast
hence ∀ t ∈ set ts. height t ≤ m ′ ∀ u ∈ set us. height u ≤ m ′

using True 2 .prems by simp+
hence ∀ (t, u) ∈ set (zip ts us). height (tree-comp n t u) ≤ m ′

by (metis (no-types, lifting) 2 .IH case-prodI2 set-zip-leftD set-zip-rightD)
then show ?thesis using True ‹m = Suc m ′› by auto

next
case False
then show ?thesis by force

qed
qed

lemma nth-map2 [simp]: [[n < length xs; n < length ys]] =⇒ map2 f xs ys ! n = f
(xs ! n) (ys ! n)

by fastforce

lemma trim-tree-comp1 : composable-tree n t u =⇒ trim n (tree-comp n t u) =
trim n t
proof (induction n t u rule: composable-tree.induct)

case (1 ts us)
then show ?case by fastforce

next
case (2 n ts us)
then show ?case by (simp add: list-eq-iff-nth-eq)

qed

lemma trim-tree-comp2 : composable-tree n t u =⇒ trim n (tree-comp n t u) =

25

trim n u
using trim-tree-comp1 composable-tree-imp-trim-eq by presburger

lemma map2-map-map ′: map2 f (map g xs) (map h ys) = map (λ(x, y). f (g x)
(h y)) (zip xs ys)
proof (induction xs arbitrary: ys)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case proof (induction ys)

case Nil
then show ?case by simp

next
case (Cons a ys)
then show ?case by auto

qed
qed

lemma trim-tree-comp-commute: trim m (tree-comp n t u) = tree-comp n (trim m
t) (trim m u)
proof (induction m arbitrary: n t u)

case 0
then show ?case by (cases n, simp-all)

next
case (Suc m)
then show ?case
by (induction n t u rule: composable-tree.induct, simp-all add: list-eq-iff-nth-eq)

qed

interpretation pd-pre-cat: pre-strict-omega-category PD δ δ λ m. tree-comp λ n.
id
proof (unfold-locales)

fix m n x ′ x assume pd.is-composable-pair m n x ′ x
then show tree-comp n x ′ x ∈ PD m

using is-composable-pair-iff-composable-tree height-tree-comp-le by auto
next

fix n show id ∈ PD n → PD (Suc n) by simp
next

fix m x ′ x assume pd.is-composable-pair (Suc m) m x ′ x
then show δ m (tree-comp m x ′ x) = δ m x
by (simp add: is-composable-pair-iff-composable-tree trim-tree-comp2 height-tree-comp-le)

next
fix m x ′ x assume pd.is-composable-pair (Suc m) m x ′ x
then show δ m (tree-comp m x ′ x) = δ m x ′

by (simp add: is-composable-pair-iff-composable-tree trim-tree-comp1 height-tree-comp-le)
next

fix m n x ′ x assume pd.is-composable-pair (Suc m) n x ′ x n < m
then show δ m (tree-comp n x ′ x) = tree-comp n (δ m x ′) (δ m x)

26

by (simp add: is-composable-pair-iff-composable-tree trim-tree-comp-commute
height-tree-comp-le)
next

fix x n assume x ∈ PD n
then show δ n (id x) = x using trim-const by auto

qed

lemma tree-comp-assoc: tree-comp n (tree-comp n t u) v = tree-comp n t (tree-comp
n u v)
proof (induction n t u arbitrary: v rule: composable-tree.induct)

case (1 ts us)
then show ?case by (metis append-assoc tree-comp.simps(1) tree.exhaust)

next
case (2 n ts us)
define vs where vs = subtrees v hence hv: v = Node vs by force
let ?k = min (length ts) (min (length us) (length vs))
have ∀ i < ?k. tree-comp n (tree-comp n (ts!i) (us!i)) (vs!i) =

tree-comp n (ts!i) (tree-comp n (us!i) (vs!i)) using 2 .IH by auto
hence map2 (tree-comp n) (map2 (tree-comp n) ts us) vs =
map2 (tree-comp n) ts (map2 (tree-comp n) us vs) by (simp add: list-eq-iff-nth-eq)

then show ?case using hv by auto
qed

lemma i ′-eq-id: n ≤ m =⇒ pd-pre-cat.i ′ m n = id
proof (induction m)

case 0
then show ?case using pd-pre-cat.i ′.simps(1) by blast

next
case (Suc m)
then show ?case by (metis pd-pre-cat.i ′-Suc id-comp le-Suc-eq pd-pre-cat.i ′-n-n)

qed

lemma composable-tree-trim1 : n ≤ m =⇒ composable-tree n (trim m t) t
proof (induction n t arbitrary: m rule: trim.induct)

case (1 t)
then show ?case by (metis composable-tree.simps(1) tree.exhaust)

next
case (2 n ts)
hence ∃m ′. m = Suc m ′ by presburger
then obtain m ′ where hm: m = Suc m ′ n ≤ m ′ using 2 (2) by blast
moreover hence ∀ i < length ts. composable-tree n (δ m ′ (ts!i)) (ts!i) using

2 (1) by simp
ultimately show ?case by force

qed

lemma composable-tree-trim2 : n ≤ m =⇒ composable-tree n t (trim m t)
using sym-composable-tree composable-tree-trim1 by presburger

lemma tree-comp-trim1 : tree-comp n (trim n t) t = t

27

by (induction n t rule: trim.induct, simp add: tree.exhaust, simp add: list-eq-iff-nth-eq)

lemma tree-comp-trim2 : tree-comp n t (trim n t) = t
by (induction n t rule: trim.induct, simp add: tree.exhaust, simp add: list-eq-iff-nth-eq)

lemma tree-comp-exchange:
[[q < p; composable-tree p y ′ y; composable-tree p x ′ x;
composable-tree q y ′ x ′; composable-tree q y x]] =⇒
tree-comp q (tree-comp p y ′ y) (tree-comp p x ′ x) =
tree-comp p (tree-comp q y ′ x ′) (tree-comp q y x)

proof (induction p y ′ y arbitrary: q x ′ x rule: composable-tree.induct)
case (1 ys ′ ys)
then show ?case proof (induction q x ′ x rule: composable-tree.induct)

case (1 xs ′ xs)
then show ?case by blast

next
case (2 q xs ′ xs)
then show ?case by force

qed
next

case (2 p ys ′ ys)
then show ?case proof (induction q x ′ x rule: composable-tree.induct)

case (1 ts us)
then show ?case by force

next
case (2 n ts us)
then show ?case by (simp add: list-eq-iff-nth-eq)

qed
qed

interpretation pd-cat ′: strict-omega-category PD δ δ λ m. tree-comp λ n. id
proof (unfold-locales)

fix m n x ′ x x ′′ assume pd.is-composable-pair m n x ′ x pd.is-composable-pair m
n x ′′ x ′

then show tree-comp n (tree-comp n x ′′ x ′) x = tree-comp n x ′′ (tree-comp n x ′

x)
using tree-comp-assoc is-composable-pair-iff-composable-tree by force

next
fix n m x assume n < m x ∈ PD m
moreover hence height x ≤ m by simp
ultimately show tree-comp n (pd-pre-cat.i ′ m n (pd.t ′ m n x)) x = x
by (metis (no-types, lifting) i ′-eq-id t ′-eq-trim tree-comp-trim1 id-apply nat-less-le)

next
fix n m x assume n < m x ∈ PD m
moreover hence height x ≤ m by simp
ultimately show tree-comp n x (pd-pre-cat.i ′ m n (pd.s ′ m n x)) = x
by (metis (no-types, lifting) i ′-eq-id s ′-eq-trim tree-comp-trim2 id-apply nat-less-le)

next
fix q p m y ′ y x ′ x assume q < p p < m

28

pd.is-composable-pair m p y ′ y pd.is-composable-pair m p x ′ x
pd.is-composable-pair m q y ′ x ′ pd.is-composable-pair m q y x

then show tree-comp q (tree-comp p y ′ y) (tree-comp p x ′ x) =
tree-comp p (tree-comp q y ′ x ′) (tree-comp q y x)
using is-composable-pair-iff-composable-tree tree-comp-exchange by meson

qed (simp)

end

5 Acknowledgements
The work has been jointly supported by the Cambridge Mathematics Place-
ments (CMP) Programme and the ERC Advanced Grant ALEXANDRIA
(Project GA 742178).

References
[1] T. Leinster. Higher operads, higher categories. Number 298. Cambridge

University Press, 2004.

29

	Background material on extensional functions
	Globular sets
	Globular sets
	Maps between globular sets
	The terminal globular set

	Strict -categories
	The category of pasting diagrams
	Rooted trees
	The strict -category of pasting diagrams

	Acknowledgements

