
A Reduction Theorem for Store Buffers

Ernie Cohen1, Norbert Schirmer2,?

1 Microsoft Corp., Redmond, WA, USA
2 German Research Center for Artificial Intelligence (DFKI) Saarbrücken, Germany

ecohen@amazon.com, norbert.schirmer@web.de

Abstract. When verifying a concurrent program, it is usual to assume that memory is
sequentially consistent. However, most modern multiprocessors depend on store buffering
for efficiency, and provide native sequential consistency only at a substantial performance
penalty. To regain sequential consistency, a programmer has to follow an appropriate pro-
gramming discipline. However, naïve disciplines, such as protecting all shared accesses with
locks, are not flexible enough for building high-performance multiprocessor software.
We present a new discipline for concurrent programming under TSO (total store order, with
store buffer forwarding). It does not depend on concurrency primitives, such as locks. Instead,
threads use ghost operations to acquire and release ownership of memory addresses. A thread
can write to an address only if no other thread owns it, and can read from an address only if
it owns it or it is shared and the thread has flushed its store buffer since it last wrote to an
address it did not own. This discipline covers both coarse-grained concurrency (where data
is protected by locks) as well as fine-grained concurrency (where atomic operations race to
memory).
We formalize this discipline in Isabelle/HOL, and prove that if every execution of a program
in a system without store buffers follows the discipline, then every execution of the program
with store buffers is sequentially consistent. Thus, we can show sequential consistency under
TSO by ordinary assertional reasoning about the program, without having to consider store
buffers at all.

? Work funded by the German Federal Ministry of Education and Research (BMBF) in the framework of
the Verisoft XT project under grant 01 IS 07 008.

Table of Contents

A Reduction Theorem for Store Buffers . 1
Ernie Cohen, Norbert Schirmer

1 Introduction . 2
2 Preliminaries . 5
3 Programming discipline . 6
4 Formalization . 8

4.1 Store buffer machine . 9
4.2 Virtual machine . 10
4.3 Reduction . 13

5 Building blocks of the proof . 13
5.1 Intermediate models . 15
5.2 Coupling relation . 18
5.3 Simulation . 20

6 PIMP . 26
7 Conclusion . 29
A Appendix . 31

A.1 Memory Instructions . 31
A.2 Abstract Program Semantics . 32
A.3 Memory Transitions . 36
A.4 Safe Configurations of Virtual Machines . 38
A.5 Simulation of Store Buffer Machine with History by Virtual Machine

with Delayed Releases . 125
A.6 Simulation of Store Buffer Machine without History by Store Buffer

Machine with History . 128
A.7 Plug Together the Two Simulations . 130
A.8 PIMP . 131

1 Introduction

When verifying a shared-memory concurrent program, it is usual to assume that each
memory operation works directly on a shared memory state, a model sometimes called
atomic memory. A memory implementation that provides this abstraction for programs
that communicate only through shared memory is said to be sequentially consistent. Con-
current algorithms in the computing literature tacitly assume sequential consistency, as
do most application programmers.

However, modern computing platforms typically do not guarantee sequential consis-
tency for arbitrary programs, for two reasons. First, optimizing compilers are typically
incorrect unless the program is appropriately annotated to indicate which program loca-
tions might be concurrently accessed by other threads; this issue is addressed only cursorily
in this report. Second, modern processors buffer stores of retired instructions. To make
such buffering transparent to single-processor programs, subsequent reads of the processor
read from these buffers in preference to the cache. (Otherwise, a program could write a
new value to an address but later read an older value.) However, in a multiprocessor sys-
tem, processors do not snoop the store buffers of other processors, so a store is visible to
the storing processor before it is visible to other processors. This can result in executions
that are not sequentially consistent.

The simplest example illustrating such an inconsistency is the following program, con-
sisting of two threads T0 and T1, where x and y are shared memory variables (initially 0)
and r0 and r1 are registers:

T0
x = 1;
r0 = y;

T1
y = 1;
r1 = x;

In a sequentially consistent execution, it is impossible for both r0 and r1 to be assigned
0. This is because the assignments to x and y must be executed in some order; if x (resp.
y) is assigned first, then r1 (resp. r0) will be set to 1. However, in the presence of store
buffers, the assignments to r0 and r1 might be performed while the writes to x and y are
still in their respective store buffers, resulting in both r0 and r1 being assigned 0.

One way to cope with store buffers is make them an explicit part of the programming
model. However, this is a substantial programming concession. First, because store buffers
are FIFO, it ratchets up the complexity of program reasoning considerably; for example,
the reachability problem for a finite set of concurrent finite-state programs over a finite set
of finite-valued locations is in PSPACE without store buffers, but undecidable (even for
two threads) with store buffers. Second, because writes from function calls might still be
buffered when a function returns, making the store buffers explicit would break modular
program reasoning.

In practice, the usual remedy for store buffering is adherence to a programming dis-
cipline that provides sequential consistency for a suitable class of architectures. In this
report, we describe and prove the correctness of such a discipline suitable for the memory
model provided by existing x86/x64 machines, where each write emerging from a store
buffer hits a global cache visible to all processors. Because each processor sees the same
global ordering of writes, this model is sometimes called total store order (TSO) [2]3

The concurrency discipline most familiar to concurrent programs is one where each
variable is protected by a lock, and a thread must hold the corresponding lock to access
the variable. (It is possible to generalize this to allow shared locks, as well as variants such
as split semaphores.) Such lock-based techniques are typically referred to as coarse-grained
concurrency control, and suffice for most concurrent application programming. However,
these techniques do not suffice for low-level system programming (e.g., the construction of
OS kernels), for several reasons. First, in kernel programming efficiency is paramount, and
atomic memory operations are more efficient for many problems. Second, lock-free con-
currency control can sometimes guarantee stronger correctness (e.g., wait-free algorithms
can provide bounds on execution time). Third, kernel programming requires taking into
account the implicit concurrency of concurrent hardware activities (e.g., a hardware TLB
racing to use page tables while the kernel is trying to access them), and hardware cannot
be forced to follow a locking discipline.

A more refined concurrency control discipline, one that is much closer to expert prac-
tice, is to classify memory addresses as lock-protected or shared. Lock-protected addresses
are used in the usual way, but shared addresses can be accessed using atomic operations
provided by hardware (e.g., on x86 class architectures, most reads and writes are atomic4).
The main restriction on these accesses is that if a processor does a shared write and a

3 Before 2008, Intel [9] and AMD [1] both put forward a weaker memory model in which writes to different
memory addresses may be seen in different orders on different processors, but respecting causal ordering.
However, current implementations satisfy the stronger conditions described in this report and are also
compliant with the latest revisions of the Intel specifications [10]. According to Owens et al. [15] AMD
is also planning a similar adaptation of their manuals.

4 This atomicity isn’t guaranteed for certain memory types, or for operations that cross a cache line.

3

subsequent shared read (possibly from a different address), the processor must flush the
store buffer somewhere in between. For example, in the example above, both x and y
would be shared addresses, so each processor would have to flush its store buffer between
its first and second operations.

However, even this discipline is not very satisfactory. First, we would need even more
rules to allow locks to be created or destroyed, or to change memory between shared and
protected, and so on. Second, there are many interesting concurrency control primitives,
and many algorithms, that allow a thread to obtain exclusive ownership of a memory
address; why should we treat locking as special?

In this report, we consider a much more general and powerful discipline that also guar-
antees sequential consistency. The basic rule for shared addresses is similar to the discipline
above, but there are no locking primitives. Instead, we treat ownership as fundamental.
The difference is that ownership is manipulated by nonblocking ghost updates, rather than
an operation like locking that have runtime overhead. Informally the rules of the discipline
are as follows:

– In any state, each memory address is either shared or unshared. Each memory address
is also either owned by a unique thread or unowned. Every unowned address must be
shared. Each address is also either read-only or read-write. Every read-only address is
unowned.

– A thread can (autonomously) acquire ownership of an unowned address, or release
ownership of a address that it owns. It can also change whether an address it owns is
shared or not. Upon release of an address it can mark it as read-only.

– Each memory access is marked as volatile or non-volatile.
– A thread can perform a write if it is sound. It can perform a read if it is sound and

clean.
– A non-volatile write is sound if the thread owns the address and the address is unshared.
– A non-volatile read is sound if the thread owns the address or the address is read-only.
– A volatile write is sound if no other thread owns the address and the address is not

marked as read-only.
– A volatile read is sound if the address is shared or the thread owns it.
– A volatile read is clean if the store buffer has been flushed since the last volatile write.

Moreover, every non-volatile read is clean.
– For interlocked operations (like compare and swap), which have the side effect of the

store buffer getting flushed, the rules for volatile accesses apply.

Note first that these conditions are not thread-local, because some actions are allowed
only when an address is unowned, marked read-only, or not marked read-only. A thread can
ascertain such conditions only through system-wide invariants, respected by all threads,
along with data it reads. By imposing suitable global invariants, various thread-local dis-
ciplines (such as one where addresses are protected by locks, conditional critical reasons,
or monitors) can be derived as lemmas by ordinary program reasoning, without need for
meta-theory.

Second, note that these rules can be checked in the context of a concurrent program
without store buffers, by introducing ghost state to keep track of ownership and sharing
and whether the thread has performed a volatile write since the last flush. Our main result
is that if a program obeys the rules above, then the program is sequentially consistent when
executed on a TSO machine.

Consider our first example program. If we choose to leave both x and y unowned (and
hence shared), then all accesses must be volatile. This would force each thread to flush the
store buffer between their first and second operations. In practice, on an x86/x64 machine,

4

this would be done by making the writes interlocked, which flushes store buffers as a side
effect. Whichever thread flushes its store buffer second is guaranteed to see the write of
the other thread, making the execution violating sequential consistency impossible.

However, couldn’t the first thread try to take ownership of x before writing it, so that
its write could be non-volatile? The answer is that it could, but then the second thread
would be unable to read x volatile (or take ownership of x and read it non-volatile), because
we would be unable to prove that x is unowned at that point. In other words, a thread
can take ownership of an address only if it is not racing to do so.

Ultimately, the races allowed by the discipline involve volatile access to a shared ad-
dress, which brings us back to locks. A spinlock is typically implemented with an inter-
locked read-modify-write on an address (the interlocking providing the required flushing of
the store buffer). If the locking succeeds, we can prove (using for example a ghost variable
giving the ID of the thread taking the lock) that no other thread holds the lock, and can
therefore safely take ownership of an address “protected” by the lock (using the global
invariant that only the lock owner can own the protected address). Thus, our discipline
subsumes the better-known disciplines governing coarse-grained concurrency control.

To summarize, our motivations for using ownership as our core notion of a practical
programming discipline are the following:

1. the distinction between global (volatile) and local (non-volatile) accesses is a practical
requirement to reduce the performance penalty due to necessary flushes and to allow
important compiler optimizations (such as moving a local write ahead of a global read),

2. coarse-grained concurrency control like locking is nothing special but only a derived
concept which is used for ownership transfer (any other concurrency control that guar-
antees exclusive access is also fine), and

3. we want that the conditions to check for the programming discipline can be discharged
by ordinary state-based program reasoning on a sequentially consistent memory model
(without having to talk about histories or complete executions).

Overview In Section 2 we introduce preliminaries of Isabelle/HOL, the theorem prover
in which we mechanized our work. In Section 3 we informally describe the programming
discipline and basic ideas of the formalization, which is detailed in Section 4 where we
introduce the formal models and the reduction theorem. In Section 5 we give some details
of important building blocks for the proof of the reduction theorem. To illustrate the
connection between a programming language semantics and our reduction theorem, we
instantiate our framework with a simple semantics for a parallel WHILE language in
Section 6. Finally we conclude in Section 7.

2 Preliminaries

The formalization presented in this papaer is mechanized and checked within the generic
interactive theorem prover Isabelle [16]. Isabelle is called generic as it provides a framework
to formalize various object logics declared via natural deduction style inference rules. The
object logic that we employ for our formalization is the higher order logic of Isabelle/HOL
[12].

This article is written using Isabelle’s document generation facilities, which guarantees
a close correspondence between the presentation and the actual theory files. We distin-
guish formal entities typographically from other text. We use a sans serif font for types
and constants (including functions and predicates), e.g., map, a slanted serif font for free
variables, e.g., x, and a slanted sans serif font for bound variables, e.g., x . Small capitals

5

are used for data type constructors, e.g., Foo, and type variables have a leading tick, e.g.,
′a. HOL keywords are typeset in type-writer font, e.g., let.

To group common premises and to support modular reasoning Isabelle provides lo-
cales [4, 5]. A locale provides a name for a context of fixed parameters and premises,
together with an elaborate infrastructure to define new locales by inheriting and extend-
ing other locales, prove theorems within locales and interpret (instantiate) locales. In
our formalization we employ this infrastructure to separate the memory system from the
programming language semantics.

The logical and mathematical notions follow the standard notational conventions with
a bias towards functional programming. We only present the more unconventional parts
here. We prefer curried function application, e.g., f a b instead of f (a, b). In this setting
the latter becomes a function application to one argument, which happens to be a pair.

Isabelle/HOL provides a library of standard types like Booleans, natural numbers,
integers, total functions, pairs, lists, and sets. Moreover, there are packages to define new
data types and records. Isabelle allows polymorphic types, e.g., ′a list is the list type with
type variable ′a. In HOL all functions are total, e.g., nat ⇒ nat is a total function on natural
numbers. A function update is f (y := v) = (λx . if x = y then v else f x). To formalize
partial functions the type ′a option is used. It is a data type with two constructors, one
to inject values of the base type, e.g., bxc, and the additional element ⊥. A base value
can be projected with the function the, which is defined by the sole equation the bxc = x.
Since HOL is a total logic the term the ⊥ is still a well-defined yet un(der)specified value.
Partial functions are usually represented by the type ′a ⇒ ′b option, abbreviated as ′a ⇀
′b. They are commonly used as maps. We denote the domain of map m by dom m. A map
update is written as m(a 7→ v). We can restrict the domain of a map m to a set A by m�A.

The syntax and the operations for lists are similar to functional programming languages
like ML or Haskell. The empty list is [], with x # xs the element x is ‘consed’ to the list
xs.With xs @ ys list ys is appended to list xs. With the term map f xs the function f is
applied to all elements in xs. The length of a list is |xs|, the n-th element of a list can be
selected with xs[n] and can be updated via xs[n := v]. With dropWhile P xs the prefix for
which all elements satisfy predicate P are dropped from list xs.

Sets come along with the standard operations like union, i.e., A ∪ B, membership, i.e.,
x ∈ A and set inversion, i.e., − A.

Tuples with more than two components are pairs nested to the right.

3 Programming discipline

For sequential code on a single processor the store buffer is invisible, since reads respect
outstanding writes in the buffer. This argument can be extended to thread local memory
in the context of a multiprocessor architecture. Memory typically becomes temporarily
thread local by means of locking. The C-idiom to identify shared portions of the memory
is the volatile tag on variables and type declarations. Thread local memory can be
accessed non-volatilely, whereas accesses to shared memory are tagged as volatile. This
prevents the compiler from applying certain optimizations to those accesses which could
cause undesired behavior, e.g., to store intermediate values in registers instead of writing
them to the memory.

The basic idea behind the programming discipline is, that before gathering new in-
formation about the shared state (via reading) the thread has to make its outstanding
changes to the shared state visible to others (by flushing the store buffer). This allows
to sequentialize the reads and writes to obtain a sequentially consistent execution of the
global system. In this sequentialization a write to shared memory happens when the write

6

instruction exits the store buffer, and a read from the shared memory happens when all
preceding writes have exited.

We distinguish thread local and shared memory by an ownership model. Ownership is
maintained in ghost state and can be transferred as side effect of write operations and by a
dedicated ghost operation. Every thread has a set of owned addresses. Owned addresses of
different threads are disjoint. Moreover, there is a global set of shared addresses which can
additionally be marked as read-only. Unowned addresses — addresses owned by no thread
— can be accessed concurrently by all threads. They are a subset of the shared addresses.
The read-only addresses are a subset of the unowned addresses (and thus of the shared
addresses). We only allow a thread to write to owned addresses and unowned, read-write
addresses. We only allow a thread to read from owned addresses and from shared addresses
(even if they are owned by another thread).

All writes to shared memory have to be volatile. Reads from shared addresses also
have to be volatile, except if the address is owned (i.e., single writer, multiple readers) or
if the address is read-only. Moreover, non-volatile writes are restricted to owned, unshared
memory. As long as a thread owns an address it is guaranteed that it is the only one
writing to that address. Hence this thread can safely perform non-volatile reads to that
address without missing any write. Similar it is safe for any thread to access read-only
memory via non-volatile reads since there are no outstanding writes at all.

Recall that a volatile read is clean if it is guaranteed that there is no outstanding
volatile write (to any address) in the store buffer. Moreover every non-volatile read is
clean. To regain sequential consistency under the presence of store buffers every thread
has to make sure that every read is clean, by flushing the store buffer when necessary.
To check the flushing policy of a thread, we keep track of clean reads by means of ghost
state. For every thread we maintain a dirty flag. It is reset as the store buffer gets flushed.
Upon a volatile write the dirty flag is set. The dirty flag is considered to guarantee that a
volatile read is clean.

Table 1a summarizes the access policy and Table 1b the associated flushing policy of the
programming discipline. The key motivation is to improve performance by minimizing the
number of store buffer flushes, while staying sequentially consistent. The need for flushing
the store buffer decreases from interlocked accesses (where flushing is a side-effect) over
volatile accesses to non-volatile accesses. From the viewpoint of access rights there is no
difference between interlocked and volatile accesses. However, keep in mind that some
interlocked operations can read from, modify and write to an address in a single atomic
step of the underlying hardware and are typically used in lock-free algorithms or for the
implementation of locks.

Table 1: Programming discipline.
(a) Access policy

shared shared unshared
(read-write) (read-only)

un-
owned vR, vW vR, R unreachable

owned vR, vW, R unreachable vR, vW, R, W
owned
by other vR unreachable

(v)olatile, (R)ead, (W)rite
all reads have to be clean

(b) Flushing policy

flush (before)

interlocked as side effect
vR if not clean
R, vW, W never

7

4 Formalization

In this section we go into the details of our formalization. In our model, we distinguish
the plain ‘memory system’ from the ‘programming language semantics’ which we both de-
scribe as a small-step transition relation. During a computation the programming language
issues memory instructions (read / write) to the memory system, which itself returns the
results in temporary registers. This clean interface allows us to parameterize the program
semantics over the memory system. Our main theorem allows us to simulate a computa-
tion step in the semantics based on a memory system with store buffers by n steps in the
semantics based on a sequentially consistent memory system. We refer to the former one
as store buffer machine and to the latter one as virtual machine. The simulation theorem
is independent of the programming language.

We continue with introducing the common parts of both machines. In Section 4.1 we
describe the store buffer machine and in Section 4.2 we then describe the virtual machine.
The main reduction theorem is presented in 4.3.

Addresses a, values v and temporaries t are natural numbers. Ghost annotations for
manipulating the ownership information are the following sets of addresses: the acquired
addresses A, the unshared (local) fraction L of the acquired addresses, the released ad-
dresses R and the writable fraction W of the released addresses (the remaining addresses
are considered read-only). These ownership annotations are considered as side-effects on
volatile writes and interlocked operations (in case a write is performed). Moreover, a special
ghost instruction allows to transfer ownership. The possible status changes of an address
due to these ownership transfer operations are depicted in Figure 1. Note that ownership
of an address is not directly transferred between threads, but is first released by one thread
and then can be acquired by another thread. A memory instruction is a datatype with the

shared
read-write

unshared

owned

shared
read-write

shared
read-only

unowned

R ∩ W

A ∩ − L

A ∩ L

R ∩ − W
A ∩ LA ∩ − L

(A)cquire, keep (L)ocal; (R)elease, mark (W)riteable

Fig. 1: Ownership transfer

following constructors:

– Read volatile a t for reading from address a to temporary t, where the Boolean volatile
determines whether the access is volatile or not.

– Write volatile a sop A L R W to write the result of evaluating the store operation sop
at address a. A store operation is a pair (D, f), with the domain D and the function f .
The function f takes temporaries j as a parameter, which maps a temporary to a value.
The subset of temporaries that is considered by function f is specified by the domain
D. We consider store operations as valid when they only depend on their domain:

valid-sop sop ≡ ∀D f j. sop = (D, f) ∧ D ⊆ dom j −→ f j = f (j�D)

8

Again the Boolean volatile specifies the kind of memory access.
– RMW a t sop cond ret A L R W , for atomic interlocked ‘read-modify-write’ instruc-

tions (flushing the store buffer). First the value at address a is loaded to temporary t,
and then the condition cond on the temporaries is considered to decide whether a store
operation is also executed. In case of a store the function ret, depending on both the
old value at address a and the new value (according to store operation sop), specifies
the final result stored in temporary t. With a trivial condition cond this instruction
also covers interlocked reads and writes.

– Fence, a memory fence that flushes the store buffer.
– Ghost A L R W for ownership transfer.

4.1 Store buffer machine

For the store buffer machine the configuration of a single thread is a tuple (p, is, j, sb)
consisting of the program state p, a memory instruction list is, the map of temporaries j
and the store buffer sb. A global configuration of the store buffer machine (ts, m) consists
of a list of thread configurations ts and the memory m, which is a function from addresses
to values.

We describe the computation of the global system by the non-deterministic transition
relation (ts, m)

sb⇒ (ts ′, m ′) defined in Figure 2.

i < |ts| ts[i] = (p, is, j, sb) j` p →p (p ′, is ′)

(ts, m)
sb⇒ (ts[i := (p ′, is @ is ′, j, sb)], m)

i < |ts| ts[i] = (p, is, j, sb) (is, j, sb, m)
sb→m (is ′, j ′, sb ′, m ′)

(ts, m)
sb⇒ (ts[i := (p, is ′, j ′, sb ′)], m ′)

i < |ts| ts[i] = (p, is, j, sb) (m, sb) →sb (m ′, sb ′)

(ts, m)
sb⇒ (ts[i := (p, is, j, sb ′)], m ′)

Fig. 2: Global transitions of store buffer machine

A transition selects a thread ts[i] = (p, is, j, sb) and either the ‘program’ the ‘memory’
or the ‘store buffer’ makes a step defined by sub-relations.

The program step relation is a parameter to the global transition relation. A program
step j` p →p (p ′, is ′) takes the temporaries j and the current program state p and makes
a step by returning a new program state p ′ and an instruction list is ′ which is appended
to the remaining instructions.

A memory step (is, j, sb, m)
sb→m (is ′, j ′, sb ′, m ′) of a machine with store buffer may

only fill its store buffer with new writes.
In a store buffer step (m, sb) →sb (m ′, sb ′) the store buffer may release outstanding

writes to the memory.
The store buffer maintains the list of outstanding memory writes. Write instructions

are appended to the end of the store buffer and emerge to memory from the front of
the list. A read instructions is satisfied from the store buffer if possible. An entry in the
store buffer is of the form Writesb volatile a sop v for an outstanding write (keeping the
volatile flag), where operation sop evaluated to value v.

As defined in Figure 3 a write updates the memory when it exits the store buffer.

9

(m, Writesb volatile a sop v A L R W # sb) →sb (m(a := v), sb)

Fig. 3: Store buffer transition

v = (case buffered-val sb a of ⊥ ⇒ m a | bv ′c ⇒ v ′)

(Read volatile a t # is, j, sb, m)
sb→m (is, j(t 7→ v), sb, m)

sb ′ = sb @ [Writesb volatile a (D, f) (f j) A L R W]

(Write volatile a (D, f) A L R W # is, j, sb, m)
sb→m (is, j, sb ′, m)

¬ cond (j(t 7→ m a)) j ′ = j(t 7→ m a)

(RMW a t (D, f) cond ret A L R W # is, j, [], m)
sb→m (is, j ′, [], m)

cond (j(t 7→ m a)) j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) m ′ = m(a := f (j(t 7→ m a)))

(RMW a t (D, f) cond ret A L R W # is, j, [], m)
sb→m (is, j ′, [], m ′)

(Fence # is, j, [], m)
sb→m (is, j, [], m)

(Ghost A L R W # is, j, sb, m)
sb→m (is, j, sb, m)

Fig. 4: Memory transitions of store buffer machine

The memory transition are defined in Figure 4. With buffered-val sb a we obtain the
value of the last write to address a which is still pending in the store buffer. In case no
outstanding write is in the store buffer we read from the memory. Store operations have
no immediate effect on the memory but are queued in the store buffer instead. Interlocked
operations and the fence operation require an empty store buffer, which means that it has
to be flushed before the action can take place. The read-modify-write instruction first adds
the current value at address a to temporary t and then checks the store condition cond
on the temporaries. If it fails this read is the final result of the operation. Otherwise the
store is performed. The resulting value of the temporary t is specified by the function ret
which considers both the old and new value as input. The fence and the ghost instruction
are just skipped.

4.2 Virtual machine

The virtual machine is a sequentially consistent machine without store buffers, maintaining
additional ghost state to check for the programming discipline. A thread configuration is a
tuple (p, is, j, D, O), with a dirty flag D indicating whether there may be an outstanding
volatile write in the store buffer and the set of owned addresses O. The dirty flag D is
considered to specify if a read is clean: for all volatile reads the dirty flag must not be set.
The global configuration of the virtual machine (ts, m, S) maintains a Boolean map of
shared addresses S (indicating write permission). Addresses in the domain of mapping S
are considered shared and the set of read-only addresses is obtained from S by: read-only
S ≡ {a. S a = bFalsec}

According to the rules in Fig 5 a global transition of the virtual machine (ts, m, S)
v⇒ (ts ′, m ′, S ′) is either a program or a memory step. The transition rules for its memory

system are defined in Figure 6. In addition to the transition rules for the virtual machine
we introduce the safety judgment Os,i ` (is, j, m, D, O, S)

√
in Figure 7, where Os is

the list of ownership sets obtained from the thread list ts and i is the index of the current

10

i < |ts| ts[i] = (p, is, j, D, O) j` p →p (p ′, is ′)

(ts, m, S) v⇒ (ts[i := (p ′, is @ is ′, j, D, O)], m, S)

i < |ts| ts[i] = (p, is, j, D, O) (is, j, m, D, O, S) v→m (is ′, j ′, m ′, D ′, O ′, S ′)

(ts, m, S) v⇒ (ts[i := (p, is ′, j ′, D ′, O ′)], m ′, S ′)

Fig. 5: Global transitions of virtual machine

(Read volatile a t # is, j, x, m, ghst) v→m (is, j(t 7→ m a), x, m, ghst)

(Write False a (D, f) A L R W # is, j, x, m, ghst) v→m (is, j, x, m(a := f j), ghst)

ghst = (D, O, S) ghst ′ = (True, O ∪ A − R, S ⊕W R 	A L)
(Write True a (D, f) A L R W # is, j, x, m, ghst) v→m (is, j, x, m(a := f j), ghst ′)

¬ cond (j(t 7→ m a)) ghst = (D, O, S) ghst ′ = (False, O, S)
(RMW a t (D, f) cond ret A L R W # is, j, x, m, ghst) v→m (is, j(t 7→ m a), x, m, ghst ′)

cond (j(t 7→ m a)) j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a))))
m ′ = m(a := f (j(t 7→ m a))) ghst = (D, O, S) ghst ′ = (False, O ∪ A − R, S ⊕W R 	A L)

(RMW a t (D, f) cond ret A L R W # is, j, x, m, ghst) v→m (is, j ′, x, m ′, ghst ′)

ghst = (D, O, S) ghst ′ = (False, O, S)
(Fence # is, j, x, m, ghst) v→m (is, j, x, m, ghst ′)

ghst = (D, O, S) ghst ′ = (D, O ∪ A − R, S ⊕W R 	A L)
(Ghost A L R W # is, j, x, m, ghst) v→m (is, j, x, m, ghst ′)

Fig. 6: Memory transitions of the virtual machine

11

thread. Safety of all reachable states of the virtual machine ensures that the programming
discipline is obeyed by the program and is our formal prerequisite for the simulation
theorem. It is left as a proof obligation to be discharged by means of a proper program
logic for sequentially consistent executions. In the following we elaborate on the rules of

a ∈ O ∨ a ∈ read-only S ∨ volatile ∧ a ∈ dom S volatile −→ ¬ D
Os,i ` (Read volatile a t # is, j, m, D, O, S)

√

a ∈ O a /∈ dom S
Os,i ` (Write False a (D, f) A L R W # is, j, m, D, O, S)

√

∀ j<|Os|. i 6= j −→ a /∈ Os[j] a /∈ read-only S
∀ j<|Os|. i 6= j −→ A ∩ Os[j] = ∅ A ⊆ O ∪ dom S L ⊆ A R ⊆ O A ∩ R = ∅

Os,i ` (Write True a (D, f) A L R W # is, j, m, D, O, S)
√

¬ cond (j(t 7→ m a)) a ∈ dom S ∪ O
Os,i ` (RMW a t (D, f) cond ret A L R W # is, j, m, D, O, S)

√

cond (j(t 7→ m a)) ∀ j<|Os|. i 6= j −→ a /∈ Os[j] a /∈ read-only S
∀ j<|Os|. i 6= j −→ A ∩ Os[j] = ∅ A ⊆ O ∪ dom S L ⊆ A R ⊆ O A ∩ R = ∅

Os,i ` (RMW a t (D, f) cond ret A L R W # is, j, m, D, O, S)
√

Os,i ` (Fence # is, j, m, D, O, S)
√

A ⊆ dom S ∪ O L ⊆ A R ⊆ O A ∩ R = ∅ ∀ j<|Os|. i 6= j −→ A ∩ Os[j] = ∅
Os,i ` (Ghost A L R W # is, j, m, D, O, S)

√

Fig. 7: Safe configurations of a virtual machine

Figures 6 and 7 in parallel. To read from an address it either has to be owned or read-only
or it has to be volatile and shared. Moreover the read has to be clean. The memory content
of address a is stored in temporary t. Non-volatile writes are only allowed to owned and
unshared addresses. The result is written directly into the memory. A volatile write is
only allowed when no other thread owns the address and the address is not marked as
read-only. Simultaneously with the volatile write we can transfer ownership as specified
by the annotations A, L, R and W . The acquired addresses A must not be owned by
any other thread and stem from the shared addresses or are already owned. Reacquiring
owned addresses can be used to change the shared-status via the set of local addresses L
which have to be a subset of A. The released addresses R have to be owned and distinct
from the acquired addresses A. After the write the new ownership set of the thread is
obtained by adding the acquired addresses A and releasing the addresses R: O ∪ A − R.
The released addresses R are augmented to the shared addresses S and the local addresses
L are removed. We also take care about the write permissions in the shared state: the
released addresses in set W as well as the acquired addresses are marked writable: S ⊕W
R 	A L. The auxiliary ternary operators to augment and subtract addresses from the
sharing map are defined as follows:

S ⊕W R ≡ λa. if a ∈ R then ba ∈ Wc else S a

S 	A L ≡
λa. if a ∈ L then ⊥ else case S a of ⊥ ⇒ ⊥ | bwriteablec ⇒ ba ∈ A ∨ writeablec

The read-modify-write instruction first adds the current value at address a to tempo-
rary t and then checks the store condition cond on the temporaries. If it fails this read is

12

the final result of the operation. Otherwise the store is performed. The resulting value of
the temporary t is specified by the function ret which considers both the old and new value
as input. As the read-modify-write instruction is an interlocked operation which flushes
the store buffer as a side effect the dirty flag D is reset. The other effects on the ghost
state and the safety sideconditions are the same as for the volatile read and volatile write,
respectively.

The only effect of the fence instruction in the system without store buffer is to reset
the dirty flag.

The ghost instruction Ghost A L R W allows to transfer ownership when no write is
involved i.e., when merely reading from memory. It has the same safety requirements as
the corresponding parts in the write instructions.

4.3 Reduction
The reduction theorem we aim at reduces a computation of a machine with store buffers
to a sequential consistent computation of the virtual machine. We formulate this as a
simulation theorem which states that a computation of the store buffer machine (tssb,
m)

sb⇒
∗
(tssb ′, m ′) can be simulated by a computation of the virtual machine (ts, m, S)

v⇒
∗
(ts ′, m ′, S ′). The main theorem only considers computations that start in an initial

configuration where all store buffers are empty and end in a configuration where all store
buffers are empty again. A configuration of the store buffer machine is obtained from a
virtual configuration by removing all ghost components and assuming empty store buffers.
This coupling relation between the thread configurations is written as tssb ∼ ts . Moreover,
the precondition initialv ts S ensures that the ghost state of the initial configuration of
the virtual machine is properly initialized: the ownership sets of the threads are distinct,
an address marked as read-only (according to S) is unowned and every unowned address
is shared. Finally with safe-reach (ts, m, S) we ensure conformance to the programming
discipline by assuming that all reachable configuration in the virtual machine are safe
(according to the rules in Figure 7).
Theorem 1 (Reduction).
(tssb, m)

sb⇒
∗
(tssb ′, m ′) ∧ empty-store-buffers tssb ′ ∧ tssb ∼ ts ∧ initialv ts S ∧

safe-reach (ts, m, S) −→
∃ ts ′ S ′. (ts, m, S) v⇒

∗
(ts ′, m ′, S ′) ∧ tssb ′ ∼ ts ′

This theorem captures our intiution that every result that can be obtained from a com-
putation of the store buffer machine can also be obtained by a sequentially consistent
computation. However, to prove it we need some generalizations that we sketch in the
following sections. First of all the theorem is not inductive as we do not consider arbitrary
intermediate configurations but only those where all store buffers are empty. For interme-
diate confiugrations the coupling relation becomes more involved. The major obstacle is
that a volatile read (from memory) can overtake non-volatile writes that are still in the
store-buffer and have not yet emerged to memory. Keep in mind that our programming
discipline only ensures that no volatile writes can be in the store buffer the moment we do
a volatile read, outstanding non-volatile writes are allowed. This reordering of operations
is reflected in the coupling relation for intermediate configurations as discussed in the
following section.

5 Building blocks of the proof

A corner stone of the proof is a proper coupling relation between an intermediate config-
uration of a machine with store buffers and the virtual machine without store buffers. It

13

allows us to simulate every computation step of the store buffer machine by a sequence
of steps (potentially empty) on the virtual machine. This transformation is essentially a
sequentialization of the trace of the store buffer machine. When a thread of the store
buffer machine executes a non-volatile operation, it only accesses memory which is not
modified by any other thread (it is either owned or read-only). Although a non-volatile
store is buffered, we can immediately execute it on the virtual machine, as there is no
competing store of another thread. However, with volatile writes we have to be careful,
since concurrent threads may also compete with some volatile write to the same address.
At the moment the volatile write enters the store buffer we do not yet know when it will
be issued to memory and how it is ordered relatively to other outstanding writes of other
threads. We therefore have to suspend the write on the virtual machine from the moment
it enters the store buffer to the moment it is issued to memory. For volatile reads our
programming discipline guarantees that there is no volatile write in the store buffer by
flushing the store buffer if necessary. So there are at most some outstanding non-volatile
writes in the store buffer, which are already executed on the virtual machine, as described
before. One simple coupling relation one may think of is to suspend the whole store buffer
as not yet executed intructions of the virtual machine. However, consider the following
scenario. A thread is reading from a volatile address. It can still have non-volatile writes
in its store buffer. Hence the read would be suspended in the virutal machine, and other
writes to the address (e.g. interlocked or volatile writes of another thread) could invalidate
the value. Altogether this suggests the following refined coupling relation: the state of the
virtual machine is obtained from the state of the store buffer machine, by executing each
store buffer until we reach the first volatile write. The remaining store buffer entries are
suspended as instructions. As we only execute non volatile writes the order in which we
execute the store buffers should be irrelevant. This coupling relation allows a volatile read
to be simulated immediately on the virtual machine as it happens on the store buffer
machine.

From the viewpoint of the memory the virtual machine is ahead of the store buffer
machine, as leading non-volatile writes already took effect on the memory of the virtual
machine while they are still pending in the store buffer. However, if there is a volatile write
in the store buffer the corresponding thread in the virtual machine is suspended until the
write leaves the store buffer. So from the viewpoint of the already executed instructions
the store buffer machine is ahead of the virtual machine. To keep track of this delay we
introduce a variant of the store buffer machine below, which maintains the history of
executed instructions in the store buffer (including reads and program steps). Moreover,
the intermediate machine also maintains the ghost state of the virtual machine to support
the coupling relation. We also introduce a refined version of the virutal machine below,
which we try to motivate now. Esentially the programming discipline only allows races
between volatile (or interlocked) operations. By race we mean two competing memory
accesses of different threads of which at least one is a write. For example the discipline
guarantees that a volatile read may not be invalidated by a non-volatile write of another
thread. While proving the simulation theorem this manifests in the argument that a read
of the store-buffer machine and the virtual machine sees the same value in both machines:
the value seen by a read in the store buffer machine stays valid as long as it has not yet
made its way out in the virtual machine. To rule out certain races from the execution
traces we make use of the programming discipline, which is formalized in the safety of all
reachable configurations of the virtual machine. Some races can be ruled out by continuing
the computation of the virtual machine until we reach a safety violation. However, some
cannot be ruled out by the future computation of the current trace, but can be invalidated
by a safety violation of another trace that deviated from the current one at some point

14

in the past. Consider two threads. Thread 1 attempts to do a volatile read from address
a which is currently owned (and not shared) by thread 2, which attempts to do a non-
volatile write on a with value 42 and then release the address. In this configuration there
is already a safety violation. Thread 1 is not allowed to perform a volatile read from an
address that is not shared. However, when Thread 2 has executed his update and has
released ownership (both are non-volatile operations) there is no safety violation anymore.
Unfortunately this is the state of the virtual machine when we consider the instructions of
Thread 2 to be in the store buffer. The store buffer machine and the virtual machine are
out of sync. Whereas in the virtual machine Thread 1 will already read 42 (all non-volatile
writes are already executed in the virtual machine), the non-volatile write may still be
pending in the store buffer of Thread 2 and hence Thread 1 reads the old value in the
store buffer machine. This kind of issues arise when a thread has released ownership in
the middle of non-volatile operations of the virtual machine, but the next volatile write
of this thread has not yet made its way out of the store buffer. When another thread
races for the released address in this situation there is always another scheduling of the
virtual machine where the release has not yet taken place and we get a safety violation.
To make these safety violations visible until the next volatile write we introduce another
ghost component that keeps track of the released addresses. It is augmented when an ghost
operation releases an address and is reset as the next volatile write is reached. Moreover,
we refine our rules for safety to take these released addresses into account. For example, a
write to an released address of another thread is forbidden. We refer to these refined model
as delayed releases (as no other thread can acquire the address as long as it is still in the
set of released addresses) and to our original model as free flowing releases (as the effect
of a release immediate takes place at the point of the ghost instruction). Note that this
only affects ownership transfer due to the Ghost instruction. Ownership transfer together
with volatile (or interlocked) writes happen simultaneously in both models.

Note that the refined rules for delayed releases are just an intermediate step in our
proof. They do not have to be considered for the final programming discipline. As sketched
above we can show in a separate theorem that a safety violation in a trace with respect
to delayed releases implies a safety violation of a (potenitally other) trace with respect
to free flowing releases. Both notions of safety collaps in all configurations where there
are no released addresses, like the initial state. So if all reachable configurations are safe
with respect to free flowing releases they are also safe with respect to delayed releases.
This allows us to use the stricter policy of delayed releases for the simulation proof. Before
continuing with the coupling relation, we introduce the refined intermediate models for
delayed releases and store buffers with history information.

5.1 Intermediate models

We begin with the virtual machine with delayed releases, for which the memory transitions
(is, j, m, D, O, R, S) vd→m (is ′, j ′, m ′, D ′, O ′, R ′, S ′) are defined Figure 8. The additional
ghost component R is a mapping from addresses to a Boolean flag. If an address is in the
domain of R it was released. The boolean flag is considered to figure out if the released
address was previously shared or not. In case the flag is True it was shared otherwise not.
This subtle distinction is necessary to properly handle volatile reads. A volatile read from
an address owned by another thread is fine as long as it is marked as shared. The released
addresses R are reset at every volatile write as well as interlocked operations and the fence
instruction. They are augmented at the ghost instruction taking the sharing information
into account:

aug (dom S) R R =

15

(Read volatile a t # is, j, m, ghst) vd→m (is, j(t 7→ m a), m, ghst)

(Write False a (D, f) A L R W # is, j, m, ghst) vd→m (is, j, m(a := f j), ghst)

ghst = (D, O, R, S) ghst ′ = (True, O ∪ A − R, λx . ⊥, S ⊕W R 	A L)
(Write True a (D, f) A L R W # is, j, m, ghst) vd→m (is, j, m(a := f j), ghst ′)

¬ cond (j(t 7→ m a)) ghst = (D, O, R, S) ghst ′ = (False, O, λx . ⊥, S)
(RMW a t (D, f) cond ret A L R W # is, j, m, ghst) vd→m (is, j(t 7→ m a), m, ghst ′)

cond (j(t 7→ m a)) j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) m ′ = m(a := f (j(t 7→ m a)))
ghst = (D, O, R, S) ghst ′ = (False, O ∪ A − R, λx . ⊥, S ⊕W R 	A L)
(RMW a t (D, f) cond ret A L R W # is, j, m, ghst) vd→m (is, j ′, m ′, ghst ′)

(Fence # is, j, m, D, O, R, S) vd→m (is, j, m, False, O, λx . ⊥, S)

ghst = (D, O, R, S) ghst ′ = (D, O ∪ A − R, aug (dom S) R R, S ⊕W R 	A L)
(Ghost A L R W # is, j, m, ghst) vd→m (is, j, m, ghst ′)

Fig. 8: Memory transitions of the virtual machine with delayed releases

(λa. if a ∈ R then case R a of ⊥ ⇒ ba ∈ dom Sc | bsc ⇒ bs ∧ a ∈ dom Sc
else R a)

If an address is freshly released (a ∈ R and R a = ⊥) the flag is set according to dom
S. Otherwise the flag becomes bFalsec in case the released address is currently unshared.
Note that with this definition R a = bFalsec stays stable upon every new release and we
do not loose information about a release of an unshared address.

The global transition (ts, m, s) vd⇒ (ts ′, m ′, s ′) are analogous to the rules in Figure 5
replacing the memory transtions with the refined version for delayed releases.

The safety judgment for delayed releases Os,Rs,i ` (is, j, m, D, O, S)
√

is defined
in Figure 9. Note the additional component Rs which is the list of release maps of all
threads. The rules are strict extensions of the rules in Figure 7: writing or acquiring an
address a is only allowed if the address is not in the release set of another thread (a /∈
dom Rs[j]); reading from an address is only allowed if it is not released by another thread
while it was unshared (Rs[j] a 6= bFalsec).

For the store buffer machine with history information we not only put writes into
the store buffer but also record reads, program steps and ghost operations. This allows
us to restore the necessary computation history of the store buffer machine and relate it
to the virtual machine which may fall behind the store buffer machine during execution.
Altogether an entry in the store buffer is either a

– Readsb volatile a t v, recording a corresponding read from address a which loaded
the value v to temporary t, or a

– Writesb volatile a sop v for an outstanding write, where operation sop evaluated to
value v, or of the form

– Progsb p p ′ is ′, recording a program transition from p to p ′ which issued instructions
is ′, or of the form

– Ghostsb A L R W , recording a corresponding ghost operation.

As defined in Figure 10 a write updates the memory when it exits the store buffer, all other
store buffer entries may only have an effect on the ghost state. The effect on the ownership

16

a ∈ O ∨ a ∈ read-only S ∨ volatile ∧ a ∈ dom S ∀ j<|Os|. i 6= j −→ Rs[j] a 6= bFalsec
¬ volatile −→ (∀ j<|Os|. i 6= j −→ a /∈ dom Rs[j]) volatile −→ ¬ D

Os,Rs,i ` (Read volatile a t # is, j, m, D, O, S)
√

a ∈ O a /∈ dom S ∀ j<|Os|. i 6= j −→ a /∈ dom Rs[j]
Os,Rs,i ` (Write False a (D, f) A L R W # is, j, m, D, O, S)

√

∀ j<|Os|. i 6= j −→ a /∈ Os[j] ∪ dom Rs[j]
a /∈ read-only S ∀ j<|Os|. i 6= j −→ A ∩ (Os[j] ∪ dom Rs[j]) = ∅

A ⊆ dom S ∪ O L ⊆ A R ⊆ O A ∩ R = ∅
Os,Rs,i ` (Write True a (D, f) A L R W # is, j, m, D, O, S)

√

¬ cond (j(t 7→ m a)) a ∈ dom S ∪ O ∀ j<|Os|. i 6= j −→ Rs[j] a 6= bFalsec
Os,Rs,i ` (RMW a t (D, f) cond ret A L R W # is, j, m, D, O, S)

√

cond (j(t 7→ m a)) a ∈ dom S ∪ O ∀ j<|Os|. i 6= j −→ a /∈ Os[j] ∪ dom Rs[j]
a /∈ read-only S ∀ j<|Os|. i 6= j −→ A ∩ (Os[j] ∪ dom Rs[j]) = ∅

A ⊆ dom S ∪ O L ⊆ A R ⊆ O A ∩ R = ∅
Os,Rs,i ` (RMW a t (D, f) cond ret A L R W # is, j, m, D, O, S)

√

Os,Rs,i ` (Fence # is, j, m, D, O, S)
√

A ⊆ dom S ∪ O
L ⊆ A R ⊆ O A ∩ R = ∅ ∀ j<|Os|. i 6= j −→ A ∩ (Os[j] ∪ dom Rs[j]) = ∅

Os,Rs,i ` (Ghost A L R W # is, j, m, D, O, S)
√

Os,Rs,i ` ([], j, m, D, O, S)
√

Fig. 9: Safe configurations of a virtual machine (delayed-releases)

(m, Writesb False a sop v A L R W # sb, O, R, S) →sbh (m(a := v), sb, O, R, S)

O ′ = O ∪ A − R S ′ = S ⊕W R 	A L
(m, Writesb True a sop v A L R W # sb, O, R, S) →sbh (m(a := v), sb, O ′, λx . ⊥, S ′)

(m, Readsb volatile a t v # sb, O, R, S) →sbh (m, sb, O, R, S)

(m, Progsb p p ′ is # sb, O, R, S) →sbh (m, sb, O, R, S)

O ′ = O ∪ A − R R ′ = aug (dom S) R R S ′ = S ⊕W R 	A L
(m, Ghostsb A L R W # sb, O, R, S) →sbh (m, sb, O ′, R ′, S ′)

Fig. 10: Store buffer transitions with history

17

information is analogous to the corresponding operations in the virtual machine. The
memory transitions defined in Figure 11 are straightforward extensions of the store buffer
transitions of Figure 11 augmented with ghost state and recording history information in
the store buffer. Note how we deal with the ghost state. Only the dirty flag is updated
when the instruction enters the store buffer, the ownership transfer takes effect when the
instruction leaves the store buffer. The global transitions (tssbh, m, S) sbh⇒ (tssbh ′, m ′, S ′)

v = (case buffered-val sb a of ⊥ ⇒ m a | bv ′c ⇒ v ′) sb ′ = sb @ [Readsb volatile a t v]

(Read volatile a t # is, j, sb, m, ghst) sbh→m (is, j(t 7→ v), sb ′, m, ghst)

sb ′ = sb @ [Writesb False a (D, f) (f j) A L R W]

(Write False a (D, f) A L R W # is, j, sb, m, ghst) sbh→m (is, j, sb ′, m, ghst)

sb ′ = sb @ [Writesb True a (D, f) (f j) A L R W]
ghst = (D, O, R, S) ghst ′ = (True, O, R, S)

(Write True a (D, f) A L R W # is, j, sb, m, ghst) sbh→m (is, j, sb ′, m, ghst ′)

¬ cond (j(t 7→ m a)) ghst = (D, O, R, S) ghst ′ = (False, O, λx . ⊥, S)

(RMW a t (D, f) cond ret A L R W # is, j, [], m, ghst) sbh→m (is, j(t 7→ m a), [], m, ghst ′)

cond (j(t 7→ m a)) j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) m ′ = m(a := f (j(t 7→ m a)))
ghst = (D, O, R, S) ghst ′ = (False, O ∪ A − R, λx . ⊥, S ⊕W R 	A L)

(RMW a t (D, f) cond ret A L R W # is, j, [], m, ghst) sbh→m (is, j ′, [], m ′, ghst ′)

(Fence # is, j, [], m, D, O, R, S) sbh→m (is, j, [], m, False, O, λx . ⊥, S)

(Ghost A L R W # is, j, sb, m, G)
sbh→m (is, j, sb @ [Ghostsb A L R W], m, G)

Fig. 11: Memory transitions of store buffer machine with history

are analogous to the rules in Figure 2 replacing the memory transtions and store buffer
transtiontions accordingly.

5.2 Coupling relation

After this introduction of the immediate models we can proceed to the details of the cou-
pling relation, which relates configurations of the store buffer machine with histroy and the
virtual machine with delayed releases. Remember the basic idea of the coupling relation:
the state of the virtual machine is obtained from the state of the store buffer machine,
by executing each store buffer until we reach the first volatile write. The remaining store
buffer entries are suspended as instructions. The instructions now also include the history
entries for reads, program steps and ghost operations. The suspended reads are not yet
visible in the temporaries of the virtual machine. Similar the ownership effects (and pro-
gram steps) of the suspended operations are not yet visible in the virtual machine. The
coupling relation between the store buffer machine and the virtual machine is illustrated
in Figure 12. The threads issue instructions to the store buffers from the right and the
instructions emerge from the store buffers to main memory from the left. The dotted line
illustrates the state of the virtual machines memory. It is obtained from the memory of
the store buffer machine by executing the purely non-volatile prefixes of the store buffers.
The remaining entries of the store buffer are still (suspended) instructions in the virtual
machine.

18

nv v thread 0: i00, i10, . . .

nv v thread i: i0i , i1i , . . .

nv v thread j: i0j , i1j , . . .

nv v thread n: i0n, i1n, . . .

...

...

...

← store buffers ← instructions

msbh

m
executed suspended

Fig. 12: Illustration of coupling relation

Consider the following configuration of a thread tssbh[j] in the store buffer machine,
where ik are the instructions and sk the store buffer entries. Let sv be the first volatile
write in the store buffer. Keep in mind that new store buffer entries are appended to the
end of the list and entries exit the store buffer and are issued to memory from the front
of the list.

tssbh[j] = (p, [i1, . . . , in], j, [s1, . . . , sv, sv+1, . . . , sm], D, O, R)

The corresponding configuration ts[j] in the virtual machine is obtained by suspending all
store buffer entries beginning at sv to the front of the instructions. A store buffer Readsb

/ Writesb / Ghostsb is converted to a Read / Write / Ghost instruction. We take the
freedom to make this coercion implicit in the example. The store buffer entries preceding
sv have already made their way to memory, whereas the suspended read operations are
not yet visible in the temporaries j ′. Similar, the suspended updates to the ownership sets
and dirty flag are not yet recorded in O ′, R ′ and D ′.

ts[j] = (p, [sv, sv+1, . . . , sm, i1, . . . , in], j ′, D ′, O ′, R ′)

This example illustrates that the virtual machine falls behind the store buffer machine in
our simulation, as store buffer instructions are suspended and reads (and ghost operations)
are delayed and not yet visible in the temporaries (and the ghost state). This delay can
also propagate to the level of the programming language, which communicates with the
memory system by reading the temporaries and issuing new instructions. For example the
control flow can depend on the temporaries, which store the result of branching conditions.
It may happen that the store buffer machine already has evaluated the branching condition
by referring to the values in the store buffer, whereas the virtual machine still has to wait.
Formally this manifests in still undefined temporaries. Now consider that the program
in the store buffer machine makes a step from p to (p ′, is ′), which results in a thread
configuration where the program state has switched to p ′, the instructions is ′ are appended
and the program step is recorded in the store buffer:

tssbh ′
[j] = (p ′, [i1, . . . , in] @ is ′, j, [s1, . . . , sv, . . . , sm, Progsb p p ′ is ′], D, O, R)

The virtual machine however makes no step, since it still has to evaluate the suspended
instructions before making the program step. The instructions is ′ are not yet issued and the
program state is still p. We also take these program steps into account in our final coupling
relation (tssbh, msbh, Ssbh) ∼ (ts, m, S), defined in Figure 13. We denote the already
simulated store buffer entries by execs and the suspended ones by suspends. The function
instrs converts them back to instructions, which are a prefix of the instructions of the virtual

19

m = exec-all-until-volatile-write tssbh msbh

S = share-all-until-volatile-write tssbh Ssbh |tssbh| = |ts|
∀ i<|tssbh|.

let (psbh, issbh, jsbh, sb, Dsbh, Osbh, Rsbh) = tssbh[i];
execs = takeWhile not-volatile-write sb;
suspends = dropWhile not-volatile-write sb

in ∃ is D. instrs suspends @ issbh = is @ prog-instrs suspends ∧
Dsbh = (D ∨ refs volatile-Write sb 6= ∅) ∧
ts[i] =
(hd-prog psbh suspends, is, jsbh�(− read-tmps suspends), D,
acquire execs Osbh, release execs (dom Ssbh) Rsbh)

(tssbh, msbh, Ssbh) ∼ (ts, m, S)

Fig. 13: Coupling relation

machine. We collect the additional instructions which were issued by program instructions
but still recorded in the remainder of the store buffer with function prog-instrs. These
instructions have already made their way to the instructions of the store buffer machine
but not yet on the virtual machine. This situation is formalized as instrs suspends @ issbh =
is @ prog-instrs suspends, where is are the instructions of the virtual machine. The program
state of the virtual machine is either the same as in the store buffer machine or the first
program state recorded in the suspended part of the store buffer. This state is selected by
hd-prog. The temporaries of the virtual machine are obtained by removing the suspended
reads from j. The memory is obtained by executing all store buffers until the first volatile
write is hit, excluding it. Thereby only non-volatile writes are executed, which are all thread
local, and hence could be executed in any order with the same result on the memory.
Function exec-all-until-volatile-write executes them in order of appearance. Similarly the
sharing map of the virtual machine is obtained by executing all store buffers until the first
volatile write via the function share-all-until-volatile-write. For the local ownership set Osbh

the auxiliary function acquire calculates the outstanding effect of the already simulated
parts of the store buffer. Analogously release calculates the effect for the released addresses
Rsbh.

5.3 Simulation

Theorem 2 is our core inductive simulation theorem. Provided that all reachable states
of the virtual machine (with delayed releases) are safe, a step of the store buffer machine
(with history) can be simulated by a (potentially empty) sequence of steps on the virtual
machine, maintaining the coupling relation and an invariant on the configurations of the
store buffer machine.

Theorem 2 (Simulation).

(tssbh, msbh, Ssbh)
sbh⇒ (tssbh ′, msbh

′, Ssbh
′) ∧ (tssbh, msbh, Ssbh) ∼ (ts, m, S) ∧

safe-reach-delayed (ts, m, S) ∧ invariant tssbh Ssbh msbh −→
invariant tssbh ′ Ssbh

′ msbh
′ ∧

(∃ ts ′ S ′ m ′. (ts, m, S) vd⇒
∗
(ts ′, m ′, S ′) ∧ (tssbh ′, msbh

′, Ssbh
′) ∼ (ts ′, m ′, S ′))

In the following we discuss the invariant invariant tssbh Ssbh msbh, where we commonly refer
to a thread configuration tssbh[i] = (p, is, j, sb, D, O, R) for i < |tssbh|. By outstanding
references we refer to read and write operations in the store buffer. The invariant is a
conjunction of several sub-invariants grouped by their content:

invariant tssbh Ssbh msbh ≡ ownership-inv Ssbh tssbh ∧ sharing-inv Ssbh tssbh ∧

20

temporaries-inv tssbh ∧ data-dependency-inv tssbh ∧ history-inv tssbh msbh ∧ flush-inv tssbh ∧
valid tssbh

Ownership. (i) For every thread all outstanding non-volatile references have to be owned
or refer to read-only memory. (ii) Every outstanding volatile write is not owned by any
other thread. (iii) Outstanding accesses to read-only memory are not owned. (iv) The
ownership sets of every two different threads are distinct.

Sharing. (i) All outstanding non volatile writes are unshared. (ii) All unowned addresses
are shared. (iii) No thread owns read-only memory. (iv) The ownership annotations of
outstanding ghost and write operations are consistent (e.g., released addresses are owned
at the point of release). (v) There is no outstanding write to read-only memory.

Temporaries. Temporaries are modeled as an unlimited store for temporary registers. We
require certain distinctness and freshness properties for each thread. (i) The temporaries
referred to by read instructions are distinct. (ii) The temporaries referred to by reads
in the store buffer are distinct. (iii) Read and write temporaries are distinct. (iv) Read
temporaries are fresh, i.e., are not in the domain of j.

Data dependency. Data dependency means that store operations may only depend on
previous read operations. For every thread we have: (i) Every operation (D, f) in a write
instruction or a store buffer write is valid according to valid-sop (D, f), i.e., function f
only depends on domain D. (ii) For every suffix of the instructions of the form Write
volatile a (D, f) A L R W # is the domain D is distinct from the temporaries referred
to by future read instructions in is. (iii) The outstanding writes in the store buffer do not
depend on the read temporaries still in the instruction list.

History. The history information of program steps and read operations we record in the
store buffer have to be consistent with the trace. For every thread: (i) The value stored for
a non volatile read is the same as the last write to the same address in the store buffer or
the value in memory, in case there is no write in the buffer. (ii) All reads have to be clean.
This results from our flushing policy. Note that the value recorded for a volatile read in
the initial part of the store buffer (before the first volatile write), may become stale with
respect to the memory. Remember that those parts of the store buffer are already executed
in the virtual machine and thus cause no trouble. (iii) For every read the recorded value
coincides with the corresponding value in the temporaries. (iv) For every Writesb volatile
a (D, f) v A L R W the recorded value v coincides with f j, and domain D is subset
of dom j and is distinct from the following read temporaries. Note that the consistency
of the ownership annotations is already covered by the aforementioned invariants. (v) For
every suffix in the store buffer of the form Progsb p1 p2 is ′ # sb ′, either p1 = p in case
there is no preceding program node in the buffer or it corresponds to the last program
state recorded there. Moreover, the program transition j�(− read-tmps sb ′) ` p1 →p (p2, is ′)
is possible, i.e., it was possible to execute the program transition at that point. (vi) The
program configuration p coincides with the last program configuration recorded in the
store buffer. (vii) As the instructions from a program step are at the one hand appended
to the instruction list and on the other hand recorded in the store buffer, we have for every
suffix sb ′ of the store buffer: ∃ is ′. instrs sb ′ @ is = is ′ @ prog-instrs sb ′, i.e., the remaining
instructions is correspond to a suffix of the recorded instructions prog-instrs sb ′.

Flushes. If the dirty flag is unset there are no outstanding volatile writes in the store
buffer.

21

Program step. The program-transitions are still a parameter of our model. In order to
make the proof work, we have to assume some of the invariants also for the program
steps. We allow the program-transitions to employ further invariants on the configurations,
these are modeled by the parameter valid. For example, in the instantiation later on the
program keeps a counter for the temporaries, for each thread. We maintain distinctness
of temporaries by restricting all temporaries occurring in the memory system to be below
that counter, which is expressed by instantiating valid. Program steps, memory steps and
store buffer steps have to maintain valid. Furthermore we assume the following properties
of a program step: (i) The program step generates fresh, distinct read temporaries, that are
neither in j nor in the store buffer temporaries of the memory system. (ii) The generated
memory instructions respect data dependencies, and are valid according to valid-sop.

Proof sketch. We do not go into details but rather first sketch the main arguments for
simulation of a step in the store buffer machine by a potentially empty sequence of steps
in the virtual machine, maintaining the coupling relation. Second we exemplarically focus
on some cases to illustrate common arguments in the proof. The first case distinction
in the proof is on the global transitions in Figure 2. (i) Program step: we make a case
distinction whether there is an outstanding volatile write in the store buffer or not. If
not the configuration of the virtual machine corresponds to the executed store buffer and
we can make the same step. Otherwise the virtual machine makes no step as we have to
wait until all volatile writes have exited the store buffer. (ii) Memory step: we do case
distinction on the rules in Figure 11. For read, non volatile write and ghost instructions
we do the same case distinction as for the program step. If there is no outstanding volatile
write in the store buffer we can make the step, otherwise we have to wait. When a volatile
write enters the store buffer it is suspended until it exists the store buffer. Hence we do
no step in the virtual machine. The read-modify-write and the fence instruction can all be
simulated immediately since the store buffer has to be empty. (iii) Store Buffer step: we
do case distinction on the rules in Figure 10. When a read, a non volatile write, a ghost
operation or a program history node exits the store buffer, the virtual machine does not
have to do any step since these steps are already visible. When a volatile write exits the
store buffer, we execute all the suspended operations (including reads, ghost operations
and program steps) until the next suspended volatile write is hit. This is possible since all
writes are non volatile and thus memory modifications are thread local.

In the following we exemplarically describe some cases in more detail to give an im-
pression on the typical arguments in the proof. We start with a configuration csbh = (tssbh,
msbh, Ssbh) of the store buffer machine, where the next instruction to be executed is a read
of thread i: Readsb volatile a t. The configuration of the virtual machine is cfg = (ts, m,
S). We have to simulate this step on the virtual machine and can make use of the coupling
relations (tssbh, msbh, Ssbh) ∼ (ts, m, S), the invariants invariant tssbh Ssbh msbh and the
safety of all reachable states of the virtual machine: safe-reach-delayed (ts, m, S). The
state of the store buffer machine and the coupling with the volatile machine is depicted
in Figure 14. Note that if there are some suspended instructions in thread i, we cannot
directly exploit the ’safety of the read’, as the virtual machine has not yet reached the
state where thread i is poised to do the read. But fortunately we have safety of the virtual
machien of all reachable states. Hence we can just execute all suspended instructions of
thread i until we reach the read. We refer to this configuration of the virtual machine as
cfg ′′ = (ts ′′, m ′′, S ′′), which is depicted in Figure 15.

For now we want to consider the case where the read goes to memory and is not
forwarded from the store buffer. The value read is v = msbh a. Moreover, we make a case
distinction wheter there is an outstanding volatile write in the store buffer of thread i or

22

nv v thread 0: i00, i10, . . .

nv v thread i: Readsb volatile a t,. . .

nv v thread j: i0j , i1j , . . .

nv v thread n: i0n, i1n, . . .

...

...

...

← store buffers ← instructions

msbh

m
executed suspended

Fig. 14: Thread i poised to read

nv v thread 0: i00, i10, . . .

nv v thread i: Readsb volatile a t,. . .

nv v thread j: i0j , i1j , . . .

nv v thread n: i0n, i1n, . . .

...

...

...

← store buffers ← instructions

msbh

m
executed suspended

Fig. 15: Forwarded computation of virtual machine

23

not. This determines if there are suspended instructions in the virtual machine or not. We
start with the case where there is no such write. This means that there are no suspended
instructions in thread i and therefore cfg ′′= cfg. We have to show that the virtual machine
reads the same value from memory: v = m a. So what can go wrong? When can the the
memory of the virtual machine hold a different value? The memory of the virtual machine
is obtained from the memory of the store buffer machine by executing all store buffers
until we hit the first volatile write. So if there is a discrepancy in the value this has to
come from a non-volatile write in the executed parts of another thread, let us say thread
j. This write is marked as x in Figure 16.

nv v thread 0: i00, i10, . . .

nv v thread i: Readsb volatile a t,. . .

x v thread j: i0j , i1j , . . .

nv v thread n: i0n, i1n, . . .

...

...

...

← store buffers ← instructions

msbh

m
executed suspended

Fig. 16: Conflicting write in thread j (marked x)

We refer to x both for the write operation itself and to characterize the point in time
in the computation of the virtual machine where the write was executed. At the point x
the write was safe according to rules in Figure 9 for non-volatile writes. So it was owned
by thread j and unshared. This knowledge about the safety of write x is preserved in the
invariants, namely (Ownership.i) and (Sharing.i). Additionally from invariant (Sharing.v)
we know that address a was not read-only at point x. Now we combine this information
with the safety of the read of thread i in the current configuration cfg: address a either
has to be owned by thread i, or has to be read-only or the read is volatile and a is shared.
Additionally there are the constraints on the released addresses which we will exploit
below. Let us address all cases step by step. First, we consider that address a is currently
owned by thread i. As it was owned by thread j at time x there has to be an release of
a in the executed prefix of the store buffer of thread j. This release is recorded in the
release set, so we know a ∈ dom Rs[j]. This contradicts the safety of the read. Second, we
consider that address a is currently read-only. At time x address a was owned by thread
j, unshared and not read-only. Hence there was a release of address a in the executed
prefix of the store buffer of j, where it made a transition unshared and owned to shared.
With the monotonicity of the release sets this means a ∈ dom Rs[j], even more precisely
Rs[j] a = bFalsec. Hence there is no chance to get the read safe (neiter a volatile nor a
non-volatile). Third, consider a volatile read and that address a is currently shared. This
is ruled out by the same line of reasoning as in the previous case. So ultimately we have
ruled out all races that could destroy the value at address a and have shown that we can
simulate the step on the virtual machine. This completes the simulation of the case where
there is no store buffer forwarding and no volatile write in the store buffer of thread i.
The other cases are handled similar. The main arguments are obtained by arguing about
safety of configuration cfg ′′ and exploiting the invariants to rule out conflicting operations

24

in other store buffers. When there is a volatile write in he store buffer of thread i there
are still pending suspended instructions in the virtual machine. Hence the virtual machine
makes no step and we have to argue that the simulation relation as well as all invariants
still hold.

Up to now we have focused on how to simulate the read and in particular on how
to argue that the value read in the store buffer machine is the same as the value read
in the virtual machine. Besided these simulation properties another major part of the
proof is to show that all invariants are maintained. For example if the non-volatile read
enters the store buffer we have to argue that this new entry is either owned or refers to
an read-only address (Ownership.i). As for the simulation above this follows from safety
of the virtual machine in configuration cfg ′′. However, consider an ghost operation that
acquires an address a. From safety of the configuration cfg ′′ we can only infer that there
is no conflicting acquire in the non-volaitle prefixes of the other store buffers. In case
an conflicting acquire is in the suspended part of a store buffer of thread j safety of
configuration cfg ′′ is not enough. But as we have safety of all reachable states we can
forward the computation of thread j until the conflicting acquire is about to be executed
and construct an unsafe state which rules out the conflict.

Last we want to comment on the case where the store buffer takes a step. The major
case destinction is wheter a volatile write leaves the store buffer or not. In the former case
the virtual machine has to simulate a whole bunch of instructions at once to simulate the
store buffer machine up to the next volatile write in the store buffer. In the latter case the
virtual machine does no step at all, since the instruction leaving the store buffer is already
simulated. In both cases one key argument is commutativity of non-volatile operations
with respect to global effects on the memory or the sharing map. Consider a non-volatile
store buffer step of thread i. In the configuration of the virtual machine before the store
buffer step of thread i, the simulation relation applies the update to the memory and the
sharing map of the store buffer machine, within the operations exec-all-until-volatile-write
and share-all-until-volatile-write ‘somewhere in the middle’ to obtain the memory and the
sharing map of the virtual machine. After the store buffer step however, when the non-
volatile operations has left the store buffer, the effect is applied to the memory and the
sharing map right in the beginning. The invariants and safety sideconditions for non-
volatile operations guarantee ‘locality’ of the operation which manifests in commutativity
properties. For example, a non-volatile write is thread local. There is no conflicting write
in any other store buffer and hence the write can be safely moved to the beginning.

This conludes the discussion on the proof of Theorem 2. ut

The simulation theorem for a single step is inductive and can therefor be extended
to arbitrary long computations. Moreover, the coupling relation as well as the invariants
become trivial for a initial configuration where all store buffers are empty and the ghost
state is setup appropriately. To arrive at our final Theorem 1 we need the following steps:

1. simulate the computation of the store buffer machine (tssb, m)
sb⇒

∗
(tssb ′, m ′) by a

computation of a store buffer machine with history (tssbh, m, S) sbh⇒
∗
(tssbh ′, m ′, S ′),

2. simulate the computation of the store buffer machine with history by a computation
of the virtual machine with delayed releases (ts, m, S) vd⇒

∗
(ts ′, m ′, S ′) by Theorem 2

(extended to the reflexive transitive closure),
3. simulate the computation of the virtual machine with delayed releases by a computa-

tion of the virtual machine with free flowing releases (ts, m, S) v⇒
∗
(ts ′, m ′, S ′)5.

5 Here we are sloppy with ts; strictly we would have to distinguish the thread configurations without the
R component form the ones with the R component used for delayed releases

25

Step 1 is trivial since the bookkeeping within the additional ghost and history state
does not affect the control flow of the transition systems and can be easily removed. Similar
the additional R ghost component can be ignored in Step 3. However, to apply Theorem
2 in Step 2 we have to convert from safe-reach (ts, m, S) provided by the preconditions of
Theorem 1 to the required safe-reach-delayed (ts, m, S). This argument is more involved
and we only give a short sketch here. The other direction is trivial as every single case for
delayed releases (cf. Figure 9) immediately implies the corresponding case for free flowing
releases (cf. Figure 7).

First keep in mind that the predicates ensure that all reachable configurations starting
from (ts, m, S) are safe, according to the rules for free flowing releases or delayed releases
respectively. We show the theorem by contraposition and start with a computation which
reaches a configuration c that is unsafe according to the rules for delayed releases and want
to show that there has to be a (potentially other) computation (starting from the same
initial state) that leads to an unsafe configuration c ′ accroding to free flowing releases.
If c is already unsafe according to free flowing releases we have c ′ = c and are finished.
Otherwise we have to find another unsafe configuration. Via induction on the length of
the global computation we can also assume that for all shorter computations both safety
notions coincide. A configuration can only be unsafe with respect to delayed releases and
safe with respect to free flowing releases if there is a race between two distinct Threads i
and j on an address a that is in the release set R of one of the threads, lets say Thread i. For
example Thread j attempts to write to an address a which is in the release set of Thread i.
If the release map would be empty there cannot be such an race (it would simulataneously
be unsafe with respect to free flowing releases). Now we aim to find a configuration c ′ that
is also reachable from the initial configuration and is unsafe with respect to free flowing
releases. Intuitively this is a configuration where Thread i is rewinded to the state just
before the release of address a and Thread j is in the same state as in configuration c.
Before the release of a the address has to be owned by Thread i, which is unsafe according
to free flowing releases as well as delayed releases. So we can argue that either Thread j can
reach the same state although Thread i is rewinded or we even hit an unsafe configuration
before. What kind of steps can Thread i perform between between the free flowing release
point (point of the ghost instruction) and the delayed release point (point of next volatile
write, interlocked operation or fence at which the release map is emptied)? How can these
actions affect Thread j? Note that the delayed release point is not yet reached as this
would empty the release map (which we know not to be empty). Thus Thread i does
only perform reads, ghost instructions, program steps or non-volatile writes. All of these
instructions of Thread i either have no influence on the computation of Thread j at all
(e.g. a read, program step, non-volatile write or irrelevant ghost operation) or may cause
a safety violation already in a shorter computation (e.g. acquiring an address that another
thread holds). This is fine for our inductive argument. So either we can replay every step
of Thread j and reach the final configuration c ′ which is now also unsafe according to free
flowing releases, or we hit a configuration c ′′ in a shorter computation which violates the
rules of delayed as well as free flowing releases (using the induction hypothesis).

6 PIMP

PIMP is a parallel version of IMP [11], a canonical WHILE-language.
An expression e is either (i) Const v, a constant value, (ii) Mem volatile a, a (volatile)

memory lookup at address a, (iii) Tmp sop, reading from the temporaries with a operation
sop which is an intermediate expression occurring in the transition rules for statements,

26

(iv) Unop f e, a unary operation where f is a unary function on values, and finally
(v) Binop f e1 e2, a binary operation where f is a binary function on values.

A statement s is either (i) Skip, the empty statement, (ii) Assign volatile a e A L
R W , a (volatile) assignment of expression e to address expression a, (iii) CAS a ce se
A L R W , atomic compare and swap at address expression a with compare expression
ce and swap expression se, (iv) Seq s1 s2, sequential composition, (v) Cond e s1 s2, the
if-then-else statement, (vi) While e s, the loop statement with condition e, (vii) SGhost,
and SFence as stubs for the corresponding memory instructions.

The key idea of the semantics is the following: expressions are evaluated by issuing
instructions to the memory system, then the program waits until the memory system has
made all necessary results available in the temporaries, which allows the program to make
another step. Figure 17 defines expression evaluation. The function used-tmps e calculates

issue-expr t (Const v) = []
issue-expr t (Mem volatile a) = [Read volatile a t]
issue-expr t (Tmp (D, f)) = []
issue-expr t (Unop f e) = issue-expr t e
issue-expr t (Binop f e1 e2) = issue-expr t e1 @ issue-expr (t + used-tmps e1) e2
eval-expr t (Const v) = (∅, λj. v)
eval-expr t (Mem volatile a) = ({t}, λj. the (j t))
eval-expr t (Tmp (D, f)) = (D, f)
eval-expr t (Unop f e) = let (D, fe) = eval-expr t e in (D, λj. f (fe j))
eval-expr t (Binop f e1 e2) = let (D1, f1) = eval-expr t e1;

(D2, f2) = eval-expr (t + used-tmps e1) e2
in (D1 ∪ D2, λj. f (f1 j) (f2 j))

Fig. 17: Expression evaluation

the number of temporaries that are necessary to evaluate expression e, where every Mem
expression accounts to one temporary. With issue-expr t e we obtain the instruction list
for expression e starting at temporary t, whereas eval-expr t e constructs the operation as
a pair of the domain and a function on the temporaries.

The program transitions are defined in Figure 18. We instantiate the program state
by a tuple (s, t) containing the statement s and the temporary counter t. To assign
an expression e to an address(-expression) a we first create the memory instructions for
evaluation the address a and transforming the expression to an operation on temporaries.
The temporary counter is incremented accordingly. When the value is available in the
temporaries we continue by creating the memory instructions for evaluation of expression
e followed by the corresponding store operation. Note that the ownership annotations can
depend on the temporaries and thus can take the calculated address into account.

Execution of compare and swap CAS involves evaluation of three expressions, the
address a the compare value ce and the swap value se. It is finally mapped to the read-
modify-write instruction RMW of the memory system. Recall that execution of RMW
first stores the memory content at address a to the specified temporary. The condition
compares this value with the result of evaluating ce and writes swap value sa if successful.
In either case the temporary finally returns the old value read.

Sequential composition is straightforward. An if-then-else is computed by first issuing
the memory instructions for evaluation of condition e and transforming the condition to an
operation on temporaries. When the result is available the transition to the first or second
statement is made, depending on the result of isTrue. Execution of the loop is defined

27

∀ sop. a 6= Tmp sop a ′ = Tmp (eval-expr t a) t ′ = t + used-tmps a is = issue-expr t a
j` (Assign volatile a e A L R W , t) →p ((Assign volatile a ′ e A L R W , t ′), is)

D ⊆ dom j is = issue-expr t e @ [Write volatile (a j) (eval-expr t e) (A j) (L j) (R j) (W j)]
j` (Assign volatile (Tmp (D, a)) e A L R W , t) →p ((Skip, t + used-tmps e), is)

∀ sop. a 6= Tmp sop a ′ = Tmp (eval-expr t a) t ′ = t + used-tmps a is = issue-expr t a
j` (CAS a ce se A L R W , t) →p ((CAS a ′ ce se A L R W , t ′), is)

∀ sop. ce 6= Tmp sop ce ′ = Tmp (eval-expr t ce) t ′ = t + used-tmps ce is = issue-expr t ce
j` (CAS (Tmp a) ce se A L R W , t) →p ((CAS (Tmp a) ce ′ se A L R W , t ′), is)

Da ⊆ dom j
Dc ⊆ dom j eval-expr t se = (D, f) t ′ = t + used-tmps se cond = (λj. the (j t ′) = c j)
ret = (λv1 v2. v1) is = issue-expr t se @ [RMW (a j) t ′ (D, f) cond ret (A j) (L j) (R j) (W j)]

j` (CAS (Tmp (Da, a)) (Tmp (Dc, c)) se A L R W , t) →p ((Skip, Suc t ′), is)

j` (s1, t) →p ((s1 ′, t ′), is)
j` (Seq s1 s2, t) →p ((Seq s1 ′ s2, t ′), is)

j` (Seq Skip s2, t) →p ((s2, t), [])

∀ sop. e 6= Tmp sop e ′ = Tmp (eval-expr t e) t ′ = t + used-tmps e is = issue-expr t e
j` (Cond e s1 s2, t) →p ((Cond e ′ s1 s2, t ′), is)

D ⊆ dom j isTrue (e j)
j` (Cond (Tmp (D, e)) s1 s2, t) →p ((s1, t), [])

D ⊆ dom j ¬ isTrue (e j)
j` (Cond (Tmp (D, e)) s1 s2, t) →p ((s2, t), [])

j` (While e s, t) →p ((Cond e (Seq s (While e s)) Skip, t), [])

j` (SGhost A L R W , t) →p ((Skip, t), [Ghost (A j) (L j) (R j) (W j)])

j` (SFence, t) →p ((Skip, t), [Fence])

Fig. 18: Program transitions

28

by stepwise unfolding. Ghost and fence statements are just propagated to the memory
system.

To instantiate Theorem 2 with PIMP we define the invariant parameter valid, which has
to be maintained by all transitions of PIMP, the memory system and the store buffer. Let j
be the valuation of temporaries in the current configuration, for every thread configuration
tssb[i] = ((s, t), is, j, sb, D,O) where i < |tssb| we require: (i) The domain of all intermediate
Tmp (D, f) expressions in statement s is below counter t. (ii) All temporaries in the
memory system including the store buffer are below counter t. (iii) All temporaries less
than counter t are either already defined in the temporaries j or are outstanding read
temporaries in the memory system.

For the PIMP transitions we prove these invariants by rule induction on the semantics.
For the memory system (including the store buffer steps) the invariants are straightfor-
ward. The memory system does not alter the program state and does not create new
temporaries, only the PIMP transitions create new ones in strictly ascending order.

7 Conclusion

We have presented a practical and flexible programming discipline for concurrent programs
that ensures sequential consistency on TSO machines, such as present x64 architectures.
Our approach covers a wide variety of concurrency control, covering locking, data races,
single writer multiple readers, read only and thread local portions of memory. We minimize
the need for store buffer flushes to optimize the usage of the hardware. Our theorem is
not coupled to a specific logical framework like separation logic but is based on more
fundamental arguments, namely the adherence to the programming discipline which can
be discharged within any program logic using the standard sequential consistent memory
model, without any of the complications of TSO.

Related work. Disclaimer. This contribution presents the state of our work from 2010 [8].
Finally, 8 years later, we made the AFP submission for Isabelle2018. This related work
paragraph does not thoroughly cover publications that came up in the meantime.

A categorization of various weak memory models is presented in [2]. It is compatible
with the recent revisions of the Intel manuals [10] and the revised x86 model presented
in [15]. The state of the art in formal verification of concurrent programs is still based
on a sequentially consistent memory model. To justify this on a weak memory model
often a quite drastic approach is chosen, allowing only coarse-grained concurrency usually
implemented by locking. Thereby data races are ruled out completely and there are results
that data race free programs can be considered as sequentially consistent for example for
the Java memory model [3, 18] or the x86 memory model [15]. Ridge [17] considers weak
memory and data-races and verifies Peterson’s mutual exclusion algorithm. He ensures
sequentially consistency by flushing after every write to shared memory. Burckhardt and
Musuvathi [6] describe an execution monitor that efficiently checks whether a sequentially
consistent TSO execution has a single-step extension that is not sequentially consistent.
Like our approach, it avoids having to consider the store buffers as an explicit part of
the state. However, their condition requires maintaining in ghost state enough history
information to determine causality between events, which means maintaining a vector
clock (which is itself unbounded) for each memory address. Moreover, causality (being
essentially graph reachability) is already not first-order, and hence unsuitable for many
types of program verification. Closely related to our work is the draft of Owens [14] which
also investigates on the conditions for sequential consistent reasoning within TSO. The
notion of a triangular-race free trace is established to exactly characterize the traces on

29

a TSO machine that are still sequentially consistent. A triangular race occurs between
a read and a write of two different threads to the same address, when the reader still
has some outstanding writes in the store buffer. To avoid the triangular race the reader
has to flush the store buffer before reading. This is essentially the same condition that
our framework enforces, if we limit every address to be unowned and every access to be
volatile. We regard this limitation as too strong for practical programs, where non-volatile
accesses (without any flushes) to temporarily local portions of memory (e.g. lock protected
data) is common practice. This is our core motivation for introducing the ownership based
programming discipline. We are aware of two extensions of our work that were published in
the meantime. Chen et al. [7] also take effects of the MMU into account and generalize our
reduction theorem to handle programs that edit page tables. Oberhauser [13] improves
on the flushing policy to also take non-triangular races into account and facilitates an
alternative proof approach.

Limitations. There is a class of important programs that are not sequentially consistent
but nevertheless correct.

First consider a simple spinlock implementation with a volatile lock l, where l == 0
indicates that the lock is not taken. The following code acquires the lock:

while(!interlocked_test_and_set(l));
<critical section accessing protected objects>,

and with the assignment l = 0 we can release the lock again. Within our framework
address l can be considered unowned (and hence shared) and every access to it is volatile.
We do not have to transfer ownership of the lock l itself but of the objects it protects. As
acquiring the lock is an expensive interlocked oprations anyway there are no additional
restrictions from our framework. The interesting point is the release of the lock via the
volatile write l=0. This leaves the dirty bit set, and hence our programming discipline
requires a flushing instruction before the next volatile read. If l is the only volatile variable
this is fine, since the next operation will be a lock acquire again which is interlocked and
thus flushes the store buffer. So there is no need for an additonal fence. But in general
this is not the case and we would have to insert a fence after the lock release to make
the dirty bit clean again and to stay sequentially consistent. However, can we live without
the fence? For the correctness of the mutal-exclusion algorithm we can, but we leave the
domain of sequential consistent reasoning. The intuitive reason for correctness is that the
threads waiting for the lock do no harm while waiting. They only take some action if they
see the lock being zero again, this is when the lock release has made its way out of the
store buffer.

Another typical example is the following simplified form of barrier synchronization:
each processor has a flag that it writes (with ordinarry volatile writes without any flushing)
and other processors read, and each processor waits for all processors to set their flags
before continuing past the barrier. This is not sequentially consistent – each processor
might see his own flag set and later see all other flags clear – but it is still correct.

Common for these examples is that there is only a single writer to an address, and
the values written are monotonic in a sense that allows the readers to draw the correct
conlcusion when they observe a certain value. This pattern is named Publication Idiom in
Owens work [14].

Future work. The first direction of future work is to try to deal with the limitations of
sequential consistency described above and try to come up with a more general reduction

30

theorem that can also handle non sequential consistent code portions that follow some
monotonicity rules.

Another direction of future work is to take compiler optimization into account. Our
volatile accesses correspond roughly to volatile memory accesses within a C program. An
optimizing compiler is free to convert any sequence of non-volatile accesses into a (sequen-
tially semantically equivalent) sequence of accesses. As long as execution is sequentially
consistent, equivalence of these programs (e.g., with respect to final states of executions
that end with volatile operations) follows immediately by reduction. However, some com-
pilers are a little more lenient in their optimizations, and allow operations on certain local
variables to move across volatile operations. In the context of C (where pointers to stack
variables can be passed by pointer), the notion of “locality” is somewhat tricky, and makes
essential use of C forbidding (semantically) address arithmetic across memory objects.

Acknowledgements

We thank Mark Hillebrand for discussions and feedback on this work and extensive com-
ments on this report.

A Appendix

After the explanatory text in the main body of the document we now show the plain
theory files.

theory ReduceStoreBuffer
imports Main
begin

A.1 Memory Instructions

type-synonym addr = nat
type-synonym val = nat
type-synonym tmp = nat

type-synonym tmps = tmp ⇒ val option
type-synonym sop = tmp set × (tmps ⇒ val) — domain and function

locale valid-sop =
fixes sop :: sop
assumes valid-sop:

∧
D f j.

[[sop=(D,f); D ⊆ dom j]]
=⇒
f j = f (j|‘D)

type-synonym memory = addr ⇒ val
type-synonym owns = addr set
type-synonym rels = addr ⇒ bool option
type-synonym shared = addr ⇒ bool option
type-synonym acq = addr set
type-synonym rel = addr set

31

type-synonym lcl = addr set
type-synonym wrt = addr set
type-synonym cond = tmps ⇒ bool
type-synonym ret = val ⇒ val ⇒ val

datatype instr = Read bool addr tmp
| Write bool addr sop acq lcl rel wrt
| RMW addr tmp sop cond ret acq lcl rel wrt
| Fence
| Ghost acq lcl rel wrt

type-synonym instrs = instr list

type-synonym (′p, ′sb, ′dirty, ′owns, ′rels) thread-config =
′p × instrs × tmps × ′sb × ′dirty × ′owns × ′rels

type-synonym (′p, ′sb, ′dirty, ′owns, ′rels, ′shared) global-config =
(′p, ′sb, ′dirty, ′owns, ′rels) thread-config list × memory × ′shared

definition owned t = (let (p,instrs,j,sb,D,O,R) = t in O)

lemma owned-simp [simp]: owned (p,instrs,j,sb,D,O,R) = (O)
〈proof 〉

definition O-sb t = (let (p,instrs,j,sb,D,O,R) = t in (O,sb))

lemma O-sb-simp [simp]: O-sb (p,instrs,j,sb,D,O,R) = (O,sb)
〈proof 〉

definition released t = (let (p,instrs,j,sb,D,O,R) = t in R)

lemma released-simp [simp]: released (p,instrs,j,sb,D,O,R) = (R)
〈proof 〉

lemma list-update-id ′: v = xs ! i =⇒ xs[i := v] = xs
〈proof 〉

lemmas converse-rtranclp-induct5 =
converse-rtranclp-induct [where a=(m,sb,O,R,S) and b=(m ′,sb ′,O ′,R ′,S ′),
split-rule,consumes 1, case-names refl step]

A.2 Abstract Program Semantics

locale memory-system =
fixes
memop-step :: (instrs × tmps × ′sb × memory × ′dirty × ′owns × ′rels × ′shared) ⇒

(instrs × tmps × ′sb × memory × ′dirty × ′owns × ′rels × ′shared) ⇒ bool
(‹- →m -› [60,60] 100) and

32

storebuffer-step:: (memory × ′sb × ′owns × ′rels × ′shared) ⇒ (memory × ′sb × ′owns
× ′rels × ′shared) ⇒ bool (‹- →sb -› [60,60] 100)

locale program =
fixes
program-step :: tmps ⇒ ′p ⇒ ′p × instrs ⇒ bool (‹-` - →p -› [60,60,60] 100)
— A program only accesses the shared memory indirectly, it can read the temporaries

and can output a sequence of memory instructions

locale computation = memory-system + program +
constrains
— The constrains are only used to name the types ′sb and ′p
storebuffer-step:: (memory × ′sb × ′owns × ′rels × ′shared) ⇒ (memory × ′sb × ′owns

× ′rels × ′shared) ⇒ bool and
memop-step ::

(instrs × tmps × ′sb × memory × ′dirty × ′owns × ′rels × ′shared) ⇒
(instrs × tmps × ′sb × memory × ′dirty × ′owns × ′rels × ′shared) ⇒ bool

and
program-step :: tmps ⇒ ′p ⇒ ′p × instrs ⇒ bool
fixes
record :: ′p ⇒ ′p ⇒ instrs ⇒ ′sb ⇒ ′sb

begin

inductive concurrent-step ::
(′p, ′sb, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ (′p, ′sb, ′dirty, ′owns, ′rels, ′shared)

global-config ⇒ bool
(‹- ⇒ -› [60,60] 100)

where
Program:
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);

j`p →p (p ′,is ′)]] =⇒
(ts,m,S) ⇒ (ts[i:=(p ′,is@is ′,j,record p p ′ is ′ sb,D,O,R)],m,S)

| Memop:
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);

(is,j,sb,m,D,O,R,S) →m (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)]]
=⇒
(ts,m,S) ⇒ (ts[i:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)],m ′,S ′)

| StoreBuffer:
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);
(m,sb,O,R,S) →sb (m ′,sb ′,O ′,R ′,S ′)]] =⇒
(ts,m,S) ⇒ (ts[i:=(p,is,j,sb ′,D,O ′,R ′)],m ′,S ′)

definition final:: (′p, ′sb, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ bool
where
final c = (¬ (∃ c ′. c ⇒ c ′))

33

lemma store-buffer-steps:
assumes sb-step: storebuffer-step^∗∗ (m,sb,O,R,S) (m ′,sb ′,O ′,R ′,S ′)
shows

∧
ts. i < length ts =⇒ ts!i = (p,is,j,sb,D,O,R) =⇒

concurrent-step^∗∗ (ts,m,S) (ts[i:=(p,is,j,sb ′,D,O ′,R ′)],m ′,S ′)
〈proof 〉

lemma step-preserves-length-ts:
assumes step: (ts,m,S) ⇒ (ts ′,m ′,S ′)
shows length ts ′ = length ts

〈proof 〉
end

lemmas concurrent-step-cases = computation.concurrent-step.cases
[cases set, consumes 1, case-names Program Memop StoreBuffer]

definition augment-shared:: shared ⇒ addr set ⇒ addr set ⇒ shared (‹- ⊕- -› [61,1000,60]
61)
where
S ⊕W S ≡ (λa. if a ∈ S then Some (a ∈ W) else S a)

definition restrict-shared:: shared ⇒ addr set ⇒ addr set ⇒ shared (‹- 	- -› [51,1000,50]
51)
where
S 	A L ≡ (λa. if a ∈ L then None

else (case S a of None ⇒ None
| Some writeable ⇒ Some (a ∈ A ∨ writeable)))

definition read-only :: shared ⇒ addr set
where
read-only S ≡ {a. (S a = Some False)}

definition shared-le:: shared ⇒ shared ⇒ bool (infix ‹⊆s› 50)
where
m1 ⊆s m2 ≡ m1 ⊆m m2 ∧ read-only m1 ⊆ read-only m2

lemma shared-leD: m1 ⊆s m2 =⇒ m1 ⊆m m2 ∧ read-only m1 ⊆ read-only m2

〈proof 〉

lemma shared-le-map-le: m1 ⊆s m2 =⇒ m1 ⊆m m2

〈proof 〉

lemma shared-le-read-only-le: m1 ⊆s m2 =⇒ read-only m1 ⊆ read-only m2

〈proof 〉

lemma dom-augment [simp]: dom (m ⊕W S) = dom m ∪ S
〈proof 〉

lemma augment-empty [simp]: S ⊕x {} = S
〈proof 〉

34

lemma inter-neg [simp]: X ∩ − L = X − L
〈proof 〉

lemma dom-restrict-shared [simp]: dom (m 	A L) = dom m − L
〈proof 〉

lemma restrict-shared-UNIV [simp]: (m 	A UNIV) = Map.empty
〈proof 〉

lemma restrict-shared-empty [simp]: (Map.empty 	A L) = Map.empty
〈proof 〉

lemma restrict-shared-in [simp]: a ∈ L =⇒ (m 	A L) a = None
〈proof 〉

lemma restrict-shared-out: a /∈ L =⇒ (m 	A L) a =
map-option (λwriteable. (a ∈ A ∨ writeable)) (m a)
〈proof 〉

lemma restrict-shared-out ′[simp]:
a /∈ L =⇒ m a = Some writeable =⇒ (m 	A L) a = Some (a ∈ A ∨ writeable)
〈proof 〉

lemma augment-mono-map ′: A ⊆m B =⇒ (A ⊕x C) ⊆m (B ⊕x C)
〈proof 〉

lemma augment-mono-map: A ⊆s B =⇒ (A ⊕x C) ⊆s (B ⊕x C)
〈proof 〉

lemma restrict-mono-map: A ⊆s B =⇒ (A 	x C) ⊆s (B 	x C)
〈proof 〉

lemma augment-mono-aux: dom A ⊆ dom B =⇒ dom (A ⊕x C) ⊆ dom (B ⊕x C)
〈proof 〉

lemma restrict-mono-aux: dom A ⊆ dom B =⇒ dom (A 	x C) ⊆ dom (B 	x C)
〈proof 〉

lemma read-only-mono: S ⊆m S ′ =⇒ a ∈ read-only S =⇒ a ∈ read-only S ′

〈proof 〉

lemma in-read-only-restrict-conv:
a ∈ read-only (S 	A L) = (a ∈ read-only S ∧ a /∈ L ∧ a /∈ A)
〈proof 〉

35

lemma in-read-only-augment-conv: a ∈ read-only (S ⊕W R) = (if a ∈ R then a /∈ W else
a ∈ read-only S)
〈proof 〉

lemmas in-read-only-convs = in-read-only-restrict-conv in-read-only-augment-conv

lemma read-only-dom: read-only S ⊆ dom S
〈proof 〉

lemma read-only-empty [simp]: read-only Map.empty = {}
〈proof 〉

lemma restrict-shared-fuse: S 	A L 	B M = (S 	(A ∪ B) (L ∪ M))
〈proof 〉

lemma restrict-shared-empty-set [simp]: S 	{} {} = S
〈proof 〉

definition augment-rels:: addr set ⇒ addr set ⇒ rels ⇒ rels
where
augment-rels S R R = (λa. if a ∈ R

then (case R a of
None ⇒ Some (a ∈ S)

| Some s ⇒ Some (s ∧ (a ∈ S)))
else R a)

declare domIff [iff del]

A.3 Memory Transitions

locale gen-direct-memop-step =
fixes emp:: ′rels and aug::owns ⇒ rel ⇒ ′rels ⇒ ′rels
begin
inductive gen-direct-memop-step :: (instrs × tmps × unit × memory × bool × owns ×
′rels × shared) ⇒

(instrs × tmps × unit × memory × bool × owns × ′rels × shared) ⇒ bool
(‹- → -› [60,60] 100)

where
Read: (Read volatile a t # is,j, x, m,D, O, R, S) →

(is, j (t 7→m a), x, m, D, O, R, S)

| WriteNonVolatile:
(Write False a (D,f) A L R W#is, j, x, m, D, O, R, S) →

(is, j, x, m(a := f j), D, O, R, S)

| WriteVolatile:
(Write True a (D,f) A L R W# is, j, x, m, D, O, R, S) →

(is, j, x, m(a:=f j), True, O ∪ A − R, emp, S ⊕W R 	A L)

| Fence:

36

(Fence # is, j, x, m, D, O, R, S) → (is, j,x, m, False, O, emp, S)

| RMWReadOnly:
[[¬ cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W # is, j, x, m, D, O, R, S) → (is, j(t 7→m a),x,m,

False, O, emp, S)

| RMWWrite:
[[cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, x, m, D, O, R, S) →

(is, j(t 7→ret (m a) (f(j(t 7→m a)))),x, m(a:= f(j(t7→m a))), False,O ∪ A − R, emp,
S ⊕W R 	A L)

| Ghost:
(Ghost A L R W # is, j, x, m, D, O, R, S) →

(is, j, x, m, D, O ∪ A − R, aug (dom S) R R , S ⊕W R 	A L)
end

interpretation direct-memop-step: gen-direct-memop-step Map.empty augment-rels
〈proof 〉

term direct-memop-step.gen-direct-memop-step
abbreviation direct-memop-step :: (instrs × tmps × unit × memory × bool × owns ×
rels × shared) ⇒

(instrs × tmps × unit × memory × bool × owns × rels × shared) ⇒ bool
(‹- → -› [60,60] 100)

where
direct-memop-step ≡ direct-memop-step.gen-direct-memop-step

term x → Y

abbreviation direct-memop-steps ::
(instrs × tmps × unit × memory × bool × owns × rels × shared) ⇒
(instrs × tmps × unit × memory × bool × owns × rels × shared)
⇒ bool
(‹- →∗ -› [60,60] 100)

where
direct-memop-steps == (direct-memop-step)^∗∗

term x →∗ Y

interpretation virtual-memop-step: gen-direct-memop-step () (λS R R. ()) 〈proof 〉

abbreviation virtual-memop-step :: (instrs × tmps × unit × memory × bool × owns ×
unit × shared) ⇒

(instrs × tmps × unit × memory × bool × owns × unit × shared) ⇒ bool
(‹- →v -› [60,60] 100)

where
virtual-memop-step ≡ virtual-memop-step.gen-direct-memop-step

37

term x →v Y

abbreviation virtual-memop-steps ::
(instrs × tmps × unit × memory × bool × owns × unit × shared) ⇒
(instrs × tmps × unit × memory × bool × owns × unit × shared)
⇒ bool
(‹- →v

∗ -› [60,60] 100)
where
virtual-memop-steps == (virtual-memop-step)^∗∗

term x →∗ Y

lemma virtual-memop-step-simulates-direct-memop-step:
assumes step:
(is, j, x, m, D, O, R, S) → (is ′, j ′, x ′, m ′, D ′, O ′, R ′, S ′)
shows (is, j, x, m, D, O, (), S) →v (is ′, j ′, x ′, m ′, D ′, O ′, (), S ′)

〈proof 〉

A.4 Safe Configurations of Virtual Machines

inductive safe-direct-memop-state :: owns list ⇒ nat ⇒
(instrs × tmps × memory × bool × owns × shared) ⇒ bool
(‹-,-` -

√
› [60,60,60] 100)

where
Read: [[a ∈ O ∨ a ∈ read-only S ∨ (volatile ∧ a ∈ dom S);

volatile −→ ¬ D]]
=⇒
Os,i`(Read volatile a t # is, j, m, D, O, S)

√

| WriteNonVolatile:
[[a ∈ O; a /∈ dom S]]
=⇒
Os,i`(Write False a (D,f) A L R W#is, j, m, D, O, S)

√

| WriteVolatile:
[[∀ j < length Os. i6=j −→ a /∈ Os!j;

A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ Os!j = {};

a /∈ read-only S]]
=⇒
Os,i`(Write True a (D,f) A L R W# is, j, m, D, O, S)

√

| Fence:
Os,i`(Fence # is, j, m, D, O, S)

√

| Ghost:
[[A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ Os!j = {}]]

38

=⇒
Os,i`(Ghost A L R W# is, j, m, D, O, S)

√

| RMWReadOnly:
[[¬ cond (j(t 7→m a)); a ∈ O ∨ a ∈ dom S]] =⇒
Os,i`(RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

| RMWWrite:
[[cond (j(t 7→m a));
∀ j < length Os. i 6=j −→ a /∈ Os!j;
A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ Os!j = {};
a /∈ read-only S]]
=⇒
Os,i`(RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

| Nil: Os,i`([], j, m, D, O, S)
√

inductive safe-delayed-direct-memop-state :: owns list ⇒ rels list ⇒ nat ⇒
(instrs × tmps × memory × bool × owns × shared) ⇒ bool
(‹-,-,-` -

√
› [60,60,60,60] 100)

where
Read: [[a ∈ O ∨ a ∈ read-only S ∨ (volatile ∧ a ∈ dom S);

∀ j < length Os. i6=j −→ (Rs!j) a 6= Some False; — no release of unshared address
¬ volatile −→ (∀ j < length Os. i 6=j −→ a /∈ dom (Rs!j));
volatile −→ ¬ D]]

=⇒
Os,Rs,i`(Read volatile a t # is, j, m, D, O, S)

√

| WriteNonVolatile:
[[a ∈ O; a /∈ dom S; ∀ j < length Os. i 6=j −→ a /∈ dom (Rs!j)]]
=⇒
Os,Rs,i`(Write False a (D,f) A L R W#is, j, m, D, O, S)

√

| WriteVolatile:
[[∀ j < length Os. i6=j −→ a /∈ (Os!j ∪ dom (Rs!j));

A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ (Os!j ∪ dom (Rs!j)) = {};

a /∈ read-only S]]
=⇒
Os,Rs,i`(Write True a (D,f) A L R W# is, j, m, D, O, S)

√

| Fence:
Os,Rs,i`(Fence # is, j, m, D, O, S)

√

| Ghost:
[[A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ (Os!j ∪ dom (Rs!j)) = {}]]
=⇒
Os,Rs,i`(Ghost A L R W# is, j, m, D, O, S)

√

39

| RMWReadOnly:
[[¬ cond (j(t 7→m a)); a ∈ O ∨ a ∈ dom S;
∀ j < length Os. i6=j −→ (Rs!j) a 6= Some False — no release of unshared address]]
=⇒
Os,Rs,i`(RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

| RMWWrite:
[[cond (j(t 7→m a)); a ∈ O ∨ a ∈ dom S;
∀ j < length Os. i 6=j −→ a /∈ (Os!j ∪ dom (Rs!j));
A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ (Os!j ∪ dom (Rs!j)) = {};
a /∈ read-only S]]
=⇒
Os,Rs,i`(RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

| Nil: Os,Rs,i`([], j, m, D, O, S)
√

lemma memop-safe-delayed-implies-safe-free-flowing:
assumes safe-delayed: Os,Rs,i`(is, j, m, D, O, S)

√

shows Os,i`(is, j, m, D, O, S)
√

〈proof 〉

lemma memop-empty-rels-safe-free-flowing-implies-safe-delayed:
assumes safe: Os,i`(is, j, m, D, O, S)

√

assumes empty: ∀R ∈ set Rs. R = Map.empty
assumes leq: length Os = length Rs
assumes unowned-shared: (∀ a. (∀ i < length Os. a /∈ (Os!i)) −→ a ∈ dom S)
assumes Os-i: Os!i = O
shows Os,Rs,i`(is, j, m, D, O, S)

√

〈proof 〉

inductive id-storebuffer-step::
(memory × unit × owns × rels × shared) ⇒ (memory × unit × owns × rels × shared)

⇒ bool (‹- →I -› [60,60] 100)
where

Id: (m,x,O,R,S) →I (m,x,O,R,S)

definition empty-storebuffer-step:: (memory × ′sb × ′owns × ′rels × ′shared) ⇒ (memory
× ′sb × ′owns × ′rels × ′shared) ⇒ bool
where
empty-storebuffer-step c c ′ = False

context program
begin

abbreviation direct-concurrent-step ::
(′p,unit,bool,owns,rels,shared) global-config ⇒ (′p,unit,bool,owns,rels,shared)

global-config ⇒ bool

40

(‹- ⇒d -› [100,60] 100)
where

direct-concurrent-step ≡
computation.concurrent-step direct-memop-step.gen-direct-memop-step

empty-storebuffer-step program-step
(λp p ′ is sb. sb)

abbreviation direct-concurrent-steps::
(′p,unit,bool,owns,rels,shared) global-config ⇒ (′p,unit,bool,owns,rels,shared)

global-config ⇒ bool
(‹- ⇒d

∗ -› [60,60] 100)
where
direct-concurrent-steps == direct-concurrent-step^∗∗

abbreviation virtual-concurrent-step ::
(′p,unit,bool,owns,unit,shared) global-config ⇒ (′p,unit,bool,owns,unit,shared)

global-config ⇒ bool
(‹- ⇒v -› [100,60] 100)

where
virtual-concurrent-step ≡

computation.concurrent-step virtual-memop-step.gen-direct-memop-step
empty-storebuffer-step program-step

(λp p ′ is sb. sb)

abbreviation virtual-concurrent-steps::
(′p,unit,bool,owns,unit,shared) global-config ⇒ (′p,unit,bool,owns,unit,shared)

global-config ⇒ bool
(‹- ⇒v

∗ -› [60,60] 100)
where
virtual-concurrent-steps == virtual-concurrent-step^∗∗

term x ⇒v Y
term x ⇒d Y

term x ⇒d
∗ Y

term x ⇒v
∗ Y

end

definition
safe-reach step safe cfg ≡

∀ cfg ′. step^∗∗ cfg cfg ′ −→ safe cfg ′

lemma safe-reach-safe-refl: safe-reach step safe cfg =⇒ safe cfg
〈proof 〉

lemma safe-reach-safe-rtrancl: safe-reach step safe cfg =⇒ step^∗∗ cfg cfg ′ =⇒ safe cfg ′

〈proof 〉

41

lemma safe-reach-steps: safe-reach step safe cfg =⇒ step^∗∗ cfg cfg ′ =⇒ safe-reach step
safe cfg ′

〈proof 〉

lemma safe-reach-step: safe-reach step safe cfg =⇒ step cfg cfg ′ =⇒ safe-reach step safe
cfg ′

〈proof 〉

context program
begin

abbreviation
safe-reach-direct ≡ safe-reach direct-concurrent-step

lemma safe-reac-direct-def ′:
safe-reach-direct safe cfg ≡

∀ cfg ′. cfg ⇒d
∗ cfg ′ −→ safe cfg ′

〈proof 〉

abbreviation
safe-reach-virtual ≡ safe-reach virtual-concurrent-step

lemma safe-reac-virtual-def ′:
safe-reach-virtual safe cfg ≡

∀ cfg ′. cfg ⇒v
∗ cfg ′ −→ safe cfg ′

〈proof 〉
end

definition
safe-free-flowing cfg ≡ let (ts,m,S) = cfg

in (∀ i < length ts. let (p,is,j,x,D,O,R) = ts!i in
map owned ts,i `(is,j,m,D,O,S)

√
)

lemma safeE: [[safe-free-flowing (ts,m,S);i<length ts; ts!i=(p,is,j,x,D,O,R)]]
=⇒ map owned ts,i `(is,j,m,D,O,S)

√

〈proof 〉

definition
safe-delayed cfg ≡ let (ts,m,S) = cfg

in (∀ i < length ts. let (p,is,j,x,D,O,R) = ts!i in
map owned ts,map released ts,i `(is,j,m,D,O,S)

√
)

lemma safe-delayedE: [[safe-delayed (ts,m,S);i<length ts; ts!i=(p,is,j,x,D,O,R)]]
=⇒ map owned ts,map released ts,i `(is,j,m,D,O,S)

√

〈proof 〉

definition remove-rels ≡ map (λ(p,is,j,sb,D,O,R). (p,is,j,sb,D,O,()))

theorem (in program) virtual-simulates-direct-step:

42

assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
shows (remove-rels ts,m,S) ⇒v (remove-rels ts ′,m ′,S ′)

〈proof 〉

lemmas converse-rtranclp-induct-sbh-steps = converse-rtranclp-induct
[of - (ts,m,S) (ts ′,m ′,S ′), split-rule,

consumes 1, case-names refl step]

theorem (in program) virtual-simulates-direct-steps:
assumes steps: (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′)
shows (remove-rels ts,m,S) ⇒v

∗ (remove-rels ts ′,m ′,S ′)
〈proof 〉

locale simple-ownership-distinct =
fixes ts::(′p, ′sb, ′dirty,owns, ′rels) thread-config list
assumes simple-ownership-distinct:∧

i j pi isi Oi Ri Di ji sbi pj isj Oj Rj Dj jj sbj.
[[i < length ts; j < length ts; i 6= j;

ts!i = (pi,isi,ji,sbi,Di,Oi,Ri); ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
]] =⇒ Oi ∩ Oj = {}

lemma (in simple-ownership-distinct)
simple-ownership-distinct-nth-update:∧
i p is j O R D xs sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);
∀ j < length ts. i6=j −→ (let (pj,isj,jj,sbj,Dj,Oj,Rj) = ts!j

in (O ′) ∩ (Oj) ={})]] =⇒
simple-ownership-distinct (ts[i := (p ′,is ′,j ′,sb ′,D ′,O ′,R ′)])

〈proof 〉

locale read-only-unowned =
fixes S::shared and ts::(′p, ′sb, ′dirty,owns, ′rels) thread-config list
assumes read-only-unowned:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
O ∩ read-only S = {}

lemma (in read-only-unowned)
read-only-unowned-nth-update:∧
i p is O R D acq j sb.
[[i < length ts; O ∩ read-only S = {}]] =⇒

read-only-unowned S (ts[i := (p,is,j,sb,D,O,R)])
〈proof 〉

locale unowned-shared =
fixes S::shared and ts::(′p, ′sb, ′dirty,owns, ′rels) thread-config list
assumes unowned-shared: −

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts) ⊆ dom S

43

lemma (in unowned-shared)
unowned-shared-nth-update:
assumes i-bound: i < length ts
assumes ith: ts!i=(p,is,xs,sb,D,O,R)
assumes subset: O ⊆ O ′

shows unowned-shared S (ts[i := (p ′,is ′,xs ′,sb ′,D ′,O ′,R ′)])
〈proof 〉

lemma (in unowned-shared) a-unowned-by-others-owned-or-shared:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-unowned-others:

∀ j<length (map owned ts). i 6= j −→
(let Oj = (map owned ts)!j in a /∈ Oj)

shows a ∈ O ∨ a ∈ dom S
〈proof 〉

lemma (in unowned-shared) unowned-shared ′:
assumes notin: ∀ i < length ts. a /∈ owned (ts!i)
shows a ∈ dom S

〈proof 〉

lemma unowned-shared-def ′: unowned-shared S ts = (∀ a. (∀ i < length ts. a /∈ owned
(ts!i)) −→ a ∈ dom S)
〈proof 〉

definition
initial cfg ≡ let (ts,m,S) = cfg

in unowned-shared S ts ∧
(∀ i < length ts. let (p,is,j,x,D,O,R) = ts!i in
R = Map.empty)

lemma initial-empty-rels: initial (ts,m,S) =⇒ ∀R ∈ set (map released ts). R =
Map.empty
〈proof 〉

lemma initial-unowned-shared: initial (ts,m,S) =⇒ unowned-shared S ts
〈proof 〉

lemma initial-safe-free-flowing-implies-safe-delayed:
assumes init: initial c
assumes safe: safe-free-flowing c
shows safe-delayed c
〈proof 〉

locale program-progress = program +
assumes progress: j` p →p (p ′,is ′) =⇒ p ′ 6= p ∨ is ′ 6= []

44

The assumption ‘progress’ could be avoided if we introduce stuttering steps in lemma
undo-local-step or make the scheduling of threads explicit, such that we can directly express
that ‘thread i does not make a step’.lemma (in program-progress) undo-local-step:
assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
assumes i-bound: i < length ts
assumes unchanged: ts!i = ts ′!i
assumes safe-delayed-undo: safe-delayed (u-ts,u-m,u-shared) — proof should also work
with weaker safe-free-flowing
assumes leq: length u-ts = length ts
assumes others-same: ∀ j < length ts. j 6=i −→ u-ts!j = ts!j
assumes u-ts-i: u-ts!i=(u-p,u-is,u-tmps,u-x,u-dirty,u-owns,u-rels)
assumes u-m-other: ∀ a. a /∈ u-owns −→ u-m a = m a
assumes u-m-shared: ∀ a. a ∈ u-owns −→ a ∈ dom u-shared −→ u-m a = m a
assumes u-shared: ∀ a. a /∈ u-owns −→ a /∈ owned (ts!i) −→ u-shared a = S a
assumes dist: simple-ownership-distinct u-ts
assumes dist-ts: simple-ownership-distinct ts
shows ∃u-ts ′ u-shared ′ u-m ′. (u-ts,u-m,u-shared) ⇒d (u-ts ′,u-m ′,u-shared ′) ∧

— thread i is unchanged
u-ts ′!i = u-ts!i ∧
(∀ a ∈ u-owns. u-shared ′ a = u-shared a) ∧
(∀ a ∈ u-owns. S ′ a = S a) ∧
(∀ a ∈ u-owns. u-m ′ a = u-m a) ∧
(∀ a ∈ u-owns. m ′ a = m a) ∧

— other threads are simulated
(∀ j < length ts. j 6=i −→ u-ts ′!j = ts ′!j) ∧
(∀ a. a /∈ u-owns −→ a /∈ owned (ts!i) −→ u-shared ′ a = S ′ a) ∧
(∀ a. a /∈ u-owns −→ u-m ′ a = m ′ a)

〈proof 〉

theorem (in program) safe-step-preserves-simple-ownership-distinct:
assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
assumes safe: safe-delayed (ts,m,S)
assumes dist: simple-ownership-distinct ts
shows simple-ownership-distinct ts ′

〈proof 〉

theorem (in program) safe-step-preserves-read-only-unowned:
assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
assumes safe: safe-delayed (ts,m,S)
assumes dist: simple-ownership-distinct ts
assumes ro-unowned: read-only-unowned S ts
shows read-only-unowned S ′ ts ′

〈proof 〉

theorem (in program) safe-step-preserves-unowned-shared:
assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
assumes safe: safe-delayed (ts,m,S)

45

assumes dist: simple-ownership-distinct ts
assumes unowned-shared: unowned-shared S ts
shows unowned-shared S ′ ts ′

〈proof 〉

locale program-trace = program +
fixes c — enumeration of configurations: c n ⇒d c (n + 1) ... ⇒d c (n + k)
fixes n::nat — starting index
fixes k::nat — steps

assumes step:
∧

l. l < k =⇒ c (n+l) ⇒d c (n + (Suc l))

abbreviation (in program)
trace ≡ program-trace program-step

lemma (in program) trace-0 [simp]: trace c n 0
〈proof 〉

lemma split-less-Suc: (∀ x<Suc k. P x) = (P k ∧ (∀ x<k. P x))
〈proof 〉

lemma split-le-Suc: (∀ x≤Suc k. P x) = (P (Suc k) ∧ (∀ x≤k. P x))
〈proof 〉

lemma (in program) steps-to-trace:
assumes steps: x ⇒d

∗ y
shows ∃ c k. trace c 0 k ∧ c 0 = x ∧ c k = y
〈proof 〉

lemma (in program) trace-preserves-length-ts:∧
l x. trace c n k =⇒ l ≤ k =⇒ x ≤ k =⇒ length (fst (c (n + l))) = length (fst (c (n +

x)))
〈proof 〉

lemma (in program) trace-preserves-simple-ownership-distinct:
assumes dist: simple-ownership-distinct (fst (c n))
shows

∧
l. trace c n k =⇒ (∀ x < k. safe-delayed (c (n + x))) =⇒

l ≤ k =⇒ simple-ownership-distinct (fst (c (n + l)))
〈proof 〉

lemma (in program) trace-preserves-read-only-unowned:
assumes dist: simple-ownership-distinct (fst (c n))
assumes ro: read-only-unowned (snd (snd (c n))) (fst (c n))
shows

∧
l. trace c n k =⇒ (∀ x < k. safe-delayed (c (n + x))) =⇒

l ≤ k =⇒ read-only-unowned (snd (snd (c (n + l)))) (fst (c (n + l)))
〈proof 〉

lemma (in program) trace-preserves-unowned-shared:
assumes dist: simple-ownership-distinct (fst (c n))

46

assumes ro: unowned-shared (snd (snd (c n))) (fst (c n))
shows

∧
l. trace c n k =⇒ (∀ x < k. safe-delayed (c (n + x))) =⇒

l ≤ k =⇒ unowned-shared (snd (snd (c (n + l)))) (fst (c (n + l)))
〈proof 〉

theorem (in program-progress) undo-local-steps:
assumes steps: trace c n k
assumes c-n: c n = (ts,m,S)
assumes unchanged: ∀ l ≤ k. (∀ tsl S l ml . c (n + l) = (tsl,ml,S l) −→ tsl!i=ts!i)
assumes safe: safe-delayed (u-ts, u-m, u-shared)
assumes leq: length u-ts = length ts
assumes i-bound: i < length ts
assumes others-same: ∀ j < length ts. j 6=i −→ u-ts!j = ts!j
assumes u-ts-i: u-ts!i=(u-p,u-is,u-tmps,u-sb,u-dirty,u-owns,u-rels)
assumes u-m-other: ∀ a. a /∈ u-owns −→ u-m a = m a
assumes u-m-shared: ∀ a. a ∈ u-owns −→ a ∈ dom u-shared −→ u-m a = m a
assumes u-shared: ∀ a. a /∈ u-owns −→ a /∈ owned (ts!i) −→ u-shared a = S a
assumes dist: simple-ownership-distinct u-ts
assumes dist-ts: simple-ownership-distinct ts
assumes safe-orig: ∀ x. x < k −→ safe-delayed (c (n + x))
shows ∃ c ′ l. l ≤ k ∧ trace c ′ n l ∧

c ′ n = (u-ts, u-m, u-shared) ∧
(∀ x ≤ l. length (fst (c ′ (n + x))) = length (fst (c (n + x)))) ∧

(∀ x < l. safe-delayed (c ′ (n + x))) ∧
(l < k −→ ¬ safe-delayed (c ′ (n + l))) ∧

(∀ x ≤ l. ∀ tsx Sx mx tsx ′ Sx
′ mx

′ . c (n + x) = (tsx,mx,Sx) −→ c ′ (n+ x) =
(tsx ′,mx

′,Sx
′) −→

tsx ′!i=u-ts!i ∧
(∀ a ∈ u-owns. Sx

′ a = u-shared a) ∧
(∀ a ∈ u-owns. Sx a = S a) ∧
(∀ a ∈ u-owns. mx

′ a = u-m a) ∧
(∀ a ∈ u-owns. mx a = m a)) ∧

(∀ x ≤ l. ∀ tsx Sx mx tsx ′ Sx
′ mx

′. c (n + x) = (tsx,mx,Sx) −→ c ′ (n + x) =
(tsx ′,mx

′,Sx
′) −→

(∀ j < length tsx. j 6=i −→ tsx ′!j = tsx!j) ∧
(∀ a. a /∈ u-owns −→ a /∈ owned (ts!i) −→ Sx

′ a = Sx a) ∧
(∀ a. a /∈ u-owns −→ mx

′ a = mx a))

〈proof 〉

locale program-safe-reach-upto = program +
fixes n fixes safe fixes c0
assumes safe-config: [[k ≤ n; trace c 0 k; c 0 = c0; l ≤ k]] =⇒ safe (c l)

47

abbreviation (in program)
safe-reach-upto ≡ program-safe-reach-upto program-step

lemma (in program) safe-reach-upto-le:
assumes safe: safe-reach-upto n safe c0
assumes m-n: m ≤ n
shows safe-reach-upto m safe c0

〈proof 〉

lemma (in program) last-action-of-thread:
assumes trace: trace c 0 k
shows

— thread i never executes
(∀ l ≤ k. fst (c l)!i = fst (c k)!i) ∨
— thread i has a last step in the trace
(∃ last < k.

fst (c last)!i 6= fst (c (Suc last))!i ∧
(∀ l. last < l −→ l ≤ k −→ fst (c l)!i = fst (c k)!i))

〈proof 〉

lemma (in program) sequence-traces:
assumes trace1: trace c1 0 k
assumes trace2: trace c2 m l
assumes seq: c2 m = c1 k
assumes c-def: c = (λx. if x ≤ k then c1 x else (c2 (m + x −k)))
shows trace c 0 (k + l)
〈proof 〉

theorem (in program-progress) safe-free-flowing-implies-safe-delayed:
assumes init: initial c0
assumes dist: simple-ownership-distinct (fst c0)
assumes read-only-unowned: read-only-unowned (snd (snd c0)) (fst c0)
assumes unowned-shared: unowned-shared (snd (snd c0)) (fst c0)
assumes safe-reach-ff: safe-reach-upto n safe-free-flowing c0
shows safe-reach-upto n safe-delayed c0

〈proof 〉

datatype ′p memref =
Writesb bool addr sop val acq lcl rel wrt

| Readsb bool addr tmp val
| Progsb ′p ′p instrs
| Ghostsb acq lcl rel wrt

type-synonym ′p store-buffer = ′p memref list
inductive flush-step:: memory × ′p store-buffer × owns × rels × shared ⇒ memory × ′p
store-buffer × owns × rels × shared ⇒ bool
(‹- →f -› [60,60] 100)

where
Writesb: [[O ′ = (if volatile then O ∪ A − R else O);

48

S ′ = (if volatile then S ⊕W R 	A L else S);
R ′=(if volatile then Map.empty else R)]]
=⇒
(m, Writesb volatile a sop v A L R W# rs,O,R,S) →f (m(a := v), rs,O ′,R ′,S ′)

| Readsb: (m, Readsb volatile a t v#rs,O,R,S) →f (m, rs,O,R, S)
| Progsb: (m, Progsb p p ′ is#rs,O,R, S) →f (m, rs,O,R, S)
| Ghost: (m, Ghostsb A L R W# rs,O,R,S) →f (m, rs,O ∪ A − R, augment-rels (dom S)
R R, S ⊕W R 	A L)

abbreviation flush-steps::memory × ′p store-buffer × owns × rels × shared ⇒ memory
× ′p store-buffer × owns × rels × shared⇒ bool
(‹- →f

∗ -› [60,60] 100)
where
flush-steps == flush-step^∗∗

term x →f
∗ Y

lemmas flush-step-induct =
flush-step.induct [split-format (complete),
consumes 1, case-names Writesb Readsb Progsb Ghost]

inductive store-buffer-step:: memory × ′p store-buffer × ′owns × ′rels × ′shared ⇒
memory × ′p memref list × ′owns × ′rels × ′shared ⇒ bool
(‹- →w -› [60,60] 100)

where
SBWritesb:

(m, Writesb volatile a sop v A L R W# rs,O,R,S) →w (m(a := v), rs,O,R,S)

abbreviation store-buffer-steps::memory × ′p store-buffer × ′owns × ′rels × ′shared ⇒
memory × ′p store-buffer × ′owns × ′rels × ′shared⇒ bool
(‹- →w∗ -› [60,60] 100)

where
store-buffer-steps == store-buffer-step^∗∗

term x →w∗ Y

fun buffered-val :: ′p memref list ⇒ addr ⇒ val option
where

buffered-val [] a = None
| buffered-val (r # rs) a ′ =
(case r of

Writesb volatile a - v - - - - ⇒ (case buffered-val rs a ′ of
None ⇒ (if a ′=a then Some v else None)

| Some v ′ ⇒ Some v ′)
| - ⇒ buffered-val rs a ′)

definition address-of :: ′p memref ⇒ addr set
where
address-of r = (case r of Writesb volatile a - v - - - - ⇒ {a} | Readsb volatile a t v ⇒ {a} |

- ⇒ {})

49

lemma address-of-simps [simp]:
address-of (Writesb volatile a sop v A L R W) = {a}
address-of (Readsb volatile a t v) = {a}
address-of (Progsb p p ′ is) = {}
address-of (Ghostsb A L R W) = {}
〈proof 〉

definition is-volatile :: ′p memref ⇒ bool
where
is-volatile r = (case r of Writesb volatile a - v - - - -⇒ volatile | Readsb volatile a t v ⇒
volatile
| - ⇒ False)

lemma is-volatile-simps [simp]:
is-volatile (Writesb volatile a sop v A L R W) = volatile
is-volatile (Readsb volatile a t v) = volatile
is-volatile (Progsb p p ′ is) = False
is-volatile (Ghostsb A L R W) = False
〈proof 〉

definition is-Writesb:: ′p memref ⇒ bool
where
is-Writesb r = (case r of Writesb volatile a - v - - - -⇒ True | - ⇒ False)

definition is-Readsb::
′p memref ⇒ bool

where
is-Readsb r = (case r of Readsb volatile a t v ⇒ True | - ⇒ False)

definition is-Progsb:: ′p memref ⇒ bool
where
is-Progsb r = (case r of Progsb - - - ⇒ True | - ⇒ False)

definition is-Ghostsb:: ′p memref ⇒ bool
where
is-Ghostsb r = (case r of Ghostsb - - - - ⇒ True | - ⇒ False)

lemma is-Writesb-simps [simp]:
is-Writesb (Writesb volatile a sop v A L R W) = True
is-Writesb (Readsb volatile a t v) = False
is-Writesb (Progsb p p ′ is) = False
is-Writesb (Ghostsb A L R W) = False
〈proof 〉

lemma is-Readsb-simps [simp]:
is-Readsb (Readsb volatile a t v) = True
is-Readsb (Writesb volatile a sop v A L R W) = False
is-Readsb (Progsb p p ′ is) = False
is-Readsb (Ghostsb A L R W) = False
〈proof 〉

50

lemma is-Progsb-simps [simp]:
is-Progsb (Readsb volatile a t v) = False
is-Progsb (Writesb volatile a sop v A L R W) = False
is-Progsb (Progsb p p ′ is) = True
is-Progsb (Ghostsb A L R W) = False
〈proof 〉

lemma is-Ghostsb-simps [simp]:
is-Ghostsb (Readsb volatile a t v) = False
is-Ghostsb (Writesb volatile a sop v A L R W) = False
is-Ghostsb (Progsb p p ′ is) = False
is-Ghostsb (Ghostsb A L R W) = True
〈proof 〉

definition is-volatile-Writesb:: ′p memref ⇒ bool
where
is-volatile-Writesb r = (case r of Writesb volatile a - v - - - -⇒ volatile | - ⇒ False)

lemma is-volatile-Writesb-simps [simp]:
is-volatile-Writesb (Writesb volatile a sop v A L R W) = volatile
is-volatile-Writesb (Readsb volatile a t v) = False
is-volatile-Writesb (Progsb p p ′ is) = False
is-volatile-Writesb (Ghostsb A L R W) = False
〈proof 〉

lemma is-volatile-Writesb-address-of [simp]: is-volatile-Writesb x =⇒ address-of x 6= {}
〈proof 〉

definition is-volatile-Readsb::
′p memref ⇒ bool

where
is-volatile-Readsb r = (case r of Readsb volatile a t v ⇒ volatile | - ⇒ False)

lemma is-volatile-Readsb-simps [simp]:
is-volatile-Readsb (Readsb volatile a t v) = volatile
is-volatile-Readsb (Writesb volatile a sop v A L R W) = False
is-volatile-Readsb (Progsb p p ′ is) = False
is-volatile-Readsb (Ghostsb A L R W) = False
〈proof 〉

definition is-non-volatile-Writesb:: ′p memref ⇒ bool
where
is-non-volatile-Writesb r = (case r of Writesb volatile a - v - - - -⇒ ¬ volatile | - ⇒ False)

lemma is-non-volatile-Writesb-simps [simp]:
is-non-volatile-Writesb (Writesb volatile a sop v A L R W) = (¬ volatile)
is-non-volatile-Writesb (Readsb volatile a t v) = False
is-non-volatile-Writesb (Progsb p p ′ is) = False
is-non-volatile-Writesb (Ghostsb A L R W) = False
〈proof 〉

51

definition is-non-volatile-Readsb::
′p memref ⇒ bool

where
is-non-volatile-Readsb r = (case r of Readsb volatile a t v ⇒ ¬ volatile | - ⇒ False)

lemma is-non-volatile-Readsb-simps [simp]:
is-non-volatile-Readsb (Readsb volatile a t v) = (¬ volatile)
is-non-volatile-Readsb (Writesb volatile a sop v A L R W) = False
is-non-volatile-Readsb (Progsb p p ′ is) = False
is-non-volatile-Readsb (Ghostsb A L R W) = False
〈proof 〉

lemma is-volatile-split: is-volatile r =
(is-volatile-Readsb r ∨ is-volatile-Writesb r)
〈proof 〉

lemma is-non-volatile-split:
¬ is-volatile r = (is-non-volatile-Readsb r ∨ is-non-volatile-Writesb r ∨ is-Progsb r ∨

is-Ghostsb r)
〈proof 〉

fun outstanding-refs:: (′p memref ⇒ bool) ⇒ ′p memref list ⇒ addr set
where

outstanding-refs P [] = {}
| outstanding-refs P (r#rs) = (if P r then (address-of r) ∪ (outstanding-refs P rs)

else outstanding-refs P rs)

lemma outstanding-refs-conv: outstanding-refs P sb =
⋃
(address-of ‘ {r. r ∈ set sb ∧ P

r})
〈proof 〉

lemma outstanding-refs-append:∧
ys. outstanding-refs vol (xs@ys) = outstanding-refs vol xs ∪ outstanding-refs vol ys

〈proof 〉

lemma outstanding-refs-empty-negate: (outstanding-refs P sb = {}) =⇒
(outstanding-refs (Not ◦ P) sb =

⋃
(address-of ‘ set sb))

〈proof 〉

lemma outstanding-refs-mono-pred:∧
sb sb ′.
∀ r. P r −→ P ′ r =⇒ outstanding-refs P sb ⊆ outstanding-refs P ′ sb

〈proof 〉

lemma outstanding-refs-mono-set:∧
sb sb ′.
set sb ⊆ set sb ′ =⇒ outstanding-refs P sb ⊆ outstanding-refs P sb ′

〈proof 〉

52

lemma outstanding-refs-takeWhile:
outstanding-refs P (takeWhile P ′ sb) ⊆ outstanding-refs P sb
〈proof 〉

lemma outstanding-refs-subsets:
outstanding-refs is-volatile-Writesb sb ⊆ outstanding-refs is-Writesb sb
outstanding-refs is-non-volatile-Writesb sb ⊆ outstanding-refs is-Writesb sb

outstanding-refs is-volatile-Readsb sb ⊆ outstanding-refs is-Readsb sb
outstanding-refs is-non-volatile-Readsb sb ⊆ outstanding-refs is-Readsb sb

outstanding-refs is-non-volatile-Writesb sb ⊆ outstanding-refs (Not ◦ is-volatile) sb
outstanding-refs is-non-volatile-Readsb sb ⊆ outstanding-refs (Not ◦ is-volatile) sb

outstanding-refs is-volatile-Writesb sb ⊆ outstanding-refs (is-volatile) sb
outstanding-refs is-volatile-Readsb sb ⊆ outstanding-refs (is-volatile) sb

outstanding-refs is-non-volatile-Writesb sb ⊆ outstanding-refs (Not ◦ is-volatile-Writesb)
sb

outstanding-refs is-non-volatile-Readsb sb ⊆ outstanding-refs (Not ◦ is-volatile-Writesb)
sb

outstanding-refs is-volatile-Readsb sb ⊆ outstanding-refs (Not ◦ is-volatile-Writesb) sb
outstanding-refs is-Readsb sb ⊆ outstanding-refs (Not ◦ is-volatile-Writesb) sb

〈proof 〉

lemma outstanding-non-volatile-refs-conv:
outstanding-refs (Not ◦ is-volatile) sb =
outstanding-refs is-non-volatile-Writesb sb ∪ outstanding-refs is-non-volatile-Readsb sb

〈proof 〉

lemma outstanding-volatile-refs-conv:
outstanding-refs is-volatile sb =
outstanding-refs is-volatile-Writesb sb ∪ outstanding-refs is-volatile-Readsb sb

〈proof 〉

lemma outstanding-is-Writesb-refs-conv:
outstanding-refs is-Writesb sb =
outstanding-refs is-non-volatile-Writesb sb ∪ outstanding-refs is-volatile-Writesb sb

〈proof 〉

lemma outstanding-is-Readsb-refs-conv:
outstanding-refs is-Readsb sb =
outstanding-refs is-non-volatile-Readsb sb ∪ outstanding-refs is-volatile-Readsb sb

〈proof 〉

lemma outstanding-not-volatile-Readsb-refs-conv: outstanding-refs (Not ◦
is-volatile-Readsb) sb =

53

outstanding-refs is-Writesb sb ∪ outstanding-refs is-non-volatile-Readsb sb
〈proof 〉

lemmas misc-outstanding-refs-convs = outstanding-non-volatile-refs-conv outstand-
ing-volatile-refs-conv
outstanding-is-Writesb-refs-conv outstanding-is-Readsb-refs-conv outstand-
ing-not-volatile-Readsb-refs-conv

lemma no-outstanding-vol-write-takeWhile-append: outstanding-refs is-volatile-Writesb
sb = {} =⇒
takeWhile (Not ◦ is-volatile-Writesb) (sb@xs) = sb@(takeWhile (Not ◦ is-volatile-Writesb)

xs)
〈proof 〉

lemma outstanding-vol-write-takeWhile-append: outstanding-refs is-volatile-Writesb sb 6=
{} =⇒

takeWhile (Not ◦ is-volatile-Writesb) (sb@xs) = (takeWhile (Not ◦ is-volatile-Writesb)
sb)
〈proof 〉

lemma no-outstanding-vol-write-dropWhile-append: outstanding-refs is-volatile-Writesb
sb = {} =⇒

dropWhile (Not ◦ is-volatile-Writesb) (sb@xs) = (dropWhile (Not ◦ is-volatile-Writesb)
xs)
〈proof 〉

lemma outstanding-vol-write-dropWhile-append: outstanding-refs is-volatile-Writesb sb
6= {} =⇒

dropWhile (Not ◦ is-volatile-Writesb) (sb@xs) = (dropWhile (Not ◦ is-volatile-Writesb)
sb)@xs
〈proof 〉

lemmas outstanding-vol-write-take-drop-appends =
no-outstanding-vol-write-takeWhile-append
outstanding-vol-write-takeWhile-append
no-outstanding-vol-write-dropWhile-append
outstanding-vol-write-dropWhile-append

lemma outstanding-refs-is-non-volatile-Writesb-takeWhile-conv:
outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) =

outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)
〈proof 〉

lemma dropWhile-not-vol-write-empty:
outstanding-refs is-volatile-Writesb sb = {} =⇒ (dropWhile (Not ◦ is-volatile-Writesb)

sb) = []
〈proof 〉

54

lemma takeWhile-not-vol-write-outstanding-refs:
outstanding-refs is-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) = {}

〈proof 〉

lemma no-volatile-Writesbs-conv: (outstanding-refs is-volatile-Writesb sb = {}) =
(∀ r ∈ set sb. (∀ v ′ sop ′ a ′ A L R W. r 6= Writesb True a ′ sop ′ v ′ A L R W))

〈proof 〉

lemma no-volatile-Readsbs-conv: (outstanding-refs is-volatile-Readsb sb = {}) =
(∀ r ∈ set sb. (∀ v ′ t ′ a ′. r 6= Readsb True a ′ t ′ v ′))

〈proof 〉

inductive sb-memop-step :: (instrs × tmps × ′p store-buffer × memory × ′dirty × ′owns
× ′rels × ′shared) ⇒

(instrs × tmps × ′p store-buffer × memory × ′dirty × ′owns × ′rels × ′shared
) ⇒ bool

(‹- →sb -› [60,60] 100)
where

SBReadBuffered:
[[buffered-val sb a = Some v]]
=⇒
(Read volatile a t # is,j, sb, m,D, O, R, S) →sb

(is, j (t 7→v), sb, m,D, O,R, S)

| SBReadUnbuffered:
[[buffered-val sb a = None]]
=⇒
(Read volatile a t # is, j, sb, m,D, O, R, S) →sb

(is, j (t 7→m a), sb, m,D, O, R, S)

| SBWriteNonVolatile:
(Write False a (D,f) A L R W#is, j, sb, m,D,O, R, S) →sb

(is, j, sb@ [Writesb False a (D,f) (f j) A L R W], m,D, O, R, S)

| SBWriteVolatile:

(Write True a (D,f) A L R W# is, j, sb, m,D, O, R, S) →sb

(is, j, sb@[Writesb True a (D,f) (f j) A L R W], m,D, O, R, S)

| SBFence:
(Fence # is, j, [], m,D, O, R, S) →sb (is, j, [], m,D, O, R, S)

| SBRMWReadOnly:
[[¬ cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, [], m,D, O, R, S) →sb (is, j(t 7→m a),[], m,D,

O, R, S)

55

| SBRMWWrite:
[[cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, [], m,D, O, R, S) →sb

(is, j(t7→ret (m a) (f(j(t7→m a)))),[], m(a:= f(j(t7→m a))),D, O, R, S)

| SBGhost:
(Ghost A L R W# is, j, sb, m,D, O, R, S) →sb

(is, j, sb, m,D, O, R, S)

inductive sbh-memop-step ::
(instrs × tmps × ′p store-buffer × memory × bool × owns × rels × shared

) ⇒
(instrs × tmps × ′p store-buffer × memory × bool × owns × rels × shared

) ⇒ bool
(‹- →sbh -› [60,60] 100)

where
SBHReadBuffered:
[[buffered-val sb a = Some v]]
=⇒
(Read volatile a t # is, j, sb, m, D, O, R, S) →sbh

(is, j (t 7→v), sb@[Readsb volatile a t v], m, D, O, R, S)

| SBHReadUnbuffered:
[[buffered-val sb a = None]]
=⇒
(Read volatile a t # is, j, sb, m, D, O, R, S) →sbh

(is, j (t 7→m a), sb@[Readsb volatile a t (m a)], m, D, O, R, S)

| SBHWriteNonVolatile:
(Write False a (D,f) A L R W#is, j, sb, m, D, O, R, S) →sbh

(is, j, sb@ [Writesb False a (D,f) (f j) A L R W], m, D, O, R, S)

| SBHWriteVolatile:
(Write True a (D,f) A L R W# is, j, sb, m, D, O, R, S) →sbh

(is, j, sb@[Writesb True a (D,f) (f j) A L R W], m, True, O, R, S)

| SBHFence:
(Fence # is, j, [], m, D, O, R, S) →sbh (is, j, [], m, False, O, Map.empty, S)

| SBHRMWReadOnly:
[[¬ cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, [], m, D, O, R, S) →sbh (is, j(t 7→m a),[], m,

False, O, Map.empty, S)

| SBHRMWWrite:
[[cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, [], m, D, O, R, S) →sbh

(is, j(t 7→ret (m a) (f(j(t 7→m a)))),[], m(a:= f(j(t 7→m a))), False, O ∪ A −
R,Map.empty, S ⊕W R 	A L)

56

| SBHGhost:
(Ghost A L R W# is, j, sb, m, D, O, R, S) →sbh

(is, j, sb@[Ghostsb A L R W], m, D, O, R, S)

interpretation direct: memory-system direct-memop-step id-storebuffer-step 〈proof 〉
interpretation sb: memory-system sb-memop-step store-buffer-step 〈proof 〉
interpretation sbh: memory-system sbh-memop-step flush-step 〈proof 〉

primrec non-volatile-owned-or-read-only:: bool ⇒ shared ⇒ owns ⇒ ′a memref list ⇒
bool
where
non-volatile-owned-or-read-only pending-write S O [] = True
| non-volatile-owned-or-read-only pending-write S O (x#xs) =
(case x of

Readsb volatile a t v ⇒
(¬volatile −→ pending-write −→ (a ∈ O ∨ a ∈ read-only S)) ∧
non-volatile-owned-or-read-only pending-write S O xs

| Writesb volatile a sop v A L R W ⇒
(if volatile then non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R)

xs
else a ∈ O ∧ non-volatile-owned-or-read-only pending-write S O xs)

| Ghostsb A L R W ⇒ non-volatile-owned-or-read-only pending-write (S ⊕W R 	A L)
(O ∪ A − R) xs
| - ⇒ non-volatile-owned-or-read-only pending-write S O xs)

primrec acquired :: bool ⇒ ′a memref list ⇒ addr set ⇒ addr set
where
acquired pending-write [] A = (if pending-write then A else {})
| acquired pending-write (x#xs) A =
(case x of

Writesb volatile - - - A ′ L R W⇒
(if volatile then acquired True xs (if pending-write then (A ∪ A ′ − R) else (A ′ −

R))
else acquired pending-write xs A)

| Ghostsb A ′ L R W ⇒ acquired pending-write xs (if pending-write then (A ∪ A ′ − R)
else A)
| - ⇒ acquired pending-write xs A)

primrec share :: ′a memref list ⇒ shared ⇒ shared
where
share [] S = S
| share (x#xs) S =
(case x of

Writesb volatile - - - A L R W ⇒ (if volatile then (share xs (S ⊕W R 	A L)) else share
xs S)
| Ghostsb A L R W ⇒ share xs (S ⊕W R 	A L)
| - ⇒ share xs S)

57

primrec acquired-reads :: bool ⇒ ′a memref list ⇒ addr set ⇒ addr set
where
acquired-reads pending-write [] A = {}
| acquired-reads pending-write (x#xs) A =
(case x of

Readsb volatile a t v ⇒ (if pending-write ∧ ¬ volatile ∧ a ∈ A
then insert a (acquired-reads pending-write xs A)
else acquired-reads pending-write xs A)

| Writesb volatile - - - A ′ L R W ⇒
(if volatile then acquired-reads True xs (if pending-write then (A ∪ A ′ − R) else

(A ′ − R))
else acquired-reads pending-write xs A)

| Ghostsb A ′ L R W ⇒ acquired-reads pending-write xs (A ∪ A ′ − R)
| - ⇒ acquired-reads pending-write xs A)

lemma union-mono-aux: A ⊆ B =⇒ A ∪ C ⊆ B ∪ C
〈proof 〉

lemma set-minus-mono-aux: A ⊆ B =⇒ A − C ⊆ B − C
〈proof 〉

lemma acquired-mono:
∧

A B pending-write. A ⊆ B =⇒ acquired pending-write xs A ⊆
acquired pending-write xs B
〈proof 〉

lemma acquired-mono-in:
assumes x-in: x ∈ acquired pending-write xs A
assumes sub: A ⊆ B
shows x ∈ acquired pending-write xs B

〈proof 〉

lemma acquired-no-pending-write:
∧

A B. acquired False xs A = acquired False xs B
〈proof 〉

lemma acquired-no-pending-write-in:
x ∈ acquired False xs A =⇒ x ∈ acquired False xs B
〈proof 〉

lemma acquired-pending-write-mono-in:
∧

A B. x ∈ acquired False xs A =⇒ x ∈ acquired
True xs B
〈proof 〉

lemma acquired-pending-write-mono: acquired False xs A ⊆ acquired True xs B
〈proof 〉

lemma acquired-append:
∧

A pending-write. acquired pending-write (xs@ys) A =
acquired (pending-write ∨ outstanding-refs is-volatile-Writesb xs 6= {}) ys (acquired pend-
ing-write xs A)
〈proof 〉

58

lemma acquired-take-drop:
acquired (pending-write ∨ outstanding-refs is-volatile-Writesb (takeWhile P xs) 6= {})

(dropWhile P xs) (acquired pending-write (takeWhile P xs) A) =
acquired pending-write xs A

〈proof 〉

lemma share-mono:
∧

A B. dom A ⊆ dom B =⇒ dom (share xs A) ⊆ dom (share xs B)
〈proof 〉

lemma share-mono-in:
assumes x-in: x ∈ dom (share xs A)
assumes sub: dom A ⊆ dom B
shows x ∈ dom (share xs B)

〈proof 〉

lemma acquired-reads-mono:∧
A B pending-write. A ⊆ B =⇒ acquired-reads pending-write xs A ⊆ acquired-reads

pending-write xs B
〈proof 〉

lemma acquired-reads-mono-in:
assumes x-in: x ∈ acquired-reads pending-write xs A
assumes sub: A ⊆ B
shows x ∈ acquired-reads pending-write xs B

〈proof 〉

lemma acquired-reads-no-pending-write:
∧

A B. acquired-reads False xs A = ac-
quired-reads False xs B
〈proof 〉

lemma acquired-reads-no-pending-write-in:
x ∈ acquired-reads False xs A =⇒ x ∈ acquired-reads False xs B
〈proof 〉

lemma acquired-reads-pending-write-mono:∧
A. acquired-reads False xs A ⊆ acquired-reads True xs A

〈proof 〉

lemma acquired-reads-pending-write-mono-in:
assumes x-in: x ∈ acquired-reads False xs A
shows x ∈ acquired-reads True xs A

〈proof 〉

lemma acquired-reads-append:
∧

pending-write A. acquired-reads pending-write (xs@ys)
A =

acquired-reads pending-write xs A ∪
acquired-reads (pending-write ∨ (outstanding-refs is-volatile-Writesb xs 6= {})) ys
(acquired pending-write xs A)

〈proof 〉

59

lemma in-acquired-reads-no-pending-write-outstanding-write:∧
A. a ∈ acquired-reads False xs A =⇒ outstanding-refs (is-volatile-Writesb) xs 6= {}
〈proof 〉

lemma augment-read-only-mono: read-only S ⊆ read-only S ′ =⇒
read-only (S ⊕W R) ⊆ read-only (S ′ ⊕W R)
〈proof 〉

lemma restrict-read-only-mono: read-only S ⊆ read-only S ′ =⇒
read-only (S 	A L) ⊆ read-only (S ′ 	A L)
〈proof 〉

lemma share-read-only-mono:
∧
S S ′. read-only S ⊆ read-only S ′ =⇒

read-only (share sb S) ⊆ read-only (share sb S ′)
〈proof 〉

lemma non-volatile-owned-or-read-only-append:∧
O S pending-write. non-volatile-owned-or-read-only pending-write S O (xs@ys)

= (non-volatile-owned-or-read-only pending-write S O xs ∧
non-volatile-owned-or-read-only (pending-write ∨ outstanding-refs

is-volatile-Writesb xs 6= {})
(share xs S) (acquired True xs O) ys)

〈proof 〉

lemma non-volatile-owned-or-read-only-mono:∧
O O ′ S pending-write. O ⊆ O ′ =⇒ non-volatile-owned-or-read-only pending-write S O

xs
=⇒ non-volatile-owned-or-read-only pending-write S O ′ xs
〈proof 〉

lemma non-volatile-owned-or-read-only-shared-mono:∧
S S ′ O pending-write. S ⊆s S ′ =⇒ non-volatile-owned-or-read-only pending-write S O

xs
=⇒ non-volatile-owned-or-read-only pending-write S ′ O xs
〈proof 〉

lemma non-volatile-owned-or-read-only-pending-write-antimono:∧
O S. non-volatile-owned-or-read-only True S O xs
=⇒ non-volatile-owned-or-read-only False S O xs
〈proof 〉

primrec all-acquired :: ′a memref list ⇒ addr set
where

all-acquired [] = {}
| all-acquired (i#is) =

(case i of

60

Writesb volatile - - - A L R W ⇒ (if volatile then A ∪ all-acquired is else all-acquired
is)

| Ghostsb A L R W ⇒ A ∪ all-acquired is
| - ⇒ all-acquired is)

lemma all-acquired-append: all-acquired (xs@ys) = all-acquired xs ∪ all-acquired ys
〈proof 〉

lemma acquired-reads-all-acquired:
∧
O pending-write.

acquired-reads pending-write sb O ⊆ O ∪ all-acquired sb
〈proof 〉

lemma acquired-takeWhile-non-volatile-Writesb:∧
A. (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) A) ⊆

A ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)
〈proof 〉

lemma acquired-False-takeWhile-non-volatile-Writesb:
acquired False (takeWhile (Not ◦ is-volatile-Writesb) sb) A = {}
〈proof 〉

lemma outstanding-refs-takeWhile-opposite: outstanding-refs P (takeWhile (Not ◦ P) xs)
= {}
〈proof 〉

lemma no-outstanding-volatile-Writesb-acquired:
outstanding-refs is-volatile-Writesb sb = {} =⇒ acquired False sb A = {}
〈proof 〉

lemma acquired-all-acquired:
∧

pending-write A. acquired pending-write xs A ⊆ A ∪
all-acquired xs
〈proof 〉

lemma acquired-all-acquired-in: x ∈ acquired pending-write xs A =⇒ x ∈ A ∪ all-acquired
xs
〈proof 〉

primrec sharing-consistent:: shared ⇒ owns ⇒ ′a memref list ⇒ bool
where
sharing-consistent S O [] = True
| sharing-consistent S O (r#rs) =
(case r of

Writesb volatile - - - A L R W ⇒
(if volatile then A ⊆ dom S ∪ O ∧ L ⊆ A ∧ A ∩ R = {} ∧ R ⊆ O ∧

sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) rs
else sharing-consistent S O rs)

61

| Ghostsb A L R W ⇒ A ⊆ dom S ∪ O ∧ L ⊆ A ∧ A ∩ R = {} ∧ R ⊆ O ∧
sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) rs

| - ⇒ sharing-consistent S O rs)

lemma sharing-consistent-all-acquired:∧
S O. sharing-consistent S O sb =⇒ all-acquired sb ⊆ dom S ∪ O

〈proof 〉

lemma sharing-consistent-append:∧
S O. sharing-consistent S O (xs@ys) =
(sharing-consistent S O xs ∧
sharing-consistent (share xs S) (acquired True xs O) ys)

〈proof 〉

primrec read-only-reads :: owns ⇒ ′a memref list ⇒ addr set
where
read-only-reads O [] = {}
| read-only-reads O (x#xs) =
(case x of

Readsb volatile a t v ⇒ (if ¬ volatile ∧ a /∈ O
then insert a (read-only-reads O xs)
else read-only-reads O xs)

| Writesb volatile - - - A L R W ⇒
(if volatile then read-only-reads (O ∪ A − R) xs
else read-only-reads O xs)

| Ghostsb A L R W ⇒ read-only-reads (O ∪ A − R) xs
| - ⇒ read-only-reads O xs)

lemma read-only-reads-append:∧
O. read-only-reads O (xs@ys) =
read-only-reads O xs ∪ read-only-reads (acquired True xs O) ys
〈proof 〉

lemma read-only-reads-antimono:∧
O O ′.

O ⊆ O ′ =⇒ read-only-reads O ′ sb ⊆ read-only-reads O sb
〈proof 〉

primrec non-volatile-writes-unshared:: shared ⇒ ′a memref list ⇒ bool
where
non-volatile-writes-unshared S [] = True
| non-volatile-writes-unshared S (x#xs) =
(case x of

Writesb volatile a sop v A L R W ⇒ (if volatile then non-volatile-writes-unshared (S
⊕W R 	A L) xs

else a /∈ dom S ∧ non-volatile-writes-unshared S xs)
| Ghostsb A L R W ⇒ non-volatile-writes-unshared (S ⊕W R 	A L) xs
| - ⇒ non-volatile-writes-unshared S xs)

62

lemma non-volatile-writes-unshared-append:∧
S. non-volatile-writes-unshared S (xs@ys)

= (non-volatile-writes-unshared S xs ∧ non-volatile-writes-unshared (share xs S)
ys)
〈proof 〉

lemma non-volatile-writes-unshared-antimono:∧
S S ′. dom S ⊆ dom S ′ =⇒ non-volatile-writes-unshared S ′ xs
=⇒ non-volatile-writes-unshared S xs
〈proof 〉

primrec no-write-to-read-only-memory:: shared ⇒ ′a memref list ⇒ bool
where
no-write-to-read-only-memory S [] = True
| no-write-to-read-only-memory S (x#xs) =
(case x of

Writesb volatile a sop v A L R W ⇒ a /∈ read-only S ∧
(if volatile then no-write-to-read-only-memory (S ⊕W R 	A

L) xs
else no-write-to-read-only-memory S xs)

| Ghostsb A L R W ⇒ no-write-to-read-only-memory (S ⊕W R 	A L) xs
| - ⇒ no-write-to-read-only-memory S xs)

lemma no-write-to-read-only-memory-append:∧
S. no-write-to-read-only-memory S (xs@ys)

= (no-write-to-read-only-memory S xs ∧ no-write-to-read-only-memory (share xs
S) ys)
〈proof 〉

lemma no-write-to-read-only-memory-antimono:∧
S S ′. S ⊆s S ′ =⇒ no-write-to-read-only-memory S ′ xs
=⇒ no-write-to-read-only-memory S xs
〈proof 〉

locale outstanding-non-volatile-refs-owned-or-read-only =
fixes S::shared
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes outstanding-non-volatile-refs-owned-or-read-only:∧

i is O R D j sb p.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
non-volatile-owned-or-read-only False S O sb

locale outstanding-volatile-writes-unowned-by-others =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes outstanding-volatile-writes-unowned-by-others:∧

i pi isi Oi Ri Di ji sbi j pj isj Oj Rj Dj jj sbj.
[[i < length ts; j < length ts; i6=j;
ts!i = (pi,isi,ji,sbi,Di,Oi,Ri); ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
]]

63

=⇒
(Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sbi = {}

locale read-only-reads-unowned =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes read-only-reads-unowned:∧

i pi isi Oi Ri Di ji sbi j pj isj Oj Rj Dj jj sbj.
[[i < length ts; j < length ts; i6=j;
ts!i = (pi,isi,ji,sbi,Di,Oi,Ri); ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
]]
=⇒
(Oj ∪ all-acquired sbj) ∩
read-only-reads (acquired True

(takeWhile (Not ◦ is-volatile-Writesb) sbi) Oi)
(dropWhile (Not ◦ is-volatile-Writesb) sbi) = {}

locale ownership-distinct =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes ownership-distinct:∧

i j pi isi Oi Ri Di ji sbi pj isj Oj Rj Dj jj sbj.
[[i < length ts; j < length ts; i 6= j;

ts!i = (pi,isi,ji,sbi,Di,Oi,Ri); ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
]] =⇒ (Oi ∪ all-acquired sbi) ∩ (Oj ∪ all-acquired sbj) = {}

locale valid-ownership =
outstanding-non-volatile-refs-owned-or-read-only +
outstanding-volatile-writes-unowned-by-others +
read-only-reads-unowned +
ownership-distinct

locale outstanding-non-volatile-writes-unshared =
fixes S::shared and ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes outstanding-non-volatile-writes-unshared:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
non-volatile-writes-unshared S sb

locale sharing-consis =
fixes S::shared and ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes sharing-consis:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
sharing-consistent S O sb

64

locale no-outstanding-write-to-read-only-memory =
fixes S::shared and ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes no-outstanding-write-to-read-only-memory:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
no-write-to-read-only-memory S sb

locale valid-sharing =
outstanding-non-volatile-writes-unshared +
sharing-consis +
read-only-unowned +
unowned-shared +
no-outstanding-write-to-read-only-memory

locale valid-ownership-and-sharing = valid-ownership +
outstanding-non-volatile-writes-unshared +
sharing-consis +
no-outstanding-write-to-read-only-memory

lemma (in read-only-reads-unowned)
read-only-reads-unowned-nth-update:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);

read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb ′) O ′)
(dropWhile (Not ◦ is-volatile-Writesb) sb ′) ⊆ read-only-reads (acquired True

(takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(dropWhile (Not ◦ is-volatile-Writesb) sb);

O ′ ∪ all-acquired sb ′ ⊆ O ∪ all-acquired sb]] =⇒
read-only-reads-unowned (ts[i := (p ′,is ′,j ′,sb ′,D ′,O ′,R ′)])

〈proof 〉

lemma outstanding-non-volatile-refs-owned-or-read-only-tl:
outstanding-non-volatile-refs-owned-or-read-only S (t#ts) =⇒ outstand-

ing-non-volatile-refs-owned-or-read-only S ts
〈proof 〉

lemma outstanding-volatile-writes-unowned-by-others-tl:
outstanding-volatile-writes-unowned-by-others (t#ts) =⇒ outstand-

ing-volatile-writes-unowned-by-others ts
〈proof 〉

lemma read-only-reads-unowned-tl:
read-only-reads-unowned (t # ts) =⇒

65

read-only-reads-unowned (ts)
〈proof 〉

lemma ownership-distinct-tl:
assumes dist: ownership-distinct (t#ts)
shows ownership-distinct ts

〈proof 〉

lemma valid-ownership-tl: valid-ownership S (t#ts) =⇒ valid-ownership S ts
〈proof 〉

lemma sharing-consistent-takeWhile:
assumes consis: sharing-consistent S O sb
shows sharing-consistent S O (takeWhile P sb)

〈proof 〉

lemma sharing-consis-tl: sharing-consis S (t#ts) =⇒ sharing-consis S ts
〈proof 〉

lemma sharing-consis-Cons:
[[sharing-consis S ts; sharing-consistent S O sb]]
=⇒ sharing-consis S ((p,is,j,sb,D,O,R)#ts)
〈proof 〉

lemma outstanding-non-volatile-writes-unshared-tl:
outstanding-non-volatile-writes-unshared S (t#ts) =⇒
outstanding-non-volatile-writes-unshared S ts
〈proof 〉

lemma no-outstanding-write-to-read-only-memory-tl:
no-outstanding-write-to-read-only-memory S (t#ts) =⇒
no-outstanding-write-to-read-only-memory S ts
〈proof 〉

lemma valid-ownership-and-sharing-tl:
valid-ownership-and-sharing S (t#ts) =⇒ valid-ownership-and-sharing S ts
〈proof 〉

lemma non-volatile-owned-or-read-only-outstanding-non-volatile-writes:∧
O S pending-write. [[non-volatile-owned-or-read-only pending-write S O sb]]

=⇒
outstanding-refs is-non-volatile-Writesb sb ⊆ O ∪ all-acquired sb

〈proof 〉

lemma (in outstanding-non-volatile-refs-owned-or-read-only) outstand-
ing-non-volatile-writes-owned:

66

assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
shows outstanding-refs is-non-volatile-Writesb sb ⊆ O ∪ all-acquired sb

〈proof 〉

lemma non-volatile-reads-acquired-or-read-only:∧
O S. [[non-volatile-owned-or-read-only True S O sb; sharing-consistent S O sb]]

=⇒
outstanding-refs is-non-volatile-Readsb sb ⊆ O ∪ all-acquired sb ∪ read-only S

〈proof 〉

lemma non-volatile-reads-acquired-or-read-only-reads:∧
O S pending-write. [[non-volatile-owned-or-read-only pending-write S O sb]]

=⇒
outstanding-refs is-non-volatile-Readsb sb ⊆ O ∪ all-acquired sb ∪ read-only-reads O sb

〈proof 〉

lemma non-volatile-owned-or-read-only-outstanding-refs:∧
O S pending-write. [[non-volatile-owned-or-read-only pending-write S O sb]]

=⇒
outstanding-refs (Not ◦ is-volatile) sb ⊆ O ∪ all-acquired sb ∪ read-only-reads O sb

〈proof 〉

lemma no-unacquired-write-to-read-only:∧
S O. [[no-write-to-read-only-memory S sb;sharing-consistent S O sb;

a ∈ read-only S; a /∈ (O ∪ all-acquired sb)]]
=⇒ a /∈ outstanding-refs is-Writesb sb

〈proof 〉

lemma read-only-reads-read-only:∧
S O. [[non-volatile-owned-or-read-only True S O sb;

sharing-consistent S O sb]]
=⇒
read-only-reads O sb ⊆ O ∪ all-acquired sb ∪ read-only S

〈proof 〉

lemma no-unacquired-write-to-read-only-reads:∧
S O . [[no-write-to-read-only-memory S sb;

67

non-volatile-owned-or-read-only True S O sb; sharing-consistent S O sb;
a ∈ read-only-reads O sb; a /∈ (O ∪ all-acquired sb)]]

=⇒ a /∈ outstanding-refs is-Writesb sb
〈proof 〉

lemma no-unacquired-write-to-read-only ′′:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes consis: sharing-consistent S O sb
shows read-only S ∩ outstanding-refs is-Writesb sb ⊆ O ∪ all-acquired sb

〈proof 〉

lemma no-unacquired-volatile-write-to-read-only:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes consis: sharing-consistent S O sb
shows read-only S ∩ outstanding-refs is-volatile-Writesb sb ⊆ O ∪ all-acquired sb

〈proof 〉

lemma no-unacquired-non-volatile-write-to-read-only-reads:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes consis: sharing-consistent S O sb
shows read-only S ∩ outstanding-refs is-non-volatile-Writesb sb ⊆ O ∪ all-acquired sb

〈proof 〉

lemma no-unacquired-write-to-read-only-reads ′:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes non-vol: non-volatile-owned-or-read-only True S O sb
assumes consis: sharing-consistent S O sb
shows read-only-reads O sb ∩ outstanding-refs is-Writesb sb ⊆ O ∪ all-acquired sb

〈proof 〉

lemma no-unacquired-volatile-write-to-read-only-reads:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes non-vol: non-volatile-owned-or-read-only True S O sb
assumes consis: sharing-consistent S O sb
shows read-only-reads O sb ∩ outstanding-refs is-volatile-Writesb sb ⊆ O ∪ all-acquired

sb
〈proof 〉

lemma no-unacquired-non-volatile-write-to-read-only:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes non-vol: non-volatile-owned-or-read-only True S O sb
assumes consis: sharing-consistent S O sb
shows read-only-reads O sb ∩ outstanding-refs is-non-volatile-Writesb sb ⊆ O ∪

all-acquired sb
〈proof 〉

68

lemma set-dropWhileD: x ∈ set (dropWhile P xs) =⇒ x ∈ set xs
〈proof 〉

lemma outstanding-refs-takeWhileD:
x ∈ outstanding-refs P (takeWhile P ′ sb) =⇒ x ∈ outstanding-refs P sb
〈proof 〉

lemma outstanding-refs-dropWhileD:
x ∈ outstanding-refs P (dropWhile P ′ sb) =⇒ x ∈ outstanding-refs P sb
〈proof 〉

lemma dropWhile-ConsD: dropWhile P xs = y#ys =⇒ ¬ P y
〈proof 〉

lemma non-volatile-owned-or-read-only-drop:
non-volatile-owned-or-read-only False S O sb
=⇒ non-volatile-owned-or-read-only True

(share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)
(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(dropWhile (Not ◦ is-volatile-Writesb) sb)

〈proof 〉

lemma read-only-share:
∧
S O.

sharing-consistent S O sb =⇒
read-only (share sb S) ⊆ read-only S ∪ O ∪ all-acquired sb

〈proof 〉

lemma (in valid-ownership-and-sharing) outstanding-non-write-non-vol-reads-drop-disj:
assumes i-bound: i < length ts
assumes j-bound: j < length ts
assumes neq-i-j: i 6= j
assumes ith: ts!i = (pi,isi,ji,sbi,Di,Oi,Ri)
assumes jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
shows outstanding-refs is-Writesb (dropWhile (Not ◦ is-volatile-Writesb) sbi) ∩

outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) sbj)
= {}

〈proof 〉

lemma (in valid-ownership-and-sharing) outstanding-non-volatile-write-disj:
assumes i-bound: i < length ts
assumes j-bound: j < length ts
assumes neq-i-j: i 6= j
assumes ith: ts!i = (pi,isi,ji,sbi,Di,Oi,Ri)
assumes jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)

69

shows outstanding-refs (is-non-volatile-Writesb) (takeWhile (Not ◦ is-volatile-Writesb)
sbi) ∩

(outstanding-refs is-volatile-Writesb sbj ∪
outstanding-refs is-non-volatile-Writesb sbj ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) sbj)

∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) sbj)

−
read-only-reads Oj (takeWhile (Not ◦ is-volatile-Writesb) sbj)) ∪
(Oj ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj))
) = {} (is ?non-vol-writes-i ∩ ?not-volatile-j = {})

〈proof 〉

lemma (in valid-ownership-and-sharing) outstanding-non-volatile-write-not-volatile-read-disj:
assumes i-bound: i < length ts
assumes j-bound: j < length ts
assumes neq-i-j: i 6= j
assumes ith: ts!i = (pi,isi,ji,sbi,Di,Oi,Ri)
assumes jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
shows outstanding-refs (is-non-volatile-Writesb) (takeWhile (Not ◦ is-volatile-Writesb)
sbi) ∩

outstanding-refs (Not ◦ is-volatile-Readsb) (dropWhile (Not ◦ is-volatile-Writesb)
sbj) = {}
(is ?non-vol-writes-i ∩ ?not-volatile-j = {})

〈proof 〉

lemma (in valid-ownership-and-sharing) outstanding-refs-is-Writesb-takeWhile-disj:
∀ i < length ts. (∀ j < length ts. i 6= j −→

(let (-,-,-,sbi,-,-,-) = ts!i;
(-,-,-,sbj,-,-,-) = ts!j

in outstanding-refs is-Writesb sbi ∩
outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj) =

{}))
〈proof 〉

fun read-tmps:: ′p store-buffer ⇒ tmp set
where

read-tmps [] = {}
| read-tmps (r#rs) =

(case r of
Readsb volatile a t v ⇒ insert t (read-tmps rs)
| - ⇒ read-tmps rs)

lemma in-read-tmps-conv:
(t ∈ read-tmps xs) = (∃ volatile a v. Readsb volatile a t v ∈ set xs)

70

〈proof 〉

lemma read-tmps-mono:
∧

ys. set xs ⊆ set ys =⇒ read-tmps xs ⊆ read-tmps ys
〈proof 〉

fun distinct-read-tmps:: ′p store-buffer ⇒ bool
where

distinct-read-tmps [] = True
| distinct-read-tmps (r#rs) =

(case r of
Readsb volatile a t v ⇒ t /∈ (read-tmps rs) ∧ distinct-read-tmps rs

| - ⇒ distinct-read-tmps rs)

lemma distinct-read-tmps-conv:
distinct-read-tmps xs = (∀ i < length xs. ∀ j < length xs. i 6= j −→

(case xs!i of
Readsb - - ti - ⇒ case xs!j of Readsb - - tj - ⇒ ti 6= tj | - ⇒ True

| - ⇒ True))
— Nice lemma, ugly proof.
〈proof 〉

fun load-tmps:: instrs ⇒ tmp set
where

load-tmps [] = {}
| load-tmps (i#is) =

(case i of
Read volatile a t ⇒ insert t (load-tmps is)

| RMW - t - - - - - - - ⇒ insert t (load-tmps is)
| - ⇒ load-tmps is)

lemma in-load-tmps-conv:
(t ∈ load-tmps xs) = ((∃ volatile a. Read volatile a t ∈ set xs) ∨

(∃ a sop cond ret A L R W. RMW a t sop cond ret A L R W ∈ set xs))
〈proof 〉

lemma load-tmps-mono:
∧

ys. set xs ⊆ set ys =⇒ load-tmps xs ⊆ load-tmps ys
〈proof 〉

fun distinct-load-tmps:: instrs ⇒ bool
where

distinct-load-tmps [] = True
| distinct-load-tmps (r#rs) =

(case r of
Read volatile a t ⇒ t /∈ (load-tmps rs) ∧ distinct-load-tmps rs

| RMW a t sop cond ret A L R W ⇒ t /∈ (load-tmps rs) ∧ distinct-load-tmps rs
| - ⇒ distinct-load-tmps rs)

71

locale load-tmps-distinct =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes load-tmps-distinct:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
distinct-load-tmps is

locale read-tmps-distinct =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes read-tmps-distinct:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
distinct-read-tmps sb

locale load-tmps-read-tmps-distinct =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes load-tmps-read-tmps-distinct:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
load-tmps is ∩ read-tmps sb = {}

locale tmps-distinct =
load-tmps-distinct +
read-tmps-distinct +
load-tmps-read-tmps-distinct

lemma rev-read-tmps: read-tmps (rev xs) = read-tmps xs
〈proof 〉

lemma rev-load-tmps: load-tmps (rev xs) = load-tmps xs
〈proof 〉

lemma distinct-read-tmps-append:
∧

ys. distinct-read-tmps (xs @ ys) =
(distinct-read-tmps xs ∧ distinct-read-tmps ys ∧
read-tmps xs ∩ read-tmps ys = {})

〈proof 〉

lemma distinct-load-tmps-append:
∧

ys. distinct-load-tmps (xs @ ys) =
(distinct-load-tmps xs ∧ distinct-load-tmps ys ∧
load-tmps xs ∩ load-tmps ys = {})

〈proof 〉

lemma read-tmps-append: read-tmps (xs@ys) = (read-tmps xs ∪ read-tmps ys)
〈proof 〉

lemma load-tmps-append: load-tmps (xs@ys) = (load-tmps xs ∪ load-tmps ys)

72

〈proof 〉

fun write-sops:: ′p store-buffer ⇒ sop set
where

write-sops [] = {}
| write-sops (r#rs) =

(case r of
Writesb volatile a sop v - - - -⇒ insert sop (write-sops rs)
| - ⇒ write-sops rs)

lemma in-write-sops-conv:
(sop ∈ write-sops xs) = (∃ volatile a v A L R W. Writesb volatile a sop v A L R W ∈ set

xs)
〈proof 〉

lemma write-sops-mono:
∧

ys. set xs ⊆ set ys =⇒ write-sops xs ⊆ write-sops ys
〈proof 〉

lemma write-sops-append: write-sops (xs@ys) = write-sops xs ∪ write-sops ys
〈proof 〉

fun store-sops:: instrs ⇒ sop set
where

store-sops [] = {}
| store-sops (i#is) =

(case i of
Write volatile a sop - - - - ⇒ insert sop (store-sops is)

| RMW a t sop cond ret A L R W ⇒ insert sop (store-sops is)
| - ⇒ store-sops is)

lemma in-store-sops-conv:
(sop ∈ store-sops xs) = ((∃ volatile a A L R W. Write volatile a sop A L R W ∈ set xs)

∨
(∃ a t cond ret A L R W. RMW a t sop cond ret A L R W ∈ set xs))

〈proof 〉

lemma store-sops-mono:
∧

ys. set xs ⊆ set ys =⇒ store-sops xs ⊆ store-sops ys
〈proof 〉

lemma store-sops-append: store-sops (xs@ys) = store-sops xs ∪ store-sops ys
〈proof 〉

locale valid-write-sops =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-write-sops:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
∀ sop ∈ write-sops sb. valid-sop sop

73

locale valid-store-sops =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-store-sops:∧

i is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
∀ sop ∈ store-sops is. valid-sop sop

locale valid-sops = valid-write-sops + valid-store-sops
The value stored in a non-volatile Readsb in the store-buffer has to match the last

value written to the same address in the store buffer or the memory content if there is
no corresponding write in the store buffer. No volatile read may follow a volatile write.
Volatile reads in the store buffer may refer to a stale value: e.g. imagine one writer and
multiple readersfun reads-consistent:: bool ⇒ owns ⇒ memory ⇒ ′p store-buffer ⇒ bool
where

reads-consistent pending-write O m [] = True
| reads-consistent pending-write O m (r#rs) =
(case r of

Readsb volatile a t v ⇒ (¬ volatile −→ (pending-write ∨ a ∈ O) −→ v = m a) ∧
reads-consistent pending-write O m rs

| Writesb volatile a sop v A L R W ⇒
(if volatile then

outstanding-refs is-volatile-Readsb rs = {} ∧
reads-consistent True (O ∪ A − R) (m(a := v)) rs

else reads-consistent pending-write O (m(a := v)) rs)
| Ghostsb A L R W ⇒ reads-consistent pending-write (O ∪ A − R) m rs
| - ⇒ reads-consistent pending-write O m rs
)

fun volatile-reads-consistent:: memory ⇒ ′p store-buffer ⇒ bool
where

volatile-reads-consistent m [] = True
| volatile-reads-consistent m (r#rs) =
(case r of

Readsb volatile a t v ⇒ (volatile −→ v = m a) ∧ volatile-reads-consistent m rs
| Writesb volatile a sop v A L R W ⇒ volatile-reads-consistent (m(a := v)) rs
| - ⇒ volatile-reads-consistent m rs
)

fun flush:: ′p store-buffer ⇒ memory ⇒ memory
where

flush [] m = m
| flush (r#rs) m =

(case r of
Writesb volatile a - v - - - - ⇒ flush rs (m(a:=v))

| - ⇒ flush rs m)

lemma reads-consistent-pending-write-antimono:∧
O m. reads-consistent True O m sb =⇒ reads-consistent False O m sb

74

〈proof 〉

lemma reads-consistent-owns-antimono:∧
O O ′ pending-write m.
O ⊆O ′=⇒ reads-consistent pending-write O ′ m sb =⇒ reads-consistent pending-write

O m sb
〈proof 〉

lemma acquired-reads-mono ′: x ∈ acquired-reads b xs A =⇒ acquired-reads b xs B = {}
=⇒ A ⊆ B =⇒ False
〈proof 〉

lemma reads-consistent-append:∧
m pending-write O. reads-consistent pending-write O m (xs@ys) =
(reads-consistent pending-write O m xs ∧
reads-consistent (pending-write ∨ outstanding-refs is-volatile-Writesb xs 6= {})
(acquired True xs O) (flush xs m) ys ∧

(outstanding-refs is-volatile-Writesb xs 6= {}
−→ outstanding-refs is-volatile-Readsb ys = {}))

〈proof 〉

lemma reads-consistent-mem-eq-on-non-volatile-reads:
assumes mem-eq: ∀ a ∈ A. m ′ a = m a
assumes subset: outstanding-refs (is-non-volatile-Readsb) sb ⊆ A
— We could be even more restrictive here, only the non volatile reads that are not

buffered in sb have to be the same.
assumes consis-m: reads-consistent pending-write O m sb
shows reads-consistent pending-write O m ′ sb

〈proof 〉

lemma volatile-reads-consistent-mem-eq-on-volatile-reads:
assumes mem-eq: ∀ a ∈ A. m ′ a = m a
assumes subset: outstanding-refs (is-volatile-Readsb) sb ⊆ A
— We could be even more restrictive here, only the non volatile reads that are not

buffered in sb have to be the same.
assumes consis-m: volatile-reads-consistent m sb
shows volatile-reads-consistent m ′ sb

〈proof 〉

locale valid-reads =
fixes m::memory and ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-reads:

∧
i p is O R D j sb.

[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒
reads-consistent False O m sb

lemma valid-reads-Cons: valid-reads m (t#ts) =

75

(let (-,-,-,sb,-,O,-) = t in reads-consistent False O m sb ∧ valid-reads m ts)
〈proof 〉

Readsbs and writes have in the store-buffer have to conform to the valuation of tem-
poraries.context program
begin
fun history-consistent:: tmps ⇒ ′p ⇒ ′p store-buffer ⇒ bool
where

history-consistent j p [] = True
| history-consistent j p (r#rs) =

(case r of
Readsb vol a t v ⇒
(case j t of Some v ′ ⇒ v=v ′ ∧ history-consistent j p rs | - ⇒ False)

| Writesb vol a (D,f) v - - - - ⇒
D ⊆ dom j ∧ f j = v ∧ D ∩ read-tmps rs = {} ∧ history-consistent j p rs

| Progsb p1 p2 is ⇒ p1=p ∧
j|‘(dom j − read-tmps rs)` p1 →p (p2,is) ∧
history-consistent j p2 rs

| - ⇒ history-consistent j p rs)
end

fun hd-prog:: ′p ⇒ ′p store-buffer ⇒ ′p
where

hd-prog p [] = p
| hd-prog p (i#is) = (case i of

Progsb p ′ - - ⇒ p ′

| - ⇒ hd-prog p is)

fun last-prog:: ′p ⇒ ′p store-buffer ⇒ ′p
where

last-prog p [] = p
| last-prog p (i#is) = (case i of

Progsb - p ′ - ⇒ last-prog p ′ is
| - ⇒ last-prog p is)

locale valid-history = program +
constrains

program-step :: tmps ⇒ ′p ⇒ ′p × instrs ⇒ bool
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-history:

∧
i p is O R D j sb.

[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒
program.history-consistent program-step j (hd-prog p sb) sb

fun data-dependency-consistent-instrs:: addr set ⇒ instrs ⇒ bool
where

data-dependency-consistent-instrs T [] = True
| data-dependency-consistent-instrs T (i#is) =

(case i of
Write volatile a (D,f) - - - - ⇒ D ⊆ T ∧ D ∩ load-tmps is = {} ∧

data-dependency-consistent-instrs T is

76

| RMW a t (D,f) cond ret - - - - ⇒ D ⊆ T ∧ D ∩ load-tmps is = {} ∧
data-dependency-consistent-instrs (insert t T) is

| Read - - t ⇒ data-dependency-consistent-instrs (insert t T) is
| - ⇒ data-dependency-consistent-instrs T is)

lemma data-dependency-consistent-mono:∧
T T ′. [[data-dependency-consistent-instrs T is; T ⊆ T ′]] =⇒

data-dependency-consistent-instrs T ′ is
〈proof 〉

lemma data-dependency-consistent-instrs-append:∧
ys T . data-dependency-consistent-instrs T (xs@ys) =
(data-dependency-consistent-instrs T xs ∧
data-dependency-consistent-instrs (T ∪ load-tmps xs) ys ∧
load-tmps ys ∩

⋃
(fst ‘ store-sops xs) = {})

〈proof 〉

locale valid-data-dependency =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes data-dependency-consistent-instrs:∧

i p is O D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

data-dependency-consistent-instrs (dom j) is
assumes load-tmps-write-tmps-distinct:∧

i p is O D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

load-tmps is ∩
⋃
(fst ‘ write-sops sb) = {}

locale load-tmps-fresh =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes load-tmps-fresh:∧

i p is O D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

load-tmps is ∩ dom j = {}

fun acquired-by-instrs :: instrs ⇒ addr set ⇒ addr set
where

acquired-by-instrs [] A = A
| acquired-by-instrs (i#is) A =
(case i of

Read - - - ⇒ acquired-by-instrs is A
| Write volatile - - A ′ L R W ⇒ acquired-by-instrs is (if volatile then (A ∪ A ′ − R)

else A)
| RMW a t sop cond ret A ′ L R W ⇒ acquired-by-instrs is {}
| Fence ⇒ acquired-by-instrs is {}
| Ghost A ′ L R W ⇒ acquired-by-instrs is (A ∪ A ′ − R))

fun acquired-loads :: bool ⇒ instrs ⇒ addr set ⇒ addr set
where

77

acquired-loads pending-write [] A = {}
| acquired-loads pending-write (i#is) A =
(case i of

Read volatile a - ⇒ (if pending-write ∧ ¬ volatile ∧ a ∈ A
then insert a (acquired-loads pending-write is A)
else acquired-loads pending-write is A)

| Write volatile - - A ′ L R W ⇒ (if volatile then acquired-loads True is (if pending-write
then (A ∪ A ′ − R) else {})

else acquired-loads pending-write is A)
| RMW a t sop cond ret A ′ L R W ⇒ acquired-loads pending-write is {}
| Fence ⇒ acquired-loads pending-write is {}
| Ghost A ′ L R W ⇒ acquired-loads pending-write is (A ∪ A ′ − R))

lemma acquired-by-instrs-mono:∧
A B. A ⊆ B =⇒ acquired-by-instrs is A ⊆ acquired-by-instrs is B

〈proof 〉

lemma acquired-by-instrs-mono-in:
assumes x-in: x ∈ acquired-by-instrs is A
assumes sub: A ⊆ B
shows x ∈ acquired-by-instrs is B

〈proof 〉

locale enough-flushs =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes clean-no-outstanding-volatile-Writesb:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);¬ D]] =⇒
(outstanding-refs is-volatile-Writesb sb = {})

fun prog-instrs:: ′p store-buffer ⇒ instrs
where

prog-instrs [] = []
|prog-instrs (i#is) = (case i of

Progsb - - is ′ ⇒ is ′ @ prog-instrs is
| - ⇒ prog-instrs is)

fun instrs:: ′p store-buffer ⇒ instrs
where

instrs [] = []
| instrs (i#is) = (case i of

Writesb volatile a sop v A L R W ⇒ Write volatile a sop A L R W# instrs is
| Readsb volatile a t v ⇒ Read volatile a t # instrs is
| Ghostsb A L R W ⇒ Ghost A L R W# instrs is
| - ⇒ instrs is)

locale causal-program-history =
fixes issb and sb
assumes causal-program-history:

78

∧
sb1 sb2. sb=sb1@sb2 =⇒ ∃ is. instrs sb2 @ issb = is @ prog-instrs sb2

lemma causal-program-history-empty [simp]: causal-program-history is []
〈proof 〉

lemma causal-program-history-suffix:
causal-program-history issb (sb@sb ′) =⇒ causal-program-history issb sb ′

〈proof 〉

locale valid-program-history =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-program-history:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒
causal-program-history is sb

assumes valid-last-prog:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒
last-prog p sb = p

lemma (in valid-program-history) valid-program-history-nth-update:
[[i < length ts; causal-program-history is sb; last-prog p sb = p]]
=⇒
valid-program-history (ts [i:=(p,is,j,sb,D,O,R)])
〈proof 〉

lemma (in outstanding-non-volatile-refs-owned-or-read-only)
outstanding-non-volatile-refs-owned-instructions-read-value-independent:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

outstanding-non-volatile-refs-owned-or-read-only S (ts[i := (p ′,is ′,j ′,sb,D ′,O,R ′)])
〈proof 〉

lemma (in outstanding-non-volatile-refs-owned-or-read-only)
outstanding-non-volatile-refs-owned-or-read-only-nth-update:∧
i is O D R j sb.
[[i < length ts; non-volatile-owned-or-read-only False S O sb]] =⇒

outstanding-non-volatile-refs-owned-or-read-only S (ts[i := (p,is,j,sb,D,O,R)])
〈proof 〉

lemma (in outstanding-volatile-writes-unowned-by-others)
outstanding-volatile-writes-unowned-by-others-instructions-read-value-independent:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

outstanding-volatile-writes-unowned-by-others (ts[i := (p ′,is ′,j ′,sb,D ′,O,R ′)])
〈proof 〉

lemma (in read-only-reads-unowned)
read-only-unowned-instructions-read-value-independent:

79

∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

read-only-reads-unowned (ts[i := (p ′,is ′,j ′,sb,D ′,O,R ′)])
〈proof 〉

lemma Writesb-in-outstanding-refs:
Writesb True a sop v A L R W ∈ set xs =⇒ a ∈ outstanding-refs is-volatile-Writesb xs
〈proof 〉

lemma (in outstanding-volatile-writes-unowned-by-others)
outstanding-volatile-writes-unowned-by-others-store-buffer:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);
outstanding-refs is-volatile-Writesb sb ′ ⊆ outstanding-refs is-volatile-Writesb sb;
all-acquired sb ′ ⊆ all-acquired sb]] =⇒
outstanding-volatile-writes-unowned-by-others (ts[i := (p ′,is ′,j ′,sb ′,D ′,O,R ′)])

〈proof 〉

lemma (in ownership-distinct)
ownership-distinct-instructions-read-value-store-buffer-independent:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);

all-acquired sb ′ ⊆ all-acquired sb]] =⇒
ownership-distinct (ts[i := (p ′,is ′,j ′,sb ′,D ′,O,R ′)])

〈proof 〉

lemma (in ownership-distinct)
ownership-distinct-nth-update:∧
i p is O R D xs sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);
∀ j < length ts. i6=j −→ (let (pj,isj,jj,sbj,Dj,Oj,Rj) = ts!j

in (O ′ ∪ all-acquired sb ′) ∩ (Oj ∪ all-acquired sbj) ={})]] =⇒
ownership-distinct (ts[i := (p ′,is ′,j ′,sb ′,D ′,O ′,R ′)])

〈proof 〉

lemma (in valid-write-sops) valid-write-sops-nth-update:
[[i < length ts; ∀ sop ∈ write-sops sb. valid-sop sop]] =⇒

valid-write-sops (ts[i := (p,is,xs,sb,D,O,R)])
〈proof 〉

lemma (in valid-store-sops) valid-store-sops-nth-update:
[[i < length ts; ∀ sop ∈ store-sops is. valid-sop sop]] =⇒

valid-store-sops (ts[i := (p,is,xs,sb,D,O,R)])
〈proof 〉

80

lemma (in valid-sops) valid-sops-nth-update:
[[i < length ts; ∀ sop ∈ write-sops sb. valid-sop sop;
∀ sop ∈ store-sops is. valid-sop sop]] =⇒
valid-sops (ts[i := (p,is,xs,sb,D,O,R)])

〈proof 〉

lemma (in valid-data-dependency) valid-data-dependency-nth-update:
[[i < length ts; data-dependency-consistent-instrs (dom j) is;

load-tmps is ∩
⋃
(fst ‘ write-sops sb) = {}]] =⇒

valid-data-dependency (ts[i := (p,is,j,sb,D,O,R)])
〈proof 〉

lemma (in enough-flushs) enough-flushs-nth-update:
[[i < length ts;
¬ D −→ (outstanding-refs is-volatile-Writesb sb = {})
]] =⇒

enough-flushs (ts[i := (p,is,j,sb,D,O,R)])

〈proof 〉

lemma (in outstanding-non-volatile-writes-unshared)
outstanding-non-volatile-writes-unshared-nth-update:

[[i < length ts; non-volatile-writes-unshared S sb]] =⇒
outstanding-non-volatile-writes-unshared S (ts[i := (p,is,xs,sb,D,O,R)])

〈proof 〉

lemma (in sharing-consis)
sharing-consis-nth-update:

[[i < length ts; sharing-consistent S O sb]] =⇒
sharing-consis S (ts[i := (p,is,xs,sb,D,O,R)])

〈proof 〉

lemma (in no-outstanding-write-to-read-only-memory)
no-outstanding-write-to-read-only-memory-nth-update:

[[i < length ts; no-write-to-read-only-memory S sb]] =⇒
no-outstanding-write-to-read-only-memory S (ts[i := (p,is,xs,sb,D,O,R)])

〈proof 〉

lemma in-Union-image-nth-conv: a ∈
⋃

(f ‘ set xs) =⇒ ∃ i. i < length xs ∧ a ∈ f (xs!i)
〈proof 〉

lemma in-Inter-image-nth-conv: a ∈
⋂

(f ‘ set xs) = (∀ i < length xs. a ∈ f (xs!i))
〈proof 〉

81

lemma release-ownership-nth-update:
assumes R-subset: R ⊆ O
shows

∧
i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R);

ownership-distinct ts]]
=⇒

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set (ts[i:=(p ′,is ′,xs ′,sb ′,D ′,O − R,R ′)]))

= ((
⋃

((λ(-,-,-,-,-,O,-). O) ‘ set ts)) − R)
〈proof 〉

lemma acquire-ownership-nth-update:
shows

∧
i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R)]]

=⇒
⋃

((λ(-,-,-,-,-,O,-). O) ‘ set (ts[i:=(p ′,is ′,xs ′,sb ′,D ′,O ∪ A,R ′)]))
= ((

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts)) ∪ A)

〈proof 〉

lemma acquire-release-ownership-nth-update:
assumes R-subset: R ⊆ O
shows

∧
i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R);

ownership-distinct ts]]
=⇒

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set (ts[i:=(p ′,is ′,xs ′,sb ′,D ′,O ∪ A − R,R ′)]))

= ((
⋃

((λ(-,-,-,-,-,O,-). O) ‘ set ts)) ∪ A − R)
〈proof 〉

lemma (in valid-history) valid-history-nth-update:
[[i < length ts; history-consistent j (hd-prog p sb) sb]] =⇒

valid-history program-step (ts[i := (p,is,j,sb,D,O,R)])
〈proof 〉

lemma (in valid-reads) valid-reads-nth-update:
[[i < length ts; reads-consistent False O m sb]] =⇒

valid-reads m (ts[i := (p,is,xs,sb,D,O,R)])
〈proof 〉

lemma (in load-tmps-distinct) load-tmps-distinct-nth-update:
[[i < length ts; distinct-load-tmps is]] =⇒

load-tmps-distinct (ts[i := (p,is,xs,sb,D,O,R)])
〈proof 〉

lemma (in read-tmps-distinct) read-tmps-distinct-nth-update:
[[i < length ts; distinct-read-tmps sb]] =⇒

read-tmps-distinct (ts[i := (p,is,xs,sb,D,O,R)])
〈proof 〉

lemma (in load-tmps-read-tmps-distinct) load-tmps-read-tmps-distinct-nth-update:
[[i < length ts; load-tmps is ∩ read-tmps sb = {}]] =⇒

load-tmps-read-tmps-distinct (ts[i := (p,is,xs,sb,D,O,R)])
〈proof 〉

lemma (in load-tmps-fresh) load-tmps-fresh-nth-update:

82

[[i < length ts;
load-tmps is ∩ dom j = {}]] =⇒
load-tmps-fresh (ts[i := (p,is,j,sb,D,O,R)])

〈proof 〉

fun flush-all-until-volatile-write::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels) thread-config list ⇒ memory ⇒ memory

where
flush-all-until-volatile-write [] m = m

| flush-all-until-volatile-write ((-, -, -, sb,-, -)#ts) m =
flush-all-until-volatile-write ts (flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)

fun share-all-until-volatile-write::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels) thread-config list ⇒ shared ⇒ shared

where
share-all-until-volatile-write [] S = S

| share-all-until-volatile-write ((-, -, -, sb,-,-)#ts) S =
share-all-until-volatile-write ts (share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)

lemma takeWhile-dropWhile-real-prefix:
[[x ∈ set xs; ¬ P x]] =⇒ ∃ y ys. xs=takeWhile P xs @ y#ys ∧ ¬ P y ∧ dropWhile P xs

= y#ys
〈proof 〉

lemma buffered-val-witness: buffered-val sb a = Some v =⇒
∃ volatile sop A L R W. Writesb volatile a sop v A L R W ∈ set sb
〈proof 〉

lemma flush-append-Readsb:∧
m. (flush (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Readsb volatile a t v])) m)
= flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m

〈proof 〉

lemma flush-append-write:∧
m. (flush (sb @ [Writesb volatile a sop v A L R W]) m) = (flush sb m) (a:=v)

〈proof 〉

lemma flush-append-Progsb:∧
m. (flush (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb p1 p2 mis])) m) =

(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)
〈proof 〉

83

lemma flush-append-Ghostsb:∧
m. (flush (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Ghostsb A L R W])) m) =

(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)
〈proof 〉

lemma share-append:
∧

S. share (xs@ys) S = share ys (share xs S)
〈proof 〉

lemma share-append-Readsb:∧
S. (share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Readsb volatile a t v])) S)
= share (takeWhile (Not ◦ is-volatile-Writesb) sb) S

〈proof 〉

lemma share-append-Writesb:∧
S. (share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Writesb volatile a sop v A L R

W])) S)
= share (takeWhile (Not ◦ is-volatile-Writesb) sb) S

〈proof 〉

lemma share-append-Progsb:∧
S. (share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb p1 p2 mis])) S) =

(share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)
〈proof 〉

lemma in-acquired-no-pending-write-outstanding-write:
a ∈ acquired False sb A =⇒ outstanding-refs is-volatile-Writesb sb 6= {}

〈proof 〉

lemma flush-buffered-val-conv:∧
m. flush sb m a = (case buffered-val sb a of None ⇒ m a | Some v ⇒ v)

〈proof 〉

lemma reads-consistent-unbuffered-snoc:∧
m. buffered-val sb a = None =⇒ m a = v =⇒ reads-consistent pending-write O m sb

=⇒
volatile −→

outstanding-refs is-volatile-Writesb sb = {}
=⇒ reads-consistent pending-write O m (sb @ [Readsb volatile a t v])
〈proof 〉

lemma reads-consistent-buffered-snoc:∧
m. buffered-val sb a = Some v =⇒ reads-consistent pending-write O m sb =⇒

volatile −→ outstanding-refs is-volatile-Writesb sb = {}
=⇒ reads-consistent pending-write O m (sb @ [Readsb volatile a t v])
〈proof 〉

lemma reads-consistent-snoc-Writesb:∧
m. reads-consistent pending-write O m sb =⇒

84

reads-consistent pending-write O m (sb @ [Writesb volatile a sop v A L R W])
〈proof 〉

lemma reads-consistent-snoc-Progsb:∧
m. reads-consistent pending-write O m sb =⇒ reads-consistent pending-write O m (sb

@ [Progsb p1 p2 mis])
〈proof 〉

lemma reads-consistent-snoc-Ghostsb:∧
m. reads-consistent pending-write O m sb =⇒ reads-consistent pending-write O m (sb

@ [Ghostsb A L R W])
〈proof 〉

lemma restrict-map-id [simp]:m |‘ dom m = m
〈proof 〉

lemma flush-all-until-volatile-write-Read-commute:
shows

∧
m i. [[i < length ls; ls!i=(p,Read volatile a t#is,j,sb,D,O,R)

]]
=⇒
flush-all-until-volatile-write

(ls[i := (p,is , j(t 7→v), sb @ [Readsb volatile a t v],D ′,O ′,R ′)]) m =
flush-all-until-volatile-write ls m

〈proof 〉

lemma flush-all-until-volatile-write-append-Ghost-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,sb,D,O,R)]]
=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′,j ′, sb@[Ghostsb A L R W], D ′, O ′,R ′)])

m
= flush-all-until-volatile-write ts m

〈proof 〉

lemma update-commute:
assumes g-unchanged: ∀ a m. a /∈ G −→ g m a = m a
assumes g-independent: ∀ a m. a ∈ G −→ g (f m) a = g m a
assumes f-unchanged: ∀ a m. a /∈ F −→ f m a = m a
assumes f-independent: ∀ a m. a ∈ F −→ f (g m) a = f m a
assumes disj: G ∩ F = {}
shows f (g m) = g (f m)
〈proof 〉

lemma update-commute ′:
assumes g-unchanged: ∀ a m. a /∈ G −→ g m a = m a
assumes g-independent: ∀ a m1 m2. a ∈ G −→ g m1 a = g m2 a
assumes f-unchanged: ∀ a m. a /∈ F −→ f m a = m a
assumes f-independent: ∀ a m1 m2. a ∈ F −→ f m1 a = f m2 a
assumes disj: G ∩ F = {}

85

shows f (g m) = g (f m)
〈proof 〉

lemma flush-unchanged-addresses:
∧

m. a /∈ outstanding-refs is-Writesb sb =⇒ flush sb
m a = m a
〈proof 〉

lemma flushed-values-mem-independent:∧
m m ′ a. a ∈ outstanding-refs is-Writesb sb =⇒ flush sb m ′ a = flush sb m a

〈proof 〉

lemma flush-all-until-volatile-write-unchanged-addresses:∧
m. a /∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ls) =⇒
flush-all-until-volatile-write ls m a = m a

〈proof 〉

lemma notin-outstanding-non-volatile-takeWhile-lem:
a /∈ outstanding-refs (Not ◦ is-volatile) sb

=⇒
a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)

〈proof 〉

lemma notin-outstanding-non-volatile-takeWhile-lem ′:
a /∈ outstanding-refs is-non-volatile-Writesb sb

=⇒
a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)

〈proof 〉

lemma notin-outstanding-non-volatile-takeWhile-Un-lem ′:
a /∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs (Not ◦ is-volatile) sb) ‘ set ls)

=⇒ a /∈
⋃

((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb
(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ls)

〈proof 〉

lemma flush-all-until-volatile-write-unchanged-addresses ′:
assumes notin: a /∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs (Not ◦ is-volatile) sb) ‘ set ls)

shows flush-all-until-volatile-write ls m a = m a
〈proof 〉

lemma flush-all-until-volatile-wirte-mem-independent:∧
m m ′. a ∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ls) =⇒
flush-all-until-volatile-write ls m ′ a = flush-all-until-volatile-write ls m a

〈proof 〉

lemma flush-all-until-volatile-write-buffered-val-conv:
assumes no-volatile-Writesb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m i. [[i < length ls; ls!i = (p,is,xs,sb,D,O,R);

86

∀ j < length ls. i 6= j −→
(let (-,-,-,sbj,-,-,-) = ls!j

in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦
is-volatile-Writesb) sbj))]] =⇒

flush-all-until-volatile-write ls m a =
(case buffered-val sb a of None ⇒ m a | Some v ⇒ v)

〈proof 〉

context program
begin

abbreviation sb-concurrent-step ::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ (′p, ′p

store-buffer, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ bool
(‹- ⇒sb -› [60,60] 100)

where
sb-concurrent-step ≡

computation.concurrent-step sb-memop-step store-buffer-step program-step (λp p ′ is
sb. sb)

term x ⇒sb Y

abbreviation (in program) sb-concurrent-steps::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ (′p, ′p

store-buffer, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ bool
(‹- ⇒sb

∗ -› [60,60] 100)
where
sb-concurrent-steps ≡ sb-concurrent-step^∗∗

term x ⇒sb
∗ Y

abbreviation sbh-concurrent-step ::
(′p, ′p store-buffer,bool,owns,rels,shared) global-config ⇒ (′p, ′p

store-buffer,bool,owns,rels,shared) global-config ⇒ bool
(‹- ⇒sbh -› [60,60] 100)

where
sbh-concurrent-step ≡

computation.concurrent-step sbh-memop-step flush-step program-step
(λp p ′ is sb. sb @ [Progsb p p ′ is])

term x ⇒sbh Y

abbreviation sbh-concurrent-steps::
(′p, ′p store-buffer,bool,owns,rels,shared) global-config ⇒ (′p, ′p

store-buffer,bool,owns,rels,shared) global-config ⇒ bool
(‹- ⇒sbh

∗ -› [60,60] 100)
where
sbh-concurrent-steps ≡ sbh-concurrent-step^∗∗

87

term x ⇒sbh
∗ Y

end

lemma instrs-append-Readsb:
instrs (sb@[Readsb volatile a t v]) = instrs sb @ [Read volatile a t]
〈proof 〉

lemma instrs-append-Writesb:
instrs (sb@[Writesb volatile a sop v A L R W]) = instrs sb @ [Write volatile a sop A L

R W]
〈proof 〉

lemma instrs-append-Ghostsb:
instrs (sb@[Ghostsb A L R W]) = instrs sb @ [Ghost A L R W]
〈proof 〉

lemma prog-instrs-append-Ghostsb:
prog-instrs (sb@[Ghostsb A L R W]) = prog-instrs sb
〈proof 〉

lemma prog-instrs-append-Readsb:
prog-instrs (sb@[Readsb volatile a t v]) = prog-instrs sb
〈proof 〉

lemma prog-instrs-append-Writesb:
prog-instrs (sb@[Writesb volatile a sop v A L R W]) = prog-instrs sb
〈proof 〉

lemma hd-prog-append-Readsb:
hd-prog p (sb@[Readsb volatile a t v]) = hd-prog p sb
〈proof 〉

lemma hd-prog-append-Writesb:
hd-prog p (sb@[Writesb volatile a sop v A L R W]) = hd-prog p sb
〈proof 〉

lemma flush-update-other:
∧

m. a /∈ outstanding-refs (Not ◦ is-volatile) sb =⇒
outstanding-refs (is-volatile-Writesb) sb = {} =⇒

flush sb (m(a:=v)) = (flush sb m)(a := v)
〈proof 〉

lemma flush-update-other ′:
∧

m. a /∈ outstanding-refs (is-non-volatile-Writesb) sb =⇒
outstanding-refs (is-volatile-Writesb) sb = {} =⇒

flush sb (m(a:=v)) = (flush sb m)(a := v)
〈proof 〉

lemma flush-update-other ′′:
∧

m. a /∈ outstanding-refs (is-non-volatile-Writesb) sb =⇒
a /∈ outstanding-refs (is-volatile-Writesb) sb =⇒

flush sb (m(a:=v)) = (flush sb m)(a := v)

88

〈proof 〉

lemma flush-all-until-volatile-write-update-other:∧
m. ∀ j < length ts.

(let (-,-,-,sbj,-,-,-) = ts!j
in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))
=⇒
flush-all-until-volatile-write ts (m(a := v)) =
(flush-all-until-volatile-write ts m)(a := v)

〈proof 〉

lemma flush-all-until-volatile-write-append-non-volatile-write-commute:
assumes no-volatile-Writesb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R);

∀ j < length ts. i 6= j −→
(let (-,-,-,sbj,-,-,-) = ts!j

in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦
is-volatile-Writesb) sbj))]]

=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′, xs, sb @ [Writesb False a sop v A L R
W],D ′, O,R ′)]) m =

(flush-all-until-volatile-write ts m)(a := v)
〈proof 〉

lemma flush-all-until-volatile-write-append-unflushed:
assumes volatile-Writesb: ¬ outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R)]]

=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′, xs, sb @ sbx,D ′, O,R ′)]) m =
(flush-all-until-volatile-write ts m)

〈proof 〉

lemma flush-all-until-volatile-nth-update-unused:
shows

∧
m i. [[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]

=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′,j ′, sb, D ′, O ′,R ′)]) m =
(flush-all-until-volatile-write ts m)

〈proof 〉

lemma flush-all-until-volatile-write-append-volatile-write-commute:
assumes no-volatile-Writesb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m i. [[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

flush-all-until-volatile-write
(ts[i := (p ′,is ′, j, sb @ [Writesb True a sop v A L R W],D ′, O,R ′)]) m

= flush-all-until-volatile-write ts m
〈proof 〉

lemma reads-consistent-update:∧
pending-write O m. reads-consistent pending-write O m sb =⇒

a /∈ outstanding-refs (Not ◦ is-volatile) sb =⇒
reads-consistent pending-write O (m(a := v)) sb

〈proof 〉

89

lemma (in program) history-consistent-hd-prog:
∧

p. history-consistent j p ′ xs
=⇒ history-consistent j (hd-prog p xs) xs
〈proof 〉

locale valid-program = program +
fixes valid-prog
assumes valid-prog-inv: [[j`p →p (p ′,is ′); valid-prog p]] =⇒ valid-prog p ′

lemma (in valid-program) history-consistent-appendD:∧
j ys p. ∀ sop ∈ write-sops xs. valid-sop sop =⇒

read-tmps xs ∩ read-tmps ys = {} =⇒
history-consistent j p (xs@ys) =⇒
(history-consistent (j|‘ (dom j − read-tmps ys)) p xs ∧
history-consistent j (last-prog p xs) ys ∧
read-tmps ys ∩

⋃
(fst ‘ write-sops xs) = {})

〈proof 〉

lemma (in valid-program) history-consistent-appendI:∧
j ys p. ∀ sop ∈ write-sops xs. valid-sop sop =⇒

history-consistent (j|‘ (dom j − read-tmps ys)) p xs =⇒
history-consistent j (last-prog p xs) ys =⇒
read-tmps ys ∩

⋃
(fst ‘ write-sops xs) = {} =⇒ valid-prog p =⇒

history-consistent j p (xs@ys)
〈proof 〉

lemma (in valid-program) history-consistent-append-conv:∧
j ys p. ∀ sop ∈ write-sops xs. valid-sop sop =⇒

read-tmps xs ∩ read-tmps ys = {} =⇒ valid-prog p =⇒
history-consistent j p (xs@ys) =
(history-consistent (j|‘ (dom j − read-tmps ys)) p xs ∧
history-consistent j (last-prog p xs) ys ∧
read-tmps ys ∩

⋃
(fst ‘ write-sops xs) = {})

〈proof 〉

lemma instrs-takeWhile-dropWhile-conv:
instrs xs = instrs (takeWhile P xs) @ instrs (dropWhile P xs)

〈proof 〉

lemma (in program) history-consistent-hd-prog-p:∧
p. history-consistent j p xs =⇒ p = hd-prog p xs

〈proof 〉

lemma instrs-append:
∧

ys. instrs (xs@ys) = instrs xs @ instrs ys
〈proof 〉

lemma prog-instrs-append:
∧

ys. prog-instrs (xs@ys) = prog-instrs xs @ prog-instrs ys
〈proof 〉

90

lemma prog-instrs-empty: ∀ r ∈ set xs. ¬ is-Progsb r =⇒ prog-instrs xs = []
〈proof 〉

lemma length-dropWhile [termination-simp]: length (dropWhile P xs) ≤ length xs
〈proof 〉

lemma prog-instrs-filter-is-Progsb: prog-instrs (filter (is-Progsb) xs) = prog-instrs xs
〈proof 〉

lemma Cons-to-snoc:
∧

x. ∃ ys y. (x#xs) = (ys@[y])
〈proof 〉

lemma causal-program-history-Read:
assumes causal-Read: causal-program-history (Read volatile a t # issb) sb
shows causal-program-history issb (sb @ [Readsb volatile a t v])

〈proof 〉

lemma causal-program-history-Write:
assumes causal-Write: causal-program-history (Write volatile a sop A L R W# issb) sb
shows causal-program-history issb (sb @ [Writesb volatile a sop v A L R W])

〈proof 〉

lemma causal-program-history-Progsb:
assumes causal-Write: causal-program-history issb sb
shows causal-program-history (issb@mis) (sb @ [Progsb p1 p2 mis])

〈proof 〉

lemma causal-program-history-Ghost:
assumes causal-Ghostsb: causal-program-history (Ghost A L R W # issb) sb
shows causal-program-history issb (sb @ [Ghostsb A L R W])

〈proof 〉

lemma hd-prog-last-prog-end: [[p = hd-prog p sb ; last-prog p sb = psb]] =⇒ p = hd-prog
psb sb
〈proof 〉

lemma hd-prog-idem: hd-prog (hd-prog p xs) xs = hd-prog p xs
〈proof 〉

lemma last-prog-idem: last-prog (last-prog p sb) sb = last-prog p sb
〈proof 〉

lemma last-prog-hd-prog-append:
last-prog (hd-prog psb (sb@sb ′)) sb =last-prog (hd-prog psb sb ′) sb

〈proof 〉

91

lemma last-prog-hd-prog: last-prog (hd-prog p xs) xs = last-prog p xs
〈proof 〉

lemma last-prog-append-Readsb:∧
p. last-prog p (sb @ [Readsb volatile a t v]) = last-prog p sb

〈proof 〉

lemma last-prog-append-Writesb:∧
p. last-prog p (sb @ [Writesb volatile a sop v A L R W]) = last-prog p sb

〈proof 〉

lemma last-prog-append-Progsb:∧
x. last-prog x (sb@[Progsb p p ′ mis]) = p ′

〈proof 〉

lemma hd-prog-append-Progsb: hd-prog x (sb @ [Progsb p p ′ mis]) = hd-prog p sb
〈proof 〉

lemma hd-prog-last-prog-append-Progsb:∧
p ′. hd-prog p ′ xs = p ′ =⇒ last-prog p ′ xs = p1 =⇒

hd-prog p ′ (xs @ [Progsb p1 p2 mis]) = p ′

〈proof 〉

lemma hd-prog-append-Ghostsb:
hd-prog p (sb@[Ghostsb A R L W]) = hd-prog p sb
〈proof 〉

lemma last-prog-append-Ghostsb:∧
p. last-prog p (sb @ [Ghostsb A L R W]) = last-prog p sb

〈proof 〉

lemma dropWhile-all-False-conv:
∀ x ∈ set xs. ¬ P x =⇒ dropWhile P xs = xs
〈proof 〉

lemma dropWhile-append-all-False:
∀ y ∈ set ys. ¬ P y =⇒

dropWhile P (xs@ys) = dropWhile P xs @ ys
〈proof 〉

lemma reads-consistent-append-first:∧
m ys. reads-consistent pending-write O m (xs @ ys) =⇒ reads-consistent pending-write

O m xs
〈proof 〉

92

lemma reads-consistent-takeWhile:
assumes consis: reads-consistent pending-write O m sb
shows reads-consistent pending-write O m (takeWhile P sb)
〈proof 〉

lemma flush-flush-all-until-volatile-write-Writesb-volatile-commute:∧
i m. [[i < length ts; ts!i=(p,is,xs,Writesb True a sop v A L R W#sb,D,O,R);

∀ i < length ts. (∀ j < length ts. i 6= j −→
(let (-,-,-,sbi,-,-,-) = ts!i;

(-,-,-,sbj,-,-,-) = ts!j
in outstanding-refs is-Writesb sbi ∩

outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj) =
{}));

∀ j < length ts. i 6= j −→
(let (-,-,-,sbj,-,-,-) = ts!j in a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))]]
=⇒
flush (takeWhile (Not ◦ is-volatile-Writesb) sb)
((flush-all-until-volatile-write ts m)(a := v)) =

flush-all-until-volatile-write (ts[i := (p,is,xs, sb, D ′, O ′,R ′)])
(m(a := v))

〈proof 〉

lemma (in program)∧
sb ′ p. history-consistent j (hd-prog p (sb@sb ′)) (sb@sb ′) =⇒

last-prog p (sb@sb ′) = p =⇒
last-prog (hd-prog p (sb@sb ′)) sb = hd-prog p sb ′

〈proof 〉

lemma last-prog-to-last-prog-same:
∧

p ′. last-prog p ′ sb = p =⇒ last-prog p sb = p
〈proof 〉

lemma last-prog-hd-prog-same: [[last-prog p ′ sb = p; hd-prog p ′ sb = p ′]] =⇒ hd-prog p
sb = p ′

〈proof 〉

lemma last-prog-hd-prog-last-prog:
last-prog p ′ (sb@sb ′) = p =⇒ hd-prog p ′ (sb@sb ′) = p ′ =⇒
last-prog (hd-prog p sb ′) sb = last-prog p ′ sb

〈proof 〉

lemma (in program) last-prog-hd-prog-append ′:∧
sb ′ p. history-consistent j (hd-prog p (sb@sb ′)) (sb@sb ′) =⇒

93

last-prog p (sb@sb ′) = p =⇒
last-prog (hd-prog p sb ′) sb = hd-prog p sb ′

〈proof 〉

lemma flush-all-until-volatile-write-Writesb-non-volatile-commute:∧
i m. [[i < length ts; ts!i=(p,is,xs,Writesb False a sop v A L R W#sb,D,O,R);

∀ i < length ts. (∀ j < length ts. i 6= j −→
(let (-,-,-,sbi,-,-,-) = ts!i;

(-,-,-,sbj,-,-,-) = ts!j
in outstanding-refs is-Writesb sbi ∩

outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj) =
{}));

∀ j < length ts. i 6= j −→
(let (-,-,-,sbj,-,-,-) = ts!j in a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))]]
=⇒ flush-all-until-volatile-write (ts[i := (p,is, xs, sb,D ′, O,R ′)])(m(a := v)) =

flush-all-until-volatile-write ts m
〈proof 〉

lemma (in program) history-consistent-access-last-read ′:∧
p. history-consistent j p (sb @ [Readsb volatile a t v]) =⇒

j t = Some v
〈proof 〉

lemma (in program) history-consistent-access-last-read:
history-consistent j p (rev (Readsb volatile a t v # sb)) =⇒ j t = Some v
〈proof 〉

lemma flush-all-until-volatile-write-Readsb-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,Readsb volatile a t v#sb,D,O,R)]]
=⇒ flush-all-until-volatile-write (ts[i := (p,is,j, sb, D ′, O,R ′)]) m
= flush-all-until-volatile-write ts m

〈proof 〉

lemma flush-all-until-volatile-write-Ghostsb-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,Ghostsb A L R W#sb,D,O,R)]]
=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′,j ′, sb, D ′, O ′,R ′)]) m
= flush-all-until-volatile-write ts m

〈proof 〉

lemma flush-all-until-volatile-write-Progsb-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,Progsb p1 p2 mis#sb,D,O,R)]]
=⇒ flush-all-until-volatile-write (ts[i := (p,is, j, sb,D ′, O,R ′)]) m
= flush-all-until-volatile-write ts m

〈proof 〉

lemma flush-all-until-volatile-write-append-Progsb-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,sb,D,O,R)]]

94

=⇒ flush-all-until-volatile-write (ts[i := (p2,is@mis, j, sb@[Progsb p1 p2 mis],D ′,
O,R ′)]) m

= flush-all-until-volatile-write ts m
〈proof 〉

lemma (in program) history-consistent-append-Progsb:
assumes step: j` p →p (p ′, mis)
shows history-consistent j (hd-prog p xs) xs =⇒ last-prog p xs = p =⇒

history-consistent j (hd-prog p ′ (xs@[Progsb p p ′ mis])) (xs@[Progsb p p ′ mis])
〈proof 〉

primrec release :: ′a memref list ⇒ addr set ⇒ rels ⇒ rels
where
release [] S R = R
| release (x#xs) S R =
(case x of

Writesb volatile - - - A L R W ⇒
(if volatile then release xs (S ∪ R − L) Map.empty
else release xs S R)

| Ghostsb A L R W ⇒ release xs (S ∪ R − L) (augment-rels S R R)
| - ⇒ release xs S R)

lemma augment-rels-shared-exchange: ∀ a ∈ R. (a ∈ S ′) = (a ∈ S) =⇒ augment-rels S R
R = augment-rels S ′ R R
〈proof 〉

lemma sharing-consistent-shared-exchange:
assumes shared-eq: ∀ a ∈ all-acquired sb. S ′ a = S a
assumes consis: sharing-consistent S O sb
shows sharing-consistent S ′ O sb
〈proof 〉

lemma release-shared-exchange:
assumes shared-eq: ∀ a ∈ O ∪ all-acquired sb. S ′ a = S a
assumes consis: sharing-consistent S O sb
shows release sb (dom S ′) R = release sb (dom S) R
〈proof 〉

lemma release-append:

95

∧
S R. release (sb@xs) (dom S) R = release xs (dom (share sb S)) (release sb (dom (S))

R)
〈proof 〉

locale xvalid-program = valid-program +
fixes valid
assumes valid-implies-valid-prog:

[[i < length ts;
ts!i = (p,is,j,sb,D,O,R); valid ts]] =⇒ valid-prog p

assumes valid-implies-valid-prog-hd:
[[i < length ts;
ts!i = (p,is,j,sb,D,O,R); valid ts]] =⇒ valid-prog (hd-prog p sb)

assumes distinct-load-tmps-prog-step:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); j`p →p (p ′,is ′); valid ts]]
=⇒
distinct-load-tmps is ′ ∧
(load-tmps is ′ ∩ load-tmps is = {}) ∧
(load-tmps is ′ ∩ read-tmps sb) = {}

assumes valid-data-dependency-prog-step:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); j`p →p (p ′,is ′); valid ts]]
=⇒
data-dependency-consistent-instrs (dom j ∪ load-tmps is) is ′ ∧
load-tmps is ′ ∩

⋃
(fst ‘ store-sops is) = {} ∧

load-tmps is ′ ∩
⋃
(fst ‘ write-sops sb) = {}

assumes load-tmps-fresh-prog-step:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); j`p →p (p ′,is ′); valid ts]]
=⇒
load-tmps is ′ ∩ dom j = {}

assumes valid-sops-prog-step:
[[j`p →p (p ′,is ′); valid-prog p]]=⇒ ∀ sop∈store-sops is ′. valid-sop sop

assumes prog-step-preserves-valid:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); j`p →p (p ′,is ′); valid ts]] =⇒
valid (ts[i:=(p ′,is@is ′,j,sb@[Progsb p p ′ is ′],D,O,R)])

assumes flush-step-preserves-valid:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); (m,sb,O,R,S) →f (m ′,sb ′,O ′,R ′,S ′); valid ts]] =⇒
valid (ts[i:=(p,is,j,sb ′,D,O ′,R ′)])

assumes sbh-step-preserves-valid:
[[i < length ts;

96

ts!i = (p,is,j,sb,D,O,R);
(is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′);

valid ts]]
=⇒
valid (ts[i:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)])

lemma refl ′: x = y =⇒ r^∗∗ x y
〈proof 〉

lemma no-volatile-Readsb-volatile-reads-consistent:∧
m. outstanding-refs is-volatile-Readsb sb = {} =⇒ volatile-reads-consistent m sb

〈proof 〉

theorem (in program) flush-store-buffer-append:
shows

∧
ts p m j O R D S is O ′.

[[i < length ts;
instrs (sb@sb ′) @ issb = is @ prog-instrs (sb@sb ′);
causal-program-history issb (sb@sb ′);
ts!i = (p,is,j |‘ (dom j − read-tmps (sb@sb ′)),x,D,O,R);
p=hd-prog psb (sb@sb ′);
(last-prog psb (sb@sb ′)) = psb;
reads-consistent True O ′ m sb;
history-consistent j p (sb@sb ′);
∀ sop ∈ write-sops sb. valid-sop sop;
distinct-read-tmps (sb@sb ′);
volatile-reads-consistent m sb

]]
=⇒
∃ is ′. instrs sb ′ @ issb = is ′ @ prog-instrs sb ′ ∧

(ts,m,S) ⇒d
∗

(ts[i:=(last-prog (hd-prog psb sb ′) sb,is ′,j|‘ (dom j − read-tmps sb ′),x,
(D ∨ outstanding-refs is-volatile-Writesb sb 6= {}),
acquired True sb O, release sb (dom S) R)], flush sb m,share sb S)

〈proof 〉

corollary (in program) flush-store-buffer:
assumes i-bound: i < length ts
assumes instrs: instrs sb @ issb = is @ prog-instrs sb
assumes cph: causal-program-history issb sb
assumes ts-i: ts!i = (p,is,j |‘ (dom j − read-tmps sb),x,D,O,R)
assumes p: p=hd-prog psb sb
assumes last-prog: (last-prog psb sb) = psb

assumes reads-consis: reads-consistent True O ′ m sb
assumes hist-consis: history-consistent j p sb
assumes valid-sops: ∀ sop ∈ write-sops sb. valid-sop sop

97

assumes dist: distinct-read-tmps sb
assumes vol-read-consis: volatile-reads-consistent m sb
shows (ts,m,S) ⇒d

∗

(ts[i:=(psb,issb, j,x,
D ∨ outstanding-refs is-volatile-Writesb sb 6= {},acquired True sb O, release sb

(dom S) R)],
flush sb m,share sb S)

〈proof 〉

lemma last-prog-same-append:
∧

xs psb. last-prog psb (sb@xs) = psb =⇒ last-prog psb xs
= psb

〈proof 〉

lemma reads-consistent-drop-volatile-writes-no-volatile-reads:∧
pending-write O m. reads-consistent pending-write O m sb =⇒

outstanding-refs is-volatile-Readsb ((dropWhile (Not ◦ is-volatile-Writesb)) sb) = {}
〈proof 〉

lemma reads-consistent-flush-other:
assumes no-volatile-Writesb-sb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m pending-write O.

[[outstanding-refs (Not ◦ is-volatile-Readsb) xs ∩ outstanding-refs is-non-volatile-Writesb
sb = {};

reads-consistent pending-write O m xs]] =⇒ reads-consistent pending-write O (flush
sb m) xs
〈proof 〉

lemma reads-consistent-flush-independent:
assumes no-volatile-Writesb-sb: outstanding-refs is-Writesb sb ∩ outstanding-refs

is-non-volatile-Readsb xs = {}
assumes consis: reads-consistent pending-write O m xs
shows reads-consistent pending-write O (flush sb m) xs

〈proof 〉

lemma reads-consistent-flush-all-until-volatile-write-aux:
assumes no-reads: outstanding-refs is-volatile-Readsb xs = {}
shows

∧
m pending-write O ′. [[reads-consistent pending-write O ′ m xs; ∀ i < length ts.

let (p,is,j,sb,D,O,R) = ts!i in
outstanding-refs (Not ◦ is-volatile-Readsb) xs ∩
outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) =

{}]]
=⇒ reads-consistent pending-write O ′ (flush-all-until-volatile-write ts m) xs
〈proof 〉

98

lemma reads-consistent-flush-other ′:
assumes no-volatile-Writesb-sb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m O.

[[outstanding-refs is-non-volatile-Writesb sb ∩
(outstanding-refs is-volatile-Writesb xs ∪

outstanding-refs is-non-volatile-Writesb xs ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) xs)

∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) xs)

− RO) ∪
(O ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) xs))

) = {};
reads-consistent False O m xs;
read-only-reads O (takeWhile (Not ◦ is-volatile-Writesb) xs) ⊆ RO]]
=⇒ reads-consistent False O (flush sb m) xs

〈proof 〉

lemma reads-consistent-flush-all-until-volatile-write-aux ′:
assumes no-reads: outstanding-refs is-volatile-Readsb xs = {}
assumes read-only-reads-RO: read-only-reads O ′ (takeWhile (Not ◦ is-volatile-Writesb)

xs) ⊆ RO
shows

∧
m. [[reads-consistent False O ′ m xs; ∀ i < length ts.

let (p,is,j,sb,D,O) = ts!i in
outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩
(outstanding-refs is-volatile-Writesb xs ∪

outstanding-refs is-non-volatile-Writesb xs ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) xs)

∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) xs)

− RO) ∪
(O ′ ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) xs))
)
= {}

]]
=⇒ reads-consistent False O ′ (flush-all-until-volatile-write ts m) xs
〈proof 〉

lemma in-outstanding-refs-cases [consumes 1, case-names Writesb Readsb]:
a ∈ outstanding-refs P xs =⇒

(
∧

volatile sop v A L R W. (Writesb volatile a sop v A L R W) ∈ set xs =⇒ P
(Writesb volatile a sop v A L R W) =⇒ C) =⇒

(
∧

volatile t v. (Readsb volatile a t v) ∈ set xs =⇒ P (Readsb volatile a t v) =⇒ C)

99

=⇒ C
〈proof 〉

lemma dropWhile-Cons: (dropWhile P xs) = x#ys =⇒ ¬ P x
〈proof 〉

lemma reads-consistent-dropWhile:
reads-consistent pending-write O m (dropWhile (Not ◦ is-volatile-Writesb) sb) =

reads-consistent True O m (dropWhile (Not ◦ is-volatile-Writesb) sb)
〈proof 〉

theorem
reads-consistent-flush-all-until-volatile-write:∧

i m pending-write. [[valid-ownership-and-sharing S ts;
i < length ts; ts!i = (p, is,j, sb, D, O,R);
reads-consistent pending-write O m sb]]
=⇒ reads-consistent True (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(flush-all-until-volatile-write ts m) (dropWhile (Not ◦ is-volatile-Writesb) sb)

〈proof 〉

lemma split-volatile-Writesb-in-outstanding-refs:
a ∈ outstanding-refs is-volatile-Writesb xs =⇒ (∃ sop v ys zs A L R W. xs = ys@(Writesb

True a sop v A L R W#zs))
〈proof 〉

lemma sharing-consistent-mono-shared:∧
S S ′ O.
dom S ⊆ dom S ′ =⇒ sharing-consistent S O sb =⇒ sharing-consistent S ′ O sb

〈proof 〉

lemma sharing-consistent-mono-owns:∧
O O ′ S.
O ⊆ O ′ =⇒ sharing-consistent S O sb =⇒ sharing-consistent S O ′ sb

〈proof 〉

primrec all-shared :: ′a memref list ⇒ addr set
where

all-shared [] = {}
| all-shared (i#is) =

(case i of
Writesb volatile - - - A L R W ⇒ (if volatile then R ∪ all-shared is else all-shared is)
| Ghostsb A L R W ⇒ R ∪ all-shared is
| - ⇒ all-shared is)

lemma sharing-consistent-all-shared:∧
S O. sharing-consistent S O sb =⇒ all-shared sb ⊆ dom S ∪ O

100

〈proof 〉

lemma sharing-consistent-share-all-shared:∧
S. dom (share sb S) ⊆ dom S ∪ all-shared sb

〈proof 〉

primrec all-unshared :: ′a memref list ⇒ addr set
where

all-unshared [] = {}
| all-unshared (i#is) =

(case i of
Writesb volatile - - - A L R W ⇒ (if volatile then L ∪ all-unshared is else all-unshared

is)
| Ghostsb A L R W ⇒ L ∪ all-unshared is
| - ⇒ all-unshared is)

lemma all-unshared-append: all-unshared (xs @ ys) = all-unshared xs ∪ all-unshared ys
〈proof 〉

lemma freshly-shared-owned:∧
S O. sharing-consistent S O sb =⇒ dom (share sb S) − dom S ⊆ O

〈proof 〉

lemma unshared-all-unshared:∧
S O. sharing-consistent S O sb =⇒ dom S − dom (share sb S) ⊆ all-unshared sb

〈proof 〉

lemma unshared-acquired-or-owned:∧
S O. sharing-consistent S O sb =⇒ all-unshared sb ⊆ all-acquired sb ∪ O

〈proof 〉

lemma all-shared-acquired-or-owned:∧
S O. sharing-consistent S O sb =⇒ all-shared sb ⊆ all-acquired sb ∪ O

〈proof 〉

lemma sharing-consistent-preservation:∧
S S ′ O.

[[sharing-consistent S O sb;
all-acquired sb ∩ dom S − dom S ′ = {};
all-unshared sb ∩ dom S ′ − dom S = {}]]
=⇒ sharing-consistent S ′ O sb
〈proof 〉

lemma (in sharing-consis) sharing-consis-preservation:
assumes dist:

101

∀ i < length ts. let (-,-,-,sb,-,-,-) = ts!i in
all-acquired sb ∩ dom S − dom S ′ = {} ∧ all-unshared sb ∩ dom S ′ − dom S =

{}
shows sharing-consis S ′ ts
〈proof 〉

lemma (in sharing-consis) sharing-consis-shared-exchange:
assumes dist:

∀ i < length ts. let (-,-,-,sb,-,-,-) = ts!i in
∀ a ∈ all-acquired sb. S ′ a = S a

shows sharing-consis S ′ ts
〈proof 〉

lemma all-acquired-takeWhile: all-acquired (takeWhile P sb) ⊆ all-acquired sb
〈proof 〉

lemma all-acquired-dropWhile: all-acquired (dropWhile P sb) ⊆ all-acquired sb
〈proof 〉

lemma acquired-share-owns-shared:
assumes consis: sharing-consistent S O sb
shows acquired pending-write sb O ∪ dom (share sb S) ⊆ O ∪ dom S

〈proof 〉

lemma acquired-owns-shared:
assumes consis: sharing-consistent S O sb
shows acquired True sb O ⊆ O ∪ dom S

〈proof 〉

lemma share-owns-shared:
assumes consis: sharing-consistent S O sb
shows dom (share sb S) ⊆ O ∪ dom S

〈proof 〉

lemma all-shared-append: all-shared (xs@ys) = all-shared xs ∪ all-shared ys
〈proof 〉

lemma acquired-union-notin-first:∧
pending-write A B. a ∈ acquired pending-write sb (A ∪ B) =⇒ a /∈ A =⇒ a ∈ acquired

pending-write sb B
〈proof 〉

102

lemma split-all-acquired-in:
a ∈ all-acquired xs =⇒
(∃ sop a ′ v ys zs A L R W. xs = ys @ Writesb True a ′ sop v A L R W# zs ∧ a ∈ A) ∨
(∃A L R W ys zs. xs = ys @ Ghostsb A L R W# zs ∧ a ∈ A)
〈proof 〉

lemma split-Writesb-in-outstanding-refs:
a ∈ outstanding-refs is-Writesb xs =⇒ (∃ sop volatile v ys zs A L R W. xs = ys@(Writesb

volatile a sop v A L R W#zs))
〈proof 〉

lemma outstanding-refs-is-Writesb-union:
outstanding-refs is-Writesb xs =
(outstanding-refs is-volatile-Writesb xs ∪ outstanding-refs is-non-volatile-Writesb xs)

〈proof 〉

lemma rtranclp-r-rtranclp: [[r∗∗ x y; r y z]] =⇒ r∗∗ x z
〈proof 〉

lemma r-rtranclp-rtranclp: [[r x y; r∗∗ y z]] =⇒ r∗∗ x z
〈proof 〉

lemma unshared-is-non-volatile-Writesb:
∧
S.

[[non-volatile-writes-unshared S sb; a ∈ dom S; a /∈ all-unshared sb]] =⇒
a /∈ outstanding-refs is-non-volatile-Writesb sb

〈proof 〉

lemma outstanding-non-volatile-Readsb-acquired-or-read-only-reads:∧
O S pending-write.

[[non-volatile-owned-or-read-only pending-write S O sb;
a ∈ outstanding-refs is-non-volatile-Readsb sb]]
=⇒ a ∈ acquired-reads True sb O ∨ a ∈ read-only-reads O sb
〈proof 〉

lemma acquired-reads-union:
∧

pending-writes A B.
[[a ∈ acquired-reads pending-writes sb (A ∪ B); a /∈ A]] =⇒ a ∈ acquired-reads pend-

ing-writes sb B
〈proof 〉

lemma non-volatile-writes-unshared-no-outstanding-non-volatile-Writesb:
∧
S S ′.

[[non-volatile-writes-unshared S sb;
∀ a ∈ dom S ′ − dom S. a /∈ outstanding-refs is-non-volatile-Writesb sb]]
=⇒ non-volatile-writes-unshared S ′ sb
〈proof 〉

103

theorem sharing-consis-share-all-until-volatile-write:∧
S ts ′. [[ownership-distinct ts; sharing-consis S ts; length ts ′ = length ts;

∀ i < length ts.
(let (-,-,-,sb,-,O,-) = ts!i;

(-,-,-,sb ′,-,O ′,-) = ts ′!i
in O ′ = acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∧

sb ′ = dropWhile (Not ◦ is-volatile-Writesb) sb)]] =⇒
sharing-consis (share-all-until-volatile-write ts S) ts ′ ∧
dom (share-all-until-volatile-write ts S) − dom S ⊆⋃

((λ(-,-,-,-,-,O,-). O) ‘ set ts) ∧
dom S − dom (share-all-until-volatile-write ts S) ⊆⋃

((λ(-,-,-,sb,-,O,-). all-acquired sb ∪ O) ‘ set ts)
〈proof 〉

corollary sharing-consistent-share-all-until-volatile-write:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
shows sharing-consistent (share-all-until-volatile-write ts S)

(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(dropWhile (Not ◦ is-volatile-Writesb) sb)

〈proof 〉

lemma restrict-map-UNIV [simp]: S |‘ UNIV = S
〈proof 〉

lemma share-all-until-volatile-write-Read-commute:
shows

∧
S i. [[i < length ls; ls!i=(p,Read volatile a t#is,j,sb,D,O)

]]
=⇒
share-all-until-volatile-write

(ls[i := (p,is, j(t 7→v), sb @ [Readsb volatile a t v],D ′, O)]) S =
share-all-until-volatile-write ls S

〈proof 〉

lemma share-all-until-volatile-write-Write-commute:
shows

∧
S i. [[i < length ls; ls!i=(p,Write volatile a (D,f) A L R W#is,j,sb,D,O)

]]
=⇒
share-all-until-volatile-write

(ls[i := (p,is,j, sb @ [Writesb volatile a t (f j) A L R W], D ′, O)]) S =

104

share-all-until-volatile-write ls S
〈proof 〉

lemma share-all-until-volatile-write-RMW-commute:
shows

∧
S i. [[i < length ls; ls!i=(p,RMW a t (D,f) cond ret A L R W#is,j,[],D,O)

]]
=⇒
share-all-until-volatile-write (ls[i := (p ′,is, j ′, [],D ′, O ′)]) S =
share-all-until-volatile-write ls S

〈proof 〉

lemma share-all-until-volatile-write-Fence-commute:
shows

∧
S i. [[i < length ls; ls!i=(p,Fence#is,j,[],D,O,R)

]]
=⇒
share-all-until-volatile-write (ls[i := (p,is,j, [], D ′, O,R ′)]) S =
share-all-until-volatile-write ls S

〈proof 〉

lemma unshared-share-in:
∧

S. a ∈ dom S =⇒ a /∈ all-unshared sb =⇒ a ∈ dom (share
sb S)
〈proof 〉

lemma dom-eq-dom-share-eq:
∧

S S ′. dom S = dom S ′=⇒ dom (share sb S) = dom (share
sb S ′)
〈proof 〉

lemma share-union:∧
A B. [[a ∈ dom (share sb (A ⊕z B)); a /∈ dom A]] =⇒ a ∈ dom (share sb (Map.empty

⊕z B))
〈proof 〉

lemma share-unshared-in:∧
S. a ∈ dom (share sb S) =⇒ a ∈ dom (share sb Map.empty) ∨ (a ∈ dom S ∧ a /∈

all-unshared sb)
〈proof 〉

105

lemma dom-augment-rels-shared-eq: dom (augment-rels S R R) = dom (augment-rels S ′

R R)
〈proof 〉

lemma dom-eq-SomeD1: dom m = dom n =⇒ m x = Some y =⇒ n x 6= None
〈proof 〉

lemma dom-eq-SomeD2: dom m = dom n =⇒ n x = Some y =⇒ m x 6= None
〈proof 〉

lemma dom-augment-rels-rels-eq: dom R ′ = dom R =⇒ dom (augment-rels S R R ′) =
dom (augment-rels S R R)
〈proof 〉

lemma dom-release-rels-eq:
∧
S R R ′. dom R ′ = dom R =⇒

dom (release sb S R ′) = dom (release sb S R)
〈proof 〉

lemma dom-release-shared-eq:
∧
S S ′ R. dom (release sb S ′ R) = dom (release sb S R)

〈proof 〉

lemma share-other-untouched:∧
O S. sharing-consistent S O sb =⇒ a /∈ O ∪ all-acquired sb=⇒ share sb S a = S a

〈proof 〉

lemma shared-owned:
∧
O S. sharing-consistent S O sb =⇒ a /∈ dom S =⇒ a ∈ dom

(share sb S) =⇒
a ∈ O ∪ all-acquired sb

〈proof 〉

lemma share-all-shared-in: a ∈ dom (share sb S) =⇒ a ∈ dom S ∨ a ∈ all-shared sb
〈proof 〉

lemma share-all-until-volatile-write-unowned:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes other: ∀ i p is j sb D O R. i < length ts −→ ts!i = (p,is,j,sb,D,O,R) −→

a /∈ O ∪ all-acquired sb
shows share-all-until-volatile-write ts S a = S a

〈proof 〉

lemma share-shared-eq:
∧
S ′ S. S ′ a = S a =⇒ share sb S ′ a = share sb S a

〈proof 〉

106

lemma share-all-until-volatile-write-thread-local:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-owned: a ∈ O ∪ all-acquired sb
shows share-all-until-volatile-write ts S a = share (takeWhile (Not ◦ is-volatile-Writesb)

sb) S a
〈proof 〉

lemma share-all-until-volatile-write-thread-local ′:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-owned: a ∈ O ∪ all-acquired sb
shows share (dropWhile (Not ◦ is-volatile-Writesb) sb) (share-all-until-volatile-write ts

S) a =
share sb S a

〈proof 〉

lemma (in ownership-distinct) in-shared-sb-share-all-until-volatile-write:
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-owned: a ∈ O ∪ all-acquired sb
assumes a-share: a ∈ dom (share sb S)
shows a ∈ dom (share (dropWhile (Not ◦ is-volatile-Writesb) sb)

(share-all-until-volatile-write ts S))
〈proof 〉

lemma owns-unshared-share-acquired:∧
S O. [[sharing-consistent S O sb; a ∈ O; a /∈ all-unshared sb]]

=⇒ a ∈ dom (share sb S) ∪ acquired True sb O
〈proof 〉

lemma shared-share-acquired:
∧
S O. sharing-consistent S O sb =⇒

a ∈ dom S =⇒ a ∈ dom (share sb S) ∪ acquired True sb O
〈proof 〉

lemma dom-release-takeWhile:∧
S R.

dom (release (takeWhile (Not ◦ is-volatile-Writesb) sb) S R) =
dom R ∪ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)

〈proof 〉

lemma share-all-until-volatile-write-share-acquired:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts

107

assumes a-notin: a /∈ dom S
assumes a-in: a ∈ dom (share-all-until-volatile-write ts S)
shows ∃ i < length ts.

let (-,-,-,sb,-,-,-) = ts!i
in a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)

〈proof 〉

lemma all-shared-share-acquired:
∧
S O. sharing-consistent S O sb =⇒

a ∈ all-shared sb =⇒ a ∈ dom (share sb S) ∪ acquired True sb O
〈proof 〉

lemma (in ownership-distinct) share-all-until-volatile-write-share-acquired:
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-in: a ∈ dom (share-all-until-volatile-write ts S)
shows a ∈ dom (share sb S) ∨ a ∈ acquired True sb O ∨

(∃ j < length ts. j 6= i ∧
(let (-,-,-,sbj,-,-,-) = ts!j
in a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)))

〈proof 〉

lemma acquired-all-shared-in:∧
A. a ∈ acquired True sb A =⇒ a ∈ acquired True sb {} ∨ (a ∈ A ∧ a /∈ all-shared sb)

〈proof 〉

lemma all-shared-acquired-in:
∧

A. a ∈ A =⇒ a /∈ all-shared sb =⇒ a ∈ acquired True
sb A
〈proof 〉

lemma owned-share-acquired:
∧
S O. sharing-consistent S O sb =⇒

a ∈ O =⇒ a ∈ dom (share sb S) ∪ acquired True sb O
〈proof 〉

lemma outstanding-refs-non-volatile-Readsb-all-acquired:∧
m S O pending-write.
[[reads-consistent pending-write O m sb;non-volatile-owned-or-read-only pending-write

S O sb;
a ∈ outstanding-refs is-non-volatile-Readsb sb]]
=⇒ a ∈ O ∨ a ∈ all-acquired sb ∨

a ∈ read-only-reads O sb
〈proof 〉

108

lemma outstanding-refs-non-volatile-Readsb-all-acquired-dropWhile:
assumes consis: reads-consistent pending-write O m sb
assumes nvo: non-volatile-owned-or-read-only pending-write S O sb
assumes out: a ∈ outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦
is-volatile-Writesb) sb)
shows a ∈ O ∨ a ∈ all-acquired sb ∨

a ∈ read-only-reads O sb
〈proof 〉

lemma share-commute:∧
L R S O. [[sharing-consistent S O sb;

all-shared sb ∩ L = {}; all-shared sb ∩ A = {}; all-acquired sb ∩ R = {};
all-unshared sb ∩ R = {}; all-shared sb ∩ R = {}]] =⇒
(share sb (S ⊕W R 	A L)) =
(share sb S) ⊕W R 	A L

〈proof 〉

lemma share-all-until-volatile-write-commute:∧
S R L. [[ownership-distinct ts; sharing-consis S ts;

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {};

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {};

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {};

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {};

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}]]

=⇒
share-all-until-volatile-write ts S ⊕W R 	A L = share-all-until-volatile-write ts (S ⊕W R
	A L)
〈proof 〉

lemma share-append-Ghostsb:∧
S. outstanding-refs is-volatile-Writesb sb = {} =⇒ (share (sb @ [Ghostsb A L R W])

S) = (share sb S) ⊕W R 	A L
〈proof 〉

lemma share-append-Ghostsb ′:∧
S. outstanding-refs is-volatile-Writesb sb 6= {} =⇒
(share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Ghostsb A L R W])) S) =
(share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)

〈proof 〉

lemma share-all-until-volatile-write-append-Ghostsb:

109

assumes no-out-VWritesb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
S i. [[ownership-distinct ts; sharing-consis S ts;

i < length ts; ts!i = (p,is,j,sb,D,O,R);
∀ j p is O R D j sb. j < length ts −→ i 6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {};
∀ j p is O R D j sb. j < length ts −→ i 6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {};
∀ j p is O R D j sb. j < length ts −→ i6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {};
∀ j p is O R D j sb. j < length ts −→ i6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {};
∀ j p is O R D j sb. j < length ts −→ i6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}]]
=⇒
share-all-until-volatile-write (ts[i := (p ′, is ′,j ′, sb @ [Ghostsb A L R W], D ′, O ′)]) S

= share-all-until-volatile-write ts S ⊕W R 	A L
〈proof 〉

lemma share-domain-changes:∧
S S ′. a ∈ all-shared sb ∪ all-unshared sb =⇒ share sb S ′ a = share sb S a

〈proof 〉

lemma share-domain-changesX:∧
S S ′ X. ∀ a ∈ X. S ′ a = S a

=⇒ a ∈ all-shared sb ∪ all-unshared sb ∪ X =⇒ share sb S ′ a = share sb S a
〈proof 〉

lemma share-unchanged:∧
S. a /∈ all-shared sb ∪ all-unshared sb ∪ all-acquired sb =⇒ share sb S a = S a

〈proof 〉

lemma share-augment-release-commute:
assumes dist: (R ∪ L ∪ A) ∩ (all-shared sb ∪ all-unshared sb ∪ all-acquired sb) = {}
shows (share sb S ⊕W R 	A L) = share sb (S ⊕W R 	A L)
〈proof 〉

lemma share-append-commute:∧
ys S. (all-shared xs ∪ all-unshared xs ∪ all-acquired xs) ∩

(all-shared ys ∪ all-unshared ys ∪ all-acquired ys) = {}
=⇒ share xs (share ys S) = share ys (share xs S)
〈proof 〉

lemma share-append-commute ′:
assumes dist: (all-shared xs ∪ all-unshared xs ∪ all-acquired xs) ∩

110

(all-shared ys ∪ all-unshared ys ∪ all-acquired ys) = {}
shows share (ys@xs) S = share (xs@ys) S

〈proof 〉

lemma share-all-until-volatile-write-share-commute:
shows

∧
S (sb ′:: ′a memref list). [[ownership-distinct ts; sharing-consis S ts;

∀ i p is O R D j (sb:: ′a memref list). i < length ts
−→ ts!i=(p,is,j,sb,D,O,R) −→

(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩
(all-shared sb ′ ∪ all-unshared sb ′ ∪ all-acquired sb ′) = {}]]

=⇒
share-all-until-volatile-write ts (share sb ′ S) =
share sb ′ (share-all-until-volatile-write ts S)
〈proof 〉

lemma all-shared-takeWhile-subset: all-shared (takeWhile P sb) ⊆ all-shared sb
〈proof 〉
lemma all-shared-dropWhile-subset: all-shared (dropWhile P sb) ⊆ all-shared sb
〈proof 〉

lemma all-unshared-takeWhile-subset: all-unshared (takeWhile P sb) ⊆ all-unshared sb
〈proof 〉
lemma all-unshared-dropWhile-subset: all-unshared (dropWhile P sb) ⊆ all-unshared sb
〈proof 〉

lemma all-acquired-takeWhile-subset: all-acquired (takeWhile P sb) ⊆ all-acquired sb
〈proof 〉
lemma all-acquired-dropWhile-subset: all-acquired (dropWhile P sb) ⊆ all-acquired sb
〈proof 〉

lemma share-all-until-volatile-write-flush-commute:
assumes takeWhile-empty: (takeWhile (Not ◦ is-volatile-Writesb) sb) = []
shows

∧
S R L W A i. [[ownership-distinct ts; sharing-consis S ts; i < length ts;

ts!i = (p,is,j,sb,D,O,R);
∀ i p is O R D j (sb:: ′a memref list). i < length ts

−→ ts!i=(p,is,j,sb,D,O,R) −→
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb ′) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb ′) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb ′)) = {};

∀ j p is O R D j (sb:: ′a memref list). j < length ts −→ i6=j
−→ ts!j=(p,is,j,sb,D,O,R) −→

(all-shared sb ∪ all-unshared sb ∪ all-acquired sb) ∩
(R ∪ L ∪ A) = {}]]

111

=⇒
share-all-until-volatile-write (ts[i :=(p ′,is ′,j ′,sb ′,D ′,O ′,R ′)]) (S ⊕W R 	A L) =
share (takeWhile (Not ◦ is-volatile-Writesb) sb ′) (share-all-until-volatile-write ts S ⊕W R
	A L)
〈proof 〉

lemma share-all-until-volatile-write-Ghostsb-commute:
shows

∧
S i. [[ownership-distinct ts; sharing-consis S ts; i < length ts;

ts!i = (p,is,j,Ghostsb A L R W#sb,D,O,R);
∀ j p is O R D j sb. j < length ts −→ i6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪ all-unshared (takeWhile
(Not ◦ is-volatile-Writesb) sb) ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩

(R ∪ L ∪ A) = {}]]
=⇒

share-all-until-volatile-write (ts[i :=(p ′,is ′,j ′,sb,D ′,O ′,R ′)]) (S ⊕W R 	A L) =
share-all-until-volatile-write ts S
〈proof 〉

lemma share-all-until-volatile-write-update-sb:
assumes congr:

∧
S. share (takeWhile (Not ◦ is-volatile-Writesb) sb ′) S = share (takeWhile

(Not ◦ is-volatile-Writesb) sb) S
shows

∧
S i. [[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]

=⇒
share-all-until-volatile-write ts S =

share-all-until-volatile-write (ts[i := (p ′, is ′,j ′, sb ′, D ′, O ′,R ′)]) S
〈proof 〉

lemma share-all-until-volatile-write-append-Ghostsb ′:
assumes out-VWritesb: outstanding-refs is-volatile-Writesb sb 6= {}
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
shows share-all-until-volatile-write ts S =

share-all-until-volatile-write
(ts[i := (p ′, is ′,j ′, sb @ [Ghostsb A L R W], D ′, O ′,R ′)]) S

〈proof 〉

lemma acquired-append-Progsb:∧
S. (acquired pending-write (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb p1 p2

mis])) S) =
(acquired pending-write (takeWhile (Not ◦ is-volatile-Writesb) sb) S)

〈proof 〉

lemma outstanding-refs-non-empty-dropWhile:
outstanding-refs P xs 6= {} =⇒ outstanding-refs P (dropWhile (Not ◦ P) xs) 6= {}

〈proof 〉

lemma ex-not: Ex Not

112

〈proof 〉

lemma (in computation) concurrent-step-append:
assumes step: (ts,m,S) ⇒ (ts ′,m ′,S ′)
shows (xs@ts,m,S) ⇒ (xs@ts ′,m ′,S ′)

〈proof 〉

primrec weak-sharing-consistent:: owns ⇒ ′a memref list ⇒ bool
where
weak-sharing-consistent O [] = True
| weak-sharing-consistent O (r#rs) =
(case r of

Writesb volatile - - - A L R W ⇒
(if volatile then L ⊆ A ∧ A ∩ R = {} ∧ R ⊆ O ∧

weak-sharing-consistent (O ∪ A − R) rs
else weak-sharing-consistent O rs)

| Ghostsb A L R W ⇒ L ⊆ A ∧ A ∩ R = {} ∧ R ⊆ O ∧ weak-sharing-consistent (O ∪
A − R) rs
| - ⇒ weak-sharing-consistent O rs)

lemma sharing-consistent-weak-sharing-consistent:∧
S O. sharing-consistent S O sb =⇒ weak-sharing-consistent O sb

〈proof 〉

lemma weak-sharing-consistent-append:∧
O. weak-sharing-consistent O (xs @ ys) =
(weak-sharing-consistent O xs ∧ weak-sharing-consistent (acquired True xs O) ys)

〈proof 〉

lemma read-only-share-unowned:
∧
O S.

[[weak-sharing-consistent O sb; a /∈ O ∪ all-acquired sb; a ∈ read-only (share sb S)]]
=⇒ a ∈ read-only S

〈proof 〉

113

lemma share-read-only-mono-in:
assumes a-in: a ∈ read-only (share sb S)
assumes ss: read-only S ⊆ read-only S ′

shows a ∈ read-only (share sb S ′)
〈proof 〉

lemma read-only-unacquired-share:∧
S O. [[O ∩ read-only S = {}; weak-sharing-consistent O sb; a ∈ read-only S;

a /∈ all-acquired sb]]
=⇒ a ∈ read-only (share sb S)
〈proof 〉

lemma read-only-share-unacquired:
∧

O S. O ∩ read-only S = {} =⇒
weak-sharing-consistent O sb =⇒
a ∈ read-only (share sb S) =⇒ a /∈ acquired True sb O
〈proof 〉

lemma read-only-share-all-acquired-in:∧
S O. [[O ∩ read-only S = {}; weak-sharing-consistent O sb; a ∈ read-only (share sb S)]]

=⇒ a ∈ read-only (share sb Map.empty) ∨ (a ∈ read-only S ∧ a /∈ all-acquired sb)
〈proof 〉

lemma weak-sharing-consistent-preserves-distinct:∧
O S. weak-sharing-consistent O sb =⇒ O ∩ read-only S = {} =⇒

acquired True sb O ∩ read-only (share sb S) = {}
〈proof 〉

locale weak-sharing-consis =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes weak-sharing-consis:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
weak-sharing-consistent O sb

sublocale sharing-consis ⊆ weak-sharing-consis
〈proof 〉

lemma weak-sharing-consis-tl: weak-sharing-consis (t#ts) =⇒ weak-sharing-consis ts
〈proof 〉

114

lemma read-only-share-all-until-volatile-write-unacquired:∧
S. [[ownership-distinct ts; read-only-unowned S ts; weak-sharing-consis ts;

∀ i < length ts. (let (-,-,-,sb,-,O,R) = ts!i in
a /∈ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb));

a ∈ read-only S]]
=⇒ a ∈ read-only (share-all-until-volatile-write ts S)

〈proof 〉

lemma read-only-share-unowned-in:
[[weak-sharing-consistent O sb; a ∈ read-only (share sb S)]]
=⇒ a ∈ read-only S ∪ O ∪ all-acquired sb
〈proof 〉

lemma read-only-shared-all-until-volatile-write-subset:∧
S. [[ownership-distinct ts;

weak-sharing-consis ts]] =⇒
read-only (share-all-until-volatile-write ts S) ⊆

read-only S ∪ (
⋃
((λ(-, -, -, sb, -, O,-). O ∪ all-acquired (takeWhile (Not ◦

is-volatile-Writesb) sb)) ‘ set ts))
〈proof 〉

lemma weak-sharing-consistent-preserves-distinct-share-all-until-volatile-write:∧
S i. [[ownership-distinct ts; read-only-unowned S ts;weak-sharing-consis ts;

i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∩
read-only (share-all-until-volatile-write ts S) = {}

〈proof 〉

lemma in-read-only-share-all-until-volatile-write:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes ro-unowned: read-only-unowned S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-unacquired-others: ∀ j < length ts. i 6=j −→

(let (-,-,-,sbj,-,-,-) = ts!j in
a /∈ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj))

assumes a-ro-share: a ∈ read-only (share sb S)
shows a ∈ read-only (share (dropWhile (Not ◦ is-volatile-Writesb) sb)

(share-all-until-volatile-write ts S))
〈proof 〉

lemma all-acquired-dropWhile-in: x ∈ all-acquired (dropWhile P sb) =⇒ x ∈ all-acquired
sb
〈proof 〉

115

lemma all-acquired-takeWhile-in: x ∈ all-acquired (takeWhile P sb) =⇒ x ∈ all-acquired
sb
〈proof 〉

lemmas all-acquired-takeWhile-dropWhile-in = all-acquired-takeWhile-in
all-acquired-dropWhile-in

lemma split-in-read-only-reads:∧
O. a ∈ read-only-reads O xs =⇒

(∃ t v ys zs. xs=ys @ Readsb False a t v # zs ∧ a /∈ acquired True ys O)
〈proof 〉

lemma insert-monoD: W ⊆ W ′ =⇒ insert a W ⊆ insert a W ′

〈proof 〉

primrec unforwarded-non-volatile-reads:: ′a memref list ⇒ addr set ⇒ addr set
where
unforwarded-non-volatile-reads [] W = {}
| unforwarded-non-volatile-reads (x#xs) W =
(case x of

Readsb volatile a - - ⇒ (if a /∈ W ∧ ¬ volatile
then insert a (unforwarded-non-volatile-reads xs W)
else (unforwarded-non-volatile-reads xs W))

| Writesb - a - - - - - - ⇒ unforwarded-non-volatile-reads xs (insert a W)
| - ⇒ unforwarded-non-volatile-reads xs W)

lemma unforwarded-non-volatile-reads-non-volatile-Readsb:∧
W. unforwarded-non-volatile-reads sb W ⊆ outstanding-refs is-non-volatile-Readsb sb

〈proof 〉

lemma in-unforwarded-non-volatile-reads-non-volatile-Readsb:
a ∈ unforwarded-non-volatile-reads sb W =⇒ a ∈ outstanding-refs is-non-volatile-Readsb

sb
〈proof 〉

lemma unforwarded-non-volatile-reads-antimono:∧
W W ′. W ⊆ W ′ =⇒ unforwarded-non-volatile-reads xs W ′ ⊆ unfor-

warded-non-volatile-reads xs W
〈proof 〉

lemma unforwarded-non-volatile-reads-antimono-in:
x ∈ unforwarded-non-volatile-reads xs W ′ =⇒ W ⊆ W ′

=⇒ x ∈ unforwarded-non-volatile-reads xs W

116

〈proof 〉

lemma unforwarded-non-volatile-reads-append:
∧

W. unforwarded-non-volatile-reads
(xs@ys) W =
(unforwarded-non-volatile-reads xs W ∪
unforwarded-non-volatile-reads ys (W ∪ outstanding-refs is-Writesb xs))

〈proof 〉

lemma reads-consistent-mem-eq-on-unforwarded-non-volatile-reads:
assumes mem-eq: ∀ a ∈ A ∪ W. m ′ a = m a
assumes subset: unforwarded-non-volatile-reads sb W ⊆ A
assumes consis-m: reads-consistent pending-write O m sb
shows reads-consistent pending-write O m ′ sb

〈proof 〉

lemma reads-consistent-mem-eq-on-unforwarded-non-volatile-reads-drop:
assumes mem-eq: ∀ a ∈ A ∪ W. m ′ a = m a
assumes subset: unforwarded-non-volatile-reads (dropWhile (Not ◦ is-volatile-Writesb)

sb) W ⊆ A
assumes subset-acq: acquired-reads True (takeWhile (Not ◦ is-volatile-Writesb) sb) O

⊆ A
assumes consis-m: reads-consistent False O m sb
shows reads-consistent False O m ′ sb

〈proof 〉

lemma read-only-read-witness:
∧
S O.

[[non-volatile-owned-or-read-only True S O sb;
a ∈ read-only-reads O sb]]
=⇒
∃ xs ys t v. sb=xs@ Readsb False a t v # ys ∧ a ∈ read-only (share xs S) ∧ a /∈

read-only-reads O xs
〈proof 〉

lemma read-only-read-acquired-witness:
∧
S O.

[[non-volatile-owned-or-read-only True S O sb; sharing-consistent S O sb;
a /∈ read-only S; a /∈ O; a ∈ read-only-reads O sb]]
=⇒
∃ xs ys t v. sb=xs@ Readsb False a t v # ys ∧ a ∈ all-acquired xs ∧ a ∈ read-only (share

xs S) ∧
a /∈ read-only-reads O xs

〈proof 〉

117

lemma unforwarded-not-written:
∧

W. a ∈ unforwarded-non-volatile-reads sb W =⇒ a /∈
W
〈proof 〉

lemma unforwarded-witness:
∧

X.
[[a ∈ unforwarded-non-volatile-reads sb X]]
=⇒
∃ xs ys t v. sb=xs@ Readsb False a t v # ys ∧ a /∈ outstanding-refs is-Writesb xs

〈proof 〉

lemma read-only-read-acquired-unforwarded-witness:
∧
S O X.

[[non-volatile-owned-or-read-only True S O sb; sharing-consistent S O sb;
a /∈ read-only S; a /∈ O; a ∈ read-only-reads O sb;
a ∈ unforwarded-non-volatile-reads sb X]]
=⇒
∃ xs ys t v. sb=xs@ Readsb False a t v # ys ∧ a ∈ all-acquired xs ∧

a /∈ outstanding-refs is-Writesb xs
〈proof 〉

lemma takeWhile-prefix: ∃ ys. takeWhile P xs @ ys = xs
〈proof 〉

lemma unforwarded-empty-extend:∧
W. x ∈ unforwarded-non-volatile-reads sb {} =⇒ x /∈ W =⇒ x ∈ unfor-

warded-non-volatile-reads sb W
〈proof 〉

lemma notin-unforwarded-empty:∧
W. a /∈ unforwarded-non-volatile-reads sb W =⇒ a /∈ W =⇒ a /∈ unfor-

warded-non-volatile-reads sb {}
〈proof 〉

lemma
assumes ro: a ∈ read-only S −→ a ∈ read-only S ′

assumes a-in: a ∈ read-only (S ⊕W R)
shows a ∈ read-only (S ′ ⊕W R)
〈proof 〉

lemma
assumes ro: a ∈ read-only S −→ a ∈ read-only S ′

assumes a-in: a ∈ read-only (S 	A L)
shows a ∈ read-only (S ′ 	A L)
〈proof 〉

lemma non-volatile-owned-or-read-only-read-only-reads-eq:∧
S S ′ O pending-write.

118

[[non-volatile-owned-or-read-only pending-write S O sb;
∀ a ∈ read-only-reads O sb. a ∈ read-only S −→ a ∈ read-only S ′

]]
=⇒ non-volatile-owned-or-read-only pending-write S ′ O sb

〈proof 〉

lemma non-volatile-owned-or-read-only-read-only-reads-eq ′:∧
S S ′ O.

[[non-volatile-owned-or-read-only False S O sb;
∀ a ∈ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)

(dropWhile (Not ◦ is-volatile-Writesb) sb). a ∈ read-only S −→ a ∈ read-only S ′

]]
=⇒ non-volatile-owned-or-read-only False S ′ O sb

〈proof 〉

lemma no-write-to-read-only-memory-read-only-reads-eq:∧
S S ′.

[[no-write-to-read-only-memory S sb;
∀ a ∈ outstanding-refs is-Writesb sb. a ∈ read-only S ′ −→ a ∈ read-only S
]]
=⇒ no-write-to-read-only-memory S ′ sb

〈proof 〉

lemma reads-consistent-drop:
reads-consistent False O m sb
=⇒ reads-consistent True

(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)
(dropWhile (Not ◦ is-volatile-Writesb) sb)

〈proof 〉

lemma outstanding-refs-non-volatile-Readsb-all-acquired-dropWhile ′:∧
m S O pending-write.
[[reads-consistent pending-write O m sb;non-volatile-owned-or-read-only pending-write

S O sb;
a ∈ outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) sb)]]
=⇒ a ∈ O ∨ a ∈ all-acquired sb ∨

a ∈ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(dropWhile (Not ◦ is-volatile-Writesb) sb)

〈proof 〉

end

theory ReduceStoreBufferSimulation

119

imports ReduceStoreBuffer
begin

locale initialsb = simple-ownership-distinct + read-only-unowned + unowned-shared +
constrains ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes empty-sb: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ sb=[]
assumes empty-is: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ is=[]
assumes empty-rels: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ R=Map.empty

sublocale initialsb ⊆ outstanding-non-volatile-refs-owned-or-read-only
〈proof 〉

sublocale initialsb ⊆ outstanding-volatile-writes-unowned-by-others
〈proof 〉

sublocale initialsb ⊆ read-only-reads-unowned
〈proof 〉

sublocale initialsb ⊆ ownership-distinct
〈proof 〉

sublocale initialsb ⊆ valid-ownership 〈proof 〉

sublocale initialsb ⊆ outstanding-non-volatile-writes-unshared
〈proof 〉

sublocale initialsb ⊆ sharing-consis
〈proof 〉

sublocale initialsb ⊆ no-outstanding-write-to-read-only-memory
〈proof 〉

sublocale initialsb ⊆ valid-sharing 〈proof 〉
sublocale initialsb ⊆ valid-ownership-and-sharing 〈proof 〉

sublocale initialsb ⊆ load-tmps-distinct
〈proof 〉

sublocale initialsb ⊆ read-tmps-distinct
〈proof 〉

sublocale initialsb ⊆ load-tmps-read-tmps-distinct
〈proof 〉

sublocale initialsb ⊆ load-tmps-read-tmps-distinct 〈proof 〉

sublocale initialsb ⊆ valid-write-sops
〈proof 〉

sublocale initialsb ⊆ valid-store-sops
〈proof 〉

sublocale initialsb ⊆ valid-sops 〈proof 〉

sublocale initialsb ⊆ valid-reads
〈proof 〉

120

sublocale initialsb ⊆ valid-history
〈proof 〉

sublocale initialsb ⊆ valid-data-dependency
〈proof 〉

sublocale initialsb ⊆ load-tmps-fresh
〈proof 〉

sublocale initialsb ⊆ enough-flushs
〈proof 〉

sublocale initialsb ⊆ valid-program-history
〈proof 〉

inductive
sim-config:: (′p, ′p store-buffer,bool,owns,rels) thread-config list × memory × shared ⇒

(′p, unit,bool,owns,rels) thread-config list × memory × shared ⇒ bool
(‹- ∼ -› [60,60] 100)

where
[[m = flush-all-until-volatile-write tssb msb;
S = share-all-until-volatile-write tssb Ssb;
length tssb = length ts;
∀ i < length tssb.

let (p, issb, j, sb, Dsb, O, R) = tssb!i;
suspends = dropWhile (Not ◦ is-volatile-Writesb) sb

in ∃ is D. instrs suspends @ issb = is @ prog-instrs suspends ∧
Dsb = (D ∨ outstanding-refs is-volatile-Writesb sb 6= {}) ∧

ts!i = (hd-prog p suspends,
is,
j |‘ (dom j − read-tmps suspends),(),
D,
acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O,
release (takeWhile (Not ◦ is-volatile-Writesb) sb) (dom Ssb) R)

]]
=⇒
(tssb,msb,Ssb) ∼ (ts,m,S)
The machine without history only stores writes in the store-buffer.inductive

sim-history-config::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels) thread-config list ⇒ (′p, ′p store-buffer,bool,owns,rels) thread-config list
⇒ bool
(‹- ∼h - › [60,60] 100)

where
[[length ts = length tsh;
∀ i < length ts.

(∃O ′ D ′ R ′.
let (p,is, j, sb,D, O,R) = tsh!i in

ts!i=(p,is, j, filter is-Writesb sb,D ′,O ′,R ′) ∧
(filter is-Writesb sb = [] −→ sb=[]))

]]
=⇒
ts ∼h tsh

lemma (in initialsb) history-refl:ts ∼h ts
〈proof 〉

lemma share-all-empty: ∀ i p is xs sb D O R. i < length ts −→ ts!i=(p,is,xs,sb,D,O,R)−→ sb=[]
=⇒ share-all-until-volatile-write ts S = S
〈proof 〉

121

lemma flush-all-empty: ∀ i p is xs sb D O R. i < length ts −→ ts!i=(p,is,xs,sb,D,O,R)−→ sb=[]
=⇒ flush-all-until-volatile-write ts m = m
〈proof 〉

lemma sim-config-emptyE:
assumes empty:
∀ i p is xs sb D O R. i < length tssb −→ tssb!i=(p,is,xs,sb,D,O,R)−→ sb=[]
assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
shows S = Ssb ∧ m = msb ∧ length ts = length tssb ∧

(∀ i < length tssb.
let (p, is, j, sb, D, O, R) = tssb!i
in ts!i = (p, is, j, (), D, O, R))

〈proof 〉

lemma sim-config-emptyI:
assumes empty:
∀ i p is xs sb D O R. i < length tssb −→ tssb!i=(p,is,xs,sb,D,O,R)−→ sb=[]
assumes leq: length ts = length tssb
assumes ts: (∀ i < length tssb.

let (p, is, j, sb, D, O, R) = tssb!i
in ts!i = (p, is, j, (), D, O, R))

shows (tssb,msb,Ssb) ∼ (ts,msb,Ssb)
〈proof 〉
lemma mem-eq-un-eq: [[length ts ′=length ts; ∀ i< length ts ′. P (ts ′!i) = Q (ts!i)]] =⇒ (

⋃
x∈set ts ′. P x) =

(
⋃

x∈set ts. Q x)
〈proof 〉

lemma (in program) trace-to-steps:
assumes trace: trace c 0 k
shows steps: c 0 ⇒d

∗ c k
〈proof 〉

lemma (in program) safe-reach-to-safe-reach-upto:
assumes safe-reach: safe-reach-direct safe c0
shows safe-reach-upto n safe c0
〈proof 〉

lemma (in program-progress) safe-free-flowing-implies-safe-delayed ′:
assumes init: initialsb tssb Ssb

assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe-reach-ff: safe-reach-direct safe-free-flowing (ts,m,S)
shows safe-reach-direct safe-delayed (ts,m,S)
〈proof 〉

lemma map-onws-sb-owned:
∧

j. j < length ts =⇒ map O-sb ts ! j = (Oj,sbj) =⇒ map owned ts ! j = Oj

〈proof 〉

lemma map-onws-sb-owned ′:
∧

j. j < length ts =⇒ O-sb (ts ! j) = (Oj,sbj) =⇒ owned (ts ! j) = Oj

〈proof 〉

lemma read-only-read-acquired-unforwarded-acquire-witness:∧
S O X.[[non-volatile-owned-or-read-only True S O sb;

sharing-consistent S O sb; a /∈ read-only S; a /∈ O;
a ∈ unforwarded-non-volatile-reads sb X]]
=⇒(∃ sop a ′ v ys zs A L R W.

sb = ys @ Writesb True a ′ sop v A L R W # zs ∧
a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys ∧ a ′ 6= a) ∨

122

(∃A L R W ys zs. sb = ys @ Ghostsb A L R W# zs ∧ a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys)
〈proof 〉

lemma release-shared-exchange-weak:
assumes shared-eq: ∀ a ∈ O ∪ all-acquired sb. (S ′::shared) a = S a
assumes consis: weak-sharing-consistent O sb
shows release sb (dom S ′) R = release sb (dom S) R
〈proof 〉

lemma read-only-share-all-shared:
∧
S. [[a ∈ read-only (share sb S)]]

=⇒ a ∈ read-only S ∪ all-shared sb
〈proof 〉

lemma read-only-shared-all-until-volatile-write-subset ′:∧
S.

read-only (share-all-until-volatile-write ts S) ⊆
read-only S ∪ (

⋃
((λ(-, -, -, sb, -, - ,-). all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ts))

〈proof 〉

lemma read-only-share-acquired-all-shared:∧
O S. weak-sharing-consistent O sb =⇒ O ∩ read-only S = {} =⇒

a ∈ read-only (share sb S) =⇒ a ∈ O ∪ all-acquired sb =⇒ a ∈ all-shared sb
〈proof 〉

lemma read-only-share-unowned ′:
∧
O S.

[[weak-sharing-consistent O sb; O ∩ read-only S = {}; a /∈ O ∪ all-acquired sb; a ∈ read-only S]]
=⇒ a ∈ read-only (share sb S)
〈proof 〉

lemma release-False-mono:∧
S R. R a = Some False =⇒ outstanding-refs is-volatile-Writesb sb = {} =⇒

release sb S R a = Some False
〈proof 〉

lemma release-False-mono-take:∧
S R. R a = Some False =⇒ release (takeWhile (Not ◦ is-volatile-Writesb) sb) S R a = Some False

〈proof 〉

lemma shared-switch:∧
S O. [[weak-sharing-consistent O sb; read-only S ∩ O = {};
S a 6= Some False; share sb S a = Some False]]

=⇒ a ∈ O ∪ all-acquired sb
〈proof 〉

lemma shared-switch-release-False:∧
S R. [[
outstanding-refs is-volatile-Writesb sb = {};
a /∈ dom S;
a ∈ dom (share sb S)]]

=⇒
release sb (dom S) R a = Some False

〈proof 〉

123

lemma release-not-unshared-no-write:∧
S R. [[
outstanding-refs is-volatile-Writesb sb = {};

non-volatile-writes-unshared S sb;
release sb (dom S) R a 6= Some False;
a ∈ dom (share sb S)]]
=⇒
a /∈ outstanding-refs is-non-volatile-Writesb sb

〈proof 〉

corollary release-not-unshared-no-write-take:
assumes nvw: non-volatile-writes-unshared S (takeWhile (Not ◦ is-volatile-Writesb) sb)
assumes rel: release (takeWhile (Not ◦ is-volatile-Writesb) sb) (dom S) R a 6= Some False
assumes a-in: a ∈ dom (share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)
shows

a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)
〈proof 〉

lemma read-only-unacquired-share ′:∧
S O. [[O ∩ read-only S = {}; weak-sharing-consistent O sb; a ∈ read-only S;

a /∈ all-shared sb; a /∈ acquired True sb O]]
=⇒ a ∈ read-only (share sb S)
〈proof 〉

lemma read-only-share-all-until-volatile-write-unacquired ′:∧
S. [[ownership-distinct ts; read-only-unowned S ts; weak-sharing-consis ts;
∀ i < length ts. (let (-,-,-,sb,-,O,R) = ts!i in

a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∧
a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb

));
a ∈ read-only S]]
=⇒ a ∈ read-only (share-all-until-volatile-write ts S)
〈proof 〉

lemma not-shared-not-acquired-switch:∧
X Y. [[a /∈ all-shared sb; a /∈ X; a /∈ acquired True sb X; a /∈ Y]] =⇒ a /∈ acquired True sb Y

〈proof 〉

lemma read-only-share-all-acquired-in ′:∧
S O. [[O ∩ read-only S = {}; weak-sharing-consistent O sb; a ∈ read-only (share sb S)]]

=⇒ a ∈ read-only (share sb Map.empty) ∨ (a ∈ read-only S ∧ a /∈ acquired True sb O ∧ a /∈ all-shared sb)
〈proof 〉

lemma in-read-only-share-all-until-volatile-write ′:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes ro-unowned: read-only-unowned S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-unacquired-others: ∀ j < length ts. i6=j −→

(let (-,-,-,sbj,-,O,-) = ts!j in
a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) O ∧
a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj))

assumes a-ro-share: a ∈ read-only (share sb S)
shows a ∈ read-only (share (dropWhile (Not ◦ is-volatile-Writesb) sb)

124

(share-all-until-volatile-write ts S))
〈proof 〉

lemma all-acquired-unshared-acquired:∧
O. a ∈ all-acquired sb ==> a /∈ all-shared sb ==> a ∈ acquired True sb O

〈proof 〉

lemma safe-RMW-common:
assumes safe: Os,Rs,i` (RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

shows (a ∈ O ∨ a ∈ dom S) ∧ (∀ j < length Os. i6=j −→ (Rs!j) a 6= Some False)
〈proof 〉

lemma acquired-reads-all-acquired ′:
∧
O.

acquired-reads True sb O ⊆ acquired True sb O ∪ all-shared sb
〈proof 〉

lemma release-all-shared-exchange:∧
R S ′ S. ∀ a ∈ all-shared sb. (a ∈ S ′) = (a ∈ S) =⇒ release sb S ′ R = release sb S R

〈proof 〉

lemma release-append-Progsb:∧
S R. (release (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb p1 p2 mis])) S R) =

(release (takeWhile (Not ◦ is-volatile-Writesb) sb) S R)
〈proof 〉

A.5 Simulation of Store Buffer Machine with History by Virtual Machine
with Delayed Releases

theorem (in xvalid-program) concurrent-direct-steps-simulates-store-buffer-history-step:
assumes step-sb: (tssb,msb,Ssb) ⇒sbh (tssb ′,msb

′,Ssb
′)

assumes valid-own: valid-ownership Ssb tssb
assumes valid-sb-reads: valid-reads msb tssb
assumes valid-hist: valid-history program-step tssb
assumes valid-sharing: valid-sharing Ssb tssb
assumes tmps-distinct: tmps-distinct tssb
assumes valid-sops: valid-sops tssb
assumes valid-dd: valid-data-dependency tssb
assumes load-tmps-fresh: load-tmps-fresh tssb
assumes enough-flushs: enough-flushs tssb
assumes valid-program-history: valid-program-history tssb
assumes valid: valid tssb
assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe-reach: safe-reach-direct safe-delayed (ts,m,S)
shows valid-ownership Ssb

′ tssb ′ ∧ valid-reads msb
′ tssb ′ ∧ valid-history program-step

tssb ′ ∧
valid-sharing Ssb

′ tssb ′ ∧ tmps-distinct tssb ′ ∧ valid-data-dependency tssb ′ ∧
valid-sops tssb ′ ∧ load-tmps-fresh tssb ′ ∧ enough-flushs tssb ′ ∧
valid-program-history tssb ′ ∧ valid tssb ′ ∧
(∃ ts ′ S ′ m ′. (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′) ∧
(tssb ′,msb

′,Ssb
′) ∼ (ts ′,m ′,S ′))

125

〈proof 〉

theorem (in xvalid-program) concurrent-direct-steps-simulates-store-buffer-history-steps:
assumes step-sb: (tssb,msb,Ssb) ⇒sbh

∗ (tssb ′,msb
′,Ssb

′)
assumes valid-own: valid-ownership Ssb tssb
assumes valid-sb-reads: valid-reads msb tssb
assumes valid-hist: valid-history program-step tssb
assumes valid-sharing: valid-sharing Ssb tssb
assumes tmps-distinct: tmps-distinct tssb
assumes valid-sops: valid-sops tssb
assumes valid-dd: valid-data-dependency tssb
assumes load-tmps-fresh: load-tmps-fresh tssb
assumes enough-flushs: enough-flushs tssb
assumes valid-program-history: valid-program-history tssb
assumes valid: valid tssb
shows

∧
ts S m. (tssb,msb,Ssb) ∼ (ts,m,S) =⇒ safe-reach-direct safe-delayed (ts,m,S)

=⇒
valid-ownership Ssb

′ tssb ′ ∧ valid-reads msb
′ tssb ′ ∧ valid-history program-step tssb ′

∧
valid-sharing Ssb

′ tssb ′ ∧ tmps-distinct tssb ′ ∧ valid-data-dependency tssb ′ ∧
valid-sops tssb ′ ∧ load-tmps-fresh tssb ′ ∧ enough-flushs tssb ′ ∧
valid-program-history tssb ′ ∧ valid tssb ′ ∧
(∃ ts ′ m ′ S ′. (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′) ∧ (tssb ′,msb
′,Ssb

′) ∼ (ts ′,m ′,S ′))
〈proof 〉

sublocale initialsb ⊆ tmps-distinct 〈proof 〉
locale xvalid-program-progress = program-progress + xvalid-program

theorem (in xvalid-program-progress) concurrent-direct-execution-simulates-store-buffer-history-execution:
assumes exec-sb: (tssb,msb,Ssb) ⇒sbh

∗ (tssb ′,msb
′,Ssb

′)
assumes init: initialsb tssb Ssb

assumes valid: valid tssb
assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe: safe-reach-direct safe-free-flowing (ts,m,S)
shows ∃ ts ′ m ′ S ′. (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′) ∧
(tssb ′,msb

′,Ssb
′) ∼ (ts ′,m ′,S ′)

〈proof 〉

lemma filter-is-Writesb-Cons-Writesb: filter is-Writesb xs = Writesb volatile a sop v A L
R W#ys

=⇒ ∃ rs rws. (∀ r ∈ set rs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r) ∧
xs=rs@Writesb volatile a sop v A L R W#rws ∧ ys=filter is-Writesb rws

〈proof 〉

126

lemma filter-is-Writesb-empty: filter is-Writesb xs = []
=⇒ (∀ r ∈ set xs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r)

〈proof 〉

lemma flush-reads-program:
∧
O S R .

∀ r ∈ set sb. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r =⇒
∃O ′ R ′ S ′. (m,sb,O,R,S) →f

∗ (m,[],O ′,R ′,S ′)
〈proof 〉

lemma flush-progress: ∃m ′ O ′ S ′ R ′. (m,r#sb,O,R,S) →f (m ′,sb,O ′,R ′,S ′)
〈proof 〉

lemma flush-empty:
assumes steps: (m, sb,O,R, S) →f

∗ (m ′, sb ′,O ′,R ′,S ′)
shows sb=[] =⇒ m ′=m ∧ sb ′=[] ∧ O ′=O ∧ R ′=R ∧ S ′=S

〈proof 〉

lemma flush-append:
assumes steps: (m, sb,O,R,S) →f

∗ (m ′, sb ′,O ′,R ′,S ′)
shows

∧
xs. (m, sb@xs,O,R,S) →f

∗ (m ′, sb ′@xs,O ′,R ′,S ′)
〈proof 〉

lemmas store-buffer-step-induct =
store-buffer-step.induct [split-format (complete),
consumes 1, case-names SBWritesb]

theorem flush-simulates-filter-writes:
assumes step: (m,sb,O,R,S) →w (m ′,sb ′,O ′,R ′,S ′)
shows

∧
sbh Oh Rh Sh. sb=filter is-Writesb sbh

=⇒
∃ sbh

′ Oh
′ Rh

′ Sh
′. (m,sbh,Oh,Rh,Sh) →f

∗ (m ′,sbh
′,Oh

′,Rh
′,Sh

′) ∧
sb ′=filter is-Writesb sbh

′ ∧ (sb ′=[] −→ sbh
′=[])

〈proof 〉

lemma bufferd-val-filter-is-Writesb-eq-ext:
buffered-val (filter is-Writesb sb) a = buffered-val sb a
〈proof 〉

lemma bufferd-val-filter-is-Writesb-eq:
buffered-val (filter is-Writesb sb) = buffered-val sb
〈proof 〉

lemma outstanding-refs-is-volatile-Writesb-filter-writes:
outstanding-refs is-volatile-Writesb (filter is-Writesb xs) =
outstanding-refs is-volatile-Writesb xs
〈proof 〉

127

A.6 Simulation of Store Buffer Machine without History by Store Buffer
Machine with History

theorem (in valid-program) concurrent-history-steps-simulates-store-buffer-step:
assumes step-sb: (ts,m,S) ⇒sb (ts ′,m ′,S ′)
assumes sim: ts ∼h tsh
shows ∃ tsh ′ Sh

′. (tsh,m,Sh) ⇒sbh
∗ (tsh ′,m ′,Sh

′) ∧ ts ′ ∼h tsh ′

〈proof 〉

theorem (in valid-program) concurrent-history-steps-simulates-store-buffer-steps:
assumes step-sb: (ts,m,S) ⇒sb

∗ (ts ′,m ′,S ′)
shows

∧
tsh Sh. ts ∼h tsh =⇒ ∃ tsh ′ Sh

′. (tsh,m,Sh) ⇒sbh
∗ (tsh ′,m ′,Sh

′) ∧ ts ′ ∼h tsh ′

〈proof 〉

theorem (in xvalid-program-progress) concurrent-direct-execution-simulates-store-buffer-execution:
assumes exec-sb: (tssb,msb,x) ⇒sb

∗ (tssb ′,msb
′,x ′)

assumes init: initialsb tssb Ssb

assumes valid: valid tssb
assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe: safe-reach-direct safe-free-flowing (ts,m,S)
shows ∃ tsh ′ Sh

′ ts ′ m ′ S ′.
(tssb,msb,Ssb) ⇒sbh

∗ (tsh ′,msb
′,Sh

′) ∧
tssb ′ ∼h tsh ′ ∧

(ts,m,S) ⇒d
∗ (ts ′,m ′,S ′) ∧

(tsh ′,msb
′,Sh

′) ∼ (ts ′,m ′,S ′)
〈proof 〉

inductive sim-direct-config::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels) thread-config list ⇒ (′p,unit,bool, ′owns ′, ′rels ′)

thread-config list ⇒ bool
(‹- ∼d - › [60,60] 100)

where
[[length ts = length tsd;
∀ i < length ts.

(∃O ′ D ′ R ′.
let (p,is, j,sb,D, O,R) = tsd!i in

ts!i=(p,is, j, [] ,D ′,O ′,R ′))
]]
=⇒
ts ∼d tsd

lemma empty-sb-sims:
assumes empty:
∀ i p is xs sb D O R. i < length tssb −→ tssb!i=(p,is,xs,sb,D,O,R)−→ sb=[]

assumes sim-h: tssb ∼h tsh
assumes sim-d: (tsh,mh,Sh) ∼ (ts,m,S)

128

shows tssb ∼d ts ∧ mh=m ∧ length tssb = length ts
〈proof 〉

lemma empty-d-sims:
assumes sim: tssb ∼d ts
shows ∃ tsh. tssb ∼h tsh ∧ (tsh,m,S) ∼ (ts,m,S)
〈proof 〉

theorem (in xvalid-program-progress) concurrent-direct-execution-simulates-store-buffer-execution-empty:
assumes exec-sb: (tssb,msb,x) ⇒sb

∗ (tssb ′,msb
′,x ′)

assumes init: initialsb tssb Ssb

assumes valid: valid tssb
assumes empty:
∀ i p is xs sb D O R. i < length tssb ′ −→ tssb ′!i=(p,is,xs,sb,D,O,R)−→ sb=[]

assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe: safe-reach-direct safe-free-flowing (ts,m,S)
shows ∃ ts ′ S ′.

(ts,m,S) ⇒d
∗ (ts ′,msb

′,S ′) ∧ tssb ′ ∼d ts ′
〈proof 〉

locale initiald = simple-ownership-distinct + read-only-unowned + unowned-shared +
fixes valid
assumes empty-is: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ is=[]
assumes empty-rels: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ R=Map.empty
assumes valid-init: valid (map (λ(p,is, j,sb,D, O,R). (p,is, j,[],D, O,R)) ts)

locale empty-store-buffers =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes empty-sb: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ sb=[]

lemma initial-d-sb:
assumes init: initiald ts S valid
shows initialsb (map (λ(p,is, j,sb,D, O,R). (p,is, j,[],D, O,R)) ts) S

(is initialsb ?map S)
〈proof 〉

theorem (in xvalid-program-progress) store-buffer-execution-result-sequential-consistent:
assumes exec-sb: (tssb,m,x) ⇒sb

∗ (tssb ′,m ′,x ′)
assumes empty ′: empty-store-buffers tssb ′

assumes sim: tssb ∼d ts
assumes init: initiald ts S valid
assumes safe: safe-reach-direct safe-free-flowing (ts,m,S)
shows ∃ ts ′ S ′.

(ts,m,S) ⇒d
∗ (ts ′,m ′,S ′) ∧ tssb ′ ∼d ts ′

〈proof 〉

locale initialv = simple-ownership-distinct + read-only-unowned + unowned-shared +
fixes valid

129

assumes empty-is: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ is=[]
assumes valid-init: valid (map (λ(p,is, j,sb,D, O,R). (p,is, j,[],D, O,Map.empty)) ts)

theorem (in xvalid-program-progress) store-buffer-execution-result-sequential-consistent ′:
assumes exec-sb: (tssb,m,x) ⇒sb

∗ (tssb ′,m ′,x ′)
assumes empty ′: empty-store-buffers tssb ′

assumes sim: tssb ∼d ts
assumes init: initialv ts S valid
assumes safe: safe-reach-virtual safe-free-flowing (ts,m,S)
shows ∃ ts ′ S ′.

(ts,m,S) ⇒v
∗ (ts ′,m ′,S ′) ∧ tssb ′ ∼d ts ′

〈proof 〉

A.7 Plug Together the Two Simulations

corollary (in xvalid-program) concurrent-direct-steps-simulates-store-buffer-step:
assumes step-sb: (tssb,msb,Ssb) ⇒sb (tssb ′,msb

′,Ssb
′)

assumes sim-h: tssb ∼h tssbh
assumes sim: (tssbh,msb,Ssbh) ∼ (ts,m,S)
assumes valid-own: valid-ownership Ssbh tssbh
assumes valid-sb-reads: valid-reads msb tssbh
assumes valid-hist: valid-history program-step tssbh
assumes valid-sharing: valid-sharing Ssbh tssbh
assumes tmps-distinct: tmps-distinct tssbh
assumes valid-sops: valid-sops tssbh
assumes valid-dd: valid-data-dependency tssbh
assumes load-tmps-fresh: load-tmps-fresh tssbh
assumes enough-flushs: enough-flushs tssbh
assumes valid-program-history: valid-program-history tssbh
assumes valid: valid tssbh
assumes safe-reach: safe-reach-direct safe-delayed (ts,m,S)
shows ∃ tssbh ′ Ssbh

′.
(tssbh,msb,Ssbh) ⇒sbh

∗ (tssbh ′,msb
′,Ssbh

′) ∧ tssb ′ ∼h tssbh ′ ∧
valid-ownership Ssbh

′ tssbh ′ ∧ valid-reads msb
′ tssbh ′ ∧

valid-history program-step tssbh ′ ∧
valid-sharing Ssbh

′ tssbh ′ ∧ tmps-distinct tssbh ′ ∧ valid-data-dependency tssbh ′ ∧
valid-sops tssbh ′ ∧ load-tmps-fresh tssbh ′ ∧ enough-flushs tssbh ′ ∧
valid-program-history tssbh ′ ∧ valid tssbh ′ ∧
(∃ ts ′ S ′ m ′. (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′) ∧
(tssbh ′,msb

′,Ssbh
′) ∼ (ts ′,m ′,S ′))

〈proof 〉

lemma conj-commI: P ∧ Q =⇒ Q ∧ P
〈proof 〉

130

lemma def-to-eq: P = Q =⇒ P ≡ Q
〈proof 〉

context xvalid-program
begin

definition
invariant ts S m ≡

valid-ownership S ts ∧ valid-reads m ts ∧ valid-history program-step ts ∧
valid-sharing S ts ∧ tmps-distinct ts ∧ valid-data-dependency ts ∧
valid-sops ts ∧ load-tmps-fresh ts ∧ enough-flushs ts ∧ valid-program-history ts ∧
valid ts

definition ownership-inv ≡ valid-ownership
definition sharing-inv ≡ valid-sharing
definition temporaries-inv ts ≡ tmps-distinct ts ∧ load-tmps-fresh ts
definition history-inv ts m ≡ valid-history program-step ts ∧ valid-program-history ts ∧
valid-reads m ts
definition data-dependency-inv ts ≡ valid-data-dependency ts ∧ load-tmps-fresh ts ∧
valid-sops ts
definition barrier-inv ≡ enough-flushs

lemma invariant-grouped-def: invariant ts S m ≡
ownership-inv S ts ∧ sharing-inv S ts ∧ temporaries-inv ts ∧ data-dependency-inv ts ∧

history-inv ts m ∧ barrier-inv ts ∧ valid ts
〈proof 〉

theorem (in xvalid-program) simulation ′:
assumes step-sb: (tssb,msb,Ssb) ⇒sbh (tssb ′,msb

′,Ssb
′)

assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes inv: invariant tssb Ssb msb

assumes safe-reach: safe-reach-direct safe-delayed (ts,m,S)
shows invariant tssb ′ Ssb

′ msb
′ ∧

(∃ ts ′ S ′ m ′. (ts,m,S) ⇒d
∗ (ts ′,m ′,S ′) ∧ (tssb ′,msb

′,Ssb
′) ∼ (ts ′,m ′,S ′))

〈proof 〉

lemmas (in xvalid-program) simulation = conj-commI [OF simulation ′]
end

end

A.8 PIMP

theory PIMP
imports ReduceStoreBufferSimulation
begin

datatype expr = Const val | Mem bool addr | Tmp sop
| Unop val ⇒ val expr

131

| Binop val ⇒ val ⇒ val expr expr

datatype stmt =
Skip
| Assign bool expr expr tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns tmps ⇒

owns
| CAS expr expr expr tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns
| Seq stmt stmt
| Cond expr stmt stmt
| While expr stmt

| SGhost tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns
| SFence

primrec used-tmps:: expr ⇒ nat — number of temporaries used
where
used-tmps (Const v) = 0
| used-tmps (Mem volatile addr) = 1
| used-tmps (Tmp sop) = 0
| used-tmps (Unop f e) = used-tmps e
| used-tmps (Binop f e1 e2) = used-tmps e1 + used-tmps e2

primrec issue-expr:: tmp ⇒ expr ⇒ instr list — load operations
where
issue-expr t (Const v) = []
|issue-expr t (Mem volatile a) = [Read volatile a t]
|issue-expr t (Tmp sop) = []
|issue-expr t (Unop f e) = issue-expr t e
|issue-expr t (Binop f e1 e2) = issue-expr t e1 @ issue-expr (t + (used-tmps e1)) e2

primrec eval-expr:: tmp ⇒ expr ⇒ sop — calculate result
where
eval-expr t (Const v) = ({},λj. v)
|eval-expr t (Mem volatile a) = ({t},λj. the (j t))
|eval-expr t (Tmp sop) = sop

— trick to enforce sop to be sensible in the current context, without
having to include wellformedness constraints
|eval-expr t (Unop f e) = (let (D,fe) = eval-expr t e in (D,λj. f (fe j)))
|eval-expr t (Binop f e1 e2) = (let (D1,f1) = eval-expr t e1;

(D2,f2) = eval-expr (t + (used-tmps e1)) e2
in (D1 ∪ D2,λj. f (f1 j) (f2 j)))

primrec valid-sops-expr:: nat ⇒ expr ⇒ bool
where
valid-sops-expr t (Const v) = True
|valid-sops-expr t (Mem volatile a) = True
|valid-sops-expr t (Tmp sop) = ((∀ t ′ ∈ fst sop. t ′ < t) ∧ valid-sop sop)

132

|valid-sops-expr t (Unop f e) = valid-sops-expr t e
|valid-sops-expr t (Binop f e1 e2) = (valid-sops-expr t e1 ∧ valid-sops-expr t e2)

primrec valid-sops-stmt:: nat ⇒ stmt ⇒ bool
where
valid-sops-stmt t Skip = True
|valid-sops-stmt t (Assign volatile a e A L R W) = (valid-sops-expr t a ∧ valid-sops-expr
t e)
|valid-sops-stmt t (CAS a ce se A L R W) = (valid-sops-expr t a ∧ valid-sops-expr t ce ∧

valid-sops-expr t se)
|valid-sops-stmt t (Seq s1 s2) = (valid-sops-stmt t s1 ∧ valid-sops-stmt t s2)
|valid-sops-stmt t (Cond e s1 s2) = (valid-sops-expr t e ∧ valid-sops-stmt t s1 ∧
valid-sops-stmt t s2)
|valid-sops-stmt t (While e s) = (valid-sops-expr t e ∧ valid-sops-stmt t s)
|valid-sops-stmt t (SGhost A L R W) = True
|valid-sops-stmt t SFence = True

type-synonym stmt-config = stmt × nat
consts isTrue:: val ⇒ bool

inductive stmt-step:: tmps ⇒ stmt-config ⇒ stmt-config × instrs ⇒ bool
(‹-` - →s -› [60,60,60] 100)

for j
where

AssignAddr:
∀ sop. a 6= Tmp sop =⇒
j` (Assign volatile a e A L R W, t) →s

((Assign volatile (Tmp (eval-expr t a)) e A L R W, t + used-tmps a), issue-expr t
a)

| Assign:
D ⊆ dom j =⇒
j` (Assign volatile (Tmp (D,a)) e A L R W, t) →s

((Skip, t + used-tmps e),
issue-expr t e@[Write volatile (a j) (eval-expr t e) (A j) (L j) (R j) (W j)])

| CASAddr:
∀ sop. a 6= Tmp sop =⇒
j` (CAS a ce se A L R W, t) →s

((CAS (Tmp (eval-expr t a)) ce se A L R W, t + used-tmps a), issue-expr t a)

| CASComp:
∀ sop. ce 6= Tmp sop =⇒
j` (CAS (Tmp (Da,a)) ce se A L R W, t) →s

133

((CAS (Tmp (Da,a)) (Tmp (eval-expr t ce)) se A L R W, t + used-tmps ce),
issue-expr t ce)

| CAS:
[[Da ⊆ dom j; Dc ⊆ dom j; eval-expr t se = (D,f)]]
=⇒
j` (CAS (Tmp (Da,a)) (Tmp (Dc,c)) se A L R W, t) →s

((Skip, Suc (t + used-tmps se)), issue-expr t se@
[RMW (a j) (t + used-tmps se) (D,f) (λj. the (j (t + used-tmps se)) = c j) (λv1

v2. v1)
(A j) (L j) (R j) (W j)])

| Seq:
j` (s1, t) →s ((s1 ′, t ′), is)
=⇒
j` (Seq s1 s2, t) →s ((Seq s1 ′ s2, t ′),is)

| SeqSkip:
j` (Seq Skip s2, t) →s ((s2, t), [])

| Cond:
∀ sop. e 6= Tmp sop
=⇒
j` (Cond e s1 s2, t) →s

((Cond (Tmp (eval-expr t e)) s1 s2, t + used-tmps e), issue-expr t e)

| CondTrue:
[[D ⊆ dom j; isTrue (e j)]]
=⇒
j` (Cond (Tmp (D,e)) s1 s2, t) →s ((s1, t),[])

| CondFalse:
[[D ⊆ dom j; ¬ isTrue (e j)]]
=⇒
j` (Cond (Tmp (D,e)) s1 s2, t) →s ((s2, t),[])

| While:
j` (While e s, t) →s

((Cond e (Seq s (While e s)) Skip, t),[])

| SGhost:
j` (SGhost A L R W, t) →s ((Skip, t),[Ghost (A j) (L j) (R j) (W j)])

| SFence:
j` (SFence, t) →s ((Skip, t),[Fence])

inductive-cases stmt-step-cases [cases set]:
j` (Skip, t) →s c
j` (Assign volatile a e A L R W, t) →s c

134

j` (CAS a ce se A L R W, t) →s c
j` (Seq s1 s2, t) →s c
j` (Cond e s1 s2, t) →s c
j` (While e s, t) →s c
j` (SGhost A L R W, t) →s c
j` (SFence, t) →s c

lemma valid-sops-expr-mono:
∧

t t ′. valid-sops-expr t e =⇒ t ≤ t ′ =⇒ valid-sops-expr t ′
e
〈proof 〉

lemma valid-sops-stmt-mono:
∧

t t ′. valid-sops-stmt t s =⇒ t ≤ t ′ =⇒ valid-sops-stmt
t ′ s
〈proof 〉

lemma valid-sops-expr-valid-sop:
∧

t. valid-sops-expr t e =⇒ valid-sop (eval-expr t e)
〈proof 〉

lemma valid-sops-expr-eval-expr-in-range:∧
t. valid-sops-expr t e =⇒ ∀ t ′ ∈ fst (eval-expr t e). t ′ < t + used-tmps e

〈proof 〉

lemma stmt-step-tmps-count-mono:
assumes step: j` (s,t) →s ((s ′,t ′),is)
shows t ≤ t ′

〈proof 〉

lemma valid-sops-stmt-invariant:
assumes step: j` (s,t) →s ((s ′,t ′),is)
shows valid-sops-stmt t s =⇒ valid-sops-stmt t ′ s ′

〈proof 〉

lemma map-le-restrict-map-eq: m1 ⊆m m2 =⇒ D ⊆ dom m1 =⇒ m2 |‘ D = m1 |‘ D
〈proof 〉

lemma sbh-step-preserves-load-tmps-bound:
assumes step: (is,O,D,j,sb,S,m) →sbh (is ′,O ′,D ′,j ′,sb ′,S ′,m ′)
assumes less: ∀ i ∈ load-tmps is. i < n
shows ∀ i ∈ load-tmps is ′. i < n
〈proof 〉

lemma sbh-step-preserves-read-tmps-bound:
assumes step: (is,j,sb,m,D,O,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,S ′)
assumes less-is: ∀ i ∈ load-tmps is. i < n
assumes less-sb: ∀ i ∈ read-tmps sb. i < n

135

shows ∀ i ∈ read-tmps sb ′. i < n
〈proof 〉

lemma sbh-step-preserves-tmps-bound:
assumes step: (is,j,sb,m,D,O,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,S ′)
assumes less-dom: ∀ i ∈ dom j. i < n
assumes less-is: ∀ i ∈ load-tmps is. i < n
shows ∀ i ∈ dom j ′. i < n
〈proof 〉

lemma flush-step-preserves-read-tmps:
assumes step: (m,sb,O) →f (m ′,sb ′,O ′)
assumes less-sb: ∀ i ∈ read-tmps sb. i < n
shows ∀ i ∈ read-tmps sb ′. i < n
〈proof 〉

lemma flush-step-preserves-write-sops:
assumes step: (m,sb,O) →f (m ′,sb ′,O ′)
assumes less-sb: ∀ i∈

⋃
(fst ‘ write-sops sb). i < t

shows ∀ i∈
⋃

(fst ‘ write-sops sb ′). i < t
〈proof 〉

lemma issue-expr-load-tmps-range ′:∧
t. load-tmps (issue-expr t e) = {i. t ≤ i ∧ i < t + used-tmps e}

〈proof 〉

lemma issue-expr-load-tmps-range:∧
t. ∀ i ∈ load-tmps (issue-expr t e). t ≤ i ∧ i < t + (used-tmps e)

〈proof 〉

lemma stmt-step-load-tmps-range ′:
assumes step: j` (s, t) →s ((s ′, t ′),is)
shows load-tmps is = {i. t ≤ i ∧ i < t ′}
〈proof 〉

lemma stmt-step-load-tmps-range:
assumes step: j` (s, t) →s ((s ′, t ′),is)
shows ∀ i ∈ load-tmps is. t ≤ i ∧ i < t ′

〈proof 〉

lemma distinct-load-tmps-issue-expr:
∧

t. distinct-load-tmps (issue-expr t e)
〈proof 〉

lemma max-used-load-tmps: t + used-tmps e /∈ load-tmps (issue-expr t e)
〈proof 〉

136

lemma stmt-step-distinct-load-tmps:
assumes step: j` (s, t) →s ((s ′, t ′),is)
shows distinct-load-tmps is
〈proof 〉

lemma store-sops-issue-expr [simp]:
∧

t. store-sops (issue-expr t e) = {}
〈proof 〉

lemma stmt-step-data-store-sops-range:
assumes step: j` (s, t) →s ((s ′, t ′),is)
assumes valid: valid-sops-stmt t s
shows ∀ (D,f) ∈ store-sops is. ∀ i ∈ D. i < t ′

〈proof 〉

lemma sbh-step-distinct-load-tmps-prog-step:
assumes step: j`(s,t) →s ((s ′,t ′),is ′)

assumes load-tmps-le: ∀ i ∈ load-tmps is. i < t
assumes read-tmps-le: ∀ i ∈ read-tmps sb. i < t
shows distinct-load-tmps is ′ ∧ (load-tmps is ′ ∩ load-tmps is = {}) ∧

(load-tmps is ′ ∩ read-tmps sb) = {}
〈proof 〉

lemma data-dependency-consistent-instrs-issue-expr:∧
t T. data-dependency-consistent-instrs T (issue-expr t e)

〈proof 〉

lemma dom-eval-expr:∧
t. [[valid-sops-expr t e; x ∈ fst (eval-expr t e)]] =⇒ x ∈ {i. i < t} ∪ load-tmps (issue-expr

t e)
〈proof 〉

lemma Cond-not-s1: s1 6= Cond e s1 s2
〈proof 〉

lemma Cond-not-s2: s2 6= Cond e s1 s2
〈proof 〉

lemma Seq-not-s1: s1 6= Seq s1 s2
〈proof 〉

lemma Seq-not-s2: s2 6= Seq s1 s2
〈proof 〉

lemma prog-step-progress:
assumes step: j`(s,t) →s ((s ′,t ′),is)
shows (s ′,t ′) 6= (s,t) ∨ is 6= []

〈proof 〉

137

lemma stmt-step-data-dependency-consistent-instrs:
assumes step: j` (s, t) →s ((s ′, t ′),is)
assumes valid: valid-sops-stmt t s
shows data-dependency-consistent-instrs ({i. i < t}) is
〈proof 〉

lemma sbh-valid-data-dependency-prog-step:
assumes step: j`(s,t) →s ((s ′,t ′),is ′)
assumes store-sops-le: ∀ i ∈

⋃
(fst ‘ store-sops is). i < t

assumes write-sops-le: ∀ i ∈
⋃

(fst ‘ write-sops sb). i < t
assumes valid: valid-sops-stmt t s
shows data-dependency-consistent-instrs ({i. i < t}) is ′ ∧

load-tmps is ′ ∩
⋃
(fst ‘ store-sops is) = {} ∧

load-tmps is ′ ∩
⋃
(fst ‘ write-sops sb) = {}

〈proof 〉

lemma sbh-load-tmps-fresh-prog-step:
assumes step: j`(s,t) →s ((s ′,t ′),is ′)
assumes tmps-le: ∀ i ∈ dom j. i < t
shows load-tmps is ′ ∩ dom j = {}

〈proof 〉

lemma sbh-valid-sops-prog-step:
assumes step: j`(s,t) →s ((s ′,t ′),is)
assumes valid: valid-sops-stmt t s
shows ∀ sop∈store-sops is. valid-sop sop

〈proof 〉

primrec prog-configs:: ′a memref list ⇒ ′a set
where
prog-configs [] = {}
|prog-configs (x#xs) = (case x of

Progsb p p ′ is ⇒ {p,p ′} ∪ prog-configs xs
| - ⇒ prog-configs xs)

lemma prog-configs-append:
∧

ys. prog-configs (xs@ys) = prog-configs xs ∪ prog-configs
ys
〈proof 〉

lemma prog-configs-in1: Progsb p1 p2 is ∈ set xs =⇒ p1 ∈ prog-configs xs
〈proof 〉

lemma prog-configs-in2: Progsb p1 p2 is ∈ set xs =⇒ p2 ∈ prog-configs xs
〈proof 〉

lemma prog-configs-mono:
∧

ys. set xs ⊆ set ys =⇒ prog-configs xs ⊆ prog-configs ys
〈proof 〉

138

locale separated-tmps =
fixes ts
assumes valid-sops-stmt: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ valid-sops-stmt t s

assumes valid-sops-stmt-sb: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O); (s ′,t ′) ∈ prog-configs
sb]]
=⇒ valid-sops-stmt t ′ s ′

assumes load-tmps-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ ∀ i ∈ load-tmps is. i < t

assumes read-tmps-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ ∀ i ∈ read-tmps sb. i < t

assumes store-sops-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ ∀ i ∈

⋃
(fst ‘ store-sops is). i < t

assumes write-sops-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ ∀ i ∈

⋃
(fst ‘ write-sops sb). i < t

assumes tmps-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ dom j ∪ load-tmps is = {i. i < t}

lemma (in separated-tmps)
tmps-le ′:
assumes i-bound: i < length ts
assumes ts-i: ts!i = ((s,t),is,j,sb,D,O)
shows ∀ i ∈ dom j. i < t

〈proof 〉

lemma (in separated-tmps) separated-tmps-nth-update:
[[i < length ts; valid-sops-stmt t s; ∀ (s ′,t ′) ∈ prog-configs sb. valid-sops-stmt t ′ s ′;
∀ i ∈ load-tmps is. i < t;∀ i ∈ read-tmps sb. i < t;
∀ i ∈

⋃
(fst ‘ store-sops is). i < t; ∀ i ∈

⋃
(fst ‘ write-sops sb). i < t; dom j ∪ load-tmps

is = {i. i < t}]]
=⇒
separated-tmps (ts[i:=((s,t),is,j,sb,D,O)])
〈proof 〉

lemma hd-prog-app-in-first:
∧

ys. Progsb p p ′ is ∈ set xs =⇒ hd-prog q (xs @ ys) =
hd-prog q xs
〈proof 〉

lemma hd-prog-app-in-eq:
∧

ys. Progsb p p ′ is ∈ set xs =⇒ hd-prog q xs = hd-prog x xs
〈proof 〉

lemma hd-prog-app-notin-first:
∧

ys. ∀p p ′ is. Progsb p p ′ is /∈ set xs =⇒ hd-prog q (xs
@ ys) = hd-prog q ys
〈proof 〉

lemma union-eq-subsetD: A ∪ B = C =⇒ A ∪ B ⊆ C ∧ C ⊆ A ∪ B
〈proof 〉

139

lemma prog-step-preserves-separated-tmps:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O)
assumes prog-step: j` p →s (p ′, is ′)
assumes sep: separated-tmps ts
shows separated-tmps

(ts [i:=(p ′,is@is ′,j,sb@[Progsb p p ′ is ′],D,O)])
〈proof 〉

lemma flush-step-sb-subset:
assumes step: (m,sb,O) →f (m ′, sb ′,O ′)
shows set sb ′ ⊆ set sb

〈proof 〉

lemma flush-step-preserves-separated-tmps:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes flush-step: (m,sb,O,R,S) →f (m ′, sb ′,O ′,R ′,S ′)
assumes sep: separated-tmps ts
shows separated-tmps (ts [i:=(p,is,j,sb ′,D,O ′,R ′)])

〈proof 〉

lemma sbh-step-preserves-store-sops-bound:
assumes step: (is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)
assumes store-sops-le: ∀ i∈

⋃
(fst ‘ store-sops is). i < t

shows ∀ i∈
⋃

(fst ‘ store-sops is ′). i < t
〈proof 〉

lemma sbh-step-preserves-write-sops-bound:
assumes step: (is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)
assumes store-sops-le: ∀ i∈

⋃
(fst ‘ store-sops is). i < t

assumes write-sops-le: ∀ i∈
⋃
(fst ‘ write-sops sb). i < t

shows ∀ i∈
⋃

(fst ‘ write-sops sb ′). i < t
〈proof 〉

lemma sbh-step-prog-configs-eq:
assumes step: (is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)
shows prog-configs sb ′ = prog-configs sb

〈proof 〉

lemma sbh-step-preserves-tmps-bound ′:
assumes step: (is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)
shows dom j ∪ load-tmps is = dom j ′ ∪ load-tmps is ′
〈proof 〉

lemma sbh-step-preserves-separated-tmps:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes memop-step: (is, j, sb, m,D, O, R,S) →sbh

140

(is ′, j ′, sb ′, m ′,D ′, O ′, R ′,S ′)
assumes instr: separated-tmps ts
shows separated-tmps (ts [i:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)])

〈proof 〉

definition
valid-pimp ts ≡ separated-tmps ts

lemma prog-step-preserves-valid:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb::stmt-config store-buffer,D,O,R)
assumes prog-step: j` p →s (p ′, is ′)
assumes valid: valid-pimp ts
shows valid-pimp (ts [i:=(p ′,is@is ′,j,sb@[Progsb p p ′ is ′],D,O,R)])

〈proof 〉

lemma flush-step-preserves-valid:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb::stmt-config store-buffer,D,O,R)
assumes flush-step: (m,sb,O,R,S) →f (m ′, sb ′,O ′,R ′,S ′)
assumes valid: valid-pimp ts
shows valid-pimp (ts [i:=(p,is,j,sb ′,D,O ′,R ′)])

〈proof 〉

lemma sbh-step-preserves-valid:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb::stmt-config store-buffer,D,O,R)
assumes memop-step: (is, j, sb, m,D, O, R,S) →sbh

(is ′, j ′, sb ′, m ′,D ′, O ′, R ′, S ′)
assumes valid: valid-pimp ts
shows valid-pimp (ts [i:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)])

〈proof 〉

lemma hd-prog-prog-configs: hd-prog p sb = p ∨ hd-prog p sb ∈ prog-configs sb
〈proof 〉

interpretation PIMP: xvalid-program-progress stmt-step λ(s,t). valid-sops-stmt t s
valid-pimp
〈proof 〉

thm PIMP.concurrent-direct-steps-simulates-store-buffer-history-step
thm PIMP.concurrent-direct-steps-simulates-store-buffer-history-steps
thm PIMP.concurrent-direct-steps-simulates-store-buffer-step

We can instantiate PIMP with the various memory models.interpretation direct:
computation direct-memop-step empty-storebuffer-step stmt-step λp p ′ is sb. ()〈proof 〉

interpretation virtual:
computation virtual-memop-step empty-storebuffer-step stmt-step λp p ′ is sb. ()〈proof 〉

interpretation store-buffer:
computation sb-memop-step store-buffer-step stmt-step λp p ′ is sb. sb 〈proof 〉

141

interpretation store-buffer-history:
computation sbh-memop-step flush-step stmt-step λp p ′ is sb. sb @ [Progsb p p ′ is]〈proof 〉

abbreviation direct-pimp-step::
(stmt-config,unit,bool,owns,rels,shared) global-config ⇒

(stmt-config,unit,bool,owns,rels,shared) global-config ⇒ bool
(‹- ⇒dp -› [60,60] 100)

where
c ⇒dp d ≡ direct.concurrent-step c d

abbreviation direct-pimp-steps::
(stmt-config,unit,bool,owns,rels,shared) global-config ⇒

(stmt-config,unit,bool,owns,rels,shared) global-config ⇒ bool
(‹- ⇒dp

∗ -› [60,60] 100)
where
direct-pimp-steps == direct-pimp-step^∗∗

Execution exampleslemma Assign-Const-ex:
([((Assign True (Tmp ({},λj. a)) (Const c) (λj. A) (λj. L) (λj. R) (λj.
W),t),[],j,(),D,O,R)],m,S) ⇒dp

∗

([((Skip,t),[],j,(),True,O ∪ A − R,Map.empty)],m(a := c),S ⊕W R 	A L)
〈proof 〉

lemma
([((Assign True (Tmp ({},λj. a)) (Binop (+) (Mem True x) (Mem True y)) (λj. A) (λj.

L) (λj. R) (λj. W),t),[],j,(),D,O,R)],m,S)
⇒dp

∗

([((Skip,t + 2),[],j(t7→m x, t + 1 7→m y),(),True,O ∪ A − R,Map.empty)],m(a := m x +
m y),S ⊕W R 	A L)
〈proof 〉

lemma
assumes isTrue: isTrue c
shows
([((Cond (Const c) (Assign True (Tmp ({},λj. a)) (Const c) (λj. A) (λj. L) (λj. R) (λj.
W)) Skip,t) ,[],j,(),D,O,R)],m,S) ⇒dp

∗

([((Skip,t),[],j,(),True,O ∪ A − R,Map.empty)],m(a := c),S ⊕W R 	A L)
〈proof 〉

end

References
1. Advanced Micro Devices (AMD), Inc. AMD64 Architecture Programmer’s Manual: Volumes 1–3.

September 2007. rev. 3.14.
2. Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial. IEEE

Computer, 29(12):66–76, 1996.
3. David Aspinall and Jaroslav Sevcík. Formalising Java’s data race free guarantee. In Klaus Schneider

and Jens Brandt, editors, TPHOLs, volume 4732, pages 22–37, 2007.
4. Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Stefano Berardi, Mario Coppo,

and Ferruccio Damiani, editors, Types for Proofs and Programs, International Workshop, TYPES 2003,

142

Torino, Italy, April 30 – May 4, 2003, Revised Selected Papers, volume 3085, pages 34–50. Springer,
2003.

5. Clemens Ballarin. Interpretation of locales in Isabelle: Theories and proof contexts. In Jonathan M.
Borwein and William M. Farmer, editors, Mathematical Knowledge Management, 5th International
Conference, MKM 2006, Wokingham, UK, August 11–12, 2006, Proceedings, volume 4108, pages 31–43.
Springer, 2006.

6. Sebastian Burckhardt and Madanlal Musuvathi. Effective program verification for relaxed memory
models. In CAV ’08: Proceedings of the 20th international conference on Computer Aided Verification,
pages 107–120, Berlin, Heidelberg, 2008. Springer-Verlag.

7. Geng Chen, Ernie Cohen, and Mikhail Kovalev. Store buffer reduction with MMUs. In Dimitra
Giannakopoulou and Daniel Kroening, editors, Verified Software: Theories, Tools and Experiments,
pages 117–132, Cham, 2014. Springer International Publishing.

8. Ernie Cohen and Bert Schirmer. From total store order to sequential consistency: A practical re-
duction theorem. In Matt Kaufmann, Lawrence Paulson, and Michael Norrish, editors, Interactive
Theorem Proving (ITP 2010), volume 6172 of Lecture Notes in Computer Science, Edinburgh, UK,
2010. Springer.

9. Intel. Intel 64 architecture memory ordering white paper. SKU 318147-001, 2007.
10. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual: Volumes 1–3b. 2009.

rev. 29.
11. Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook. In V. Chandru

and V. Vinay, editors, Foundations of Software Technology and Theoretical Computer Science, volume
1180, pages 180–192, 1996.

12. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283. Springer, 2002.

13. Jonas Oberhauser. A simpler reduction theorem for x86-tso. In Arie Gurfinkel and Sanjit A. Seshia,
editors, Verified Software: Theories, Tools, and Experiments, pages 142–164, Cham, 2016. Springer
International Publishing.

14. Scott Owens. Reasoning about the implementation of concurrency abstractions on x86-TSO. Technical
report, University of Cambridge, 2009.

15. Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-TSO. In 22nd
International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2009), 2009.

16. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828. Springer, 1994.
17. Tom Ridge. Operational reasoning for concurrent Caml programs and weak memory models. In Klaus

Schneider and Jens Brandt, editors, Theorem Proving in Higher Order Logics, 20th International
Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Proceedings, volume
4732, pages 278–293, 2007.

18. Jaroslav Sevcík and David Aspinall. On validity of program transformations in the Java memory
model. In Jan Vitek, editor, ECOOP, volume 5142, pages 27–51, 2008.

143

	A Reduction Theorem for Store Buffers
	Introduction
	Preliminaries
	Programming discipline
	Formalization
	Store buffer machine
	Virtual machine
	Reduction

	Building blocks of the proof
	Intermediate models
	Coupling relation
	Simulation

	PIMP
	Conclusion
	Appendix
	Memory Instructions
	Abstract Program Semantics
	Memory Transitions
	Safe Configurations of Virtual Machines
	Simulation of Store Buffer Machine with History by Virtual Machine with Delayed Releases
	Simulation of Store Buffer Machine without History by Store Buffer Machine with History
	Plug Together the Two Simulations
	PIMP

