
A Reduction Theorem for Store Buffers

Ernie Cohen1, Norbert Schirmer2,?

1 Microsoft Corp., Redmond, WA, USA
2 German Research Center for Artificial Intelligence (DFKI) Saarbrücken, Germany

ecohen@amazon.com, norbert.schirmer@web.de

Abstract. When verifying a concurrent program, it is usual to assume that memory is
sequentially consistent. However, most modern multiprocessors depend on store buffering
for efficiency, and provide native sequential consistency only at a substantial performance
penalty. To regain sequential consistency, a programmer has to follow an appropriate pro-
gramming discipline. However, naïve disciplines, such as protecting all shared accesses with
locks, are not flexible enough for building high-performance multiprocessor software.
We present a new discipline for concurrent programming under TSO (total store order, with
store buffer forwarding). It does not depend on concurrency primitives, such as locks. Instead,
threads use ghost operations to acquire and release ownership of memory addresses. A thread
can write to an address only if no other thread owns it, and can read from an address only if
it owns it or it is shared and the thread has flushed its store buffer since it last wrote to an
address it did not own. This discipline covers both coarse-grained concurrency (where data
is protected by locks) as well as fine-grained concurrency (where atomic operations race to
memory).
We formalize this discipline in Isabelle/HOL, and prove that if every execution of a program
in a system without store buffers follows the discipline, then every execution of the program
with store buffers is sequentially consistent. Thus, we can show sequential consistency under
TSO by ordinary assertional reasoning about the program, without having to consider store
buffers at all.

? Work funded by the German Federal Ministry of Education and Research (BMBF) in the framework of
the Verisoft XT project under grant 01 IS 07 008.

Table of Contents

A Reduction Theorem for Store Buffers . 1
Ernie Cohen, Norbert Schirmer

1 Introduction . 2
2 Preliminaries . 5
3 Programming discipline . 6
4 Formalization . 8

4.1 Store buffer machine . 9
4.2 Virtual machine . 10
4.3 Reduction . 13

5 Building blocks of the proof . 13
5.1 Intermediate models . 15
5.2 Coupling relation . 18
5.3 Simulation . 20

6 PIMP . 26
7 Conclusion . 29
A Appendix . 31

A.1 Memory Instructions . 31
A.2 Abstract Program Semantics . 32
A.3 Memory Transitions . 37
A.4 Safe Configurations of Virtual Machines . 39
A.5 Simulation of Store Buffer Machine with History by Virtual Machine

with Delayed Releases . 428
A.6 Simulation of Store Buffer Machine without History by Store Buffer

Machine with History . 699
A.7 Plug Together the Two Simulations . 722
A.8 PIMP . 724

1 Introduction

When verifying a shared-memory concurrent program, it is usual to assume that each
memory operation works directly on a shared memory state, a model sometimes called
atomic memory. A memory implementation that provides this abstraction for programs
that communicate only through shared memory is said to be sequentially consistent. Con-
current algorithms in the computing literature tacitly assume sequential consistency, as
do most application programmers.

However, modern computing platforms typically do not guarantee sequential consis-
tency for arbitrary programs, for two reasons. First, optimizing compilers are typically
incorrect unless the program is appropriately annotated to indicate which program loca-
tions might be concurrently accessed by other threads; this issue is addressed only cursorily
in this report. Second, modern processors buffer stores of retired instructions. To make
such buffering transparent to single-processor programs, subsequent reads of the processor
read from these buffers in preference to the cache. (Otherwise, a program could write a
new value to an address but later read an older value.) However, in a multiprocessor sys-
tem, processors do not snoop the store buffers of other processors, so a store is visible to
the storing processor before it is visible to other processors. This can result in executions
that are not sequentially consistent.

The simplest example illustrating such an inconsistency is the following program, con-
sisting of two threads T0 and T1, where x and y are shared memory variables (initially 0)
and r0 and r1 are registers:

T0
x = 1;
r0 = y;

T1
y = 1;
r1 = x;

In a sequentially consistent execution, it is impossible for both r0 and r1 to be assigned
0. This is because the assignments to x and y must be executed in some order; if x (resp.
y) is assigned first, then r1 (resp. r0) will be set to 1. However, in the presence of store
buffers, the assignments to r0 and r1 might be performed while the writes to x and y are
still in their respective store buffers, resulting in both r0 and r1 being assigned 0.

One way to cope with store buffers is make them an explicit part of the programming
model. However, this is a substantial programming concession. First, because store buffers
are FIFO, it ratchets up the complexity of program reasoning considerably; for example,
the reachability problem for a finite set of concurrent finite-state programs over a finite set
of finite-valued locations is in PSPACE without store buffers, but undecidable (even for
two threads) with store buffers. Second, because writes from function calls might still be
buffered when a function returns, making the store buffers explicit would break modular
program reasoning.

In practice, the usual remedy for store buffering is adherence to a programming dis-
cipline that provides sequential consistency for a suitable class of architectures. In this
report, we describe and prove the correctness of such a discipline suitable for the memory
model provided by existing x86/x64 machines, where each write emerging from a store
buffer hits a global cache visible to all processors. Because each processor sees the same
global ordering of writes, this model is sometimes called total store order (TSO) [2]3

The concurrency discipline most familiar to concurrent programs is one where each
variable is protected by a lock, and a thread must hold the corresponding lock to access
the variable. (It is possible to generalize this to allow shared locks, as well as variants such
as split semaphores.) Such lock-based techniques are typically referred to as coarse-grained
concurrency control, and suffice for most concurrent application programming. However,
these techniques do not suffice for low-level system programming (e.g., the construction of
OS kernels), for several reasons. First, in kernel programming efficiency is paramount, and
atomic memory operations are more efficient for many problems. Second, lock-free con-
currency control can sometimes guarantee stronger correctness (e.g., wait-free algorithms
can provide bounds on execution time). Third, kernel programming requires taking into
account the implicit concurrency of concurrent hardware activities (e.g., a hardware TLB
racing to use page tables while the kernel is trying to access them), and hardware cannot
be forced to follow a locking discipline.

A more refined concurrency control discipline, one that is much closer to expert prac-
tice, is to classify memory addresses as lock-protected or shared. Lock-protected addresses
are used in the usual way, but shared addresses can be accessed using atomic operations
provided by hardware (e.g., on x86 class architectures, most reads and writes are atomic4).
The main restriction on these accesses is that if a processor does a shared write and a

3 Before 2008, Intel [9] and AMD [1] both put forward a weaker memory model in which writes to different
memory addresses may be seen in different orders on different processors, but respecting causal ordering.
However, current implementations satisfy the stronger conditions described in this report and are also
compliant with the latest revisions of the Intel specifications [10]. According to Owens et al. [15] AMD
is also planning a similar adaptation of their manuals.

4 This atomicity isn’t guaranteed for certain memory types, or for operations that cross a cache line.

3

subsequent shared read (possibly from a different address), the processor must flush the
store buffer somewhere in between. For example, in the example above, both x and y
would be shared addresses, so each processor would have to flush its store buffer between
its first and second operations.

However, even this discipline is not very satisfactory. First, we would need even more
rules to allow locks to be created or destroyed, or to change memory between shared and
protected, and so on. Second, there are many interesting concurrency control primitives,
and many algorithms, that allow a thread to obtain exclusive ownership of a memory
address; why should we treat locking as special?

In this report, we consider a much more general and powerful discipline that also guar-
antees sequential consistency. The basic rule for shared addresses is similar to the discipline
above, but there are no locking primitives. Instead, we treat ownership as fundamental.
The difference is that ownership is manipulated by nonblocking ghost updates, rather than
an operation like locking that have runtime overhead. Informally the rules of the discipline
are as follows:

– In any state, each memory address is either shared or unshared. Each memory address
is also either owned by a unique thread or unowned. Every unowned address must be
shared. Each address is also either read-only or read-write. Every read-only address is
unowned.

– A thread can (autonomously) acquire ownership of an unowned address, or release
ownership of a address that it owns. It can also change whether an address it owns is
shared or not. Upon release of an address it can mark it as read-only.

– Each memory access is marked as volatile or non-volatile.
– A thread can perform a write if it is sound. It can perform a read if it is sound and

clean.
– A non-volatile write is sound if the thread owns the address and the address is unshared.
– A non-volatile read is sound if the thread owns the address or the address is read-only.
– A volatile write is sound if no other thread owns the address and the address is not

marked as read-only.
– A volatile read is sound if the address is shared or the thread owns it.
– A volatile read is clean if the store buffer has been flushed since the last volatile write.

Moreover, every non-volatile read is clean.
– For interlocked operations (like compare and swap), which have the side effect of the

store buffer getting flushed, the rules for volatile accesses apply.

Note first that these conditions are not thread-local, because some actions are allowed
only when an address is unowned, marked read-only, or not marked read-only. A thread can
ascertain such conditions only through system-wide invariants, respected by all threads,
along with data it reads. By imposing suitable global invariants, various thread-local dis-
ciplines (such as one where addresses are protected by locks, conditional critical reasons,
or monitors) can be derived as lemmas by ordinary program reasoning, without need for
meta-theory.

Second, note that these rules can be checked in the context of a concurrent program
without store buffers, by introducing ghost state to keep track of ownership and sharing
and whether the thread has performed a volatile write since the last flush. Our main result
is that if a program obeys the rules above, then the program is sequentially consistent when
executed on a TSO machine.

Consider our first example program. If we choose to leave both x and y unowned (and
hence shared), then all accesses must be volatile. This would force each thread to flush the
store buffer between their first and second operations. In practice, on an x86/x64 machine,

4

this would be done by making the writes interlocked, which flushes store buffers as a side
effect. Whichever thread flushes its store buffer second is guaranteed to see the write of
the other thread, making the execution violating sequential consistency impossible.

However, couldn’t the first thread try to take ownership of x before writing it, so that
its write could be non-volatile? The answer is that it could, but then the second thread
would be unable to read x volatile (or take ownership of x and read it non-volatile), because
we would be unable to prove that x is unowned at that point. In other words, a thread
can take ownership of an address only if it is not racing to do so.

Ultimately, the races allowed by the discipline involve volatile access to a shared ad-
dress, which brings us back to locks. A spinlock is typically implemented with an inter-
locked read-modify-write on an address (the interlocking providing the required flushing of
the store buffer). If the locking succeeds, we can prove (using for example a ghost variable
giving the ID of the thread taking the lock) that no other thread holds the lock, and can
therefore safely take ownership of an address “protected” by the lock (using the global
invariant that only the lock owner can own the protected address). Thus, our discipline
subsumes the better-known disciplines governing coarse-grained concurrency control.

To summarize, our motivations for using ownership as our core notion of a practical
programming discipline are the following:

1. the distinction between global (volatile) and local (non-volatile) accesses is a practical
requirement to reduce the performance penalty due to necessary flushes and to allow
important compiler optimizations (such as moving a local write ahead of a global read),

2. coarse-grained concurrency control like locking is nothing special but only a derived
concept which is used for ownership transfer (any other concurrency control that guar-
antees exclusive access is also fine), and

3. we want that the conditions to check for the programming discipline can be discharged
by ordinary state-based program reasoning on a sequentially consistent memory model
(without having to talk about histories or complete executions).

Overview In Section 2 we introduce preliminaries of Isabelle/HOL, the theorem prover
in which we mechanized our work. In Section 3 we informally describe the programming
discipline and basic ideas of the formalization, which is detailed in Section 4 where we
introduce the formal models and the reduction theorem. In Section 5 we give some details
of important building blocks for the proof of the reduction theorem. To illustrate the
connection between a programming language semantics and our reduction theorem, we
instantiate our framework with a simple semantics for a parallel WHILE language in
Section 6. Finally we conclude in Section 7.

2 Preliminaries

The formalization presented in this papaer is mechanized and checked within the generic
interactive theorem prover Isabelle [16]. Isabelle is called generic as it provides a framework
to formalize various object logics declared via natural deduction style inference rules. The
object logic that we employ for our formalization is the higher order logic of Isabelle/HOL
[12].

This article is written using Isabelle’s document generation facilities, which guarantees
a close correspondence between the presentation and the actual theory files. We distin-
guish formal entities typographically from other text. We use a sans serif font for types
and constants (including functions and predicates), e.g., map, a slanted serif font for free
variables, e.g., x, and a slanted sans serif font for bound variables, e.g., x . Small capitals

5

are used for data type constructors, e.g., Foo, and type variables have a leading tick, e.g.,
′a. HOL keywords are typeset in type-writer font, e.g., let.

To group common premises and to support modular reasoning Isabelle provides lo-
cales [4, 5]. A locale provides a name for a context of fixed parameters and premises,
together with an elaborate infrastructure to define new locales by inheriting and extend-
ing other locales, prove theorems within locales and interpret (instantiate) locales. In
our formalization we employ this infrastructure to separate the memory system from the
programming language semantics.

The logical and mathematical notions follow the standard notational conventions with
a bias towards functional programming. We only present the more unconventional parts
here. We prefer curried function application, e.g., f a b instead of f (a, b). In this setting
the latter becomes a function application to one argument, which happens to be a pair.

Isabelle/HOL provides a library of standard types like Booleans, natural numbers,
integers, total functions, pairs, lists, and sets. Moreover, there are packages to define new
data types and records. Isabelle allows polymorphic types, e.g., ′a list is the list type with
type variable ′a. In HOL all functions are total, e.g., nat ⇒ nat is a total function on natural
numbers. A function update is f (y := v) = (λx . if x = y then v else f x). To formalize
partial functions the type ′a option is used. It is a data type with two constructors, one
to inject values of the base type, e.g., bxc, and the additional element ⊥. A base value
can be projected with the function the, which is defined by the sole equation the bxc = x.
Since HOL is a total logic the term the ⊥ is still a well-defined yet un(der)specified value.
Partial functions are usually represented by the type ′a ⇒ ′b option, abbreviated as ′a ⇀
′b. They are commonly used as maps. We denote the domain of map m by dom m. A map
update is written as m(a 7→ v). We can restrict the domain of a map m to a set A by m�A.

The syntax and the operations for lists are similar to functional programming languages
like ML or Haskell. The empty list is [], with x # xs the element x is ‘consed’ to the list
xs.With xs @ ys list ys is appended to list xs. With the term map f xs the function f is
applied to all elements in xs. The length of a list is |xs|, the n-th element of a list can be
selected with xs[n] and can be updated via xs[n := v]. With dropWhile P xs the prefix for
which all elements satisfy predicate P are dropped from list xs.

Sets come along with the standard operations like union, i.e., A ∪ B, membership, i.e.,
x ∈ A and set inversion, i.e., − A.

Tuples with more than two components are pairs nested to the right.

3 Programming discipline

For sequential code on a single processor the store buffer is invisible, since reads respect
outstanding writes in the buffer. This argument can be extended to thread local memory
in the context of a multiprocessor architecture. Memory typically becomes temporarily
thread local by means of locking. The C-idiom to identify shared portions of the memory
is the volatile tag on variables and type declarations. Thread local memory can be
accessed non-volatilely, whereas accesses to shared memory are tagged as volatile. This
prevents the compiler from applying certain optimizations to those accesses which could
cause undesired behavior, e.g., to store intermediate values in registers instead of writing
them to the memory.

The basic idea behind the programming discipline is, that before gathering new in-
formation about the shared state (via reading) the thread has to make its outstanding
changes to the shared state visible to others (by flushing the store buffer). This allows
to sequentialize the reads and writes to obtain a sequentially consistent execution of the
global system. In this sequentialization a write to shared memory happens when the write

6

instruction exits the store buffer, and a read from the shared memory happens when all
preceding writes have exited.

We distinguish thread local and shared memory by an ownership model. Ownership is
maintained in ghost state and can be transferred as side effect of write operations and by a
dedicated ghost operation. Every thread has a set of owned addresses. Owned addresses of
different threads are disjoint. Moreover, there is a global set of shared addresses which can
additionally be marked as read-only. Unowned addresses — addresses owned by no thread
— can be accessed concurrently by all threads. They are a subset of the shared addresses.
The read-only addresses are a subset of the unowned addresses (and thus of the shared
addresses). We only allow a thread to write to owned addresses and unowned, read-write
addresses. We only allow a thread to read from owned addresses and from shared addresses
(even if they are owned by another thread).

All writes to shared memory have to be volatile. Reads from shared addresses also
have to be volatile, except if the address is owned (i.e., single writer, multiple readers) or
if the address is read-only. Moreover, non-volatile writes are restricted to owned, unshared
memory. As long as a thread owns an address it is guaranteed that it is the only one
writing to that address. Hence this thread can safely perform non-volatile reads to that
address without missing any write. Similar it is safe for any thread to access read-only
memory via non-volatile reads since there are no outstanding writes at all.

Recall that a volatile read is clean if it is guaranteed that there is no outstanding
volatile write (to any address) in the store buffer. Moreover every non-volatile read is
clean. To regain sequential consistency under the presence of store buffers every thread
has to make sure that every read is clean, by flushing the store buffer when necessary.
To check the flushing policy of a thread, we keep track of clean reads by means of ghost
state. For every thread we maintain a dirty flag. It is reset as the store buffer gets flushed.
Upon a volatile write the dirty flag is set. The dirty flag is considered to guarantee that a
volatile read is clean.

Table 1a summarizes the access policy and Table 1b the associated flushing policy of the
programming discipline. The key motivation is to improve performance by minimizing the
number of store buffer flushes, while staying sequentially consistent. The need for flushing
the store buffer decreases from interlocked accesses (where flushing is a side-effect) over
volatile accesses to non-volatile accesses. From the viewpoint of access rights there is no
difference between interlocked and volatile accesses. However, keep in mind that some
interlocked operations can read from, modify and write to an address in a single atomic
step of the underlying hardware and are typically used in lock-free algorithms or for the
implementation of locks.

Table 1: Programming discipline.
(a) Access policy

shared shared unshared
(read-write) (read-only)

un-
owned vR, vW vR, R unreachable

owned vR, vW, R unreachable vR, vW, R, W
owned
by other vR unreachable

(v)olatile, (R)ead, (W)rite
all reads have to be clean

(b) Flushing policy

flush (before)

interlocked as side effect
vR if not clean
R, vW, W never

7

4 Formalization

In this section we go into the details of our formalization. In our model, we distinguish
the plain ‘memory system’ from the ‘programming language semantics’ which we both de-
scribe as a small-step transition relation. During a computation the programming language
issues memory instructions (read / write) to the memory system, which itself returns the
results in temporary registers. This clean interface allows us to parameterize the program
semantics over the memory system. Our main theorem allows us to simulate a computa-
tion step in the semantics based on a memory system with store buffers by n steps in the
semantics based on a sequentially consistent memory system. We refer to the former one
as store buffer machine and to the latter one as virtual machine. The simulation theorem
is independent of the programming language.

We continue with introducing the common parts of both machines. In Section 4.1 we
describe the store buffer machine and in Section 4.2 we then describe the virtual machine.
The main reduction theorem is presented in 4.3.

Addresses a, values v and temporaries t are natural numbers. Ghost annotations for
manipulating the ownership information are the following sets of addresses: the acquired
addresses A, the unshared (local) fraction L of the acquired addresses, the released ad-
dresses R and the writable fraction W of the released addresses (the remaining addresses
are considered read-only). These ownership annotations are considered as side-effects on
volatile writes and interlocked operations (in case a write is performed). Moreover, a special
ghost instruction allows to transfer ownership. The possible status changes of an address
due to these ownership transfer operations are depicted in Figure 1. Note that ownership
of an address is not directly transferred between threads, but is first released by one thread
and then can be acquired by another thread. A memory instruction is a datatype with the

shared
read-write

unshared

owned

shared
read-write

shared
read-only

unowned

R ∩ W

A ∩ − L

A ∩ L

R ∩ − W
A ∩ LA ∩ − L

(A)cquire, keep (L)ocal; (R)elease, mark (W)riteable

Fig. 1: Ownership transfer

following constructors:

– Read volatile a t for reading from address a to temporary t, where the Boolean volatile
determines whether the access is volatile or not.

– Write volatile a sop A L R W to write the result of evaluating the store operation sop
at address a. A store operation is a pair (D, f), with the domain D and the function f .
The function f takes temporaries j as a parameter, which maps a temporary to a value.
The subset of temporaries that is considered by function f is specified by the domain
D. We consider store operations as valid when they only depend on their domain:

valid-sop sop ≡ ∀D f j. sop = (D, f) ∧ D ⊆ dom j −→ f j = f (j�D)

8

Again the Boolean volatile specifies the kind of memory access.
– RMW a t sop cond ret A L R W , for atomic interlocked ‘read-modify-write’ instruc-

tions (flushing the store buffer). First the value at address a is loaded to temporary t,
and then the condition cond on the temporaries is considered to decide whether a store
operation is also executed. In case of a store the function ret, depending on both the
old value at address a and the new value (according to store operation sop), specifies
the final result stored in temporary t. With a trivial condition cond this instruction
also covers interlocked reads and writes.

– Fence, a memory fence that flushes the store buffer.
– Ghost A L R W for ownership transfer.

4.1 Store buffer machine

For the store buffer machine the configuration of a single thread is a tuple (p, is, j, sb)
consisting of the program state p, a memory instruction list is, the map of temporaries j
and the store buffer sb. A global configuration of the store buffer machine (ts, m) consists
of a list of thread configurations ts and the memory m, which is a function from addresses
to values.

We describe the computation of the global system by the non-deterministic transition
relation (ts, m)

sb⇒ (ts ′, m ′) defined in Figure 2.

i < |ts| ts[i] = (p, is, j, sb) j` p →p (p ′, is ′)

(ts, m)
sb⇒ (ts[i := (p ′, is @ is ′, j, sb)], m)

i < |ts| ts[i] = (p, is, j, sb) (is, j, sb, m)
sb→m (is ′, j ′, sb ′, m ′)

(ts, m)
sb⇒ (ts[i := (p, is ′, j ′, sb ′)], m ′)

i < |ts| ts[i] = (p, is, j, sb) (m, sb) →sb (m ′, sb ′)

(ts, m)
sb⇒ (ts[i := (p, is, j, sb ′)], m ′)

Fig. 2: Global transitions of store buffer machine

A transition selects a thread ts[i] = (p, is, j, sb) and either the ‘program’ the ‘memory’
or the ‘store buffer’ makes a step defined by sub-relations.

The program step relation is a parameter to the global transition relation. A program
step j` p →p (p ′, is ′) takes the temporaries j and the current program state p and makes
a step by returning a new program state p ′ and an instruction list is ′ which is appended
to the remaining instructions.

A memory step (is, j, sb, m)
sb→m (is ′, j ′, sb ′, m ′) of a machine with store buffer may

only fill its store buffer with new writes.
In a store buffer step (m, sb) →sb (m ′, sb ′) the store buffer may release outstanding

writes to the memory.
The store buffer maintains the list of outstanding memory writes. Write instructions

are appended to the end of the store buffer and emerge to memory from the front of
the list. A read instructions is satisfied from the store buffer if possible. An entry in the
store buffer is of the form Writesb volatile a sop v for an outstanding write (keeping the
volatile flag), where operation sop evaluated to value v.

As defined in Figure 3 a write updates the memory when it exits the store buffer.

9

(m, Writesb volatile a sop v A L R W # sb) →sb (m(a := v), sb)

Fig. 3: Store buffer transition

v = (case buffered-val sb a of ⊥ ⇒ m a | bv ′c ⇒ v ′)

(Read volatile a t # is, j, sb, m)
sb→m (is, j(t 7→ v), sb, m)

sb ′ = sb @ [Writesb volatile a (D, f) (f j) A L R W]

(Write volatile a (D, f) A L R W # is, j, sb, m)
sb→m (is, j, sb ′, m)

¬ cond (j(t 7→ m a)) j ′ = j(t 7→ m a)

(RMW a t (D, f) cond ret A L R W # is, j, [], m)
sb→m (is, j ′, [], m)

cond (j(t 7→ m a)) j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) m ′ = m(a := f (j(t 7→ m a)))

(RMW a t (D, f) cond ret A L R W # is, j, [], m)
sb→m (is, j ′, [], m ′)

(Fence # is, j, [], m)
sb→m (is, j, [], m)

(Ghost A L R W # is, j, sb, m)
sb→m (is, j, sb, m)

Fig. 4: Memory transitions of store buffer machine

The memory transition are defined in Figure 4. With buffered-val sb a we obtain the
value of the last write to address a which is still pending in the store buffer. In case no
outstanding write is in the store buffer we read from the memory. Store operations have
no immediate effect on the memory but are queued in the store buffer instead. Interlocked
operations and the fence operation require an empty store buffer, which means that it has
to be flushed before the action can take place. The read-modify-write instruction first adds
the current value at address a to temporary t and then checks the store condition cond
on the temporaries. If it fails this read is the final result of the operation. Otherwise the
store is performed. The resulting value of the temporary t is specified by the function ret
which considers both the old and new value as input. The fence and the ghost instruction
are just skipped.

4.2 Virtual machine

The virtual machine is a sequentially consistent machine without store buffers, maintaining
additional ghost state to check for the programming discipline. A thread configuration is a
tuple (p, is, j, D, O), with a dirty flag D indicating whether there may be an outstanding
volatile write in the store buffer and the set of owned addresses O. The dirty flag D is
considered to specify if a read is clean: for all volatile reads the dirty flag must not be set.
The global configuration of the virtual machine (ts, m, S) maintains a Boolean map of
shared addresses S (indicating write permission). Addresses in the domain of mapping S
are considered shared and the set of read-only addresses is obtained from S by: read-only
S ≡ {a. S a = bFalsec}

According to the rules in Fig 5 a global transition of the virtual machine (ts, m, S)
v⇒ (ts ′, m ′, S ′) is either a program or a memory step. The transition rules for its memory

system are defined in Figure 6. In addition to the transition rules for the virtual machine
we introduce the safety judgment Os,i ` (is, j, m, D, O, S)

√
in Figure 7, where Os is

the list of ownership sets obtained from the thread list ts and i is the index of the current

10

i < |ts| ts[i] = (p, is, j, D, O) j` p →p (p ′, is ′)

(ts, m, S) v⇒ (ts[i := (p ′, is @ is ′, j, D, O)], m, S)

i < |ts| ts[i] = (p, is, j, D, O) (is, j, m, D, O, S) v→m (is ′, j ′, m ′, D ′, O ′, S ′)

(ts, m, S) v⇒ (ts[i := (p, is ′, j ′, D ′, O ′)], m ′, S ′)

Fig. 5: Global transitions of virtual machine

(Read volatile a t # is, j, x, m, ghst) v→m (is, j(t 7→ m a), x, m, ghst)

(Write False a (D, f) A L R W # is, j, x, m, ghst) v→m (is, j, x, m(a := f j), ghst)

ghst = (D, O, S) ghst ′ = (True, O ∪ A − R, S ⊕W R 	A L)
(Write True a (D, f) A L R W # is, j, x, m, ghst) v→m (is, j, x, m(a := f j), ghst ′)

¬ cond (j(t 7→ m a)) ghst = (D, O, S) ghst ′ = (False, O, S)
(RMW a t (D, f) cond ret A L R W # is, j, x, m, ghst) v→m (is, j(t 7→ m a), x, m, ghst ′)

cond (j(t 7→ m a)) j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a))))
m ′ = m(a := f (j(t 7→ m a))) ghst = (D, O, S) ghst ′ = (False, O ∪ A − R, S ⊕W R 	A L)

(RMW a t (D, f) cond ret A L R W # is, j, x, m, ghst) v→m (is, j ′, x, m ′, ghst ′)

ghst = (D, O, S) ghst ′ = (False, O, S)
(Fence # is, j, x, m, ghst) v→m (is, j, x, m, ghst ′)

ghst = (D, O, S) ghst ′ = (D, O ∪ A − R, S ⊕W R 	A L)
(Ghost A L R W # is, j, x, m, ghst) v→m (is, j, x, m, ghst ′)

Fig. 6: Memory transitions of the virtual machine

11

thread. Safety of all reachable states of the virtual machine ensures that the programming
discipline is obeyed by the program and is our formal prerequisite for the simulation
theorem. It is left as a proof obligation to be discharged by means of a proper program
logic for sequentially consistent executions. In the following we elaborate on the rules of

a ∈ O ∨ a ∈ read-only S ∨ volatile ∧ a ∈ dom S volatile −→ ¬ D
Os,i ` (Read volatile a t # is, j, m, D, O, S)

√

a ∈ O a /∈ dom S
Os,i ` (Write False a (D, f) A L R W # is, j, m, D, O, S)

√

∀ j<|Os|. i 6= j −→ a /∈ Os[j] a /∈ read-only S
∀ j<|Os|. i 6= j −→ A ∩ Os[j] = ∅ A ⊆ O ∪ dom S L ⊆ A R ⊆ O A ∩ R = ∅

Os,i ` (Write True a (D, f) A L R W # is, j, m, D, O, S)
√

¬ cond (j(t 7→ m a)) a ∈ dom S ∪ O
Os,i ` (RMW a t (D, f) cond ret A L R W # is, j, m, D, O, S)

√

cond (j(t 7→ m a)) ∀ j<|Os|. i 6= j −→ a /∈ Os[j] a /∈ read-only S
∀ j<|Os|. i 6= j −→ A ∩ Os[j] = ∅ A ⊆ O ∪ dom S L ⊆ A R ⊆ O A ∩ R = ∅

Os,i ` (RMW a t (D, f) cond ret A L R W # is, j, m, D, O, S)
√

Os,i ` (Fence # is, j, m, D, O, S)
√

A ⊆ dom S ∪ O L ⊆ A R ⊆ O A ∩ R = ∅ ∀ j<|Os|. i 6= j −→ A ∩ Os[j] = ∅
Os,i ` (Ghost A L R W # is, j, m, D, O, S)

√

Fig. 7: Safe configurations of a virtual machine

Figures 6 and 7 in parallel. To read from an address it either has to be owned or read-only
or it has to be volatile and shared. Moreover the read has to be clean. The memory content
of address a is stored in temporary t. Non-volatile writes are only allowed to owned and
unshared addresses. The result is written directly into the memory. A volatile write is
only allowed when no other thread owns the address and the address is not marked as
read-only. Simultaneously with the volatile write we can transfer ownership as specified
by the annotations A, L, R and W . The acquired addresses A must not be owned by
any other thread and stem from the shared addresses or are already owned. Reacquiring
owned addresses can be used to change the shared-status via the set of local addresses L
which have to be a subset of A. The released addresses R have to be owned and distinct
from the acquired addresses A. After the write the new ownership set of the thread is
obtained by adding the acquired addresses A and releasing the addresses R: O ∪ A − R.
The released addresses R are augmented to the shared addresses S and the local addresses
L are removed. We also take care about the write permissions in the shared state: the
released addresses in set W as well as the acquired addresses are marked writable: S ⊕W
R 	A L. The auxiliary ternary operators to augment and subtract addresses from the
sharing map are defined as follows:

S ⊕W R ≡ λa. if a ∈ R then ba ∈ Wc else S a

S 	A L ≡
λa. if a ∈ L then ⊥ else case S a of ⊥ ⇒ ⊥ | bwriteablec ⇒ ba ∈ A ∨ writeablec

The read-modify-write instruction first adds the current value at address a to tempo-
rary t and then checks the store condition cond on the temporaries. If it fails this read is

12

the final result of the operation. Otherwise the store is performed. The resulting value of
the temporary t is specified by the function ret which considers both the old and new value
as input. As the read-modify-write instruction is an interlocked operation which flushes
the store buffer as a side effect the dirty flag D is reset. The other effects on the ghost
state and the safety sideconditions are the same as for the volatile read and volatile write,
respectively.

The only effect of the fence instruction in the system without store buffer is to reset
the dirty flag.

The ghost instruction Ghost A L R W allows to transfer ownership when no write is
involved i.e., when merely reading from memory. It has the same safety requirements as
the corresponding parts in the write instructions.

4.3 Reduction
The reduction theorem we aim at reduces a computation of a machine with store buffers
to a sequential consistent computation of the virtual machine. We formulate this as a
simulation theorem which states that a computation of the store buffer machine (tssb,
m)

sb⇒
∗
(tssb ′, m ′) can be simulated by a computation of the virtual machine (ts, m, S)

v⇒
∗
(ts ′, m ′, S ′). The main theorem only considers computations that start in an initial

configuration where all store buffers are empty and end in a configuration where all store
buffers are empty again. A configuration of the store buffer machine is obtained from a
virtual configuration by removing all ghost components and assuming empty store buffers.
This coupling relation between the thread configurations is written as tssb ∼ ts . Moreover,
the precondition initialv ts S ensures that the ghost state of the initial configuration of
the virtual machine is properly initialized: the ownership sets of the threads are distinct,
an address marked as read-only (according to S) is unowned and every unowned address
is shared. Finally with safe-reach (ts, m, S) we ensure conformance to the programming
discipline by assuming that all reachable configuration in the virtual machine are safe
(according to the rules in Figure 7).
Theorem 1 (Reduction).
(tssb, m)

sb⇒
∗
(tssb ′, m ′) ∧ empty-store-buffers tssb ′ ∧ tssb ∼ ts ∧ initialv ts S ∧

safe-reach (ts, m, S) −→
∃ ts ′ S ′. (ts, m, S) v⇒

∗
(ts ′, m ′, S ′) ∧ tssb ′ ∼ ts ′

This theorem captures our intiution that every result that can be obtained from a com-
putation of the store buffer machine can also be obtained by a sequentially consistent
computation. However, to prove it we need some generalizations that we sketch in the
following sections. First of all the theorem is not inductive as we do not consider arbitrary
intermediate configurations but only those where all store buffers are empty. For interme-
diate confiugrations the coupling relation becomes more involved. The major obstacle is
that a volatile read (from memory) can overtake non-volatile writes that are still in the
store-buffer and have not yet emerged to memory. Keep in mind that our programming
discipline only ensures that no volatile writes can be in the store buffer the moment we do
a volatile read, outstanding non-volatile writes are allowed. This reordering of operations
is reflected in the coupling relation for intermediate configurations as discussed in the
following section.

5 Building blocks of the proof

A corner stone of the proof is a proper coupling relation between an intermediate config-
uration of a machine with store buffers and the virtual machine without store buffers. It

13

allows us to simulate every computation step of the store buffer machine by a sequence
of steps (potentially empty) on the virtual machine. This transformation is essentially a
sequentialization of the trace of the store buffer machine. When a thread of the store
buffer machine executes a non-volatile operation, it only accesses memory which is not
modified by any other thread (it is either owned or read-only). Although a non-volatile
store is buffered, we can immediately execute it on the virtual machine, as there is no
competing store of another thread. However, with volatile writes we have to be careful,
since concurrent threads may also compete with some volatile write to the same address.
At the moment the volatile write enters the store buffer we do not yet know when it will
be issued to memory and how it is ordered relatively to other outstanding writes of other
threads. We therefore have to suspend the write on the virtual machine from the moment
it enters the store buffer to the moment it is issued to memory. For volatile reads our
programming discipline guarantees that there is no volatile write in the store buffer by
flushing the store buffer if necessary. So there are at most some outstanding non-volatile
writes in the store buffer, which are already executed on the virtual machine, as described
before. One simple coupling relation one may think of is to suspend the whole store buffer
as not yet executed intructions of the virtual machine. However, consider the following
scenario. A thread is reading from a volatile address. It can still have non-volatile writes
in its store buffer. Hence the read would be suspended in the virutal machine, and other
writes to the address (e.g. interlocked or volatile writes of another thread) could invalidate
the value. Altogether this suggests the following refined coupling relation: the state of the
virtual machine is obtained from the state of the store buffer machine, by executing each
store buffer until we reach the first volatile write. The remaining store buffer entries are
suspended as instructions. As we only execute non volatile writes the order in which we
execute the store buffers should be irrelevant. This coupling relation allows a volatile read
to be simulated immediately on the virtual machine as it happens on the store buffer
machine.

From the viewpoint of the memory the virtual machine is ahead of the store buffer
machine, as leading non-volatile writes already took effect on the memory of the virtual
machine while they are still pending in the store buffer. However, if there is a volatile write
in the store buffer the corresponding thread in the virtual machine is suspended until the
write leaves the store buffer. So from the viewpoint of the already executed instructions
the store buffer machine is ahead of the virtual machine. To keep track of this delay we
introduce a variant of the store buffer machine below, which maintains the history of
executed instructions in the store buffer (including reads and program steps). Moreover,
the intermediate machine also maintains the ghost state of the virtual machine to support
the coupling relation. We also introduce a refined version of the virutal machine below,
which we try to motivate now. Esentially the programming discipline only allows races
between volatile (or interlocked) operations. By race we mean two competing memory
accesses of different threads of which at least one is a write. For example the discipline
guarantees that a volatile read may not be invalidated by a non-volatile write of another
thread. While proving the simulation theorem this manifests in the argument that a read
of the store-buffer machine and the virtual machine sees the same value in both machines:
the value seen by a read in the store buffer machine stays valid as long as it has not yet
made its way out in the virtual machine. To rule out certain races from the execution
traces we make use of the programming discipline, which is formalized in the safety of all
reachable configurations of the virtual machine. Some races can be ruled out by continuing
the computation of the virtual machine until we reach a safety violation. However, some
cannot be ruled out by the future computation of the current trace, but can be invalidated
by a safety violation of another trace that deviated from the current one at some point

14

in the past. Consider two threads. Thread 1 attempts to do a volatile read from address
a which is currently owned (and not shared) by thread 2, which attempts to do a non-
volatile write on a with value 42 and then release the address. In this configuration there
is already a safety violation. Thread 1 is not allowed to perform a volatile read from an
address that is not shared. However, when Thread 2 has executed his update and has
released ownership (both are non-volatile operations) there is no safety violation anymore.
Unfortunately this is the state of the virtual machine when we consider the instructions of
Thread 2 to be in the store buffer. The store buffer machine and the virtual machine are
out of sync. Whereas in the virtual machine Thread 1 will already read 42 (all non-volatile
writes are already executed in the virtual machine), the non-volatile write may still be
pending in the store buffer of Thread 2 and hence Thread 1 reads the old value in the
store buffer machine. This kind of issues arise when a thread has released ownership in
the middle of non-volatile operations of the virtual machine, but the next volatile write
of this thread has not yet made its way out of the store buffer. When another thread
races for the released address in this situation there is always another scheduling of the
virtual machine where the release has not yet taken place and we get a safety violation.
To make these safety violations visible until the next volatile write we introduce another
ghost component that keeps track of the released addresses. It is augmented when an ghost
operation releases an address and is reset as the next volatile write is reached. Moreover,
we refine our rules for safety to take these released addresses into account. For example, a
write to an released address of another thread is forbidden. We refer to these refined model
as delayed releases (as no other thread can acquire the address as long as it is still in the
set of released addresses) and to our original model as free flowing releases (as the effect
of a release immediate takes place at the point of the ghost instruction). Note that this
only affects ownership transfer due to the Ghost instruction. Ownership transfer together
with volatile (or interlocked) writes happen simultaneously in both models.

Note that the refined rules for delayed releases are just an intermediate step in our
proof. They do not have to be considered for the final programming discipline. As sketched
above we can show in a separate theorem that a safety violation in a trace with respect
to delayed releases implies a safety violation of a (potenitally other) trace with respect
to free flowing releases. Both notions of safety collaps in all configurations where there
are no released addresses, like the initial state. So if all reachable configurations are safe
with respect to free flowing releases they are also safe with respect to delayed releases.
This allows us to use the stricter policy of delayed releases for the simulation proof. Before
continuing with the coupling relation, we introduce the refined intermediate models for
delayed releases and store buffers with history information.

5.1 Intermediate models

We begin with the virtual machine with delayed releases, for which the memory transitions
(is, j, m, D, O, R, S) vd→m (is ′, j ′, m ′, D ′, O ′, R ′, S ′) are defined Figure 8. The additional
ghost component R is a mapping from addresses to a Boolean flag. If an address is in the
domain of R it was released. The boolean flag is considered to figure out if the released
address was previously shared or not. In case the flag is True it was shared otherwise not.
This subtle distinction is necessary to properly handle volatile reads. A volatile read from
an address owned by another thread is fine as long as it is marked as shared. The released
addresses R are reset at every volatile write as well as interlocked operations and the fence
instruction. They are augmented at the ghost instruction taking the sharing information
into account:

aug (dom S) R R =

15

(Read volatile a t # is, j, m, ghst) vd→m (is, j(t 7→ m a), m, ghst)

(Write False a (D, f) A L R W # is, j, m, ghst) vd→m (is, j, m(a := f j), ghst)

ghst = (D, O, R, S) ghst ′ = (True, O ∪ A − R, λx . ⊥, S ⊕W R 	A L)
(Write True a (D, f) A L R W # is, j, m, ghst) vd→m (is, j, m(a := f j), ghst ′)

¬ cond (j(t 7→ m a)) ghst = (D, O, R, S) ghst ′ = (False, O, λx . ⊥, S)
(RMW a t (D, f) cond ret A L R W # is, j, m, ghst) vd→m (is, j(t 7→ m a), m, ghst ′)

cond (j(t 7→ m a)) j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) m ′ = m(a := f (j(t 7→ m a)))
ghst = (D, O, R, S) ghst ′ = (False, O ∪ A − R, λx . ⊥, S ⊕W R 	A L)
(RMW a t (D, f) cond ret A L R W # is, j, m, ghst) vd→m (is, j ′, m ′, ghst ′)

(Fence # is, j, m, D, O, R, S) vd→m (is, j, m, False, O, λx . ⊥, S)

ghst = (D, O, R, S) ghst ′ = (D, O ∪ A − R, aug (dom S) R R, S ⊕W R 	A L)
(Ghost A L R W # is, j, m, ghst) vd→m (is, j, m, ghst ′)

Fig. 8: Memory transitions of the virtual machine with delayed releases

(λa. if a ∈ R then case R a of ⊥ ⇒ ba ∈ dom Sc | bsc ⇒ bs ∧ a ∈ dom Sc
else R a)

If an address is freshly released (a ∈ R and R a = ⊥) the flag is set according to dom
S. Otherwise the flag becomes bFalsec in case the released address is currently unshared.
Note that with this definition R a = bFalsec stays stable upon every new release and we
do not loose information about a release of an unshared address.

The global transition (ts, m, s) vd⇒ (ts ′, m ′, s ′) are analogous to the rules in Figure 5
replacing the memory transtions with the refined version for delayed releases.

The safety judgment for delayed releases Os,Rs,i ` (is, j, m, D, O, S)
√

is defined
in Figure 9. Note the additional component Rs which is the list of release maps of all
threads. The rules are strict extensions of the rules in Figure 7: writing or acquiring an
address a is only allowed if the address is not in the release set of another thread (a /∈
dom Rs[j]); reading from an address is only allowed if it is not released by another thread
while it was unshared (Rs[j] a 6= bFalsec).

For the store buffer machine with history information we not only put writes into
the store buffer but also record reads, program steps and ghost operations. This allows
us to restore the necessary computation history of the store buffer machine and relate it
to the virtual machine which may fall behind the store buffer machine during execution.
Altogether an entry in the store buffer is either a

– Readsb volatile a t v, recording a corresponding read from address a which loaded
the value v to temporary t, or a

– Writesb volatile a sop v for an outstanding write, where operation sop evaluated to
value v, or of the form

– Progsb p p ′ is ′, recording a program transition from p to p ′ which issued instructions
is ′, or of the form

– Ghostsb A L R W , recording a corresponding ghost operation.

As defined in Figure 10 a write updates the memory when it exits the store buffer, all other
store buffer entries may only have an effect on the ghost state. The effect on the ownership

16

a ∈ O ∨ a ∈ read-only S ∨ volatile ∧ a ∈ dom S ∀ j<|Os|. i 6= j −→ Rs[j] a 6= bFalsec
¬ volatile −→ (∀ j<|Os|. i 6= j −→ a /∈ dom Rs[j]) volatile −→ ¬ D

Os,Rs,i ` (Read volatile a t # is, j, m, D, O, S)
√

a ∈ O a /∈ dom S ∀ j<|Os|. i 6= j −→ a /∈ dom Rs[j]
Os,Rs,i ` (Write False a (D, f) A L R W # is, j, m, D, O, S)

√

∀ j<|Os|. i 6= j −→ a /∈ Os[j] ∪ dom Rs[j]
a /∈ read-only S ∀ j<|Os|. i 6= j −→ A ∩ (Os[j] ∪ dom Rs[j]) = ∅

A ⊆ dom S ∪ O L ⊆ A R ⊆ O A ∩ R = ∅
Os,Rs,i ` (Write True a (D, f) A L R W # is, j, m, D, O, S)

√

¬ cond (j(t 7→ m a)) a ∈ dom S ∪ O ∀ j<|Os|. i 6= j −→ Rs[j] a 6= bFalsec
Os,Rs,i ` (RMW a t (D, f) cond ret A L R W # is, j, m, D, O, S)

√

cond (j(t 7→ m a)) a ∈ dom S ∪ O ∀ j<|Os|. i 6= j −→ a /∈ Os[j] ∪ dom Rs[j]
a /∈ read-only S ∀ j<|Os|. i 6= j −→ A ∩ (Os[j] ∪ dom Rs[j]) = ∅

A ⊆ dom S ∪ O L ⊆ A R ⊆ O A ∩ R = ∅
Os,Rs,i ` (RMW a t (D, f) cond ret A L R W # is, j, m, D, O, S)

√

Os,Rs,i ` (Fence # is, j, m, D, O, S)
√

A ⊆ dom S ∪ O
L ⊆ A R ⊆ O A ∩ R = ∅ ∀ j<|Os|. i 6= j −→ A ∩ (Os[j] ∪ dom Rs[j]) = ∅

Os,Rs,i ` (Ghost A L R W # is, j, m, D, O, S)
√

Os,Rs,i ` ([], j, m, D, O, S)
√

Fig. 9: Safe configurations of a virtual machine (delayed-releases)

(m, Writesb False a sop v A L R W # sb, O, R, S) →sbh (m(a := v), sb, O, R, S)

O ′ = O ∪ A − R S ′ = S ⊕W R 	A L
(m, Writesb True a sop v A L R W # sb, O, R, S) →sbh (m(a := v), sb, O ′, λx . ⊥, S ′)

(m, Readsb volatile a t v # sb, O, R, S) →sbh (m, sb, O, R, S)

(m, Progsb p p ′ is # sb, O, R, S) →sbh (m, sb, O, R, S)

O ′ = O ∪ A − R R ′ = aug (dom S) R R S ′ = S ⊕W R 	A L
(m, Ghostsb A L R W # sb, O, R, S) →sbh (m, sb, O ′, R ′, S ′)

Fig. 10: Store buffer transitions with history

17

information is analogous to the corresponding operations in the virtual machine. The
memory transitions defined in Figure 11 are straightforward extensions of the store buffer
transitions of Figure 11 augmented with ghost state and recording history information in
the store buffer. Note how we deal with the ghost state. Only the dirty flag is updated
when the instruction enters the store buffer, the ownership transfer takes effect when the
instruction leaves the store buffer. The global transitions (tssbh, m, S) sbh⇒ (tssbh ′, m ′, S ′)

v = (case buffered-val sb a of ⊥ ⇒ m a | bv ′c ⇒ v ′) sb ′ = sb @ [Readsb volatile a t v]

(Read volatile a t # is, j, sb, m, ghst) sbh→m (is, j(t 7→ v), sb ′, m, ghst)

sb ′ = sb @ [Writesb False a (D, f) (f j) A L R W]

(Write False a (D, f) A L R W # is, j, sb, m, ghst) sbh→m (is, j, sb ′, m, ghst)

sb ′ = sb @ [Writesb True a (D, f) (f j) A L R W]
ghst = (D, O, R, S) ghst ′ = (True, O, R, S)

(Write True a (D, f) A L R W # is, j, sb, m, ghst) sbh→m (is, j, sb ′, m, ghst ′)

¬ cond (j(t 7→ m a)) ghst = (D, O, R, S) ghst ′ = (False, O, λx . ⊥, S)

(RMW a t (D, f) cond ret A L R W # is, j, [], m, ghst) sbh→m (is, j(t 7→ m a), [], m, ghst ′)

cond (j(t 7→ m a)) j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) m ′ = m(a := f (j(t 7→ m a)))
ghst = (D, O, R, S) ghst ′ = (False, O ∪ A − R, λx . ⊥, S ⊕W R 	A L)

(RMW a t (D, f) cond ret A L R W # is, j, [], m, ghst) sbh→m (is, j ′, [], m ′, ghst ′)

(Fence # is, j, [], m, D, O, R, S) sbh→m (is, j, [], m, False, O, λx . ⊥, S)

(Ghost A L R W # is, j, sb, m, G)
sbh→m (is, j, sb @ [Ghostsb A L R W], m, G)

Fig. 11: Memory transitions of store buffer machine with history

are analogous to the rules in Figure 2 replacing the memory transtions and store buffer
transtiontions accordingly.

5.2 Coupling relation

After this introduction of the immediate models we can proceed to the details of the cou-
pling relation, which relates configurations of the store buffer machine with histroy and the
virtual machine with delayed releases. Remember the basic idea of the coupling relation:
the state of the virtual machine is obtained from the state of the store buffer machine,
by executing each store buffer until we reach the first volatile write. The remaining store
buffer entries are suspended as instructions. The instructions now also include the history
entries for reads, program steps and ghost operations. The suspended reads are not yet
visible in the temporaries of the virtual machine. Similar the ownership effects (and pro-
gram steps) of the suspended operations are not yet visible in the virtual machine. The
coupling relation between the store buffer machine and the virtual machine is illustrated
in Figure 12. The threads issue instructions to the store buffers from the right and the
instructions emerge from the store buffers to main memory from the left. The dotted line
illustrates the state of the virtual machines memory. It is obtained from the memory of
the store buffer machine by executing the purely non-volatile prefixes of the store buffers.
The remaining entries of the store buffer are still (suspended) instructions in the virtual
machine.

18

nv v thread 0: i00, i10, . . .

nv v thread i: i0i , i1i , . . .

nv v thread j: i0j , i1j , . . .

nv v thread n: i0n, i1n, . . .

...

...

...

← store buffers ← instructions

msbh

m
executed suspended

Fig. 12: Illustration of coupling relation

Consider the following configuration of a thread tssbh[j] in the store buffer machine,
where ik are the instructions and sk the store buffer entries. Let sv be the first volatile
write in the store buffer. Keep in mind that new store buffer entries are appended to the
end of the list and entries exit the store buffer and are issued to memory from the front
of the list.

tssbh[j] = (p, [i1, . . . , in], j, [s1, . . . , sv, sv+1, . . . , sm], D, O, R)

The corresponding configuration ts[j] in the virtual machine is obtained by suspending all
store buffer entries beginning at sv to the front of the instructions. A store buffer Readsb

/ Writesb / Ghostsb is converted to a Read / Write / Ghost instruction. We take the
freedom to make this coercion implicit in the example. The store buffer entries preceding
sv have already made their way to memory, whereas the suspended read operations are
not yet visible in the temporaries j ′. Similar, the suspended updates to the ownership sets
and dirty flag are not yet recorded in O ′, R ′ and D ′.

ts[j] = (p, [sv, sv+1, . . . , sm, i1, . . . , in], j ′, D ′, O ′, R ′)

This example illustrates that the virtual machine falls behind the store buffer machine in
our simulation, as store buffer instructions are suspended and reads (and ghost operations)
are delayed and not yet visible in the temporaries (and the ghost state). This delay can
also propagate to the level of the programming language, which communicates with the
memory system by reading the temporaries and issuing new instructions. For example the
control flow can depend on the temporaries, which store the result of branching conditions.
It may happen that the store buffer machine already has evaluated the branching condition
by referring to the values in the store buffer, whereas the virtual machine still has to wait.
Formally this manifests in still undefined temporaries. Now consider that the program
in the store buffer machine makes a step from p to (p ′, is ′), which results in a thread
configuration where the program state has switched to p ′, the instructions is ′ are appended
and the program step is recorded in the store buffer:

tssbh ′
[j] = (p ′, [i1, . . . , in] @ is ′, j, [s1, . . . , sv, . . . , sm, Progsb p p ′ is ′], D, O, R)

The virtual machine however makes no step, since it still has to evaluate the suspended
instructions before making the program step. The instructions is ′ are not yet issued and the
program state is still p. We also take these program steps into account in our final coupling
relation (tssbh, msbh, Ssbh) ∼ (ts, m, S), defined in Figure 13. We denote the already
simulated store buffer entries by execs and the suspended ones by suspends. The function
instrs converts them back to instructions, which are a prefix of the instructions of the virtual

19

m = exec-all-until-volatile-write tssbh msbh

S = share-all-until-volatile-write tssbh Ssbh |tssbh| = |ts|
∀ i<|tssbh|.

let (psbh, issbh, jsbh, sb, Dsbh, Osbh, Rsbh) = tssbh[i];
execs = takeWhile not-volatile-write sb;
suspends = dropWhile not-volatile-write sb

in ∃ is D. instrs suspends @ issbh = is @ prog-instrs suspends ∧
Dsbh = (D ∨ refs volatile-Write sb 6= ∅) ∧
ts[i] =
(hd-prog psbh suspends, is, jsbh�(− read-tmps suspends), D,
acquire execs Osbh, release execs (dom Ssbh) Rsbh)

(tssbh, msbh, Ssbh) ∼ (ts, m, S)

Fig. 13: Coupling relation

machine. We collect the additional instructions which were issued by program instructions
but still recorded in the remainder of the store buffer with function prog-instrs. These
instructions have already made their way to the instructions of the store buffer machine
but not yet on the virtual machine. This situation is formalized as instrs suspends @ issbh =
is @ prog-instrs suspends, where is are the instructions of the virtual machine. The program
state of the virtual machine is either the same as in the store buffer machine or the first
program state recorded in the suspended part of the store buffer. This state is selected by
hd-prog. The temporaries of the virtual machine are obtained by removing the suspended
reads from j. The memory is obtained by executing all store buffers until the first volatile
write is hit, excluding it. Thereby only non-volatile writes are executed, which are all thread
local, and hence could be executed in any order with the same result on the memory.
Function exec-all-until-volatile-write executes them in order of appearance. Similarly the
sharing map of the virtual machine is obtained by executing all store buffers until the first
volatile write via the function share-all-until-volatile-write. For the local ownership set Osbh

the auxiliary function acquire calculates the outstanding effect of the already simulated
parts of the store buffer. Analogously release calculates the effect for the released addresses
Rsbh.

5.3 Simulation

Theorem 2 is our core inductive simulation theorem. Provided that all reachable states
of the virtual machine (with delayed releases) are safe, a step of the store buffer machine
(with history) can be simulated by a (potentially empty) sequence of steps on the virtual
machine, maintaining the coupling relation and an invariant on the configurations of the
store buffer machine.

Theorem 2 (Simulation).

(tssbh, msbh, Ssbh)
sbh⇒ (tssbh ′, msbh

′, Ssbh
′) ∧ (tssbh, msbh, Ssbh) ∼ (ts, m, S) ∧

safe-reach-delayed (ts, m, S) ∧ invariant tssbh Ssbh msbh −→
invariant tssbh ′ Ssbh

′ msbh
′ ∧

(∃ ts ′ S ′ m ′. (ts, m, S) vd⇒
∗
(ts ′, m ′, S ′) ∧ (tssbh ′, msbh

′, Ssbh
′) ∼ (ts ′, m ′, S ′))

In the following we discuss the invariant invariant tssbh Ssbh msbh, where we commonly refer
to a thread configuration tssbh[i] = (p, is, j, sb, D, O, R) for i < |tssbh|. By outstanding
references we refer to read and write operations in the store buffer. The invariant is a
conjunction of several sub-invariants grouped by their content:

invariant tssbh Ssbh msbh ≡ ownership-inv Ssbh tssbh ∧ sharing-inv Ssbh tssbh ∧

20

temporaries-inv tssbh ∧ data-dependency-inv tssbh ∧ history-inv tssbh msbh ∧ flush-inv tssbh ∧
valid tssbh

Ownership. (i) For every thread all outstanding non-volatile references have to be owned
or refer to read-only memory. (ii) Every outstanding volatile write is not owned by any
other thread. (iii) Outstanding accesses to read-only memory are not owned. (iv) The
ownership sets of every two different threads are distinct.

Sharing. (i) All outstanding non volatile writes are unshared. (ii) All unowned addresses
are shared. (iii) No thread owns read-only memory. (iv) The ownership annotations of
outstanding ghost and write operations are consistent (e.g., released addresses are owned
at the point of release). (v) There is no outstanding write to read-only memory.

Temporaries. Temporaries are modeled as an unlimited store for temporary registers. We
require certain distinctness and freshness properties for each thread. (i) The temporaries
referred to by read instructions are distinct. (ii) The temporaries referred to by reads
in the store buffer are distinct. (iii) Read and write temporaries are distinct. (iv) Read
temporaries are fresh, i.e., are not in the domain of j.

Data dependency. Data dependency means that store operations may only depend on
previous read operations. For every thread we have: (i) Every operation (D, f) in a write
instruction or a store buffer write is valid according to valid-sop (D, f), i.e., function f
only depends on domain D. (ii) For every suffix of the instructions of the form Write
volatile a (D, f) A L R W # is the domain D is distinct from the temporaries referred
to by future read instructions in is. (iii) The outstanding writes in the store buffer do not
depend on the read temporaries still in the instruction list.

History. The history information of program steps and read operations we record in the
store buffer have to be consistent with the trace. For every thread: (i) The value stored for
a non volatile read is the same as the last write to the same address in the store buffer or
the value in memory, in case there is no write in the buffer. (ii) All reads have to be clean.
This results from our flushing policy. Note that the value recorded for a volatile read in
the initial part of the store buffer (before the first volatile write), may become stale with
respect to the memory. Remember that those parts of the store buffer are already executed
in the virtual machine and thus cause no trouble. (iii) For every read the recorded value
coincides with the corresponding value in the temporaries. (iv) For every Writesb volatile
a (D, f) v A L R W the recorded value v coincides with f j, and domain D is subset
of dom j and is distinct from the following read temporaries. Note that the consistency
of the ownership annotations is already covered by the aforementioned invariants. (v) For
every suffix in the store buffer of the form Progsb p1 p2 is ′ # sb ′, either p1 = p in case
there is no preceding program node in the buffer or it corresponds to the last program
state recorded there. Moreover, the program transition j�(− read-tmps sb ′) ` p1 →p (p2, is ′)
is possible, i.e., it was possible to execute the program transition at that point. (vi) The
program configuration p coincides with the last program configuration recorded in the
store buffer. (vii) As the instructions from a program step are at the one hand appended
to the instruction list and on the other hand recorded in the store buffer, we have for every
suffix sb ′ of the store buffer: ∃ is ′. instrs sb ′ @ is = is ′ @ prog-instrs sb ′, i.e., the remaining
instructions is correspond to a suffix of the recorded instructions prog-instrs sb ′.

Flushes. If the dirty flag is unset there are no outstanding volatile writes in the store
buffer.

21

Program step. The program-transitions are still a parameter of our model. In order to
make the proof work, we have to assume some of the invariants also for the program
steps. We allow the program-transitions to employ further invariants on the configurations,
these are modeled by the parameter valid. For example, in the instantiation later on the
program keeps a counter for the temporaries, for each thread. We maintain distinctness
of temporaries by restricting all temporaries occurring in the memory system to be below
that counter, which is expressed by instantiating valid. Program steps, memory steps and
store buffer steps have to maintain valid. Furthermore we assume the following properties
of a program step: (i) The program step generates fresh, distinct read temporaries, that are
neither in j nor in the store buffer temporaries of the memory system. (ii) The generated
memory instructions respect data dependencies, and are valid according to valid-sop.

Proof sketch. We do not go into details but rather first sketch the main arguments for
simulation of a step in the store buffer machine by a potentially empty sequence of steps
in the virtual machine, maintaining the coupling relation. Second we exemplarically focus
on some cases to illustrate common arguments in the proof. The first case distinction
in the proof is on the global transitions in Figure 2. (i) Program step: we make a case
distinction whether there is an outstanding volatile write in the store buffer or not. If
not the configuration of the virtual machine corresponds to the executed store buffer and
we can make the same step. Otherwise the virtual machine makes no step as we have to
wait until all volatile writes have exited the store buffer. (ii) Memory step: we do case
distinction on the rules in Figure 11. For read, non volatile write and ghost instructions
we do the same case distinction as for the program step. If there is no outstanding volatile
write in the store buffer we can make the step, otherwise we have to wait. When a volatile
write enters the store buffer it is suspended until it exists the store buffer. Hence we do
no step in the virtual machine. The read-modify-write and the fence instruction can all be
simulated immediately since the store buffer has to be empty. (iii) Store Buffer step: we
do case distinction on the rules in Figure 10. When a read, a non volatile write, a ghost
operation or a program history node exits the store buffer, the virtual machine does not
have to do any step since these steps are already visible. When a volatile write exits the
store buffer, we execute all the suspended operations (including reads, ghost operations
and program steps) until the next suspended volatile write is hit. This is possible since all
writes are non volatile and thus memory modifications are thread local.

In the following we exemplarically describe some cases in more detail to give an im-
pression on the typical arguments in the proof. We start with a configuration csbh = (tssbh,
msbh, Ssbh) of the store buffer machine, where the next instruction to be executed is a read
of thread i: Readsb volatile a t. The configuration of the virtual machine is cfg = (ts, m,
S). We have to simulate this step on the virtual machine and can make use of the coupling
relations (tssbh, msbh, Ssbh) ∼ (ts, m, S), the invariants invariant tssbh Ssbh msbh and the
safety of all reachable states of the virtual machine: safe-reach-delayed (ts, m, S). The
state of the store buffer machine and the coupling with the volatile machine is depicted
in Figure 14. Note that if there are some suspended instructions in thread i, we cannot
directly exploit the ’safety of the read’, as the virtual machine has not yet reached the
state where thread i is poised to do the read. But fortunately we have safety of the virtual
machien of all reachable states. Hence we can just execute all suspended instructions of
thread i until we reach the read. We refer to this configuration of the virtual machine as
cfg ′′ = (ts ′′, m ′′, S ′′), which is depicted in Figure 15.

For now we want to consider the case where the read goes to memory and is not
forwarded from the store buffer. The value read is v = msbh a. Moreover, we make a case
distinction wheter there is an outstanding volatile write in the store buffer of thread i or

22

nv v thread 0: i00, i10, . . .

nv v thread i: Readsb volatile a t,. . .

nv v thread j: i0j , i1j , . . .

nv v thread n: i0n, i1n, . . .

...

...

...

← store buffers ← instructions

msbh

m
executed suspended

Fig. 14: Thread i poised to read

nv v thread 0: i00, i10, . . .

nv v thread i: Readsb volatile a t,. . .

nv v thread j: i0j , i1j , . . .

nv v thread n: i0n, i1n, . . .

...

...

...

← store buffers ← instructions

msbh

m
executed suspended

Fig. 15: Forwarded computation of virtual machine

23

not. This determines if there are suspended instructions in the virtual machine or not. We
start with the case where there is no such write. This means that there are no suspended
instructions in thread i and therefore cfg ′′= cfg. We have to show that the virtual machine
reads the same value from memory: v = m a. So what can go wrong? When can the the
memory of the virtual machine hold a different value? The memory of the virtual machine
is obtained from the memory of the store buffer machine by executing all store buffers
until we hit the first volatile write. So if there is a discrepancy in the value this has to
come from a non-volatile write in the executed parts of another thread, let us say thread
j. This write is marked as x in Figure 16.

nv v thread 0: i00, i10, . . .

nv v thread i: Readsb volatile a t,. . .

x v thread j: i0j , i1j , . . .

nv v thread n: i0n, i1n, . . .

...

...

...

← store buffers ← instructions

msbh

m
executed suspended

Fig. 16: Conflicting write in thread j (marked x)

We refer to x both for the write operation itself and to characterize the point in time
in the computation of the virtual machine where the write was executed. At the point x
the write was safe according to rules in Figure 9 for non-volatile writes. So it was owned
by thread j and unshared. This knowledge about the safety of write x is preserved in the
invariants, namely (Ownership.i) and (Sharing.i). Additionally from invariant (Sharing.v)
we know that address a was not read-only at point x. Now we combine this information
with the safety of the read of thread i in the current configuration cfg: address a either
has to be owned by thread i, or has to be read-only or the read is volatile and a is shared.
Additionally there are the constraints on the released addresses which we will exploit
below. Let us address all cases step by step. First, we consider that address a is currently
owned by thread i. As it was owned by thread j at time x there has to be an release of
a in the executed prefix of the store buffer of thread j. This release is recorded in the
release set, so we know a ∈ dom Rs[j]. This contradicts the safety of the read. Second, we
consider that address a is currently read-only. At time x address a was owned by thread
j, unshared and not read-only. Hence there was a release of address a in the executed
prefix of the store buffer of j, where it made a transition unshared and owned to shared.
With the monotonicity of the release sets this means a ∈ dom Rs[j], even more precisely
Rs[j] a = bFalsec. Hence there is no chance to get the read safe (neiter a volatile nor a
non-volatile). Third, consider a volatile read and that address a is currently shared. This
is ruled out by the same line of reasoning as in the previous case. So ultimately we have
ruled out all races that could destroy the value at address a and have shown that we can
simulate the step on the virtual machine. This completes the simulation of the case where
there is no store buffer forwarding and no volatile write in the store buffer of thread i.
The other cases are handled similar. The main arguments are obtained by arguing about
safety of configuration cfg ′′ and exploiting the invariants to rule out conflicting operations

24

in other store buffers. When there is a volatile write in he store buffer of thread i there
are still pending suspended instructions in the virtual machine. Hence the virtual machine
makes no step and we have to argue that the simulation relation as well as all invariants
still hold.

Up to now we have focused on how to simulate the read and in particular on how
to argue that the value read in the store buffer machine is the same as the value read
in the virtual machine. Besided these simulation properties another major part of the
proof is to show that all invariants are maintained. For example if the non-volatile read
enters the store buffer we have to argue that this new entry is either owned or refers to
an read-only address (Ownership.i). As for the simulation above this follows from safety
of the virtual machine in configuration cfg ′′. However, consider an ghost operation that
acquires an address a. From safety of the configuration cfg ′′ we can only infer that there
is no conflicting acquire in the non-volaitle prefixes of the other store buffers. In case
an conflicting acquire is in the suspended part of a store buffer of thread j safety of
configuration cfg ′′ is not enough. But as we have safety of all reachable states we can
forward the computation of thread j until the conflicting acquire is about to be executed
and construct an unsafe state which rules out the conflict.

Last we want to comment on the case where the store buffer takes a step. The major
case destinction is wheter a volatile write leaves the store buffer or not. In the former case
the virtual machine has to simulate a whole bunch of instructions at once to simulate the
store buffer machine up to the next volatile write in the store buffer. In the latter case the
virtual machine does no step at all, since the instruction leaving the store buffer is already
simulated. In both cases one key argument is commutativity of non-volatile operations
with respect to global effects on the memory or the sharing map. Consider a non-volatile
store buffer step of thread i. In the configuration of the virtual machine before the store
buffer step of thread i, the simulation relation applies the update to the memory and the
sharing map of the store buffer machine, within the operations exec-all-until-volatile-write
and share-all-until-volatile-write ‘somewhere in the middle’ to obtain the memory and the
sharing map of the virtual machine. After the store buffer step however, when the non-
volatile operations has left the store buffer, the effect is applied to the memory and the
sharing map right in the beginning. The invariants and safety sideconditions for non-
volatile operations guarantee ‘locality’ of the operation which manifests in commutativity
properties. For example, a non-volatile write is thread local. There is no conflicting write
in any other store buffer and hence the write can be safely moved to the beginning.

This conludes the discussion on the proof of Theorem 2. ut

The simulation theorem for a single step is inductive and can therefor be extended
to arbitrary long computations. Moreover, the coupling relation as well as the invariants
become trivial for a initial configuration where all store buffers are empty and the ghost
state is setup appropriately. To arrive at our final Theorem 1 we need the following steps:

1. simulate the computation of the store buffer machine (tssb, m)
sb⇒

∗
(tssb ′, m ′) by a

computation of a store buffer machine with history (tssbh, m, S) sbh⇒
∗
(tssbh ′, m ′, S ′),

2. simulate the computation of the store buffer machine with history by a computation
of the virtual machine with delayed releases (ts, m, S) vd⇒

∗
(ts ′, m ′, S ′) by Theorem 2

(extended to the reflexive transitive closure),
3. simulate the computation of the virtual machine with delayed releases by a computa-

tion of the virtual machine with free flowing releases (ts, m, S) v⇒
∗
(ts ′, m ′, S ′)5.

5 Here we are sloppy with ts; strictly we would have to distinguish the thread configurations without the
R component form the ones with the R component used for delayed releases

25

Step 1 is trivial since the bookkeeping within the additional ghost and history state
does not affect the control flow of the transition systems and can be easily removed. Similar
the additional R ghost component can be ignored in Step 3. However, to apply Theorem
2 in Step 2 we have to convert from safe-reach (ts, m, S) provided by the preconditions of
Theorem 1 to the required safe-reach-delayed (ts, m, S). This argument is more involved
and we only give a short sketch here. The other direction is trivial as every single case for
delayed releases (cf. Figure 9) immediately implies the corresponding case for free flowing
releases (cf. Figure 7).

First keep in mind that the predicates ensure that all reachable configurations starting
from (ts, m, S) are safe, according to the rules for free flowing releases or delayed releases
respectively. We show the theorem by contraposition and start with a computation which
reaches a configuration c that is unsafe according to the rules for delayed releases and want
to show that there has to be a (potentially other) computation (starting from the same
initial state) that leads to an unsafe configuration c ′ accroding to free flowing releases.
If c is already unsafe according to free flowing releases we have c ′ = c and are finished.
Otherwise we have to find another unsafe configuration. Via induction on the length of
the global computation we can also assume that for all shorter computations both safety
notions coincide. A configuration can only be unsafe with respect to delayed releases and
safe with respect to free flowing releases if there is a race between two distinct Threads i
and j on an address a that is in the release set R of one of the threads, lets say Thread i. For
example Thread j attempts to write to an address a which is in the release set of Thread i.
If the release map would be empty there cannot be such an race (it would simulataneously
be unsafe with respect to free flowing releases). Now we aim to find a configuration c ′ that
is also reachable from the initial configuration and is unsafe with respect to free flowing
releases. Intuitively this is a configuration where Thread i is rewinded to the state just
before the release of address a and Thread j is in the same state as in configuration c.
Before the release of a the address has to be owned by Thread i, which is unsafe according
to free flowing releases as well as delayed releases. So we can argue that either Thread j can
reach the same state although Thread i is rewinded or we even hit an unsafe configuration
before. What kind of steps can Thread i perform between between the free flowing release
point (point of the ghost instruction) and the delayed release point (point of next volatile
write, interlocked operation or fence at which the release map is emptied)? How can these
actions affect Thread j? Note that the delayed release point is not yet reached as this
would empty the release map (which we know not to be empty). Thus Thread i does
only perform reads, ghost instructions, program steps or non-volatile writes. All of these
instructions of Thread i either have no influence on the computation of Thread j at all
(e.g. a read, program step, non-volatile write or irrelevant ghost operation) or may cause
a safety violation already in a shorter computation (e.g. acquiring an address that another
thread holds). This is fine for our inductive argument. So either we can replay every step
of Thread j and reach the final configuration c ′ which is now also unsafe according to free
flowing releases, or we hit a configuration c ′′ in a shorter computation which violates the
rules of delayed as well as free flowing releases (using the induction hypothesis).

6 PIMP

PIMP is a parallel version of IMP [11], a canonical WHILE-language.
An expression e is either (i) Const v, a constant value, (ii) Mem volatile a, a (volatile)

memory lookup at address a, (iii) Tmp sop, reading from the temporaries with a operation
sop which is an intermediate expression occurring in the transition rules for statements,

26

(iv) Unop f e, a unary operation where f is a unary function on values, and finally
(v) Binop f e1 e2, a binary operation where f is a binary function on values.

A statement s is either (i) Skip, the empty statement, (ii) Assign volatile a e A L
R W , a (volatile) assignment of expression e to address expression a, (iii) CAS a ce se
A L R W , atomic compare and swap at address expression a with compare expression
ce and swap expression se, (iv) Seq s1 s2, sequential composition, (v) Cond e s1 s2, the
if-then-else statement, (vi) While e s, the loop statement with condition e, (vii) SGhost,
and SFence as stubs for the corresponding memory instructions.

The key idea of the semantics is the following: expressions are evaluated by issuing
instructions to the memory system, then the program waits until the memory system has
made all necessary results available in the temporaries, which allows the program to make
another step. Figure 17 defines expression evaluation. The function used-tmps e calculates

issue-expr t (Const v) = []
issue-expr t (Mem volatile a) = [Read volatile a t]
issue-expr t (Tmp (D, f)) = []
issue-expr t (Unop f e) = issue-expr t e
issue-expr t (Binop f e1 e2) = issue-expr t e1 @ issue-expr (t + used-tmps e1) e2
eval-expr t (Const v) = (∅, λj. v)
eval-expr t (Mem volatile a) = ({t}, λj. the (j t))
eval-expr t (Tmp (D, f)) = (D, f)
eval-expr t (Unop f e) = let (D, fe) = eval-expr t e in (D, λj. f (fe j))
eval-expr t (Binop f e1 e2) = let (D1, f1) = eval-expr t e1;

(D2, f2) = eval-expr (t + used-tmps e1) e2
in (D1 ∪ D2, λj. f (f1 j) (f2 j))

Fig. 17: Expression evaluation

the number of temporaries that are necessary to evaluate expression e, where every Mem
expression accounts to one temporary. With issue-expr t e we obtain the instruction list
for expression e starting at temporary t, whereas eval-expr t e constructs the operation as
a pair of the domain and a function on the temporaries.

The program transitions are defined in Figure 18. We instantiate the program state
by a tuple (s, t) containing the statement s and the temporary counter t. To assign
an expression e to an address(-expression) a we first create the memory instructions for
evaluation the address a and transforming the expression to an operation on temporaries.
The temporary counter is incremented accordingly. When the value is available in the
temporaries we continue by creating the memory instructions for evaluation of expression
e followed by the corresponding store operation. Note that the ownership annotations can
depend on the temporaries and thus can take the calculated address into account.

Execution of compare and swap CAS involves evaluation of three expressions, the
address a the compare value ce and the swap value se. It is finally mapped to the read-
modify-write instruction RMW of the memory system. Recall that execution of RMW
first stores the memory content at address a to the specified temporary. The condition
compares this value with the result of evaluating ce and writes swap value sa if successful.
In either case the temporary finally returns the old value read.

Sequential composition is straightforward. An if-then-else is computed by first issuing
the memory instructions for evaluation of condition e and transforming the condition to an
operation on temporaries. When the result is available the transition to the first or second
statement is made, depending on the result of isTrue. Execution of the loop is defined

27

∀ sop. a 6= Tmp sop a ′ = Tmp (eval-expr t a) t ′ = t + used-tmps a is = issue-expr t a
j` (Assign volatile a e A L R W , t) →p ((Assign volatile a ′ e A L R W , t ′), is)

D ⊆ dom j is = issue-expr t e @ [Write volatile (a j) (eval-expr t e) (A j) (L j) (R j) (W j)]
j` (Assign volatile (Tmp (D, a)) e A L R W , t) →p ((Skip, t + used-tmps e), is)

∀ sop. a 6= Tmp sop a ′ = Tmp (eval-expr t a) t ′ = t + used-tmps a is = issue-expr t a
j` (CAS a ce se A L R W , t) →p ((CAS a ′ ce se A L R W , t ′), is)

∀ sop. ce 6= Tmp sop ce ′ = Tmp (eval-expr t ce) t ′ = t + used-tmps ce is = issue-expr t ce
j` (CAS (Tmp a) ce se A L R W , t) →p ((CAS (Tmp a) ce ′ se A L R W , t ′), is)

Da ⊆ dom j
Dc ⊆ dom j eval-expr t se = (D, f) t ′ = t + used-tmps se cond = (λj. the (j t ′) = c j)
ret = (λv1 v2. v1) is = issue-expr t se @ [RMW (a j) t ′ (D, f) cond ret (A j) (L j) (R j) (W j)]

j` (CAS (Tmp (Da, a)) (Tmp (Dc, c)) se A L R W , t) →p ((Skip, Suc t ′), is)

j` (s1, t) →p ((s1 ′, t ′), is)
j` (Seq s1 s2, t) →p ((Seq s1 ′ s2, t ′), is)

j` (Seq Skip s2, t) →p ((s2, t), [])

∀ sop. e 6= Tmp sop e ′ = Tmp (eval-expr t e) t ′ = t + used-tmps e is = issue-expr t e
j` (Cond e s1 s2, t) →p ((Cond e ′ s1 s2, t ′), is)

D ⊆ dom j isTrue (e j)
j` (Cond (Tmp (D, e)) s1 s2, t) →p ((s1, t), [])

D ⊆ dom j ¬ isTrue (e j)
j` (Cond (Tmp (D, e)) s1 s2, t) →p ((s2, t), [])

j` (While e s, t) →p ((Cond e (Seq s (While e s)) Skip, t), [])

j` (SGhost A L R W , t) →p ((Skip, t), [Ghost (A j) (L j) (R j) (W j)])

j` (SFence, t) →p ((Skip, t), [Fence])

Fig. 18: Program transitions

28

by stepwise unfolding. Ghost and fence statements are just propagated to the memory
system.

To instantiate Theorem 2 with PIMP we define the invariant parameter valid, which has
to be maintained by all transitions of PIMP, the memory system and the store buffer. Let j
be the valuation of temporaries in the current configuration, for every thread configuration
tssb[i] = ((s, t), is, j, sb, D,O) where i < |tssb| we require: (i) The domain of all intermediate
Tmp (D, f) expressions in statement s is below counter t. (ii) All temporaries in the
memory system including the store buffer are below counter t. (iii) All temporaries less
than counter t are either already defined in the temporaries j or are outstanding read
temporaries in the memory system.

For the PIMP transitions we prove these invariants by rule induction on the semantics.
For the memory system (including the store buffer steps) the invariants are straightfor-
ward. The memory system does not alter the program state and does not create new
temporaries, only the PIMP transitions create new ones in strictly ascending order.

7 Conclusion

We have presented a practical and flexible programming discipline for concurrent programs
that ensures sequential consistency on TSO machines, such as present x64 architectures.
Our approach covers a wide variety of concurrency control, covering locking, data races,
single writer multiple readers, read only and thread local portions of memory. We minimize
the need for store buffer flushes to optimize the usage of the hardware. Our theorem is
not coupled to a specific logical framework like separation logic but is based on more
fundamental arguments, namely the adherence to the programming discipline which can
be discharged within any program logic using the standard sequential consistent memory
model, without any of the complications of TSO.

Related work. Disclaimer. This contribution presents the state of our work from 2010 [8].
Finally, 8 years later, we made the AFP submission for Isabelle2018. This related work
paragraph does not thoroughly cover publications that came up in the meantime.

A categorization of various weak memory models is presented in [2]. It is compatible
with the recent revisions of the Intel manuals [10] and the revised x86 model presented
in [15]. The state of the art in formal verification of concurrent programs is still based
on a sequentially consistent memory model. To justify this on a weak memory model
often a quite drastic approach is chosen, allowing only coarse-grained concurrency usually
implemented by locking. Thereby data races are ruled out completely and there are results
that data race free programs can be considered as sequentially consistent for example for
the Java memory model [3, 18] or the x86 memory model [15]. Ridge [17] considers weak
memory and data-races and verifies Peterson’s mutual exclusion algorithm. He ensures
sequentially consistency by flushing after every write to shared memory. Burckhardt and
Musuvathi [6] describe an execution monitor that efficiently checks whether a sequentially
consistent TSO execution has a single-step extension that is not sequentially consistent.
Like our approach, it avoids having to consider the store buffers as an explicit part of
the state. However, their condition requires maintaining in ghost state enough history
information to determine causality between events, which means maintaining a vector
clock (which is itself unbounded) for each memory address. Moreover, causality (being
essentially graph reachability) is already not first-order, and hence unsuitable for many
types of program verification. Closely related to our work is the draft of Owens [14] which
also investigates on the conditions for sequential consistent reasoning within TSO. The
notion of a triangular-race free trace is established to exactly characterize the traces on

29

a TSO machine that are still sequentially consistent. A triangular race occurs between
a read and a write of two different threads to the same address, when the reader still
has some outstanding writes in the store buffer. To avoid the triangular race the reader
has to flush the store buffer before reading. This is essentially the same condition that
our framework enforces, if we limit every address to be unowned and every access to be
volatile. We regard this limitation as too strong for practical programs, where non-volatile
accesses (without any flushes) to temporarily local portions of memory (e.g. lock protected
data) is common practice. This is our core motivation for introducing the ownership based
programming discipline. We are aware of two extensions of our work that were published in
the meantime. Chen et al. [7] also take effects of the MMU into account and generalize our
reduction theorem to handle programs that edit page tables. Oberhauser [13] improves
on the flushing policy to also take non-triangular races into account and facilitates an
alternative proof approach.

Limitations. There is a class of important programs that are not sequentially consistent
but nevertheless correct.

First consider a simple spinlock implementation with a volatile lock l, where l == 0
indicates that the lock is not taken. The following code acquires the lock:

while(!interlocked_test_and_set(l));
<critical section accessing protected objects>,

and with the assignment l = 0 we can release the lock again. Within our framework
address l can be considered unowned (and hence shared) and every access to it is volatile.
We do not have to transfer ownership of the lock l itself but of the objects it protects. As
acquiring the lock is an expensive interlocked oprations anyway there are no additional
restrictions from our framework. The interesting point is the release of the lock via the
volatile write l=0. This leaves the dirty bit set, and hence our programming discipline
requires a flushing instruction before the next volatile read. If l is the only volatile variable
this is fine, since the next operation will be a lock acquire again which is interlocked and
thus flushes the store buffer. So there is no need for an additonal fence. But in general
this is not the case and we would have to insert a fence after the lock release to make
the dirty bit clean again and to stay sequentially consistent. However, can we live without
the fence? For the correctness of the mutal-exclusion algorithm we can, but we leave the
domain of sequential consistent reasoning. The intuitive reason for correctness is that the
threads waiting for the lock do no harm while waiting. They only take some action if they
see the lock being zero again, this is when the lock release has made its way out of the
store buffer.

Another typical example is the following simplified form of barrier synchronization:
each processor has a flag that it writes (with ordinarry volatile writes without any flushing)
and other processors read, and each processor waits for all processors to set their flags
before continuing past the barrier. This is not sequentially consistent – each processor
might see his own flag set and later see all other flags clear – but it is still correct.

Common for these examples is that there is only a single writer to an address, and
the values written are monotonic in a sense that allows the readers to draw the correct
conlcusion when they observe a certain value. This pattern is named Publication Idiom in
Owens work [14].

Future work. The first direction of future work is to try to deal with the limitations of
sequential consistency described above and try to come up with a more general reduction

30

theorem that can also handle non sequential consistent code portions that follow some
monotonicity rules.

Another direction of future work is to take compiler optimization into account. Our
volatile accesses correspond roughly to volatile memory accesses within a C program. An
optimizing compiler is free to convert any sequence of non-volatile accesses into a (sequen-
tially semantically equivalent) sequence of accesses. As long as execution is sequentially
consistent, equivalence of these programs (e.g., with respect to final states of executions
that end with volatile operations) follows immediately by reduction. However, some com-
pilers are a little more lenient in their optimizations, and allow operations on certain local
variables to move across volatile operations. In the context of C (where pointers to stack
variables can be passed by pointer), the notion of “locality” is somewhat tricky, and makes
essential use of C forbidding (semantically) address arithmetic across memory objects.

Acknowledgements

We thank Mark Hillebrand for discussions and feedback on this work and extensive com-
ments on this report.

A Appendix

After the explanatory text in the main body of the document we now show the plain
theory files.

theory ReduceStoreBuffer
imports Main
begin

A.1 Memory Instructions

type-synonym addr = nat
type-synonym val = nat
type-synonym tmp = nat

type-synonym tmps = tmp ⇒ val option
type-synonym sop = tmp set × (tmps ⇒ val) — domain and function

locale valid-sop =
fixes sop :: sop
assumes valid-sop:

∧
D f j.

[[sop=(D,f); D ⊆ dom j]]
=⇒
f j = f (j|‘D)

type-synonym memory = addr ⇒ val
type-synonym owns = addr set
type-synonym rels = addr ⇒ bool option
type-synonym shared = addr ⇒ bool option
type-synonym acq = addr set
type-synonym rel = addr set

31

type-synonym lcl = addr set
type-synonym wrt = addr set
type-synonym cond = tmps ⇒ bool
type-synonym ret = val ⇒ val ⇒ val

datatype instr = Read bool addr tmp
| Write bool addr sop acq lcl rel wrt
| RMW addr tmp sop cond ret acq lcl rel wrt
| Fence
| Ghost acq lcl rel wrt

type-synonym instrs = instr list

type-synonym (′p, ′sb, ′dirty, ′owns, ′rels) thread-config =
′p × instrs × tmps × ′sb × ′dirty × ′owns × ′rels

type-synonym (′p, ′sb, ′dirty, ′owns, ′rels, ′shared) global-config =
(′p, ′sb, ′dirty, ′owns, ′rels) thread-config list × memory × ′shared

definition owned t = (let (p,instrs,j,sb,D,O,R) = t in O)

lemma owned-simp [simp]: owned (p,instrs,j,sb,D,O,R) = (O)
by (simp add: owned-def)

definition O-sb t = (let (p,instrs,j,sb,D,O,R) = t in (O,sb))

lemma O-sb-simp [simp]: O-sb (p,instrs,j,sb,D,O,R) = (O,sb)
by (simp add: O-sb-def)

definition released t = (let (p,instrs,j,sb,D,O,R) = t in R)

lemma released-simp [simp]: released (p,instrs,j,sb,D,O,R) = (R)
by (simp add: released-def)

lemma list-update-id ′: v = xs ! i =⇒ xs[i := v] = xs
by simp

lemmas converse-rtranclp-induct5 =
converse-rtranclp-induct [where a=(m,sb,O,R,S) and b=(m ′,sb ′,O ′,R ′,S ′),
split-rule,consumes 1, case-names refl step]

A.2 Abstract Program Semantics

locale memory-system =
fixes
memop-step :: (instrs × tmps × ′sb × memory × ′dirty × ′owns × ′rels × ′shared) ⇒

(instrs × tmps × ′sb × memory × ′dirty × ′owns × ′rels × ′shared) ⇒ bool
(‹- →m -› [60,60] 100) and

32

storebuffer-step:: (memory × ′sb × ′owns × ′rels × ′shared) ⇒ (memory × ′sb × ′owns
× ′rels × ′shared) ⇒ bool (‹- →sb -› [60,60] 100)

locale program =
fixes
program-step :: tmps ⇒ ′p ⇒ ′p × instrs ⇒ bool (‹-` - →p -› [60,60,60] 100)
— A program only accesses the shared memory indirectly, it can read the temporaries

and can output a sequence of memory instructions

locale computation = memory-system + program +
constrains
— The constrains are only used to name the types ′sb and ′p
storebuffer-step:: (memory × ′sb × ′owns × ′rels × ′shared) ⇒ (memory × ′sb × ′owns

× ′rels × ′shared) ⇒ bool and
memop-step ::

(instrs × tmps × ′sb × memory × ′dirty × ′owns × ′rels × ′shared) ⇒
(instrs × tmps × ′sb × memory × ′dirty × ′owns × ′rels × ′shared) ⇒ bool

and
program-step :: tmps ⇒ ′p ⇒ ′p × instrs ⇒ bool
fixes
record :: ′p ⇒ ′p ⇒ instrs ⇒ ′sb ⇒ ′sb

begin

inductive concurrent-step ::
(′p, ′sb, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ (′p, ′sb, ′dirty, ′owns, ′rels, ′shared)

global-config ⇒ bool
(‹- ⇒ -› [60,60] 100)

where
Program:
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);

j`p →p (p ′,is ′)]] =⇒
(ts,m,S) ⇒ (ts[i:=(p ′,is@is ′,j,record p p ′ is ′ sb,D,O,R)],m,S)

| Memop:
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);

(is,j,sb,m,D,O,R,S) →m (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)]]
=⇒
(ts,m,S) ⇒ (ts[i:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)],m ′,S ′)

| StoreBuffer:
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);
(m,sb,O,R,S) →sb (m ′,sb ′,O ′,R ′,S ′)]] =⇒
(ts,m,S) ⇒ (ts[i:=(p,is,j,sb ′,D,O ′,R ′)],m ′,S ′)

definition final:: (′p, ′sb, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ bool
where
final c = (¬ (∃ c ′. c ⇒ c ′))

33

lemma store-buffer-steps:
assumes sb-step: storebuffer-step^∗∗ (m,sb,O,R,S) (m ′,sb ′,O ′,R ′,S ′)
shows

∧
ts. i < length ts =⇒ ts!i = (p,is,j,sb,D,O,R) =⇒

concurrent-step^∗∗ (ts,m,S) (ts[i:=(p,is,j,sb ′,D,O ′,R ′)],m ′,S ′)
using sb-step
proof (induct rule: converse-rtranclp-induct5)

case refl then show ?case
by (simp add: list-update-id ′)

next
case (step m sb O R S m ′′ sb ′′ O ′′ R ′′ S ′′)
note i-bound = ‹i < length ts›
note ts-i = ‹ts ! i = (p, is, j, sb, D, O, R)›
note step = ‹(m, sb,O,R,S) →sb (m ′′, sb ′′,O ′′,R ′′,S ′′)›
let ?ts ′ = ts[i := (p, is, j, sb ′′,D, O ′′,R ′′)]
from StoreBuffer [OF i-bound ts-i step]
have (ts, m, S) ⇒ (?ts ′, m ′′, S ′′).
also
from i-bound have i-bound ′: i < length ?ts ′ by simp
from i-bound have ts ′-i: ?ts ′!i = (p,is,j,sb ′′,D,O ′′,R ′′)

by simp
from step.hyps (3) [OF i-bound ′ ts ′-i] i-bound
have concurrent-step∗∗ (?ts ′, m ′′, S ′′) (ts[i := (p, is, j, sb ′,D, O ′,R ′)], m ′, S ′)

by (simp)
finally
show ?case .

qed

lemma step-preserves-length-ts:
assumes step: (ts,m,S) ⇒ (ts ′,m ′,S ′)
shows length ts ′ = length ts

using step
apply (cases)
apply auto
done
end

lemmas concurrent-step-cases = computation.concurrent-step.cases
[cases set, consumes 1, case-names Program Memop StoreBuffer]

definition augment-shared:: shared ⇒ addr set ⇒ addr set ⇒ shared (‹- ⊕- -› [61,1000,60]
61)
where
S ⊕W S ≡ (λa. if a ∈ S then Some (a ∈ W) else S a)

definition restrict-shared:: shared ⇒ addr set ⇒ addr set ⇒ shared (‹- 	- -› [51,1000,50]
51)
where
S 	A L ≡ (λa. if a ∈ L then None

else (case S a of None ⇒ None

34

| Some writeable ⇒ Some (a ∈ A ∨ writeable)))

definition read-only :: shared ⇒ addr set
where
read-only S ≡ {a. (S a = Some False)}

definition shared-le:: shared ⇒ shared ⇒ bool (infix ‹⊆s› 50)
where
m1 ⊆s m2 ≡ m1 ⊆m m2 ∧ read-only m1 ⊆ read-only m2

lemma shared-leD: m1 ⊆s m2 =⇒ m1 ⊆m m2 ∧ read-only m1 ⊆ read-only m2

by (simp add: shared-le-def)

lemma shared-le-map-le: m1 ⊆s m2 =⇒ m1 ⊆m m2

by (simp add: shared-le-def)

lemma shared-le-read-only-le: m1 ⊆s m2 =⇒ read-only m1 ⊆ read-only m2

by (simp add: shared-le-def)

lemma dom-augment [simp]: dom (m ⊕W S) = dom m ∪ S
by (auto simp add: augment-shared-def)

lemma augment-empty [simp]: S ⊕x {} = S
by (simp add: augment-shared-def)

lemma inter-neg [simp]: X ∩ − L = X − L
by blast

lemma dom-restrict-shared [simp]: dom (m 	A L) = dom m − L
by (auto simp add: restrict-shared-def split: option.splits)

lemma restrict-shared-UNIV [simp]: (m 	A UNIV) = Map.empty
by (auto simp add: restrict-shared-def split: if-split-asm option.splits)

lemma restrict-shared-empty [simp]: (Map.empty 	A L) = Map.empty
apply (rule ext)
by (auto simp add: restrict-shared-def split: if-split-asm option.splits)

lemma restrict-shared-in [simp]: a ∈ L =⇒ (m 	A L) a = None
by (auto simp add: restrict-shared-def split: if-split-asm option.splits)

lemma restrict-shared-out: a /∈ L =⇒ (m 	A L) a =
map-option (λwriteable. (a ∈ A ∨ writeable)) (m a)
by (auto simp add: restrict-shared-def split: if-split-asm option.splits)

lemma restrict-shared-out ′[simp]:
a /∈ L =⇒ m a = Some writeable =⇒ (m 	A L) a = Some (a ∈ A ∨ writeable)
by (simp add: restrict-shared-out)

35

lemma augment-mono-map ′: A ⊆m B =⇒ (A ⊕x C) ⊆m (B ⊕x C)
by (auto simp add: augment-shared-def map-le-def domIff)

lemma augment-mono-map: A ⊆s B =⇒ (A ⊕x C) ⊆s (B ⊕x C)
by (auto simp add: augment-shared-def shared-le-def map-le-def read-only-def dom-def

split: option.splits if-split-asm)

lemma restrict-mono-map: A ⊆s B =⇒ (A 	x C) ⊆s (B 	x C)
by (auto simp add: restrict-shared-def shared-le-def map-le-def read-only-def dom-def

split: option.splits if-split-asm)

lemma augment-mono-aux: dom A ⊆ dom B =⇒ dom (A ⊕x C) ⊆ dom (B ⊕x C)
by auto

lemma restrict-mono-aux: dom A ⊆ dom B =⇒ dom (A 	x C) ⊆ dom (B 	x C)
by auto

lemma read-only-mono: S ⊆m S ′ =⇒ a ∈ read-only S =⇒ a ∈ read-only S ′

by (auto simp add: map-le-def domIff read-only-def dest!: bspec)

lemma in-read-only-restrict-conv:
a ∈ read-only (S 	A L) = (a ∈ read-only S ∧ a /∈ L ∧ a /∈ A)
by (auto simp add: read-only-def restrict-shared-def split: option.splits if-split-asm)

lemma in-read-only-augment-conv: a ∈ read-only (S ⊕W R) = (if a ∈ R then a /∈ W else
a ∈ read-only S)

by (auto simp add: read-only-def augment-shared-def)

lemmas in-read-only-convs = in-read-only-restrict-conv in-read-only-augment-conv

lemma read-only-dom: read-only S ⊆ dom S
by (auto simp add: read-only-def dom-def)

lemma read-only-empty [simp]: read-only Map.empty = {}
by (auto simp add: read-only-def)

lemma restrict-shared-fuse: S 	A L 	B M = (S 	(A ∪ B) (L ∪ M))
apply (rule ext)
apply (auto simp add: restrict-shared-def split: option.splits if-split-asm)
done

lemma restrict-shared-empty-set [simp]: S 	{} {} = S
apply (rule ext)
apply (auto simp add: restrict-shared-def split: option.splits if-split-asm)
done

definition augment-rels:: addr set ⇒ addr set ⇒ rels ⇒ rels
where

36

augment-rels S R R = (λa. if a ∈ R
then (case R a of

None ⇒ Some (a ∈ S)
| Some s ⇒ Some (s ∧ (a ∈ S)))

else R a)

declare domIff [iff del]

A.3 Memory Transitions

locale gen-direct-memop-step =
fixes emp:: ′rels and aug::owns ⇒ rel ⇒ ′rels ⇒ ′rels
begin
inductive gen-direct-memop-step :: (instrs × tmps × unit × memory × bool × owns ×
′rels × shared) ⇒

(instrs × tmps × unit × memory × bool × owns × ′rels × shared) ⇒ bool
(‹- → -› [60,60] 100)

where
Read: (Read volatile a t # is,j, x, m,D, O, R, S) →

(is, j (t 7→m a), x, m, D, O, R, S)

| WriteNonVolatile:
(Write False a (D,f) A L R W#is, j, x, m, D, O, R, S) →

(is, j, x, m(a := f j), D, O, R, S)

| WriteVolatile:
(Write True a (D,f) A L R W# is, j, x, m, D, O, R, S) →

(is, j, x, m(a:=f j), True, O ∪ A − R, emp, S ⊕W R 	A L)

| Fence:
(Fence # is, j, x, m, D, O, R, S) → (is, j,x, m, False, O, emp, S)

| RMWReadOnly:
[[¬ cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W # is, j, x, m, D, O, R, S) → (is, j(t 7→m a),x,m,

False, O, emp, S)

| RMWWrite:
[[cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, x, m, D, O, R, S) →

(is, j(t 7→ret (m a) (f(j(t 7→m a)))),x, m(a:= f(j(t7→m a))), False,O ∪ A − R, emp,
S ⊕W R 	A L)

| Ghost:
(Ghost A L R W # is, j, x, m, D, O, R, S) →

(is, j, x, m, D, O ∪ A − R, aug (dom S) R R , S ⊕W R 	A L)
end

interpretation direct-memop-step: gen-direct-memop-step Map.empty augment-rels .

37

term direct-memop-step.gen-direct-memop-step
abbreviation direct-memop-step :: (instrs × tmps × unit × memory × bool × owns ×
rels × shared) ⇒

(instrs × tmps × unit × memory × bool × owns × rels × shared) ⇒ bool
(‹- → -› [60,60] 100)

where
direct-memop-step ≡ direct-memop-step.gen-direct-memop-step

term x → Y

abbreviation direct-memop-steps ::
(instrs × tmps × unit × memory × bool × owns × rels × shared) ⇒
(instrs × tmps × unit × memory × bool × owns × rels × shared)
⇒ bool
(‹- →∗ -› [60,60] 100)

where
direct-memop-steps == (direct-memop-step)^∗∗

term x →∗ Y

interpretation virtual-memop-step: gen-direct-memop-step () (λS R R. ()) .

abbreviation virtual-memop-step :: (instrs × tmps × unit × memory × bool × owns ×
unit × shared) ⇒

(instrs × tmps × unit × memory × bool × owns × unit × shared) ⇒ bool
(‹- →v -› [60,60] 100)

where
virtual-memop-step ≡ virtual-memop-step.gen-direct-memop-step

term x →v Y

abbreviation virtual-memop-steps ::
(instrs × tmps × unit × memory × bool × owns × unit × shared) ⇒
(instrs × tmps × unit × memory × bool × owns × unit × shared)
⇒ bool
(‹- →v

∗ -› [60,60] 100)
where
virtual-memop-steps == (virtual-memop-step)^∗∗

term x →∗ Y

lemma virtual-memop-step-simulates-direct-memop-step:
assumes step:
(is, j, x, m, D, O, R, S) → (is ′, j ′, x ′, m ′, D ′, O ′, R ′, S ′)
shows (is, j, x, m, D, O, (), S) →v (is ′, j ′, x ′, m ′, D ′, O ′, (), S ′)

using step
apply (cases)
apply (auto intro: virtual-memop-step.gen-direct-memop-step.intros)

38

done

A.4 Safe Configurations of Virtual Machines

inductive safe-direct-memop-state :: owns list ⇒ nat ⇒
(instrs × tmps × memory × bool × owns × shared) ⇒ bool
(‹-,-` -

√
› [60,60,60] 100)

where
Read: [[a ∈ O ∨ a ∈ read-only S ∨ (volatile ∧ a ∈ dom S);

volatile −→ ¬ D]]
=⇒
Os,i`(Read volatile a t # is, j, m, D, O, S)

√

| WriteNonVolatile:
[[a ∈ O; a /∈ dom S]]
=⇒
Os,i`(Write False a (D,f) A L R W#is, j, m, D, O, S)

√

| WriteVolatile:
[[∀ j < length Os. i6=j −→ a /∈ Os!j;

A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ Os!j = {};

a /∈ read-only S]]
=⇒
Os,i`(Write True a (D,f) A L R W# is, j, m, D, O, S)

√

| Fence:
Os,i`(Fence # is, j, m, D, O, S)

√

| Ghost:
[[A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ Os!j = {}]]
=⇒
Os,i`(Ghost A L R W# is, j, m, D, O, S)

√

| RMWReadOnly:
[[¬ cond (j(t 7→m a)); a ∈ O ∨ a ∈ dom S]] =⇒
Os,i`(RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

| RMWWrite:
[[cond (j(t 7→m a));
∀ j < length Os. i 6=j −→ a /∈ Os!j;
A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ Os!j = {};
a /∈ read-only S]]
=⇒
Os,i`(RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

| Nil: Os,i`([], j, m, D, O, S)
√

39

inductive safe-delayed-direct-memop-state :: owns list ⇒ rels list ⇒ nat ⇒
(instrs × tmps × memory × bool × owns × shared) ⇒ bool
(‹-,-,-` -

√
› [60,60,60,60] 100)

where
Read: [[a ∈ O ∨ a ∈ read-only S ∨ (volatile ∧ a ∈ dom S);

∀ j < length Os. i6=j −→ (Rs!j) a 6= Some False; — no release of unshared address
¬ volatile −→ (∀ j < length Os. i 6=j −→ a /∈ dom (Rs!j));
volatile −→ ¬ D]]

=⇒
Os,Rs,i`(Read volatile a t # is, j, m, D, O, S)

√

| WriteNonVolatile:
[[a ∈ O; a /∈ dom S; ∀ j < length Os. i6=j −→ a /∈ dom (Rs!j)]]
=⇒
Os,Rs,i`(Write False a (D,f) A L R W#is, j, m, D, O, S)

√

| WriteVolatile:
[[∀ j < length Os. i6=j −→ a /∈ (Os!j ∪ dom (Rs!j));

A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ (Os!j ∪ dom (Rs!j)) = {};

a /∈ read-only S]]
=⇒
Os,Rs,i`(Write True a (D,f) A L R W# is, j, m, D, O, S)

√

| Fence:
Os,Rs,i`(Fence # is, j, m, D, O, S)

√

| Ghost:
[[A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ (Os!j ∪ dom (Rs!j)) = {}]]
=⇒
Os,Rs,i`(Ghost A L R W# is, j, m, D, O, S)

√

| RMWReadOnly:
[[¬ cond (j(t 7→m a)); a ∈ O ∨ a ∈ dom S;
∀ j < length Os. i6=j −→ (Rs!j) a 6= Some False — no release of unshared address]]
=⇒
Os,Rs,i`(RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

| RMWWrite:
[[cond (j(t 7→m a)); a ∈ O ∨ a ∈ dom S;
∀ j < length Os. i 6=j −→ a /∈ (Os!j ∪ dom (Rs!j));
A ⊆ dom S ∪ O; L ⊆ A; R ⊆ O; A ∩ R = {};
∀ j < length Os. i 6=j −→ A ∩ (Os!j ∪ dom (Rs!j)) = {};
a /∈ read-only S]]
=⇒
Os,Rs,i`(RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

| Nil: Os,Rs,i`([], j, m, D, O, S)
√

40

lemma memop-safe-delayed-implies-safe-free-flowing:
assumes safe-delayed: Os,Rs,i`(is, j, m, D, O, S)

√

shows Os,i`(is, j, m, D, O, S)
√

using safe-delayed
proof (cases)

case Read thus ?thesis
by (fastforce intro!: safe-direct-memop-state.intros)

next
case WriteNonVolatile thus ?thesis

by (fastforce intro!: safe-direct-memop-state.intros)
next

case WriteVolatile thus ?thesis
by (fastforce intro!: safe-direct-memop-state.intros)

next
case Fence thus ?thesis

by (fastforce intro!: safe-direct-memop-state.intros)
next

case Ghost thus ?thesis
by (fastforce intro!: safe-direct-memop-state.Ghost)

next
case RMWReadOnly thus ?thesis

by (fastforce intro!: safe-direct-memop-state.intros)
next

case RMWWrite thus ?thesis
by (fastforce intro!: safe-direct-memop-state.RMWWrite)

next
case Nil thus ?thesis

by (fastforce intro!: safe-direct-memop-state.Nil)
qed

lemma memop-empty-rels-safe-free-flowing-implies-safe-delayed:
assumes safe: Os,i`(is, j, m, D, O, S)

√

assumes empty: ∀R ∈ set Rs. R = Map.empty
assumes leq: length Os = length Rs
assumes unowned-shared: (∀ a. (∀ i < length Os. a /∈ (Os!i)) −→ a ∈ dom S)
assumes Os-i: Os!i = O
shows Os,Rs,i`(is, j, m, D, O, S)

√

using safe
proof (cases)

case Read thus ?thesis
using leq empty
by (fastforce intro!: safe-delayed-direct-memop-state.Read dest: nth-mem)

next
case WriteNonVolatile thus ?thesis

using leq empty
by (fastforce intro!: safe-delayed-direct-memop-state.intros dest: nth-mem)

next
case WriteVolatile thus ?thesis
using leq empty

apply clarsimp

41

apply (rule safe-delayed-direct-memop-state.WriteVolatile)
apply (auto)
apply (drule nth-mem)
apply fastforce
apply (drule nth-mem)
apply fastforce
done

next
case Fence thus ?thesis

by (fastforce intro!: safe-delayed-direct-memop-state.intros)
next

case Ghost thus ?thesis
using leq empty

apply clarsimp
apply (rule safe-delayed-direct-memop-state.Ghost)
apply (auto)
apply (drule nth-mem)
apply fastforce
done

next
case RMWReadOnly thus ?thesis
using leq empty

by (fastforce intro!: safe-delayed-direct-memop-state.intros dest: nth-mem)
next

case (RMWWrite cond t a A L R D f ret W) thus ?thesis
using leq empty unowned-shared [rule-format, where a=a] Os-i

apply clarsimp
apply (rule safe-delayed-direct-memop-state.RMWWrite)
apply (auto)
apply (drule nth-mem)
apply fastforce
apply (drule nth-mem)
apply fastforce
done

next
case Nil thus ?thesis

by (fastforce intro!: safe-delayed-direct-memop-state.Nil)
qed

inductive id-storebuffer-step::
(memory × unit × owns × rels × shared) ⇒ (memory × unit × owns × rels × shared)

⇒ bool (‹- →I -› [60,60] 100)
where

Id: (m,x,O,R,S) →I (m,x,O,R,S)

definition empty-storebuffer-step:: (memory × ′sb × ′owns × ′rels × ′shared) ⇒ (memory
× ′sb × ′owns × ′rels × ′shared) ⇒ bool
where
empty-storebuffer-step c c ′ = False

42

context program
begin

abbreviation direct-concurrent-step ::
(′p,unit,bool,owns,rels,shared) global-config ⇒ (′p,unit,bool,owns,rels,shared)

global-config ⇒ bool
(‹- ⇒d -› [100,60] 100)

where
direct-concurrent-step ≡

computation.concurrent-step direct-memop-step.gen-direct-memop-step
empty-storebuffer-step program-step

(λp p ′ is sb. sb)

abbreviation direct-concurrent-steps::
(′p,unit,bool,owns,rels,shared) global-config ⇒ (′p,unit,bool,owns,rels,shared)

global-config ⇒ bool
(‹- ⇒d

∗ -› [60,60] 100)
where
direct-concurrent-steps == direct-concurrent-step^∗∗

abbreviation virtual-concurrent-step ::
(′p,unit,bool,owns,unit,shared) global-config ⇒ (′p,unit,bool,owns,unit,shared)

global-config ⇒ bool
(‹- ⇒v -› [100,60] 100)

where
virtual-concurrent-step ≡

computation.concurrent-step virtual-memop-step.gen-direct-memop-step
empty-storebuffer-step program-step

(λp p ′ is sb. sb)

abbreviation virtual-concurrent-steps::
(′p,unit,bool,owns,unit,shared) global-config ⇒ (′p,unit,bool,owns,unit,shared)

global-config ⇒ bool
(‹- ⇒v

∗ -› [60,60] 100)
where
virtual-concurrent-steps == virtual-concurrent-step^∗∗

term x ⇒v Y
term x ⇒d Y

term x ⇒d
∗ Y

term x ⇒v
∗ Y

end

definition
safe-reach step safe cfg ≡

∀ cfg ′. step^∗∗ cfg cfg ′ −→ safe cfg ′

43

lemma safe-reach-safe-refl: safe-reach step safe cfg =⇒ safe cfg
apply (auto simp add: safe-reach-def)
done

lemma safe-reach-safe-rtrancl: safe-reach step safe cfg =⇒ step^∗∗ cfg cfg ′ =⇒ safe cfg ′

by (simp only: safe-reach-def)

lemma safe-reach-steps: safe-reach step safe cfg =⇒ step^∗∗ cfg cfg ′ =⇒ safe-reach step
safe cfg ′

apply (auto simp add: safe-reach-def intro: rtranclp-trans)
done

lemma safe-reach-step: safe-reach step safe cfg =⇒ step cfg cfg ′ =⇒ safe-reach step safe
cfg ′

apply (erule safe-reach-steps)
apply (erule r-into-rtranclp)
done

context program
begin

abbreviation
safe-reach-direct ≡ safe-reach direct-concurrent-step

lemma safe-reac-direct-def ′:
safe-reach-direct safe cfg ≡

∀ cfg ′. cfg ⇒d
∗ cfg ′ −→ safe cfg ′

by(simp add: safe-reach-def)

abbreviation
safe-reach-virtual ≡ safe-reach virtual-concurrent-step

lemma safe-reac-virtual-def ′:
safe-reach-virtual safe cfg ≡

∀ cfg ′. cfg ⇒v
∗ cfg ′ −→ safe cfg ′

by(simp add: safe-reach-def)
end

definition
safe-free-flowing cfg ≡ let (ts,m,S) = cfg

in (∀ i < length ts. let (p,is,j,x,D,O,R) = ts!i in
map owned ts,i `(is,j,m,D,O,S)

√
)

lemma safeE: [[safe-free-flowing (ts,m,S);i<length ts; ts!i=(p,is,j,x,D,O,R)]]
=⇒ map owned ts,i `(is,j,m,D,O,S)

√

by (auto simp add: safe-free-flowing-def)

definition

44

safe-delayed cfg ≡ let (ts,m,S) = cfg
in (∀ i < length ts. let (p,is,j,x,D,O,R) = ts!i in

map owned ts,map released ts,i `(is,j,m,D,O,S)
√
)

lemma safe-delayedE: [[safe-delayed (ts,m,S);i<length ts; ts!i=(p,is,j,x,D,O,R)]]
=⇒ map owned ts,map released ts,i `(is,j,m,D,O,S)

√

by (auto simp add: safe-delayed-def)

definition remove-rels ≡ map (λ(p,is,j,sb,D,O,R). (p,is,j,sb,D,O,()))

theorem (in program) virtual-simulates-direct-step:
assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
shows (remove-rels ts,m,S) ⇒v (remove-rels ts ′,m ′,S ′)

using step
proof −

interpret direct-computation:
computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .

interpret virtual-computation:
computation virtual-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .

from step show ?thesis
proof (cases)

case (Program j p is j sb D O R p ′ is ′)
then obtain

ts ′: ts ′ = ts[j:=(p ′,is@is ′,j,sb,D,O,R)] and
S ′: S ′=S and
m ′: m ′=m and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
prog-step: j` p →p (p ′, is ′)
by auto

from ts-j j-bound have
vts-j: remove-rels ts!j = (p,is,j,sb,D,O,()) by (auto simp add: remove-rels-def)

from virtual-computation.Program [OF - vts-j prog-step, of m S] j-bound ts ′
show ?thesis

by (clarsimp simp add: S ′ m ′ remove-rels-def map-update)
next

case (Memop j p is j sb D O R is ′ j ′ sb ′ D ′ O ′ R ′)
then obtain

ts ′: ts ′ = ts[j:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)] and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
mem-step: (is, j, sb, m, D, O, R, S) → (is ′, j ′, sb ′,m ′, D ′, O ′, R ′, S ′)
by auto

from ts-j j-bound have
vts-j: remove-rels ts!j = (p,is,j,sb,D,O,()) by (auto simp add: remove-rels-def)

from virtual-computation.Memop[OF - vts-j vir-
tual-memop-step-simulates-direct-memop-step [OF mem-step]] j-bound ts ′

45

show ?thesis
by (clarsimp simp add: remove-rels-def map-update)

next
case (StoreBuffer - p is j sb D O R sb ′ O ′ R ′)
hence False

by (auto simp add: empty-storebuffer-step-def)
thus ?thesis ..

qed
qed

lemmas converse-rtranclp-induct-sbh-steps = converse-rtranclp-induct
[of - (ts,m,S) (ts ′,m ′,S ′), split-rule,

consumes 1, case-names refl step]

theorem (in program) virtual-simulates-direct-steps:
assumes steps: (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′)
shows (remove-rels ts,m,S) ⇒v

∗ (remove-rels ts ′,m ′,S ′)
using steps
proof (induct rule: converse-rtranclp-induct-sbh-steps)

case refl thus ?case by auto
next

case (step ts m S ts ′′ m ′′ S ′′)
then obtain

first: (ts, m, S) ⇒d (ts ′′, m ′′, S ′′) and
hyp: (remove-rels ts ′′, m ′′, S ′′) ⇒v

∗ (remove-rels ts ′, m ′, S ′)
by blast

note virtual-simulates-direct-step [OF first] also note hyp
finally
show ?case by blast

qed

locale simple-ownership-distinct =
fixes ts::(′p, ′sb, ′dirty,owns, ′rels) thread-config list
assumes simple-ownership-distinct:∧

i j pi isi Oi Ri Di ji sbi pj isj Oj Rj Dj jj sbj.
[[i < length ts; j < length ts; i 6= j;

ts!i = (pi,isi,ji,sbi,Di,Oi,Ri); ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
]] =⇒ Oi ∩ Oj = {}

lemma (in simple-ownership-distinct)
simple-ownership-distinct-nth-update:∧
i p is j O R D xs sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);
∀ j < length ts. i6=j −→ (let (pj,isj,jj,sbj,Dj,Oj,Rj) = ts!j

in (O ′) ∩ (Oj) ={})]] =⇒
simple-ownership-distinct (ts[i := (p ′,is ′,j ′,sb ′,D ′,O ′,R ′)])

apply (unfold-locales)
apply (clarsimp simp add: nth-list-update split: if-split-asm)
apply (force dest: simple-ownership-distinct simp add: Let-def)

46

apply (fastforce dest: simple-ownership-distinct simp add: Let-def)
apply (fastforce dest: simple-ownership-distinct simp add: Let-def)
done

locale read-only-unowned =
fixes S::shared and ts::(′p, ′sb, ′dirty,owns, ′rels) thread-config list
assumes read-only-unowned:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
O ∩ read-only S = {}

lemma (in read-only-unowned)
read-only-unowned-nth-update:∧
i p is O R D acq j sb.
[[i < length ts; O ∩ read-only S = {}]] =⇒

read-only-unowned S (ts[i := (p,is,j,sb,D,O,R)])
apply (unfold-locales)
apply (auto dest: read-only-unowned

simp add: nth-list-update split: if-split-asm)
done

locale unowned-shared =
fixes S::shared and ts::(′p, ′sb, ′dirty,owns, ′rels) thread-config list
assumes unowned-shared: −

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts) ⊆ dom S

lemma (in unowned-shared)
unowned-shared-nth-update:
assumes i-bound: i < length ts
assumes ith: ts!i=(p,is,xs,sb,D,O,R)
assumes subset: O ⊆ O ′

shows unowned-shared S (ts[i := (p ′,is ′,xs ′,sb ′,D ′,O ′,R ′)])
proof −

from i-bound ith subset
have

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts) ⊆⋃

((λ(-,-,-,-,-,O,-). O) ‘ set (ts[i := (p ′,is ′,xs ′,sb ′,D ′,O ′,R ′)]))

apply (auto simp add: in-set-conv-nth nth-list-update split: if-split-asm)
subgoal for x p ′′ is ′′ xs ′′ sb ′′ D ′′ O ′′ R ′′ j
apply (case-tac j=i)
apply (rule-tac x=(p ′,is ′,xs ′,sb ′,D ′,O ′,R ′) in bexI)
apply fastforce
apply (fastforce simp add: in-set-conv-nth)
apply (rule-tac x=(p ′′,is ′′,xs ′′,sb ′′,D ′′,O ′′,R ′′) in bexI)
apply fastforce
apply (fastforce simp add: in-set-conv-nth)
done
done

hence −
⋃

((λ(-,-,-,-,-,O,-). O) ‘ set (ts[i := (p ′,is ′,xs ′,sb ′,D ′,O ′,R ′)])) ⊆
−

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts)

47

by blast
also note unowned-shared
finally
show ?thesis

by (unfold-locales)
qed

lemma (in unowned-shared) a-unowned-by-others-owned-or-shared:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-unowned-others:

∀ j<length (map owned ts). i 6= j −→
(let Oj = (map owned ts)!j in a /∈ Oj)

shows a ∈ O ∨ a ∈ dom S
proof −

{
fix j pj isj Oj Rj Dj xsj sbj

assume a-unowned: a /∈ O
assume j-bound: j < length ts
assume jth: ts!j = (pj,isj,xsj, sbj, Dj, Oj,Rj)
have a /∈ Oj

proof (cases i=j)
case True with a-unowned ts-i jth
show ?thesis

by auto
next

case False
from a-unowned-others [rule-format, of j] j-bound jth False
show ?thesis

by auto
qed

} note lem = this
{

assume a /∈ O
from lem [OF this]
have a ∈ −

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts)

by (fastforce simp add: in-set-conv-nth)
with unowned-shared have a ∈ dom S

by auto
}
then
show ?thesis

by auto
qed

lemma (in unowned-shared) unowned-shared ′:
assumes notin: ∀ i < length ts. a /∈ owned (ts!i)
shows a ∈ dom S

proof −

48

from notin have a ∈ −
⋃
((λ(-, -, -, -, -, O, -). O) ‘ set ts)

by (force simp add: in-set-conv-nth)
with unowned-shared show ?thesis by blast

qed

lemma unowned-shared-def ′: unowned-shared S ts = (∀ a. (∀ i < length ts. a /∈ owned
(ts!i)) −→ a ∈ dom S)
apply rule
apply clarsimp
apply (rule unowned-shared.unowned-shared ′)
apply fastforce
apply fastforce
apply (unfold unowned-shared-def)
apply clarsimp
subgoal for x
apply (drule-tac x=x in spec)
apply (erule impE)
apply clarsimp
apply (case-tac (ts!i))
apply (drule nth-mem)
apply auto
done
done

definition
initial cfg ≡ let (ts,m,S) = cfg

in unowned-shared S ts ∧
(∀ i < length ts. let (p,is,j,x,D,O,R) = ts!i in
R = Map.empty)

lemma initial-empty-rels: initial (ts,m,S) =⇒ ∀R ∈ set (map released ts). R =
Map.empty

by (fastforce simp add: initial-def simp add: in-set-conv-nth)

lemma initial-unowned-shared: initial (ts,m,S) =⇒ unowned-shared S ts
by (fastforce simp add: initial-def)

lemma initial-safe-free-flowing-implies-safe-delayed:
assumes init: initial c
assumes safe: safe-free-flowing c
shows safe-delayed c
proof −

obtain ts S m where c: c=(ts,m,S) by (cases c)
from initial-empty-rels [OF init [simplified c]]
have rels-empty: ∀R∈set (map released ts). R = Map.empty.
from initial-unowned-shared [OF init [simplified c]] have unowned-shared S ts

by auto
hence us:(∀ a. (∀ i < length (map owned ts). a /∈ (map owned ts!i)) −→ a ∈ dom S)

by (simp add:unowned-shared-def ′)
{

49

fix i p is j x D O R
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,x,D,O,R)
have map owned ts,map released ts,i `(is,j,m,D,O,S)

√

proof −
from safeE [OF safe [simplified c] i-bound ts-i]
have map owned ts,i`(is, j, m, D, O, S)

√
.

from memop-empty-rels-safe-free-flowing-implies-safe-delayed [OF this rels-empty -
us] i-bound ts-i

show ?thesis
by simp

qed
}
then show ?thesis

by (fastforce simp add: c safe-delayed-def)
qed

locale program-progress = program +
assumes progress: j` p →p (p ′,is ′) =⇒ p ′ 6= p ∨ is ′ 6= []

The assumption ‘progress’ could be avoided if we introduce stuttering steps in lemma
undo-local-step or make the scheduling of threads explicit, such that we can directly express
that ‘thread i does not make a step’.lemma (in program-progress) undo-local-step:
assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
assumes i-bound: i < length ts
assumes unchanged: ts!i = ts ′!i
assumes safe-delayed-undo: safe-delayed (u-ts,u-m,u-shared) — proof should also work
with weaker safe-free-flowing
assumes leq: length u-ts = length ts
assumes others-same: ∀ j < length ts. j 6=i −→ u-ts!j = ts!j
assumes u-ts-i: u-ts!i=(u-p,u-is,u-tmps,u-x,u-dirty,u-owns,u-rels)
assumes u-m-other: ∀ a. a /∈ u-owns −→ u-m a = m a
assumes u-m-shared: ∀ a. a ∈ u-owns −→ a ∈ dom u-shared −→ u-m a = m a
assumes u-shared: ∀ a. a /∈ u-owns −→ a /∈ owned (ts!i) −→ u-shared a = S a
assumes dist: simple-ownership-distinct u-ts
assumes dist-ts: simple-ownership-distinct ts
shows ∃u-ts ′ u-shared ′ u-m ′. (u-ts,u-m,u-shared) ⇒d (u-ts ′,u-m ′,u-shared ′) ∧

— thread i is unchanged
u-ts ′!i = u-ts!i ∧
(∀ a ∈ u-owns. u-shared ′ a = u-shared a) ∧
(∀ a ∈ u-owns. S ′ a = S a) ∧
(∀ a ∈ u-owns. u-m ′ a = u-m a) ∧
(∀ a ∈ u-owns. m ′ a = m a) ∧

— other threads are simulated
(∀ j < length ts. j 6=i −→ u-ts ′!j = ts ′!j) ∧
(∀ a. a /∈ u-owns −→ a /∈ owned (ts!i) −→ u-shared ′ a = S ′ a) ∧
(∀ a. a /∈ u-owns −→ u-m ′ a = m ′ a)

proof −
interpret direct-computation:

50

computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .
from dist interpret simple-ownership-distinct u-ts .
from step
show ?thesis
proof (cases)

case (Program j p is j sb D O R p ′ is ′)
then obtain

ts ′: ts ′ = ts[j:=(p ′,is@is ′,j,sb,D,O,R)] and
S ′: S ′=S and
m ′: m ′=m and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
prog-step: j` p →p (p ′, is ′)
by auto

from progress [OF prog-step] i-bound unchanged ts-j ts ′
have neq-j-i: j 6=i

by auto

from others-same [rule-format, OF j-bound neq-j-i] ts-j
have u-ts-j: u-ts!j = (p,is,j,sb,D,O,R)

by simp
from leq j-bound have j-bound ′: j < length u-ts

by simp
from leq i-bound have i-bound ′: i < length u-ts

by simp

from direct-computation.Program [OF j-bound ′ u-ts-j prog-step]
have ustep: (u-ts,u-m, u-shared) ⇒d (u-ts[j := (p ′, is @ is ′, j, sb, D, O, R)], u-m,

u-shared). show ?thesis
apply −
apply (rule exI)
apply (rule exI)
apply (rule exI)
apply (rule conjI)
apply (rule ustep)
using neq-j-i others-same u-m-other u-shared j-bound leq ts-j
apply (auto simp add: nth-list-update ts ′ S ′ m ′)
done

next
case (Memop j p is j sb D O R is ′ j ′ sb ′ D ′ O ′ R ′)
then obtain

ts ′: ts ′ = ts[j:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)] and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
mem-step: (is, j, sb, m, D, O, R, S) → (is ′, j ′, sb ′,m ′, D ′, O ′, R ′, S ′)
by auto

from mem-step i-bound unchanged ts-j

51

have neq-j-i: j 6=i
by cases (auto simp add: ts ′)

from others-same [rule-format, OF j-bound neq-j-i] ts-j
have u-ts-j: u-ts!j = (p,is,j,sb,D,O,R)

by simp
from leq j-bound have j-bound ′: j < length u-ts

by simp
from leq i-bound have i-bound ′: i < length u-ts

by simp
from safe-delayedE [OF safe-delayed-undo j-bound ′ u-ts-j]
have safe-j: map owned u-ts,map released u-ts,j`(is, j, u-m, D, O, u-shared)

√
.

from simple-ownership-distinct [OF j-bound ′ i-bound ′ neq-j-i u-ts-j u-ts-i]
have owns-u-owns: O ∩ u-owns = {} .
from mem-step
show ?thesis
proof (cases)

case (Read volatile a t)
then obtain

is: is = Read volatile a t # is ′ and
j ′: j ′ = j(t 7→ m a) and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=D and
O ′: O ′=O and
R ′: R ′=R and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

access-cond: a ∈ O ∨ a ∈ read-only u-shared ∨
(volatile ∧ a ∈ dom u-shared)

and
clean: volatile −→ ¬ D
by cases auto

have u-m-a-eq: u-m a = m a
proof (cases a ∈ u-owns)

case True
with simple-ownership-distinct [OF j-bound ′ i-bound ′ neq-j-i u-ts-j u-ts-i]
have a /∈ O by auto
with access-cond read-only-dom [of u-shared] have a ∈ dom u-shared

by auto
from u-m-shared [rule-format, OF True this]
show ?thesis .

next
case False
from u-m-other [rule-format, OF this]

52

show ?thesis .
qed
note Read ′ = direct-memop-step.Read [of volatile a t is ′ j sb u-m D O R u-shared]
from direct-computation.Memop [OF j-bound ′ u-ts-j, simplified is, OF Read ′]
have ustep: (u-ts, u-m, u-shared) ⇒d (u-ts[j := (p, is ′, j(t 7→ u-m a), sb, D, O, R)],

u-m, u-shared).
show ?thesis

apply −
apply (rule exI)
apply (rule exI)
apply (rule exI)
apply (rule conjI)
apply (rule ustep)
using neq-j-i others-same u-m-other u-shared j-bound leq ts-j
by (auto simp add: nth-list-update ts ′ eqs ′ u-m-a-eq)

next
case (WriteNonVolatile a D f A L R W)
then obtain

is: is = Write False a (D, f) A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m(a:=f j) and
D ′: D ′=D and
O ′: O ′=O and
R ′: R ′=R and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

owned: a ∈ O and unshared: a /∈ dom u-shared
by cases auto

from simple-ownership-distinct [OF j-bound ′ i-bound ′ neq-j-i u-ts-j u-ts-i] owned
have a-unowned-i: a /∈ u-owns

by auto
note Write ′ = direct-memop-step.WriteNonVolatile [of a D f A L R W is ′ j sb u-m D

O R u-shared]
from direct-computation.Memop [OF j-bound ′ u-ts-j, simplified is, OF Write ′]
have ustep: (u-ts, u-m, u-shared) ⇒d (u-ts[j := (p, is ′, j, sb, D, O, R)], u-m (a := f

j), u-shared).
show ?thesis

apply −
apply (rule exI)
apply (rule exI)
apply (rule exI)
apply (rule conjI)
apply (rule ustep)
using neq-j-i others-same u-m-other u-shared j-bound leq ts-j a-unowned-i

53

apply (auto simp add: nth-list-update ts ′ eqs ′)
done

next
case (WriteVolatile a D f A L R W)
then obtain

is: is = Write True a (D, f) A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m(a:=f j) and
D ′: D ′=True and
O ′: O ′=O ∪ A − R and
R ′: R ′=Map.empty and
S ′: S ′=S ⊕W R 	A L
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

a-unowned-others: ∀ k < length u-ts. j 6=k −→ a /∈ (map owned u-ts!k ∪ dom (map
released u-ts!k)) and

A: A ⊆ dom u-shared ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R
= {} and

A-unowned-others: ∀ k < length u-ts. j 6=k −→ A ∩ (map owned u-ts!k ∪ dom (map
released u-ts!k)) = {} and

a-not-ro: a /∈ read-only u-shared
by cases auto

note Write ′ = direct-memop-step.WriteVolatile [of a D f A L R W is ′ j sb u-m D O
R u-shared]

from direct-computation.Memop [OF j-bound ′ u-ts-j, simplified is, OF Write ′]
have ustep: (u-ts, u-m, u-shared) ⇒d

(u-ts[j := (p, is ′, j, sb, True, O ∪ A − R, Map.empty)], u-m (a := f j),
u-shared ⊕W R 	A L).

from A-unowned-others [rule-format, OF i-bound ′ neq-j-i] u-ts-i i-bound ′

have A-u-owns: A ∩ u-owns = {} by auto
{

fix a
assume a-u-owns: a ∈ u-owns
have (u-shared ⊕W R 	A L) a = u-shared a
using R-owns A-R L-A A-u-owns owns-u-owns a-u-owns

by (auto simp add: restrict-shared-def augment-shared-def split: option.splits)
}
note u-owned-shared = this

from a-unowned-others [rule-format, OF i-bound ′ neq-j-i] u-ts-i i-bound ′ have
a-u-owns: a /∈ u-owns by auto

{
fix a
assume a-u-owns: a /∈ u-owns
assume a-u-owns-orig: a /∈ owned (ts!i)

54

from u-shared [rule-format, OF a-u-owns a-u-owns-orig]
have (u-shared ⊕W R 	A L) a = (S ⊕W R 	A L) a
using R-owns A-R L-A A-u-owns owns-u-owns

by (auto simp add: restrict-shared-def augment-shared-def split: option.splits)
}
note u-unowned-shared = this
{

fix a
assume a-u-owns: a ∈ u-owns

have (S ⊕W R 	A L) a = S a
using R-owns A-R L-A A-u-owns owns-u-owns a-u-owns

by (auto simp add: restrict-shared-def augment-shared-def split: option.splits)
}
note S ′-shared = this

show ?thesis
apply −
apply (rule exI)
apply (rule exI)
apply (rule exI)
apply (rule conjI)
apply (rule ustep)

using neq-j-i others-same u-m-other u-shared j-bound leq ts-j u-owned-shared
a-u-owns u-unowned-shared S ′-shared

apply (auto simp add: nth-list-update ts ′ eqs ′)
done

next
case Fence
then obtain

is: is = Fence # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=False and
O ′: O ′=O and
R ′: R ′=Map.empty and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

note Fence ′ = direct-memop-step.Fence [of is ′ j sb u-m D O R u-shared]
from direct-computation.Memop [OF j-bound ′ u-ts-j, simplified is, OF Fence ′]
have ustep: (u-ts, u-m, u-shared) ⇒d (u-ts[j := (p, is ′, j, sb, False, O, Map.empty)],

u-m, u-shared).
show ?thesis

apply −
apply (rule exI)
apply (rule exI)
apply (rule exI)
apply (rule conjI)

55

apply (rule ustep)
using neq-j-i others-same u-m-other u-shared j-bound leq ts-j
by (auto simp add: nth-list-update ts ′ eqs ′)

next
case (RMWReadOnly cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W # is ′ and
j ′: j ′ = j(t7→ m a) and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=False and
O ′: O ′=O and
R ′: R ′=Map.empty and
S ′: S ′=S and
cond: ¬ cond (j(t 7→ m a))
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is] owns-u-owns u-ts-i i-bound ′ neq-j-i
obtain

access-cond: a /∈ u-owns ∨ (a ∈ dom u-shared ∧ a ∈ u-owns)
by cases auto

from u-m-other u-m-shared access-cond
have u-m-a-eq: u-m a = m a

by auto
from cond u-m-a-eq have cond ′: ¬ cond (j(t 7→ u-m a))

by auto
note RMWReadOnly ′ = direct-memop-step.RMWReadOnly [of cond j t u-m a D f

ret A L R W is ′ sb D O R u-shared,
OF cond ′]

from direct-computation.Memop [OF j-bound ′ u-ts-j, simplified is, OF
RMWReadOnly ′]

have ustep: (u-ts, u-m, u-shared) ⇒d (u-ts[j := (p, is ′, j(t 7→ u-m a), sb, False, O,
Map.empty)], u-m, u-shared).

show ?thesis
apply −
apply (rule exI)
apply (rule exI)
apply (rule exI)
apply (rule conjI)
apply (rule ustep)
using neq-j-i others-same u-m-other u-shared j-bound leq ts-j
by (auto simp add: nth-list-update ts ′ eqs ′ u-m-a-eq)

next
case (RMWWrite cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W # is ′ and
j ′: j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) and
sb ′: sb ′=sb and
m ′: m ′=m(a := f (j(t 7→ m a))) and

56

D ′: D ′=False and
O ′: O ′=O ∪ A − R and
R ′: R ′=Map.empty and
S ′: S ′=S ⊕W R 	A L and
cond: cond (j(t 7→ m a))
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is] owns-u-owns u-ts-i i-bound ′ neq-j-i
obtain

access-cond: a /∈ u-owns ∨ (a ∈ dom u-shared ∧ a ∈ u-owns)
by cases auto

from u-m-other u-m-shared access-cond
have u-m-a-eq: u-m a = m a

by auto
from cond u-m-a-eq have cond ′: cond (j(t 7→ u-m a))

by auto
from safe-j [simplified is] cond ′

obtain
a-unowned-others: ∀ k < length u-ts. j 6=k −→ a /∈ (map owned u-ts!k ∪ dom (map

released u-ts!k)) and
A: A ⊆ dom u-shared ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R

= {} and
A-unowned-others: ∀ k < length u-ts. j 6=k −→ A ∩ (map owned u-ts!k ∪ dom (map

released u-ts!k)) = {} and
a-not-ro: a /∈ read-only u-shared
by cases auto

note Write ′ = direct-memop-step.RMWWrite [of cond j t u-m a D f ret A L R W is ′
sb D O R u-shared,

OF cond ′]
from direct-computation.Memop [OF j-bound ′ u-ts-j, simplified is, OF Write ′]
have ustep: (u-ts, u-m, u-shared) ⇒d

(u-ts[j := (p, is ′, j(t 7→ ret (u-m a) (f (j(t 7→ u-m a)))), sb, False, O ∪ A −
R, Map.empty)], u-m(a := f (j(t 7→ u-m a))),

u-shared ⊕W R 	A L).

from A-unowned-others [rule-format, OF i-bound ′ neq-j-i] u-ts-i i-bound ′

have A-u-owns: A ∩ u-owns = {} by auto
{

fix a
assume a-u-owns: a ∈ u-owns
have (u-shared ⊕W R 	A L) a = u-shared a
using R-owns A-R L-A A-u-owns owns-u-owns a-u-owns

by (auto simp add: restrict-shared-def augment-shared-def split: option.splits)
}
note u-owned-shared = this

from a-unowned-others [rule-format, OF i-bound ′ neq-j-i] u-ts-i i-bound ′ have
a-u-owns: a /∈ u-owns by auto

57

{
fix a
assume a-u-owns: a /∈ u-owns
assume a-u-owns-orig: a /∈ owned (ts!i)
from u-shared [rule-format, OF a-u-owns this]
have (u-shared ⊕W R 	A L) a = (S ⊕W R 	A L) a
using R-owns A-R L-A A-u-owns owns-u-owns

by (auto simp add: restrict-shared-def augment-shared-def split: option.splits)
}
note u-unowned-shared = this
{

fix a
assume a-u-owns: a ∈ u-owns

have (S ⊕W R 	A L) a = S a
using R-owns A-R L-A A-u-owns owns-u-owns a-u-owns

by (auto simp add: restrict-shared-def augment-shared-def split: option.splits)
}
note S ′-shared = this
show ?thesis

apply −
apply (rule exI)
apply (rule exI)
apply (rule exI)
apply (rule conjI)
apply (rule ustep)

using neq-j-i others-same u-m-other u-shared j-bound leq ts-j u-owned-shared
a-u-owns u-unowned-shared S ′-shared

apply (auto simp add: nth-list-update ts ′ eqs ′)
done

next
case (Ghost A L R W)
then obtain

is: is = Ghost A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=D and
O ′: O ′=O ∪ A − R and
R ′: R ′=augment-rels (dom S) R R and
S ′: S ′=S ⊕W R 	A L
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

A: A ⊆ dom u-shared ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R
= {} and

A-unowned-others: ∀ k < length u-ts. j 6=k −→ A ∩ (map owned u-ts!k ∪ dom (map
released u-ts!k)) = {}

58

by cases auto

note Ghost ′ = direct-memop-step.Ghost [of A L R W is ′ j sb u-m D O R u-shared]
from direct-computation.Memop [OF j-bound ′ u-ts-j, simplified is, OF Ghost ′]
have ustep: (u-ts, u-m, u-shared) ⇒d

(u-ts[j := (p, is ′, j, sb, D, O ∪ A − R, augment-rels (dom u-shared) R R)],
u-m,

u-shared ⊕W R 	A L).

from A-unowned-others [rule-format, OF i-bound ′ neq-j-i] u-ts-i i-bound ′

have A-u-owns: A ∩ u-owns = {} by auto
{

fix a
assume a-u-owns: a ∈ u-owns
have (u-shared ⊕W R 	A L) a = u-shared a
using R-owns A-R L-A A-u-owns owns-u-owns a-u-owns

by (auto simp add: restrict-shared-def augment-shared-def split: option.splits)
}
note u-owned-shared = this
{

fix a
assume a-u-owns: a /∈ u-owns
assume a /∈ owned (ts!i)
from u-shared [rule-format, OF a-u-owns this]
have (u-shared ⊕W R 	A L) a = (S ⊕W R 	A L) a
using R-owns A-R L-A A-u-owns owns-u-owns

by (auto simp add: restrict-shared-def augment-shared-def split: option.splits)
}
note u-unowned-shared = this

{
fix a
assume a-u-owns: a ∈ u-owns

have (S ⊕W R 	A L) a = S a
using R-owns A-R L-A A-u-owns owns-u-owns a-u-owns

by (auto simp add: restrict-shared-def augment-shared-def split: option.splits)
}
note S ′-shared = this

from dist-ts
interpret dist-ts-inter: simple-ownership-distinct ts .
from dist-ts-inter.simple-ownership-distinct [OF j-bound i-bound neq-j-i ts-j]
have O ∩ owned (ts!i) = {}

apply (cases ts!i)
apply fastforce+
done

with simple-ownership-distinct [OF j-bound ′ i-bound ′ neq-j-i u-ts-j u-ts-i] R-owns
u-shared

59

have augment-eq: augment-rels (dom u-shared) R R = augment-rels (dom S) R R
apply −
apply (rule ext)
apply (fastforce simp add: augment-rels-def split: option.splits simp add: domIff)

done

show ?thesis
apply −
apply (rule exI)
apply (rule exI)
apply (rule exI)
apply (rule conjI)
apply (rule ustep)

using neq-j-i others-same u-m-other u-shared j-bound leq ts-j u-owned-shared
u-unowned-shared S ′-shared

apply (auto simp add: nth-list-update ts ′ eqs ′ augment-eq)
done

qed
next

case (StoreBuffer - p is j sb D O R sb ′ O ′ R ′)
hence False

by (auto simp add: empty-storebuffer-step-def)
thus ?thesis ..

qed
qed

theorem (in program) safe-step-preserves-simple-ownership-distinct:
assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
assumes safe: safe-delayed (ts,m,S)
assumes dist: simple-ownership-distinct ts
shows simple-ownership-distinct ts ′

proof −
interpret direct-computation:

computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .
from dist interpret simple-ownership-distinct ts .
from step
show ?thesis
proof (cases)

case (Program j p is j sb D O R p ′ is ′)
then obtain

ts ′: ts ′ = ts[j:=(p ′,is@is ′,j,sb,D,O,R)] and
S ′: S ′=S and
m ′: m ′=m and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
prog-step: j` p →p (p ′, is ′)

60

by auto

from simple-ownership-distinct [OF j-bound - - ts-j]
show simple-ownership-distinct ts ′

apply (simp only: ts ′)
apply (rule simple-ownership-distinct-nth-update [OF j-bound ts-j])
apply force
done

next
case (Memop j p is j sb D O R is ′ j ′ sb ′ D ′ O ′ R ′)
then obtain

ts ′: ts ′ = ts[j:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)] and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
mem-step: (is, j, sb, m, D, O, R, S) → (is ′, j ′, sb ′,m ′, D ′, O ′, R ′, S ′)
by auto

from safe-delayedE [OF safe j-bound ts-j]
have safe-j: map owned ts,map released ts,j`(is, j, m, D, O, S)

√
.

from mem-step
show ?thesis
proof (cases)

case (Read volatile a t)
then obtain

is: is = Read volatile a t # is ′ and
j ′: j ′ = j(t 7→ m a) and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=D and
O ′: O ′=O and
R ′: R ′=R and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from simple-ownership-distinct [OF j-bound - - ts-j]
show simple-ownership-distinct ts ′

apply (simp only: ts ′ eqs ′)
apply (rule simple-ownership-distinct-nth-update [OF j-bound ts-j])
apply force
done

next
case (WriteNonVolatile a D f A L R W)
then obtain

is: is = Write False a (D, f) A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m(a:=f j) and
D ′: D ′=D and

61

O ′: O ′=O and
R ′: R ′=R and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from simple-ownership-distinct [OF j-bound - - ts-j]
show simple-ownership-distinct ts ′

apply (simp only: ts ′ eqs ′)
apply (rule simple-ownership-distinct-nth-update [OF j-bound ts-j])
apply force
done

next
case (WriteVolatile a D f A L R W)
then obtain

is: is = Write True a (D, f) A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m(a:=f j) and
D ′: D ′=True and
O ′: O ′=O ∪ A − R and
R ′: R ′=Map.empty and
S ′: S ′=S ⊕W R 	A L
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

a-unowned-others: ∀ k < length ts. j 6=k −→ a /∈ (map owned ts!k ∪ dom (map
released ts!k)) and

A: A ⊆ dom S ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R = {}
and

A-unowned-others: ∀ k < length ts. j 6=k −→ A ∩ (map owned ts!k ∪ dom (map
released ts!k)) = {} and

a-not-ro: a /∈ read-only S
by cases auto

from simple-ownership-distinct [OF j-bound - - ts-j] R-owns A-R A-unowned-others
show simple-ownership-distinct ts ′

apply (simp only: ts ′ eqs ′)
apply (rule simple-ownership-distinct-nth-update [OF j-bound ts-j])
apply force
done

next
case Fence
then obtain

is: is = Fence # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=False and

62

O ′: O ′=O and
R ′: R ′=Map.empty and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from simple-ownership-distinct [OF j-bound - - ts-j]
show simple-ownership-distinct ts ′

apply (simp only: ts ′ eqs ′)
apply (rule simple-ownership-distinct-nth-update [OF j-bound ts-j])
apply force
done

next
case (RMWReadOnly cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W # is ′ and
j ′: j ′ = j(t7→ m a) and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=False and
O ′: O ′=O and
R ′: R ′=Map.empty and
S ′: S ′=S and
cond: ¬ cond (j(t 7→ m a))
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from simple-ownership-distinct [OF j-bound - - ts-j]
show simple-ownership-distinct ts ′

apply (simp only: ts ′ eqs ′)
apply (rule simple-ownership-distinct-nth-update [OF j-bound ts-j])
apply force
done

next
case (RMWWrite cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W # is ′ and
j ′: j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) and
sb ′: sb ′=sb and
m ′: m ′=m(a := f (j(t 7→ m a))) and
D ′: D ′=False and
O ′: O ′=O ∪ A − R and
R ′: R ′=Map.empty and
S ′: S ′=S ⊕W R 	A L and
cond: cond (j(t 7→ m a))
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is] cond
obtain

a-unowned-others: ∀ k < length ts. j 6=k −→ a /∈ (map owned ts!k ∪ dom (map
released ts!k)) and

63

A: A ⊆ dom S ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R = {}
and

A-unowned-others: ∀ k < length ts. j 6=k −→ A ∩ (map owned ts!k ∪ dom (map
released ts!k)) = {} and

a-not-ro: a /∈ read-only S
by cases auto

from simple-ownership-distinct [OF j-bound - - ts-j] R-owns A-R A-unowned-others
show simple-ownership-distinct ts ′

apply (simp only: ts ′ eqs ′)
apply (rule simple-ownership-distinct-nth-update [OF j-bound ts-j])
apply force
done

next
case (Ghost A L R W)
then obtain

is: is = Ghost A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=D and
O ′: O ′=O ∪ A − R and
R ′: R ′=augment-rels (dom S) R R and
S ′: S ′=S ⊕W R 	A L
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

A: A ⊆ dom S ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R = {}
and

A-unowned-others: ∀ k < length ts. j 6=k −→ A ∩ (map owned ts!k ∪ dom (map
released ts!k)) = {}

by cases auto

from simple-ownership-distinct [OF j-bound - - ts-j] R-owns A-R A-unowned-others
show simple-ownership-distinct ts ′

apply (simp only: ts ′ eqs ′)
apply (rule simple-ownership-distinct-nth-update [OF j-bound ts-j])
apply force
done

qed
next

case (StoreBuffer - p is j sb D O R sb ′ O ′ R ′)
hence False

by (auto simp add: empty-storebuffer-step-def)
thus ?thesis ..

qed
qed

64

theorem (in program) safe-step-preserves-read-only-unowned:
assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
assumes safe: safe-delayed (ts,m,S)
assumes dist: simple-ownership-distinct ts
assumes ro-unowned: read-only-unowned S ts
shows read-only-unowned S ′ ts ′

proof −
interpret direct-computation:

computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .
from dist interpret simple-ownership-distinct ts .
from ro-unowned interpret read-only-unowned S ts .
from step
show ?thesis
proof (cases)

case (Program j p is j sb D O R p ′ is ′)
then obtain

ts ′: ts ′ = ts[j:=(p ′,is@is ′,j,sb,D,O,R)] and
S ′: S ′=S and
m ′: m ′=m and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
prog-step: j` p →p (p ′, is ′)
by auto

from read-only-unowned [OF j-bound ts-j]
show read-only-unowned S ′ ts ′

apply (simp only: ts ′ S ′)
apply (rule read-only-unowned-nth-update [OF j-bound])
apply force
done

next
case (Memop j p is j sb D O R is ′ j ′ sb ′ D ′ O ′ R ′)
then obtain

ts ′: ts ′ = ts[j:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)] and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
mem-step: (is, j, sb, m, D, O, R, S) → (is ′, j ′, sb ′,m ′, D ′, O ′, R ′, S ′)
by auto

from safe-delayedE [OF safe j-bound ts-j]
have safe-j: map owned ts,map released ts,j`(is, j, m, D, O, S)

√
.

from mem-step
show ?thesis
proof (cases)

case (Read volatile a t)
then obtain

is: is = Read volatile a t # is ′ and
j ′: j ′ = j(t 7→ m a) and
sb ′: sb ′=sb and
m ′: m ′=m and

65

D ′: D ′=D and
O ′: O ′=O and
R ′: R ′=R and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from read-only-unowned [OF j-bound ts-j]
show read-only-unowned S ′ ts ′

apply (simp only: ts ′ eqs ′)
apply (rule read-only-unowned-nth-update [OF j-bound])
apply force
done

next
case (WriteNonVolatile a D f A L R W)
then obtain

is: is = Write False a (D, f) A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m(a:=f j) and
D ′: D ′=D and
O ′: O ′=O and
R ′: R ′=R and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from read-only-unowned [OF j-bound ts-j]
show read-only-unowned S ′ ts ′

apply (simp only: ts ′ eqs ′)
apply (rule read-only-unowned-nth-update [OF j-bound])
apply force
done

next
case (WriteVolatile a D f A L R W)
then obtain

is: is = Write True a (D, f) A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m(a:=f j) and
D ′: D ′=True and
O ′: O ′=O ∪ A − R and
R ′: R ′=Map.empty and
S ′: S ′=S ⊕W R 	A L
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

66

a-unowned-others: ∀ k < length ts. j 6=k −→ a /∈ (map owned ts!k ∪ dom (map
released ts!k)) and

A: A ⊆ dom S ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R = {}
and

A-unowned-others: ∀ k < length ts. j 6=k −→ A ∩ (map owned ts!k ∪ dom (map
released ts!k)) = {} and

a-not-ro: a /∈ read-only S
by cases auto

show read-only-unowned S ′ ts ′
proof (unfold-locales)

fix i pi isi Oi Ri Di ji sbi

assume i-bound: i < length ts ′
assume ts ′-i: ts ′!i = (pi,isi,ji, sbi, Di, Oi,Ri)
show Oi ∩ read-only S ′ = {}
proof (cases i=j)

case True
with read-only-unowned [OF j-bound ts-j] ts ′-i A L-A R-owns A-R j-bound
show ?thesis

by (auto simp add: eqs ′ ts ′ read-only-def augment-shared-def restrict-shared-def
domIff split: option.splits)

next
case False
from simple-ownership-distinct [OF j-bound - False [symmetric] ts-j] ts ′-i i-bound

j-bound False
have O ∩ Oi = {}

by (fastforce simp add: ts ′)
with A L-A R-owns A-R j-bound A-unowned-others [rule-format, of i]
read-only-unowned [of i pi isi ji sbi Di Oi Ri]

False i-bound ts ′-i False
show ?thesis
by (force simp add: eqs ′ ts ′ read-only-def augment-shared-def restrict-shared-def

domIff split: option.splits)
qed

qed
next

case Fence
then obtain

is: is = Fence # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=False and
O ′: O ′=O and
R ′: R ′=Map.empty and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from read-only-unowned [OF j-bound ts-j]
show read-only-unowned S ′ ts ′

67

apply (simp only: ts ′ eqs ′)
apply (rule read-only-unowned-nth-update [OF j-bound])
apply force
done

next
case (RMWReadOnly cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W # is ′ and
j ′: j ′ = j(t7→ m a) and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=False and
O ′: O ′=O and
R ′: R ′=Map.empty and
S ′: S ′=S and
cond: ¬ cond (j(t 7→ m a))
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from read-only-unowned [OF j-bound ts-j]
show read-only-unowned S ′ ts ′

apply (simp only: ts ′ eqs ′)
apply (rule read-only-unowned-nth-update [OF j-bound])
apply force
done

next
case (RMWWrite cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W # is ′ and
j ′: j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) and
sb ′: sb ′=sb and
m ′: m ′=m(a := f (j(t 7→ m a))) and
D ′: D ′=False and
O ′: O ′=O ∪ A − R and
R ′: R ′=Map.empty and
S ′: S ′=S ⊕W R 	A L and
cond: cond (j(t 7→ m a))
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is] cond
obtain

a-unowned-others: ∀ k < length ts. j 6=k −→ a /∈ (map owned ts!k ∪ dom (map
released ts!k)) and

A: A ⊆ dom S ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R = {}
and

A-unowned-others: ∀ k < length ts. j 6=k −→ A ∩ (map owned ts!k ∪ dom (map
released ts!k)) = {} and

a-not-ro: a /∈ read-only S
by cases auto

show read-only-unowned S ′ ts ′

68

proof (unfold-locales)
fix i pi isi Oi Ri Di ji sbi

assume i-bound: i < length ts ′
assume ts ′-i: ts ′!i = (pi,isi,ji, sbi, Di, Oi,Ri)
show Oi ∩ read-only S ′ = {}
proof (cases i=j)

case True
with read-only-unowned [OF j-bound ts-j] ts ′-i A L-A R-owns A-R j-bound
show ?thesis

by (auto simp add: eqs ′ ts ′ read-only-def augment-shared-def restrict-shared-def
domIff split: option.splits)

next
case False
from simple-ownership-distinct [OF j-bound - False [symmetric] ts-j] ts ′-i i-bound

j-bound False
have O ∩ Oi = {}

by (fastforce simp add: ts ′)
with A L-A R-owns A-R j-bound A-unowned-others [rule-format, of i]
read-only-unowned [of i pi isi ji sbi Di Oi Ri]

False i-bound ts ′-i False
show ?thesis
by (force simp add: eqs ′ ts ′ read-only-def augment-shared-def restrict-shared-def

domIff split: option.splits)
qed

qed
next

case (Ghost A L R W)
then obtain

is: is = Ghost A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=D and
O ′: O ′=O ∪ A − R and
R ′: R ′=augment-rels (dom S) R R and
S ′: S ′=S ⊕W R 	A L
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

A: A ⊆ dom S ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R = {}
and

A-unowned-others: ∀ k < length ts. j 6=k −→ A ∩ (map owned ts!k ∪ dom (map
released ts!k)) = {}

by cases auto

show read-only-unowned S ′ ts ′
proof (unfold-locales)

fix i pi isi Oi Ri Di ji sbi

69

assume i-bound: i < length ts ′
assume ts ′-i: ts ′!i = (pi,isi,ji, sbi, Di, Oi,Ri)
show Oi ∩ read-only S ′ = {}
proof (cases i=j)

case True
with read-only-unowned [OF j-bound ts-j] ts ′-i A L-A R-owns A-R j-bound
show ?thesis

by (auto simp add: eqs ′ ts ′ read-only-def augment-shared-def restrict-shared-def
domIff split: option.splits)

next
case False
from simple-ownership-distinct [OF j-bound - False [symmetric] ts-j] ts ′-i i-bound

j-bound False
have O ∩ Oi = {}

by (fastforce simp add: ts ′)
with A L-A R-owns A-R j-bound A-unowned-others [rule-format, of i]
read-only-unowned [of i pi isi ji sbi Di Oi Ri]

False i-bound ts ′-i False
show ?thesis
by (force simp add: eqs ′ ts ′ read-only-def augment-shared-def restrict-shared-def

domIff split: option.splits)
qed

qed
qed

next
case (StoreBuffer - p is j sb D O R sb ′ O ′ R ′)
hence False

by (auto simp add: empty-storebuffer-step-def)
thus ?thesis ..

qed
qed

theorem (in program) safe-step-preserves-unowned-shared:
assumes step: (ts,m,S) ⇒d (ts ′,m ′,S ′)
assumes safe: safe-delayed (ts,m,S)
assumes dist: simple-ownership-distinct ts
assumes unowned-shared: unowned-shared S ts
shows unowned-shared S ′ ts ′

proof −
interpret direct-computation:

computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .
from dist interpret simple-ownership-distinct ts .
from unowned-shared interpret unowned-shared S ts .
from step
show ?thesis
proof (cases)

case (Program j p is j sb D O R p ′ is ′)
then obtain

ts ′: ts ′ = ts[j:=(p ′,is@is ′,j,sb,D,O,R)] and

70

S ′: S ′=S and
m ′: m ′=m and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
prog-step: j` p →p (p ′, is ′)
by auto

show unowned-shared S ′ ts ′
apply (simp only: ts ′ S ′)
apply (rule unowned-shared-nth-update [OF j-bound ts-j])
apply force
done

next
case (Memop j p is j sb D O R is ′ j ′ sb ′ D ′ O ′ R ′)
then obtain

ts ′: ts ′ = ts[j:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)] and
j-bound: j < length ts and
ts-j: ts!j = (p,is,j,sb,D,O,R) and
mem-step: (is, j, sb, m, D, O, R, S) → (is ′, j ′, sb ′,m ′, D ′, O ′, R ′, S ′)
by auto

from safe-delayedE [OF safe j-bound ts-j]
have safe-j: map owned ts,map released ts,j`(is, j, m, D, O, S)

√
.

from mem-step
show ?thesis
proof (cases)

case (Read volatile a t)
then obtain

is: is = Read volatile a t # is ′ and
j ′: j ′ = j(t 7→ m a) and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=D and
O ′: O ′=O and
R ′: R ′=R and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

show unowned-shared S ′ ts ′
apply (simp only: ts ′ eqs ′)
apply (rule unowned-shared-nth-update [OF j-bound ts-j])
apply force
done

next
case (WriteNonVolatile a D f A L R W)
then obtain

is: is = Write False a (D, f) A L R W # is ′ and
j ′: j ′ = j and

71

sb ′: sb ′=sb and
m ′: m ′=m(a:=f j) and
D ′: D ′=D and
O ′: O ′=O and
R ′: R ′=R and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

show unowned-shared S ′ ts ′
apply (simp only: ts ′ eqs ′)
apply (rule unowned-shared-nth-update [OF j-bound ts-j])
apply force
done

next
case (WriteVolatile a D f A L R W)
then obtain

is: is = Write True a (D, f) A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m(a:=f j) and
D ′: D ′=True and
O ′: O ′=O ∪ A − R and
R ′: R ′=Map.empty and
S ′: S ′=S ⊕W R 	A L
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

a-unowned-others: ∀ k < length ts. j 6=k −→ a /∈ (map owned ts!k ∪ dom (map
released ts!k)) and

A: A ⊆ dom S ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R = {}
and

A-unowned-others: ∀ k < length ts. j 6=k −→ A ∩ (map owned ts!k ∪ dom (map
released ts!k)) = {} and

a-not-ro: a /∈ read-only S
by cases auto

show unowned-shared S ′ ts ′
apply (clarsimp simp add: unowned-shared-def ′)
using A R-owns L-A A-R A-unowned-others ts-j j-bound
apply (auto simp add: S ′ ts ′ O ′)
apply (rule unowned-shared ′)
apply clarsimp
apply (drule-tac x=i in spec)
apply (case-tac i=j)
apply clarsimp

72

apply clarsimp
apply (drule-tac x=j in spec)
apply auto
done

next
case Fence
then obtain

is: is = Fence # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=False and
O ′: O ′=O and
R ′: R ′=Map.empty and
S ′: S ′=S
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

show unowned-shared S ′ ts ′
apply (simp only: ts ′ eqs ′)
apply (rule unowned-shared-nth-update [OF j-bound ts-j])
apply force
done

next
case (RMWReadOnly cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W # is ′ and
j ′: j ′ = j(t7→ m a) and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=False and
O ′: O ′=O and
R ′: R ′=Map.empty and
S ′: S ′=S and
cond: ¬ cond (j(t 7→ m a))
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

show unowned-shared S ′ ts ′
apply (simp only: ts ′ eqs ′)
apply (rule unowned-shared-nth-update [OF j-bound ts-j])
apply force
done

next
case (RMWWrite cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W # is ′ and
j ′: j ′ = j(t 7→ ret (m a) (f (j(t 7→ m a)))) and
sb ′: sb ′=sb and
m ′: m ′=m(a := f (j(t 7→ m a))) and
D ′: D ′=False and

73

O ′: O ′=O ∪ A − R and
R ′: R ′=Map.empty and
S ′: S ′=S ⊕W R 	A L and
cond: cond (j(t 7→ m a))
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is] cond
obtain

a-unowned-others: ∀ k < length ts. j 6=k −→ a /∈ (map owned ts!k ∪ dom (map
released ts!k)) and

A: A ⊆ dom S ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R = {}
and

A-unowned-others: ∀ k < length ts. j 6=k −→ A ∩ (map owned ts!k ∪ dom (map
released ts!k)) = {} and

a-not-ro: a /∈ read-only S
by cases auto

show unowned-shared S ′ ts ′
apply (clarsimp simp add: unowned-shared-def ′)
using A R-owns L-A A-R A-unowned-others ts-j j-bound
apply (auto simp add: S ′ ts ′ O ′)
apply (rule unowned-shared ′)
apply clarsimp
apply (drule-tac x=i in spec)
apply (case-tac i=j)
apply clarsimp
apply clarsimp
apply (drule-tac x=j in spec)
apply auto
done

next
case (Ghost A L R W)
then obtain

is: is = Ghost A L R W # is ′ and
j ′: j ′ = j and
sb ′: sb ′=sb and
m ′: m ′=m and
D ′: D ′=D and
O ′: O ′=O ∪ A − R and
R ′: R ′=augment-rels (dom S) R R and
S ′: S ′=S ⊕W R 	A L
by auto

note eqs ′ = j ′ sb ′ m ′ D ′ O ′ R ′ S ′

from safe-j [simplified is]
obtain

A: A ⊆ dom S ∪ O and L-A: L ⊆ A and R-owns: R ⊆ O and A-R: A ∩ R = {}
and

A-unowned-others: ∀ k < length ts. j 6=k −→ A ∩ (map owned ts!k ∪ dom (map
released ts!k)) = {}

74

by cases auto
show unowned-shared S ′ ts ′
apply (clarsimp simp add: unowned-shared-def ′)
using A R-owns L-A A-R A-unowned-others ts-j j-bound
apply (auto simp add: S ′ ts ′ O ′)
apply (rule unowned-shared ′)
apply clarsimp
apply (drule-tac x=i in spec)
apply (case-tac i=j)
apply clarsimp
apply clarsimp
apply (drule-tac x=j in spec)
apply auto
done

qed
next

case (StoreBuffer - p is j sb D O R sb ′ O ′ R ′)
hence False

by (auto simp add: empty-storebuffer-step-def)
thus ?thesis ..

qed
qed

locale program-trace = program +
fixes c — enumeration of configurations: c n ⇒d c (n + 1) ... ⇒d c (n + k)
fixes n::nat — starting index
fixes k::nat — steps

assumes step:
∧

l. l < k =⇒ c (n+l) ⇒d c (n + (Suc l))

abbreviation (in program)
trace ≡ program-trace program-step

lemma (in program) trace-0 [simp]: trace c n 0
apply (unfold-locales)
apply auto
done

lemma split-less-Suc: (∀ x<Suc k. P x) = (P k ∧ (∀ x<k. P x))
apply rule
apply clarsimp
apply clarsimp
apply (case-tac x = k)
apply auto
done

lemma split-le-Suc: (∀ x≤Suc k. P x) = (P (Suc k) ∧ (∀ x≤k. P x))
apply rule
apply clarsimp
apply clarsimp

75

apply (case-tac x = Suc k)
apply auto
done

lemma (in program) steps-to-trace:
assumes steps: x ⇒d

∗ y
shows ∃ c k. trace c 0 k ∧ c 0 = x ∧ c k = y
using steps
proof (induct)

case base
thus ?case

apply (rule-tac x=λk. x in exI)
apply (rule-tac x=0 in exI)
by (auto simp add: program-trace-def)

next
case (step y z)
have first: x ⇒d

∗ y by fact
have last: y ⇒d z by fact
from step.hyps obtain c k where

trace: trace c 0 k and c-0: c 0 = x and c-k: c k = y
by auto

define c ′ where c ′ == λi. (if i ≤ k then c i else z)
from trace last c-k have trace c ′ 0 (k + 1)

apply (clarsimp simp add: c ′-def program-trace-def)
apply (subgoal-tac l=k)
apply (simp)
apply (simp)
done

with c-0
show ?case

apply −
apply (rule-tac x=c ′ in exI)
apply (rule-tac x=k + 1 in exI)
apply (auto simp add: c ′-def)
done

qed

lemma (in program) trace-preserves-length-ts:∧
l x. trace c n k =⇒ l ≤ k =⇒ x ≤ k =⇒ length (fst (c (n + l))) = length (fst (c (n +

x)))
proof (induct k)

case 0
thus ?case by auto

next
case (Suc k)
then obtain trace-suc: trace c n (Suc k) and

l-suc: l ≤ Suc k and
x-suc: x ≤ Suc k
by simp

76

interpret direct-computation:
computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .

from trace-suc obtain
trace-k: trace c n k and
last-step: c (n + k) ⇒d c (n + (Suc k))
by (clarsimp simp add: program-trace-def)

obtain ts S m where c-k: c (n + k) = (ts, m, S) by (cases c (n + k))
obtain ts ′ S ′ m ′ where c-suc-k: c (n + (Suc k)) = (ts ′, m ′, S ′) by (cases c (n + (Suc

k)))
from direct-computation.step-preserves-length-ts [OF last-step [simplified c-k c-suc-k]]

c-k c-suc-k
have leq: length (fst (c (n + Suc k))) = length (fst (c (n + k)))

by simp

show ?case
proof (cases l = Suc k)

case True
note l-suc = this
show ?thesis
proof (cases x = Suc k)

case True with l-suc show ?thesis by simp
next

case False
with x-suc have x ≤ k by simp
from Suc.hyps [OF trace-k this, of k]
have length (fst (c (n + x))) = length (fst (c (n + k)))

by simp
with leq show ?thesis using l-suc by simp

qed
next

case False
with l-suc have l-k: l ≤ k

by auto
show ?thesis
proof (cases x = Suc k)

case True
from Suc.hyps [OF trace-k l-k, of k]
have length (fst (c (n + l))) = length (fst (c (n + k))) by simp
with leq True show ?thesis by simp

next
case False
with x-suc have x ≤ k by simp
from Suc.hyps [OF trace-k l-k this]
show ?thesis by simp

qed
qed

qed

lemma (in program) trace-preserves-simple-ownership-distinct:

77

assumes dist: simple-ownership-distinct (fst (c n))
shows

∧
l. trace c n k =⇒ (∀ x < k. safe-delayed (c (n + x))) =⇒

l ≤ k =⇒ simple-ownership-distinct (fst (c (n + l)))
proof (induct k)

case 0 thus ?case using dist by auto
next

case (Suc k)
then obtain

trace-suc: trace c n (Suc k) and
safe-suc: ∀ x<Suc k. safe-delayed (c (n + x)) and
l-suc: l ≤ Suc k
by simp

from trace-suc obtain
trace-k: trace c n k and
last-step: c (n + k) ⇒d c (n + (Suc k))
by (clarsimp simp add: program-trace-def)

obtain ts S m where c-k: c (n + k) = (ts, m, S) by (cases c (n + k))
obtain ts ′ S ′ m ′ where c-suc-k: c (n + (Suc k)) = (ts ′, m ′, S ′) by (cases c (n + (Suc

k)))

from safe-suc c-suc-k c-k
obtain

safe-up-k: ∀ x<k. safe-delayed (c (n + x)) and
safe-k: safe-delayed (ts,m,S)
by (auto simp add: split-le-Suc)

from Suc.hyps [OF trace-k safe-up-k]
have hyp: ∀ l ≤ k. simple-ownership-distinct (fst (c (n + l)))

by simp

from Suc.hyps [OF trace-k safe-up-k, of k] c-k
have simple-ownership-distinct ts

by simp

from safe-step-preserves-simple-ownership-distinct [OF last-step[simplified c-k c-suc-k]
safe-k this]

have simple-ownership-distinct ts ′.
then show ?case
using c-suc-k hyp l-suc

apply (cases l=Suc k)
apply (auto simp add: split-less-Suc)
done

qed

lemma (in program) trace-preserves-read-only-unowned:
assumes dist: simple-ownership-distinct (fst (c n))
assumes ro: read-only-unowned (snd (snd (c n))) (fst (c n))
shows

∧
l. trace c n k =⇒ (∀ x < k. safe-delayed (c (n + x))) =⇒

l ≤ k =⇒ read-only-unowned (snd (snd (c (n + l)))) (fst (c (n + l)))

78

proof (induct k)
case 0 thus ?case using ro by auto

next
case (Suc k)
then obtain

trace-suc: trace c n (Suc k) and
safe-suc: ∀ x<Suc k. safe-delayed (c (n + x)) and
l-suc: l ≤ Suc k
by simp

from trace-suc obtain
trace-k: trace c n k and
last-step: c (n + k) ⇒d c (n + (Suc k))
by (clarsimp simp add: program-trace-def)

obtain ts S m where c-k: c (n + k) = (ts, m, S) by (cases c (n + k))
obtain ts ′ S ′ m ′ where c-suc-k: c (n + (Suc k)) = (ts ′, m ′, S ′) by (cases c (n + (Suc

k)))

from safe-suc c-suc-k c-k
obtain

safe-up-k: ∀ x<k. safe-delayed (c (n + x)) and
safe-k: safe-delayed (ts,m,S)
by (auto simp add: split-le-Suc)

from Suc.hyps [OF trace-k safe-up-k]
have hyp: ∀ l ≤ k. read-only-unowned (snd (snd (c (n + l)))) (fst (c (n + l)))

by simp

from Suc.hyps [OF trace-k safe-up-k, of k] c-k
have ro ′: read-only-unowned S ts

by simp

from trace-preserves-simple-ownership-distinct [where c=c and n=n, OF dist trace-k
safe-up-k, of k] c-k

have dist ′: simple-ownership-distinct ts by simp

from safe-step-preserves-read-only-unowned [OF last-step[simplified c-k c-suc-k] safe-k
dist ′ ro ′]

have read-only-unowned S ′ ts ′.
then show ?case
using c-suc-k hyp l-suc

apply (cases l=Suc k)
apply (auto simp add: split-less-Suc)
done

qed

lemma (in program) trace-preserves-unowned-shared:
assumes dist: simple-ownership-distinct (fst (c n))
assumes ro: unowned-shared (snd (snd (c n))) (fst (c n))
shows

∧
l. trace c n k =⇒ (∀ x < k. safe-delayed (c (n + x))) =⇒

79

l ≤ k =⇒ unowned-shared (snd (snd (c (n + l)))) (fst (c (n + l)))
proof (induct k)

case 0 thus ?case using ro by auto
next

case (Suc k)
then obtain

trace-suc: trace c n (Suc k) and
safe-suc: ∀ x<Suc k. safe-delayed (c (n + x)) and
l-suc: l ≤ Suc k
by simp

from trace-suc obtain
trace-k: trace c n k and
last-step: c (n + k) ⇒d c (n + (Suc k))
by (clarsimp simp add: program-trace-def)

obtain ts S m where c-k: c (n + k) = (ts, m, S) by (cases c (n + k))
obtain ts ′ S ′ m ′ where c-suc-k: c (n + (Suc k)) = (ts ′, m ′, S ′) by (cases c (n + (Suc

k)))

from safe-suc c-suc-k c-k
obtain

safe-up-k: ∀ x<k. safe-delayed (c (n + x)) and
safe-k: safe-delayed (ts,m,S)
by (auto simp add: split-le-Suc)

from Suc.hyps [OF trace-k safe-up-k]
have hyp: ∀ l ≤ k. unowned-shared (snd (snd (c (n + l)))) (fst (c (n + l)))

by simp

from Suc.hyps [OF trace-k safe-up-k, of k] c-k
have ro ′: unowned-shared S ts

by simp

from trace-preserves-simple-ownership-distinct [where c=c and n=n, OF dist trace-k
safe-up-k, of k] c-k

have dist ′: simple-ownership-distinct ts by simp

from safe-step-preserves-unowned-shared [OF last-step[simplified c-k c-suc-k] safe-k dist ′
ro ′]

have unowned-shared S ′ ts ′.
then show ?case
using c-suc-k hyp l-suc

apply (cases l=Suc k)
apply (auto simp add: split-less-Suc)
done

qed

theorem (in program-progress) undo-local-steps:
assumes steps: trace c n k

80

assumes c-n: c n = (ts,m,S)
assumes unchanged: ∀ l ≤ k. (∀ tsl S l ml . c (n + l) = (tsl,ml,S l) −→ tsl!i=ts!i)
assumes safe: safe-delayed (u-ts, u-m, u-shared)
assumes leq: length u-ts = length ts
assumes i-bound: i < length ts
assumes others-same: ∀ j < length ts. j 6=i −→ u-ts!j = ts!j
assumes u-ts-i: u-ts!i=(u-p,u-is,u-tmps,u-sb,u-dirty,u-owns,u-rels)
assumes u-m-other: ∀ a. a /∈ u-owns −→ u-m a = m a
assumes u-m-shared: ∀ a. a ∈ u-owns −→ a ∈ dom u-shared −→ u-m a = m a
assumes u-shared: ∀ a. a /∈ u-owns −→ a /∈ owned (ts!i) −→ u-shared a = S a
assumes dist: simple-ownership-distinct u-ts
assumes dist-ts: simple-ownership-distinct ts
assumes safe-orig: ∀ x. x < k −→ safe-delayed (c (n + x))
shows ∃ c ′ l. l ≤ k ∧ trace c ′ n l ∧

c ′ n = (u-ts, u-m, u-shared) ∧
(∀ x ≤ l. length (fst (c ′ (n + x))) = length (fst (c (n + x)))) ∧

(∀ x < l. safe-delayed (c ′ (n + x))) ∧
(l < k −→ ¬ safe-delayed (c ′ (n + l))) ∧

(∀ x ≤ l. ∀ tsx Sx mx tsx ′ Sx
′ mx

′ . c (n + x) = (tsx,mx,Sx) −→ c ′ (n+ x) =
(tsx ′,mx

′,Sx
′) −→

tsx ′!i=u-ts!i ∧
(∀ a ∈ u-owns. Sx

′ a = u-shared a) ∧
(∀ a ∈ u-owns. Sx a = S a) ∧
(∀ a ∈ u-owns. mx

′ a = u-m a) ∧
(∀ a ∈ u-owns. mx a = m a)) ∧

(∀ x ≤ l. ∀ tsx Sx mx tsx ′ Sx
′ mx

′. c (n + x) = (tsx,mx,Sx) −→ c ′ (n + x) =
(tsx ′,mx

′,Sx
′) −→

(∀ j < length tsx. j 6=i −→ tsx ′!j = tsx!j) ∧
(∀ a. a /∈ u-owns −→ a /∈ owned (ts!i) −→ Sx

′ a = Sx a) ∧
(∀ a. a /∈ u-owns −→ mx

′ a = mx a))

using steps unchanged safe-orig
proof (induct k)

case 0
show ?case

apply (rule-tac x=λ l. (u-ts, u-m, u-shared) in exI)
apply (rule-tac x=0 in exI)
thm c-n
apply (simp add: c-n)
apply (clarsimp simp add: 0 leq others-same u-m-other u-shared)
done

next
case (Suc k)
then obtain

trace-suc: trace c n (Suc k) and
unchanged-suc: ∀ l≤Suc k. ∀ tsl S l ml. c (n + l) = (tsl, ml, S l) −→ tsl ! i = ts ! i and

81

safe-orig: ∀ x<k. safe-delayed (c (n + x))
by simp

interpret direct-computation:
computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .

from trace-suc obtain
trace-k: trace c n k and
last-step: c (n + k) ⇒d c (n + (Suc k))
by (clarsimp simp add: program-trace-def)

from unchanged-suc obtain
unchanged-k: ∀ l≤k. ∀ tsl S l ml. c (n + l) = (tsl, ml, S l) −→ tsl ! i = ts ! i and
unchanged-suc-k: ∀ tsl S l ml. c (n + (Suc k)) = (tsl, ml, S l) −→ tsl ! i = ts ! i
apply −
apply (rule that)
apply auto
apply (drule-tac x=l in spec)
apply simp
done

from Suc.hyps [OF trace-k unchanged-k safe-orig] obtain c ′ l where
l-k: l ≤ k and
trace-c ′-l: trace c ′ n l and
safe-l: (∀ x<l. safe-delayed (c ′ (n + x))) and
unsafe-l: (l < k −→ ¬ safe-delayed (c ′ (n + l))) and
c ′-n: c ′ n = (u-ts, u-m, u-shared) and
leq-l: (∀ x≤l. length (fst (c ′ (n + x))) = length (fst (c (n + x)))) and
unchanged-i: (∀ x≤l. ∀ tsx Sx mx tsx ′ Sx

′ mx
′.

c (n + x) = (tsx, mx, Sx) −→
c ′ (n + x) = (tsx ′, mx

′, Sx
′) −→

tsx ′ ! i = u-ts ! i ∧
(∀ a∈u-owns. Sx

′ a = u-shared a) ∧
(∀ a∈u-owns. Sx a = S a) ∧
(∀ a∈u-owns. mx

′ a = u-m a) ∧
(∀ a∈u-owns. mx a = m a)) and

sim: (∀ x≤l. ∀ tsx Sx mx tsx ′ Sx
′ mx

′.
c (n + x) = (tsx, mx, Sx) −→
c ′ (n + x) = (tsx ′, mx

′, Sx
′) −→

(∀ j<length tsx. j 6= i −→ tsx ′ ! j = tsx ! j) ∧
(∀ a. a /∈ u-owns −→ a /∈ owned (ts!i) −→ Sx

′ a = Sx a) ∧
(∀ a. a /∈ u-owns −→ mx

′ a = mx a))
by auto

show ?case
proof (cases l < k)

case True
with True trace-c ′-l safe-l unsafe-l unchanged-i sim leq-l c ′-n
show ?thesis

apply −
apply (rule-tac x=c ′ in exI)

82

apply (rule-tac x=l in exI)
apply auto
done

next
case False
with l-k have l-k: l=k by auto
show ?thesis
proof (cases safe-delayed (c ′ (n + k)))

case False
with False l-k trace-c ′-l safe-l unsafe-l unchanged-i sim leq-l c ′-n
show ?thesis

apply −
apply (rule-tac x=c ′ in exI)
apply (rule-tac x=k in exI)
apply auto
done

next
case True
note safe-k = this

obtain tsk Sk mk where c-k: c (n + k) = (tsk,mk,Sk)
by (cases c (n + k))

obtain tsk ′ Sk
′ mk

′ where c-suc-k: c (n + (Suc k)) = (tsk ′,mk
′,Sk

′)
by (cases c (n + (Suc k)))

obtain u-tsk u-sharedk u-mk where c ′-k: c ′ (n + k) = (u-tsk, u-mk, u-sharedk)
by (cases c ′ (n + k))

from trace-preserves-length-ts [OF trace-k, of k 0] c-n c-k i-bound
have i-bound-k: i < length tsk

by simp

from leq-l [rule-format, simplified l-k, of k] c-k c ′-k
have leq: length u-tsk = length tsk

by simp

note last-step = last-step [simplified c-k c-suc-k]
from unchanged-suc-k c-suc-k
have tsk ′!i = ts!i

by auto
moreover from unchanged-k [rule-format, of k] c-k
have unch-k-i: tsk!i=ts!i

by auto
ultimately have ts-eq: tsk!i=tsk ′!i

by simp

from unchanged-i [simplified l-k, rule-format, OF - c-k c ′-k]
obtain

u-ts-eq: u-tsk ! i = u-ts ! i and

83

unchanged-shared: ∀ a∈u-owns. u-sharedk a = u-shared a and
unchanged-shared-orig: ∀ a∈u-owns. Sk a = S a and
unchanged-owns: ∀ a∈u-owns. u-mk a = u-m a and
unchanged-owns-orig: ∀ a∈u-owns. mk a = m a
by fastforce

from u-ts-eq u-ts-i
have u-tsk-i: u-tsk!i=(u-p,u-is,u-tmps,u-sb,u-dirty,u-owns,u-rels)

by auto
from sim [simplified l-k, rule-format, of k, OF - c-k c ′-k]
obtain

ts-sim: (∀ j<length tsk. j 6= i −→ u-tsk ! j = tsk ! j) and
shared-sim: (∀ a. a /∈ u-owns −→ a /∈ owned (tsk!i) −→ u-sharedk a = Sk a) and
mem-sim: (∀ a. a /∈ u-owns −→ u-mk a = mk a)
by (auto simp add: unch-k-i)

from unchanged-owns-orig unchanged-owns u-m-shared unchanged-shared
have unchanged-owns-shared: ∀ a. a ∈ u-owns −→ a ∈ dom u-sharedk −→ u-mk a

= mk a
by (auto simp add: simp add: domIff)

from safe-l l-k safe-k
have safe-up-k: ∀ x<k. safe-delayed (c ′ (n + x))

apply clarsimp
done

from trace-preserves-simple-ownership-distinct [OF - trace-c ′-l [simplified l-k]
safe-up-k,

simplified c ′-n, simplified, OF dist, of k] c ′-k
have dist ′: simple-ownership-distinct u-tsk

by simp

from trace-preserves-simple-ownership-distinct [OF - trace-k, simplified c-n,
simplified, OF dist-ts safe-orig, of k]

c-k
have dist-orig ′: simple-ownership-distinct tsk

by simp

from undo-local-step [OF last-step i-bound-k ts-eq safe-k [simplified c ′-k] leq ts-sim
u-tsk-i mem-sim

unchanged-owns-shared shared-sim dist ′ dist-orig ′]
obtain u-ts ′ u-shared ′ u-m ′ where

step ′: (u-tsk, u-mk, u-sharedk) ⇒d (u-ts ′, u-m ′, u-shared ′) and
ts-eq ′: u-ts ′ ! i = u-tsk ! i and
unchanged-shared ′: (∀ a∈u-owns. u-shared ′ a = u-sharedk a) and
unchanged-shared-orig ′: (∀ a∈u-owns. Sk

′ a = Sk a) and
unchanged-owns ′: (∀ a∈u-owns. u-m ′ a = u-mk a) and
unchanged-owns-orig ′: (∀ a∈u-owns. mk

′ a = mk a) and

84

sim-ts ′: (∀ j<length tsk. j 6= i −→ u-ts ′ ! j = tsk ′ ! j) and
sim-shared ′: (∀ a. a /∈ u-owns −→ a /∈ owned (tsk ! i) −→ u-shared ′ a = Sk

′ a) and
sim-m ′: (∀ a. a /∈ u-owns −→ u-m ′ a = mk

′ a)
by auto

define c ′′ where c ′′ == λl. if l ≤ n + k then c ′ l else (u-ts ′, u-m ′, u-shared ′)
have [simp]: ∀ x ≤ n + k. c ′′ x = c ′ x

by (auto simp add: c ′′-def)
have [simp]: c ′′ (Suc (n + k)) = (u-ts ′, u-m ′, u-shared ′)

by (auto simp add: c ′′-def)

from trace-c ′-l l-k step ′ c ′-k have trace ′: trace c ′′ n (Suc k)
apply (simp add: program-trace-def)
apply (clarsimp simp add: split-less-Suc)
done

from direct-computation.step-preserves-length-ts [OF last-step]
have leq-tsk ′: length tsk ′ = length tsk.

with direct-computation.step-preserves-length-ts [OF step ′] leq
have leq ′: length u-ts ′ = length tsk

by simp
show ?thesis

apply (rule-tac x=c ′′ in exI)
apply (rule-tac x=Suc k in exI)
using safe-l l-k unchanged-i sim c-suc-k leq-l c ′-n leq ′

apply (clarsimp simp add: split-less-Suc split-le-Suc safe-k trace ′ leq-tsk ′ sim-ts ′
sim-shared ′ sim-m ′ unch-k-i

ts-eq ′ u-ts-eq
unchanged-shared ′ unchanged-shared unchanged-shared-orig un-

changed-shared-orig ′

unchanged-owns ′ unchanged-owns
unchanged-owns-orig ′ unchanged-owns-orig)

done
qed

qed
qed

locale program-safe-reach-upto = program +
fixes n fixes safe fixes c0
assumes safe-config: [[k ≤ n; trace c 0 k; c 0 = c0; l ≤ k]] =⇒ safe (c l)

abbreviation (in program)
safe-reach-upto ≡ program-safe-reach-upto program-step

lemma (in program) safe-reach-upto-le:
assumes safe: safe-reach-upto n safe c0
assumes m-n: m ≤ n

85

shows safe-reach-upto m safe c0
using safe m-n
apply (clarsimp simp add: program-safe-reach-upto-def)

subgoal for k c
apply (subgoal-tac k ≤ n)
apply blast

apply simp
done

done

lemma (in program) last-action-of-thread:
assumes trace: trace c 0 k
shows

— thread i never executes
(∀ l ≤ k. fst (c l)!i = fst (c k)!i) ∨
— thread i has a last step in the trace
(∃ last < k.

fst (c last)!i 6= fst (c (Suc last))!i ∧
(∀ l. last < l −→ l ≤ k −→ fst (c l)!i = fst (c k)!i))

using trace
proof (induct k)

case 0 thus ?case
by auto

next
case (Suc k)
hence trace c 0 (Suc k) by simp
then
obtain

trace-k: trace c 0 k and
last-step: c k ⇒d c (Suc k)
by (clarsimp simp add: program-trace-def)

show ?case
proof (cases fst (c k)!i = fst (c (Suc k))!i)

case False
then show ?thesis

apply −
apply (rule disjI2)
apply (rule-tac x=k in exI)
apply clarsimp
apply (subgoal-tac l=Suc k)
apply auto
done

next
case True
note idle-i = this

{

86

assume same: (∀ l≤k. fst (c l) ! i = fst (c k) ! i)
have ?thesis

apply −
apply (rule disjI1)
apply clarsimp
apply (case-tac l=Suc k)
apply (simp add: idle-i)
apply (rule same [simplified idle-i, rule-format])
apply simp
done

}
moreover
{

fix last
assume last-k: last < k
assume last-step: fst (c last) ! i 6= fst (c (Suc last)) ! i
assume idle: (∀ l>last. l ≤ k −→ fst (c l) ! i = fst (c k) ! i)
have ?thesis

apply −
apply (rule disjI2)
apply (rule-tac x=last in exI)
using last-k
apply (simp add: last-step)
using idle [simplified idle-i]
apply clarsimp
apply (case-tac l=Suc k)
apply clarsimp
apply clarsimp
done

}
moreover note Suc.hyps [OF trace-k]
ultimately
show ?thesis

by blast
qed

qed

lemma (in program) sequence-traces:
assumes trace1: trace c1 0 k
assumes trace2: trace c2 m l
assumes seq: c2 m = c1 k
assumes c-def: c = (λx. if x ≤ k then c1 x else (c2 (m + x −k)))
shows trace c 0 (k + l)
proof −

from trace1
interpret trace1: program-trace program-step c1 0 k .
from trace2
interpret trace2: program-trace program-step c2 m l .
{

fix x

87

assume x-bound: x < (k + l)
have c x ⇒d c (Suc x)
proof (cases x < k)

case True
from trace1.step [OF True] True
show ?thesis

by (simp add: c-def)
next

case False
hence k-x: k ≤ x

by auto
with x-bound have bound: x − k < l

by auto
from k-x have eq: (Suc (m + x) − k) = Suc (m + x − k)

by simp
from trace2.step [OF bound] k-x seq
show ?thesis

by (auto simp add: c-def eq)
qed

}
thus ?thesis

by (auto simp add: program-trace-def)
qed

theorem (in program-progress) safe-free-flowing-implies-safe-delayed:
assumes init: initial c0
assumes dist: simple-ownership-distinct (fst c0)
assumes read-only-unowned: read-only-unowned (snd (snd c0)) (fst c0)
assumes unowned-shared: unowned-shared (snd (snd c0)) (fst c0)
assumes safe-reach-ff: safe-reach-upto n safe-free-flowing c0
shows safe-reach-upto n safe-delayed c0

using safe-reach-ff
proof (induct n)

case 0
hence safe-reach-upto 0 safe-free-flowing c0 by simp
hence safe-free-flowing c0

by (auto simp add: program-safe-reach-upto-def)
from initial-safe-free-flowing-implies-safe-delayed [OF init this]
have safe-delayed c0.
then show ?case

by (simp add: program-safe-reach-upto-def)
next

case (Suc n)
hence safe-reach-suc: safe-reach-upto (Suc n) safe-free-flowing c0 by simp
then interpret safe-reach-suc-inter: program-safe-reach-upto program-step (Suc n)

safe-free-flowing c0 .
from safe-reach-upto-le [OF safe-reach-suc]
have safe-reach-n: safe-reach-upto n safe-free-flowing c0 by simp
from Suc.hyps [OF this]
have safe-delayed-reach-n: safe-reach-upto n safe-delayed c0.

88

then interpret safe-delayed-reach-inter: program-safe-reach-upto program-step n
safe-delayed c0 .

interpret direct-computation:
computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .

show ?case
proof (cases safe-reach-upto (Suc n) safe-delayed c0)

case True thus ?thesis .
next

case False
from safe-delayed-reach-n False
obtain c where

trace: trace c 0 (Suc n) and
c-0: c 0 = c0 and
safe-delayed-upto-n: ∀ k≤n. safe-delayed (c k) and
violation-delayed-suc: ¬ safe-delayed (c (Suc n))

proof −
from False
obtain c k l where

k-suc: k ≤ Suc n and
trace-k: trace c 0 k and
l-k: l ≤ k and
violation: ¬ safe-delayed (c l) and
start: c 0 = c0
by (clarsimp simp add: program-safe-reach-upto-def)

show ?thesis
proof (cases k = Suc n)

case False
with k-suc have k ≤ n

by auto
from safe-delayed-reach-inter.safe-config [where c=c, OF this trace-k start l-k]
have safe-delayed (c l).
with violation have False by simp
thus ?thesis ..

next
case True
note k-suc-n = this
from trace-k True have trace-n: trace c 0 n

by (auto simp add: program-trace-def)
show ?thesis
proof (cases l=Suc n)

case False
with k-suc-n l-k have l ≤ n by simp
from safe-delayed-reach-inter.safe-config [where c=c, OF - trace-n start this]
have safe-delayed (c l) by simp
with violation have False by simp
thus ?thesis ..

next
case True
from safe-delayed-reach-inter.safe-config [where c=c, OF - trace-n start]

89

have ∀ k≤n. safe-delayed (c k) by simp
with True k-suc-n trace-k start violation
show ?thesis

apply −
apply (rule that)
apply auto
done

qed
qed

qed

from trace
interpret trace-inter: program-trace program-step c 0 Suc n .

from safe-reach-suc-inter.safe-config [where c=c, OF - trace c-0]
have safe-suc: safe-free-flowing (c (Suc n))

by auto

obtain ts S m where c-suc: c (Suc n) = (ts,m,S) by (cases c (Suc n))
from violation-delayed-suc c-suc
obtain i p is j sb D O R where

i-bound: i < length ts and
ts-i: ts ! i = (p,is,j,sb,D,O,R) and
violation-i: ¬ map owned ts,map released ts,i `(is,j,m,D,O,S)

√

by (fastforce simp add: safe-free-flowing-def safe-delayed-def)

from trace-preserves-unowned-shared [where c=c and n=0 and l=Suc n,
simplified c-0, OF dist unowned-shared trace] safe-delayed-upto-n c-suc

have unowned-shared S ts by auto
then interpret unowned-shared S ts .

from violation-i obtain ins is ′ where is: is = ins#is ′
by (cases is) (auto simp add: safe-delayed-direct-memop-state.Nil)

from safeE [OF safe-suc [simplified c-suc] i-bound ts-i]
have safe-i: map owned ts,i`(is, j, m, D, O, S)

√
.

define races where races == λR. (case ins of
Read volatile a t ⇒ (R a = Some False) ∨ (¬ volatile ∧ a ∈ dom R)

| Write volatile a sop A L R W ⇒ (a ∈ dom R ∨ (volatile ∧ A ∩ dom R 6= {}))
| Ghost A L R W ⇒ (A ∩ dom R 6= {})
| RMW a t (D,f) cond ret A L R W ⇒ (if cond (j(t 7→ m a))

then a ∈ dom R ∨ A ∩ dom R 6= {}
else R a = Some False)

| - ⇒ False)

{
assume no-race:

90

∀ j. j < length ts −→ j 6=i −→ ¬ races (released (ts!j))
from safe-i
have map owned ts,map released ts,i `(is,j,m,D,O,S)

√

proof cases
case Read
thus ?thesis

using is no-race
by (auto simp add: races-def intro: safe-delayed-direct-memop-state.intros)

next
case WriteNonVolatile
thus ?thesis

using is no-race
by (auto simp add: races-def intro: safe-delayed-direct-memop-state.intros)

next
case WriteVolatile
thus ?thesis

using is no-race
apply (clarsimp simp add: races-def)
apply (rule safe-delayed-direct-memop-state.intros)
apply auto
done

next
case Fence
thus ?thesis

using is no-race
by (auto simp add: races-def intro: safe-delayed-direct-memop-state.intros)

next
case Ghost
thus ?thesis

using is no-race
apply (clarsimp simp add: races-def)
apply (rule safe-delayed-direct-memop-state.intros)
apply auto
done

next
case RMWReadOnly
thus ?thesis

using is no-race
by (auto simp add: races-def intro: safe-delayed-direct-memop-state.intros)

next
case (RMWWrite cond t a - - A - O)
thus ?thesis

using is no-race unowned-shared ′ [rule-format, of a] ts-i
apply (clarsimp simp add: races-def)
apply (rule safe-delayed-direct-memop-state.RMWWrite)
apply auto
apply force
done

next
case Nil with is show ?thesis by auto

91

qed
}
with violation-i
obtain j where

j-bound: j < length ts and
neq-j-i: j 6= i and
race: races (released (ts!j))
by auto

obtain pj isj jj sbj Dj Oj Rj where
ts-j: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
apply (cases ts!j)
apply force
done

from race
have Rj-non-empty: Rj 6= Map.empty

by (auto simp add: ts-j races-def split: instr.splits if-split-asm)

{
assume idle-j: ∀ l≤Suc n. fst (c l) ! j = fst (c (Suc n)) ! j
have ?thesis
proof −

from idle-j [rule-format, of 0] c-suc c-0 ts-j
have c0-j: fst c0 ! j = ts!j

by clarsimp
from trace-preserves-length-ts [OF trace, of 0 Suc n] c-0 c-suc
have length (fst c0) = length ts

by clarsimp
with j-bound have j < length (fst c0)

by simp
with nth-mem [OF this] init c0-j ts-j
have Rj = Map.empty

by (auto simp add: initial-def)
with Rj-non-empty have False

by simp
thus ?thesis ..

qed
}
moreover
{

fix last
assume last-bound: last<Suc n
assume last-step-changed-j: fst (c last) ! j 6= fst (c (Suc last)) ! j
assume idle-rest: ∀ l>last. l ≤ Suc n −→ fst (c l) ! j = fst (c (Suc n)) ! j
have ?thesis
proof −

obtain tsl S l ml where
c-last: c last = (tsl,ml,S l)

by (cases c last)

92

obtain tsl ′ S l
′ ml

′ where
c-last ′: c (Suc last) = (tsl ′,ml

′,S l
′)

by (cases c (Suc last))
from idle-rest [rule-format, of Suc last] c-suc c-last ′ last-bound
have tsl ′-j: tsl ′!j = ts!j

by auto

from last-step-changed-j c-last c-last ′
have j-changed: tsl!j 6= tsl ′!j

by auto

from trace-inter.step [OF last-bound] c-last c-last ′
have last-step: (tsl,ml,S l) ⇒d (tsl ′,ml

′,S l
′)

by simp

obtain pl isl jl sbl Dl Ol Rl where
tsl-j: tsl!j = (pl,isl,jl,sbl,Dl,Ol,Rl)
apply (cases tsl!j)
apply force
done

from trace-preserves-length-ts [OF trace, of last Suc n] c-last c-suc last-bound
have leql: length tsl = length ts

by simp
with j-bound have j-boundl: j < length tsl

by simp

from trace have trace-n: trace c 0 n
by (auto simp add: program-trace-def)

from safe-delayed-reach-inter.safe-config [where k=n and c=c and l=last, OF -
trace-n c-0] last-bound c-last

have safe-delayed-last: safe-delayed (tsl,ml,S l)
by auto

from safe-delayed-reach-inter.safe-config [where c=c, OF - trace-n c-0]
have safe-delayed-upto-n: ∀ x<n. safe-delayed (c (0 + x))

by auto
from trace-preserves-simple-ownership-distinct [where c=c and n=0 and l=last,

simplified c-0, OF dist trace-n safe-delayed-upto-n]
last-bound c-last

have dist-last: simple-ownership-distinct tsl
by auto

from trace-preserves-read-only-unowned [where c=c and n=0 and l=last,
simplified c-0, OF dist read-only-unowned trace-n safe-delayed-upto-n]
last-bound c-last

have ro-last-last: read-only-unowned S l tsl
by auto

93

from safe-delayed-reach-inter.safe-config [where c=c, OF - trace-n c-0]
have safe-delayed-upto-suc-n: ∀ x<Suc n. safe-delayed (c (0 + x))

by auto

from trace-preserves-simple-ownership-distinct [where c=c and n=0 and l=Suc
last,

simplified c-0, OF dist trace safe-delayed-upto-suc-n]
last-bound c-last ′

have dist-last ′: simple-ownership-distinct tsl ′
by auto

from trace last-bound have trace-last: trace c 0 last
by (auto simp add: program-trace-def)

from trace last-bound have trace-rest: trace c (Suc last) (n − last)
by (auto simp add: program-trace-def)

from idle-rest last-bound
have idle-rest ′:

∀ l≤n − last.
∀ tsl S l ml. c (Suc last + l) = (tsl, ml, S l) −→ tsl ! j = tsl ′ ! j

apply clarsimp
apply (drule-tac x=Suc (last + l) in spec)
apply (auto simp add: c-last ′ c-suc tsl ′-j)
done

from safe-delayed-upto-suc-n [rule-format, of last] last-bound
have safe-delayed-last: safe-delayed (tsl, ml, S l)

by (auto simp add: c-last)
from safe-delayedE [OF this j-boundl tsl-j]
have safel: map owned tsl,map released tsl,j`(isl, jl, ml, Dl, Ol, S l)

√
.

from safe-delayed-reach-inter.safe-config [where c=c, OF - trace-n c-0]
have safe-delayed-upto-last: ∀ x<n − last. safe-delayed (c (Suc (last + x)))

by auto

from last-step
show ?thesis
proof (cases)

case (Program i ′ - - - - - - - p ′ is ′)
with j-changed j-boundl tsl-j
obtain

tsl ′: tsl ′ = tsl[j:=(p ′,isl@is ′,jl,sbl,Dl,Ol,Rl)] and
S l

′: S l
′=S l and

ml
′: ml

′=ml and
prog-step: jl ` pl →p (p ′, is ′)
by (cases i ′=j) auto

from tsl ′-j tsl ′ ts-j j-boundl

obtain eqs: p ′=pj isl@is ′=isj jl=jj Dl=Dj Ol=Oj Rl=Rj

94

by auto

from undo-local-steps [where c=c, OF trace-rest c-last ′ idle-rest ′ safe-delayed-last,
simplified tsl ′,

simplified,
OF j-boundl tsl-j [simplified], simplified ml

′ S l
′, simplified, OF dist-last

dist-last ′ [simplified tsl ′,simplified] safe-delayed-upto-last]
obtain c ′ k where

k-bound: k ≤ n − last and
trace-c ′: trace c ′ (Suc last) k and
c ′-first: c ′ (Suc last) = (tsl, ml, S l) and

c ′-leq: (∀ x≤k. length (fst (c ′ (Suc (last + x)))) = length (fst (c (Suc (last + x)))))
and

c ′-safe: (∀ x<k. safe-delayed (c ′ (Suc (last + x)))) and
c ′-unsafe: (k < n − last −→ ¬ safe-delayed (c ′ (Suc (last + k)))) and
c ′-unch:

(∀ x≤k. ∀ tsx Sx mx.
c (Suc (last + x)) = (tsx, mx, Sx) −→
(∀ tsx ′ Sx

′ mx
′.

c ′ (Suc (last + x)) = (tsx ′, mx
′, Sx

′) −→
tsx ′ ! j = tsl ! j ∧
(∀ a∈Ol. Sx

′ a = S l a) ∧
(∀ a∈Ol. Sx a = S l a) ∧
(∀ a∈Ol. mx

′ a = ml a) ∧ (∀ a∈Ol. mx a = ml a))) and
c ′-sim:

(∀ x≤k. ∀ tsx Sx mx.
c (Suc (last + x)) = (tsx, mx, Sx) −→
(∀ tsx ′ Sx

′ mx
′.

c ′ (Suc (last + x)) = (tsx ′, mx
′, Sx

′) −→
(∀ ja<length tsx. ja 6= j −→ tsx ′ ! ja = tsx ! ja) ∧
(∀ a. a /∈ Ol −→ Sx

′ a = Sx a) ∧
(∀ a. a /∈ Ol −→ mx

′ a = mx a)))
by auto

obtain c-undo where c-undo: c-undo = (λx. if x ≤ last then c x else c ′ (Suc last
+ x − last))

by blast
have c-undo-0: c-undo 0 = c0

by (auto simp add: c-undo c-0)
from sequence-traces [OF trace-last trace-c ′, simplified c-last, OF c ′-first c-undo]
have trace-undo: trace c-undo 0 (last + k) .
obtain u-ts u-shared u-m where

c-undo-n: c-undo n = (u-ts,u-m, u-shared)
by (cases c-undo n)

with last-bound c ′-first c-last
have c ′-suc: c ′ (Suc n) = (u-ts,u-m, u-shared)

apply (auto simp add: c-undo split: if-split-asm)
apply (subgoal-tac n=last)
apply auto

95

done

show ?thesis
proof (cases k < n − last)

case True
with c ′-unsafe have unsafe: ¬ safe-delayed (c-undo (last + k))

by (auto simp add: c-undo c-last c ′-first)
from True have last + k ≤ n

by auto
from safe-delayed-reach-inter.safe-config [OF this trace-undo, of last + k]
have safe-delayed (c-undo (last + k))

by (auto simp add: c-undo c-0)
with unsafe have False by simp
thus ?thesis ..

next
case False
with k-bound have k: k = n − last

by auto
have eq ′: Suc (last + (n − last)) = Suc n

using last-bound
by simp

from c ′-unch [rule-format, of k, simplified k eq ′, OF - c-suc c ′-suc]
obtain u-ts-j: u-ts!j = tsl!j and

shared-unch: ∀ a∈Ol. u-shared a = S l a and
shared-orig-unch: ∀ a∈Ol. S a = S l a and
mem-unch: ∀ a∈Ol. u-m a = ml a and
mem-unch-orig: ∀ a∈Ol. m a = ml a
by auto

from c ′-sim [rule-format, of k, simplified k eq ′, OF - c-suc c ′-suc] i-bound neq-j-i
obtain u-ts-i: u-ts!i = ts!i and

shared-sim: ∀ a. a /∈ Ol −→ u-shared a = S a and
mem-sim: ∀ a. a /∈ Ol −→ u-m a = m a

by auto

from c ′-leq [rule-format, of k] c ′-suc c-suc
have leq-u-ts: length u-ts = length ts

by (auto simp add: eq ′ k)

from j-bound leq-u-ts
have j-bound-u: j < length u-ts

by simp
from i-bound leq-u-ts
have i-bound-u: i < length u-ts

by simp
from k last-bound have l-k-eq: last + k = n

by auto
from safe-delayed-reach-inter.safe-config [OF - trace-undo, simplified l-k-eq]

k c-0 last-bound

96

have safe-delayed-c-undo ′: ∀ x≤ n. safe-delayed (c-undo x)
by (auto simp add: c-undo split: if-split-asm)

hence safe-delayed-c-undo: ∀ x<n. safe-delayed (c-undo x)
by (auto)

from trace-preserves-simple-ownership-distinct [OF - trace-undo,
simplified l-k-eq c-undo-0, simplified, OF dist this, of n] dist c-undo-n

have dist-u-ts: simple-ownership-distinct u-ts
by auto

then interpret dist-u-ts-inter: simple-ownership-distinct u-ts .

{
fix a
have u-m a = m a
proof (cases a ∈ Ol)

case True with mem-unch
have u-m a = ml a

by auto
moreover
from True mem-unch-orig
have m a = ml a

by auto
ultimately show ?thesis by simp

next
case False
with mem-sim
show ?thesis

by auto
qed

} hence u-m-eq: u-m = m by − (rule ext, auto)

{
fix a
have u-shared a = S a
proof (cases a ∈ Ol)

case True with shared-unch
have u-shared a = S l a

by auto
moreover
from True shared-orig-unch
have S a = S l a

by auto
ultimately show ?thesis by simp

next
case False
with shared-sim
show ?thesis

by auto
qed

} hence u-shared-eq: u-shared = S by − (rule ext, auto)

97

{
assume safe: map owned u-ts,map released u-ts,i `(is,j,u-m,D,O,u-shared)

√

then have False
proof cases

case Read
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
next

case WriteNonVolatile
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
next

case WriteVolatile
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

apply (auto simp add:eqs races-def split: if-split-asm)
apply fastforce
done

next
case Fence
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
next

case Ghost
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

apply (auto simp add:eqs races-def split: if-split-asm)
apply fastforce
done

next
case (RMWReadOnly cond t a D f ret A L R W)
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def u-shared-eq u-m-eq split: if-split-asm)
next

case RMWWrite
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

apply (auto simp add:eqs races-def u-shared-eq u-m-eq split: if-split-asm)
apply fastforce+
done

next
case Nil
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
qed

98

}
hence ¬ safe-delayed (u-ts, u-m, u-shared)

apply (clarsimp simp add: safe-delayed-def)
apply (rule-tac x=i in exI)
using u-ts-i ts-i i-bound-u
apply auto
done

moreover
from safe-delayed-c-undo ′ [rule-format, of n] c-undo-n
have safe-delayed (u-ts, u-m, u-shared)

by simp
ultimately have False

by simp
thus ?thesis

by simp
qed

next
case (Memop i ′ - - - - - - - isl ′ jl ′ sbl

′ Dl
′ Ol

′ Rl
′)

with j-changed j-boundl tsl-j
obtain

tsl ′: tsl ′ = tsl[j:=(pl,isl ′,jl ′,sbl
′,Dl

′,Ol
′,Rl

′)] and
mem-step: (isl, jl, sbl, ml, Dl, Ol, Rl,S l) →
(isl ′, jl ′, sbl

′, ml
′, Dl

′, Ol
′, Rl

′, S l
′)

by (cases i ′=j) auto

from mem-step
show ?thesis
proof (cases)

case (Read volatile a t)
then obtain

isl: isl = Read volatile a t # isl ′ and
jl ′: jl ′ = jl(t 7→ ml a) and
sbl

′: sbl
′=sbl and

Dl
′: Dl

′=Dl and
Ol

′: Ol
′ = Ol and

Rl
′: Rl

′= Rl and
S l

′: S l
′=S l and

ml
′: ml

′ = ml

by auto
note eqs ′ = jl ′ sbl

′ Dl
′ Ol

′ Rl
′ S l

′ ml
′

from tsl ′-j tsl ′ ts-j j-boundl eqs ′
obtain eqs: pl=pj isl ′=isj jl(t 7→ ml a)=jj Dl=Dj Ol=Oj Rl=Rj

by auto

from undo-local-steps [where c=c, OF trace-rest c-last ′ idle-rest ′ safe-delayed-last,
simplified tsl ′,

simplified,
OF j-boundl tsl-j [simplified], simplified ml

′ S l
′, simplified, OF dist-last

dist-last ′ [simplified tsl ′,simplified] safe-delayed-upto-last]

99

obtain c ′ k where
k-bound: k ≤ n − last and
trace-c ′: trace c ′ (Suc last) k and
c ′-first: c ′ (Suc last) = (tsl, ml, S l) and
c ′-leq: (∀ x≤k. length (fst (c ′ (Suc (last + x)))) = length (fst (c (Suc (last +

x))))) and
c ′-safe: (∀ x<k. safe-delayed (c ′ (Suc (last + x)))) and
c ′-unsafe: (k < n − last −→ ¬ safe-delayed (c ′ (Suc (last + k)))) and
c ′-unch:
(∀ x≤k. ∀ tsx Sx mx.

c (Suc (last + x)) = (tsx, mx, Sx) −→
(∀ tsx ′ Sx

′ mx
′.

c ′ (Suc (last + x)) = (tsx ′, mx
′, Sx

′) −→
tsx ′ ! j = tsl ! j ∧
(∀ a∈Ol. Sx

′ a = S l a) ∧
(∀ a∈Ol. Sx a = S l a) ∧
(∀ a∈Ol. mx

′ a = ml a) ∧ (∀ a∈Ol. mx a = ml a))) and
c ′-sim:
(∀ x≤k. ∀ tsx Sx mx.

c (Suc (last + x)) = (tsx, mx, Sx) −→
(∀ tsx ′ Sx

′ mx
′.

c ′ (Suc (last + x)) = (tsx ′, mx
′, Sx

′) −→
(∀ ja<length tsx. ja 6= j −→ tsx ′ ! ja = tsx ! ja) ∧
(∀ a. a /∈ Ol −→ Sx

′ a = Sx a) ∧
(∀ a. a /∈ Ol −→ mx

′ a = mx a)))
by (clarsimp simp add: Ol

′)
obtain c-undo where c-undo: c-undo = (λx. if x ≤ last then c x else c ′ (Suc

last + x − last))
by blast

have c-undo-0: c-undo 0 = c0
by (auto simp add: c-undo c-0)

from sequence-traces [OF trace-last trace-c ′, simplified c-last, OF c ′-first c-undo]
have trace-undo: trace c-undo 0 (last + k) .
obtain u-ts u-shared u-m where

c-undo-n: c-undo n = (u-ts,u-m, u-shared)
by (cases c-undo n)

with last-bound c ′-first c-last
have c ′-suc: c ′ (Suc n) = (u-ts,u-m, u-shared)

apply (auto simp add: c-undo split: if-split-asm)
apply (subgoal-tac n=last)
apply auto
done

show ?thesis
proof (cases k < n − last)

case True
with c ′-unsafe have unsafe: ¬ safe-delayed (c-undo (last + k))

by (auto simp add: c-undo c-last c ′-first)
from True have last + k ≤ n

100

by auto
from safe-delayed-reach-inter.safe-config [OF this trace-undo, of last + k]
have safe-delayed (c-undo (last + k))

by (auto simp add: c-undo c-0)
with unsafe have False by simp
thus ?thesis ..

next
case False
with k-bound have k: k = n − last

by auto
have eq ′: Suc (last + (n − last)) = Suc n

using last-bound
by simp

from c ′-unch [rule-format, of k, simplified k eq ′, OF - c-suc c ′-suc]
obtain u-ts-j: u-ts!j = tsl!j and

shared-unch: ∀ a∈Ol. u-shared a = S l a and
shared-orig-unch: ∀ a∈Ol. S a = S l a and
mem-unch: ∀ a∈Ol. u-m a = ml a and
mem-unch-orig: ∀ a∈Ol. m a = ml a
by auto

from c ′-sim [rule-format, of k, simplified k eq ′, OF - c-suc c ′-suc] i-bound neq-j-i
obtain u-ts-i: u-ts!i = ts!i and

shared-sim: ∀ a. a /∈ Ol −→ u-shared a = S a and
mem-sim: ∀ a. a /∈ Ol −→ u-m a = m a

by auto

from c ′-leq [rule-format, of k] c ′-suc c-suc
have leq-u-ts: length u-ts = length ts

by (auto simp add: eq ′ k)

from j-bound leq-u-ts
have j-bound-u: j < length u-ts

by simp
from i-bound leq-u-ts
have i-bound-u: i < length u-ts

by simp
from k last-bound have l-k-eq: last + k = n

by auto
from safe-delayed-reach-inter.safe-config [OF - trace-undo, simplified l-k-eq]

k c-0 last-bound
have safe-delayed-c-undo ′: ∀ x≤n. safe-delayed (c-undo x)

by (auto simp add: c-undo split: if-split-asm)
hence safe-delayed-c-undo: ∀ x<n. safe-delayed (c-undo x)

by (auto)
from trace-preserves-simple-ownership-distinct [OF - trace-undo,

simplified l-k-eq c-undo-0, simplified, OF dist this, of n] dist c-undo-n
have dist-u-ts: simple-ownership-distinct u-ts

by auto
then interpret dist-u-ts-inter: simple-ownership-distinct u-ts .

101

{
fix a
have u-m a = m a
proof (cases a ∈ Ol)

case True with mem-unch
have u-m a = ml a

by auto
moreover
from True mem-unch-orig
have m a = ml a

by auto
ultimately show ?thesis by simp

next
case False
with mem-sim
show ?thesis

by auto
qed

} hence u-m-eq: u-m = m by − (rule ext, auto)

{
fix a
have u-shared a = S a
proof (cases a ∈ Ol)

case True with shared-unch
have u-shared a = S l a

by auto
moreover
from True shared-orig-unch
have S a = S l a

by auto
ultimately show ?thesis by simp

next
case False
with shared-sim
show ?thesis

by auto
qed

} hence u-shared-eq: u-shared = S by − (rule ext, auto)

{
assume safe: map owned u-ts,map released u-ts,i `(is,j,u-m,D,O,u-shared)

√

then have False
proof cases

case Read
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)

102

next
case WriteNonVolatile
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
next

case WriteVolatile
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

apply (auto simp add:eqs races-def split: if-split-asm)
apply fastforce
done

next
case Fence
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
next

case Ghost
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

apply (auto simp add:eqs races-def split: if-split-asm)
apply fastforce
done

next
case (RMWReadOnly cond t a D f ret A L R W)
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def u-shared-eq u-m-eq split: if-split-asm)
next

case RMWWrite
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

apply (auto simp add:eqs races-def u-shared-eq u-m-eq split: if-split-asm)
apply fastforce+
done

next
case Nil
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
qed

}
hence ¬ safe-delayed (u-ts, u-m, u-shared)

apply (clarsimp simp add: safe-delayed-def)
apply (rule-tac x=i in exI)
using u-ts-i ts-i i-bound-u
apply auto
done

moreover

103

from safe-delayed-c-undo ′ [rule-format, of n] c-undo-n
have safe-delayed (u-ts, u-m, u-shared)

by simp
ultimately have False

by simp
thus ?thesis

by simp
qed

next
case (WriteNonVolatile a D f A L R W)
then obtain

isl: isl = Write False a (D, f) A L R W # isl ′ and
jl ′: jl ′ = jl and
sbl

′: sbl
′=sbl and

Dl
′: Dl

′=Dl and
Ol

′: Ol
′ = Ol and

Rl
′: Rl

′= Rl and
S l

′: S l
′=S l and

ml
′: ml

′ = ml(a:=f jl)
by auto

note eqs ′ = jl ′ sbl
′ Dl

′ Ol
′ Rl

′ S l
′ ml

′

from tsl ′-j tsl ′ ts-j j-boundl eqs ′
obtain eqs: pl=pj isl ′=isj jl=jj Dl=Dj Ol=Oj

Rl=Rj

by auto

from safel [simplified isl]
obtain a-owned: a ∈ Ol and a-unshared: a /∈ dom S l

by cases auto
have ml-unch-unowned: ∀ a ′. a ′ /∈ Ol −→ ml a ′ = (ml(a := f jl)) a ′

using a-owned by auto

have ml-unch-unshared: ∀ a ′. a ′ ∈ Ol −→ a ′ ∈ dom S l −→ ml a ′ = (ml(a := f jl))
a ′

using a-unshared by auto

from undo-local-steps [where c=c, OF trace-rest c-last ′ idle-rest ′ safe-delayed-last,
simplified tsl ′,

simplified,
OF j-boundl tsl-j [simplified], simplified ml

′ S l
′,OF ml-unch-unowned

ml-unch-unshared, simplified,
OF dist-last dist-last ′ [simplified tsl ′,simplified] safe-delayed-upto-last]

obtain c ′ k where
k-bound: k ≤ n − last and
trace-c ′: trace c ′ (Suc last) k and
c ′-first: c ′ (Suc last) = (tsl, ml, S l) and
c ′-leq: (∀ x≤k. length (fst (c ′ (Suc (last + x)))) = length (fst (c (Suc (last +

x))))) and
c ′-safe: (∀ x<k. safe-delayed (c ′ (Suc (last + x)))) and

104

c ′-unsafe: (k < n − last −→ ¬ safe-delayed (c ′ (Suc (last + k)))) and
c ′-unch:
(∀ x≤k. ∀ tsx Sx mx.

c (Suc (last + x)) = (tsx, mx, Sx) −→
(∀ tsx ′ Sx

′ mx
′.

c ′ (Suc (last + x)) = (tsx ′, mx
′, Sx

′) −→
tsx ′ ! j = tsl ! j ∧
(∀ a∈Ol. Sx

′ a = S l a) ∧
(∀ a∈Ol. Sx a = S l a) ∧
(∀ a∈Ol. mx

′ a = ml a) ∧ (∀ a ′∈Ol. mx a ′ = (ml(a := f jl)) a ′))) and
c ′-sim:
(∀ x≤k. ∀ tsx Sx mx.

c (Suc (last + x)) = (tsx, mx, Sx) −→
(∀ tsx ′ Sx

′ mx
′.

c ′ (Suc (last + x)) = (tsx ′, mx
′, Sx

′) −→
(∀ ja<length tsx. ja 6= j −→ tsx ′ ! ja = tsx ! ja) ∧
(∀ a. a /∈ Ol −→ Sx

′ a = Sx a) ∧
(∀ a. a /∈ Ol −→ mx

′ a = mx a)))
by (clarsimp simp add: Ol

′)

obtain c-undo where c-undo: c-undo = (λx. if x ≤ last then c x else c ′ (Suc
last + x − last))

by blast
have c-undo-0: c-undo 0 = c0

by (auto simp add: c-undo c-0)
from sequence-traces [OF trace-last trace-c ′, simplified c-last, OF c ′-first c-undo]
have trace-undo: trace c-undo 0 (last + k) .
obtain u-ts u-shared u-m where

c-undo-n: c-undo n = (u-ts,u-m, u-shared)
by (cases c-undo n)

with last-bound c ′-first c-last
have c ′-suc: c ′ (Suc n) = (u-ts,u-m, u-shared)

apply (auto simp add: c-undo split: if-split-asm)
apply (subgoal-tac n=last)
apply auto
done

show ?thesis
proof (cases k < n − last)

case True
with c ′-unsafe have unsafe: ¬ safe-delayed (c-undo (last + k))

by (auto simp add: c-undo c-last c ′-first)
from True have last + k ≤ n

by auto
from safe-delayed-reach-inter.safe-config [OF this trace-undo, of last + k]
have safe-delayed (c-undo (last + k))

by (auto simp add: c-undo c-0)
with unsafe have False by simp
thus ?thesis ..

105

next
case False
with k-bound have k: k = n − last

by auto
have eq ′: Suc (last + (n − last)) = Suc n

using last-bound
by simp

from c ′-unch [rule-format, of k, simplified k eq ′, OF - c-suc c ′-suc]
obtain u-ts-j: u-ts!j = tsl!j and

shared-unch: ∀ a∈Ol. u-shared a = S l a and
shared-orig-unch: ∀ a∈Ol. S a = S l a and
mem-unch: ∀ a∈Ol. u-m a = ml a and
mem-unch-orig: ∀ a ′∈Ol. m a ′ = (ml(a := f jl)) a ′

by auto

from c ′-sim [rule-format, of k, simplified k eq ′, OF - c-suc c ′-suc] i-bound neq-j-i
obtain u-ts-i: u-ts!i = ts!i and

shared-sim: ∀ a. a /∈ Ol −→ u-shared a = S a and
mem-sim: ∀ a. a /∈ Ol −→ u-m a = m a

by auto

from c ′-leq [rule-format, of k] c ′-suc c-suc
have leq-u-ts: length u-ts = length ts

by (auto simp add: eq ′ k)

from j-bound leq-u-ts
have j-bound-u: j < length u-ts

by simp
from i-bound leq-u-ts
have i-bound-u: i < length u-ts

by simp
from k last-bound have l-k-eq: last + k = n

by auto
from safe-delayed-reach-inter.safe-config [OF - trace-undo, simplified l-k-eq]

k c-0 last-bound
have safe-delayed-c-undo ′: ∀ x≤n. safe-delayed (c-undo x)

by (auto simp add: c-undo split: if-split-asm)
hence safe-delayed-c-undo: ∀ x<n. safe-delayed (c-undo x)

by auto
from trace-preserves-simple-ownership-distinct [OF - trace-undo,

simplified l-k-eq c-undo-0, simplified, OF dist this, of n] dist c-undo-n
have dist-u-ts: simple-ownership-distinct u-ts

by auto
then interpret dist-u-ts-inter: simple-ownership-distinct u-ts .

{
fix a
have u-shared a = S a
proof (cases a ∈ Ol)

case True with shared-unch

106

have u-shared a = S l a
by auto

moreover
from True shared-orig-unch
have S a = S l a

by auto
ultimately show ?thesis by simp

next
case False
with shared-sim
show ?thesis

by auto
qed

} hence u-shared-eq: u-shared = S by − (rule ext, auto)

{
assume safe: map owned u-ts,map released u-ts,i `(is,j,u-m,D,O,u-shared)

√

then have False
proof cases

case Read
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
next

case WriteNonVolatile
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
next

case WriteVolatile
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

apply (auto simp add:eqs races-def split: if-split-asm)
apply fastforce
done

next
case Fence
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
next

case Ghost
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

apply (auto simp add:eqs races-def split: if-split-asm)
apply fastforce
done

next
case (RMWReadOnly cond t a ′ D f ret A L R W)
with ts-i is obtain

107

ins: ins = RMW a ′ t (D, f) cond ret A L R W and
owned-or-shared: a ′ ∈ O ∨ a ′ ∈ dom u-shared and
cond: ¬ cond (j(t 7→ u-m a ′)) and
rels-race: ∀ j<length (map owned u-ts). i 6= j −→ ((map released u-ts) ! j)

a ′ 6= Some False
by auto

from dist-u-ts-inter.simple-ownership-distinct [OF j-bound-u i-bound-u
neq-j-i u-ts-j [simplified tsl-j]

u-ts-i [simplified ts-i]]
have dist: Ol ∩ O = {}

by auto
from owned-or-shared dist a-owned a-unshared shared-orig-unch
have a ′-a: a ′6=a

by (auto simp add: u-shared-eq domIff)
have u-m-eq: u-m a ′ = m a ′

proof (cases a ′ ∈ Ol)
case True with mem-unch
have u-m a ′ = ml a ′

by auto
moreover
from True mem-unch-orig a ′-a
have m a ′ = ml a ′

by auto
ultimately show ?thesis by simp

next
case False
with mem-sim
show ?thesis

by auto
qed
with ins cond rels-race show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def u-shared-eq u-m-eq split: if-split-asm)
next

case (RMWWrite cond t a ′ A L R D f ret W)
with ts-i is obtain

ins: ins = RMW a ′ t (D, f) cond ret A L R W and
cond: cond (j(t 7→ u-m a ′)) and

a ′: ∀ j<length (map owned u-ts). i 6= j −→ a ′ /∈ (map owned u-ts) ! j ∪ dom
((map released u-ts) ! j) and

safety:
A ⊆ dom u-shared ∪ O L ⊆ A R ⊆ O A ∩ R = {}
∀ j<length (map owned u-ts). i 6= j −→ A ∩ ((map owned u-ts) ! j ∪ dom

((map released u-ts) ! j)) = {}
a ′ /∈ read-only u-shared

by auto
from a ′[rule-format, of j] j-bound-u u-ts-j tsl-j neq-j-i
have a ′ /∈ Ol

by auto
from mem-sim [rule-format, OF this]

108

have u-m-eq: u-m a ′ = m a ′

by auto

with ins cond safety a ′ show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

apply (auto simp add:eqs races-def u-shared-eq u-m-eq split: if-split-asm)
apply fastforce
done

next
case Nil
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
qed

}
hence ¬ safe-delayed (u-ts, u-m, u-shared)

apply (clarsimp simp add: safe-delayed-def)
apply (rule-tac x=i in exI)
using u-ts-i ts-i i-bound-u
apply auto
done

moreover
from safe-delayed-c-undo ′ [rule-format, of n] c-undo-n
have safe-delayed (u-ts, u-m, u-shared)

by simp
ultimately have False

by simp
thus ?thesis

by simp
qed

next
case WriteVolatile
with tsl ′-j tsl ′ ts-j j-boundl have Rj = Map.empty

by auto
with Rj-non-empty have False by auto
thus ?thesis ..

next
case Fence
with tsl ′-j tsl ′ ts-j j-boundl have Rj = Map.empty

by auto
with Rj-non-empty have False by auto
thus ?thesis ..

next
case RMWReadOnly
with tsl ′-j tsl ′ ts-j j-boundl have Rj = Map.empty

by auto
with Rj-non-empty have False by auto
thus ?thesis ..

next
case RMWWrite

109

with tsl ′-j tsl ′ ts-j j-boundl have Rj = Map.empty
by auto

with Rj-non-empty have False by auto
thus ?thesis ..

next
case (Ghost A L R W)
then obtain

isl: isl = Ghost A L R W # isl ′ and
jl ′: jl ′ = jl and
sbl

′: sbl
′=sbl and

Dl
′: Dl

′=Dl and
Ol

′: Ol
′ = Ol ∪ A − R and

Rl
′: Rl

′= augment-rels (dom S l) R Rl and
S l

′: S l
′=S l ⊕W R 	A L and

ml
′: ml

′ = ml

by auto
note eqs ′ = jl ′ sbl

′ Dl
′ Ol

′ Rl
′ S l

′ ml
′

from tsl ′-j tsl ′ ts-j j-boundl eqs ′
obtain eqs: pl=pj isl ′=isj jl=jj Dl=Dj Ol ∪ A − R = Oj

augment-rels (dom S l) R Rl=Rj

by auto

from safel [simplified isl]
obtain
A-shared-owned: A ⊆ dom S l ∪ Ol and L-A: L ⊆ A and R-owns: R ⊆ Ol and

A-R: A ∩ R = {} and
∀ j ′ < length (map owned tsl). j 6=j ′ −→ A ∩ ((map owned tsl)!j ′ ∪ dom ((map

released tsl)!j ′)) = {}
by cases auto

from A-shared-owned L-A R-owns A-R
have shared-eq: ∀ a. a /∈ Ol −→ a /∈ Ol

′ −→ S l a = (S l ⊕W R 	A L) a
by (auto simp add: restrict-shared-def augment-shared-def Ol

′ split: option.splits)

from undo-local-steps [where c=c, OF trace-rest c-last ′ idle-rest ′ safe-delayed-last,
simplified tsl ′,

simplified,
OF j-boundl tsl-j [simplified], simplified ml

′ S l
′, simplified,

OF shared-eq dist-last dist-last ′ [simplified tsl ′,simplified] safe-delayed-upto-last]

obtain c ′ k where
k-bound: k ≤ n − last and
trace-c ′: trace c ′ (Suc last) k and
c ′-first: c ′ (Suc last) = (tsl, ml, S l) and
c ′-leq: (∀ x≤k. length (fst (c ′ (Suc (last + x)))) = length (fst (c (Suc (last +

x))))) and
c ′-safe: (∀ x<k. safe-delayed (c ′ (Suc (last + x)))) and
c ′-unsafe: (k < n − last −→ ¬ safe-delayed (c ′ (Suc (last + k)))) and
c ′-unch:

110

(∀ x≤k. ∀ tsx Sx mx.
c (Suc (last + x)) = (tsx, mx, Sx) −→
(∀ tsx ′ Sx

′ mx
′.

c ′ (Suc (last + x)) = (tsx ′, mx
′, Sx

′) −→
tsx ′ ! j = tsl ! j ∧
(∀ a∈Ol. Sx

′ a = S l a) ∧
(∀ a∈Ol. Sx a = (S l ⊕W R 	A L) a) ∧
(∀ a∈Ol. mx

′ a = ml a) ∧ (∀ a ′∈Ol. mx a ′ = (ml) a ′))) and
c ′-sim:
(∀ x≤k. ∀ tsx Sx mx.

c (Suc (last + x)) = (tsx, mx, Sx) −→
(∀ tsx ′ Sx

′ mx
′.

c ′ (Suc (last + x)) = (tsx ′, mx
′, Sx

′) −→
(∀ ja<length tsx. ja 6= j −→ tsx ′ ! ja = tsx ! ja) ∧
(∀ a. a /∈ Ol −→ a /∈ Ol

′ −→ Sx
′ a = Sx a) ∧

(∀ a. a /∈ Ol −→ mx
′ a = mx a)))

by (clarsimp)
obtain c-undo where c-undo: c-undo = (λx. if x ≤ last then c x else c ′ (Suc

last + x − last))
by blast

have c-undo-0: c-undo 0 = c0
by (auto simp add: c-undo c-0)

from sequence-traces [OF trace-last trace-c ′, simplified c-last, OF c ′-first c-undo]
have trace-undo: trace c-undo 0 (last + k) .
obtain u-ts u-shared u-m where

c-undo-n: c-undo n = (u-ts,u-m, u-shared)
by (cases c-undo n)

with last-bound c ′-first c-last
have c ′-suc: c ′ (Suc n) = (u-ts,u-m, u-shared)

apply (auto simp add: c-undo split: if-split-asm)
apply (subgoal-tac n=last)
apply auto
done

show ?thesis
proof (cases k < n − last)

case True
with c ′-unsafe have unsafe: ¬ safe-delayed (c-undo (last + k))

by (auto simp add: c-undo c-last c ′-first)
from True have last + k ≤ n

by auto
from safe-delayed-reach-inter.safe-config [OF this trace-undo, of last + k]
have safe-delayed (c-undo (last + k))

by (auto simp add: c-undo c-0)
with unsafe have False by simp
thus ?thesis ..

next
case False

111

with k-bound have k: k = n − last
by auto

have eq ′: Suc (last + (n − last)) = Suc n
using last-bound
by simp

from c ′-unch [rule-format, of k, simplified k eq ′, OF - c-suc c ′-suc]
obtain u-ts-j: u-ts!j = tsl!j and

shared-unch: ∀ a∈Ol. u-shared a = S l a and
shared-orig-unch: ∀ a∈Ol. S a = (S l ⊕W R 	A L) a and
mem-unch: ∀ a∈Ol. u-m a = ml a and
mem-unch-orig: ∀ a ′∈Ol. m a ′ = ml a ′

by auto

from c ′-sim [rule-format, of k, simplified k eq ′, OF - c-suc c ′-suc] i-bound neq-j-i
obtain u-ts-i: u-ts!i = ts!i and

shared-sim: ∀ a. a /∈ Ol −→ a /∈ Ol
′ −→ u-shared a = S a and

mem-sim: ∀ a. a /∈ Ol −→ u-m a = m a
by auto

from c ′-leq [rule-format, of k] c ′-suc c-suc
have leq-u-ts: length u-ts = length ts

by (auto simp add: eq ′ k)

from j-bound leq-u-ts
have j-bound-u: j < length u-ts

by simp
from i-bound leq-u-ts
have i-bound-u: i < length u-ts

by simp
from k last-bound have l-k-eq: last + k = n

by auto
from safe-delayed-reach-inter.safe-config [OF - trace-undo, simplified l-k-eq]

k c-0 last-bound
have safe-delayed-c-undo ′: ∀ x≤n. safe-delayed (c-undo x)

by (auto simp add: c-undo split: if-split-asm)
hence safe-delayed-c-undo: ∀ x<n. safe-delayed (c-undo x)

by auto
from trace-preserves-simple-ownership-distinct [OF - trace-undo,

simplified l-k-eq c-undo-0, simplified, OF dist this, of n] dist c-undo-n
have dist-u-ts: simple-ownership-distinct u-ts

by auto
then interpret dist-u-ts-inter: simple-ownership-distinct u-ts .
{

fix a
have u-m a = m a
proof (cases a ∈ Ol)

case True with mem-unch
have u-m a = ml a

by auto
moreover

112

from True mem-unch-orig
have m a = ml a

by auto
ultimately show ?thesis by simp

next
case False
with mem-sim
show ?thesis

by auto
qed

} hence u-m-eq: u-m = m by − (rule ext, auto)
{
assume safe: map owned u-ts,map released u-ts,i `(is,j,u-m,D,O,u-shared)

√

then have False
proof cases

case (Read a volatile t)
with ts-i is obtain

ins: ins = Read volatile a t and
access-cond: a ∈ O ∨ a ∈ read-only u-shared ∨ volatile ∧ a ∈ dom u-shared

and
rels-cond: ∀ j<length u-ts. i 6= j −→ ((map released u-ts) ! j) a 6= Some

False and
rels-non-volatile-cond: ¬ volatile −→ (∀ j<length u-ts. i 6= j −→ a /∈ dom

((map released u-ts) ! j)) and
clean: volatile −→ ¬ D
by auto

from race ts-j
have rc: augment-rels (dom S l) R Rl a = Some False ∨

(¬ volatile ∧ a ∈ dom (augment-rels (dom S l) R Rl))
by (auto simp add: races-def ins eqs)
from rels-cond [rule-format, simplified, OF j-bound-u neq-j-i [symmetric]]

u-ts-j tsl-j j-bound-u
have Rl-a: Rl a 6= Some False

by auto
from dist-u-ts-inter.simple-ownership-distinct [OF j-bound-u i-bound-u

neq-j-i u-ts-j [simplified tsl-j]
u-ts-i [simplified ts-i]]

have dist: Ol ∩ O = {}
by auto

show ?thesis
proof (cases volatile)

case True
note volatile=this
show ?thesis
proof (cases a ∈ R)

case False
with rc Rl-a show False

by (auto simp add: augment-rels-def volatile)

113

next
case True
with R-owns
have a-ownsl: a ∈ Ol

by auto
from shared-unch [rule-format, OF a-ownsl]
have u-shared-eq: u-shared a = S l a

by auto
from a-ownsl dist have a /∈ O

by auto
moreover
{

assume a ∈ read-only u-shared
with u-shared-eq have S l a = Some False

by (auto simp add: read-only-def)
with rc True Rl-a have False

by (auto simp add: augment-rels-def split: option.splits simp add:
domIff volatile)

}
moreover
{

assume a ∈ dom u-shared
with u-shared-eq rc True Rl-a have False

by (auto simp add: augment-rels-def split: option.splits simp add:
domIff volatile)

}
ultimately show False
using access-cond

by auto
qed

next
case False
note non-volatile = this

from rels-non-volatile-cond [rule-format, OF False j-bound-u neq-j-i
[symmetric]] u-ts-j tsl-j j-bound-u

have Rl-a: Rl a = None
by (auto simp add: domIff)

show ?thesis
proof (cases a ∈ R)

case False
with rc Rl-a show False

by (auto simp add: augment-rels-def non-volatile domIff)
next

case True
with R-owns
have a-ownsl: a ∈ Ol

by auto
from shared-unch [rule-format, OF a-ownsl]
have u-shared-eq: u-shared a = S l a

by auto

114

from a-ownsl dist have a-unowned: a /∈ O
by auto

moreover
from ro-last-last interpret
read-only-unowned S l tsl .

from read-only-unowned [OF j-boundl tsl-j] a-ownsl have a-unsh: a /∈
read-only S l by auto

{
assume a ∈ read-only u-shared
with u-shared-eq have sh: S l a = Some False

by (auto simp add: read-only-def)

with rc True Rl-a access-cond u-shared-eq a-unowned sh a-ownsl a-unsh
have False

by (auto simp add: augment-rels-def split: option.splits simp add:
domIff non-volatile read-only-def)

}
moreover
{

assume a ∈ dom u-shared
with u-shared-eq rc True Rl-a a-ownsl a-unsh access-cond dist have

False
by (auto simp add: augment-rels-def split: option.splits simp add:

domIff non-volatile read-only-def)
}
ultimately show False
using access-cond

by (auto)
qed

qed
next

case (WriteNonVolatile a D f A ′ L ′ R ′ W ′)
with ts-i is obtain

ins: ins = Write False a (D, f) A ′ L ′ R ′ W ′ and
a-owned: a ∈ O and a-unshared: a /∈ dom u-shared and
a-unreleased: ∀ j<length u-ts. i 6= j −→ a /∈ dom ((map released u-ts) ! j)
by auto

from dist-u-ts-inter.simple-ownership-distinct [OF j-bound-u i-bound-u
neq-j-i u-ts-j [simplified tsl-j]

u-ts-i [simplified ts-i]]
have dist: Ol ∩ O = {}

by auto
from race ts-j
have rc: a ∈ dom (augment-rels (dom S l) R Rl)

by (auto simp add: races-def ins eqs)
from a-unreleased [rule-format, simplified, OF j-bound-u neq-j-i [symmetric]]

u-ts-j tsl-j j-bound-u
have Rl-a: a /∈ dom Rl

by auto
show False

115

proof (cases a ∈ R)
case False
with rc Rl-a show False

by (auto simp add: augment-rels-def domIff)
next

case True
with R-owns
have a-ownsl: a ∈ Ol

by auto
with a-owned dist show False

by auto
qed

next
case (WriteVolatile a A ′ L ′ R ′ D f W ′)
with ts-i is obtain

ins: ins = Write True a (D, f) A ′ L ′ R ′ W ′ and
a-un-owned-released: ∀ j<length u-ts. i 6= j −→

a /∈ ((map owned u-ts) ! j) ∧ a /∈ dom ((map released u-ts) ! j) and
A ′-owns-shared: A ′ ⊆ dom u-shared ∪ O and
L ′-A ′: L ′ ⊆ A ′ and
R ′-owned: R ′ ⊆ O and
A ′-R ′: A ′ ∩ R ′ = {} and

acq-ok: ∀ j<length u-ts. i 6= j −→ A ′ ∩ ((map owned u-ts) ! j ∪ dom ((map
released u-ts) ! j)) = {} and

writeable: a /∈ read-only u-shared
by auto
from a-un-owned-released [rule-format, simplified, OF j-bound-u neq-j-i

[symmetric]] u-ts-j tsl-j j-bound-u
obtain Ol-a: a /∈ Ol and Rl-a: a /∈ dom (Rl)

by auto
from acq-ok [rule-format, simplified, OF j-bound-u neq-j-i [symmetric]] u-ts-j

tsl-j j-bound-u
obtain Ol-A ′: A ′ ∩ Ol = {} and Rl-A ′: A ′ ∩ dom (Rl) = {}

by auto
{

assume rc: a ∈ dom (augment-rels (dom S l) R Rl)
have False
proof (cases a ∈ R)

case False
with rc Rl-a show False

by (auto simp add: augment-rels-def domIff)
next

case True
with R-owns
have a-ownsl: a ∈ Ol

by auto
with Ol-a show False

by auto
qed

116

}
moreover
{

assume rc: A ′ ∩ dom (augment-rels (dom S l) R Rl) 6= {}
then obtain a ′ where a ′-A ′: a ′ ∈ A ′ and a ′-aug: a ′ ∈ dom (augment-rels

(dom S l) R Rl)
by auto

have False
proof (cases a ′ ∈ R)

case False
with a ′-aug a ′-A ′ Rl-A ′ show False

by (auto simp add: augment-rels-def domIff)
next

case True
with R-owns have a ′-ownsl: a ′ ∈ Ol

by auto
with Ol-A ′ a ′-A ′ show False

by auto
qed

}
ultimately show False
using race ts-j

by (auto simp add: races-def ins eqs)
next

case Fence
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
next

case (Ghost A ′ L ′ R ′ W ′)
with ts-i is obtain

ins: ins = Ghost A ′ L ′ R ′ W ′ and
A ′-owns-shared: A ′ ⊆ dom u-shared ∪ O and
L ′-A ′: L ′ ⊆ A ′ and
R ′-owned: R ′ ⊆ O and
A ′-R ′: A ′ ∩ R ′ = {} and

acq-ok: ∀ j<length u-ts. i 6= j −→ A ′ ∩ ((map owned u-ts) ! j ∪ dom ((map
released u-ts) ! j)) = {}

by auto
from acq-ok [rule-format, simplified, OF j-bound-u neq-j-i [symmetric]] u-ts-j

tsl-j j-bound-u
obtain Ol-A ′: A ′ ∩ Ol = {} and Rl-A ′: A ′ ∩ dom (Rl) = {}

by auto

from race ts-j
obtain a ′ where a ′-A ′: a ′ ∈ A ′ and

a ′-aug: a ′ ∈ dom (augment-rels (dom S l) R Rl)
by (auto simp add: races-def ins eqs)

show False
proof (cases a ′ ∈ R)

117

case False
with a ′-aug a ′-A ′ Rl-A ′ show False

by (auto simp add: augment-rels-def domIff)
next

case True
with R-owns have a ′-ownsl: a ′ ∈ Ol

by auto
with Ol-A ′ a ′-A ′ show False

by auto
qed

next
case (RMWReadOnly cond t a D f ret A ′ L ′ R ′ W ′)
with ts-i is obtain

ins: ins = RMW a t (D, f) cond ret A ′ L ′ R ′ W ′ and
owned-or-shared: a ∈ O ∨ a ∈ dom u-shared and
cond: ¬ cond (j(t 7→ u-m a)) and
rels-race: ∀ j<length (map owned u-ts). i 6= j −→ ((map released u-ts) ! j)

a 6= Some False
by auto

from dist-u-ts-inter.simple-ownership-distinct [OF j-bound-u i-bound-u
neq-j-i u-ts-j [simplified tsl-j]

u-ts-i [simplified ts-i]]
have dist: Ol ∩ O = {}

by auto
from race ts-j cond
have rc: augment-rels (dom S l) R Rl a = Some False

by (auto simp add: races-def ins eqs u-m-eq)

from rels-race [rule-format, simplified, OF j-bound-u neq-j-i [symmetric]]
u-ts-j tsl-j j-bound-u

have Rl-a: Rl a 6= Some False
by auto

show ?thesis
proof (cases a ∈ R)

case False
with rc Rl-a show False

by (auto simp add: augment-rels-def)
next

case True
with R-owns
have a-ownsl: a ∈ Ol

by auto
from shared-unch [rule-format, OF a-ownsl]
have u-shared-eq: u-shared a = S l a

by auto
from a-ownsl dist have a /∈ O

by auto
with u-shared-eq rc True Rl-a owned-or-shared show False
by (auto simp add: augment-rels-def split: option.splits simp add: domIff)

118

qed
next

case (RMWWrite cond t a A ′ L ′ R ′ D f ret W ′)
with ts-i is obtain

ins: ins = RMW a t (D, f) cond ret A ′ L ′ R ′ W ′ and
cond: cond (j(t 7→ u-m a)) and

a-un-owned-released: ∀ j<length (map owned u-ts). i 6= j −→ a /∈ (map
owned u-ts) ! j ∪ dom ((map released u-ts) ! j) and

A ′-owns-shared:A ′ ⊆ dom u-shared ∪ O and
L ′-A ′: L ′ ⊆ A ′ and
R ′-owned: R ′ ⊆ O and
A ′-R ′: A ′ ∩ R ′ = {} and
acq-ok: ∀ j<length (map owned u-ts). i 6= j −→ A ′ ∩ ((map owned u-ts) ! j

∪ dom ((map released u-ts) ! j)) = {} and
writeable: a /∈ read-only u-shared
by auto

from a-un-owned-released [rule-format, simplified, OF j-bound-u neq-j-i
[symmetric]] u-ts-j tsl-j j-bound-u

obtain Ol-a: a /∈ Ol and Rl-a: a /∈ dom (Rl)
by auto

from acq-ok [rule-format, simplified, OF j-bound-u neq-j-i [symmetric]] u-ts-j
tsl-j j-bound-u

obtain Ol-A ′: A ′ ∩ Ol = {} and Rl-A ′: A ′ ∩ dom (Rl) = {}
by auto

{
assume rc: a ∈ dom (augment-rels (dom S l) R Rl)
have False
proof (cases a ∈ R)

case False
with rc Rl-a show False

by (auto simp add: augment-rels-def domIff)
next

case True
with R-owns
have a-ownsl: a ∈ Ol

by auto
with Ol-a show False

by auto
qed

}
moreover
{

assume rc: A ′ ∩ dom (augment-rels (dom S l) R Rl) 6= {}
then obtain a ′ where a ′-A ′: a ′ ∈ A ′ and a ′-aug: a ′ ∈ dom (augment-rels

(dom S l) R Rl)
by auto

have False
proof (cases a ′ ∈ R)

119

case False
with a ′-aug a ′-A ′ Rl-A ′ show False

by (auto simp add: augment-rels-def domIff)
next

case True
with R-owns have a ′-ownsl: a ′ ∈ Ol

by auto
with Ol-A ′ a ′-A ′ show False

by auto
qed

}
ultimately show False
using race ts-j cond

by (auto simp add: races-def ins eqs u-m-eq)
next
next

case Nil
then show ?thesis
using ts-i tsl-j race is j-bound i-bound u-ts-i u-ts-j leq-u-ts neq-j-i ts-j

by (auto simp add:eqs races-def split: if-split-asm)
qed

}
hence ¬ safe-delayed (u-ts, u-m, u-shared)

apply (clarsimp simp add: safe-delayed-def)
apply (rule-tac x=i in exI)
using u-ts-i ts-i i-bound-u
apply auto
done

moreover
from safe-delayed-c-undo ′ [rule-format, of n] c-undo-n
have safe-delayed (u-ts, u-m, u-shared)

by simp
ultimately have False

by simp
thus ?thesis

by simp
qed

qed
next

case (StoreBuffer - p is j sb D O R sb ′ O ′ R ′)
hence False

by (auto simp add: empty-storebuffer-step-def)
thus ?thesis ..

qed
qed
}
ultimately show ?thesis
using last-action-of-thread [where i=j, OF trace]

by blast
qed

120

qed

datatype ′p memref =
Writesb bool addr sop val acq lcl rel wrt

| Readsb bool addr tmp val
| Progsb ′p ′p instrs
| Ghostsb acq lcl rel wrt

type-synonym ′p store-buffer = ′p memref list
inductive flush-step:: memory × ′p store-buffer × owns × rels × shared ⇒ memory × ′p
store-buffer × owns × rels × shared ⇒ bool
(‹- →f -› [60,60] 100)

where
Writesb: [[O ′ = (if volatile then O ∪ A − R else O);

S ′ = (if volatile then S ⊕W R 	A L else S);
R ′=(if volatile then Map.empty else R)]]
=⇒
(m, Writesb volatile a sop v A L R W# rs,O,R,S) →f (m(a := v), rs,O ′,R ′,S ′)

| Readsb: (m, Readsb volatile a t v#rs,O,R,S) →f (m, rs,O,R, S)
| Progsb: (m, Progsb p p ′ is#rs,O,R, S) →f (m, rs,O,R, S)
| Ghost: (m, Ghostsb A L R W# rs,O,R,S) →f (m, rs,O ∪ A − R, augment-rels (dom S)
R R, S ⊕W R 	A L)

abbreviation flush-steps::memory × ′p store-buffer × owns × rels × shared ⇒ memory
× ′p store-buffer × owns × rels × shared⇒ bool
(‹- →f

∗ -› [60,60] 100)
where
flush-steps == flush-step^∗∗

term x →f
∗ Y

lemmas flush-step-induct =
flush-step.induct [split-format (complete),
consumes 1, case-names Writesb Readsb Progsb Ghost]

inductive store-buffer-step:: memory × ′p store-buffer × ′owns × ′rels × ′shared ⇒
memory × ′p memref list × ′owns × ′rels × ′shared ⇒ bool
(‹- →w -› [60,60] 100)

where
SBWritesb:

(m, Writesb volatile a sop v A L R W# rs,O,R,S) →w (m(a := v), rs,O,R,S)

abbreviation store-buffer-steps::memory × ′p store-buffer × ′owns × ′rels × ′shared ⇒
memory × ′p store-buffer × ′owns × ′rels × ′shared⇒ bool
(‹- →w∗ -› [60,60] 100)

where
store-buffer-steps == store-buffer-step^∗∗

term x →w∗ Y

121

fun buffered-val :: ′p memref list ⇒ addr ⇒ val option
where

buffered-val [] a = None
| buffered-val (r # rs) a ′ =
(case r of

Writesb volatile a - v - - - - ⇒ (case buffered-val rs a ′ of
None ⇒ (if a ′=a then Some v else None)

| Some v ′ ⇒ Some v ′)
| - ⇒ buffered-val rs a ′)

definition address-of :: ′p memref ⇒ addr set
where
address-of r = (case r of Writesb volatile a - v - - - - ⇒ {a} | Readsb volatile a t v ⇒ {a} |

- ⇒ {})

lemma address-of-simps [simp]:
address-of (Writesb volatile a sop v A L R W) = {a}
address-of (Readsb volatile a t v) = {a}
address-of (Progsb p p ′ is) = {}
address-of (Ghostsb A L R W) = {}

by (auto simp add: address-of-def)

definition is-volatile :: ′p memref ⇒ bool
where
is-volatile r = (case r of Writesb volatile a - v - - - -⇒ volatile | Readsb volatile a t v ⇒
volatile
| - ⇒ False)

lemma is-volatile-simps [simp]:
is-volatile (Writesb volatile a sop v A L R W) = volatile
is-volatile (Readsb volatile a t v) = volatile
is-volatile (Progsb p p ′ is) = False
is-volatile (Ghostsb A L R W) = False

by (auto simp add: is-volatile-def)

definition is-Writesb:: ′p memref ⇒ bool
where
is-Writesb r = (case r of Writesb volatile a - v - - - -⇒ True | - ⇒ False)

definition is-Readsb::
′p memref ⇒ bool

where
is-Readsb r = (case r of Readsb volatile a t v ⇒ True | - ⇒ False)

definition is-Progsb:: ′p memref ⇒ bool
where
is-Progsb r = (case r of Progsb - - - ⇒ True | - ⇒ False)

definition is-Ghostsb:: ′p memref ⇒ bool
where
is-Ghostsb r = (case r of Ghostsb - - - - ⇒ True | - ⇒ False)

122

lemma is-Writesb-simps [simp]:
is-Writesb (Writesb volatile a sop v A L R W) = True
is-Writesb (Readsb volatile a t v) = False
is-Writesb (Progsb p p ′ is) = False
is-Writesb (Ghostsb A L R W) = False

by (auto simp add: is-Writesb-def)

lemma is-Readsb-simps [simp]:
is-Readsb (Readsb volatile a t v) = True
is-Readsb (Writesb volatile a sop v A L R W) = False
is-Readsb (Progsb p p ′ is) = False
is-Readsb (Ghostsb A L R W) = False

by (auto simp add: is-Readsb-def)

lemma is-Progsb-simps [simp]:
is-Progsb (Readsb volatile a t v) = False
is-Progsb (Writesb volatile a sop v A L R W) = False
is-Progsb (Progsb p p ′ is) = True
is-Progsb (Ghostsb A L R W) = False

by (auto simp add: is-Progsb-def)

lemma is-Ghostsb-simps [simp]:
is-Ghostsb (Readsb volatile a t v) = False
is-Ghostsb (Writesb volatile a sop v A L R W) = False
is-Ghostsb (Progsb p p ′ is) = False
is-Ghostsb (Ghostsb A L R W) = True

by (auto simp add: is-Ghostsb-def)

definition is-volatile-Writesb:: ′p memref ⇒ bool
where
is-volatile-Writesb r = (case r of Writesb volatile a - v - - - -⇒ volatile | - ⇒ False)

lemma is-volatile-Writesb-simps [simp]:
is-volatile-Writesb (Writesb volatile a sop v A L R W) = volatile
is-volatile-Writesb (Readsb volatile a t v) = False
is-volatile-Writesb (Progsb p p ′ is) = False
is-volatile-Writesb (Ghostsb A L R W) = False

by (auto simp add: is-volatile-Writesb-def)

lemma is-volatile-Writesb-address-of [simp]: is-volatile-Writesb x =⇒ address-of x 6= {}
by (cases x) auto

definition is-volatile-Readsb::
′p memref ⇒ bool

where
is-volatile-Readsb r = (case r of Readsb volatile a t v ⇒ volatile | - ⇒ False)

lemma is-volatile-Readsb-simps [simp]:
is-volatile-Readsb (Readsb volatile a t v) = volatile
is-volatile-Readsb (Writesb volatile a sop v A L R W) = False

123

is-volatile-Readsb (Progsb p p ′ is) = False
is-volatile-Readsb (Ghostsb A L R W) = False

by (auto simp add: is-volatile-Readsb-def)

definition is-non-volatile-Writesb:: ′p memref ⇒ bool
where
is-non-volatile-Writesb r = (case r of Writesb volatile a - v - - - -⇒ ¬ volatile | - ⇒ False)

lemma is-non-volatile-Writesb-simps [simp]:
is-non-volatile-Writesb (Writesb volatile a sop v A L R W) = (¬ volatile)
is-non-volatile-Writesb (Readsb volatile a t v) = False
is-non-volatile-Writesb (Progsb p p ′ is) = False
is-non-volatile-Writesb (Ghostsb A L R W) = False

by (auto simp add: is-non-volatile-Writesb-def)

definition is-non-volatile-Readsb::
′p memref ⇒ bool

where
is-non-volatile-Readsb r = (case r of Readsb volatile a t v ⇒ ¬ volatile | - ⇒ False)

lemma is-non-volatile-Readsb-simps [simp]:
is-non-volatile-Readsb (Readsb volatile a t v) = (¬ volatile)
is-non-volatile-Readsb (Writesb volatile a sop v A L R W) = False
is-non-volatile-Readsb (Progsb p p ′ is) = False
is-non-volatile-Readsb (Ghostsb A L R W) = False

by (auto simp add: is-non-volatile-Readsb-def)

lemma is-volatile-split: is-volatile r =
(is-volatile-Readsb r ∨ is-volatile-Writesb r)
by (cases r) auto

lemma is-non-volatile-split:
¬ is-volatile r = (is-non-volatile-Readsb r ∨ is-non-volatile-Writesb r ∨ is-Progsb r ∨

is-Ghostsb r)
by (cases r) auto

fun outstanding-refs:: (′p memref ⇒ bool) ⇒ ′p memref list ⇒ addr set
where

outstanding-refs P [] = {}
| outstanding-refs P (r#rs) = (if P r then (address-of r) ∪ (outstanding-refs P rs)

else outstanding-refs P rs)

lemma outstanding-refs-conv: outstanding-refs P sb =
⋃
(address-of ‘ {r. r ∈ set sb ∧ P

r})
by (induct sb) auto

lemma outstanding-refs-append:∧
ys. outstanding-refs vol (xs@ys) = outstanding-refs vol xs ∪ outstanding-refs vol ys

by (auto simp add: outstanding-refs-conv)

124

lemma outstanding-refs-empty-negate: (outstanding-refs P sb = {}) =⇒
(outstanding-refs (Not ◦ P) sb =

⋃
(address-of ‘ set sb))

by (auto simp add: outstanding-refs-conv)

lemma outstanding-refs-mono-pred:∧
sb sb ′.
∀ r. P r −→ P ′ r =⇒ outstanding-refs P sb ⊆ outstanding-refs P ′ sb

by (auto simp add: outstanding-refs-conv)

lemma outstanding-refs-mono-set:∧
sb sb ′.
set sb ⊆ set sb ′ =⇒ outstanding-refs P sb ⊆ outstanding-refs P sb ′

by (auto simp add: outstanding-refs-conv)

lemma outstanding-refs-takeWhile:
outstanding-refs P (takeWhile P ′ sb) ⊆ outstanding-refs P sb
apply (rule outstanding-refs-mono-set)
apply (auto dest: set-takeWhileD)
done

lemma outstanding-refs-subsets:
outstanding-refs is-volatile-Writesb sb ⊆ outstanding-refs is-Writesb sb
outstanding-refs is-non-volatile-Writesb sb ⊆ outstanding-refs is-Writesb sb

outstanding-refs is-volatile-Readsb sb ⊆ outstanding-refs is-Readsb sb
outstanding-refs is-non-volatile-Readsb sb ⊆ outstanding-refs is-Readsb sb

outstanding-refs is-non-volatile-Writesb sb ⊆ outstanding-refs (Not ◦ is-volatile) sb
outstanding-refs is-non-volatile-Readsb sb ⊆ outstanding-refs (Not ◦ is-volatile) sb

outstanding-refs is-volatile-Writesb sb ⊆ outstanding-refs (is-volatile) sb
outstanding-refs is-volatile-Readsb sb ⊆ outstanding-refs (is-volatile) sb

outstanding-refs is-non-volatile-Writesb sb ⊆ outstanding-refs (Not ◦ is-volatile-Writesb)
sb

outstanding-refs is-non-volatile-Readsb sb ⊆ outstanding-refs (Not ◦ is-volatile-Writesb)
sb

outstanding-refs is-volatile-Readsb sb ⊆ outstanding-refs (Not ◦ is-volatile-Writesb) sb
outstanding-refs is-Readsb sb ⊆ outstanding-refs (Not ◦ is-volatile-Writesb) sb

by (auto intro!:outstanding-refs-mono-pred simp add: is-volatile-Writesb-def
is-non-volatile-Writesb-def

is-volatile-Readsb-def is-non-volatile-Readsb-def is-Readsb-def split: memref.splits)

lemma outstanding-non-volatile-refs-conv:
outstanding-refs (Not ◦ is-volatile) sb =
outstanding-refs is-non-volatile-Writesb sb ∪ outstanding-refs is-non-volatile-Readsb sb

apply (induct sb)
apply simp

125

subgoal for a sb
by (case-tac a, auto)

done

lemma outstanding-volatile-refs-conv:
outstanding-refs is-volatile sb =
outstanding-refs is-volatile-Writesb sb ∪ outstanding-refs is-volatile-Readsb sb

apply (induct sb)
apply simp

subgoal for a sb
by (case-tac a, auto)

done

lemma outstanding-is-Writesb-refs-conv:
outstanding-refs is-Writesb sb =
outstanding-refs is-non-volatile-Writesb sb ∪ outstanding-refs is-volatile-Writesb sb

apply (induct sb)
apply simp

subgoal for a sb
by (case-tac a, auto)

done

lemma outstanding-is-Readsb-refs-conv:
outstanding-refs is-Readsb sb =
outstanding-refs is-non-volatile-Readsb sb ∪ outstanding-refs is-volatile-Readsb sb

apply (induct sb)
apply simp

subgoal for a sb
by (case-tac a, auto)

done

lemma outstanding-not-volatile-Readsb-refs-conv: outstanding-refs (Not ◦
is-volatile-Readsb) sb =

outstanding-refs is-Writesb sb ∪ outstanding-refs is-non-volatile-Readsb sb
apply (induct sb)
apply (clarsimp)

subgoal for a sb
by (case-tac a, auto)

done

lemmas misc-outstanding-refs-convs = outstanding-non-volatile-refs-conv outstand-
ing-volatile-refs-conv
outstanding-is-Writesb-refs-conv outstanding-is-Readsb-refs-conv outstand-
ing-not-volatile-Readsb-refs-conv

lemma no-outstanding-vol-write-takeWhile-append: outstanding-refs is-volatile-Writesb
sb = {} =⇒

126

takeWhile (Not ◦ is-volatile-Writesb) (sb@xs) = sb@(takeWhile (Not ◦ is-volatile-Writesb)
xs)
apply (induct sb)
apply (auto split: if-split-asm)
done

lemma outstanding-vol-write-takeWhile-append: outstanding-refs is-volatile-Writesb sb 6=
{} =⇒

takeWhile (Not ◦ is-volatile-Writesb) (sb@xs) = (takeWhile (Not ◦ is-volatile-Writesb)
sb)
apply (induct sb)
apply (auto split: if-split-asm)
done

lemma no-outstanding-vol-write-dropWhile-append: outstanding-refs is-volatile-Writesb
sb = {} =⇒

dropWhile (Not ◦ is-volatile-Writesb) (sb@xs) = (dropWhile (Not ◦ is-volatile-Writesb)
xs)
apply (induct sb)
apply (auto split: if-split-asm)
done

lemma outstanding-vol-write-dropWhile-append: outstanding-refs is-volatile-Writesb sb
6= {} =⇒

dropWhile (Not ◦ is-volatile-Writesb) (sb@xs) = (dropWhile (Not ◦ is-volatile-Writesb)
sb)@xs
apply (induct sb)
apply (auto split: if-split-asm)
done

lemmas outstanding-vol-write-take-drop-appends =
no-outstanding-vol-write-takeWhile-append
outstanding-vol-write-takeWhile-append
no-outstanding-vol-write-dropWhile-append
outstanding-vol-write-dropWhile-append

lemma outstanding-refs-is-non-volatile-Writesb-takeWhile-conv:
outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) =

outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)
apply (induct sb)
apply clarsimp

subgoal for a sb
by (case-tac a, auto)

done

lemma dropWhile-not-vol-write-empty:
outstanding-refs is-volatile-Writesb sb = {} =⇒ (dropWhile (Not ◦ is-volatile-Writesb)

sb) = []

127

apply (induct sb)
apply (auto split: if-split-asm)
done

lemma takeWhile-not-vol-write-outstanding-refs:
outstanding-refs is-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) = {}

apply (induct sb)
apply (auto split: if-split-asm)
done

lemma no-volatile-Writesbs-conv: (outstanding-refs is-volatile-Writesb sb = {}) =
(∀ r ∈ set sb. (∀ v ′ sop ′ a ′ A L R W. r 6= Writesb True a ′ sop ′ v ′ A L R W))

by (force simp add: outstanding-refs-conv is-volatile-Writesb-def split: memref.splits)

lemma no-volatile-Readsbs-conv: (outstanding-refs is-volatile-Readsb sb = {}) =
(∀ r ∈ set sb. (∀ v ′ t ′ a ′. r 6= Readsb True a ′ t ′ v ′))

by (force simp add: outstanding-refs-conv is-volatile-Readsb-def split: memref.splits)

inductive sb-memop-step :: (instrs × tmps × ′p store-buffer × memory × ′dirty × ′owns
× ′rels × ′shared) ⇒

(instrs × tmps × ′p store-buffer × memory × ′dirty × ′owns × ′rels × ′shared
) ⇒ bool

(‹- →sb -› [60,60] 100)
where

SBReadBuffered:
[[buffered-val sb a = Some v]]
=⇒
(Read volatile a t # is,j, sb, m,D, O, R, S) →sb

(is, j (t 7→v), sb, m,D, O,R, S)

| SBReadUnbuffered:
[[buffered-val sb a = None]]
=⇒
(Read volatile a t # is, j, sb, m,D, O, R, S) →sb

(is, j (t 7→m a), sb, m,D, O, R, S)

| SBWriteNonVolatile:
(Write False a (D,f) A L R W#is, j, sb, m,D,O, R, S) →sb

(is, j, sb@ [Writesb False a (D,f) (f j) A L R W], m,D, O, R, S)

| SBWriteVolatile:

(Write True a (D,f) A L R W# is, j, sb, m,D, O, R, S) →sb

(is, j, sb@[Writesb True a (D,f) (f j) A L R W], m,D, O, R, S)

| SBFence:
(Fence # is, j, [], m,D, O, R, S) →sb (is, j, [], m,D, O, R, S)

128

| SBRMWReadOnly:
[[¬ cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, [], m,D, O, R, S) →sb (is, j(t 7→m a),[], m,D,

O, R, S)

| SBRMWWrite:
[[cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, [], m,D, O, R, S) →sb

(is, j(t7→ret (m a) (f(j(t7→m a)))),[], m(a:= f(j(t7→m a))),D, O, R, S)

| SBGhost:
(Ghost A L R W# is, j, sb, m,D, O, R, S) →sb

(is, j, sb, m,D, O, R, S)

inductive sbh-memop-step ::
(instrs × tmps × ′p store-buffer × memory × bool × owns × rels × shared

) ⇒
(instrs × tmps × ′p store-buffer × memory × bool × owns × rels × shared

) ⇒ bool
(‹- →sbh -› [60,60] 100)

where
SBHReadBuffered:
[[buffered-val sb a = Some v]]
=⇒
(Read volatile a t # is, j, sb, m, D, O, R, S) →sbh

(is, j (t 7→v), sb@[Readsb volatile a t v], m, D, O, R, S)

| SBHReadUnbuffered:
[[buffered-val sb a = None]]
=⇒
(Read volatile a t # is, j, sb, m, D, O, R, S) →sbh

(is, j (t 7→m a), sb@[Readsb volatile a t (m a)], m, D, O, R, S)

| SBHWriteNonVolatile:
(Write False a (D,f) A L R W#is, j, sb, m, D, O, R, S) →sbh

(is, j, sb@ [Writesb False a (D,f) (f j) A L R W], m, D, O, R, S)

| SBHWriteVolatile:
(Write True a (D,f) A L R W# is, j, sb, m, D, O, R, S) →sbh

(is, j, sb@[Writesb True a (D,f) (f j) A L R W], m, True, O, R, S)

| SBHFence:
(Fence # is, j, [], m, D, O, R, S) →sbh (is, j, [], m, False, O, Map.empty, S)

| SBHRMWReadOnly:
[[¬ cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, [], m, D, O, R, S) →sbh (is, j(t 7→m a),[], m,

False, O, Map.empty, S)

129

| SBHRMWWrite:
[[cond (j(t 7→m a))]] =⇒
(RMW a t (D,f) cond ret A L R W# is, j, [], m, D, O, R, S) →sbh

(is, j(t 7→ret (m a) (f(j(t 7→m a)))),[], m(a:= f(j(t 7→m a))), False, O ∪ A −
R,Map.empty, S ⊕W R 	A L)

| SBHGhost:
(Ghost A L R W# is, j, sb, m, D, O, R, S) →sbh

(is, j, sb@[Ghostsb A L R W], m, D, O, R, S)

interpretation direct: memory-system direct-memop-step id-storebuffer-step .
interpretation sb: memory-system sb-memop-step store-buffer-step .
interpretation sbh: memory-system sbh-memop-step flush-step .

primrec non-volatile-owned-or-read-only:: bool ⇒ shared ⇒ owns ⇒ ′a memref list ⇒
bool
where
non-volatile-owned-or-read-only pending-write S O [] = True
| non-volatile-owned-or-read-only pending-write S O (x#xs) =
(case x of

Readsb volatile a t v ⇒
(¬volatile −→ pending-write −→ (a ∈ O ∨ a ∈ read-only S)) ∧
non-volatile-owned-or-read-only pending-write S O xs

| Writesb volatile a sop v A L R W ⇒
(if volatile then non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R)

xs
else a ∈ O ∧ non-volatile-owned-or-read-only pending-write S O xs)

| Ghostsb A L R W ⇒ non-volatile-owned-or-read-only pending-write (S ⊕W R 	A L)
(O ∪ A − R) xs
| - ⇒ non-volatile-owned-or-read-only pending-write S O xs)

primrec acquired :: bool ⇒ ′a memref list ⇒ addr set ⇒ addr set
where
acquired pending-write [] A = (if pending-write then A else {})
| acquired pending-write (x#xs) A =
(case x of

Writesb volatile - - - A ′ L R W⇒
(if volatile then acquired True xs (if pending-write then (A ∪ A ′ − R) else (A ′ −

R))
else acquired pending-write xs A)

| Ghostsb A ′ L R W ⇒ acquired pending-write xs (if pending-write then (A ∪ A ′ − R)
else A)
| - ⇒ acquired pending-write xs A)

primrec share :: ′a memref list ⇒ shared ⇒ shared
where
share [] S = S
| share (x#xs) S =
(case x of

130

Writesb volatile - - - A L R W ⇒ (if volatile then (share xs (S ⊕W R 	A L)) else share
xs S)
| Ghostsb A L R W ⇒ share xs (S ⊕W R 	A L)
| - ⇒ share xs S)

primrec acquired-reads :: bool ⇒ ′a memref list ⇒ addr set ⇒ addr set
where
acquired-reads pending-write [] A = {}
| acquired-reads pending-write (x#xs) A =
(case x of

Readsb volatile a t v ⇒ (if pending-write ∧ ¬ volatile ∧ a ∈ A
then insert a (acquired-reads pending-write xs A)
else acquired-reads pending-write xs A)

| Writesb volatile - - - A ′ L R W ⇒
(if volatile then acquired-reads True xs (if pending-write then (A ∪ A ′ − R) else

(A ′ − R))
else acquired-reads pending-write xs A)

| Ghostsb A ′ L R W ⇒ acquired-reads pending-write xs (A ∪ A ′ − R)
| - ⇒ acquired-reads pending-write xs A)

lemma union-mono-aux: A ⊆ B =⇒ A ∪ C ⊆ B ∪ C
by blast

lemma set-minus-mono-aux: A ⊆ B =⇒ A − C ⊆ B − C
by blast

lemma acquired-mono:
∧

A B pending-write. A ⊆ B =⇒ acquired pending-write xs A ⊆
acquired pending-write xs B
apply (induct xs)
apply simp
subgoal for a xs A B pending-write
apply (case-tac a)
apply clarsimp

subgoal for volatile a1 D f v A ′ L R W x
apply (drule-tac C=A ′ in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done

apply clarsimp
apply clarsimp
apply clarsimp
subgoal for A ′ L R W x

apply (drule-tac C=A ′ in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done

done
done

131

lemma acquired-mono-in:
assumes x-in: x ∈ acquired pending-write xs A
assumes sub: A ⊆ B
shows x ∈ acquired pending-write xs B

using acquired-mono [OF sub, of pending-write xs] x-in
by blast

lemma acquired-no-pending-write:
∧

A B. acquired False xs A = acquired False xs B
by (induct xs) (auto split: memref.splits)

lemma acquired-no-pending-write-in:
x ∈ acquired False xs A =⇒ x ∈ acquired False xs B
apply (subst acquired-no-pending-write)
apply auto
done

lemma acquired-pending-write-mono-in:
∧

A B. x ∈ acquired False xs A =⇒ x ∈ acquired
True xs B
apply (induct xs)
apply (auto split: memref.splits if-split-asm intro: acquired-mono-in)
done

lemma acquired-pending-write-mono: acquired False xs A ⊆ acquired True xs B
by (auto intro: acquired-pending-write-mono-in)

lemma acquired-append:
∧

A pending-write. acquired pending-write (xs@ys) A =
acquired (pending-write ∨ outstanding-refs is-volatile-Writesb xs 6= {}) ys (acquired pend-
ing-write xs A)

apply (induct xs)
apply (auto split: memref.splits intro: acquired-no-pending-write-in)
done

lemma acquired-take-drop:
acquired (pending-write ∨ outstanding-refs is-volatile-Writesb (takeWhile P xs) 6= {})

(dropWhile P xs) (acquired pending-write (takeWhile P xs) A) =
acquired pending-write xs A

proof −
have acquired pending-write xs A = acquired pending-write ((takeWhile P

xs)@(dropWhile P xs)) A
by simp

also
from acquired-append [where xs=(takeWhile P xs) and ys=(dropWhile P xs)]
have . . . = acquired (pending-write ∨ outstanding-refs is-volatile-Writesb (takeWhile P

xs) 6= {})
(dropWhile P xs) (acquired pending-write (takeWhile P xs) A)

by simp
finally show ?thesis

by simp
qed

132

lemma share-mono:
∧

A B. dom A ⊆ dom B =⇒ dom (share xs A) ⊆ dom (share xs B)
apply (induct xs)
apply simp
subgoal for a xs A B
apply (case-tac a)
apply (clarsimp iff del: domIff)

subgoal for volatile a1 D f v A ′ L R W x
apply (drule-tac C=R and x=W in augment-mono-aux)
apply (drule-tac C=L in restrict-mono-aux)
apply blast
done

apply clarsimp
apply clarsimp
apply (clarsimp iff del: domIff)
subgoal for A ′ L R W x
apply (drule-tac C=R and x=W in augment-mono-aux)
apply (drule-tac C=L in restrict-mono-aux)
apply blast
done
done
done

lemma share-mono-in:
assumes x-in: x ∈ dom (share xs A)
assumes sub: dom A ⊆ dom B
shows x ∈ dom (share xs B)

using share-mono [OF sub, of xs] x-in
by blast

lemma acquired-reads-mono:∧
A B pending-write. A ⊆ B =⇒ acquired-reads pending-write xs A ⊆ acquired-reads

pending-write xs B
apply (induct xs)
apply simp
subgoal for a xs A B pending-write
apply (case-tac a)
apply clarsimp

subgoal for volatile a1 D f v A ′ L R W x
apply (drule-tac C=A ′ in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done

apply clarsimp
apply blast
apply clarsimp
apply clarsimp
subgoal for A ′ L R W x
apply (drule-tac C=A ′ in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast

133

done
done
done

lemma acquired-reads-mono-in:
assumes x-in: x ∈ acquired-reads pending-write xs A
assumes sub: A ⊆ B
shows x ∈ acquired-reads pending-write xs B

using acquired-reads-mono [OF sub, of pending-write xs] x-in
by blast

lemma acquired-reads-no-pending-write:
∧

A B. acquired-reads False xs A = ac-
quired-reads False xs B

by (induct xs) (auto split: memref.splits)

lemma acquired-reads-no-pending-write-in:
x ∈ acquired-reads False xs A =⇒ x ∈ acquired-reads False xs B

apply (subst acquired-reads-no-pending-write)
apply blast
done

lemma acquired-reads-pending-write-mono:∧
A. acquired-reads False xs A ⊆ acquired-reads True xs A

by (induct xs) (auto split: memref.splits intro: acquired-reads-mono-in)

lemma acquired-reads-pending-write-mono-in:
assumes x-in: x ∈ acquired-reads False xs A
shows x ∈ acquired-reads True xs A

using acquired-reads-pending-write-mono [of xs A] x-in
by blast

lemma acquired-reads-append:
∧

pending-write A. acquired-reads pending-write (xs@ys)
A =

acquired-reads pending-write xs A ∪
acquired-reads (pending-write ∨ (outstanding-refs is-volatile-Writesb xs 6= {})) ys
(acquired pending-write xs A)

proof (induct xs)
case Nil thus ?case by (auto dest: acquired-reads-no-pending-write-in)

next
case (Cons x xs)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case False
show ?thesis

using Cons.hyps
by (auto simp add: Writesb False)

next

134

case True
show ?thesis

using Cons.hyps
by (auto simp add: Writesb True)

qed
next

case (Readsb volatile a t v)
show ?thesis
proof (cases volatile)

case False
show ?thesis

using Cons.hyps
by (auto simp add: Readsb False)

next
case True
show ?thesis

using Cons.hyps
by (auto simp add: Readsb True)

qed
next

case Progsb
with Cons.hyps show ?thesis by auto

next
case (Ghostsb A ′ L R W)
have (acquired False xs (A ∪ A ′ −R)) = (acquired False xs A)

by (simp add: acquired-no-pending-write)
with Cons.hyps show ?thesis by (auto simp add: Ghostsb)

qed
qed

lemma in-acquired-reads-no-pending-write-outstanding-write:∧
A. a ∈ acquired-reads False xs A =⇒ outstanding-refs (is-volatile-Writesb) xs 6= {}
apply (induct xs)
apply simp
apply (auto split: memref.splits)
apply auto
done

lemma augment-read-only-mono: read-only S ⊆ read-only S ′ =⇒
read-only (S ⊕W R) ⊆ read-only (S ′ ⊕W R)
by (auto simp add: augment-shared-def read-only-def)

lemma restrict-read-only-mono: read-only S ⊆ read-only S ′ =⇒
read-only (S 	A L) ⊆ read-only (S ′ 	A L)

apply (clarsimp simp add: restrict-shared-def read-only-def split: option.splits
if-split-asm)

apply (rule conjI)
apply blast
apply fastforce
done

135

lemma share-read-only-mono:
∧
S S ′. read-only S ⊆ read-only S ′ =⇒

read-only (share sb S) ⊆ read-only (share sb S ′)
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case False
with Cons Writesb show ?thesis by auto

next
case True
note ‹read-only S ⊆ read-only S ′›
from augment-read-only-mono [OF this]
have read-only (S ⊕W R) ⊆ read-only (S ′ ⊕W R).
from restrict-read-only-mono [OF this, of A L]
have read-only (S ⊕W R 	A L) ⊆ read-only (S ′ ⊕W R 	A L).
from Cons.hyps [OF this]
show ?thesis

by (clarsimp simp add: Writesb True)
qed

next
case Readsb with Cons show ?thesis

by auto
next

case Progsb with Cons show ?thesis
by auto

next
case (Ghostsb A L R W)
note ‹read-only S ⊆ read-only S ′›
from augment-read-only-mono [OF this]
have read-only (S ⊕W R) ⊆ read-only (S ′ ⊕W R).
from restrict-read-only-mono [OF this, of A L]
have read-only (S ⊕W R 	A L) ⊆ read-only (S ′ ⊕W R 	A L).

from Cons.hyps [OF this]
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

lemma non-volatile-owned-or-read-only-append:∧
O S pending-write. non-volatile-owned-or-read-only pending-write S O (xs@ys)

= (non-volatile-owned-or-read-only pending-write S O xs ∧

136

non-volatile-owned-or-read-only (pending-write ∨ outstanding-refs
is-volatile-Writesb xs 6= {})

(share xs S) (acquired True xs O) ys)
apply (induct xs)
apply (auto split: memref.splits)
done

lemma non-volatile-owned-or-read-only-mono:∧
O O ′ S pending-write. O ⊆ O ′ =⇒ non-volatile-owned-or-read-only pending-write S O

xs
=⇒ non-volatile-owned-or-read-only pending-write S O ′ xs
apply (induct xs)
apply simp
subgoal for a xs O O ′ S pending-write
apply (case-tac a)
apply (clarsimp split: if-split-asm)

subgoal for volatile a1 D f v A L R W
apply (drule-tac C=A in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done

apply fastforce
apply fastforce
apply fastforce
apply clarsimp
subgoal for A L R W
apply (drule-tac C=A in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done
done
done

lemma non-volatile-owned-or-read-only-shared-mono:∧
S S ′ O pending-write. S ⊆s S ′ =⇒ non-volatile-owned-or-read-only pending-write S O

xs
=⇒ non-volatile-owned-or-read-only pending-write S ′ O xs
apply (induct xs)
apply simp
subgoal for a xs S S ′ O pending-write
apply (case-tac a)
apply (clarsimp split: if-split-asm)

subgoal for volatile a1 D f v A L R W
apply (frule-tac C=R and x=W in augment-mono-map)
apply (drule-tac A=S ⊕W R and C=L in restrict-mono-map)
apply (fastforce dest: read-only-mono)
done

apply (fastforce dest: read-only-mono shared-leD)
apply fastforce
subgoal for A L R W

137

apply (frule-tac C=R and x=W in augment-mono-map)
apply (drule-tac A=S ⊕W R and C=L in restrict-mono-map)
apply (fastforce dest: read-only-mono)
done
done
done

lemma non-volatile-owned-or-read-only-pending-write-antimono:∧
O S. non-volatile-owned-or-read-only True S O xs
=⇒ non-volatile-owned-or-read-only False S O xs
by (induct xs) (auto split: memref.splits)

primrec all-acquired :: ′a memref list ⇒ addr set
where

all-acquired [] = {}
| all-acquired (i#is) =

(case i of
Writesb volatile - - - A L R W ⇒ (if volatile then A ∪ all-acquired is else all-acquired

is)
| Ghostsb A L R W ⇒ A ∪ all-acquired is
| - ⇒ all-acquired is)

lemma all-acquired-append: all-acquired (xs@ys) = all-acquired xs ∪ all-acquired ys
apply (induct xs)
apply (auto split: memref.splits)
done

lemma acquired-reads-all-acquired:
∧
O pending-write.

acquired-reads pending-write sb O ⊆ O ∪ all-acquired sb
apply (induct sb)
apply clarsimp
apply (auto split: memref.splits)
done

lemma acquired-takeWhile-non-volatile-Writesb:∧
A. (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) A) ⊆

A ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)
apply (induct sb)
apply clarsimp
subgoal for a sb A
apply (case-tac a)
apply auto
done
done

lemma acquired-False-takeWhile-non-volatile-Writesb:
acquired False (takeWhile (Not ◦ is-volatile-Writesb) sb) A = {}
apply (induct sb)
apply simp

138

subgoal for a sb
by (case-tac a) auto

done

lemma outstanding-refs-takeWhile-opposite: outstanding-refs P (takeWhile (Not ◦ P) xs)
= {}
apply (induct xs)
apply auto
done

lemma no-outstanding-volatile-Writesb-acquired:
outstanding-refs is-volatile-Writesb sb = {} =⇒ acquired False sb A = {}
apply (induct sb)
apply simp

subgoal for a sb
by (case-tac a) auto

done

lemma acquired-all-acquired:
∧

pending-write A. acquired pending-write xs A ⊆ A ∪
all-acquired xs

apply (induct xs)
apply (auto split: memref.splits)
done

lemma acquired-all-acquired-in: x ∈ acquired pending-write xs A =⇒ x ∈ A ∪ all-acquired
xs

using acquired-all-acquired
by blast

primrec sharing-consistent:: shared ⇒ owns ⇒ ′a memref list ⇒ bool
where
sharing-consistent S O [] = True
| sharing-consistent S O (r#rs) =
(case r of

Writesb volatile - - - A L R W ⇒
(if volatile then A ⊆ dom S ∪ O ∧ L ⊆ A ∧ A ∩ R = {} ∧ R ⊆ O ∧

sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) rs
else sharing-consistent S O rs)

| Ghostsb A L R W ⇒ A ⊆ dom S ∪ O ∧ L ⊆ A ∧ A ∩ R = {} ∧ R ⊆ O ∧
sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) rs

| - ⇒ sharing-consistent S O rs)

lemma sharing-consistent-all-acquired:∧
S O. sharing-consistent S O sb =⇒ all-acquired sb ⊆ dom S ∪ O

proof (induct sb)
case Nil thus ?case by simp

next

139

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case False
with Cons Writesb show ?thesis by auto

next
case True
from Cons.hyps [where S=(S ⊕W R 	A L) and O=(O ∪ A − R)] Cons.prems
show ?thesis

by (auto simp add: Writesb True)
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
with Cons.hyps [where S=(S ⊕W R 	A L) and O=(O ∪ A − R)] Cons.prems show

?thesis by auto
qed

qed

lemma sharing-consistent-append:∧
S O. sharing-consistent S O (xs@ys) =
(sharing-consistent S O xs ∧
sharing-consistent (share xs S) (acquired True xs O) ys)

apply (induct xs)
apply (auto split: memref.splits)
done

primrec read-only-reads :: owns ⇒ ′a memref list ⇒ addr set
where
read-only-reads O [] = {}
| read-only-reads O (x#xs) =
(case x of

Readsb volatile a t v ⇒ (if ¬ volatile ∧ a /∈ O
then insert a (read-only-reads O xs)
else read-only-reads O xs)

| Writesb volatile - - - A L R W ⇒
(if volatile then read-only-reads (O ∪ A − R) xs
else read-only-reads O xs)

| Ghostsb A L R W ⇒ read-only-reads (O ∪ A − R) xs
| - ⇒ read-only-reads O xs)

lemma read-only-reads-append:∧
O. read-only-reads O (xs@ys) =
read-only-reads O xs ∪ read-only-reads (acquired True xs O) ys

140

apply (induct xs)
apply simp

subgoal for a xs O
by (case-tac a) auto

done

lemma read-only-reads-antimono:∧
O O ′.

O ⊆ O ′ =⇒ read-only-reads O ′ sb ⊆ read-only-reads O sb
apply (induct sb)
apply simp
subgoal for a sb O O ′

apply (case-tac a)
apply (clarsimp split: if-split-asm)

subgoal for volatile a1 D f v A L R W
apply (drule-tac C=A in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done

apply auto
subgoal for A L R W x
apply (drule-tac C=A in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done
done
done

primrec non-volatile-writes-unshared:: shared ⇒ ′a memref list ⇒ bool
where
non-volatile-writes-unshared S [] = True
| non-volatile-writes-unshared S (x#xs) =
(case x of

Writesb volatile a sop v A L R W ⇒ (if volatile then non-volatile-writes-unshared (S
⊕W R 	A L) xs

else a /∈ dom S ∧ non-volatile-writes-unshared S xs)
| Ghostsb A L R W ⇒ non-volatile-writes-unshared (S ⊕W R 	A L) xs
| - ⇒ non-volatile-writes-unshared S xs)

lemma non-volatile-writes-unshared-append:∧
S. non-volatile-writes-unshared S (xs@ys)

= (non-volatile-writes-unshared S xs ∧ non-volatile-writes-unshared (share xs S)
ys)
apply (induct xs)
apply (auto split: memref.splits)
done

lemma non-volatile-writes-unshared-antimono:∧
S S ′. dom S ⊆ dom S ′ =⇒ non-volatile-writes-unshared S ′ xs

141

=⇒ non-volatile-writes-unshared S xs
apply (induct xs)
apply simp
subgoal for a xs S S ′

apply (case-tac a)
apply (clarsimp split: if-split-asm)

subgoal for volatile a1 D f v A L R W
apply (drule-tac C=R in augment-mono-aux)
apply (drule-tac C=L in restrict-mono-aux)
apply blast
done

apply fastforce
apply fastforce
apply fastforce
apply (clarsimp split: if-split-asm)
subgoal for A L R W
apply (drule-tac C=R in augment-mono-aux)
apply (drule-tac C=L in restrict-mono-aux)
apply blast
done
done
done

primrec no-write-to-read-only-memory:: shared ⇒ ′a memref list ⇒ bool
where
no-write-to-read-only-memory S [] = True
| no-write-to-read-only-memory S (x#xs) =
(case x of

Writesb volatile a sop v A L R W ⇒ a /∈ read-only S ∧
(if volatile then no-write-to-read-only-memory (S ⊕W R 	A

L) xs
else no-write-to-read-only-memory S xs)

| Ghostsb A L R W ⇒ no-write-to-read-only-memory (S ⊕W R 	A L) xs
| - ⇒ no-write-to-read-only-memory S xs)

lemma no-write-to-read-only-memory-append:∧
S. no-write-to-read-only-memory S (xs@ys)

= (no-write-to-read-only-memory S xs ∧ no-write-to-read-only-memory (share xs
S) ys)
apply (induct xs)
apply simp
subgoal for a xs S

by (case-tac a) auto
done

lemma no-write-to-read-only-memory-antimono:∧
S S ′. S ⊆s S ′ =⇒ no-write-to-read-only-memory S ′ xs
=⇒ no-write-to-read-only-memory S xs
apply (induct xs)
apply simp

142

subgoal for a xs S S ′

apply (case-tac a)
apply (clarsimp split: if-split-asm)

subgoal for volatile a1 D f v A L R W
apply (frule-tac C=R and x=W in augment-mono-map)
apply (drule-tac A=S ⊕W R and C=L and x=A in restrict-mono-map)
apply (fastforce dest: read-only-mono shared-leD)
done

apply (fastforce dest: read-only-mono shared-leD)
apply fastforce
apply fastforce
apply (clarsimp)
subgoal for A L R W
apply (frule-tac C=R and x=W in augment-mono-map)
apply (drule-tac A=S ⊕W R and C=L and x=A in restrict-mono-map)
apply (fastforce dest: read-only-mono shared-leD)
done
done
done

locale outstanding-non-volatile-refs-owned-or-read-only =
fixes S::shared
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes outstanding-non-volatile-refs-owned-or-read-only:∧

i is O R D j sb p.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
non-volatile-owned-or-read-only False S O sb

locale outstanding-volatile-writes-unowned-by-others =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes outstanding-volatile-writes-unowned-by-others:∧

i pi isi Oi Ri Di ji sbi j pj isj Oj Rj Dj jj sbj.
[[i < length ts; j < length ts; i6=j;
ts!i = (pi,isi,ji,sbi,Di,Oi,Ri); ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
]]
=⇒
(Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sbi = {}

locale read-only-reads-unowned =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes read-only-reads-unowned:∧

i pi isi Oi Ri Di ji sbi j pj isj Oj Rj Dj jj sbj.
[[i < length ts; j < length ts; i6=j;
ts!i = (pi,isi,ji,sbi,Di,Oi,Ri); ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
]]
=⇒
(Oj ∪ all-acquired sbj) ∩
read-only-reads (acquired True

143

(takeWhile (Not ◦ is-volatile-Writesb) sbi) Oi)
(dropWhile (Not ◦ is-volatile-Writesb) sbi) = {}

locale ownership-distinct =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes ownership-distinct:∧

i j pi isi Oi Ri Di ji sbi pj isj Oj Rj Dj jj sbj.
[[i < length ts; j < length ts; i 6= j;

ts!i = (pi,isi,ji,sbi,Di,Oi,Ri); ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
]] =⇒ (Oi ∪ all-acquired sbi) ∩ (Oj ∪ all-acquired sbj) = {}

locale valid-ownership =
outstanding-non-volatile-refs-owned-or-read-only +
outstanding-volatile-writes-unowned-by-others +
read-only-reads-unowned +
ownership-distinct

locale outstanding-non-volatile-writes-unshared =
fixes S::shared and ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes outstanding-non-volatile-writes-unshared:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
non-volatile-writes-unshared S sb

locale sharing-consis =
fixes S::shared and ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes sharing-consis:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
sharing-consistent S O sb

locale no-outstanding-write-to-read-only-memory =
fixes S::shared and ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes no-outstanding-write-to-read-only-memory:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
no-write-to-read-only-memory S sb

locale valid-sharing =
outstanding-non-volatile-writes-unshared +
sharing-consis +

144

read-only-unowned +
unowned-shared +
no-outstanding-write-to-read-only-memory

locale valid-ownership-and-sharing = valid-ownership +
outstanding-non-volatile-writes-unshared +
sharing-consis +
no-outstanding-write-to-read-only-memory

lemma (in read-only-reads-unowned)
read-only-reads-unowned-nth-update:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);

read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb ′) O ′)
(dropWhile (Not ◦ is-volatile-Writesb) sb ′) ⊆ read-only-reads (acquired True

(takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(dropWhile (Not ◦ is-volatile-Writesb) sb);

O ′ ∪ all-acquired sb ′ ⊆ O ∪ all-acquired sb]] =⇒
read-only-reads-unowned (ts[i := (p ′,is ′,j ′,sb ′,D ′,O ′,R ′)])

apply (unfold-locales)
apply (clarsimp simp add: nth-list-update split: if-split-asm)
apply (fastforce dest: read-only-reads-unowned)+
done

lemma outstanding-non-volatile-refs-owned-or-read-only-tl:
outstanding-non-volatile-refs-owned-or-read-only S (t#ts) =⇒ outstand-

ing-non-volatile-refs-owned-or-read-only S ts
by (force simp add: outstanding-non-volatile-refs-owned-or-read-only-def)

lemma outstanding-volatile-writes-unowned-by-others-tl:
outstanding-volatile-writes-unowned-by-others (t#ts) =⇒ outstand-

ing-volatile-writes-unowned-by-others ts
apply (clarsimp simp add: outstanding-volatile-writes-unowned-by-others-def)
apply fastforce
done

lemma read-only-reads-unowned-tl:
read-only-reads-unowned (t # ts) =⇒

read-only-reads-unowned (ts)
apply (clarsimp simp add: read-only-reads-unowned-def)
apply fastforce
done

lemma ownership-distinct-tl:
assumes dist: ownership-distinct (t#ts)

145

shows ownership-distinct ts
proof −

from dist
interpret ownership-distinct t#ts .

show ?thesis
proof (rule ownership-distinct.intro)

fix i j p is O R D xs sb p ′ is ′ O ′ R ′ D ′ xs ′ sb ′

assume i-bound: i < length ts
and j-bound: j < length ts
and neq: i 6= j
and ith: ts ! i = (p,is,xs,sb,D,O,R)
and jth: ts ! j = (p ′,is ′, xs ′, sb ′,D ′, O ′,R ′)

from i-bound j-bound neq ith jth
show (O ∪ all-acquired sb) ∩ (O ′ ∪ all-acquired sb ′) = {}

by − (rule ownership-distinct [of Suc i Suc j],auto)
qed

qed

lemma valid-ownership-tl: valid-ownership S (t#ts) =⇒ valid-ownership S ts
by (auto simp add: valid-ownership-def

intro: outstanding-volatile-writes-unowned-by-others-tl
outstanding-non-volatile-refs-owned-or-read-only-tl ownership-distinct-tl
read-only-reads-unowned-tl)

lemma sharing-consistent-takeWhile:
assumes consis: sharing-consistent S O sb
shows sharing-consistent S O (takeWhile P sb)

proof −
from consis have sharing-consistent S O (takeWhile P sb @ dropWhile P sb)

by simp
with sharing-consistent-append [of - - takeWhile P sb dropWhile P sb]
show ?thesis

by simp
qed

lemma sharing-consis-tl: sharing-consis S (t#ts) =⇒ sharing-consis S ts
by (auto simp add: sharing-consis-def)

lemma sharing-consis-Cons:
[[sharing-consis S ts; sharing-consistent S O sb]]
=⇒ sharing-consis S ((p,is,j,sb,D,O,R)#ts)

apply (clarsimp simp add: sharing-consis-def)
subgoal for i pa isa O ′ R ′ D ′ j ′ sba

by (case-tac i) auto
done

lemma outstanding-non-volatile-writes-unshared-tl:
outstanding-non-volatile-writes-unshared S (t#ts) =⇒

146

outstanding-non-volatile-writes-unshared S ts
by (auto simp add: outstanding-non-volatile-writes-unshared-def)

lemma no-outstanding-write-to-read-only-memory-tl:
no-outstanding-write-to-read-only-memory S (t#ts) =⇒
no-outstanding-write-to-read-only-memory S ts
by (auto simp add: no-outstanding-write-to-read-only-memory-def)

lemma valid-ownership-and-sharing-tl:
valid-ownership-and-sharing S (t#ts) =⇒ valid-ownership-and-sharing S ts
apply (clarsimp simp add: valid-ownership-and-sharing-def)
apply (auto intro: valid-ownership-tl

outstanding-non-volatile-writes-unshared-tl
no-outstanding-write-to-read-only-memory-tl
sharing-consis-tl)

done

lemma non-volatile-owned-or-read-only-outstanding-non-volatile-writes:∧
O S pending-write. [[non-volatile-owned-or-read-only pending-write S O sb]]

=⇒
outstanding-refs is-non-volatile-Writesb sb ⊆ O ∪ all-acquired sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
from Cons.hyps [of True (S ⊕W R 	A L) (O ∪ A − R)] Cons.prems
show ?thesis

by (auto simp add: Writesb True)
next

case False with Cons show ?thesis
by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis
by auto

next
case Progsb with Cons show ?thesis

by auto
next

case (Ghostsb A L R W)
from Cons.hyps [of pending-write (S ⊕W R 	A L) (O ∪ A − R)] Cons.prems
show ?thesis

by (auto simp add: Ghostsb)

147

qed
qed

lemma (in outstanding-non-volatile-refs-owned-or-read-only) outstand-
ing-non-volatile-writes-owned:

assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
shows outstanding-refs is-non-volatile-Writesb sb ⊆ O ∪ all-acquired sb

using non-volatile-owned-or-read-only-outstanding-non-volatile-writes [OF outstand-
ing-non-volatile-refs-owned-or-read-only [OF i-bound ts-i]]
by blast

lemma non-volatile-reads-acquired-or-read-only:∧
O S. [[non-volatile-owned-or-read-only True S O sb; sharing-consistent S O sb]]

=⇒
outstanding-refs is-non-volatile-Readsb sb ⊆ O ∪ all-acquired sb ∪ read-only S

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain non-vol: non-volatile-owned-or-read-only True (S ⊕W R
	A L) (O ∪ A − R) sb and
A-shared-onws: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

from Cons.hyps [OF non-vol consis ′]
have hyp: outstanding-refs is-non-volatile-Readsb sb

⊆ O ∪ A − R ∪ all-acquired sb ∪ read-only (S ⊕W R 	A L).
with R-owns A-R L-A
show ?thesis

apply (clarsimp simp add: Writesb True)
apply (drule (1) rev-subsetD)
apply (auto simp add: in-read-only-convs split: if-split-asm)
done

next

148

case False with Cons show ?thesis
by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis
by auto

next
case Progsb with Cons show ?thesis

by auto
next

case (Ghostsb A L R W)
from Cons.prems obtain non-vol: non-volatile-owned-or-read-only True (S ⊕W R 	A

L) (O ∪ A − R) sb and
A-shared-onws: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from Cons.hyps [OF non-vol consis ′]
have hyp: outstanding-refs is-non-volatile-Readsb sb
⊆ O ∪ A − R ∪ all-acquired sb ∪ read-only (S ⊕W R 	A L).

with R-owns A-R L-A
show ?thesis

apply (clarsimp simp add: Ghostsb)
apply (drule (1) rev-subsetD)
apply (auto simp add: in-read-only-convs split: if-split-asm)
done

qed
qed

lemma non-volatile-reads-acquired-or-read-only-reads:∧
O S pending-write. [[non-volatile-owned-or-read-only pending-write S O sb]]

=⇒
outstanding-refs is-non-volatile-Readsb sb ⊆ O ∪ all-acquired sb ∪ read-only-reads O sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain non-vol: non-volatile-owned-or-read-only True (S ⊕W R
	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

149

from Cons.hyps [OF non-vol]
have hyp: outstanding-refs is-non-volatile-Readsb sb

⊆ O ∪ A − R ∪ all-acquired sb ∪ read-only-reads (O ∪ A − R) sb.
then
show ?thesis

by (auto simp add: Writesb True)
next

case False with Cons show ?thesis
by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis
by auto

next
case Progsb with Cons show ?thesis

by auto
next

case (Ghostsb A L R W)
from Cons.prems obtain non-vol: non-volatile-owned-or-read-only pending-write (S

⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from Cons.hyps [OF non-vol]
have hyp: outstanding-refs is-non-volatile-Readsb sb

⊆ O ∪ A − R ∪ all-acquired sb ∪ read-only-reads (O ∪ A − R) sb.
then
show ?thesis

by (auto simp add: Ghostsb)
qed

qed

lemma non-volatile-owned-or-read-only-outstanding-refs:∧
O S pending-write. [[non-volatile-owned-or-read-only pending-write S O sb]]

=⇒
outstanding-refs (Not ◦ is-volatile) sb ⊆ O ∪ all-acquired sb ∪ read-only-reads O sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
from Cons.hyps [of True (S ⊕W R 	A L) (O ∪ A − R)] Cons.prems
show ?thesis

150

by (auto simp add: Writesb True)
next

case False with Cons show ?thesis
by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis
by auto

next
case Progsb with Cons show ?thesis

by auto
next

case (Ghostsb A L R W)
from Cons.hyps [of pending-write (S ⊕W R 	A L) (O ∪ A − R)] Cons.prems
show ?thesis

by (auto simp add: Ghostsb)
qed

qed

lemma no-unacquired-write-to-read-only:∧
S O. [[no-write-to-read-only-memory S sb;sharing-consistent S O sb;

a ∈ read-only S; a /∈ (O ∪ all-acquired sb)]]
=⇒ a /∈ outstanding-refs is-Writesb sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain no-wrt: no-write-to-read-only-memory (S ⊕W R 	A L) sb
and
A-shared-onws: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-ro: a ∈ read-only S and
a-A: a /∈ A and a-all-acq: a /∈ all-acquired sb and a-owns: a /∈ O and
a ′-notin: a ′ /∈ read-only S
by (simp add: Writesb True)

from a ′-notin a-ro have neq-a-a ′: a6=a ′

by blast

from a-A a-all-acq a-owns

151

have a-notin ′: a /∈ O ∪ A − R ∪ all-acquired sb
by auto

from a-ro L-A a-A R-owns a-owns
have a ∈ read-only (S ⊕W R 	A L)

by (auto simp add: in-read-only-convs split: if-split-asm)

from Cons.hyps [OF no-wrt consis ′ this a-notin ′]
have a /∈ outstanding-refs is-Writesb sb.
with neq-a-a ′

show ?thesis
by (clarsimp simp add: Writesb True)

next
case False with Cons
show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb with Cons
show ?thesis

by (auto)
next

case Progsb with Cons
show ?thesis

by (auto)
next

case (Ghostsb A L R W)
from Cons.prems obtain no-wrt: no-write-to-read-only-memory (S ⊕W R 	A L) sb

and
A-shared-onws: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-ro: a ∈ read-only S and
a-A: a /∈ A and a-all-acq: a /∈ all-acquired sb and a-owns: a /∈ O
by (simp add: Ghostsb)

from a-A a-all-acq a-owns
have a-notin ′: a /∈ O ∪ A − R ∪ all-acquired sb

by auto
from a-ro L-A a-A R-owns a-owns
have a ∈ read-only (S ⊕W R 	A L)

by (auto simp add: in-read-only-convs split: if-split-asm)

from Cons.hyps [OF no-wrt consis ′ this a-notin ′]
have a /∈ outstanding-refs is-Writesb sb.
then
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

152

lemma read-only-reads-read-only:∧
S O. [[non-volatile-owned-or-read-only True S O sb;

sharing-consistent S O sb]]
=⇒
read-only-reads O sb ⊆ O ∪ all-acquired sb ∪ read-only S

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain non-vol: non-volatile-owned-or-read-only True (S ⊕W R
	A L) (O ∪ A − R) sb and
A-shared-onws: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

from Cons.hyps [OF non-vol consis ′]
have hyp: read-only-reads (O ∪ A − R) sb

⊆ O ∪ A − R ∪ all-acquired sb ∪ read-only (S ⊕W R 	A L).

{
fix a ′

assume a ′-in: a ′ ∈ read-only-reads (O ∪ A − R) sb
assume a ′-unowned: a ′ /∈ O
assume a ′-unacq: a ′ /∈ all-acquired sb
assume a ′-A: a ′ /∈ A
have a ′ ∈ read-only S
proof −

from a ′-in hyp a ′-unowned a ′-unacq a ′-A
have a ′ ∈ read-only (S ⊕W R 	A L)

by auto

with L-A R-owns a ′-unowned
show ?thesis

by (auto simp add: in-read-only-convs split:if-split-asm)
qed

}

then

show ?thesis
apply (clarsimp simp add: Writesb True simp del: o-apply)

153

apply force
done

next
case False with Cons show ?thesis

by (auto simp add: Writesb)
qed

next
case Readsb with Cons show ?thesis

by auto
next

case Progsb with Cons show ?thesis
by auto

next
case (Ghostsb A L R W)
from Cons.prems obtain non-vol: non-volatile-owned-or-read-only True (S ⊕W R 	A

L) (O ∪ A − R) sb and
A-shared-onws: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from Cons.hyps [OF non-vol consis ′]
have hyp: read-only-reads (O ∪ A − R) sb

⊆ O ∪ A − R ∪ all-acquired sb ∪ read-only (S ⊕W R 	A L).

{
fix a ′

assume a ′-in: a ′ ∈ read-only-reads (O ∪ A − R) sb
assume a ′-unowned: a ′ /∈ O
assume a ′-unacq: a ′ /∈ all-acquired sb
assume a ′-A: a ′ /∈ A
have a ′ ∈ read-only S
proof −

from a ′-in hyp a ′-unowned a ′-unacq a ′-A
have a ′ ∈ read-only (S ⊕W R 	A L)

by auto

with L-A R-owns a ′-unowned
show ?thesis

by (auto simp add: in-read-only-convs split:if-split-asm)
qed

}

then

show ?thesis
apply (clarsimp simp add: Ghostsb simp del: o-apply)
apply force
done

154

qed
qed

lemma no-unacquired-write-to-read-only-reads:∧
S O . [[no-write-to-read-only-memory S sb;

non-volatile-owned-or-read-only True S O sb; sharing-consistent S O sb;
a ∈ read-only-reads O sb; a /∈ (O ∪ all-acquired sb)]]

=⇒ a /∈ outstanding-refs is-Writesb sb
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain no-wrt: no-write-to-read-only-memory (S ⊕W R 	A L) sb
and
non-vol: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
A-shared-onws: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-ro: a ∈ read-only-reads (O ∪ A − R) sb and
a-A: a /∈ A and a-all-acq: a /∈ all-acquired sb and a-owns: a /∈ O and
a ′-notin: a ′ /∈ read-only S
by (simp add: Writesb True)

from read-only-reads-read-only [OF non-vol consis ′] a-ro a-owns a-all-acq a-A
have a ∈ read-only (S ⊕W R 	A L)

by auto
with a ′-notin R-owns a-owns have neq-a-a ′: a 6=a ′

by (auto simp add: in-read-only-convs split: if-split-asm)

from a-A a-all-acq a-owns
have a-notin ′: a /∈ O ∪ A − R ∪ all-acquired sb

by auto

from Cons.hyps [OF no-wrt non-vol consis ′ a-ro a-notin ′]
have a /∈ outstanding-refs is-Writesb sb.
then
show ?thesis

using neq-a-a ′

by (auto simp add: Writesb True)
next

case False with Cons
show ?thesis

155

by (auto simp add: Writesb False)
qed

next
case (Readsb volatile a ′ t v)
show ?thesis
proof (cases volatile)

case True
with Cons show ?thesis

by (auto simp add: Readsb)
next

case False
note non-volatile = this
from Cons.prems obtain no-wrt ′: no-write-to-read-only-memory S sb and

consis ′:sharing-consistent S O sb and
a-in: a ∈ (if a ′ /∈ O then insert a ′ (read-only-reads O sb)

else read-only-reads O sb) and
a ′-owns-shared: a ′ ∈ O ∨ a ′ ∈ read-only S and
non-vol ′: non-volatile-owned-or-read-only True S O sb and

a-owns: a /∈ O ∪ all-acquired sb
by (clarsimp simp add: Readsb False)

show ?thesis
proof (cases a ′ ∈ O)

case True
with a-in have a ∈ read-only-reads O sb

by auto
from Cons.hyps [OF no-wrt ′ non-vol ′ consis ′ this a-owns]
show ?thesis

by (clarsimp simp add: Readsb)
next

case False
note a ′-unowned = this
with a-in have a-in ′: a ∈ insert a ′ (read-only-reads O sb) by auto
from a ′-owns-shared False have a ′-read-only: a ′ ∈ read-only S by auto
show ?thesis
proof (cases a=a ′)

case False
with a-in ′ have a ∈ (read-only-reads O sb) by auto
from Cons.hyps [OF no-wrt ′ non-vol ′ consis ′ this a-owns]
show ?thesis

by (simp add: Readsb)
next

case True
from no-unacquired-write-to-read-only [OF no-wrt ′ consis ′ a ′-read-only] a-owns True

have a ′ /∈ outstanding-refs is-Writesb sb
by auto

then show ?thesis
by (simp add: Readsb True)

qed

156

qed
qed

next
case Progsb with Cons
show ?thesis

by (auto)
next

case (Ghostsb A L R W)
from Cons.prems obtain no-wrt: no-write-to-read-only-memory (S ⊕W R 	A L) sb

and
non-vol: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
A-shared-onws: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-ro: a ∈ read-only-reads (O ∪ A − R) sb and
a-A: a /∈ A and a-all-acq: a /∈ all-acquired sb and a-owns: a /∈ O
by (simp add: Ghostsb)

from read-only-reads-read-only [OF non-vol consis ′] a-ro a-owns a-all-acq a-A
have a ∈ read-only (S ⊕W R 	A L)

by auto

from a-A a-all-acq a-owns
have a-notin ′: a /∈ O ∪ A − R ∪ all-acquired sb

by auto

from Cons.hyps [OF no-wrt non-vol consis ′ a-ro a-notin ′]
have a /∈ outstanding-refs is-Writesb sb.
then
show ?thesis

by (auto simp add: Ghostsb)
qed

qed

lemma no-unacquired-write-to-read-only ′′:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes consis: sharing-consistent S O sb
shows read-only S ∩ outstanding-refs is-Writesb sb ⊆ O ∪ all-acquired sb

using no-unacquired-write-to-read-only [OF no-wrt consis]
by auto

lemma no-unacquired-volatile-write-to-read-only:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes consis: sharing-consistent S O sb
shows read-only S ∩ outstanding-refs is-volatile-Writesb sb ⊆ O ∪ all-acquired sb

proof −
have outstanding-refs is-volatile-Writesb sb ⊆ outstanding-refs is-Writesb sb

apply (rule outstanding-refs-mono-pred)

157

apply (auto simp add: is-volatile-Writesb-def split: memref.splits)
done

with no-unacquired-write-to-read-only ′′ [OF no-wrt consis]
show ?thesis by blast

qed

lemma no-unacquired-non-volatile-write-to-read-only-reads:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes consis: sharing-consistent S O sb
shows read-only S ∩ outstanding-refs is-non-volatile-Writesb sb ⊆ O ∪ all-acquired sb

proof −
from outstanding-refs-subsets
have outstanding-refs is-non-volatile-Writesb sb ⊆ outstanding-refs is-Writesb sb by −

assumption
with no-unacquired-write-to-read-only ′′ [OF no-wrt consis]
show ?thesis by blast

qed

lemma no-unacquired-write-to-read-only-reads ′:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes non-vol: non-volatile-owned-or-read-only True S O sb
assumes consis: sharing-consistent S O sb
shows read-only-reads O sb ∩ outstanding-refs is-Writesb sb ⊆ O ∪ all-acquired sb

using no-unacquired-write-to-read-only-reads [OF no-wrt non-vol consis]
by auto

lemma no-unacquired-volatile-write-to-read-only-reads:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes non-vol: non-volatile-owned-or-read-only True S O sb
assumes consis: sharing-consistent S O sb
shows read-only-reads O sb ∩ outstanding-refs is-volatile-Writesb sb ⊆ O ∪ all-acquired

sb
proof −

have outstanding-refs is-volatile-Writesb sb ⊆ outstanding-refs is-Writesb sb
apply (rule outstanding-refs-mono-pred)
apply (auto simp add: is-volatile-Writesb-def split: memref.splits)
done

with no-unacquired-write-to-read-only-reads [OF no-wrt non-vol consis]
show ?thesis by blast

qed

lemma no-unacquired-non-volatile-write-to-read-only:
assumes no-wrt: no-write-to-read-only-memory S sb
assumes non-vol: non-volatile-owned-or-read-only True S O sb
assumes consis: sharing-consistent S O sb
shows read-only-reads O sb ∩ outstanding-refs is-non-volatile-Writesb sb ⊆ O ∪

all-acquired sb
proof −

from outstanding-refs-subsets

158

have outstanding-refs is-non-volatile-Writesb sb ⊆ outstanding-refs is-Writesb sb by −
assumption

with no-unacquired-write-to-read-only-reads [OF no-wrt non-vol consis]
show ?thesis by blast

qed

lemma set-dropWhileD: x ∈ set (dropWhile P xs) =⇒ x ∈ set xs
by (induct xs) (auto split: if-split-asm)

lemma outstanding-refs-takeWhileD:
x ∈ outstanding-refs P (takeWhile P ′ sb) =⇒ x ∈ outstanding-refs P sb
using outstanding-refs-takeWhile
by blast

lemma outstanding-refs-dropWhileD:
x ∈ outstanding-refs P (dropWhile P ′ sb) =⇒ x ∈ outstanding-refs P sb
by (auto dest: set-dropWhileD simp add: outstanding-refs-conv)

lemma dropWhile-ConsD: dropWhile P xs = y#ys =⇒ ¬ P y
by (simp add: dropWhile-eq-Cons-conv)

lemma non-volatile-owned-or-read-only-drop:
non-volatile-owned-or-read-only False S O sb
=⇒ non-volatile-owned-or-read-only True

(share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)
(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(dropWhile (Not ◦ is-volatile-Writesb) sb)

using non-volatile-owned-or-read-only-append [of False S O (takeWhile (Not ◦
is-volatile-Writesb) sb)
(dropWhile (Not ◦ is-volatile-Writesb) sb)]

apply (cases outstanding-refs is-volatile-Writesb sb = {})
apply (clarsimp simp add: outstanding-vol-write-take-drop-appends

takeWhile-not-vol-write-outstanding-refs dropWhile-not-vol-write-empty)
apply(clarsimp simp add: outstanding-vol-write-take-drop-appends

takeWhile-not-vol-write-outstanding-refs dropWhile-not-vol-write-empty)
apply (case-tac (dropWhile (Not ◦ is-volatile-Writesb) sb))
apply (fastforce simp add: outstanding-refs-conv)
apply (frule dropWhile-ConsD)
apply (clarsimp split: memref.splits)
done

lemma read-only-share:
∧
S O.

sharing-consistent S O sb =⇒
read-only (share sb S) ⊆ read-only S ∪ O ∪ all-acquired sb

159

proof (induct sb)
case Nil thus ?case by auto

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
from Cons.prems obtain

A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:
R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

from Cons.hyps [OF consis ′]
have read-only (share sb (S ⊕W R 	A L))

⊆ read-only (S ⊕W R 	A L) ∪ (O ∪ A − R) ∪ all-acquired sb
by auto

also from A-shared-owns L-A R-owns A-R
have read-only (S ⊕W R 	A L) ∪ (O ∪ A − R) ∪ all-acquired sb ⊆

read-only S ∪ O ∪ (A ∪ all-acquired sb)
by (auto simp add: read-only-def augment-shared-def restrict-shared-def split:

option.splits)
finally
show ?thesis

by (simp add: Writesb True)
next

case False with Cons show ?thesis
by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis
by auto

next
case Progsb with Cons show ?thesis

by auto
next

case (Ghostsb A L R W)
from Cons.prems obtain
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from Cons.hyps [OF consis ′]
have read-only (share sb (S ⊕W R 	A L))

⊆ read-only (S ⊕W R 	A L) ∪ (O ∪ A − R) ∪ all-acquired sb
by auto

also from A-shared-owns L-A R-owns A-R
have read-only (S ⊕W R 	A L) ∪ (O ∪ A − R) ∪ all-acquired sb ⊆

160

read-only S ∪ O ∪ (A ∪ all-acquired sb)
by (auto simp add: read-only-def augment-shared-def restrict-shared-def split:

option.splits)
finally
show ?thesis

by (simp add: Ghostsb)
qed

qed

lemma (in valid-ownership-and-sharing) outstanding-non-write-non-vol-reads-drop-disj:
assumes i-bound: i < length ts
assumes j-bound: j < length ts
assumes neq-i-j: i 6= j
assumes ith: ts!i = (pi,isi,ji,sbi,Di,Oi,Ri)
assumes jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
shows outstanding-refs is-Writesb (dropWhile (Not ◦ is-volatile-Writesb) sbi) ∩

outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) sbj)
= {}

proof −

let ?take-j = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-j = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

let ?take-i = (takeWhile (Not ◦ is-volatile-Writesb) sbi)
let ?drop-i = (dropWhile (Not ◦ is-volatile-Writesb) sbi)

note nvo-i = outstanding-non-volatile-refs-owned-or-read-only [OF i-bound ith]
note nvo-j = outstanding-non-volatile-refs-owned-or-read-only [OF j-bound jth]
note nro-i = no-outstanding-write-to-read-only-memory [OF i-bound ith]
with no-write-to-read-only-memory-append [of S ?take-i ?drop-i]
have nro-drop-i: no-write-to-read-only-memory (share ?take-i S) ?drop-i

by simp
note nro-j = no-outstanding-write-to-read-only-memory [OF j-bound jth]
with no-write-to-read-only-memory-append [of S ?take-j ?drop-j]
have nro-drop-j: no-write-to-read-only-memory (share ?take-j S) ?drop-j

by simp
from outstanding-volatile-writes-unowned-by-others [OF i-bound j-bound neq-i-j ith jth]
have dist: (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sbi = {}.
note own-dist = ownership-distinct [OF i-bound j-bound neq-i-j ith jth]

from sharing-consis [OF j-bound jth]
have consis-j: sharing-consistent S Oj sbj.
with sharing-consistent-append [of S Oj ?take-j ?drop-j]
obtain

161

consis-take-j: sharing-consistent S Oj ?take-j and
consis-drop-j: sharing-consistent (share ?take-j S) (acquired True ?take-j Oj) ?drop-j
by simp

from sharing-consis [OF i-bound ith]
have consis-i: sharing-consistent S Oi sbi.
with sharing-consistent-append [of S Oi ?take-i ?drop-i]
have consis-drop-i: sharing-consistent (share ?take-i S) (acquired True ?take-i Oi) ?drop-i

by simp

{
fix x
assume x-in-drop-i: x ∈ outstanding-refs is-Writesb ?drop-i
assume x-in-drop-j: x ∈ outstanding-refs is-non-volatile-Readsb ?drop-j
have False
proof −

from x-in-drop-i have x-in-i: x ∈ outstanding-refs is-Writesb sbi

using outstanding-refs-append [of is-Writesb ?take-i ?drop-i] by auto

from x-in-drop-j have x-in-j: x ∈ outstanding-refs is-non-volatile-Readsb sbj

using outstanding-refs-append [of is-non-volatile-Readsb ?take-j ?drop-j]
by auto

from non-volatile-owned-or-read-only-drop [OF nvo-j]
have nvo-drop-j: non-volatile-owned-or-read-only True (share ?take-j S) (acquired

True ?take-j Oj) ?drop-j.

from non-volatile-reads-acquired-or-read-only-reads [OF nvo-drop-j] x-in-drop-j
acquired-takeWhile-non-volatile-Writesb [of sbj Oj]
have x-j: x ∈ Oj ∪ all-acquired sbj ∪ read-only-reads (acquired True ?take-j Oj)

?drop-j
using all-acquired-append [of ?take-j ?drop-j]
by (auto)

{
assume x-in-vol-drop-i: x ∈ outstanding-refs is-volatile-Writesb ?drop-i
hence x-in-vol-i: x ∈ outstanding-refs is-volatile-Writesb sbi

using outstanding-refs-append [of is-volatile-Writesb ?take-i ?drop-i]
by auto

from outstanding-volatile-writes-unowned-by-others [OF i-bound j-bound neq-i-j ith jth]
have (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sbi = {}.
with x-in-vol-i x-j obtain

x-unacq-j: x /∈ Oj ∪ all-acquired sbj and
x-ror-j: x ∈ read-only-reads (acquired True ?take-j Oj) ?drop-j
by auto

from read-only-reads-unowned [OF j-bound i-bound neq-i-j [symmetric] jth ith] x-ror-j
have x /∈ Oi ∪ all-acquired sbi

by auto

162

moreover

from read-only-reads-read-only [OF nvo-drop-j consis-drop-j] x-ror-j x-unacq-j
all-acquired-append [of ?take-j ?drop-j] acquired-takeWhile-non-volatile-Writesb [of sbj

Oj]
have x ∈ read-only (share ?take-j S)

by (auto)

from read-only-share [OF consis-take-j] this x-unacq-j all-acquired-append [of ?take-j
?drop-j]

have x ∈ read-only S
by auto

with no-unacquired-write-to-read-only ′′ [OF nro-i consis-i] x-in-i
have x ∈ Oi ∪ all-acquired sbi

by auto

ultimately have False by auto
}
moreover
{

assume x-in-non-vol-drop-i: x ∈ outstanding-refs is-non-volatile-Writesb ?drop-i
hence x ∈ outstanding-refs is-non-volatile-Writesb sbi

using outstanding-refs-append [of is-non-volatile-Writesb ?take-i ?drop-i]
by auto

with non-volatile-owned-or-read-only-outstanding-non-volatile-writes [OF nvo-i]
have x ∈ Oi ∪ all-acquired sbi by auto

moreover

with x-j own-dist obtain
x-unacq-j: x /∈ Oj ∪ all-acquired sbj and
x-ror-j: x ∈ read-only-reads (acquired True ?take-j Oj) ?drop-j
by auto

from read-only-reads-unowned [OF j-bound i-bound neq-i-j [symmetric] jth ith] x-ror-j
have x /∈ Oi ∪ all-acquired sbi

by auto

ultimately have False
by auto

}
ultimately

show ?thesis
using x-in-drop-i x-in-drop-j
by (auto simp add: misc-outstanding-refs-convs)

qed
}
thus ?thesis

163

by auto
qed

lemma (in valid-ownership-and-sharing) outstanding-non-volatile-write-disj:
assumes i-bound: i < length ts
assumes j-bound: j < length ts
assumes neq-i-j: i 6= j
assumes ith: ts!i = (pi,isi,ji,sbi,Di,Oi,Ri)
assumes jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
shows outstanding-refs (is-non-volatile-Writesb) (takeWhile (Not ◦ is-volatile-Writesb)
sbi) ∩

(outstanding-refs is-volatile-Writesb sbj ∪
outstanding-refs is-non-volatile-Writesb sbj ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) sbj)

∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) sbj)

−
read-only-reads Oj (takeWhile (Not ◦ is-volatile-Writesb) sbj)) ∪
(Oj ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj))
) = {} (is ?non-vol-writes-i ∩ ?not-volatile-j = {})

proof −
note nro-i = no-outstanding-write-to-read-only-memory [OF i-bound ith]
note nro-j = no-outstanding-write-to-read-only-memory [OF j-bound jth]
note nvo-j = outstanding-non-volatile-refs-owned-or-read-only [OF j-bound jth]
note nvo-i = outstanding-non-volatile-refs-owned-or-read-only [OF i-bound ith]

from outstanding-volatile-writes-unowned-by-others [OF i-bound j-bound neq-i-j ith jth]
have dist: (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sbi = {}.

from outstanding-volatile-writes-unowned-by-others [OF j-bound i-bound neq-i-j
[symmetric] jth ith]

have dist-j: (Oi ∪ all-acquired sbi) ∩ outstanding-refs is-volatile-Writesb sbj = {}.

note own-dist = ownership-distinct [OF i-bound j-bound neq-i-j ith jth]

from sharing-consis [OF j-bound jth]
have consis-j: sharing-consistent S Oj sbj.

from sharing-consis [OF i-bound ith]
have consis-i: sharing-consistent S Oi sbi.

let ?take-j = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-j = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

{
fix x
assume x-in-take-i: x ∈ ?non-vol-writes-i
assume x-in-j: x ∈ ?not-volatile-j
from x-in-take-i have x-in-i: x ∈ outstanding-refs (is-non-volatile-Writesb) sbi

164

by (auto dest: outstanding-refs-takeWhileD)
from non-volatile-owned-or-read-only-outstanding-non-volatile-writes [OF nvo-i] x-in-i
have x-in-owns-acq-i: x ∈ Oi ∪ all-acquired sbi

by auto
have False
proof −

{
assume x-in-j: x ∈ outstanding-refs is-volatile-Writesb sbj

with dist-j have x-notin: x /∈ (Oi ∪ all-acquired sbi)
by auto

with x-in-owns-acq-i have False
by auto

}
moreover
{

assume x-in-j: x ∈ outstanding-refs is-non-volatile-Writesb sbj

from non-volatile-owned-or-read-only-outstanding-non-volatile-writes [OF nvo-j] x-in-j
have x ∈ Oj ∪ all-acquired sbj

by auto
with x-in-owns-acq-i own-dist
have False

by auto
}
moreover
{

assume x-in-j: x ∈ outstanding-refs is-non-volatile-Readsb ?drop-j

from non-volatile-owned-or-read-only-drop [OF nvo-j]
have nvo ′: non-volatile-owned-or-read-only True (share ?take-j S) (acquired True ?take-j
Oj) ?drop-j.

from non-volatile-owned-or-read-only-outstanding-refs [OF nvo ′] x-in-j
have x ∈ acquired True ?take-j Oj ∪ all-acquired ?drop-j ∪

read-only-reads (acquired True ?take-j Oj) ?drop-j
by (auto simp add: misc-outstanding-refs-convs)

moreover
from acquired-append [of True ?take-j ?drop-j Oj] acquired-all-acquired [of True ?take-j
Oj]

all-acquired-append [of ?take-j ?drop-j]
have acquired True ?take-j Oj ∪ all-acquired ?drop-j ⊆ Oj ∪ all-acquired sbj

by auto
ultimately
have x ∈ read-only-reads (acquired True ?take-j Oj) ?drop-j

using x-in-owns-acq-i own-dist
by auto

with read-only-reads-unowned [OF j-bound i-bound neq-i-j [symmetric] jth ith]
x-in-owns-acq-i
have False

165

by auto
}
moreover
{

assume x-in-j: x ∈ outstanding-refs is-non-volatile-Readsb ?take-j
assume x-notin: x /∈ read-only-reads Oj ?take-j
from non-volatile-owned-or-read-only-append [where xs=?take-j and ys=?drop-j] nvo-j
have non-volatile-owned-or-read-only False S Oj ?take-j

by auto

from non-volatile-owned-or-read-only-outstanding-refs [OF this] x-in-j x-notin
have x ∈ Oj ∪ all-acquired ?take-j

by (auto simp add: misc-outstanding-refs-convs)
with all-acquired-append [of ?take-j ?drop-j] x-in-owns-acq-i own-dist
have False

by auto
}
moreover
{

assume x-in-j: x ∈ Oj ∪ all-acquired ?take-j
moreover
from all-acquired-append [of ?take-j ?drop-j]
have all-acquired ?take-j ⊆ all-acquired sbj

by auto
ultimately have False

using x-in-owns-acq-i own-dist
by auto

}
ultimately show ?thesis

using x-in-take-i x-in-j
by (auto simp add: misc-outstanding-refs-convs)

qed
}
then show ?thesis

by auto
qed

lemma (in valid-ownership-and-sharing) outstanding-non-volatile-write-not-volatile-read-disj:
assumes i-bound: i < length ts
assumes j-bound: j < length ts
assumes neq-i-j: i 6= j
assumes ith: ts!i = (pi,isi,ji,sbi,Di,Oi,Ri)
assumes jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
shows outstanding-refs (is-non-volatile-Writesb) (takeWhile (Not ◦ is-volatile-Writesb)
sbi) ∩

outstanding-refs (Not ◦ is-volatile-Readsb) (dropWhile (Not ◦ is-volatile-Writesb)
sbj) = {}
(is ?non-vol-writes-i ∩ ?not-volatile-j = {})

proof −

166

have outstanding-refs (Not ◦ is-volatile-Readsb) (dropWhile (Not ◦ is-volatile-Writesb)
sbj) ⊆

outstanding-refs is-volatile-Writesb sbj ∪
outstanding-refs is-non-volatile-Writesb sbj ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) sbj)
by (auto simp add: misc-outstanding-refs-convs dest: outstanding-refs-dropWhileD)

with outstanding-non-volatile-write-disj [OF i-bound j-bound neq-i-j ith jth]
show ?thesis

by blast
qed

lemma (in valid-ownership-and-sharing) outstanding-refs-is-Writesb-takeWhile-disj:
∀ i < length ts. (∀ j < length ts. i 6= j −→

(let (-,-,-,sbi,-,-,-) = ts!i;
(-,-,-,sbj,-,-,-) = ts!j

in outstanding-refs is-Writesb sbi ∩
outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj) =

{}))
proof −

{
fix i j pi isi Oi Ri Di ji sbi pj isj Oj Rj Dj jj sbj

assume i-bound: i < length ts
assume j-bound: j < length ts
assume neq-i-j: i 6= j
assume ith: ts!i = (pi,isi,ji,sbi,Di,Oi,Ri)
assume jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
from outstanding-non-volatile-write-disj [OF j-bound i-bound neq-i-j[symmetric] jth

ith]
have outstanding-refs is-Writesb sbi ∩

outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj) = {}
apply (clarsimp simp add: outstanding-refs-is-non-volatile-Writesb-takeWhile-conv)
apply (auto simp add: misc-outstanding-refs-convs)
done

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

fun read-tmps:: ′p store-buffer ⇒ tmp set
where

read-tmps [] = {}
| read-tmps (r#rs) =

(case r of
Readsb volatile a t v ⇒ insert t (read-tmps rs)
| - ⇒ read-tmps rs)

167

lemma in-read-tmps-conv:
(t ∈ read-tmps xs) = (∃ volatile a v. Readsb volatile a t v ∈ set xs)
by (induct xs) (auto split: memref.splits)

lemma read-tmps-mono:
∧

ys. set xs ⊆ set ys =⇒ read-tmps xs ⊆ read-tmps ys
by (fastforce simp add: in-read-tmps-conv)

fun distinct-read-tmps:: ′p store-buffer ⇒ bool
where

distinct-read-tmps [] = True
| distinct-read-tmps (r#rs) =

(case r of
Readsb volatile a t v ⇒ t /∈ (read-tmps rs) ∧ distinct-read-tmps rs

| - ⇒ distinct-read-tmps rs)

lemma distinct-read-tmps-conv:
distinct-read-tmps xs = (∀ i < length xs. ∀ j < length xs. i 6= j −→

(case xs!i of
Readsb - - ti - ⇒ case xs!j of Readsb - - tj - ⇒ ti 6= tj | - ⇒ True

| - ⇒ True))
— Nice lemma, ugly proof.
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs)
show ?case
proof (cases x)

case (Writesb volatile a sop v)
with Cons.hyps show ?thesis

apply −
apply (rule iffI [rule-format])
apply clarsimp

subgoal for i j
apply (case-tac i)
apply fastforce
apply (case-tac j)
apply (fastforce split: memref.splits)
apply (clarsimp cong: memref.case-cong)
done

apply clarsimp
subgoal for i j
apply (erule-tac x=Suc i in allE)
apply clarsimp
apply (erule-tac x=Suc j in allE)
apply (clarsimp cong: memref.case-cong)
done

168

done
next

case (Readsb volatile a t v)
with Cons.hyps show ?thesis

apply −
apply (rule iffI [rule-format])
apply clarsimp

subgoal for i j
apply (case-tac i)
apply clarsimp
apply (case-tac j)
apply clarsimp

apply (fastforce split: memref.splits simp add: in-read-tmps-conv dest: nth-mem)
apply (clarsimp)
apply (case-tac j)

apply (fastforce split: memref.splits simp add: in-read-tmps-conv dest: nth-mem)
apply (clarsimp cong: memref.case-cong)
done

apply clarsimp
apply (rule conjI)
apply (clarsimp simp add: in-read-tmps-conv)
apply (erule-tac x=0 in allE)
apply (clarsimp simp add: in-set-conv-nth)

subgoal for volatile ′ a ′ v ′ i
apply (erule-tac x=Suc i in allE)
apply clarsimp
done

apply clarsimp
subgoal for i j
apply (erule-tac x=Suc i in allE)
apply clarsimp
apply (erule-tac x=Suc j in allE)
apply (clarsimp cong: memref.case-cong)
done
done

next
case Progsb
with Cons.hyps show ?thesis

apply −
apply (rule iffI [rule-format])
apply clarsimp

subgoal for i j
apply (case-tac i)
apply fastforce
apply (case-tac j)
apply (fastforce split: memref.splits)
apply (clarsimp cong: memref.case-cong)
done

apply clarsimp
subgoal for i j

169

apply (erule-tac x=Suc i in allE)
apply clarsimp
apply (erule-tac x=Suc j in allE)
apply (clarsimp cong: memref.case-cong)
done
done

next
case Ghostsb
with Cons.hyps show ?thesis

apply −
apply (rule iffI [rule-format])
apply clarsimp

subgoal for i j
apply (case-tac i)
apply fastforce
apply (case-tac j)
apply (fastforce split: memref.splits)
apply (clarsimp cong: memref.case-cong)
done

apply clarsimp
subgoal for i j
apply (erule-tac x=Suc i in allE)
apply clarsimp
apply (erule-tac x=Suc j in allE)
apply (clarsimp cong: memref.case-cong)
done
done

qed
qed

fun load-tmps:: instrs ⇒ tmp set
where

load-tmps [] = {}
| load-tmps (i#is) =

(case i of
Read volatile a t ⇒ insert t (load-tmps is)

| RMW - t - - - - - - - ⇒ insert t (load-tmps is)
| - ⇒ load-tmps is)

lemma in-load-tmps-conv:
(t ∈ load-tmps xs) = ((∃ volatile a. Read volatile a t ∈ set xs) ∨

(∃ a sop cond ret A L R W. RMW a t sop cond ret A L R W ∈ set xs))
by (induct xs) (auto split: instr.splits)

lemma load-tmps-mono:
∧

ys. set xs ⊆ set ys =⇒ load-tmps xs ⊆ load-tmps ys
by (fastforce simp add: in-load-tmps-conv)

fun distinct-load-tmps:: instrs ⇒ bool
where

distinct-load-tmps [] = True

170

| distinct-load-tmps (r#rs) =
(case r of

Read volatile a t ⇒ t /∈ (load-tmps rs) ∧ distinct-load-tmps rs
| RMW a t sop cond ret A L R W ⇒ t /∈ (load-tmps rs) ∧ distinct-load-tmps rs
| - ⇒ distinct-load-tmps rs)

locale load-tmps-distinct =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes load-tmps-distinct:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
distinct-load-tmps is

locale read-tmps-distinct =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes read-tmps-distinct:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
distinct-read-tmps sb

locale load-tmps-read-tmps-distinct =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes load-tmps-read-tmps-distinct:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
load-tmps is ∩ read-tmps sb = {}

locale tmps-distinct =
load-tmps-distinct +
read-tmps-distinct +
load-tmps-read-tmps-distinct

lemma rev-read-tmps: read-tmps (rev xs) = read-tmps xs
by (auto simp add: in-read-tmps-conv)

lemma rev-load-tmps: load-tmps (rev xs) = load-tmps xs
by (auto simp add: in-load-tmps-conv)

lemma distinct-read-tmps-append:
∧

ys. distinct-read-tmps (xs @ ys) =
(distinct-read-tmps xs ∧ distinct-read-tmps ys ∧
read-tmps xs ∩ read-tmps ys = {})

by (induct xs) (auto split: memref.splits simp add: in-read-tmps-conv)

lemma distinct-load-tmps-append:
∧

ys. distinct-load-tmps (xs @ ys) =
(distinct-load-tmps xs ∧ distinct-load-tmps ys ∧
load-tmps xs ∩ load-tmps ys = {})

171

apply (induct xs)
apply (auto split: instr.splits simp add: in-load-tmps-conv)
done

lemma read-tmps-append: read-tmps (xs@ys) = (read-tmps xs ∪ read-tmps ys)
by (fastforce simp add: in-read-tmps-conv)

lemma load-tmps-append: load-tmps (xs@ys) = (load-tmps xs ∪ load-tmps ys)
by (fastforce simp add: in-load-tmps-conv)

fun write-sops:: ′p store-buffer ⇒ sop set
where

write-sops [] = {}
| write-sops (r#rs) =

(case r of
Writesb volatile a sop v - - - -⇒ insert sop (write-sops rs)
| - ⇒ write-sops rs)

lemma in-write-sops-conv:
(sop ∈ write-sops xs) = (∃ volatile a v A L R W. Writesb volatile a sop v A L R W ∈ set

xs)
apply (induct xs)
apply simp
apply (auto split: memref.splits)
apply force
apply force
done

lemma write-sops-mono:
∧

ys. set xs ⊆ set ys =⇒ write-sops xs ⊆ write-sops ys
by (fastforce simp add: in-write-sops-conv)

lemma write-sops-append: write-sops (xs@ys) = write-sops xs ∪ write-sops ys
by (force simp add: in-write-sops-conv)

fun store-sops:: instrs ⇒ sop set
where

store-sops [] = {}
| store-sops (i#is) =

(case i of
Write volatile a sop - - - - ⇒ insert sop (store-sops is)

| RMW a t sop cond ret A L R W ⇒ insert sop (store-sops is)
| - ⇒ store-sops is)

lemma in-store-sops-conv:
(sop ∈ store-sops xs) = ((∃ volatile a A L R W. Write volatile a sop A L R W ∈ set xs)

∨
(∃ a t cond ret A L R W. RMW a t sop cond ret A L R W ∈ set xs))

by (induct xs) (auto split: instr.splits)

172

lemma store-sops-mono:
∧

ys. set xs ⊆ set ys =⇒ store-sops xs ⊆ store-sops ys
by (fastforce simp add: in-store-sops-conv)

lemma store-sops-append: store-sops (xs@ys) = store-sops xs ∪ store-sops ys
by (force simp add: in-store-sops-conv)

locale valid-write-sops =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-write-sops:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
∀ sop ∈ write-sops sb. valid-sop sop

locale valid-store-sops =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-store-sops:∧

i is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
∀ sop ∈ store-sops is. valid-sop sop

locale valid-sops = valid-write-sops + valid-store-sops
The value stored in a non-volatile Readsb in the store-buffer has to match the last

value written to the same address in the store buffer or the memory content if there is
no corresponding write in the store buffer. No volatile read may follow a volatile write.
Volatile reads in the store buffer may refer to a stale value: e.g. imagine one writer and
multiple readersfun reads-consistent:: bool ⇒ owns ⇒ memory ⇒ ′p store-buffer ⇒ bool
where

reads-consistent pending-write O m [] = True
| reads-consistent pending-write O m (r#rs) =
(case r of

Readsb volatile a t v ⇒ (¬ volatile −→ (pending-write ∨ a ∈ O) −→ v = m a) ∧
reads-consistent pending-write O m rs

| Writesb volatile a sop v A L R W ⇒
(if volatile then

outstanding-refs is-volatile-Readsb rs = {} ∧
reads-consistent True (O ∪ A − R) (m(a := v)) rs

else reads-consistent pending-write O (m(a := v)) rs)
| Ghostsb A L R W ⇒ reads-consistent pending-write (O ∪ A − R) m rs
| - ⇒ reads-consistent pending-write O m rs
)

fun volatile-reads-consistent:: memory ⇒ ′p store-buffer ⇒ bool
where

volatile-reads-consistent m [] = True
| volatile-reads-consistent m (r#rs) =
(case r of

Readsb volatile a t v ⇒ (volatile −→ v = m a) ∧ volatile-reads-consistent m rs
| Writesb volatile a sop v A L R W ⇒ volatile-reads-consistent (m(a := v)) rs

173

| - ⇒ volatile-reads-consistent m rs
)

fun flush:: ′p store-buffer ⇒ memory ⇒ memory
where

flush [] m = m
| flush (r#rs) m =

(case r of
Writesb volatile a - v - - - - ⇒ flush rs (m(a:=v))

| - ⇒ flush rs m)

lemma reads-consistent-pending-write-antimono:∧
O m. reads-consistent True O m sb =⇒ reads-consistent False O m sb

apply (induct sb)
apply simp
subgoal for a sb O m

by (case-tac a) auto
done

lemma reads-consistent-owns-antimono:∧
O O ′ pending-write m.
O ⊆O ′=⇒ reads-consistent pending-write O ′ m sb =⇒ reads-consistent pending-write

O m sb
apply (induct sb)
apply simp
subgoal for a sb O O ′ pending-write m
apply (case-tac a)
apply (clarsimp split: if-split-asm)

subgoal for volatile a D f v A L R W
apply (drule-tac C=A in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done

apply fastforce
apply fastforce
apply clarsimp
subgoal for A L R W
apply (drule-tac C=A in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done
done
done

lemma acquired-reads-mono ′: x ∈ acquired-reads b xs A =⇒ acquired-reads b xs B = {}
=⇒ A ⊆ B =⇒ False
apply (drule acquired-reads-mono-in [where B=B])
apply auto
done

174

lemma reads-consistent-append:∧
m pending-write O. reads-consistent pending-write O m (xs@ys) =
(reads-consistent pending-write O m xs ∧
reads-consistent (pending-write ∨ outstanding-refs is-volatile-Writesb xs 6= {})
(acquired True xs O) (flush xs m) ys ∧

(outstanding-refs is-volatile-Writesb xs 6= {}
−→ outstanding-refs is-volatile-Readsb ys = {}))

apply (induct xs)
apply clarsimp
subgoal for a xs m pending-write O
apply (case-tac a)
apply (auto simp add: outstanding-refs-append acquired-reads-append
dest: acquired-reads-mono-in acquired-pending-write-mono-in acquired-reads-mono ′ ac-
quired-mono-in)
done
done

lemma reads-consistent-mem-eq-on-non-volatile-reads:
assumes mem-eq: ∀ a ∈ A. m ′ a = m a
assumes subset: outstanding-refs (is-non-volatile-Readsb) sb ⊆ A
— We could be even more restrictive here, only the non volatile reads that are not

buffered in sb have to be the same.
assumes consis-m: reads-consistent pending-write O m sb
shows reads-consistent pending-write O m ′ sb

using mem-eq subset consis-m
proof (induct sb arbitrary: m ′ m pending-write O)

case Nil thus ?case by simp
next

case (Cons r sb)
note mem-eq = ‹∀ a ∈ A. m ′ a = m a›
note subset = ‹outstanding-refs (is-non-volatile-Readsb) (r#sb) ⊆ A›
note consis-m = ‹reads-consistent pending-write O m (r#sb)›

from subset have subset ′: outstanding-refs is-non-volatile-Readsb sb ⊆ A
by (auto simp add: Writesb)

show ?case
proof (cases r)

case (Writesb volatile a sop v A ′ L R W)
from mem-eq
have mem-eq ′:
∀ a ′ ∈ A. (m ′(a:=v)) a ′ = (m(a:=v)) a ′

by (auto)
show ?thesis
proof (cases volatile)

case True
from consis-m obtain

consis ′: reads-consistent True (O ∪ A ′ − R) (m(a := v)) sb and
no-volatile-Readsb: outstanding-refs is-volatile-Readsb sb = {}

175

by (simp add: Writesb True)

from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
have reads-consistent True (O ∪ A ′ − R) (m ′(a := v)) sb.
with no-volatile-Readsb

show ?thesis
by (simp add: Writesb True)

next
case False
from consis-m obtain consis ′: reads-consistent pending-write O (m(a := v)) sb

by (simp add: Writesb False)
from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
have reads-consistent pending-write O (m ′(a := v)) sb.
then
show ?thesis

by (simp add: Writesb False)
qed

next
case (Readsb volatile a t v)
from mem-eq
have mem-eq ′:
∀ a ′ ∈ A. m ′ a ′ = m a ′

by (auto)
show ?thesis
proof (cases volatile)

case True
from consis-m obtain

consis ′: reads-consistent pending-write O m sb
by (simp add: Readsb True)

from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
show ?thesis

by (simp add: Readsb True)
next

case False
from consis-m obtain

consis ′: reads-consistent pending-write O m sb and v: (pending-write ∨ a ∈ O) −→ v=m
a
by (simp add: Readsb False)

from mem-eq subset Readsb have m ′ a = m a
by (auto simp add: False)

with Cons.hyps [OF mem-eq ′ subset ′ consis ′] v
show ?thesis

by (simp add: Readsb False)
qed

next
case Progsb with Cons show ?thesis by auto

next
case Ghostsb with Cons show ?thesis by auto

qed
qed

176

lemma volatile-reads-consistent-mem-eq-on-volatile-reads:
assumes mem-eq: ∀ a ∈ A. m ′ a = m a
assumes subset: outstanding-refs (is-volatile-Readsb) sb ⊆ A
— We could be even more restrictive here, only the non volatile reads that are not

buffered in sb have to be the same.
assumes consis-m: volatile-reads-consistent m sb
shows volatile-reads-consistent m ′ sb

using mem-eq subset consis-m
proof (induct sb arbitrary: m ′ m)

case Nil thus ?case by simp
next

case (Cons r sb)
note mem-eq = ‹∀ a ∈ A. m ′ a = m a›
note subset = ‹outstanding-refs (is-volatile-Readsb) (r#sb) ⊆ A›
note consis-m = ‹volatile-reads-consistent m (r#sb)›

from subset have subset ′: outstanding-refs is-volatile-Readsb sb ⊆ A
by (auto simp add: Writesb)

show ?case
proof (cases r)

case (Writesb volatile a sop v A ′ L R W)
from mem-eq
have mem-eq ′:
∀ a ′ ∈ A. (m ′(a:=v)) a ′ = (m(a:=v)) a ′

by (auto)
show ?thesis
proof (cases volatile)

case True
from consis-m obtain

consis ′: volatile-reads-consistent (m(a := v)) sb
by (simp add: Writesb True)

from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
have volatile-reads-consistent (m ′(a := v)) sb.
then
show ?thesis

by (simp add: Writesb True)
next

case False
from consis-m obtain consis ′: volatile-reads-consistent (m(a := v)) sb

by (simp add: Writesb False)
from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
have volatile-reads-consistent (m ′(a := v)) sb.
then
show ?thesis

by (simp add: Writesb False)
qed

177

next
case (Readsb volatile a t v)
from mem-eq
have mem-eq ′:
∀ a ′ ∈ A. m ′ a ′ = m a ′

by (auto)
show ?thesis
proof (cases volatile)

case False
from consis-m obtain

consis ′: volatile-reads-consistent m sb
by (simp add: Readsb False)

from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
show ?thesis

by (simp add: Readsb False)
next

case True
from consis-m obtain

consis ′: volatile-reads-consistent m sb and v: v=m a
by (simp add: Readsb True)

from mem-eq subset Readsb v have v = m ′ a
by (auto simp add: True)

with Cons.hyps [OF mem-eq ′ subset ′ consis ′]
show ?thesis

by (simp add: Readsb True)
qed

next
case Progsb with Cons show ?thesis by auto

next
case Ghostsb with Cons show ?thesis by auto

qed
qed

locale valid-reads =
fixes m::memory and ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-reads:

∧
i p is O R D j sb.

[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒
reads-consistent False O m sb

lemma valid-reads-Cons: valid-reads m (t#ts) =
(let (-,-,-,sb,-,O,-) = t in reads-consistent False O m sb ∧ valid-reads m ts)

apply (auto simp add: valid-reads-def)
subgoal for p ′ is ′ j ′ sb ′ D ′ O ′ R ′ i p is j sb D O R
apply (case-tac i)
apply auto
done
done

Readsbs and writes have in the store-buffer have to conform to the valuation of tem-
poraries.context program
begin

178

fun history-consistent:: tmps ⇒ ′p ⇒ ′p store-buffer ⇒ bool
where

history-consistent j p [] = True
| history-consistent j p (r#rs) =

(case r of
Readsb vol a t v ⇒
(case j t of Some v ′ ⇒ v=v ′ ∧ history-consistent j p rs | - ⇒ False)

| Writesb vol a (D,f) v - - - - ⇒
D ⊆ dom j ∧ f j = v ∧ D ∩ read-tmps rs = {} ∧ history-consistent j p rs

| Progsb p1 p2 is ⇒ p1=p ∧
j|‘(dom j − read-tmps rs)` p1 →p (p2,is) ∧
history-consistent j p2 rs

| - ⇒ history-consistent j p rs)
end

fun hd-prog:: ′p ⇒ ′p store-buffer ⇒ ′p
where

hd-prog p [] = p
| hd-prog p (i#is) = (case i of

Progsb p ′ - - ⇒ p ′

| - ⇒ hd-prog p is)

fun last-prog:: ′p ⇒ ′p store-buffer ⇒ ′p
where

last-prog p [] = p
| last-prog p (i#is) = (case i of

Progsb - p ′ - ⇒ last-prog p ′ is
| - ⇒ last-prog p is)

locale valid-history = program +
constrains

program-step :: tmps ⇒ ′p ⇒ ′p × instrs ⇒ bool
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-history:

∧
i p is O R D j sb.

[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒
program.history-consistent program-step j (hd-prog p sb) sb

fun data-dependency-consistent-instrs:: addr set ⇒ instrs ⇒ bool
where

data-dependency-consistent-instrs T [] = True
| data-dependency-consistent-instrs T (i#is) =

(case i of
Write volatile a (D,f) - - - - ⇒ D ⊆ T ∧ D ∩ load-tmps is = {} ∧

data-dependency-consistent-instrs T is
| RMW a t (D,f) cond ret - - - - ⇒ D ⊆ T ∧ D ∩ load-tmps is = {} ∧

data-dependency-consistent-instrs (insert t T) is
| Read - - t ⇒ data-dependency-consistent-instrs (insert t T) is
| - ⇒ data-dependency-consistent-instrs T is)

lemma data-dependency-consistent-mono:

179

∧
T T ′. [[data-dependency-consistent-instrs T is; T ⊆ T ′]] =⇒

data-dependency-consistent-instrs T ′ is
apply (induct is)
apply clarsimp
subgoal for a is T T ′

apply (case-tac a)
apply clarsimp

subgoal for volatile a ′ t
apply (drule-tac a=t in insert-mono)
apply clarsimp
done

apply fastforce
apply clarsimp

subgoal for a ′ t D f cond ret A L R W
apply (frule-tac a=t in insert-mono)
apply fastforce
done

apply fastforce
apply fastforce
done
done

lemma data-dependency-consistent-instrs-append:∧
ys T . data-dependency-consistent-instrs T (xs@ys) =
(data-dependency-consistent-instrs T xs ∧
data-dependency-consistent-instrs (T ∪ load-tmps xs) ys ∧
load-tmps ys ∩

⋃
(fst ‘ store-sops xs) = {})

apply (induct xs)
apply (auto split: instr.splits simp add: load-tmps-append intro:
data-dependency-consistent-mono)
done

locale valid-data-dependency =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes data-dependency-consistent-instrs:∧

i p is O D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

data-dependency-consistent-instrs (dom j) is
assumes load-tmps-write-tmps-distinct:∧

i p is O D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

load-tmps is ∩
⋃
(fst ‘ write-sops sb) = {}

locale load-tmps-fresh =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes load-tmps-fresh:∧

i p is O D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

load-tmps is ∩ dom j = {}

180

fun acquired-by-instrs :: instrs ⇒ addr set ⇒ addr set
where

acquired-by-instrs [] A = A
| acquired-by-instrs (i#is) A =
(case i of

Read - - - ⇒ acquired-by-instrs is A
| Write volatile - - A ′ L R W ⇒ acquired-by-instrs is (if volatile then (A ∪ A ′ − R)

else A)
| RMW a t sop cond ret A ′ L R W ⇒ acquired-by-instrs is {}
| Fence ⇒ acquired-by-instrs is {}
| Ghost A ′ L R W ⇒ acquired-by-instrs is (A ∪ A ′ − R))

fun acquired-loads :: bool ⇒ instrs ⇒ addr set ⇒ addr set
where

acquired-loads pending-write [] A = {}
| acquired-loads pending-write (i#is) A =
(case i of

Read volatile a - ⇒ (if pending-write ∧ ¬ volatile ∧ a ∈ A
then insert a (acquired-loads pending-write is A)
else acquired-loads pending-write is A)

| Write volatile - - A ′ L R W ⇒ (if volatile then acquired-loads True is (if pending-write
then (A ∪ A ′ − R) else {})

else acquired-loads pending-write is A)
| RMW a t sop cond ret A ′ L R W ⇒ acquired-loads pending-write is {}
| Fence ⇒ acquired-loads pending-write is {}
| Ghost A ′ L R W ⇒ acquired-loads pending-write is (A ∪ A ′ − R))

lemma acquired-by-instrs-mono:∧
A B. A ⊆ B =⇒ acquired-by-instrs is A ⊆ acquired-by-instrs is B

apply (induct is)
apply simp
subgoal for a is A B
apply (case-tac a)
apply clarsimp
apply clarsimp

subgoal for volatile a ′ D f A ′ L R W x
apply (drule-tac C=A ′ in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done

apply clarsimp
apply clarsimp
apply clarsimp
subgoal for A ′ L R W x
apply (drule-tac C=A ′ in union-mono-aux)
apply (drule-tac C=R in set-minus-mono-aux)
apply blast
done
done

181

done

lemma acquired-by-instrs-mono-in:
assumes x-in: x ∈ acquired-by-instrs is A
assumes sub: A ⊆ B
shows x ∈ acquired-by-instrs is B

using acquired-by-instrs-mono [OF sub, of is] x-in
by blast

locale enough-flushs =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes clean-no-outstanding-volatile-Writesb:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);¬ D]] =⇒
(outstanding-refs is-volatile-Writesb sb = {})

fun prog-instrs:: ′p store-buffer ⇒ instrs
where

prog-instrs [] = []
|prog-instrs (i#is) = (case i of

Progsb - - is ′ ⇒ is ′ @ prog-instrs is
| - ⇒ prog-instrs is)

fun instrs:: ′p store-buffer ⇒ instrs
where

instrs [] = []
| instrs (i#is) = (case i of

Writesb volatile a sop v A L R W ⇒ Write volatile a sop A L R W# instrs is
| Readsb volatile a t v ⇒ Read volatile a t # instrs is
| Ghostsb A L R W ⇒ Ghost A L R W# instrs is
| - ⇒ instrs is)

locale causal-program-history =
fixes issb and sb
assumes causal-program-history:∧

sb1 sb2. sb=sb1@sb2 =⇒ ∃ is. instrs sb2 @ issb = is @ prog-instrs sb2

lemma causal-program-history-empty [simp]: causal-program-history is []
by (rule causal-program-history.intro) simp

lemma causal-program-history-suffix:
causal-program-history issb (sb@sb ′) =⇒ causal-program-history issb sb ′

by (auto simp add: causal-program-history-def)

locale valid-program-history =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes valid-program-history:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

182

causal-program-history is sb

assumes valid-last-prog:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒
last-prog p sb = p

lemma (in valid-program-history) valid-program-history-nth-update:
[[i < length ts; causal-program-history is sb; last-prog p sb = p]]
=⇒
valid-program-history (ts [i:=(p,is,j,sb,D,O,R)])

by (rule valid-program-history.intro)
(auto dest: valid-program-history valid-last-prog

simp add: nth-list-update split: if-split-asm)

lemma (in outstanding-non-volatile-refs-owned-or-read-only)
outstanding-non-volatile-refs-owned-instructions-read-value-independent:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

outstanding-non-volatile-refs-owned-or-read-only S (ts[i := (p ′,is ′,j ′,sb,D ′,O,R ′)])
by (unfold-locales)

(auto dest: outstanding-non-volatile-refs-owned-or-read-only
simp add: nth-list-update split: if-split-asm)

lemma (in outstanding-non-volatile-refs-owned-or-read-only)
outstanding-non-volatile-refs-owned-or-read-only-nth-update:∧
i is O D R j sb.
[[i < length ts; non-volatile-owned-or-read-only False S O sb]] =⇒

outstanding-non-volatile-refs-owned-or-read-only S (ts[i := (p,is,j,sb,D,O,R)])
by (unfold-locales)
(auto dest: outstanding-non-volatile-refs-owned-or-read-only

simp add: nth-list-update split: if-split-asm)

lemma (in outstanding-volatile-writes-unowned-by-others)
outstanding-volatile-writes-unowned-by-others-instructions-read-value-independent:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

outstanding-volatile-writes-unowned-by-others (ts[i := (p ′,is ′,j ′,sb,D ′,O,R ′)])
by (unfold-locales)

(auto dest: outstanding-volatile-writes-unowned-by-others
simp add: nth-list-update split: if-split-asm)

lemma (in read-only-reads-unowned)
read-only-unowned-instructions-read-value-independent:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

read-only-reads-unowned (ts[i := (p ′,is ′,j ′,sb,D ′,O,R ′)])
by (unfold-locales)

(auto dest: read-only-reads-unowned
simp add: nth-list-update split: if-split-asm)

183

lemma Writesb-in-outstanding-refs:
Writesb True a sop v A L R W ∈ set xs =⇒ a ∈ outstanding-refs is-volatile-Writesb xs
by (induct xs) (auto split:memref.splits)

lemma (in outstanding-volatile-writes-unowned-by-others)
outstanding-volatile-writes-unowned-by-others-store-buffer:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);
outstanding-refs is-volatile-Writesb sb ′ ⊆ outstanding-refs is-volatile-Writesb sb;
all-acquired sb ′ ⊆ all-acquired sb]] =⇒
outstanding-volatile-writes-unowned-by-others (ts[i := (p ′,is ′,j ′,sb ′,D ′,O,R ′)])

apply (unfold-locales)
apply (fastforce dest: outstanding-volatile-writes-unowned-by-others

simp add: nth-list-update split: if-split-asm)
done

lemma (in ownership-distinct)
ownership-distinct-instructions-read-value-store-buffer-independent:∧
i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);

all-acquired sb ′ ⊆ all-acquired sb]] =⇒
ownership-distinct (ts[i := (p ′,is ′,j ′,sb ′,D ′,O,R ′)])

by (unfold-locales)
(auto dest: ownership-distinct

simp add: nth-list-update split: if-split-asm)

lemma (in ownership-distinct)
ownership-distinct-nth-update:∧
i p is O R D xs sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R);
∀ j < length ts. i6=j −→ (let (pj,isj,jj,sbj,Dj,Oj,Rj) = ts!j

in (O ′ ∪ all-acquired sb ′) ∩ (Oj ∪ all-acquired sbj) ={})]] =⇒
ownership-distinct (ts[i := (p ′,is ′,j ′,sb ′,D ′,O ′,R ′)])

apply (unfold-locales)
apply (clarsimp simp add: nth-list-update split: if-split-asm)
apply (force dest: ownership-distinct simp add: Let-def)
apply (fastforce dest: ownership-distinct simp add: Let-def)
apply (fastforce dest: ownership-distinct simp add: Let-def)
done

lemma (in valid-write-sops) valid-write-sops-nth-update:
[[i < length ts; ∀ sop ∈ write-sops sb. valid-sop sop]] =⇒

valid-write-sops (ts[i := (p,is,xs,sb,D,O,R)])

184

by (unfold valid-write-sops-def)
(auto dest: valid-write-sops simp add: nth-list-update split: if-split-asm)

lemma (in valid-store-sops) valid-store-sops-nth-update:
[[i < length ts; ∀ sop ∈ store-sops is. valid-sop sop]] =⇒

valid-store-sops (ts[i := (p,is,xs,sb,D,O,R)])
by (unfold valid-store-sops-def)

(auto dest: valid-store-sops simp add: nth-list-update split: if-split-asm)

lemma (in valid-sops) valid-sops-nth-update:
[[i < length ts; ∀ sop ∈ write-sops sb. valid-sop sop;
∀ sop ∈ store-sops is. valid-sop sop]] =⇒
valid-sops (ts[i := (p,is,xs,sb,D,O,R)])

by (unfold valid-sops-def valid-write-sops-def valid-store-sops-def)
(auto dest: valid-write-sops valid-store-sops

simp add: nth-list-update split: if-split-asm)

lemma (in valid-data-dependency) valid-data-dependency-nth-update:
[[i < length ts; data-dependency-consistent-instrs (dom j) is;

load-tmps is ∩
⋃
(fst ‘ write-sops sb) = {}]] =⇒

valid-data-dependency (ts[i := (p,is,j,sb,D,O,R)])
by (unfold valid-data-dependency-def)

(force dest: data-dependency-consistent-instrs load-tmps-write-tmps-distinct
simp add: nth-list-update split: if-split-asm)

lemma (in enough-flushs) enough-flushs-nth-update:
[[i < length ts;
¬ D −→ (outstanding-refs is-volatile-Writesb sb = {})
]] =⇒

enough-flushs (ts[i := (p,is,j,sb,D,O,R)])

apply (unfold-locales)
apply (force simp add: nth-list-update split: if-split-asm dest:

clean-no-outstanding-volatile-Writesb)
done

lemma (in outstanding-non-volatile-writes-unshared)
outstanding-non-volatile-writes-unshared-nth-update:

[[i < length ts; non-volatile-writes-unshared S sb]] =⇒
outstanding-non-volatile-writes-unshared S (ts[i := (p,is,xs,sb,D,O,R)])

by (unfold-locales)
(auto dest: outstanding-non-volatile-writes-unshared

simp add: nth-list-update split: if-split-asm)

lemma (in sharing-consis)
sharing-consis-nth-update:

[[i < length ts; sharing-consistent S O sb]] =⇒
sharing-consis S (ts[i := (p,is,xs,sb,D,O,R)])

by (unfold-locales)

185

(auto dest: sharing-consis
simp add: nth-list-update split: if-split-asm)

lemma (in no-outstanding-write-to-read-only-memory)
no-outstanding-write-to-read-only-memory-nth-update:

[[i < length ts; no-write-to-read-only-memory S sb]] =⇒
no-outstanding-write-to-read-only-memory S (ts[i := (p,is,xs,sb,D,O,R)])

by (unfold-locales)
(auto dest: no-outstanding-write-to-read-only-memory

simp add: nth-list-update split: if-split-asm)

lemma in-Union-image-nth-conv: a ∈
⋃

(f ‘ set xs) =⇒ ∃ i. i < length xs ∧ a ∈ f (xs!i)
by (auto simp add: in-set-conv-nth)

lemma in-Inter-image-nth-conv: a ∈
⋂

(f ‘ set xs) = (∀ i < length xs. a ∈ f (xs!i))
by (force simp add: in-set-conv-nth)

lemma release-ownership-nth-update:
assumes R-subset: R ⊆ O
shows

∧
i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R);

ownership-distinct ts]]
=⇒

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set (ts[i:=(p ′,is ′,xs ′,sb ′,D ′,O − R,R ′)]))

= ((
⋃

((λ(-,-,-,-,-,O,-). O) ‘ set ts)) − R)
proof (induct ts)

case Nil thus ?case by simp
next

case (Cons t ts)
note i-bound = ‹i < length (t # ts)›
note ith = ‹(t # ts) ! i = (p,is,xs, sb, D, O,R)›
note dist = ‹ownership-distinct (t#ts)›
then interpret ownership-distinct t#ts.
from dist
have dist ′: ownership-distinct ts

by (rule ownership-distinct-tl)
show ?case
proof (cases i)

case 0
from ith 0 have t: t = (p,is,xs,sb,D,O,R)

by simp
have R ∩ (

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts)) = {}

proof −
{

fix x
assume x-R: x ∈ R
assume x-ls: x ∈ (

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts))

then obtain j pj isj Oj Rj Dj xsj sbj where

186

j-bound: j < length ts and
jth: ts!j = (pj,isj,xsj,sbj,Dj,Oj,Rj) and
x-in: x ∈ Oj

by (fastforce simp add: in-set-conv-nth)
from j-bound jth 0
have (O ∪ all-acquired sb) ∩ (Oj ∪ all-acquired sbj)= {}

apply −
apply (rule ownership-distinct [OF i-bound - - ith, of Suc j])
apply clarsimp+
apply blast
done

with x-R R-subset x-in have False
by auto

}
thus ?thesis

by blast
qed
then
show ?thesis

by (auto simp add: 0 t)
next

case (Suc n)
obtain pl isl Ol Rl Dl xsl sbl where t: t = (pl,isl,xsl,sbl,Dl,Ol,Rl)

by (cases t)

have n-bound: n < length ts
using i-bound by (simp add: Suc)

have nth: ts!n = (p,is,xs,sb,D,O,R)
using ith by (simp add: Suc)

have R ∩ (Ol ∪ all-acquired sbl) = {}
proof −

{
fix x
assume x-R: x ∈ R
assume x-ownsl: x ∈ (Ol ∪ all-acquired sbl)
from t
have (O ∪ all-acquired sb) ∩ (Ol ∪ all-acquired sbl)= {}

apply −
apply (rule ownership-distinct [OF i-bound - - ith, of 0])
apply (auto simp add: Suc)
done

with x-ownsl x-R R-subset have False
by auto

}
thus ?thesis

by blast
qed
with Cons.hyps [OF n-bound nth dist ′]

187

show ?thesis
by (auto simp add: Suc t)

qed
qed

lemma acquire-ownership-nth-update:
shows

∧
i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R)]]

=⇒
⋃

((λ(-,-,-,-,-,O,-). O) ‘ set (ts[i:=(p ′,is ′,xs ′,sb ′,D ′,O ∪ A,R ′)]))
= ((

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts)) ∪ A)

proof (induct ts)
case Nil thus ?case by simp

next
case (Cons t ts)
note i-bound = ‹i < length (t # ts)›
note ith = ‹(t # ts) ! i = (p,is, xs, sb, D, O, R)›
show ?case
proof (cases i)

case 0
from ith 0 have t: t = (p,is,xs,sb,D,O,R)

by simp
show ?thesis

by (auto simp add: 0 t)
next

case (Suc n)
obtain pl isl Ol Rl Dl xsl sbl where t: t = (pl,isl,xsl,sbl,Dl,Ol,Rl)

by (cases t)

have n-bound: n < length ts
using i-bound by (simp add: Suc)

have nth: ts!n = (p,is,xs,sb,D,O,R)
using ith by (simp add: Suc)

from Cons.hyps [OF n-bound nth]
show ?thesis

by (auto simp add: Suc t)
qed

qed

lemma acquire-release-ownership-nth-update:
assumes R-subset: R ⊆ O
shows

∧
i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R);

ownership-distinct ts]]
=⇒

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set (ts[i:=(p ′,is ′,xs ′,sb ′,D ′,O ∪ A − R,R ′)]))

= ((
⋃

((λ(-,-,-,-,-,O,-). O) ‘ set ts)) ∪ A − R)
proof (induct ts)

case Nil thus ?case by simp
next

case (Cons t ts)
note i-bound = ‹i < length (t # ts)›
note ith = ‹(t # ts) ! i = (p,is, xs, sb,D, O,R)›
note dist = ‹ownership-distinct (t#ts)›

188

then interpret ownership-distinct t#ts.
from dist
have dist ′: ownership-distinct ts

by (rule ownership-distinct-tl)
show ?case
proof (cases i)

case 0
from ith 0 have t: t = (p,is,xs,sb,D,O,R)

by simp
have R ∩ (

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts)) = {}

proof −
{

fix x
assume x-R: x ∈ R
assume x-ls: x ∈ (

⋃
((λ(-,-,-,-,-,O,-). O) ‘ set ts))

then obtain j pj isj Oj Rj Dj xsj sbj where
j-bound: j < length ts and
jth: ts!j = (pj,isj,xsj,sbj,Dj,Oj,Rj) and
x-in: x ∈ Oj

by (fastforce simp add: in-set-conv-nth)
from j-bound jth 0
have (O ∪ all-acquired sb) ∩ (Oj ∪ all-acquired sbj)= {}

apply −
apply (rule ownership-distinct [OF i-bound - - ith, of Suc j])
apply clarsimp+
apply blast
done

with x-R R-subset x-in have False
by auto

}
thus ?thesis

by blast
qed
then
show ?thesis

by (auto simp add: 0 t)
next

case (Suc n)
obtain pl isl Ol Rl Dl xsl sbl where t: t = (pl,isl,xsl,sbl,Dl,Ol,Rl)

by (cases t)

have n-bound: n < length ts
using i-bound by (simp add: Suc)

have nth: ts!n = (p,is,xs,sb,D,O,R)
using ith by (simp add: Suc)

have R ∩ (Ol ∪ all-acquired sbl) = {}
proof −

{

189

fix x
assume x-R: x ∈ R
assume x-ownsl: x ∈ (Ol ∪ all-acquired sbl)
from t
have (O ∪ all-acquired sb) ∩ (Ol ∪ all-acquired sbl)= {}

apply −
apply (rule ownership-distinct [OF i-bound - - ith, of 0])
apply (auto simp add: Suc)
done

with x-ownsl x-R R-subset have False
by auto

}
thus ?thesis

by blast
qed
with Cons.hyps [OF n-bound nth dist ′]
show ?thesis

by (auto simp add: Suc t)
qed

qed

lemma (in valid-history) valid-history-nth-update:
[[i < length ts; history-consistent j (hd-prog p sb) sb]] =⇒

valid-history program-step (ts[i := (p,is,j,sb,D,O,R)])
by (unfold-locales)

(auto dest: valid-history simp add: nth-list-update split: if-split-asm)

lemma (in valid-reads) valid-reads-nth-update:
[[i < length ts; reads-consistent False O m sb]] =⇒

valid-reads m (ts[i := (p,is,xs,sb,D,O,R)])
by (unfold-locales)

(auto dest: valid-reads simp add: nth-list-update split: if-split-asm)

lemma (in load-tmps-distinct) load-tmps-distinct-nth-update:
[[i < length ts; distinct-load-tmps is]] =⇒

load-tmps-distinct (ts[i := (p,is,xs,sb,D,O,R)])
by (unfold-locales)

(auto dest: load-tmps-distinct simp add: nth-list-update split: if-split-asm)

lemma (in read-tmps-distinct) read-tmps-distinct-nth-update:
[[i < length ts; distinct-read-tmps sb]] =⇒

read-tmps-distinct (ts[i := (p,is,xs,sb,D,O,R)])
by (unfold-locales)

(auto dest: read-tmps-distinct simp add: nth-list-update split: if-split-asm)

lemma (in load-tmps-read-tmps-distinct) load-tmps-read-tmps-distinct-nth-update:
[[i < length ts; load-tmps is ∩ read-tmps sb = {}]] =⇒

load-tmps-read-tmps-distinct (ts[i := (p,is,xs,sb,D,O,R)])

190

by (unfold-locales)
(auto dest: load-tmps-read-tmps-distinct simp add: nth-list-update split: if-split-asm)

lemma (in load-tmps-fresh) load-tmps-fresh-nth-update:
[[i < length ts;

load-tmps is ∩ dom j = {}]] =⇒
load-tmps-fresh (ts[i := (p,is,j,sb,D,O,R)])

by (unfold-locales)
(fastforce dest: load-tmps-fresh

simp add: nth-list-update split: if-split-asm)

fun flush-all-until-volatile-write::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels) thread-config list ⇒ memory ⇒ memory

where
flush-all-until-volatile-write [] m = m

| flush-all-until-volatile-write ((-, -, -, sb,-, -)#ts) m =
flush-all-until-volatile-write ts (flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)

fun share-all-until-volatile-write::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels) thread-config list ⇒ shared ⇒ shared

where
share-all-until-volatile-write [] S = S

| share-all-until-volatile-write ((-, -, -, sb,-,-)#ts) S =
share-all-until-volatile-write ts (share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)

lemma takeWhile-dropWhile-real-prefix:
[[x ∈ set xs; ¬ P x]] =⇒ ∃ y ys. xs=takeWhile P xs @ y#ys ∧ ¬ P y ∧ dropWhile P xs

= y#ys
by (induct xs) auto

lemma buffered-val-witness: buffered-val sb a = Some v =⇒
∃ volatile sop A L R W. Writesb volatile a sop v A L R W ∈ set sb
apply (induct sb)
apply simp
apply (clarsimp split: memref.splits option.splits if-split-asm)
apply blast
apply blast
done

lemma flush-append-Readsb:∧
m. (flush (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Readsb volatile a t v])) m)
= flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m

191

by (induct sb) (auto split: memref.splits)

lemma flush-append-write:∧
m. (flush (sb @ [Writesb volatile a sop v A L R W]) m) = (flush sb m) (a:=v)

by (induct sb) (auto split: memref.splits)

lemma flush-append-Progsb:∧
m. (flush (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb p1 p2 mis])) m) =

(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)
by (induct sb) (auto split: memref.splits)

lemma flush-append-Ghostsb:∧
m. (flush (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Ghostsb A L R W])) m) =

(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)
by (induct sb) (auto split: memref.splits)

lemma share-append:
∧

S. share (xs@ys) S = share ys (share xs S)
by (induct xs) (auto split: memref.splits)

lemma share-append-Readsb:∧
S. (share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Readsb volatile a t v])) S)
= share (takeWhile (Not ◦ is-volatile-Writesb) sb) S

by (induct sb) (auto split: memref.splits)

lemma share-append-Writesb:∧
S. (share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Writesb volatile a sop v A L R

W])) S)
= share (takeWhile (Not ◦ is-volatile-Writesb) sb) S

by (induct sb) (auto split: memref.splits)

lemma share-append-Progsb:∧
S. (share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb p1 p2 mis])) S) =

(share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)
by (induct sb) (auto split: memref.splits)

lemma in-acquired-no-pending-write-outstanding-write:
a ∈ acquired False sb A =⇒ outstanding-refs is-volatile-Writesb sb 6= {}

apply (induct sb)
apply (auto split: memref.splits)
done

lemma flush-buffered-val-conv:∧
m. flush sb m a = (case buffered-val sb a of None ⇒ m a | Some v ⇒ v)

by (induct sb) (auto split: memref.splits option.splits)

lemma reads-consistent-unbuffered-snoc:∧
m. buffered-val sb a = None =⇒ m a = v =⇒ reads-consistent pending-write O m sb

=⇒

192

volatile −→
outstanding-refs is-volatile-Writesb sb = {}

=⇒ reads-consistent pending-write O m (sb @ [Readsb volatile a t v])
by (simp add: reads-consistent-append flush-buffered-val-conv)

lemma reads-consistent-buffered-snoc:∧
m. buffered-val sb a = Some v =⇒ reads-consistent pending-write O m sb =⇒

volatile −→ outstanding-refs is-volatile-Writesb sb = {}
=⇒ reads-consistent pending-write O m (sb @ [Readsb volatile a t v])
by (simp add: reads-consistent-append flush-buffered-val-conv)

lemma reads-consistent-snoc-Writesb:∧
m. reads-consistent pending-write O m sb =⇒

reads-consistent pending-write O m (sb @ [Writesb volatile a sop v A L R W])
by (simp add: reads-consistent-append)

lemma reads-consistent-snoc-Progsb:∧
m. reads-consistent pending-write O m sb =⇒ reads-consistent pending-write O m (sb

@ [Progsb p1 p2 mis])
by (simp add: reads-consistent-append)

lemma reads-consistent-snoc-Ghostsb:∧
m. reads-consistent pending-write O m sb =⇒ reads-consistent pending-write O m (sb

@ [Ghostsb A L R W])
by (simp add: reads-consistent-append)

lemma restrict-map-id [simp]:m |‘ dom m = m
apply (rule ext)
subgoal for x
apply (case-tac m x)
apply (auto simp add: restrict-map-def domIff)
done
done

lemma flush-all-until-volatile-write-Read-commute:
shows

∧
m i. [[i < length ls; ls!i=(p,Read volatile a t#is,j,sb,D,O,R)

]]
=⇒
flush-all-until-volatile-write

(ls[i := (p,is , j(t 7→v), sb @ [Readsb volatile a t v],D ′,O ′,R ′)]) m =
flush-all-until-volatile-write ls m

proof (induct ls)
case Nil thus ?case

by simp
next

case (Cons l ls)
note i-bound = ‹i < length (l#ls)›
note ith = ‹(l#ls)!i = (p,Read volatile a t#is,j,sb,D,O,R)›
show ?case

193

proof (cases i)
case 0
from ith 0 have l: l = (p,Read volatile a t#is,j,sb,D,O,R)

by simp
thus ?thesis

by (simp add: 0 flush-append-Readsb del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Rl Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol,Rl)

by (cases l)
from i-bound ith
have flush-all-until-volatile-write
(ls[n := (p,is , j(t 7→v), sb @ [Readsb volatile a t v],D ′,O ′,R ′)])
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) =
flush-all-until-volatile-write ls (flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)
apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then
show ?thesis

by (simp add: Suc l del: fun-upd-apply)
qed

qed

lemma flush-all-until-volatile-write-append-Ghost-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,sb,D,O,R)]]
=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′,j ′, sb@[Ghostsb A L R W], D ′, O ′,R ′)])

m
= flush-all-until-volatile-write ts m

proof (induct ts)
case Nil thus ?case

by simp
next

case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,j,sb,D,O,R)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,is,j,sb,D,O,R)

by simp
thus ?thesis

by (simp add: 0 flush-append-Ghostsb del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Rl Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol,Rl)

by (cases l)

194

from i-bound ith
have flush-all-until-volatile-write

(ts[n := (p ′,is ′,j ′, sb@[Ghostsb A L R W], D ′, O ′,R ′)])
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) =

flush-all-until-volatile-write ts
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)

apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then show ?thesis
by (simp add: Suc l)

qed
qed

lemma update-commute:
assumes g-unchanged: ∀ a m. a /∈ G −→ g m a = m a
assumes g-independent: ∀ a m. a ∈ G −→ g (f m) a = g m a
assumes f-unchanged: ∀ a m. a /∈ F −→ f m a = m a
assumes f-independent: ∀ a m. a ∈ F −→ f (g m) a = f m a
assumes disj: G ∩ F = {}
shows f (g m) = g (f m)
proof

fix a
show f (g m) a = g (f m) a
proof (cases a ∈ G)

case True
with disj have a-notin-F: a /∈ F

by blast
from f-unchanged [rule-format, OF a-notin-F, of g m]
have f (g m) a = g m a .
also
from g-independent [rule-format, OF True]
have . . . = g (f m) a by simp
finally show ?thesis .

next
case False
note a-notin-G = this
show ?thesis
proof (cases a ∈ F)

case True
from f-independent [rule-format, OF True]
have f (g m) a = f m a by simp
also
from g-unchanged [rule-format, OF a-notin-G]
have . . . = g (f m) a

by simp
finally show ?thesis .

195

next
case False
from f-unchanged [rule-format, OF False]
have f (g m) a = g m a.
also
from g-unchanged [rule-format, OF a-notin-G]
have . . . = m a .
also
from f-unchanged [rule-format, OF False]
have . . . = f m a by simp
also
from g-unchanged [rule-format, OF a-notin-G]
have . . . = g (f m) a

by simp
finally show ?thesis .

qed
qed

qed

lemma update-commute ′:
assumes g-unchanged: ∀ a m. a /∈ G −→ g m a = m a
assumes g-independent: ∀ a m1 m2. a ∈ G −→ g m1 a = g m2 a
assumes f-unchanged: ∀ a m. a /∈ F −→ f m a = m a
assumes f-independent: ∀ a m1 m2. a ∈ F −→ f m1 a = f m2 a
assumes disj: G ∩ F = {}
shows f (g m) = g (f m)
proof −

from g-independent have g-ind ′: ∀ a m. a ∈ G −→ g (f m) a = g m a by blast
from f-independent have f-ind ′: ∀ a m. a ∈ F −→ f (g m) a = f m a by blast
from update-commute [OF g-unchanged g-ind ′ f-unchanged f-ind ′ disj]
show ?thesis .

qed

lemma flush-unchanged-addresses:
∧

m. a /∈ outstanding-refs is-Writesb sb =⇒ flush sb
m a = m a
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons r sb)
note a-notin = ‹a /∈ outstanding-refs is-Writesb (r#sb)›
show ?case
proof (cases r)

case (Writesb volatile a ′ sop v)
from a-notin obtain neq-a-a ′: a 6=a ′ and a-notin ′: a /∈ outstanding-refs is-Writesb sb

by (simp add: Writesb)
from Cons.hyps [OF a-notin ′, of m(a ′:=v)] neq-a-a ′

show ?thesis
apply (simp add: Writesb del: fun-upd-apply)
apply simp

196

done
next

case (Readsb volatile a ′ t v)
from a-notin obtain a-notin ′: a /∈ outstanding-refs is-Writesb sb

by (simp add: Readsb)
from Cons.hyps [OF a-notin ′, of m]
show ?thesis

by (simp add: Readsb)
next

case Progsb with Cons show ?thesis by simp
next

case Ghostsb with Cons show ?thesis by simp
qed

qed

lemma flushed-values-mem-independent:∧
m m ′ a. a ∈ outstanding-refs is-Writesb sb =⇒ flush sb m ′ a = flush sb m a

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons r sb)
show ?case
proof (cases r)

case (Writesb volatile a ′ sop ′ v ′)
have flush sb (m ′(a ′ := v ′)) a ′ = flush sb (m(a ′ := v ′)) a ′

proof (cases a ′ ∈ outstanding-refs is-Writesb sb)
case True
from Cons.hyps [OF this]
show ?thesis .

next
case False
from flush-unchanged-addresses [OF False]
show ?thesis

by simp
qed
with Cons.hyps Cons.prems
show ?thesis

by (auto simp add: Writesb)
next

case Readsb thus ?thesis using Cons
by auto

next
case Progsb thus ?thesis using Cons

by auto
next

case Ghostsb thus ?thesis using Cons
by auto

qed
qed

197

lemma flush-all-until-volatile-write-unchanged-addresses:∧
m. a /∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ls) =⇒
flush-all-until-volatile-write ls m a = m a

proof (induct ls)
case Nil thus ?case by simp

next
case (Cons l ls)
obtain p is O R D xs sb where l: l=(p,is,xs,sb,D,O,R)

by (cases l)
note ‹a /∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set (l#ls))›
then obtain

a-notin-sb: a /∈ outstanding-refs is-Writesb
(takeWhile (Not ◦ is-volatile-Writesb) sb) and

a-notin-ls: a /∈
⋃

((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb
(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ls)

by (auto simp add: l)

from Cons.hyps [OF a-notin-ls]
have flush-all-until-volatile-write ls (flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)

a
=
(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m) a.

also

from flush-unchanged-addresses [OF a-notin-sb]
have (flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m) a = m a.
finally
show ?case

by (simp add: l)
qed

lemma notin-outstanding-non-volatile-takeWhile-lem:
a /∈ outstanding-refs (Not ◦ is-volatile) sb

=⇒
a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)

apply (induct sb)
apply (auto simp add: is-Writesb-def split: if-split-asm memref.splits)
done

lemma notin-outstanding-non-volatile-takeWhile-lem ′:
a /∈ outstanding-refs is-non-volatile-Writesb sb

=⇒
a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)

apply (induct sb)
apply (auto simp add: is-Writesb-def split: if-split-asm memref.splits)
done

198

lemma notin-outstanding-non-volatile-takeWhile-Un-lem ′:
a /∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs (Not ◦ is-volatile) sb) ‘ set ls)

=⇒ a /∈
⋃

((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb
(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ls)

proof (induct ls)
case Nil thus ?case by simp

next
case (Cons l ls)
obtain p is O R D xs sb where l: l=(p,is,xs,sb,D,O,R)

by (cases l)

from Cons.prems
obtain

a-notin-sb: a /∈ outstanding-refs (Not ◦ is-volatile) sb and
a-notin-ls: a /∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs (Not ◦ is-volatile) sb) ‘ set ls)

by (force simp add: l simp del: o-apply)
from notin-outstanding-non-volatile-takeWhile-lem [OF a-notin-sb]
Cons.hyps [OF a-notin-ls]

show ?case
by (auto simp add: l simp del: o-apply)

qed

lemma flush-all-until-volatile-write-unchanged-addresses ′:
assumes notin: a /∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs (Not ◦ is-volatile) sb) ‘ set ls)

shows flush-all-until-volatile-write ls m a = m a
using notin-outstanding-non-volatile-takeWhile-Un-lem ′ [OF notin]
by (auto intro: flush-all-until-volatile-write-unchanged-addresses)

lemma flush-all-until-volatile-wirte-mem-independent:∧
m m ′. a ∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ls) =⇒
flush-all-until-volatile-write ls m ′ a = flush-all-until-volatile-write ls m a

proof (induct ls)
case Nil thus ?case by simp

next
case (Cons l ls)
obtain p is O R D xs sb where l: l=(p,is,xs,sb,D,O,R)

by (cases l)
note a-in = ‹a ∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set (l#ls))›
show ?case
proof (cases a ∈

⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ls))
case True
from Cons.hyps [OF this]
show ?thesis

by (simp add: l)
next

case False

199

with a-in
have a ∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)

by (auto simp add: l)
from flushed-values-mem-independent [rule-format, OF this]
have flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m ′ a =

flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m a.
with flush-all-until-volatile-write-unchanged-addresses [OF False]
show ?thesis

by (auto simp add: l)
qed

qed

lemma flush-all-until-volatile-write-buffered-val-conv:
assumes no-volatile-Writesb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m i. [[i < length ls; ls!i = (p,is,xs,sb,D,O,R);

∀ j < length ls. i 6= j −→
(let (-,-,-,sbj,-,-,-) = ls!j

in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦
is-volatile-Writesb) sbj))]] =⇒

flush-all-until-volatile-write ls m a =
(case buffered-val sb a of None ⇒ m a | Some v ⇒ v)

proof (induct ls)
case Nil thus ?case

by simp
next

case (Cons l ls)
note i-bound = ‹i < length (l#ls)›
note ith = ‹(l#ls)!i = (p,is,xs,sb,D,O,R)›
note notin = ‹∀ j < length (l#ls). i 6= j −→

(let (-,-,-,sbj,-,-,-) = (l#ls)!j
in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,is,xs,sb,D,O,R)

by simp
from no-volatile-Writesb have take-all: takeWhile (Not ◦ is-volatile-Writesb) sb = sb

by (auto simp add: outstanding-refs-conv)

have a /∈
⋃
((λ(-,-, -, sb, -,-,-).

outstanding-refs is-Writesb
(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ls) (is a /∈ ?LS)

proof
assume a ∈ ?LS
from in-Union-image-nth-conv [OF this]
obtain j pj isj Oj Rj Dj xsj sbj where

j-bound: j < length ls and
jth: ls!j = (pj,isj,xsj,sbj,Dj,Oj,Rj) and

200

a-in-j: a ∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj)
by fastforce

from a-in-j obtain v ′ sop ′ A L R W where Writesb False a sop ′ v ′ A L R W∈ set
(takeWhile (Not ◦ is-volatile-Writesb) sbj)

apply (clarsimp simp add: outstanding-refs-conv)
subgoal for x

apply (case-tac x)
apply clarsimp
apply (frule set-takeWhileD)
apply auto
done
done

with notin [rule-format, of Suc j] j-bound jth
show False

by (force simp add: 0 outstanding-refs-conv is-non-volatile-Writesb-def
split: memref.splits)
qed
from flush-all-until-volatile-write-unchanged-addresses [OF this]
have flush-all-until-volatile-write ls (flush sb m) a = (flush sb m) a

by (simp add: take-all)
then
show ?thesis

by (simp add: 0 l take-all flush-buffered-val-conv)
next

case (Suc n)
obtain pl isl Ol Rl Dl xsl sbl where l: l = (pl,isl,xsl,sbl,Dl,Ol,Rl)

by (cases l)

from i-bound ith notin
have flush-all-until-volatile-write ls

(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) a
= (case buffered-val sb a of None ⇒

(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) a | Some v ⇒ v)
apply −
apply (rule Cons.hyps)
apply (force simp add: Suc Let-def simp del: o-apply)+
done

moreover
from notin [rule-format, of 0] l
have a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)

sbl)
by (auto simp add: Let-def outstanding-refs-conv Suc)

then
have a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbl)

apply (clarsimp simp add: outstanding-refs-conv is-Writesb-def split: memref.splits
dest: set-takeWhileD)

apply (frule set-takeWhileD)
apply force
done

201

from flush-unchanged-addresses [OF this]
have (flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) a = m a .

ultimately
show ?thesis

by (simp add: Suc l split: option.splits)
qed

qed

context program
begin

abbreviation sb-concurrent-step ::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ (′p, ′p

store-buffer, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ bool
(‹- ⇒sb -› [60,60] 100)

where
sb-concurrent-step ≡

computation.concurrent-step sb-memop-step store-buffer-step program-step (λp p ′ is
sb. sb)

term x ⇒sb Y

abbreviation (in program) sb-concurrent-steps::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ (′p, ′p

store-buffer, ′dirty, ′owns, ′rels, ′shared) global-config ⇒ bool
(‹- ⇒sb

∗ -› [60,60] 100)
where
sb-concurrent-steps ≡ sb-concurrent-step^∗∗

term x ⇒sb
∗ Y

abbreviation sbh-concurrent-step ::
(′p, ′p store-buffer,bool,owns,rels,shared) global-config ⇒ (′p, ′p

store-buffer,bool,owns,rels,shared) global-config ⇒ bool
(‹- ⇒sbh -› [60,60] 100)

where
sbh-concurrent-step ≡

computation.concurrent-step sbh-memop-step flush-step program-step
(λp p ′ is sb. sb @ [Progsb p p ′ is])

term x ⇒sbh Y

abbreviation sbh-concurrent-steps::
(′p, ′p store-buffer,bool,owns,rels,shared) global-config ⇒ (′p, ′p

store-buffer,bool,owns,rels,shared) global-config ⇒ bool
(‹- ⇒sbh

∗ -› [60,60] 100)
where

202

sbh-concurrent-steps ≡ sbh-concurrent-step^∗∗

term x ⇒sbh
∗ Y

end

lemma instrs-append-Readsb:
instrs (sb@[Readsb volatile a t v]) = instrs sb @ [Read volatile a t]
by (induct sb) (auto split: memref.splits)

lemma instrs-append-Writesb:
instrs (sb@[Writesb volatile a sop v A L R W]) = instrs sb @ [Write volatile a sop A L

R W]
by (induct sb) (auto split: memref.splits)

lemma instrs-append-Ghostsb:
instrs (sb@[Ghostsb A L R W]) = instrs sb @ [Ghost A L R W]
by (induct sb) (auto split: memref.splits)

lemma prog-instrs-append-Ghostsb:
prog-instrs (sb@[Ghostsb A L R W]) = prog-instrs sb
by (induct sb) (auto split: memref.splits)

lemma prog-instrs-append-Readsb:
prog-instrs (sb@[Readsb volatile a t v]) = prog-instrs sb
by (induct sb) (auto split: memref.splits)

lemma prog-instrs-append-Writesb:
prog-instrs (sb@[Writesb volatile a sop v A L R W]) = prog-instrs sb
by (induct sb) (auto split: memref.splits)

lemma hd-prog-append-Readsb:
hd-prog p (sb@[Readsb volatile a t v]) = hd-prog p sb
by (induct sb) (auto split: memref.splits)

lemma hd-prog-append-Writesb:
hd-prog p (sb@[Writesb volatile a sop v A L R W]) = hd-prog p sb
by (induct sb) (auto split: memref.splits)

lemma flush-update-other:
∧

m. a /∈ outstanding-refs (Not ◦ is-volatile) sb =⇒
outstanding-refs (is-volatile-Writesb) sb = {} =⇒

flush sb (m(a:=v)) = (flush sb m)(a := v)
by (induct sb)

(auto split: memref.splits if-split-asm simp add: fun-upd-twist)

lemma flush-update-other ′:
∧

m. a /∈ outstanding-refs (is-non-volatile-Writesb) sb =⇒
outstanding-refs (is-volatile-Writesb) sb = {} =⇒

flush sb (m(a:=v)) = (flush sb m)(a := v)
by (induct sb)

(auto split: memref.splits if-split-asm simp add: fun-upd-twist)

203

lemma flush-update-other ′′:
∧

m. a /∈ outstanding-refs (is-non-volatile-Writesb) sb =⇒
a /∈ outstanding-refs (is-volatile-Writesb) sb =⇒

flush sb (m(a:=v)) = (flush sb m)(a := v)
by (induct sb)

(auto split: memref.splits if-split-asm simp add: fun-upd-twist)

lemma flush-all-until-volatile-write-update-other:∧
m. ∀ j < length ts.

(let (-,-,-,sbj,-,-,-) = ts!j
in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))
=⇒
flush-all-until-volatile-write ts (m(a := v)) =
(flush-all-until-volatile-write ts m)(a := v)

proof (induct ts)
case Nil thus ?case

by simp
next

case (Cons t ts)
note notin = ‹∀ j < length (t#ts).

(let (-,-,-,sbj,-,-,-) = (t#ts)!j
in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))›
hence notin ′: ∀ j < length ts.

(let (-,-,-,sbj,-,-,-) = ts!j
in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))
by auto

obtain pl isl Ol Rl Dl xsl sbl where t: t = (pl,isl,xsl,sbl,Dl,Ol,Rl)
by (cases t)

have no-write:
outstanding-refs (is-volatile-Writesb) (takeWhile (Not ◦ is-volatile-Writesb) sbl) = {}
by (auto simp add: outstanding-refs-conv dest: set-takeWhileD)

from notin [rule-format, of 0] t
have a-notin:

a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbl)
by (auto)

from flush-update-other ′ [OF a-notin no-write]
have (flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) (m(a := v))) =

(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)(a := v).
with Cons.hyps [OF notin ′, of (flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)]
show ?case

by (simp add: t del: fun-upd-apply)
qed

204

lemma flush-all-until-volatile-write-append-non-volatile-write-commute:
assumes no-volatile-Writesb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R);

∀ j < length ts. i 6= j −→
(let (-,-,-,sbj,-,-,-) = ts!j

in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦
is-volatile-Writesb) sbj))]]

=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′, xs, sb @ [Writesb False a sop v A L R
W],D ′, O,R ′)]) m =

(flush-all-until-volatile-write ts m)(a := v)
proof (induct ts)

case Nil thus ?case
by simp

next
case (Cons t ts)
note i-bound = ‹i < length (t#ts)›
note ith = ‹(t#ts)!i = (p,is,xs,sb,D,O,R)›
note notin = ‹∀ j < length (t#ts). i 6= j −→

(let (-,-,-,sbj,-,-,-) = (t#ts)!j
in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))›
show ?case
proof (cases i)

case 0
from ith 0 have t: t = (p,is,xs,sb,D,O,R)

by simp
from no-volatile-Writesb have take-all: takeWhile (Not ◦ is-volatile-Writesb) sb = sb

by (auto simp add: outstanding-refs-conv)

from no-volatile-Writesb
have take-all ′: takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Writesb False a sop v A L

R W]) =
(sb @ [Writesb False a sop v A L R W])

by (auto simp add: outstanding-refs-conv)
from notin
have ∀ j < length ts.

(let (-,-,-,sbj,-,-,-) = ts!j
in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))
by (auto simp add: 0)

from flush-all-until-volatile-write-update-other [OF this]
show ?thesis

by (simp add: 0 t take-all ′ take-all flush-append-write del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Rl Dl xsl sbl where t: t = (pl,isl,xsl,sbl,Dl,Ol,Rl)

by (cases t)
from i-bound ith notin
have flush-all-until-volatile-write

205

(ts[n := (p ′,is ′,xs, sb @ [Writesb False a sop v A L R W], D ′, O,R ′)])
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) =

(flush-all-until-volatile-write ts
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m))
(a := v)

apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc simp del: o-apply)
done

then
show ?thesis

by (simp add: t Suc del: fun-upd-apply)
qed

qed

lemma flush-all-until-volatile-write-append-unflushed:
assumes volatile-Writesb: ¬ outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m i. [[i < length ts; ts!i = (p,is,xs,sb,D,O,R)]]

=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′, xs, sb @ sbx,D ′, O,R ′)]) m =
(flush-all-until-volatile-write ts m)

proof (induct ts)
case Nil thus ?case

by simp
next

case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,xs,sb,D,O,R)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,is,xs,sb,D,O,R)

by simp
from volatile-Writesb
obtain r where r-in: r ∈ set sb and volatile-r: is-volatile-Writesb r

by (auto simp add: outstanding-refs-conv)
from takeWhile-append1 [OF r-in, of (Not ◦ is-volatile-Writesb)] volatile-r

have (flush (takeWhile (Not ◦ is-volatile-Writesb) (sb @ sbx)) m) =
(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)

by auto
then
show ?thesis

by (simp add: 0 l)
next

case (Suc n)
obtain pl isl Ol Rl Dl xsl sbl where l: l = (pl,isl,xsl,sbl,Dl,Ol,Rl)

by (cases l)

from Cons.hyps [of n] i-bound ith

206

show ?thesis
by (simp add: l Suc)

qed
qed

lemma flush-all-until-volatile-nth-update-unused:
shows

∧
m i. [[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]

=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′,j ′, sb, D ′, O ′,R ′)]) m =
(flush-all-until-volatile-write ts m)

proof (induct ts)
case Nil thus ?case

by simp
next

case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,j,sb,D,O,R)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,is,j,sb,D,O,R)

by simp
show ?thesis

by (simp add: 0 l)
next

case (Suc n)
obtain pl isl Ol Rl Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol,Rl)

by (cases l)

from Cons.hyps [of n] i-bound ith
show ?thesis

by (simp add: l Suc)
qed

qed

lemma flush-all-until-volatile-write-append-volatile-write-commute:
assumes no-volatile-Writesb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m i. [[i < length ts; ts!i = (p,is,j,sb,D,O,R)]] =⇒

flush-all-until-volatile-write
(ts[i := (p ′,is ′, j, sb @ [Writesb True a sop v A L R W],D ′, O,R ′)]) m

= flush-all-until-volatile-write ts m
proof (induct ts)

case Nil thus ?case
by simp

next
case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,j,sb,D,O,R)›
show ?case
proof (cases i)

case 0

207

from ith 0 have l: l = (p,is,j,sb,D,O,R)
by simp

from no-volatile-Writesb
have s1: takeWhile (Not ◦ is-volatile-Writesb) sb = sb

by (auto simp add: outstanding-refs-conv)

from no-volatile-Writesb
have s2: (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Writesb True a sop v A L R W]))

= sb
by (auto simp add: outstanding-refs-conv)

show ?thesis
by (simp add: 0 l s1 s2)

next
case (Suc n)
obtain pl isl Ol Rl Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol,Rl)

by (cases l)

from Cons.hyps [of n] i-bound ith
show ?thesis

by (simp add: l Suc)
qed

qed

lemma reads-consistent-update:∧
pending-write O m. reads-consistent pending-write O m sb =⇒

a /∈ outstanding-refs (Not ◦ is-volatile) sb =⇒
reads-consistent pending-write O (m(a := v)) sb

apply (induct sb)
apply simp
apply (clarsimp split: memref.splits if-split-asm

simp add: fun-upd-twist)
subgoal for sb O m x11 addr val A R pending-write
apply (case-tac a=addr)
apply simp
apply (fastforce simp add: fun-upd-twist)
done
done

lemma (in program) history-consistent-hd-prog:
∧

p. history-consistent j p ′ xs
=⇒ history-consistent j (hd-prog p xs) xs
apply (induct xs)
apply simp
apply (auto split: memref.splits option.splits)
done

locale valid-program = program +
fixes valid-prog
assumes valid-prog-inv: [[j`p →p (p ′,is ′); valid-prog p]] =⇒ valid-prog p ′

208

lemma (in valid-program) history-consistent-appendD:∧
j ys p. ∀ sop ∈ write-sops xs. valid-sop sop =⇒

read-tmps xs ∩ read-tmps ys = {} =⇒
history-consistent j p (xs@ys) =⇒
(history-consistent (j|‘ (dom j − read-tmps ys)) p xs ∧
history-consistent j (last-prog p xs) ys ∧
read-tmps ys ∩

⋃
(fst ‘ write-sops xs) = {})

proof (induct xs)
case Nil thus ?case

by auto
next

case (Cons x xs)
note valid-sops = ‹∀ sop∈write-sops (x # xs). valid-sop sop›
note read-tmps-dist = ‹read-tmps (x#xs) ∩ read-tmps ys = {}›
note consis = ‹history-consistent j p ((x#xs)@ys)›
show ?case
proof (cases x)

case (Writesb volatile a sop v)
obtain D f where sop: sop=(D,f)

by (cases sop)
from consis obtain

D-tmps: D ⊆ dom j and
f-v: f j = v and
D-read-tmps: D ∩ read-tmps (xs @ ys) = {} and
consis ′: history-consistent j p (xs @ ys)
by (simp add: Writesb sop)

from valid-sops obtain
valid-Df: valid-sop (D,f) and
valid-sops ′: ∀ sop∈write-sops xs. valid-sop sop
by (auto simp add: Writesb sop)

from valid-Df
interpret valid-sop (D,f) .
from read-tmps-dist have read-tmps-dist ′: read-tmps xs ∩ read-tmps ys = {}

by (simp add: Writesb)

from D-read-tmps have D-ys: D ∩ read-tmps ys = {}
by (auto simp add: read-tmps-append)

with D-tmps have D-subset: D ⊆ dom j − read-tmps ys
by auto

moreover

from valid-sop [OF refl D-tmps]
have f j = f (j |‘ D).
moreover
let ?j ′ = j |‘ (dom j − read-tmps ys)
from D-subset
have ?j ′ |‘ D = j |‘ D

apply −
apply (rule ext)

209

by (auto simp add: restrict-map-def)
moreover
from D-subset
have D-tmps ′: D ⊆ dom ?j ′

by auto
ultimately
have f-v ′: f ?j ′ = v

using valid-sop [OF refl D-tmps ′] f-v
by simp

from D-read-tmps
have D ∩ read-tmps xs = {}

by (auto simp add: read-tmps-append)
with Cons.hyps [OF valid-sops ′ read-tmps-dist ′ consis ′] D-tmps D-subset f-v ′ D-ys
show ?thesis

by (auto simp add: Writesb sop)
next

case (Readsb volatile a t v)
from consis obtain

tmps-t: j t = Some v and
consis ′: history-consistent j p (xs @ ys)
by (simp add: Readsb split: option.splits)

from read-tmps-dist
obtain t-ys: t /∈ read-tmps ys and read-tmps-dist ′: read-tmps xs ∩ read-tmps ys = {}

by (auto simp add: Readsb)
from valid-sops have valid-sops ′: ∀ sop∈write-sops xs. valid-sop sop

by (auto simp add: Readsb)
from t-ys tmps-t
have (j |‘ (dom j − read-tmps ys)) t = Some v

by (auto simp add: restrict-map-def domIff)
with Cons.hyps [OF valid-sops ′ read-tmps-dist ′ consis ′]

show ?thesis
by (auto simp add: Readsb)

next
case (Progsb p1 p2 mis)
from consis obtain p1-p: p1 = p and
prog-step: j |‘ (dom j − read-tmps (xs @ ys))` p1 →p (p2, mis) and
consis ′: history-consistent j p2 (xs @ ys)
by (auto simp add: Progsb)

let ?j ′ = j |‘ (dom j − read-tmps ys)
have eq: ?j ′ |‘ (dom ?j ′ − read-tmps xs) = j |‘ (dom j − read-tmps (xs @ ys))

apply (rule ext)
apply (auto simp add: read-tmps-append restrict-map-def domIff split: if-split-asm)
done

from valid-sops have valid-sops ′: ∀ sop∈write-sops xs. valid-sop sop
by (auto simp add: Progsb)

from read-tmps-dist

210

obtain read-tmps-dist ′: read-tmps xs ∩ read-tmps ys = {}
by (auto simp add: Progsb)

from Cons.hyps [OF valid-sops ′ read-tmps-dist ′ consis ′] p1-p prog-step eq
show ?thesis

by (simp add: Progsb)
next

case Ghostsb
with Cons show ?thesis

by auto
qed

qed

lemma (in valid-program) history-consistent-appendI:∧
j ys p. ∀ sop ∈ write-sops xs. valid-sop sop =⇒

history-consistent (j|‘ (dom j − read-tmps ys)) p xs =⇒
history-consistent j (last-prog p xs) ys =⇒
read-tmps ys ∩

⋃
(fst ‘ write-sops xs) = {} =⇒ valid-prog p =⇒

history-consistent j p (xs@ys)
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs)
note valid-sops = ‹∀ sop∈write-sops (x # xs). valid-sop sop›
note consis-xs = ‹history-consistent (j |‘ (dom j − read-tmps ys)) p (x # xs)›
note consis-ys = ‹history-consistent j (last-prog p (x # xs)) ys›
note dist = ‹read-tmps ys ∩

⋃
(fst ‘ write-sops (x # xs)) = {}›

note valid-p = ‹valid-prog p›
show ?case
proof (cases x)

case (Writesb volatile a sop v)
obtain D f where sop: sop=(D,f)

by (cases sop)
from consis-xs obtain

D-tmps: D ⊆ dom j − read-tmps ys and
f-v: f (j |‘ (dom j − read-tmps ys)) = v (is f ?j = v) and
D-read-tmps: D ∩ read-tmps xs = {} and
consis ′: history-consistent (j |‘ (dom j − read-tmps ys)) p xs
by (simp add: Writesb sop)

from D-tmps D-read-tmps
have D ∩ read-tmps (xs @ ys) = {}

by (auto simp add: read-tmps-append)
moreover
from D-tmps have D-tmps ′: D ⊆ dom j

by auto
moreover
from valid-sops obtain

valid-Df: valid-sop (D,f) and
valid-sops ′: ∀ sop∈write-sops xs. valid-sop sop
by (auto simp add: Writesb sop)

211

from valid-Df
interpret valid-sop (D,f) .

from D-tmps
have tmps-eq: j |‘ ((dom j − read-tmps ys) ∩ D) = j |‘ D

apply −
apply (rule ext)
apply (auto simp add: restrict-map-def)
done

from D-tmps
have f ?j = f (?j |‘ D)

apply −
apply (rule valid-sop [OF refl])
apply auto
done

with valid-sop [OF refl D-tmps ′] f-v D-tmps

have f j = v
by (clarsimp simp add: tmps-eq)

moreover
from consis-ys have consis-ys ′: history-consistent j (last-prog p xs) ys

by (auto simp add: Writesb)

from dist have dist ′: read-tmps ys ∩
⋃
(fst ‘ write-sops xs) = {}

by (auto simp add: Writesb)

moreover note Cons.hyps [OF valid-sops ′ consis ′ consis-ys ′ dist ′ valid-p]

ultimately show ?thesis
by (simp add: Writesb sop)

next
case (Readsb volatile a t v)
from consis-xs obtain

t-v: (j |‘ (dom j − read-tmps ys)) t = Some v and
consis-xs ′: history-consistent (j |‘ (dom j − read-tmps ys)) p xs
by (clarsimp simp add: Readsb split: option.splits)

from t-v have j t = Some v
by (auto simp add: restrict-map-def split: if-split-asm)

moreover
from valid-sops obtain

valid-sops ′: ∀ sop∈write-sops xs. valid-sop sop
by (auto simp add: Readsb)

from consis-ys have consis-ys ′: history-consistent j (last-prog p xs) ys
by (auto simp add: Readsb)

from dist have dist ′: read-tmps ys ∩
⋃
(fst ‘ write-sops xs) = {}

by (auto simp add: Readsb)

note Cons.hyps [OF valid-sops ′ consis-xs ′ consis-ys ′ dist ′ valid-p]
ultimately
show ?thesis

212

by (simp add: Readsb)
next

case (Progsb p1 p2 mis)
let ?j = j |‘ (dom j − read-tmps ys)
from consis-xs obtain

p1-p: p1 = p and
prog-step: ?j |‘ (dom ?j − read-tmps xs)` p1 →p (p2, mis) and
consis ′: history-consistent ?j p2 xs
by (auto simp add: Progsb)

have eq: ?j |‘ (dom ?j − read-tmps xs) = j |‘ (dom j − read-tmps (xs @ ys))
apply (rule ext)
apply (auto simp add: read-tmps-append restrict-map-def domIff split: if-split-asm)
done

from prog-step eq
have j |‘ (dom j − read-tmps (xs @ ys))` p1 →p (p2, mis) by simp
moreover
from valid-sops obtain

valid-sops ′: ∀ sop∈write-sops xs. valid-sop sop
by (auto simp add: Progsb)

from consis-ys have consis-ys ′: history-consistent j (last-prog p2 xs) ys
by (auto simp add: Progsb)

from dist have dist ′: read-tmps ys ∩
⋃
(fst ‘ write-sops xs) = {}

by (auto simp add: Progsb)

note Cons.hyps [OF valid-sops ′ consis ′ consis-ys ′ dist ′ valid-prog-inv [OF prog-step
valid-p [simplified p1-p [symmetric]]]]

ultimately
show ?thesis

by (simp add: Progsb p1-p)
next

case Ghostsb
with Cons show ?thesis

by auto
qed

qed

lemma (in valid-program) history-consistent-append-conv:∧
j ys p. ∀ sop ∈ write-sops xs. valid-sop sop =⇒

read-tmps xs ∩ read-tmps ys = {} =⇒ valid-prog p =⇒
history-consistent j p (xs@ys) =
(history-consistent (j|‘ (dom j − read-tmps ys)) p xs ∧
history-consistent j (last-prog p xs) ys ∧
read-tmps ys ∩

⋃
(fst ‘ write-sops xs) = {})

apply rule
apply (rule history-consistent-appendD,assumption+)
apply (rule history-consistent-appendI)
apply auto

213

done

lemma instrs-takeWhile-dropWhile-conv:
instrs xs = instrs (takeWhile P xs) @ instrs (dropWhile P xs)

by (induct xs) (auto split: memref.splits)

lemma (in program) history-consistent-hd-prog-p:∧
p. history-consistent j p xs =⇒ p = hd-prog p xs

by (induct xs) (auto split: memref.splits option.splits)

lemma instrs-append:
∧

ys. instrs (xs@ys) = instrs xs @ instrs ys
by (induct xs) (auto split: memref.splits)

lemma prog-instrs-append:
∧

ys. prog-instrs (xs@ys) = prog-instrs xs @ prog-instrs ys
by (induct xs) (auto split: memref.splits)

lemma prog-instrs-empty: ∀ r ∈ set xs. ¬ is-Progsb r =⇒ prog-instrs xs = []
by (induct xs) (auto split: memref.splits)

lemma length-dropWhile [termination-simp]: length (dropWhile P xs) ≤ length xs
by (induct xs) auto

lemma prog-instrs-filter-is-Progsb: prog-instrs (filter (is-Progsb) xs) = prog-instrs xs
by (induct xs) (auto split: memref.splits)

lemma Cons-to-snoc:
∧

x. ∃ ys y. (x#xs) = (ys@[y])
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x1 xs)
from Cons [of x1] obtain ys y where x1#xs = ys @ [y]

by auto
then
show ?case

by simp
qed

lemma causal-program-history-Read:
assumes causal-Read: causal-program-history (Read volatile a t # issb) sb
shows causal-program-history issb (sb @ [Readsb volatile a t v])

proof
fix sb1 sb2

assume sb: sb @ [Readsb volatile a t v] = sb1 @ sb2

from causal-Read
interpret causal-program-history Read volatile a t # issb sb .
show ∃ is. instrs sb2 @ issb = is @ prog-instrs sb2

proof (cases sb2)

214

case Nil
thus ?thesis

by simp
next

case (Cons r sb ′)
from Cons-to-snoc [of r sb ′] Cons obtain ys y where sb2-snoc: sb2=ys@[y]

by auto
with sb obtain y: y = Readsb volatile a t v and sb: sb = sb1@ys

by simp

from causal-program-history [OF sb] obtain is where
instrs ys @ Read volatile a t # issb = is @ prog-instrs ys
by auto

then show ?thesis
by (simp add: sb2-snoc y instrs-append prog-instrs-append)

qed
qed

lemma causal-program-history-Write:
assumes causal-Write: causal-program-history (Write volatile a sop A L R W# issb) sb
shows causal-program-history issb (sb @ [Writesb volatile a sop v A L R W])

proof
fix sb1 sb2

assume sb: sb @ [Writesb volatile a sop v A L R W] = sb1 @ sb2

from causal-Write
interpret causal-program-history Write volatile a sop A L R W# issb sb .
show ∃ is. instrs sb2 @ issb = is @ prog-instrs sb2

proof (cases sb2)
case Nil
thus ?thesis

by simp
next

case (Cons r sb ′)
from Cons-to-snoc [of r sb ′] Cons obtain ys y where sb2-snoc: sb2=ys@[y]

by auto
with sb obtain y: y = Writesb volatile a sop v A L R W and sb: sb = sb1@ys

by simp

from causal-program-history [OF sb] obtain is where
instrs ys @ Write volatile a sop A L R W# issb = is @ prog-instrs ys
by auto

then show ?thesis
by (simp add: sb2-snoc y instrs-append prog-instrs-append)

qed
qed

lemma causal-program-history-Progsb:
assumes causal-Write: causal-program-history issb sb
shows causal-program-history (issb@mis) (sb @ [Progsb p1 p2 mis])

215

proof
fix sb1 sb2

assume sb: sb @ [Progsb p1 p2 mis] = sb1 @ sb2

from causal-Write
interpret causal-program-history issb sb .
show ∃ is. instrs sb2 @ (issb@mis) = is @ prog-instrs sb2

proof (cases sb2)
case Nil
thus ?thesis

by simp
next

case (Cons r sb ′)
from Cons-to-snoc [of r sb ′] Cons obtain ys y where sb2-snoc: sb2=ys@[y]

by auto
with sb obtain y: y = Progsb p1 p2 mis and sb: sb = sb1@ys

by simp

from causal-program-history [OF sb] obtain is where
instrs ys @ (issb @ mis) = is @ prog-instrs (ys@[Progsb p1 p2 mis])
by (auto simp add: prog-instrs-append)

then show ?thesis
by (simp add: sb2-snoc y instrs-append prog-instrs-append)

qed
qed

lemma causal-program-history-Ghost:
assumes causal-Ghostsb: causal-program-history (Ghost A L R W # issb) sb
shows causal-program-history issb (sb @ [Ghostsb A L R W])

proof
fix sb1 sb2

assume sb: sb @ [Ghostsb A L R W] = sb1 @ sb2

from causal-Ghostsb
interpret causal-program-history Ghost A L R W # issb sb .
show ∃ is. instrs sb2 @ issb = is @ prog-instrs sb2

proof (cases sb2)
case Nil
thus ?thesis

by simp
next

case (Cons r sb ′)
from Cons-to-snoc [of r sb ′] Cons obtain ys y where sb2-snoc: sb2=ys@[y]

by auto
with sb obtain y: y = Ghostsb A L R W and sb: sb = sb1@ys

by simp

from causal-program-history [OF sb] obtain is where
instrs ys @ Ghost A L R W # issb = is @ prog-instrs ys
by auto

then show ?thesis
by (simp add: sb2-snoc y instrs-append prog-instrs-append)

216

qed
qed

lemma hd-prog-last-prog-end: [[p = hd-prog p sb ; last-prog p sb = psb]] =⇒ p = hd-prog
psb sb

by (induct sb) (auto split: memref.splits)

lemma hd-prog-idem: hd-prog (hd-prog p xs) xs = hd-prog p xs
by (induct xs) (auto split: memref.splits)

lemma last-prog-idem: last-prog (last-prog p sb) sb = last-prog p sb
by (induct sb) (auto split: memref.splits)

lemma last-prog-hd-prog-append:
last-prog (hd-prog psb (sb@sb ′)) sb =last-prog (hd-prog psb sb ′) sb

apply (induct sb)
apply (auto split: memref.splits)
done

lemma last-prog-hd-prog: last-prog (hd-prog p xs) xs = last-prog p xs
by (induct xs) (auto split: memref.splits)

lemma last-prog-append-Readsb:∧
p. last-prog p (sb @ [Readsb volatile a t v]) = last-prog p sb

by (induct sb) (auto split: memref.splits)

lemma last-prog-append-Writesb:∧
p. last-prog p (sb @ [Writesb volatile a sop v A L R W]) = last-prog p sb

by (induct sb) (auto split: memref.splits)

lemma last-prog-append-Progsb:∧
x. last-prog x (sb@[Progsb p p ′ mis]) = p ′

by (induct sb) (auto split: memref.splits)

lemma hd-prog-append-Progsb: hd-prog x (sb @ [Progsb p p ′ mis]) = hd-prog p sb
by (induct sb) (auto split: memref.splits)

lemma hd-prog-last-prog-append-Progsb:∧
p ′. hd-prog p ′ xs = p ′ =⇒ last-prog p ′ xs = p1 =⇒

hd-prog p ′ (xs @ [Progsb p1 p2 mis]) = p ′

apply (induct xs)
apply (auto split: memref.splits)
done

lemma hd-prog-append-Ghostsb:

217

hd-prog p (sb@[Ghostsb A R L W]) = hd-prog p sb
by (induct sb) (auto split: memref.splits)

lemma last-prog-append-Ghostsb:∧
p. last-prog p (sb @ [Ghostsb A L R W]) = last-prog p sb

by (induct sb) (auto split: memref.splits)

lemma dropWhile-all-False-conv:
∀ x ∈ set xs. ¬ P x =⇒ dropWhile P xs = xs
by (induct xs) auto

lemma dropWhile-append-all-False:
∀ y ∈ set ys. ¬ P y =⇒

dropWhile P (xs@ys) = dropWhile P xs @ ys
apply (induct xs)
apply (auto simp add: dropWhile-all-False-conv)
done

lemma reads-consistent-append-first:∧
m ys. reads-consistent pending-write O m (xs @ ys) =⇒ reads-consistent pending-write

O m xs
by (clarsimp simp add: reads-consistent-append)

lemma reads-consistent-takeWhile:
assumes consis: reads-consistent pending-write O m sb
shows reads-consistent pending-write O m (takeWhile P sb)
using reads-consistent-append [where xs=(takeWhile P sb) and ys=(dropWhile P sb)]
consis
apply (simp add: reads-consistent-append)
done

lemma flush-flush-all-until-volatile-write-Writesb-volatile-commute:∧
i m. [[i < length ts; ts!i=(p,is,xs,Writesb True a sop v A L R W#sb,D,O,R);

∀ i < length ts. (∀ j < length ts. i 6= j −→
(let (-,-,-,sbi,-,-,-) = ts!i;

(-,-,-,sbj,-,-,-) = ts!j
in outstanding-refs is-Writesb sbi ∩

outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj) =
{}));

∀ j < length ts. i 6= j −→
(let (-,-,-,sbj,-,-,-) = ts!j in a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))]]
=⇒
flush (takeWhile (Not ◦ is-volatile-Writesb) sb)
((flush-all-until-volatile-write ts m)(a := v)) =

flush-all-until-volatile-write (ts[i := (p,is,xs, sb, D ′, O ′,R ′)])
(m(a := v))

proof (induct ts)
case Nil thus ?case

218

by simp
next

case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,xs,Writesb True a sop v A L R W#sb,D,O,R)›
note disj = ‹∀ i < length (l#ts). (∀ j < length (l#ts). i 6= j −→

(let (-,-,-,sbi,-,-,-) = (l#ts)!i;
(-,-,-,sbj,-,-,-) = (l#ts)!j

in outstanding-refs is-Writesb sbi ∩
outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj) =

{}))›
note a-notin = ‹∀ j < length (l#ts). i 6= j −→

(let (-,-,-,sbj,-,-,-) = (l#ts)!j
in a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj))›

show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,is,xs,Writesb True a sop v A L R W#sb,D,O,R)

by simp
have a-notin-ts:

a /∈
⋃
((λ(-,-,-,sb,-,-,-). outstanding-refs is-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ts) (is a /∈ ?U)
proof

assume a ∈ ?U
from in-Union-image-nth-conv [OF this]
obtain j pj isj Oj Rj Dj xsj sbj where

j-bound: j < length ts and
jth: ts!j = (pj,isj,xsj,sbj,Dj,Oj,Rj) and
a-in-j: a ∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj)
by fastforce

from a-notin [rule-format, of Suc j] j-bound 0 a-in-j
show False

by (auto simp add: jth)
qed

from a-notin-ts
have (flush-all-until-volatile-write ts m)(a := v) =

flush-all-until-volatile-write ts (m(a := v))
apply −
apply (rule update-commute ′ [where F={a} and G=?U and

g=flush-all-until-volatile-write ts])
apply (auto intro: flush-all-until-volatile-wirte-mem-independent

flush-all-until-volatile-write-unchanged-addresses)
done

moreover

let ?SB = outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)

have U-SB-disj: ?U ∩ ?SB = {}

219

proof −
{

fix a ′

assume a ′-in-U: a ′ ∈ ?U
have a ′ /∈ ?SB
proof

assume a ′-in-SB: a ′ ∈ ?SB
hence a ′-in-SB ′: a ′ ∈ outstanding-refs is-Writesb sb

apply (clarsimp simp add: outstanding-refs-conv)
apply (drule set-takeWhileD)
subgoal for x

apply (rule-tac x=x in exI)
apply (auto simp add: is-Writesb-def split:memref.splits)
done
done

from in-Union-image-nth-conv [OF a ′-in-U]
obtain j pj isj Oj Rj Dj xsj sbj where

j-bound: j < length ts and
jth: ts!j = (pj,isj,xsj,sbj,Dj,Oj,Rj) and
a ′-in-j: a ′ ∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj)
by fastforce

from disj [rule-format, of 0 Suc j] 0 j-bound a ′-in-SB ′ a ′-in-j jth l
show False

by auto
qed

}
moreover
{

fix a ′

assume a ′-in-SB: a ′ ∈ ?SB
hence a ′-in-SB ′: a ′ ∈ outstanding-refs is-Writesb sb

apply (clarsimp simp add: outstanding-refs-conv)
apply (drule set-takeWhileD)
subgoal for x
apply (rule-tac x=x in exI)
apply (auto simp add: is-Writesb-def split:memref.splits)
done
done

have a ′ /∈ ?U
proof

assume a ′ ∈ ?U
from in-Union-image-nth-conv [OF this]
obtain j pj isj Oj Rj Dj xsj sbj where

j-bound: j < length ts and
jth: ts!j = (pj,isj,xsj,sbj,Dj,Rj,Oj) and
a ′-in-j: a ′ ∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj)
by fastforce

from disj [rule-format, of 0 Suc j] j-bound a ′-in-SB ′ a ′-in-j jth l

220

show False
by auto

qed
}
ultimately
show ?thesis by blast

qed

have flush (takeWhile (Not ◦ is-volatile-Writesb) sb)
(flush-all-until-volatile-write ts (m(a := v))) =

flush-all-until-volatile-write ts
(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) (m(a := v)))

apply (rule update-commute ′ [where g = flush-all-until-volatile-write ts ,
OF - - - - U-SB-disj])

apply (auto intro: flush-all-until-volatile-wirte-mem-independent
flush-all-until-volatile-write-unchanged-addresses
flush-unchanged-addresses
flushed-values-mem-independent simp del: o-apply)

done

ultimately
have flush (takeWhile (Not ◦ is-volatile-Writesb) sb)

((flush-all-until-volatile-write ts m)(a := v)) =
flush-all-until-volatile-write ts
(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) (m(a := v)))

by simp

then show ?thesis
by (auto simp add: l 0 o-def simp del: fun-upd-apply)

next
case (Suc n)

obtain pl isl Ol Rl Dj xsl sbl where l: l = (pl,isl,xsl,sbl,Dj,Ol,Rl)
by (cases l)

from i-bound ith disj a-notin
have

flush (takeWhile (Not ◦ is-volatile-Writesb) sb)
((flush-all-until-volatile-write ts

(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m))
(a := v)) =

flush-all-until-volatile-write (ts[n := (p,is, xs, sb,D ′, O ′,R ′)])
((flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)(a := v))

apply −
apply (rule Cons.hyps)
apply (force simp add: Suc Let-def simp del: o-apply)+
done

moreover

221

let ?SB = outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbl)
have a /∈ ?SB
proof

assume a ∈ ?SB
with a-notin [rule-format, of 0]
show False

by (auto simp add: l Suc)
qed
then
have ((flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)(a := v)) =

(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) (m(a := v)))
apply −
apply (rule update-commute ′ [where m=m and F={a} and G=?SB])
apply (auto intro:

flush-unchanged-addresses
flushed-values-mem-independent simp del: o-apply)

done

ultimately
show ?thesis

by (simp add: l Suc del: fun-upd-apply o-apply)
qed

qed

lemma (in program)∧
sb ′ p. history-consistent j (hd-prog p (sb@sb ′)) (sb@sb ′) =⇒

last-prog p (sb@sb ′) = p =⇒
last-prog (hd-prog p (sb@sb ′)) sb = hd-prog p sb ′

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons r sb1)
have consis: history-consistent j (hd-prog p ((r # sb1) @ sb ′)) ((r # sb1) @ sb ′)

by fact
have last-prog: last-prog p ((r # sb1) @ sb ′) = p by fact
show ?case
proof (cases r)

case Writesb with Cons show ?thesis by auto
next

case Readsb with Cons show ?thesis by (auto split: option.splits)
next

case (Progsb p1 p2 is)
from last-prog have last-prog-p2: last-prog p2 (sb1 @ sb ′) = p

222

by (simp add: Progsb)
from consis obtain consis ′: history-consistent j p2 (sb1 @ sb ′)

by (simp add: Progsb)

hence history-consistent j (hd-prog p2 (sb1 @ sb ′)) (sb1 @ sb ′)
by (rule history-consistent-hd-prog)

from Cons.hyps [OF this]
have last-prog p2 sb1 = hd-prog p sb ′

oops

lemma last-prog-to-last-prog-same:
∧

p ′. last-prog p ′ sb = p =⇒ last-prog p sb = p
by (induct sb) (auto split: memref.splits)

lemma last-prog-hd-prog-same: [[last-prog p ′ sb = p; hd-prog p ′ sb = p ′]] =⇒ hd-prog p
sb = p ′

by (induct sb) (auto split : memref.splits)

lemma last-prog-hd-prog-last-prog:
last-prog p ′ (sb@sb ′) = p =⇒ hd-prog p ′ (sb@sb ′) = p ′ =⇒
last-prog (hd-prog p sb ′) sb = last-prog p ′ sb

apply (induct sb)
apply (simp add: last-prog-hd-prog-same)
apply (auto split : memref.splits)
done

lemma (in program) last-prog-hd-prog-append ′:∧
sb ′ p. history-consistent j (hd-prog p (sb@sb ′)) (sb@sb ′) =⇒

last-prog p (sb@sb ′) = p =⇒
last-prog (hd-prog p sb ′) sb = hd-prog p sb ′

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons r sb1)
have consis: history-consistent j (hd-prog p ((r # sb1) @ sb ′)) ((r # sb1) @ sb ′)

by fact
have last-prog: last-prog p ((r # sb1) @ sb ′) = p by fact
show ?case
proof (cases r)

case Writesb with Cons show ?thesis by auto
next

case Readsb with Cons show ?thesis by (auto split: option.splits)
next

case (Progsb p1 p2 is)
from last-prog have last-prog-p2: last-prog p2 (sb1 @ sb ′) = p

by (simp add: Progsb)
from last-prog-to-last-prog-same [OF this]
have last-prog-p: last-prog p (sb1 @ sb ′) = p.
from consis obtain consis ′: history-consistent j p2 (sb1 @ sb ′)

by (simp add: Progsb)
from history-consistent-hd-prog-p [OF consis ′]

223

have hd-prog-p2: hd-prog p2 (sb1 @ sb ′) = p2 by simp
from consis ′ have history-consistent j (hd-prog p (sb1 @ sb ′)) (sb1 @ sb ′)

by (rule history-consistent-hd-prog)
from Cons.hyps [OF this last-prog-p]
have last-prog (hd-prog p sb ′) sb1 = hd-prog p sb ′.
moreover
from last-prog-hd-prog-last-prog [OF last-prog-p2 hd-prog-p2]
have last-prog (hd-prog p sb ′) sb1 = last-prog p2 sb1.
ultimately
have last-prog p2 sb1 = hd-prog p sb ′

by simp
thus ?thesis

by (simp add: Progsb)
next

case Ghostsb with Cons show ?thesis by (auto split: option.splits)
qed

qed

lemma flush-all-until-volatile-write-Writesb-non-volatile-commute:∧
i m. [[i < length ts; ts!i=(p,is,xs,Writesb False a sop v A L R W#sb,D,O,R);

∀ i < length ts. (∀ j < length ts. i 6= j −→
(let (-,-,-,sbi,-,-,-) = ts!i;

(-,-,-,sbj,-,-,-) = ts!j
in outstanding-refs is-Writesb sbi ∩

outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj) =
{}));

∀ j < length ts. i 6= j −→
(let (-,-,-,sbj,-,-,-) = ts!j in a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))]]
=⇒ flush-all-until-volatile-write (ts[i := (p,is, xs, sb,D ′, O,R ′)])(m(a := v)) =

flush-all-until-volatile-write ts m
proof (induct ts)

case Nil thus ?case
by simp

next
case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,xs,Writesb False a sop v A L R W#sb,D,O,R)›
note disj = ‹∀ i < length (l#ts). (∀ j < length (l#ts). i 6= j −→

(let (-,-,-,sbi,-,-,-) = (l#ts)!i;
(-,-,-,sbj,-,-,-) = (l#ts)!j

in outstanding-refs is-Writesb sbi ∩
outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj) =

{}))›
note a-notin = ‹∀ j < length (l#ts). i 6= j −→

(let (-,-,-,sbj,-,-,-) = (l#ts)!j
in a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj))›

show ?case
proof (cases i)

case 0

224

from ith 0 have l: l = (p,is,xs,Writesb False a sop v A L R W#sb,D,O,R)
by simp

thus ?thesis
by (simp add: 0 del: fun-upd-apply)

next
case (Suc n)
obtain pl isl Ol Rl Dl xsl sbl where l: l = (pl,isl,xsl,sbl,Dl,Ol,Rl)

by (cases l)

from i-bound ith disj a-notin
have

flush-all-until-volatile-write (ts[n := (p,is,xs, sb, D ′, O,R ′)])
((flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)(a := v)) =

flush-all-until-volatile-write ts
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)

apply −
apply (rule Cons.hyps)
apply (force simp add: Suc Let-def simp del: o-apply)+
done

moreover

let ?SB = outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbl)
have a /∈ ?SB
proof

assume a ∈ ?SB
with a-notin [rule-format, of 0]
show False

by (auto simp add: l Suc)
qed
then
have ((flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)(a := v)) =

(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) (m(a := v)))
apply −
apply (rule update-commute ′ [where m=m and F={a} and G=?SB])
apply (auto intro:

flush-unchanged-addresses
flushed-values-mem-independent simp del: o-apply)

done

ultimately
show ?thesis

by (simp add: l Suc del: fun-upd-apply o-apply)
qed

qed

lemma (in program) history-consistent-access-last-read ′:∧
p. history-consistent j p (sb @ [Readsb volatile a t v]) =⇒

j t = Some v
apply (induct sb)

225

apply (auto split: memref.splits option.splits)
done

lemma (in program) history-consistent-access-last-read:
history-consistent j p (rev (Readsb volatile a t v # sb)) =⇒ j t = Some v
by (simp add: history-consistent-access-last-read ′)

lemma flush-all-until-volatile-write-Readsb-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,Readsb volatile a t v#sb,D,O,R)]]
=⇒ flush-all-until-volatile-write (ts[i := (p,is,j, sb, D ′, O,R ′)]) m
= flush-all-until-volatile-write ts m

proof (induct ts)
case Nil thus ?case

by simp
next

case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,j,Readsb volatile a t v#sb,D,O,R)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,is,j,Readsb volatile a t v#sb,D,O,R)

by simp
thus ?thesis

by (simp add: 0 del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Rl Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol,Rl)

by (cases l)

from i-bound ith
have flush-all-until-volatile-write (ts[n := (p,is,j, sb, D ′, O,R ′)])

(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) =
flush-all-until-volatile-write ts
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)

apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then show ?thesis
by (simp add: Suc l)

qed
qed

lemma flush-all-until-volatile-write-Ghostsb-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,Ghostsb A L R W#sb,D,O,R)]]
=⇒ flush-all-until-volatile-write (ts[i := (p ′,is ′,j ′, sb, D ′, O ′,R ′)]) m
= flush-all-until-volatile-write ts m

proof (induct ts)

226

case Nil thus ?case
by simp

next
case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,j,Ghostsb A L R W#sb,D,O,R)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,is,j,Ghostsb A L R W#sb,D,O,R)

by simp
thus ?thesis

by (simp add: 0 del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Rl Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol,Rl)

by (cases l)

from i-bound ith
have flush-all-until-volatile-write (ts[n := (p ′,is ′,j ′, sb, D ′, O ′,R ′)])

(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) =
flush-all-until-volatile-write ts
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)

apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then show ?thesis
by (simp add: Suc l)

qed
qed

lemma flush-all-until-volatile-write-Progsb-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,Progsb p1 p2 mis#sb,D,O,R)]]
=⇒ flush-all-until-volatile-write (ts[i := (p,is, j, sb,D ′, O,R ′)]) m
= flush-all-until-volatile-write ts m

proof (induct ts)
case Nil thus ?case

by simp
next

case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,j,Progsb p1 p2 mis#sb,D,O,R)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,is,j,Progsb p1 p2 mis#sb,D,O,R)

by simp
thus ?thesis

227

by (simp add: 0 del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Rl Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol,Rl)

by (cases l)

from i-bound ith
have flush-all-until-volatile-write (ts[n := (p,is, j, sb,D ′, O,R ′)])

(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) =
flush-all-until-volatile-write ts
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)

apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then show ?thesis
by (simp add: Suc l)

qed
qed

lemma flush-all-until-volatile-write-append-Progsb-commute:∧
i m. [[i < length ts; ts!i=(p,is,j,sb,D,O,R)]]

=⇒ flush-all-until-volatile-write (ts[i := (p2,is@mis, j, sb@[Progsb p1 p2 mis],D ′,
O,R ′)]) m

= flush-all-until-volatile-write ts m
proof (induct ts)

case Nil thus ?case
by simp

next
case (Cons l ts)
note i-bound = ‹i < length (l#ts)›
note ith = ‹(l#ts)!i = (p,is,j,sb,D,O,R)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,is,j,sb,D,O,R)

by simp
thus ?thesis

by (simp add: 0 flush-append-Progsb del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Rl Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol,Rl)

by (cases l)

from i-bound ith
have flush-all-until-volatile-write

(ts[n := (p2,is@mis,j, sb@[Progsb p1 p2 mis], D ′, O,R ′)])
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m) =

228

flush-all-until-volatile-write ts
(flush (takeWhile (Not ◦ is-volatile-Writesb) sbl) m)

apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then show ?thesis
by (simp add: Suc l)

qed
qed

lemma (in program) history-consistent-append-Progsb:
assumes step: j` p →p (p ′, mis)
shows history-consistent j (hd-prog p xs) xs =⇒ last-prog p xs = p =⇒

history-consistent j (hd-prog p ′ (xs@[Progsb p p ′ mis])) (xs@[Progsb p p ′ mis])
proof (induct xs)

case Nil with step show ?case by simp
next

case (Cons x xs)
note consis = ‹history-consistent j (hd-prog p (x # xs)) (x # xs)›
note last = ‹last-prog p (x#xs) = p›
show ?case
proof (cases x)

case Writesb with Cons show ?thesis by (auto simp add: read-tmps-append)
next

case Readsb with Cons show ?thesis by (auto split: option.splits)
next

case (Progsb p1 p2 mis ′)
from consis obtain

step: j |‘(dom j − read-tmps (xs @ [Progsb p p ′ mis]))` p1 →p (p2, mis ′) and
consis ′: history-consistent j p2 xs
by (auto simp add: Progsb read-tmps-append)

from last have last-p2: last-prog p2 xs = p
by (simp add: Progsb)

from last-prog-to-last-prog-same [OF this]
have last-prog ′: last-prog p xs = p.
from history-consistent-hd-prog [OF consis ′]
have consis ′′: history-consistent j (hd-prog p xs) xs.
from Cons.hyps [OF this last-prog ′]
have history-consistent j (hd-prog p ′ (xs @ [Progsb p p ′ mis]))

(xs @ [Progsb p p ′ mis]).
from history-consistent-hd-prog [OF this]
have history-consistent j (hd-prog p2 (xs @ [Progsb p p ′ mis]))

(xs @ [Progsb p p ′ mis]).
moreover
from history-consistent-hd-prog-p [OF consis ′]

229

have p2 = hd-prog p2 xs.
from hd-prog-last-prog-append-Progsb [OF this [symmetric] last-p2]
have hd-prog p2 (xs @ [Progsb p p ′ mis]) = p2

by simp
ultimately
have history-consistent j p2 (xs @ [Progsb p p ′ mis])

by simp
thus ?thesis

by (simp add: Progsb step)
next

case Ghostsb with Cons show ?thesis by (auto)
qed

qed

primrec release :: ′a memref list ⇒ addr set ⇒ rels ⇒ rels
where
release [] S R = R
| release (x#xs) S R =
(case x of

Writesb volatile - - - A L R W ⇒
(if volatile then release xs (S ∪ R − L) Map.empty
else release xs S R)

| Ghostsb A L R W ⇒ release xs (S ∪ R − L) (augment-rels S R R)
| - ⇒ release xs S R)

lemma augment-rels-shared-exchange: ∀ a ∈ R. (a ∈ S ′) = (a ∈ S) =⇒ augment-rels S R
R = augment-rels S ′ R R
apply (rule ext)
apply (auto simp add: augment-rels-def split: option.splits)
done

lemma sharing-consistent-shared-exchange:
assumes shared-eq: ∀ a ∈ all-acquired sb. S ′ a = S a
assumes consis: sharing-consistent S O sb
shows sharing-consistent S ′ O sb
using shared-eq consis
proof (induct sb arbitrary: S S ′ O)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

230

case True

from Cons.prems obtain
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and

shared-eq: ∀ a ∈ A ∪ all-acquired sb. S ′ a = S a
by (clarsimp simp add: Writesb True)

from shared-eq
have shared-eq ′: ∀ a∈ all-acquired sb. (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def)
from Cons.hyps [OF shared-eq ′ consis ′]
have sharing-consistent (S ′ ⊕W R 	A L) (O ∪ A − R) sb.
thus ?thesis
using A-shared-owns L-A A-R R-owns shared-eq

by (auto simp add: Writesb True domIff)
next

case False with Cons show ?thesis
by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis
by auto

next
case Progsb with Cons show ?thesis

by auto
next

case (Ghostsb A L R W)
from Cons.prems obtain
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
shared-eq: ∀ a ∈ A ∪ all-acquired sb. S ′ a = S a
by (clarsimp simp add: Ghostsb)

from shared-eq
have shared-eq ′: ∀ a∈all-acquired sb. (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def)
from Cons.hyps [OF shared-eq ′ consis ′]
have sharing-consistent (S ′ ⊕W R 	A L) (O ∪ A − R) sb.
thus ?thesis
using A-shared-owns L-A A-R R-owns shared-eq

by (auto simp add: Ghostsb domIff)
qed

qed

lemma release-shared-exchange:
assumes shared-eq: ∀ a ∈ O ∪ all-acquired sb. S ′ a = S a
assumes consis: sharing-consistent S O sb

231

shows release sb (dom S ′) R = release sb (dom S) R
using shared-eq consis
proof (induct sb arbitrary: S S ′ O R)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and

shared-eq: ∀ a ∈ O ∪ A ∪ all-acquired sb. S ′ a = S a
by (clarsimp simp add: Writesb True)

from shared-eq
have shared-eq ′: ∀ a∈O ∪ A − R ∪ all-acquired sb. (S ′ ⊕W R 	A L) a = (S ⊕W R

	A L) a
by (auto simp add: augment-shared-def restrict-shared-def)

from Cons.hyps [OF shared-eq ′ consis ′]
have release sb (dom (S ′ ⊕W R 	A L)) Map.empty = release sb (dom (S ⊕W R 	A

L)) Map.empty .
then show ?thesis

by (auto simp add: Writesb True domIff)
next

case False with Cons show ?thesis
by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis
by auto

next
case Progsb with Cons show ?thesis

by auto
next

case (Ghostsb A L R W)
from Cons.prems obtain
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
shared-eq: ∀ a ∈ O ∪ A ∪ all-acquired sb. S ′ a = S a
by (clarsimp simp add: Ghostsb)

from shared-eq
have shared-eq ′: ∀ a∈O ∪ A − R ∪ all-acquired sb. (S ′ ⊕W R 	A L) a = (S ⊕W R 	A

L) a
by (auto simp add: augment-shared-def restrict-shared-def)

232

from A-shared-owns shared-eq R-owns have ∀ a∈R. (a ∈ dom S) = (a ∈ dom S ′)
by (auto simp add: domIff)

from augment-rels-shared-exchange [OF this]
have (augment-rels (dom S ′) R R) = (augment-rels (dom S) R R).

with Cons.hyps [OF shared-eq ′ consis ′]
have release sb (dom (S ′ ⊕W R 	A L)) (augment-rels (dom S ′) R R) =

release sb (dom (S ⊕W R 	A L)) (augment-rels (dom S) R R) by simp
then show ?thesis

by (clarsimp simp add: Ghostsb domIff)
qed

qed

lemma release-append:∧
S R. release (sb@xs) (dom S) R = release xs (dom (share sb S)) (release sb (dom (S))

R)
proof (induct sb)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
from Cons.hyps [of (S ⊕W R 	A L) Map.empty]
show ?thesis

by (clarsimp simp add: Writesb True)
next

case False with Cons show ?thesis by (auto simp add: Writesb)
qed

next
case Readsb with Cons show ?thesis

by auto
next

case Progsb with Cons show ?thesis
by auto

next
case (Ghostsb A L R W)
with Cons.hyps [of (S ⊕W R 	A L) augment-rels (dom S) R R]
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

locale xvalid-program = valid-program +
fixes valid
assumes valid-implies-valid-prog:

[[i < length ts;

233

ts!i = (p,is,j,sb,D,O,R); valid ts]] =⇒ valid-prog p

assumes valid-implies-valid-prog-hd:
[[i < length ts;
ts!i = (p,is,j,sb,D,O,R); valid ts]] =⇒ valid-prog (hd-prog p sb)

assumes distinct-load-tmps-prog-step:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); j`p →p (p ′,is ′); valid ts]]
=⇒
distinct-load-tmps is ′ ∧
(load-tmps is ′ ∩ load-tmps is = {}) ∧
(load-tmps is ′ ∩ read-tmps sb) = {}

assumes valid-data-dependency-prog-step:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); j`p →p (p ′,is ′); valid ts]]
=⇒
data-dependency-consistent-instrs (dom j ∪ load-tmps is) is ′ ∧
load-tmps is ′ ∩

⋃
(fst ‘ store-sops is) = {} ∧

load-tmps is ′ ∩
⋃
(fst ‘ write-sops sb) = {}

assumes load-tmps-fresh-prog-step:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); j`p →p (p ′,is ′); valid ts]]
=⇒
load-tmps is ′ ∩ dom j = {}

assumes valid-sops-prog-step:
[[j`p →p (p ′,is ′); valid-prog p]]=⇒ ∀ sop∈store-sops is ′. valid-sop sop

assumes prog-step-preserves-valid:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); j`p →p (p ′,is ′); valid ts]] =⇒
valid (ts[i:=(p ′,is@is ′,j,sb@[Progsb p p ′ is ′],D,O,R)])

assumes flush-step-preserves-valid:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R); (m,sb,O,R,S) →f (m ′,sb ′,O ′,R ′,S ′); valid ts]] =⇒
valid (ts[i:=(p,is,j,sb ′,D,O ′,R ′)])

assumes sbh-step-preserves-valid:
[[i < length ts;

ts!i = (p,is,j,sb,D,O,R);
(is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′);

valid ts]]
=⇒
valid (ts[i:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)])

234

lemma refl ′: x = y =⇒ r^∗∗ x y
by auto

lemma no-volatile-Readsb-volatile-reads-consistent:∧
m. outstanding-refs is-volatile-Readsb sb = {} =⇒ volatile-reads-consistent m sb

apply (induct sb)
apply simp
subgoal for a sb m
apply (case-tac a)
apply (auto split: if-split-asm)
done
done

theorem (in program) flush-store-buffer-append:
shows

∧
ts p m j O R D S is O ′.

[[i < length ts;
instrs (sb@sb ′) @ issb = is @ prog-instrs (sb@sb ′);
causal-program-history issb (sb@sb ′);
ts!i = (p,is,j |‘ (dom j − read-tmps (sb@sb ′)),x,D,O,R);
p=hd-prog psb (sb@sb ′);
(last-prog psb (sb@sb ′)) = psb;
reads-consistent True O ′ m sb;
history-consistent j p (sb@sb ′);
∀ sop ∈ write-sops sb. valid-sop sop;
distinct-read-tmps (sb@sb ′);
volatile-reads-consistent m sb

]]
=⇒
∃ is ′. instrs sb ′ @ issb = is ′ @ prog-instrs sb ′ ∧

(ts,m,S) ⇒d
∗

(ts[i:=(last-prog (hd-prog psb sb ′) sb,is ′,j|‘ (dom j − read-tmps sb ′),x,
(D ∨ outstanding-refs is-volatile-Writesb sb 6= {}),
acquired True sb O, release sb (dom S) R)], flush sb m,share sb S)

proof (induct sb)
case Nil
thus ?case by (auto simp add: list-update-id ′ split: if-split-asm)

next
case (Cons r sb)

interpret direct-computation:
computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb.

have ts-i:
ts!i = (p,is,j |‘ (dom j − read-tmps ((r#sb)@sb ′)),x,D,O,R)
by fact

have is: instrs ((r # sb) @ sb ′) @ issb = is @ prog-instrs ((r # sb) @ sb ′) by fact

have i-bound: i < length ts by fact

235

have causal: causal-program-history issb ((r # sb) @ sb ′) by fact
hence causal ′: causal-program-history issb (sb @ sb ′)

by (auto simp add: causal-program-history-def)

note reads-consis = ‹reads-consistent True O ′ m (r#sb)›
note p = ‹p = hd-prog psb ((r#sb)@sb ′)›
note psb = ‹last-prog psb ((r # sb) @ sb ′) = psb›
note hist-consis = ‹history-consistent j p ((r#sb)@sb ′)›
note valid-sops = ‹∀ sop ∈ write-sops (r#sb). valid-sop sop›
note dist = ‹distinct-read-tmps ((r#sb)@sb ′)›
note vol-read-consis = ‹volatile-reads-consistent m (r#sb)›

show ?case
proof (cases r)

case (Progsb p1 p2 pis)

from vol-read-consis
have vol-read-consis ′: volatile-reads-consistent m sb

by (auto simp add: Progsb)

from hist-consis obtain
prog-step: j|‘ (dom j − read-tmps (sb @ sb ′))` p1 →p (p2, pis) and
hist-consis ′: history-consistent j p2 (sb @ sb ′)
by (auto simp add: Progsb)

from p obtain p: p = p1

by (simp add: Progsb)

from history-consistent-hd-prog [OF hist-consis ′]
have hist-consis ′′: history-consistent j (hd-prog p2 (sb @ sb ′)) (sb @ sb ′) .
from is
have is: instrs (sb @ sb ′) @ issb = (is @ pis) @ prog-instrs (sb @ sb ′)

by (simp add: Progsb)

from ts-i is have
ts-i: ts!i = (p, is,j |‘ (dom j − read-tmps (sb @ sb ′)), x, D, O,R)
by (simp add: Progsb)

let ?ts ′= ts[i:=(p2,is@pis,j |‘ (dom j − read-tmps (sb @ sb ′)), x,D,O,R)]
from direct-computation.Program [OF i-bound ts-i prog-step [simplified p[symmetric]]]
have (ts,m,S) ⇒d (?ts ′,m,S) by simp

also
from i-bound have i-bound ′: i < length ?ts ′

by auto

from i-bound
have ts ′-i: ?ts ′!i = (p2,is@pis,(j |‘ (dom j − read-tmps (sb @ sb ′))),x, D, O,R)

by auto

236

from history-consistent-hd-prog-p [OF hist-consis ′]
have p2-hd-prog: p2 = hd-prog p2 (sb @ sb ′).

from reads-consis have reads-consis ′: reads-consistent True O ′ m sb
by (simp add: Progsb)

from valid-sops have valid-sops ′: ∀ sop ∈ write-sops sb. valid-sop sop
by (simp add: Progsb)

from dist have dist ′: distinct-read-tmps (sb@sb ′)
by (simp add: Progsb)

from psb have last-prog-p2: last-prog p2 (sb @ sb ′) = psb

by (simp add: Progsb)
from hd-prog-last-prog-end [OF p2-hd-prog this]
have p2-hd-prog ′: p2 = hd-prog psb (sb @ sb ′).
from last-prog-p2 [symmetric] have last-prog ′: last-prog psb (sb @ sb ′) = psb

by (simp add: last-prog-idem)

from Cons.hyps [OF i-bound ′ is causal ′ ts ′-i p2-hd-prog ′ last-prog ′ reads-consis ′
hist-consis ′ valid-sops ′ dist ′ vol-read-consis ′] i-bound

obtain is ′ where
is ′: instrs sb ′ @ issb = is ′ @ prog-instrs sb ′ and
step: (?ts ′, m,S) ⇒d

∗

(ts[i := (last-prog (hd-prog psb sb ′) sb, is ′,
j |‘ (dom j − read-tmps sb ′), x, D ∨ outstanding-refs is-volatile-Writesb sb 6= {},
acquired True sb O,release sb (dom S) R)],
flush sb m,share sb S)

by (auto)
from p2-hd-prog ′

have last-prog-eq: last-prog (hd-prog psb sb ′) sb = last-prog p2 sb
by (simp add: last-prog-hd-prog-append)

note step
finally show ?thesis

using is ′
by (simp add: Progsb last-prog-eq)

next
case (Writesb volatile a sop v A L R W)
obtain D f where sop: sop=(D,f)

by (cases sop)

from vol-read-consis
have vol-read-consis ′: volatile-reads-consistent (m(a:=v)) sb

by (auto simp add: Writesb)

from hist-consis obtain
D-tmps: D ⊆ dom j and

237

f-v: f j = v and
dep: D ∩ read-tmps (sb@sb ′) = {} and
hist-consis ′: history-consistent j p (sb@sb ′)
by (simp add: Writesb sop split: option.splits)

from dist have dist ′: distinct-read-tmps (sb@sb ′) by (auto simp add: Writesb)

from valid-sops obtain valid-sop sop and
valid-sops ′: ∀ sop ∈ write-sops sb. valid-sop sop
by (simp add: Writesb)

interpret valid-sop sop by fact
from valid-sop [OF sop D-tmps]
have f j = f (j |‘ D) .
moreover
from dep D-tmps have D-subset: D ⊆ (dom j − read-tmps (sb@sb ′))

by auto
moreover from D-subset have (j|‘(dom j − read-tmps (sb@sb ′)) |‘ D) = j |‘ D

apply −
apply (rule ext)
apply (auto simp add: restrict-map-def)
done

moreover from D-subset D-tmps have D ⊆ dom (j |‘ (dom j − read-tmps (sb@sb ′)))
by simp

moreover
note valid-sop [OF sop this]
ultimately have f-v ′: f (j|‘(dom j − read-tmps (sb@sb ′))) = v

by (simp add: f-v)

interpret causal ′: causal-program-history issb sb@sb ′ by fact

from is
have Write volatile a sop A L R W# instrs (sb @ sb ′) @ issb = is @ prog-instrs (sb @

sb ′)
by (simp add: Writesb)

with causal ′.causal-program-history [of [], simplified, OF refl]
obtain is ′ where is: is=Write volatile a sop A L R W#is ′ and

is ′: instrs (sb @ sb ′) @ issb = is ′ @ prog-instrs (sb @ sb ′)
by auto

from ts-i is
have ts-i: ts!i = (p,Write volatile a sop A L R W#is ′,

j |‘ (dom j − read-tmps (sb@sb ′)),x,D,O,R)
by (simp add: Writesb)

from p have p ′: p = hd-prog psb (sb@sb ′)
by (auto simp add: Writesb hd-prog-idem)

from psb have psb
′: last-prog psb (sb @ sb ′) = psb

by (simp add: Writesb)

238

show ?thesis
proof (cases volatile)

case False
have memop-step:

(Write volatile a sop A L R W#is ′,j|‘(dom j − read-tmps (sb@sb ′)),
x,m,D,O,R,S) →

(is ′,j|‘ (dom j − read-tmps (sb@sb ′)),x,m(a:=v),D,O,R,S)
using D-subset
apply (simp only: sop f-v ′ [symmetric] False)
apply (rule direct-memop-step.WriteNonVolatile)
done

let ?ts ′ = ts[i := (p, is ′,j |‘ (dom j − read-tmps (sb @ sb ′)),x, D, O,R)]
from direct-computation.Memop [OF i-bound ts-i memop-step]
have (ts, m, S) ⇒d (?ts ′, m(a := v), S).

also
from reads-consis have reads-consis ′: reads-consistent True O ′ (m(a:=v)) sb

by (auto simp add: Writesb False)
from i-bound have i-bound ′: i < length ?ts ′

by auto

from i-bound
have ts ′-i: ?ts ′ ! i = (p, is ′,j |‘ (dom j − read-tmps (sb @ sb ′)), x, D, O,R)

by simp

from Cons.hyps [OF i-bound ′ is ′ causal ′ ts ′-i p ′ psb
′ reads-consis ′ hist-consis ′

valid-sops ′ dist ′ vol-read-consis ′] i-bound
obtain is ′′ where

is ′′: instrs sb ′ @ issb = is ′′ @ prog-instrs sb ′ and
steps: (?ts ′,m(a:=v),S) ⇒d

∗

(ts[i := (last-prog (hd-prog psb sb ′) sb, is ′′,
j |‘ (dom j − read-tmps sb ′), x,

D ∨ outstanding-refs is-volatile-Writesb sb 6= {}, acquired True sb O, release sb
(dom S) R)],

flush sb (m(a := v)),share sb S)
by (auto simp del: fun-upd-apply)

note steps
finally
show ?thesis

using is ′′
by (simp add: Writesb False)

next
case True
have memop-step:

(Write volatile a sop A L R W#is ′,j|‘(dom j − read-tmps (sb@sb ′)),
x,m,D,O,R,S) →

(is ′,j|‘ (dom j − read-tmps (sb@sb ′)),x,m(a:=v),True,O ∪ A − R,Map.empty,S
⊕W R 	A L)
using D-subset

239

apply (simp only: sop f-v ′ [symmetric] True)
apply (rule direct-memop-step.WriteVolatile)
done

let ?ts ′ = ts[i := (p, is ′, j |‘ (dom j − read-tmps (sb @ sb ′)),x, True, O ∪ A −
R,Map.empty)]

from direct-computation.Memop [OF i-bound ts-i memop-step]
have (ts, m, S) ⇒d (?ts ′, m(a := v), S ⊕W R 	A L).

also
from reads-consis have reads-consis ′: reads-consistent True (O ′ ∪ A − R)(m(a:=v))

sb
by (auto simp add: Writesb True)

from i-bound have i-bound ′: i < length ?ts ′
by auto

from i-bound
have ts ′-i: ?ts ′ ! i = (p, is ′,j |‘ (dom j − read-tmps (sb @ sb ′)), x, True, O ∪ A −

R,Map.empty)
by simp

from Cons.hyps [OF i-bound ′ is ′ causal ′ ts ′-i p ′ psb
′ reads-consis ′ hist-consis ′

valid-sops ′ dist ′ vol-read-consis ′, of (S ⊕W R 	A L)] i-bound
obtain is ′′ where

is ′′: instrs sb ′ @ issb = is ′′ @ prog-instrs sb ′ and
steps: (?ts ′,m(a:=v),S ⊕W R 	A L) ⇒d

∗

(ts[i := (last-prog (hd-prog psb sb ′) sb, is ′′,
j |‘ (dom j − read-tmps sb ′), x,

True, acquired True sb (O ∪ A − R),release sb (dom (S ⊕W R 	A L)) Map.empty)],
flush sb (m(a := v)), share sb (S ⊕W R 	A L))

by (auto simp del: fun-upd-apply)
note steps
finally
show ?thesis

using is ′′
by (simp add: Writesb True)

qed
next

case (Readsb volatile a t v)

from vol-read-consis reads-consis obtain v: v=m a and r-consis: reads-consistent True
O ′ m sb and

vol-read-consis ′: volatile-reads-consistent m sb
by (cases volatile) (auto simp add: Readsb)

from valid-sops have valid-sops ′: ∀ sop ∈ write-sops sb. valid-sop sop
by (simp add: Readsb)

from hist-consis obtain j: j t = Some v and
hist-consis ′: history-consistent j p (sb@sb ′)

240

by (simp add: Readsb split: option.splits)
from dist obtain t-notin: t /∈ read-tmps (sb@sb ′) and

dist ′: distinct-read-tmps (sb@sb ′) by (simp add: Readsb)
from j t-notin have restrict-commute:
(j|‘ (dom j − read-tmps (sb@sb ′)))(t 7→v) =

j|‘ (dom j − read-tmps (sb@sb ′))
apply −
apply (rule ext)
apply (auto simp add: restrict-map-def domIff)
done

from j t-notin
have restrict-commute ′:
((j |‘ (dom j − insert t (read-tmps (sb@sb ′))))(t 7→ v)) =

j|‘ (dom j − read-tmps (sb@sb ′))
apply −
apply (rule ext)
apply (auto simp add: restrict-map-def domIff)
done

interpret causal ′: causal-program-history issb sb@sb ′ by fact

from is
have Read volatile a t # instrs (sb @ sb ′) @ issb = is @ prog-instrs (sb @ sb ′)

by (simp add: Readsb)

with causal ′.causal-program-history [of [], simplified, OF refl]
obtain is ′ where is: is=Read volatile a t#is ′ and

is ′: instrs (sb @ sb ′) @ issb = is ′ @ prog-instrs (sb @ sb ′)
by auto

from ts-i is
have ts-i: ts!i = (p,Read volatile a t#is ′,

j |‘ (dom j − insert t (read-tmps (sb@sb ′))),x,D,O,R)
by (simp add: Readsb)

from direct-memop-step.Read [of volatile a t is ′ j|‘ (dom j − insert t (read-tmps
(sb@sb ′))) x m D O R S]

have memop-step:
(Read volatile a t # is ′,

j |‘ (dom j − insert t (read-tmps (sb @ sb ′))), x, m, D, O,R,S) →
(is ′,

j |‘ (dom j − (read-tmps (sb @ sb ′))), x, m, D, O, R,S)
by (simp add: v [symmetric] restrict-commute restrict-commute ′)

let ?ts ′ = ts[i := (p, is ′,
j |‘ (dom j − read-tmps (sb @ sb ′)),x, D, O,R)]

from direct-computation.Memop [OF i-bound ts-i memop-step]
have (ts, m, S) ⇒d (?ts ′, m, S).

241

also

from i-bound have i-bound ′: i < length ?ts ′
by auto

from i-bound
have ts ′-i: ?ts ′!i = (p,is ′, (j |‘ (dom j − read-tmps (sb @ sb ′))),x,D, O, R)

by auto

from p have p ′: p = hd-prog psb (sb@sb ′)
by (auto simp add: Readsb hd-prog-idem)

from psb have psb
′: last-prog psb (sb @ sb ′) = psb

by (simp add: Readsb)

from Cons.hyps [OF i-bound ′ is ′ causal ′ ts ′-i p ′ psb
′ r-consis hist-consis ′

valid-sops ′ dist ′ vol-read-consis ′]

obtain is ′′ where
is ′′: instrs sb ′ @ issb = is ′′ @ prog-instrs sb ′ and
steps: (?ts ′,m,S) ⇒d

∗

(ts[i := (last-prog (hd-prog psb sb ′) sb, is ′′,
j |‘ (dom j − read-tmps sb ′),x, D ∨ outstanding-refs is-volatile-Writesb sb 6= {},
acquired True sb O, release sb (dom S) R)],
flush sb m,share sb S)

by (auto simp del: fun-upd-apply)

note steps
finally
show ?thesis

using is ′′
by (simp add: Readsb)

next
case (Ghostsb A L R W)

from vol-read-consis
have vol-read-consis ′: volatile-reads-consistent m sb

by (auto simp add: Ghostsb)

from reads-consis have r-consis: reads-consistent True (O ′ ∪ A − R) m sb
by (auto simp add: Ghostsb)

from valid-sops have valid-sops ′: ∀ sop ∈ write-sops sb. valid-sop sop
by (simp add: Ghostsb)

from hist-consis obtain
hist-consis ′: history-consistent j p (sb@sb ′)
by (simp add: Ghostsb)

242

from dist obtain
dist ′: distinct-read-tmps (sb@sb ′) by (simp add: Ghostsb)

interpret causal ′: causal-program-history issb sb@sb ′ by fact

from is
have Ghost A L R W# instrs (sb @ sb ′) @ issb = is @ prog-instrs (sb @ sb ′)

by (simp add: Ghostsb)

with causal ′.causal-program-history [of [], simplified, OF refl]
obtain is ′ where is: is=Ghost A L R W#is ′ and

is ′: instrs (sb @ sb ′) @ issb = is ′ @ prog-instrs (sb @ sb ′)
by auto

from ts-i is
have ts-i: ts!i = (p,Ghost A L R W#is ′,

j |‘ (dom j − (read-tmps (sb@sb ′))),x,D,O,R)
by (simp add: Ghostsb)

from direct-memop-step.Ghost [of A L R W is ′
j|‘ (dom j − (read-tmps (sb@sb ′))) x m D O R S]

have memop-step:
(Ghost A L R W# is ′,j |‘ (dom j − read-tmps (sb @ sb ′)), x, m, D, O, R, S)
→ (is ′,j |‘ (dom j − read-tmps (sb @ sb ′)), x, m, D, O ∪ A − R , augment-rels (dom

S) R R,
S ⊕W R 	A L).

let ?ts ′ = ts[i := (p, is ′,
j |‘ (dom j − read-tmps (sb @ sb ′)),x, D, O ∪ A − R, augment-rels (dom S)

R R)]
from direct-computation.Memop [OF i-bound ts-i memop-step]
have (ts, m, S) ⇒d (?ts ′, m, S ⊕W R 	A L).

also

from i-bound have i-bound ′: i < length ?ts ′
by auto

from i-bound
have ts ′-i: ?ts ′!i = (p,is ′,(j |‘ (dom j − read-tmps (sb @ sb ′))),x, D, O ∪ A −

R,augment-rels (dom S) R R)
by auto

from p have p ′: p = hd-prog psb (sb@sb ′)
by (auto simp add: Ghostsb hd-prog-idem)

from psb have psb
′: last-prog psb (sb @ sb ′) = psb

by (simp add: Ghostsb)

from Cons.hyps [OF i-bound ′ is ′ causal ′ ts ′-i p ′ psb
′ r-consis hist-consis ′

243

valid-sops ′ dist ′ vol-read-consis ′, of S ⊕W R 	A L]
obtain is ′′ where

is ′′: instrs sb ′ @ issb = is ′′ @ prog-instrs sb ′ and
steps: (?ts ′,m,S ⊕W R 	A L) ⇒d

∗

(ts[i := (last-prog (hd-prog psb sb ′) sb, is ′′,
j |‘ (dom j − read-tmps sb ′),x,

D ∨ outstanding-refs is-volatile-Writesb sb 6= {}, acquired True sb (O ∪ A − R),
release sb (dom (S ⊕W R 	A L)) (augment-rels (dom S) R R))],

flush sb m,share sb (S ⊕W R 	A L))
by (auto simp add: list-update-overwrite simp del: fun-upd-apply)

note steps
finally
show ?thesis

using is ′′
by (simp add: Ghostsb)

qed
qed

corollary (in program) flush-store-buffer:
assumes i-bound: i < length ts
assumes instrs: instrs sb @ issb = is @ prog-instrs sb
assumes cph: causal-program-history issb sb
assumes ts-i: ts!i = (p,is,j |‘ (dom j − read-tmps sb),x,D,O,R)
assumes p: p=hd-prog psb sb
assumes last-prog: (last-prog psb sb) = psb

assumes reads-consis: reads-consistent True O ′ m sb
assumes hist-consis: history-consistent j p sb
assumes valid-sops: ∀ sop ∈ write-sops sb. valid-sop sop
assumes dist: distinct-read-tmps sb
assumes vol-read-consis: volatile-reads-consistent m sb
shows (ts,m,S) ⇒d

∗

(ts[i:=(psb,issb, j,x,
D ∨ outstanding-refs is-volatile-Writesb sb 6= {},acquired True sb O, release sb

(dom S) R)],
flush sb m,share sb S)

using flush-store-buffer-append [where sb ′=[], simplified, OF i-bound instrs cph ts-i
[simplified] p last-prog reads-consis hist-consis valid-sops dist vol-read-consis] last-prog
by simp

lemma last-prog-same-append:
∧

xs psb. last-prog psb (sb@xs) = psb =⇒ last-prog psb xs
= psb

apply (induct sb)
apply simp
subgoal for a sb xs psb

apply (case-tac a)
apply simp
apply simp
apply simp

244

apply (drule last-prog-to-last-prog-same)
apply simp
apply simp
done
done

lemma reads-consistent-drop-volatile-writes-no-volatile-reads:∧
pending-write O m. reads-consistent pending-write O m sb =⇒

outstanding-refs is-volatile-Readsb ((dropWhile (Not ◦ is-volatile-Writesb)) sb) = {}
apply (induct sb)
apply (auto split: memref.splits)
done

lemma reads-consistent-flush-other:
assumes no-volatile-Writesb-sb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m pending-write O.

[[outstanding-refs (Not ◦ is-volatile-Readsb) xs ∩ outstanding-refs is-non-volatile-Writesb
sb = {};

reads-consistent pending-write O m xs]] =⇒ reads-consistent pending-write O (flush
sb m) xs
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs)
note no-inter = ‹outstanding-refs (Not ◦ is-volatile-Readsb) (x # xs) ∩

outstanding-refs is-non-volatile-Writesb sb = {}›
hence no-inter ′: outstanding-refs (Not ◦ is-volatile-Readsb) xs ∩ outstanding-refs

is-non-volatile-Writesb sb = {}
by (auto)

note consis = ‹reads-consistent pending-write O m (x # xs)›
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R)
show ?thesis
proof (cases volatile)

case False
from consis obtain consis ′: reads-consistent pending-write O (m(a := v)) xs

by (simp add: Writesb False)
from Cons.hyps [OF no-inter ′ consis ′]
have reads-consistent pending-write O (flush sb (m(a := v))) xs.
moreover
from no-inter have a /∈ outstanding-refs is-non-volatile-Writesb sb

by (auto simp add: Writesb split: if-split-asm)

from flush-update-other ′ [OF this no-volatile-Writesb-sb]
have (flush sb (m(a := v))) = (flush sb m)(a := v).

245

ultimately
show ?thesis

by (simp add: Writesb False)
next

case True
from consis obtain consis ′: reads-consistent True (O ∪ A − R) (m(a := v)) xs and

no-read: (outstanding-refs is-volatile-Readsb xs = {})
by (simp add: Writesb True)

from Cons.hyps [OF no-inter ′ consis ′]
have reads-consistent True (O ∪ A − R) (flush sb (m(a := v))) xs.
moreover
from no-inter have a /∈ outstanding-refs is-non-volatile-Writesb sb

by (auto simp add: Writesb split: if-split-asm)

from flush-update-other ′ [OF this no-volatile-Writesb-sb]
have (flush sb (m(a := v))) = (flush sb m)(a := v).
ultimately
show ?thesis

using no-read
by (simp add: Writesb True)

qed
next

case (Readsb volatile a t v)
from consis obtain val: (¬ volatile −→ (pending-write ∨ a ∈ O) −→ v = m a) and

consis ′: reads-consistent pending-write O m xs
by (simp add: Readsb)

from Cons.hyps [OF no-inter ′ consis ′]
have hyp: reads-consistent pending-write O (flush sb m) xs

by simp
show ?thesis
proof (cases volatile)

case False
from no-inter False have a /∈ outstanding-refs is-non-volatile-Writesb sb

by (auto simp add: Readsb split: if-split-asm)
with no-volatile-Writesb-sb
have a /∈ outstanding-refs is-Writesb sb

apply (clarsimp simp add: outstanding-refs-conv is-Writesb-def split: memref.splits)
apply force
done

with hyp val flush-unchanged-addresses [OF this]
show ?thesis

by (simp add: Readsb)
next

case True
with hyp val show ?thesis

by (simp add: Readsb)
qed

next
case Progsb with Cons show ?thesis by auto

next

246

case Ghostsb with Cons show ?thesis by auto
qed

qed

lemma reads-consistent-flush-independent:
assumes no-volatile-Writesb-sb: outstanding-refs is-Writesb sb ∩ outstanding-refs

is-non-volatile-Readsb xs = {}
assumes consis: reads-consistent pending-write O m xs
shows reads-consistent pending-write O (flush sb m) xs

proof −
from flush-unchanged-addresses [where sb=sb and m=m] no-volatile-Writesb-sb
have ∀ a ∈ outstanding-refs is-non-volatile-Readsb xs. flush sb m a = m a

by auto
from reads-consistent-mem-eq-on-non-volatile-reads [OF this subset-refl consis]
show ?thesis .

qed

lemma reads-consistent-flush-all-until-volatile-write-aux:
assumes no-reads: outstanding-refs is-volatile-Readsb xs = {}
shows

∧
m pending-write O ′. [[reads-consistent pending-write O ′ m xs; ∀ i < length ts.

let (p,is,j,sb,D,O,R) = ts!i in
outstanding-refs (Not ◦ is-volatile-Readsb) xs ∩
outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) =

{}]]
=⇒ reads-consistent pending-write O ′ (flush-all-until-volatile-write ts m) xs

proof (induct ts)
case Nil thus ?case by simp

next
case (Cons t ts)
have consis: reads-consistent pending-write O ′ m xs by fact

obtain pt ist Ot Rt Dt jt sbt

where t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

from Cons.prems t obtain
no-inter: outstanding-refs (Not ◦ is-volatile-Readsb) xs ∩

outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbt) =
{} and

no-inter ′: ∀ i < length ts.
let (p,is,j,sb,D,O,R) = ts!i in

outstanding-refs (Not ◦ is-volatile-Readsb) xs ∩
outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) =

{}
by (force simp add: Let-def simp del: o-apply)

have out1: outstanding-refs is-volatile-Writesb

247

(takeWhile (Not ◦ is-volatile-Writesb) sbt) = {}
by (auto simp add: outstanding-refs-conv dest: set-takeWhileD)

from no-inter have outstanding-refs (Not ◦ is-volatile-Readsb) xs ∩
outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbt) =

{}
by auto

from reads-consistent-flush-other [OF out1 this consis]

have reads-consistent pending-write O ′ (flush (takeWhile (Not ◦ is-volatile-Writesb) sbt)
m) xs.

from Cons.hyps [OF this no-inter ′]
show ?case

by (simp add: t)
qed

lemma reads-consistent-flush-other ′:
assumes no-volatile-Writesb-sb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
m O.

[[outstanding-refs is-non-volatile-Writesb sb ∩
(outstanding-refs is-volatile-Writesb xs ∪

outstanding-refs is-non-volatile-Writesb xs ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) xs)

∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) xs)

− RO) ∪
(O ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) xs))

) = {};
reads-consistent False O m xs;
read-only-reads O (takeWhile (Not ◦ is-volatile-Writesb) xs) ⊆ RO]]
=⇒ reads-consistent False O (flush sb m) xs

proof (induct xs)
case Nil thus ?case by simp

next
case (Cons x xs)

note no-inter = Cons.prems (1)

note consis = ‹reads-consistent False O m (x # xs)›
have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)

by (rule ext) auto

note RO = ‹read-only-reads O (takeWhile (Not ◦ is-volatile-Writesb) (x#xs)) ⊆ RO›

show ?case

248

proof (cases x)
case (Writesb volatile a sop v A L R)
show ?thesis
proof (cases volatile)

case False
from consis obtain consis ′: reads-consistent False O (m(a := v)) xs

by (simp add: Writesb False)

from no-inter
have no-inter ′: outstanding-refs is-non-volatile-Writesb sb ∩
(outstanding-refs is-volatile-Writesb xs ∪

outstanding-refs is-non-volatile-Writesb xs ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) xs)

∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) xs)

− RO) ∪
(O ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) xs))
) = {}

by (clarsimp simp add: Writesb False aargh)

from RO
have RO ′: read-only-reads O (takeWhile (Not ◦ is-volatile-Writesb) xs) ⊆ RO

by (auto simp add: Writesb False)

from Cons.hyps [OF no-inter ′ consis ′ RO ′]
have reads-consistent False O (flush sb (m(a := v))) xs.
moreover
from no-inter have a /∈ outstanding-refs is-non-volatile-Writesb sb

by (auto simp add: Writesb split: if-split-asm)

from flush-update-other ′ [OF this no-volatile-Writesb-sb]
have (flush sb (m(a := v))) = (flush sb m)(a := v).
ultimately
show ?thesis

by (simp add: Writesb False)
next

case True
from consis obtain consis ′: reads-consistent True (O ∪ A − R) (m(a := v)) xs and

no-read: (outstanding-refs is-volatile-Readsb xs = {})
by (simp add: Writesb True)

from no-inter obtain
a-notin: a /∈ outstanding-refs is-non-volatile-Writesb sb and
disj: (outstanding-refs (Not ◦ is-volatile-Readsb) xs) ∩

outstanding-refs is-non-volatile-Writesb sb = {}
by (auto simp add: Writesb True aargh misc-outstanding-refs-convs)

from reads-consistent-flush-other [OF no-volatile-Writesb-sb disj consis ′]

249

have reads-consistent True (O ∪ A − R) (flush sb (m(a := v))) xs.
moreover
note a-notin

from flush-update-other ′ [OF this no-volatile-Writesb-sb]
have (flush sb (m(a := v))) = (flush sb m)(a := v).
ultimately
show ?thesis

using no-read
by (simp add: Writesb True)

qed
next

case (Readsb volatile a t v)
from consis obtain val: (¬ volatile −→ a ∈ O −→ v = m a) and

consis ′: reads-consistent False O m xs
by (simp add: Readsb)

from RO
have RO ′: read-only-reads O (takeWhile (Not ◦ is-volatile-Writesb) xs) ⊆ RO

by (auto simp add: Readsb)

from no-inter
have no-inter ′: outstanding-refs is-non-volatile-Writesb sb ∩

(outstanding-refs is-volatile-Writesb xs ∪
outstanding-refs is-non-volatile-Writesb xs ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) xs) ∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) xs) −

RO) ∪
(O ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) xs))
) = {}

by (fastforce simp add: Readsb aargh)

show ?thesis
proof (cases volatile)

case True

from Cons.hyps [OF no-inter ′ consis ′ RO ′]
show ?thesis

by (simp add: Readsb True)
next

case False
note non-volatile=this

from Cons.hyps [OF no-inter ′ consis ′ RO ′]
have hyp: reads-consistent False O (flush sb m) xs.

show ?thesis
proof (cases a ∈ O)

250

case False
with hyp show ?thesis

by (simp add: Readsb non-volatile False)
next

case True
from no-inter True have a-notin: a /∈ outstanding-refs is-non-volatile-Writesb sb

by blast

with no-volatile-Writesb-sb
have a /∈ outstanding-refs is-Writesb sb

apply (clarsimp simp add: outstanding-refs-conv is-Writesb-def split: memref.splits)
apply force
done

from flush-unchanged-addresses [OF this] hyp val

show ?thesis
by (simp add: Readsb non-volatile True)

qed
qed

next
case Progsb with Cons show ?thesis

by auto
next

case (Ghostsb A L R W)
from consis obtain consis ′: reads-consistent False (O ∪ A − R) m xs

by (simp add: Ghostsb)

from RO
have RO ′: read-only-reads (O ∪ A − R) (takeWhile (Not ◦ is-volatile-Writesb) xs) ⊆

RO
by (auto simp add: Ghostsb)

from no-inter
have no-inter ′: outstanding-refs is-non-volatile-Writesb sb ∩
(outstanding-refs is-volatile-Writesb xs ∪

outstanding-refs is-non-volatile-Writesb xs ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) xs)

∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) xs)

− RO) ∪
(O ∪ A − R ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) xs))
) = {}

by (fastforce simp add: Ghostsb aargh)

from Cons.hyps [OF no-inter ′ consis ′ RO ′]
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

251

qed

lemma reads-consistent-flush-all-until-volatile-write-aux ′:
assumes no-reads: outstanding-refs is-volatile-Readsb xs = {}
assumes read-only-reads-RO: read-only-reads O ′ (takeWhile (Not ◦ is-volatile-Writesb)

xs) ⊆ RO
shows

∧
m. [[reads-consistent False O ′ m xs; ∀ i < length ts.

let (p,is,j,sb,D,O) = ts!i in
outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩
(outstanding-refs is-volatile-Writesb xs ∪

outstanding-refs is-non-volatile-Writesb xs ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) xs)

∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) xs)

− RO) ∪
(O ′ ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) xs))
)
= {}

]]
=⇒ reads-consistent False O ′ (flush-all-until-volatile-write ts m) xs

proof (induct ts)
case Nil thus ?case by simp

next
case (Cons t ts)
have consis: reads-consistent False O ′ m xs by fact

obtain pt ist Ot Rt Dt jt sbt

where t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

obtain
no-inter: outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)

sbt) ∩
(outstanding-refs is-volatile-Writesb xs ∪

outstanding-refs is-non-volatile-Writesb xs ∪
outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) xs)

∪
(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) xs)

− RO) ∪
(O ′ ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) xs))

)
= {} and

no-inter ′: ∀ i < length ts.
let (p,is,j,sb,D,O) = ts!i in

outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩
(outstanding-refs is-volatile-Writesb xs ∪

outstanding-refs is-non-volatile-Writesb xs ∪

252

outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) xs)
∪

(outstanding-refs is-non-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) xs)
− RO) ∪

(O ′ ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) xs))
)

= {}
proof −

show ?thesis
apply (rule that)
using Cons.prems (2) [rule-format, of 0]
apply (clarsimp simp add: t)
apply clarsimp
using Cons.prems (2)
apply −
subgoal for i
apply (drule-tac x=Suc i in spec)
apply (clarsimp simp add: Let-def simp del: o-apply)
done
done

qed

have out1: outstanding-refs is-volatile-Writesb
(takeWhile (Not ◦ is-volatile-Writesb) sbt) = {}
by (auto simp add: outstanding-refs-conv dest: set-takeWhileD)

from reads-consistent-flush-other ′ [OF out1 no-inter consis read-only-reads-RO]
have reads-consistent False O ′ (flush (takeWhile (Not ◦ is-volatile-Writesb) sbt) m) xs.
from Cons.hyps [OF this no-inter ′]
show ?case

by (simp add: t)
qed

lemma in-outstanding-refs-cases [consumes 1, case-names Writesb Readsb]:
a ∈ outstanding-refs P xs =⇒

(
∧

volatile sop v A L R W. (Writesb volatile a sop v A L R W) ∈ set xs =⇒ P
(Writesb volatile a sop v A L R W) =⇒ C) =⇒

(
∧

volatile t v. (Readsb volatile a t v) ∈ set xs =⇒ P (Readsb volatile a t v) =⇒ C)
=⇒ C

apply (clarsimp simp add: outstanding-refs-conv)
subgoal for x
apply (case-tac x)
apply fastforce+

253

done
done

lemma dropWhile-Cons: (dropWhile P xs) = x#ys =⇒ ¬ P x
apply (induct xs)
apply (auto split: if-split-asm)
done

lemma reads-consistent-dropWhile:
reads-consistent pending-write O m (dropWhile (Not ◦ is-volatile-Writesb) sb) =

reads-consistent True O m (dropWhile (Not ◦ is-volatile-Writesb) sb)
apply (case-tac (dropWhile (Not ◦ is-volatile-Writesb) sb))
apply (simp only:)
apply simp
apply (frule dropWhile-Cons)
apply (auto split: memref.splits)
done

theorem
reads-consistent-flush-all-until-volatile-write:∧

i m pending-write. [[valid-ownership-and-sharing S ts;
i < length ts; ts!i = (p, is,j, sb, D, O,R);
reads-consistent pending-write O m sb]]
=⇒ reads-consistent True (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(flush-all-until-volatile-write ts m) (dropWhile (Not ◦ is-volatile-Writesb) sb)

proof (induct ts)
case Nil thus ?case by simp

next
case (Cons t ts)
note i-bound = ‹i < length (t # ts)›
note ts-i = ‹(t # ts) ! i = (p, is,j, sb, D, O,R)›
note consis = ‹reads-consistent pending-write O m sb›
note valid = ‹valid-ownership-and-sharing S (t#ts)›
then interpret valid-ownership-and-sharing S t#ts.
from valid-ownership-and-sharing-tl [OF valid] have valid ′: valid-ownership-and-sharing

S ts.

obtain pt ist Ot Rt Dt jt sbt

where t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

show ?case
proof (cases i)

case 0
with ts-i t have sb-eq: sb=sbt

by simp

let ?take-sb = (takeWhile (Not ◦ is-volatile-Writesb) sb)
let ?drop-sb = (dropWhile (Not ◦ is-volatile-Writesb) sb)

254

from reads-consistent-append [of pending-write O m ?take-sb ?drop-sb] consis
have consis ′: reads-consistent True (acquired True ?take-sb O) (flush ?take-sb m)

?drop-sb
apply (cases outstanding-refs is-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)

sb) 6= {})
apply clarsimp
apply clarsimp
apply (simp add: reads-consistent-dropWhile [of pending-write])
done

from reads-consistent-drop-volatile-writes-no-volatile-reads [OF consis]
have no-vol-Readsb: outstanding-refs is-volatile-Readsb (dropWhile (Not ◦

is-volatile-Writesb) sb) = {}.
hence outstanding-refs (Not ◦ is-volatile-Readsb) (dropWhile (Not ◦ is-volatile-Writesb)

sb)
=
outstanding-refs (λs. True) (dropWhile (Not ◦ is-volatile-Writesb) sb)

by (auto simp add: outstanding-refs-conv)

have ∀ i<length ts.
let (p, is,j, sb ′, D, O,R) = ts ! i
in outstanding-refs (Not ◦ is-volatile-Readsb) (dropWhile (Not ◦ is-volatile-Writesb)

sb) ∩
outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb ′)

= {}
proof −

{
fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length ts
assume ts-j: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume x-in-sb: x ∈ outstanding-refs (Not ◦ is-volatile-Readsb) (dropWhile (Not ◦

is-volatile-Writesb) sb)
assume x-in-j: x ∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj)
have False
proof −

from outstanding-non-volatile-write-not-volatile-read-disj [rule-format, of Suc j 0,
simplified, OF j-bound ts-j t]

sb-eq x-in-sb x-in-j
show ?thesis

by auto
qed

}
thus ?thesis

by (auto simp add: Let-def)
qed
from reads-consistent-flush-all-until-volatile-write-aux [OF no-vol-Readsb consis ′ this]
show ?thesis

by (simp add: t sb-eq del: o-apply)

255

next
case (Suc k)
with i-bound have k-bound: k < length ts

by auto

from ts-i Suc have ts-k: ts ! k = (p, is,j, sb, D, O,R)
by simp

have reads-consistent False O (flush (takeWhile (Not ◦ is-volatile-Writesb) sbt) m) sb
proof −

have no-vW:
outstanding-refs is-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbt) = {}
apply (clarsimp simp add: outstanding-refs-conv)
apply (drule set-takeWhileD)
apply simp
done

from consis have consis ′: reads-consistent False O m sb
by (cases pending-write) (auto intro: reads-consistent-pending-write-antimono)

note disj = outstanding-non-volatile-write-disj [where i=0, OF - i-bound [simplified
Suc], simplified, OF t ts-k]

from reads-consistent-flush-other ′ [OF no-vW disj consis ′ subset-refl]
show ?thesis .

qed
from Cons.hyps [OF valid ′ k-bound ts-k this]
show ?thesis

by (simp add: t)
qed

qed

lemma split-volatile-Writesb-in-outstanding-refs:
a ∈ outstanding-refs is-volatile-Writesb xs =⇒ (∃ sop v ys zs A L R W. xs = ys@(Writesb

True a sop v A L R W#zs))
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs)
have a-in: a ∈ outstanding-refs is-volatile-Writesb (x # xs) by fact
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case False

256

from a-in have a ∈ outstanding-refs is-volatile-Writesb xs
by (auto simp add: False Writesb)

from Cons.hyps [OF this] obtain sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs
where xs=ys@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

hence x#xs = (x#ys)@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

thus ?thesis
by blast

next
case True
note volatile = this
show ?thesis
proof (cases a ′=a)

case False
with a-in have a ∈ outstanding-refs is-volatile-Writesb xs

by (auto simp add: volatile Writesb)
from Cons.hyps [OF this] obtain sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

hence x#xs = (x#ys)@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

thus ?thesis
by blast

next
case True
then have x#xs=[]@(Writesb True a sop v A L R W#xs)

by (simp add: Writesb volatile True)
thus ?thesis

by blast
qed

qed
next

case Readsb

from a-in have a ∈ outstanding-refs is-volatile-Writesb xs
by (auto simp add: Readsb)

from Cons.hyps [OF this] obtain sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs
where xs=ys@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

hence x#xs = (x#ys)@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

thus ?thesis
by blast

next
case Progsb
from a-in have a ∈ outstanding-refs is-volatile-Writesb xs

by (auto simp add: Progsb)
from Cons.hyps [OF this] obtain sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

257

hence x#xs = (x#ys)@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

thus ?thesis
by blast

next
case Ghostsb
from a-in have a ∈ outstanding-refs is-volatile-Writesb xs

by (auto simp add: Ghostsb)
from Cons.hyps [OF this] obtain sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

hence x#xs = (x#ys)@Writesb True a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

thus ?thesis
by blast

qed
qed

lemma sharing-consistent-mono-shared:∧
S S ′ O.
dom S ⊆ dom S ′ =⇒ sharing-consistent S O sb =⇒ sharing-consistent S ′ O sb

apply (induct sb)
apply simp
subgoal for a sb S S ′ O
apply (case-tac a)
apply clarsimp

subgoal for volatile a D f v A L R W
apply (frule-tac A=S and B=S ′ and C=R and x=W in augment-mono-aux)
apply (frule-tac A=S ⊕W R and B=S ′ ⊕W R and C=L in restrict-mono-aux)
apply blast
done

apply clarsimp
apply clarsimp
apply clarsimp
subgoal for A L R W
apply (frule-tac A=S and B=S ′ and C=R and x=W in augment-mono-aux)
apply (frule-tac A=S ⊕W R and B=S ′ ⊕W R and C=L in restrict-mono-aux)
apply blast
done
done
done

lemma sharing-consistent-mono-owns:∧
O O ′ S.
O ⊆ O ′ =⇒ sharing-consistent S O sb =⇒ sharing-consistent S O ′ sb

apply (induct sb)
apply simp
subgoal for a sb O O ′ S
apply (case-tac a)
apply clarsimp

258

subgoal for volatile a D f v A L R W
apply (frule-tac A=O and B=O ′ and C=A in union-mono-aux)
apply (frule-tac A=O ∪ A and B=O ′ ∪ A and C=R in set-minus-mono-aux)
apply fastforce
done

apply clarsimp
apply clarsimp
apply clarsimp
subgoal for A L R W
apply (frule-tac A=O and B=O ′ and C=A in union-mono-aux)
apply (frule-tac A=O ∪ A and B=O ′ ∪ A and C=R in set-minus-mono-aux)
apply fastforce
done
done
done

primrec all-shared :: ′a memref list ⇒ addr set
where

all-shared [] = {}
| all-shared (i#is) =

(case i of
Writesb volatile - - - A L R W ⇒ (if volatile then R ∪ all-shared is else all-shared is)
| Ghostsb A L R W ⇒ R ∪ all-shared is
| - ⇒ all-shared is)

lemma sharing-consistent-all-shared:∧
S O. sharing-consistent S O sb =⇒ all-shared sb ⊆ dom S ∪ O

apply (induct sb)
apply clarsimp
subgoal for a
apply (case-tac a)
apply (fastforce split: memref.splits if-split-asm)
apply clarsimp
apply clarsimp
apply fastforce
done
done

lemma sharing-consistent-share-all-shared:∧
S. dom (share sb S) ⊆ dom S ∪ all-shared sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop t A L R W)
show ?thesis

259

proof (cases volatile)
case True
from Cons.hyps [of (S ⊕W R 	A L)]
show ?thesis

by (auto simp add: Writesb True)
next

case False with Cons Writesb show ?thesis by auto
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
from Cons.hyps [of (S ⊕W R 	A L)]
show ?thesis

by (auto simp add: Ghostsb)
qed

qed

primrec all-unshared :: ′a memref list ⇒ addr set
where

all-unshared [] = {}
| all-unshared (i#is) =

(case i of
Writesb volatile - - - A L R W ⇒ (if volatile then L ∪ all-unshared is else all-unshared

is)
| Ghostsb A L R W ⇒ L ∪ all-unshared is
| - ⇒ all-unshared is)

lemma all-unshared-append: all-unshared (xs @ ys) = all-unshared xs ∪ all-unshared ys
apply (induct xs)
apply simp
subgoal for a
apply (case-tac a)
apply auto
done
done

lemma freshly-shared-owned:∧
S O. sharing-consistent S O sb =⇒ dom (share sb S) − dom S ⊆ O

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case

260

proof (cases x)
case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case False
with Cons Writesb show ?thesis by auto

next
case True
from Cons.hyps [where S=(S ⊕W R 	A L) and O=(O ∪ A − R)] Cons.prems
show ?thesis

by (auto simp add: Writesb True)
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
with Cons.hyps [where S=(S ⊕W R 	A L) and O=(O ∪ A − R)] Cons.prems show

?thesis by auto
qed

qed

lemma unshared-all-unshared:∧
S O. sharing-consistent S O sb =⇒ dom S − dom (share sb S) ⊆ all-unshared sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case False
with Cons Writesb show ?thesis by auto

next
case True
from Cons.hyps [where S=(S ⊕W R 	A L) and O=(O ∪ A − R)] Cons.prems
show ?thesis

by (auto simp add: Writesb True)
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
with Cons.hyps [where S=(S ⊕W R 	A L) and O=(O ∪ A − R)] Cons.prems show

?thesis by auto

261

qed
qed

lemma unshared-acquired-or-owned:∧
S O. sharing-consistent S O sb =⇒ all-unshared sb ⊆ all-acquired sb ∪ O

apply (induct sb)
apply simp
subgoal for a
apply (case-tac a)
apply auto+
done
done

lemma all-shared-acquired-or-owned:∧
S O. sharing-consistent S O sb =⇒ all-shared sb ⊆ all-acquired sb ∪ O

apply (induct sb)
apply simp
subgoal for a
apply (case-tac a)
apply auto+
done
done

lemma sharing-consistent-preservation:∧
S S ′ O.

[[sharing-consistent S O sb;
all-acquired sb ∩ dom S − dom S ′ = {};
all-unshared sb ∩ dom S ′ − dom S = {}]]
=⇒ sharing-consistent S ′ O sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
have consis: sharing-consistent S O (x # sb) by fact
have removed-cond: all-acquired (x # sb) ∩ dom S − dom S ′ = {} by fact
have new-cond: all-unshared (x # sb) ∩ dom S ′ − dom S = {} by fact
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case False with Writesb Cons show ?thesis
by auto

next
case True
from consis obtain

A: A ⊆ dom S ∪ O and
L: L ⊆ A and

A-R: A ∩ R = {} and

262

R: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

from removed-cond obtain rem-cond: (A ∪ all-acquired sb) ∩ dom S ⊆ dom S ′ by
(clarsimp simp add: Writesb True)

hence rem-cond ′: all-acquired sb ∩ dom (S ⊕W R 	A L) − dom (S ′ ⊕W R 	A L) =
{}
by auto

from new-cond obtain (L ∪ all-unshared sb) ∩ dom S ′ ⊆ dom S by (clarsimp simp
add: Writesb True)

hence new-cond ′: all-unshared sb ∩ dom (S ′ ⊕W R 	A L) − dom (S ⊕W R 	A L)
= {}
by auto

from Cons.hyps [OF consis ′ rem-cond ′ new-cond ′]
have sharing-consistent (S ′ ⊕W R 	A L) (O ∪ A − R) sb.
moreover
from A rem-cond have A ⊆ dom S ′ ∪ O

by auto
moreover note L A-R R
ultimately show ?thesis

by (auto simp add: Writesb True)
qed

next
case (Ghostsb A L R W)
from consis obtain

A: A ⊆ dom S ∪ O and
L: L ⊆ A and
A-R: A ∩ R = {} and
R: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from removed-cond obtain rem-cond: (A ∪ all-acquired sb) ∩ dom S ⊆ dom S ′ by
(clarsimp simp add: Ghostsb)

hence rem-cond ′: all-acquired sb ∩ dom (S ⊕W R 	A L) − dom (S ′ ⊕W R 	A L) = {}
by auto

from new-cond obtain (L ∪ all-unshared sb) ∩ dom S ′ ⊆ dom S by (clarsimp simp
add: Ghostsb)

hence new-cond ′: all-unshared sb ∩ dom (S ′ ⊕W R 	A L) − dom (S ⊕W R 	A L) =
{}

by auto

from Cons.hyps [OF consis ′ rem-cond ′ new-cond ′]
have sharing-consistent (S ′ ⊕W R 	A L) (O ∪ A − R) sb.

263

moreover
from A rem-cond have A ⊆ dom S ′ ∪ O

by auto
moreover note L A-R R
ultimately show ?thesis

by (auto simp add: Ghostsb)
qed (insert Cons, auto)

qed

lemma (in sharing-consis) sharing-consis-preservation:
assumes dist:

∀ i < length ts. let (-,-,-,sb,-,-,-) = ts!i in
all-acquired sb ∩ dom S − dom S ′ = {} ∧ all-unshared sb ∩ dom S ′ − dom S =

{}
shows sharing-consis S ′ ts
proof

fix i p is O R D j sb
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show sharing-consistent S ′ O sb
proof −

from sharing-consis [OF i-bound ts-i]
have consis: sharing-consistent S O sb.
from dist [rule-format, OF i-bound] ts-i
obtain

acq: all-acquired sb ∩ dom S − dom S ′ = {} and
uns: all-unshared sb ∩ dom S ′ − dom S = {}
by auto

from sharing-consistent-preservation [OF consis acq uns]
show ?thesis .

qed
qed

lemma (in sharing-consis) sharing-consis-shared-exchange:
assumes dist:

∀ i < length ts. let (-,-,-,sb,-,-,-) = ts!i in
∀ a ∈ all-acquired sb. S ′ a = S a

shows sharing-consis S ′ ts
proof

fix i p is O R D j sb
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show sharing-consistent S ′ O sb
proof −

from sharing-consis [OF i-bound ts-i]
have consis: sharing-consistent S O sb.
from dist [rule-format, OF i-bound] ts-i
obtain

dist-sb: ∀ a ∈ all-acquired sb. S ′ a = S a
by auto

264

from sharing-consistent-shared-exchange [OF dist-sb consis]
show ?thesis .

qed
qed

lemma all-acquired-takeWhile: all-acquired (takeWhile P sb) ⊆ all-acquired sb
proof −

from all-acquired-append [of takeWhile P sb dropWhile P sb]
show ?thesis

by auto
qed

lemma all-acquired-dropWhile: all-acquired (dropWhile P sb) ⊆ all-acquired sb
proof −

from all-acquired-append [of takeWhile P sb dropWhile P sb]
show ?thesis

by auto
qed

lemma acquired-share-owns-shared:
assumes consis: sharing-consistent S O sb
shows acquired pending-write sb O ∪ dom (share sb S) ⊆ O ∪ dom S

proof −
from acquired-all-acquired have acquired pending-write sb O ⊆ O ∪ all-acquired sb.
moreover
from sharing-consistent-all-acquired [OF consis] have all-acquired sb ⊆ dom S ∪ O.
moreover
from sharing-consistent-share-all-shared have dom (share sb S) ⊆ dom S ∪ all-shared

sb.
moreover
from sharing-consistent-all-shared [OF consis] have all-shared sb ⊆ dom S ∪ O.
ultimately
show ?thesis

by blast
qed

lemma acquired-owns-shared:
assumes consis: sharing-consistent S O sb
shows acquired True sb O ⊆ O ∪ dom S

using acquired-share-owns-shared [OF consis]
by blast

lemma share-owns-shared:
assumes consis: sharing-consistent S O sb
shows dom (share sb S) ⊆ O ∪ dom S

using acquired-share-owns-shared [OF consis]
by blast

265

lemma all-shared-append: all-shared (xs@ys) = all-shared xs ∪ all-shared ys
by (induct xs) (auto split: memref.splits)

lemma acquired-union-notin-first:∧
pending-write A B. a ∈ acquired pending-write sb (A ∪ B) =⇒ a /∈ A =⇒ a ∈ acquired

pending-write sb B
proof (induct sb)

case Nil thus ?case by (auto split: if-split-asm)
next

case (Cons x sb)
then obtain a-notin-A: a /∈ A and

a-acq: a ∈ acquired pending-write (x # sb) (A ∪ B)
by blast

show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A ′ L R W)
show ?thesis
proof (cases volatile)

case False
with Writesb Cons show ?thesis by simp

next
case True
note volatile = this
show ?thesis
proof (cases pending-write)

case True
from a-acq have a-acq ′: a ∈ acquired True sb (A ∪ B ∪ A ′ − R)

by (simp add: Writesb volatile True)
have (A ∪ B ∪ A ′ − R) ⊆ (A ∪ (B ∪ A ′ − R))

by auto
from acquired-mono-in [OF a-acq ′ this]
have a ∈ acquired True sb (A ∪ (B ∪ A ′ − R)).
from Cons.hyps [OF this a-notin-A]

have a ∈ acquired True sb (B ∪ A ′ − R).
then
show ?thesis by (simp add: Writesb volatile True)

next
case False
from a-acq have a-acq ′: a ∈ acquired True sb (A ′ − R)

by (simp add: Writesb volatile False)
then
show ?thesis

by (simp add: Writesb volatile False)
qed

qed
next

case (Ghostsb A ′ L R W)
show ?thesis
proof (cases pending-write)

266

case True
from a-acq have a-acq ′: a ∈ acquired True sb (A ∪ B ∪ A ′ − R)

by (simp add: Ghostsb True)
have (A ∪ B ∪ A ′ − R) ⊆ (A ∪ (B ∪ A ′ − R))

by auto
from acquired-mono-in [OF a-acq ′ this]
have a ∈ acquired True sb (A ∪ (B ∪ A ′ − R)).
from Cons.hyps [OF this a-notin-A]

have a ∈ acquired True sb (B ∪ A ′ − R).
then
show ?thesis by (simp add: Ghostsb True)

next
case False
from a-acq have a-acq ′: a ∈ acquired False sb (A ∪ B)

by (simp add: Ghostsb False)
from Cons.hyps [OF this a-notin-A]
show ?thesis

by (simp add: Ghostsb False)
qed

qed (insert Cons, auto)
qed

lemma split-all-acquired-in:
a ∈ all-acquired xs =⇒
(∃ sop a ′ v ys zs A L R W. xs = ys @ Writesb True a ′ sop v A L R W# zs ∧ a ∈ A) ∨
(∃A L R W ys zs. xs = ys @ Ghostsb A L R W# zs ∧ a ∈ A)

proof (induct xs)
case Nil thus ?case by simp

next
case (Cons x xs)
have a-in: a ∈ all-acquired (x # xs) by fact
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case False
from a-in have a ∈ all-acquired xs

by (auto simp add: False Writesb)
from Cons.hyps [OF this]
have (∃ sop a ′ v ys zs A L R W. xs = ys @ Writesb True a ′ sop v A L R W# zs ∧ a

∈ A) ∨

267

(∃A L R W ys zs. xs = ys @ Ghostsb A L R W # zs ∧ a ∈ A) (is ?write ∨ ?ghst).
then
show ?thesis
proof

assume ?write
then
obtain sop ′′ a ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

using a-in
by blast

next
assume ?ghst
then obtain A ′′ L ′′ R ′′ W ′′ ys zs where

xs=ys@Ghostsb A ′′ L ′′ R ′′ W ′′#zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Ghostsb A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

using a-in
by blast

qed
next

case True
note volatile = this
show ?thesis
proof (cases a ∈ A)

case False
with a-in have a ∈ all-acquired xs

by (auto simp add: volatile Writesb)
from Cons.hyps [OF this]
have (∃ sop a ′ v ys zs A L R W. xs = ys @ Writesb True a ′ sop v A L R W # zs ∧ a ∈

A) ∨
(∃A L R W ys zs. xs = ys @ Ghostsb A L R W# zs ∧ a ∈ A) (is ?write ∨

?ghst).
then
show ?thesis
proof

assume ?write
then
obtain sop ′′ a ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′ #zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

using a-in

268

by blast
next

assume ?ghst
then obtain A ′′ L ′′ R ′′ W ′′ ys zs where

xs=ys @Ghostsb A ′′ L ′′ R ′′ W ′′#zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Ghostsb A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

using a-in
by blast

qed
next

case True
then have x#xs=[]@(Writesb True a ′ sop v A L R W#xs)

by (simp add: Writesb volatile True)
thus ?thesis

using True
by blast

qed
qed

next
case Readsb

from a-in have a ∈ all-acquired xs
by (auto simp add: Readsb)

from Cons.hyps [OF this]
have (∃ sop a ′ v ys zs A L R W. xs = ys @ Writesb True a ′ sop v A L R W# zs ∧ a ∈

A) ∨
(∃A L R W ys zs. xs = ys @ Ghostsb A L R W# zs ∧ a ∈ A) (is ?write ∨ ?ghst).

then
show ?thesis
proof

assume ?write
then
obtain sop ′′ a ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

using a-in
by blast

next
assume ?ghst
then obtain A ′′ L ′′ R ′′ W ′′ ys zs where

xs=ys@Ghostsb A ′′ L ′′ R ′′ W ′′#zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Ghostsb A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

269

using a-in
by blast

qed
next

case Progsb
from a-in have a ∈ all-acquired xs

by (auto simp add: Progsb)
from Cons.hyps [OF this]
have (∃ sop a ′ v ys zs A L R W. xs = ys @ Writesb True a ′ sop v A L R W# zs ∧ a ∈

A) ∨
(∃A L R W ys zs. xs = ys @ Ghostsb A L R W# zs ∧ a ∈ A) (is ?write ∨ ?ghst).

then
show ?thesis
proof

assume ?write
then
obtain sop ′′ a ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

using a-in
by blast

next
assume ?ghst
then obtain A ′′ L ′′ R ′′ W ′′ ys zs where

xs=ys@Ghostsb A ′′ L ′′ R ′′ W ′′#zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Ghostsb A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

using a-in
by blast

qed
next

case (Ghostsb A L R W)
show ?thesis
proof (cases a ∈ A)

case False
with a-in have a ∈ all-acquired xs

by (auto simp add: Ghostsb)
from Cons.hyps [OF this]
have (∃ sop a ′ v ys zs A L R W. xs = ys @ Writesb True a ′ sop v A L R W # zs ∧ a

∈ A) ∨
(∃A L R W ys zs. xs = ys @ Ghostsb A L R W# zs ∧ a ∈ A) (is ?write ∨ ?ghst).

then
show ?thesis
proof

assume ?write

270

then
obtain sop ′′ a ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Writesb True a ′′ sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

using a-in
by blast

next
assume ?ghst
then obtain A ′′ L ′′ R ′′ W ′′ ys zs where

xs=ys@Ghostsb A ′′ L ′′ R ′′ W ′′#zs and a-in: a ∈ A ′′

by auto
hence x#xs = (x#ys)@Ghostsb A ′′ L ′′ R ′′ W ′′#zs

by auto
thus ?thesis

using a-in
by blast

qed
next

case True

then have x#xs=[]@(Ghostsb A L R W#xs)
by (simp add: Ghostsb True)

thus ?thesis
using True
by blast

qed
qed

qed

lemma split-Writesb-in-outstanding-refs:
a ∈ outstanding-refs is-Writesb xs =⇒ (∃ sop volatile v ys zs A L R W. xs = ys@(Writesb

volatile a sop v A L R W#zs))
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs)
have a-in: a ∈ outstanding-refs is-Writesb (x # xs) by fact
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases a ′=a)

case False
with a-in have a ∈ outstanding-refs is-Writesb xs

by (auto simp add: Writesb)
from Cons.hyps [OF this] obtain sop ′′ volatile ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

271

where xs=ys@Writesb volatile ′′ a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

hence x#xs = (x#ys)@Writesb volatile ′′ a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

thus ?thesis
by blast

next
case True
then have x#xs=[]@(Writesb volatile a sop v A L R W#xs)

by (simp add: Writesb True)
thus ?thesis

by blast
qed

next
case Readsb

from a-in have a ∈ outstanding-refs is-Writesb xs
by (auto simp add: Readsb)

from Cons.hyps [OF this] obtain sop ′′ volatile ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs
where xs=ys@Writesb volatile ′′ a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′ #zs
by auto

hence x#xs = (x#ys)@Writesb volatile ′′ a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

thus ?thesis
by blast

next
case Progsb
from a-in have a ∈ outstanding-refs is-Writesb xs

by (auto simp add: Progsb)
from Cons.hyps [OF this] obtain sop ′′ volatile ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb volatile ′′ a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

hence x#xs = (x#ys)@Writesb volatile ′′ a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

thus ?thesis
by blast

next
case Ghostsb
from a-in have a ∈ outstanding-refs is-Writesb xs

by (auto simp add: Ghostsb)
from Cons.hyps [OF this] obtain sop ′′ volatile ′′ v ′′ A ′′ L ′′ R ′′ W ′′ ys zs

where xs=ys@Writesb volatile ′′ a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

hence x#xs = (x#ys)@Writesb volatile ′′ a sop ′′ v ′′ A ′′ L ′′ R ′′ W ′′#zs
by auto

thus ?thesis
by blast

qed
qed

lemma outstanding-refs-is-Writesb-union:

272

outstanding-refs is-Writesb xs =
(outstanding-refs is-volatile-Writesb xs ∪ outstanding-refs is-non-volatile-Writesb xs)

apply (induct xs)
apply simp
subgoal for a
apply (case-tac a)
apply auto
done
done

lemma rtranclp-r-rtranclp: [[r∗∗ x y; r y z]] =⇒ r∗∗ x z
by auto

lemma r-rtranclp-rtranclp: [[r x y; r∗∗ y z]] =⇒ r∗∗ x z
by auto

lemma unshared-is-non-volatile-Writesb:
∧
S.

[[non-volatile-writes-unshared S sb; a ∈ dom S; a /∈ all-unshared sb]] =⇒
a /∈ outstanding-refs is-non-volatile-Writesb sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case False
with Cons Writesb show ?thesis by auto

next
case True
from Cons.hyps [where S=(S ⊕W R 	A L)] Cons.prems
show ?thesis

by (auto simp add: Writesb True)
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
with Cons.hyps [where S=(S ⊕W R 	A L)] Cons.prems show ?thesis by auto

qed
qed

lemma outstanding-non-volatile-Readsb-acquired-or-read-only-reads:∧
O S pending-write.

[[non-volatile-owned-or-read-only pending-write S O sb;

273

a ∈ outstanding-refs is-non-volatile-Readsb sb]]
=⇒ a ∈ acquired-reads True sb O ∨ a ∈ read-only-reads O sb
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
with Writesb Cons.hyps [of True (S ⊕W R 	A L) (O ∪ A − R)] Cons.prems
show ?thesis by auto

next
case False
with Cons show ?thesis

by (auto simp add: Writesb)
qed

next
case (Readsb volatile a ′ t v)
show ?thesis
proof (cases volatile)

case False with Readsb Cons show ?thesis by auto
next

case True
with Readsb Cons show ?thesis by auto

qed
next

case Progsb with Cons show ?thesis by auto
next

case (Ghostsb A L R W) with Cons.hyps [of pending-write (S ⊕W R 	A L) O ∪ A −
R] Cons.prems

show ?thesis
by auto

qed
qed

lemma acquired-reads-union:
∧

pending-writes A B.
[[a ∈ acquired-reads pending-writes sb (A ∪ B); a /∈ A]] =⇒ a ∈ acquired-reads pend-

ing-writes sb B
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A ′ L ′ R ′ W ′)
show ?thesis
proof (cases volatile)

274

case True
note volatile=this
show ?thesis
proof (cases pending-writes)

case True
from Cons.prems obtain

a-in: a ∈ acquired-reads True sb (A ∪ B ∪ A ′ − R ′) and
a-notin: a /∈ A
by (simp add: Writesb volatile True)

have (A ∪ B ∪ A ′ − R ′) ⊆ (A ∪ (B ∪ A ′ − R ′))
by auto

from acquired-reads-mono [OF this] a-in
have a ∈ acquired-reads True sb (A ∪ (B ∪ A ′ − R ′))

by auto

from Cons.hyps [OF this a-notin]
have a ∈ acquired-reads True sb (B ∪ A ′ − R ′).
then show ?thesis

by (simp add: Writesb volatile True)
next

case False
with Cons show ?thesis

by (auto simp add: Writesb volatile False)
qed

next
case False
with Cons show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb with Cons show ?thesis

by (auto split: if-split-asm)
next

case Progsb with Cons show ?thesis
by (auto)

next
case (Ghostsb A ′ L ′ R ′ W ′)
show ?thesis
proof −

from Cons.prems obtain
a-in: a ∈ acquired-reads pending-writes sb (A ∪ B ∪ A ′ − R ′) and
a-notin: a /∈ A

by (simp add: Ghostsb)
have (A ∪ B ∪ A ′ − R ′) ⊆ (A ∪ (B ∪ A ′ − R ′))

by auto
from acquired-reads-mono [OF this] a-in
have a ∈ acquired-reads pending-writes sb (A ∪ (B ∪ A ′ − R ′))

by auto

from Cons.hyps [OF this a-notin]

275

have a ∈ acquired-reads pending-writes sb (B ∪ A ′ − R ′).
then show ?thesis

by (simp add: Ghostsb)
qed

qed
qed

lemma non-volatile-writes-unshared-no-outstanding-non-volatile-Writesb:
∧
S S ′.

[[non-volatile-writes-unshared S sb;
∀ a ∈ dom S ′ − dom S. a /∈ outstanding-refs is-non-volatile-Writesb sb]]
=⇒ non-volatile-writes-unshared S ′ sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case

proof (cases x)
case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
from Cons.prems obtain

unshared-sb: non-volatile-writes-unshared (S ⊕W R 	A L) sb and
no-refs-sb: ∀ a∈dom S ′ − dom S. a /∈ outstanding-refs is-non-volatile-Writesb sb

by (simp add: Writesb True)
from no-refs-sb have ∀ a∈dom (S ′ ⊕W R 	A L) − dom (S ⊕W R 	A L).

a /∈ outstanding-refs is-non-volatile-Writesb sb
by auto

from Cons.hyps [OF unshared-sb this]
show ?thesis

by (simp add: Writesb True)
next

case False
with Cons show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb with Cons show ?thesis

by (auto)
next

case Progsb with Cons show ?thesis
by (auto)

next
case (Ghostsb A L R W)
from Cons.prems obtain

unshared-sb: non-volatile-writes-unshared (S ⊕W R 	A L) sb and
no-refs-sb: ∀ a∈dom S ′ − dom S. a /∈ outstanding-refs is-non-volatile-Writesb sb
by (simp add: Ghostsb)

from no-refs-sb have ∀ a∈dom (S ′ ⊕W R 	A L) − dom (S ⊕W R 	A L).

276

a /∈ outstanding-refs is-non-volatile-Writesb sb
by auto

from Cons.hyps [OF unshared-sb this]
show ?thesis

by (simp add: Ghostsb)
qed

qed

theorem sharing-consis-share-all-until-volatile-write:∧
S ts ′. [[ownership-distinct ts; sharing-consis S ts; length ts ′ = length ts;

∀ i < length ts.
(let (-,-,-,sb,-,O,-) = ts!i;

(-,-,-,sb ′,-,O ′,-) = ts ′!i
in O ′ = acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∧

sb ′ = dropWhile (Not ◦ is-volatile-Writesb) sb)]] =⇒
sharing-consis (share-all-until-volatile-write ts S) ts ′ ∧
dom (share-all-until-volatile-write ts S) − dom S ⊆⋃

((λ(-,-,-,-,-,O,-). O) ‘ set ts) ∧
dom S − dom (share-all-until-volatile-write ts S) ⊆⋃

((λ(-,-,-,sb,-,O,-). all-acquired sb ∪ O) ‘ set ts)
proof (induct ts)

case Nil thus ?case by auto
next

case (Cons t ts)
have leq: length ts ′ = length (t#ts) by fact
have sim: ∀ i < length (t#ts).

(let (-,-,-,sb,-,O,-) = (t#ts)!i;
(-,-,-,sb ′,-,O ′,-) = ts ′!i

in O ′ = acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∧
sb ′ = dropWhile (Not ◦ is-volatile-Writesb) sb)

by fact
obtain p is O R D j sb

where t: t = (p,is,j,sb,D,O,R)
by (cases t)

from leq obtain t ′ ts ′′ where ts ′: ts ′=t ′#ts ′′ and leq ′: length ts ′′ = length ts
by (cases ts ′) force+

obtain p ′ is ′ O ′ R ′ D ′ j ′ sb ′

where t ′: t ′ = (p ′,is ′,j ′,sb ′,D ′,O ′,R ′)
by (cases t ′)

from sim [rule-format, of 0] t t ′ ts ′
obtain O ′: O ′ = acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O and

sb ′: sb ′ = dropWhile (Not ◦ is-volatile-Writesb) sb
by auto

from sim ts ′

277

have sim ′: ∀ i < length ts.
(let (-,-,-,sb,-,O,R) = ts!i;

(-,-,-,sb ′,-,O ′,R) = ts ′′!i
in O ′ = acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∧

sb ′ = dropWhile (Not ◦ is-volatile-Writesb) sb)
by auto

have consis: sharing-consis S (t#ts) by fact
then interpret sharing-consis S (t#ts).
from sharing-consis [of 0] t
have consis-sb: sharing-consistent S O sb

by fastforce
from sharing-consistent-takeWhile [OF this]
have consis ′: sharing-consistent S O (takeWhile (Not ◦ is-volatile-Writesb) sb)

by simp

let ?S ′ = (share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)
from freshly-shared-owned [OF consis ′]
have fresh-owned: dom ?S ′ − dom S ⊆ O.
from unshared-all-unshared [OF consis ′] unshared-acquired-or-owned [OF consis ′]
have unshared-acq-owned: dom S − dom ?S ′

⊆ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪ O
by simp

have dist: ownership-distinct (t#ts) by fact
from ownership-distinct-tl [OF this]
have dist ′: ownership-distinct ts .

from sharing-consis-tl [OF consis]
interpret consis ′: sharing-consis S ts.

from dist interpret ownership-distinct (t#ts).

have sep:
∀ i < length ts. let (-,-,-,sb ′,-,-,-) = ts!i in

all-acquired sb ′ ∩ dom S − dom ?S ′ = {} ∧
all-unshared sb ′ ∩ dom ?S ′ − dom S = {}

proof −
{

fix i pi isi Oi Ri Di ji sbi

assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
have all-acquired sbi ∩ dom S − dom ?S ′ = {} ∧

all-unshared sbi ∩ dom ?S ′ − dom S = {}
proof −

278

from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (O ∪ all-acquired sb) ∩ (Oi ∪ all-acquired sbi) = {}

by force

from dist unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sb]
have all-acquired sbi ∩ dom S − dom ?S ′ = {}

by blast

moreover

from sharing-consis [of Suc i] ts-i i-bound
have sharing-consistent S Oi sbi

by force
from unshared-acquired-or-owned [OF this]
have all-unshared sbi ⊆ all-acquired sbi ∪ Oi.
with dist fresh-owned
have all-unshared sbi ∩ dom ?S ′ − dom S = {}

by blast

ultimately show ?thesis by simp
qed

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

from consis ′.sharing-consis-preservation [OF sep]
have consis-ts: sharing-consis ?S ′ ts.

from Cons.hyps [OF dist ′ this leq ′ sim ′]
obtain consis-ts ′′:

sharing-consis (share-all-until-volatile-write ts ?S ′) ts ′′ and

fresh: dom (share-all-until-volatile-write ts ?S ′) − dom ?S ′ ⊆⋃
((λ(-,-,-,-,-,O,R). O) ‘ set ts) and

unshared: dom ?S ′ − dom (share-all-until-volatile-write ts ?S ′) ⊆⋃
((λ(-,-,-,sb,-,O,R). all-acquired sb ∪ O)‘ set ts)

by auto

from sharing-consistent-append [of - - (takeWhile (Not ◦ is-volatile-Writesb) sb)
(dropWhile (Not ◦ is-volatile-Writesb) sb)] consis-sb
have consis-t ′: sharing-consistent ?S ′ O ′ sb ′

by (simp add: O ′ sb ′)

279

have fresh-dist: all-acquired sb ′ ∩ dom ?S ′ − dom (share-all-until-volatile-write ts ?S ′)
= {}

proof −
have all-acquired sb ′ ∩

⋃
((λ(-,-,-,sb,-,O,-). all-acquired sb ∪ O)‘ set ts) = {}

proof −
{

fix x
assume x-sb ′: x ∈ all-acquired sb ′

assume x-ts: x ∈
⋃

((λ(-,-,-,sb,-,O,-). all-acquired sb ∪ O)‘ set ts)
have False
proof −

from x-ts
obtain i pi isi Oi Ri Di ji sbi where

i-bound: i < length ts and
ts-i: ts!i = (pi,isi,ji,sbi,Di,Oi,Ri) and

x-in: x ∈ all-acquired sbi ∪ Oi

by (force simp add: in-set-conv-nth)
from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (O ∪ all-acquired sb) ∩ (Oi ∪ all-acquired sbi) = {}

by force
with x-sb ′ x-in all-acquired-dropWhile [of (Not ◦ is-volatile-Writesb) sb] show False

by (auto simp add: sb ′)
qed

}
thus ?thesis by blast

qed
with unshared show ?thesis

by blast
qed

have unshared-dist: all-unshared sb ′ ∩ dom (share-all-until-volatile-write ts ?S ′) − dom
?S ′ = {}

proof −
from unshared-acquired-or-owned [OF consis-t ′]
have all-unshared sb ′ ⊆ all-acquired sb ′ ∪ O ′.
also
from all-acquired-dropWhile [of (Not ◦ is-volatile-Writesb) sb]
acquired-all-acquired [of True takeWhile (Not ◦ is-volatile-Writesb) sb O]
all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sb]
have all-acquired sb ′ ∪ O ′ ⊆ all-acquired sb ∪ O

by (auto simp add: sb ′ O ′)
finally
have all-unshared sb ′ ⊆ (all-acquired sb ∪ O).

moreover

have (all-acquired sb ∪ O) ∩
⋃

((λ(-,-,-,-,-,O,-). O) ‘ set ts) = {}
proof −

{
fix x

280

assume x-sb ′: x ∈ all-acquired sb ∪ O
assume x-ts: x ∈

⋃
((λ(-,-,-,-,-,O,-). O)‘ set ts)

have False
proof −

from x-ts
obtain i pi isi Oi Ri Di ji sbi where

i-bound: i < length ts and
ts-i: ts!i = (pi,isi,ji,sbi,Di,Oi,Ri) and

x-in: x ∈ Oi

by (force simp add: in-set-conv-nth)
from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (O ∪ all-acquired sb) ∩ (Oi ∪ all-acquired sbi) = {}

by force
with x-sb ′ x-in show False

by (auto simp add: sb ′)
qed

}
thus ?thesis by blast

qed
ultimately show ?thesis

using fresh by fastforce
qed

from sharing-consistent-preservation [OF consis-t ′ fresh-dist unshared-dist]
have consis-ts: sharing-consistent (share-all-until-volatile-write ts ?S ′) O ′ sb ′.
note sharing-consis-Cons [OF consis-ts ′′ consis-ts, of p ′ is ′ j ′ D ′]
moreover
from fresh fresh-owned
have dom (share-all-until-volatile-write ts ?S ′) − dom S ⊆

O ∪
⋃

((λ(-,-,-,-,-,O,-). O) ‘ set ts)
by auto

moreover
from unshared unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb)

sb]
have dom S − dom (share-all-until-volatile-write ts ?S ′) ⊆

all-acquired sb ∪ O ∪
⋃

((λ(-,-,-,sb,-,O,-). all-acquired sb ∪ O) ‘ set ts)
by auto

ultimately

show ?case
by (auto simp add: t ts ′ t ′)

qed

corollary sharing-consistent-share-all-until-volatile-write:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
shows sharing-consistent (share-all-until-volatile-write ts S)

281

(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(dropWhile (Not ◦ is-volatile-Writesb) sb)

proof −
define ts ′ where ts ′ == map (λ(p,is,j,sb,D,O,R).

(p,is,j,
dropWhile (Not ◦ is-volatile-Writesb) sb,D,acquired True (takeWhile

(Not ◦ is-volatile-Writesb) sb) O,R)) ts
have leq: length ts ′ = length ts

by (simp add: ts ′-def)

have flush: ∀ i < length ts.
(let (-,-,-,sb,-,O,-) = ts!i;

(-,-,-,sb ′,-,O ′,-) = ts ′!i
in O ′ = acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∧

sb ′ = dropWhile (Not ◦ is-volatile-Writesb) sb)
by (auto simp add: ts ′-def Let-def)

from sharing-consis-share-all-until-volatile-write [OF dist consis leq flush]
interpret sharing-consis (share-all-until-volatile-write ts S) ts ′ by simp
from i-bound leq ts-i sharing-consis [of i]
show ?thesis

by (force simp add: ts ′-def)
qed

lemma restrict-map-UNIV [simp]: S |‘ UNIV = S
by (auto simp add: restrict-map-def)

lemma share-all-until-volatile-write-Read-commute:
shows

∧
S i. [[i < length ls; ls!i=(p,Read volatile a t#is,j,sb,D,O)

]]
=⇒
share-all-until-volatile-write

(ls[i := (p,is, j(t 7→v), sb @ [Readsb volatile a t v],D ′, O)]) S =
share-all-until-volatile-write ls S

proof (induct ls)
case Nil thus ?case

by simp
next

case (Cons l ls)
note i-bound = ‹i < length (l#ls)›
note ith = ‹(l#ls)!i = (p,Read volatile a t#is,j,sb,D,O)›
show ?case
proof (cases i)

case 0

282

from ith 0 have l: l = (p,Read volatile a t#is,j,sb,D,O)
by simp

thus ?thesis
by (simp add: 0 share-append-Readsb del: fun-upd-apply)

next
case (Suc n)
obtain pl isl Ol Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol)

by (cases l)
from i-bound ith
have share-all-until-volatile-write
(ls[n := (p,is, j(t7→v), sb @ [Readsb volatile a t v],D ′, O)])
(share (takeWhile (Not ◦ is-volatile-Writesb) sbl) S) =
share-all-until-volatile-write ls (share (takeWhile (Not ◦ is-volatile-Writesb) sbl) S)
apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then
show ?thesis

by (simp add: Suc l del: fun-upd-apply)
qed

qed

lemma share-all-until-volatile-write-Write-commute:
shows

∧
S i. [[i < length ls; ls!i=(p,Write volatile a (D,f) A L R W#is,j,sb,D,O)

]]
=⇒
share-all-until-volatile-write

(ls[i := (p,is,j, sb @ [Writesb volatile a t (f j) A L R W], D ′, O)]) S =
share-all-until-volatile-write ls S

proof (induct ls)
case Nil thus ?case

by simp
next

case (Cons l ls)
note i-bound = ‹i < length (l#ls)›
note ith = ‹(l#ls)!i = (p,Write volatile a (D,f) A L R W#is,j,sb,D,O)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,Write volatile a (D,f) A L R W#is,j,sb,D,O)

by simp
thus ?thesis

by (simp add: 0 share-append-Writesb del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol)

by (cases l)
from i-bound ith

283

have share-all-until-volatile-write
(ls[n := (p,is, j, sb @ [Writesb volatile a t (f j) A L R W],D ′, O)])
(share (takeWhile (Not ◦ is-volatile-Writesb) sbl) S) =
share-all-until-volatile-write ls (share (takeWhile (Not ◦ is-volatile-Writesb) sbl) S)
apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then
show ?thesis

by (simp add: Suc l del: fun-upd-apply)
qed

qed

lemma share-all-until-volatile-write-RMW-commute:
shows

∧
S i. [[i < length ls; ls!i=(p,RMW a t (D,f) cond ret A L R W#is,j,[],D,O)

]]
=⇒
share-all-until-volatile-write (ls[i := (p ′,is, j ′, [],D ′, O ′)]) S =
share-all-until-volatile-write ls S

proof (induct ls)
case Nil thus ?case

by simp
next

case (Cons l ls)
note i-bound = ‹i < length (l#ls)›
note ith = ‹(l#ls)!i = (p,RMW a t (D,f) cond ret A L R W#is,j,[],D,O)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,RMW a t (D,f) cond ret A L R W#is,j,[],D,O)

by simp
thus ?thesis

by (simp add: 0 share-append-Writesb del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol)

by (cases l)
from i-bound ith
have share-all-until-volatile-write
(ls[n := (p ′,is,j ′, [], D ′, O ′)])
(share (takeWhile (Not ◦ is-volatile-Writesb) sbl) S) =
share-all-until-volatile-write ls (share (takeWhile (Not ◦ is-volatile-Writesb) sbl) S)
apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then

284

show ?thesis
by (simp add: Suc l del: fun-upd-apply)

qed
qed

lemma share-all-until-volatile-write-Fence-commute:
shows

∧
S i. [[i < length ls; ls!i=(p,Fence#is,j,[],D,O,R)

]]
=⇒
share-all-until-volatile-write (ls[i := (p,is,j, [], D ′, O,R ′)]) S =
share-all-until-volatile-write ls S

proof (induct ls)
case Nil thus ?case

by simp
next

case (Cons l ls)
note i-bound = ‹i < length (l#ls)›
note ith = ‹(l#ls)!i = (p,Fence#is,j,[],D,O,R)›
show ?case
proof (cases i)

case 0
from ith 0 have l: l = (p,Fence#is,j,[],D,O,R)

by simp
thus ?thesis

by (simp add: 0 share-append-Writesb del: fun-upd-apply)
next

case (Suc n)
obtain pl isl Ol Rl Dl jl sbl where l: l = (pl,isl,jl,sbl,Dl,Ol,Rl)

by (cases l)
from i-bound ith
have share-all-until-volatile-write
(ls[n := (p,is, j, [],D ′, O,R ′)])
(share (takeWhile (Not ◦ is-volatile-Writesb) sbl) S) =
share-all-until-volatile-write ls (share (takeWhile (Not ◦ is-volatile-Writesb) sbl) S)
apply −
apply (rule Cons.hyps)
apply (auto simp add: Suc l)
done

then
show ?thesis

by (simp add: Suc l del: fun-upd-apply)
qed

qed

285

lemma unshared-share-in:
∧

S. a ∈ dom S =⇒ a /∈ all-unshared sb =⇒ a ∈ dom (share
sb S)
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
show ?thesis
proof −

from Cons.prems obtain a-S: a ∈ dom S and a-L: a /∈ L and a-sb: a /∈ all-unshared sb
by (clarsimp simp add: Writesb True)

from a-S a-L have a ∈ dom (S ⊕W R 	A L)
by auto

from Cons.hyps [OF this a-sb]
show ?thesis

by (clarsimp simp add: Writesb True)
qed

next
case False
with Cons show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb

with Cons show ?thesis
by (auto simp add: Readsb)

next
case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case Ghostsb
with Cons show ?thesis

by (auto simp add: Ghostsb)
qed

qed

lemma dom-eq-dom-share-eq:
∧

S S ′. dom S = dom S ′=⇒ dom (share sb S) = dom (share
sb S ′)
proof (induct sb)

286

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A ′ L R W)
show ?thesis
proof (cases volatile)

case True
from Cons.prems
have dom (S ⊕W R 	A ′ L) = dom (S ′ ⊕W R 	A ′ L)

by auto
from Cons.hyps [OF this]
show ?thesis

by (clarsimp simp add: Writesb True)
next

case False with Cons.hyps [of S S ′] Cons.prems Writesb show ?thesis by auto
qed

next
case Readsb with Cons.hyps [of S S ′] Cons.prems show ?thesis by auto

next
case Progsb with Cons.hyps [of S S ′] Cons.prems show ?thesis by auto

next
case (Ghostsb A ′ L R W)
from Cons.prems
have dom (S ⊕W R 	A ′ L) = dom (S ′ ⊕W R 	A ′ L)

by auto
from Cons.hyps [OF this]
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

lemma share-union:∧
A B. [[a ∈ dom (share sb (A ⊕z B)); a /∈ dom A]] =⇒ a ∈ dom (share sb (Map.empty

⊕z B))
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A ′ L R W)
show ?thesis
proof (cases volatile)

case True
from Cons.prems
obtain a-in: a ∈ dom (share sb ((A ⊕z B) ⊕W R 	A ′ L)) and a-A: a /∈ dom A

by (clarsimp simp add: Writesb True)
have dom ((A ⊕z B) ⊕W R 	A ′ L) ⊆ dom (A ⊕z (B ∪ R − L))

287

by auto
from share-mono [OF this] a-in
have a ∈ dom (share sb (A ⊕z (B ∪ R − L)))

by blast
from Cons.hyps [OF this] a-A
have a ∈ dom (share sb (Map.empty ⊕z (B ∪ R − L)))

by blast
moreover
have dom (Map.empty ⊕z B ∪ R − L) = dom ((Map.empty ⊕z B) ⊕W R 	A ′ L)

by auto
note dom-eq-dom-share-eq [OF this, of sb]
ultimately
show ?thesis

by (clarsimp simp add: Writesb True)
next

case False
with Cons show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb

with Cons show ?thesis
by (auto simp add: Readsb)

next
case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A ′ L R W)
from Cons.prems
obtain a-in: a ∈ dom (share sb ((A ⊕z B) ⊕W R 	A ′ L)) and a-A: a /∈ dom A

by (clarsimp simp add: Ghostsb)
have dom ((A ⊕z B) ⊕W R 	A ′ L) ⊆ dom (A ⊕z (B ∪ R − L))

by auto
from share-mono [OF this] a-in
have a ∈ dom (share sb (A ⊕z (B ∪ R − L)))

by blast
from Cons.hyps [OF this] a-A
have a ∈ dom (share sb (Map.empty ⊕z (B ∪ R − L)))

by blast
moreover
have dom (Map.empty ⊕z B ∪ R − L) = dom ((Map.empty ⊕z B) ⊕W R 	A ′ L)

by auto
note dom-eq-dom-share-eq [OF this, of sb]
ultimately
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

288

lemma share-unshared-in:∧
S. a ∈ dom (share sb S) =⇒ a ∈ dom (share sb Map.empty) ∨ (a ∈ dom S ∧ a /∈

all-unshared sb)
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems
have a-in: a ∈ dom (share sb (S ⊕W R 	A L))

by (clarsimp simp add: Writesb True)
show ?thesis
proof (cases a ∈ dom S)

case True
from Cons.hyps [OF a-in]
have a ∈ dom (share sb Map.empty) ∨ a ∈ dom (S ⊕W R 	A L) ∧ a /∈ all-unshared sb.
then show ?thesis
proof

assume a ∈ dom (share sb Map.empty)
from share-mono-in [OF this]
have a ∈ dom (share sb (Map.empty ⊕W R 	A L)) by auto
then show ?thesis

by (clarsimp simp add: Writesb volatile True)
next

assume a ∈ dom (S ⊕W R 	A L) ∧ a /∈ all-unshared sb
then obtain a /∈ L a /∈ all-unshared sb

by auto
then show ?thesis by (clarsimp simp add: Writesb volatile True)

qed
next

case False
have dom (S ⊕W R 	A L) ⊆ dom (S ⊕W (R − L))

by auto
from share-mono [OF this] a-in
have a ∈ dom (share sb (S ⊕W (R − L))) by blast
from share-union [OF this False]
have a ∈ dom (share sb (Map.empty ⊕W (R − L))).
moreover
have dom (Map.empty ⊕W (R − L)) = dom (Map.empty ⊕W R 	A L)

by auto
note dom-eq-dom-share-eq [OF this, of sb]
ultimately
show ?thesis

289

by (clarsimp simp add: Writesb True)
qed

next
case False
with Cons show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb

with Cons show ?thesis
by (auto simp add: Readsb)

next
case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A L R W)
from Cons.prems
have a-in: a ∈ dom (share sb (S ⊕W R 	A L))

by (clarsimp simp add: Ghostsb)
show ?thesis
proof (cases a ∈ dom S)

case True
from Cons.hyps [OF a-in]
have a ∈ dom (share sb Map.empty) ∨ a ∈ dom (S ⊕W R 	A L) ∧ a /∈ all-unshared

sb.
then show ?thesis
proof

assume a ∈ dom (share sb Map.empty)
from share-mono-in [OF this]
have a ∈ dom (share sb (Map.empty ⊕W R 	A L)) by auto

then show ?thesis
by (clarsimp simp add: Ghostsb True)

next
assume a ∈ dom (S ⊕W R 	A L) ∧ a /∈ all-unshared sb
then obtain a /∈ L a /∈ all-unshared sb

by auto
then show ?thesis by (clarsimp simp add: Ghostsb True)

qed
next

case False
have dom (S ⊕W R 	A L) ⊆ dom (S ⊕W (R − L))

by auto
from share-mono [OF this] a-in
have a ∈ dom (share sb (S ⊕W (R − L))) by blast
from share-union [OF this False]
have a ∈ dom (share sb (Map.empty ⊕W (R − L))).
moreover
have dom (Map.empty ⊕W (R − L)) = dom (Map.empty ⊕W R 	A L)

by auto

290

note dom-eq-dom-share-eq [OF this, of sb]
ultimately
show ?thesis

by (clarsimp simp add: Ghostsb False)
qed

qed
qed

lemma dom-augment-rels-shared-eq: dom (augment-rels S R R) = dom (augment-rels S ′

R R)
by (auto simp add: augment-rels-def domIff split: option.splits if-split-asm)

lemma dom-eq-SomeD1: dom m = dom n =⇒ m x = Some y =⇒ n x 6= None
by (auto simp add: dom-def)

lemma dom-eq-SomeD2: dom m = dom n =⇒ n x = Some y =⇒ m x 6= None
by (auto simp add: dom-def)

lemma dom-augment-rels-rels-eq: dom R ′ = dom R =⇒ dom (augment-rels S R R ′) =
dom (augment-rels S R R)

by (auto simp add: augment-rels-def domIff split: option.splits if-split-asm dest:
dom-eq-SomeD1 dom-eq-SomeD2)

lemma dom-release-rels-eq:
∧
S R R ′. dom R ′ = dom R =⇒

dom (release sb S R ′) = dom (release sb S R)
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
hence dr: dom R ′ = dom R

by simp
show ?case
proof (cases x)

case Writesb with Cons.hyps [OF dr] show ?thesis by (clarsimp)
next

case Readsb with Cons.hyps [OF dr] show ?thesis by (clarsimp)
next

case Progsb with Cons.hyps [OF dr] show ?thesis by (clarsimp)
next

case (Ghostsb A L R W)
from Cons.hyps [OF dom-augment-rels-rels-eq [OF dr]]
show ?thesis
by (simp add: Ghostsb)

qed
qed

291

lemma dom-release-shared-eq:
∧
S S ′ R. dom (release sb S ′ R) = dom (release sb S R)

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case Writesb with Cons.hyps show ?thesis by (clarsimp)
next

case Readsb with Cons.hyps show ?thesis by (clarsimp)
next

case Progsb with Cons.hyps show ?thesis by (clarsimp)
next

case (Ghostsb A L R W)
have dr: dom (augment-rels S ′ R R) = dom (augment-rels S R R)

by(rule dom-augment-rels-shared-eq)
have dom (release sb (S ′ ∪ R − L) (augment-rels S ′ R R)) =

dom (release sb (S ∪ R − L) (augment-rels S ′ R R))
by (rule Cons.hyps)

also have ... = dom (release sb (S ∪ R − L) (augment-rels S R R))
by (rule dom-release-rels-eq [OF dr])

finally show ?thesis
by (clarsimp simp add: Ghostsb)

qed
qed

lemma share-other-untouched:∧
O S. sharing-consistent S O sb =⇒ a /∈ O ∪ all-acquired sb=⇒ share sb S a = S a

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and

a-owns: a /∈ O and a-A: a /∈ A and a-sb: a /∈ all-acquired sb
by (simp add: Writesb True)

from a-owns a-A a-sb
have a /∈ O ∪ A − R ∪ all-acquired sb

by auto

292

from Cons.hyps [OF consis ′ this]
have share sb (S ⊕W R 	A L) a = (S ⊕W R 	A L) a.
moreover have (S ⊕W R 	A L) a = S a
using L-A A-R R-owns a-owns a-A

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
ultimately show ?thesis

by (simp add: Writesb True)
next

case False with Cons show ?thesis
by (auto simp add: Writesb False)

qed
next

case Readsb with Cons
show ?thesis

by (auto)
next

case Progsb with Cons
show ?thesis

by (auto)
next

case (Ghostsb A L R W)
from Cons.prems obtain
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-owns: a /∈ O and a-A: a /∈ A and a-sb: a /∈ all-acquired sb
by (simp add: Ghostsb)

from a-owns a-A a-sb
have a /∈ O ∪ A − R ∪ all-acquired sb

by auto
from Cons.hyps [OF consis ′ this]
have share sb (S ⊕W R 	A L) a = (S ⊕W R 	A L) a.
moreover have (S ⊕W R 	A L) a = S a
using L-A A-R R-owns a-owns a-A

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
ultimately show ?thesis

by (simp add: Ghostsb)
qed

qed

lemma shared-owned:
∧
O S. sharing-consistent S O sb =⇒ a /∈ dom S =⇒ a ∈ dom

(share sb S) =⇒
a ∈ O ∪ all-acquired sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

293

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and

a-notin: a /∈ dom S and a-in: a ∈ dom (share sb (S ⊕W R 	A L))
by (simp add: Writesb True)

show ?thesis
proof (cases a ∈ O)

case True thus ?thesis by auto
next

case False
with a-notin R-owns A-shared-owns L-A A-R have a /∈ dom (S ⊕W R 	A L)

by (auto)
from Cons.hyps [OF consis ′ this a-in]
show ?thesis

by (auto simp add: Writesb True)
qed

next
case False with Cons show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb with Cons
show ?thesis

by (auto)
next

case Progsb with Cons
show ?thesis

by (auto)
next

case (Ghostsb A L R W)
from Cons.prems obtain
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns:

R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-notin: a /∈ dom S and a-in: a ∈ dom (share sb (S ⊕W R 	A L))
by (simp add: Ghostsb)

show ?thesis
proof (cases a ∈ O)

case True thus ?thesis by auto
next

case False
with a-notin R-owns A-shared-owns L-A A-R have a /∈ dom (S ⊕W R 	A L)

294

by (auto)
from Cons.hyps [OF consis ′ this a-in]
show ?thesis

by (auto simp add: Ghostsb)
qed

qed
qed

lemma share-all-shared-in: a ∈ dom (share sb S) =⇒ a ∈ dom S ∨ a ∈ all-shared sb
using sharing-consistent-share-all-shared [of sb S]

by auto

lemma share-all-until-volatile-write-unowned:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes other: ∀ i p is j sb D O R. i < length ts −→ ts!i = (p,is,j,sb,D,O,R) −→

a /∈ O ∪ all-acquired sb
shows share-all-until-volatile-write ts S a = S a

using dist consis other
proof (induct ts arbitrary: S)

case Nil thus ?case by simp
next

case (Cons t ts)
obtain pt ist Ot Rt Dt jt sbt where

t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

from Cons.prems t obtain
other ′: ∀ i p is j sb D O R. i < length ts −→ ts!i = (p,is,j,sb,D,O,R) −→

a /∈ O ∪ all-acquired sb and
a-notin: a /∈ Ot ∪ all-acquired sbt

apply −
apply (rule that)
apply clarsimp

subgoal for i p is j sb D O R
apply (drule-tac x=Suc i in spec)
apply clarsimp
done

apply (drule-tac x=0 in spec)
apply clarsimp
done

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts.
have consis: sharing-consis S (t#ts) by fact
then interpret sharing-consis S t#ts.

295

from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

from sharing-consis-tl [OF consis]
have consis ′: sharing-consis S ts.
then
interpret consis ′: sharing-consis S ts.

let ?S ′ = (share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S)

from sharing-consis [of 0, simplified, OF t]
have sharing-consistent S Ot sbt.
from sharing-consistent-takeWhile [OF this]
have consis-sb: sharing-consistent S Ot (takeWhile (Not ◦ is-volatile-Writesb) sbt).
from freshly-shared-owned [OF consis-sb]
have fresh-owned: dom ?S ′ − dom S ⊆ Ot.
from unshared-all-unshared [OF consis-sb] unshared-acquired-or-owned [OF consis-sb]
have unshared-acq-owned: dom S − dom ?S ′

⊆ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbt) ∪ Ot

by simp

have sep:
∀ i < length ts. let (-,-,-,sb ′,-,-,-) = ts!i in

all-acquired sb ′ ∩ dom S − dom ?S ′ = {} ∧
all-unshared sb ′ ∩ dom ?S ′ − dom S = {}

proof −
{

fix i pi isi Oi Ri Di ji sbi

assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
have all-acquired sbi ∩ dom S − dom ?S ′ = {} ∧

all-unshared sbi ∩ dom ?S ′ − dom S = {}
proof −

from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (Ot ∪ all-acquired sbt) ∩ (Oi ∪ all-acquired sbi) = {}

by force

from dist unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sbt]
have all-acquired sbi ∩ dom S − dom ?S ′ = {}

by blast

moreover

from sharing-consis [of Suc i] ts-i i-bound
have sharing-consistent S Oi sbi

by force
from unshared-acquired-or-owned [OF this]
have all-unshared sbi ⊆ all-acquired sbi ∪ Oi.
with dist fresh-owned

296

have all-unshared sbi ∩ dom ?S ′ − dom S = {}
by blast

ultimately show ?thesis by simp
qed

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

from consis ′.sharing-consis-preservation [OF this]
have sharing-consis ?S ′ ts.

from Cons.hyps [OF dist ′ this other ′]
have share-all-until-volatile-write ts ?S ′ a =

share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S a .
moreover
from share-other-untouched [OF consis-sb] a-notin

all-acquired-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbt) (dropWhile (Not ◦
is-volatile-Writesb) sbt)]

have share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S a = S a
by auto

ultimately
show ?case

by (simp add: t)
qed

lemma share-shared-eq:
∧
S ′ S. S ′ a = S a =⇒ share sb S ′ a = share sb S a

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
have eq: S ′ a = S a by fact
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True

have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a
using eq by (auto simp add: augment-shared-def restrict-shared-def)
from Cons.hyps [of (S ′ ⊕W R 	A L) (S ⊕W R 	A L), OF this]
show ?thesis

by (clarsimp simp add: Writesb True)
next

case False
with Cons.hyps [of S ′ S] Cons.prems show ?thesis

by (auto simp add: Writesb False)
qed

297

next
case Readsb

with Cons.hyps [of S ′ S] Cons.prems show ?thesis
by (auto simp add: Readsb)

next
case Progsb
with Cons.hyps [of S ′ S] Cons.prems show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A L R W)
have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a
using eq by (auto simp add: augment-shared-def restrict-shared-def)
from Cons.hyps [of (S ′ ⊕W R 	A L) (S ⊕W R 	A L), OF this]
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

lemma share-all-until-volatile-write-thread-local:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-owned: a ∈ O ∪ all-acquired sb
shows share-all-until-volatile-write ts S a = share (takeWhile (Not ◦ is-volatile-Writesb)

sb) S a
using dist consis i-bound ts-i
proof (induct ts arbitrary: S i)

case Nil thus ?case by simp
next

case (Cons t ts)

obtain pt ist Ot Rt Dt jt sbt where
t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts.
have consis: sharing-consis S (t#ts) by fact
then interpret sharing-consis S t#ts.

from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

from sharing-consis-tl [OF consis]
have consis ′: sharing-consis S ts.
then
interpret consis ′: sharing-consis S ts.
let ?S ′ = (share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S)

298

from sharing-consis [of 0, simplified, OF t]
have sharing-consistent S Ot sbt.
from sharing-consistent-takeWhile [OF this]
have consis-sb: sharing-consistent S Ot (takeWhile (Not ◦ is-volatile-Writesb) sbt).
from freshly-shared-owned [OF consis-sb]
have fresh-owned: dom ?S ′ − dom S ⊆ Ot.
from unshared-all-unshared [OF consis-sb] unshared-acquired-or-owned [OF consis-sb]
have unshared-acq-owned: dom S − dom ?S ′

⊆ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbt) ∪ Ot

by simp

have sep:
∀ i < length ts. let (-,-,-,sb ′,-,-,-) = ts!i in

all-acquired sb ′ ∩ dom S − dom ?S ′ = {} ∧
all-unshared sb ′ ∩ dom ?S ′ − dom S = {}

proof −
{

fix i pi isi Oi Ri Di ji sbi

assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
have all-acquired sbi ∩ dom S − dom ?S ′ = {} ∧

all-unshared sbi ∩ dom ?S ′ − dom S = {}
proof −

from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (Ot ∪ all-acquired sbt) ∩ (Oi ∪ all-acquired sbi) = {}

by force

from dist unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sbt]
have all-acquired sbi ∩ dom S − dom ?S ′ = {}

by blast

moreover

from sharing-consis [of Suc i] ts-i i-bound
have sharing-consistent S Oi sbi

by force
from unshared-acquired-or-owned [OF this]
have all-unshared sbi ⊆ all-acquired sbi ∪ Oi.
with dist fresh-owned
have all-unshared sbi ∩ dom ?S ′ − dom S = {}

by blast

ultimately show ?thesis by simp
qed

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

299

from consis ′.sharing-consis-preservation [OF this]
have consis-shared ′: sharing-consis ?S ′ ts.

have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)
by (rule ext) auto

show ?case
proof (cases i)

case 0
with Cons.prems
have t ′: t = (p, is, j, sb, D, O, R)

by simp

{
fix j pj isj jj sbj Dj Oj Rj

assume j-bound: j < length ts
assume ts-j: ts ! j = (pj, isj, jj, sbj, Dj, Oj, Rj)
have a /∈ Oj ∪ all-acquired sbj

proof −
from ownership-distinct [of 0 Suc j, simplified, OF j-bound t ts-j] t a-owned t ′ 0
show ?thesis

by auto
qed

}

with share-all-until-volatile-write-unowned [OF dist ′ consis-shared ′, of a]
have share-all-until-volatile-write ts ?S ′ a = ?S ′ a

by fastforce
then show ?thesis
using t t ′ 0

by (auto simp add: Cons t aargh)
next

case (Suc n)
with Cons.prems obtain n-bound: n < length ts and ts-n: ts!n = (p,is,j,sb,D,O,R)

by auto
from Cons.hyps [OF dist ′ consis-shared ′ n-bound ts-n]
have share-all-until-volatile-write ts ?S ′ a =

share (takeWhile (Not ◦ is-volatile-Writesb) sb) ?S ′ a .
moreover
from ownership-distinct [of 0 Suc n] t a-owned ts-n n-bound
have a /∈ Ot ∪ all-acquired sbt

by fastforce
with share-other-untouched [OF consis-sb, of a]
all-acquired-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbt) (dropWhile (Not ◦

is-volatile-Writesb) sbt)]
have ?S ′ a = S a

by auto
from share-shared-eq [of ?S ′ a S,OF this]

300

have share (takeWhile (Not ◦ is-volatile-Writesb) sb) ?S ′ a =
share (takeWhile (Not ◦ is-volatile-Writesb) sb) S a .

ultimately show ?thesis
using t Suc

by (auto simp add: aargh)
qed

qed

lemma share-all-until-volatile-write-thread-local ′:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-owned: a ∈ O ∪ all-acquired sb
shows share (dropWhile (Not ◦ is-volatile-Writesb) sb) (share-all-until-volatile-write ts

S) a =
share sb S a

proof −
let ?take = takeWhile (Not ◦ is-volatile-Writesb) sb
let ?drop = dropWhile (Not ◦ is-volatile-Writesb) sb
from share-all-until-volatile-write-thread-local [OF dist consis i-bound ts-i a-owned]
have share-all-until-volatile-write ts S a = share ?take S a .
moreover
from share-shared-eq [of share-all-until-volatile-write ts S a share ?take S, OF this]
have share ?drop (share-all-until-volatile-write ts S) a = share ?drop (share ?take S) a .
thus ?thesis
using share-append [of ?take ?drop S]

by simp
qed

lemma (in ownership-distinct) in-shared-sb-share-all-until-volatile-write:
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-owned: a ∈ O ∪ all-acquired sb
assumes a-share: a ∈ dom (share sb S)
shows a ∈ dom (share (dropWhile (Not ◦ is-volatile-Writesb) sb)

(share-all-until-volatile-write ts S))
proof −

have dist: ownership-distinct ts
using assms ownership-distinct

apply −
apply (rule ownership-distinct.intro)
apply auto
done

from share-all-until-volatile-write-thread-local ′ [OF dist consis i-bound ts-i a-owned]
a-share

show ?thesis
by (auto simp add: domIff)

qed

301

lemma owns-unshared-share-acquired:∧
S O. [[sharing-consistent S O sb; a ∈ O; a /∈ all-unshared sb]]

=⇒ a ∈ dom (share sb S) ∪ acquired True sb O
proof (induct sb)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

a-owns: a ∈ O and A-shared-onws: A ⊆ dom S ∪ O and
a-L: a /∈ L and a-unsh: a /∈ all-unshared sb and L-A: L ⊆ A and

A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb volatile)

have a ∈ dom (share sb (S ⊕W R 	A L)) ∪ acquired True sb (O ∪ A − R)
proof (cases a ∈ R)

case True
with a-L have a ∈ dom (S ⊕W R 	A L)

by auto
from unshared-share-in [OF this a-unsh]
show ?thesis by blast

next
case False
hence a ∈ O ∪ A − R

using a-owns
by auto

from Cons.hyps [OF consis ′ this a-unsh]
show ?thesis .

qed
then
show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case False
with Cons
show ?thesis

by (auto simp add: Writesb)
qed

next
case Readsb

with Cons show ?thesis
by (auto simp add: Readsb)

next

302

case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A L R W)
from Cons.prems obtain

a-owns: a ∈ O and A-shared-onws: A ⊆ dom S ∪ O and
a-L: a /∈ L and a-unsh: a /∈ all-unshared sb and L-A: L ⊆ A and
A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

have a ∈ dom (share sb (S ⊕W R 	A L)) ∪ acquired True sb (O ∪ A − R)
proof (cases a ∈ R)

case True
with a-L have a ∈ dom (S ⊕W R 	A L)

by auto
from unshared-share-in [OF this a-unsh]
show ?thesis by blast

next
case False
hence a ∈ O ∪ A − R

using a-owns
by auto

from Cons.hyps [OF consis ′ this a-unsh]
show ?thesis .

qed
then show ?thesis

by (auto simp add: Ghostsb)
qed

qed

lemma shared-share-acquired:
∧
S O. sharing-consistent S O sb =⇒

a ∈ dom S =⇒ a ∈ dom (share sb S) ∪ acquired True sb O
proof (induct sb)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

a-shared: a ∈ dom S and A-shared-owns: A ⊆ dom S ∪ O and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and

consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

show ?thesis

303

proof (cases a ∈ L)
case False with a-shared
have a ∈ dom (S ⊕W R 	A L)

by auto
from Cons.hyps [OF consis ′ this]
show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case True
with L-A have a-A: a ∈ A

by blast
from sharing-consistent-mono-shared [OF - consis ′, where S ′=(S ⊕W R)]
have sharing-consistent (S ⊕W R) (O ∪ A − R) sb

by auto
from Cons.hyps [OF this] a-shared
have hyp: a ∈ dom (share sb (S ⊕W R)) ∪ acquired True sb (O ∪ A − R)

by auto
{

assume a ∈ dom (share sb (S ⊕W R))
from share-unshared-in [OF this]
have a ∈ dom (share sb (S ⊕W R 	A L)) ∪ acquired True sb (O ∪ A − R)
proof

assume a ∈ dom (share sb Map.empty)
from share-mono-in [OF this]
have a ∈ dom (share sb (S ⊕W R 	A L))

by auto
thus ?thesis by blast

next
assume a ∈ dom (S ⊕W R) ∧ a /∈ all-unshared sb
hence a-unsh: a /∈ all-unshared sb by blast
from a-A A-R have a ∈ O ∪ A − R

by auto
from owns-unshared-share-acquired [OF consis ′ this a-unsh]
show ?thesis .

qed
}
with hyp show ?thesis

by (auto simp add: Writesb volatile)
qed

next
case False
with Cons
show ?thesis

by (auto simp add: Writesb)
qed

next
case Readsb

with Cons show ?thesis
by (auto simp add: Readsb)

next

304

case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A L R W)
from Cons.prems obtain

a-shared: a ∈ dom S and A-shared-owns: A ⊆ dom S ∪ O and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

show ?thesis
proof (cases a ∈ L)

case False with a-shared
have a ∈ dom (S ⊕W R 	A L)

by auto
from Cons.hyps [OF consis ′ this]
show ?thesis

by (clarsimp simp add: Ghostsb)
next

case True
with L-A have a-A: a ∈ A

by blast
from sharing-consistent-mono-shared [OF - consis ′, where S ′=(S ⊕W R)]
have sharing-consistent (S ⊕W R) (O ∪ A − R) sb

by auto
from Cons.hyps [OF this] a-shared
have hyp: a ∈ dom (share sb (S ⊕W R)) ∪ acquired True sb (O ∪ A − R)

by auto
{

assume a ∈ dom (share sb (S ⊕W R))
from share-unshared-in [OF this]
have a ∈ dom (share sb (S ⊕W R 	A L)) ∪ acquired True sb (O ∪ A − R)

proof
assume a ∈ dom (share sb Map.empty)
from share-mono-in [OF this]
have a ∈ dom (share sb (S ⊕W R 	A L))

by auto
thus ?thesis by blast

next
assume a ∈ dom (S ⊕W R) ∧ a /∈ all-unshared sb
hence a-unsh: a /∈ all-unshared sb by blast
from a-A A-R have a ∈ O ∪ A − R

by auto
from owns-unshared-share-acquired [OF consis ′ this a-unsh]
show ?thesis .

qed
}
with hyp show ?thesis

by (auto simp add: Ghostsb)
qed

305

qed
qed

lemma dom-release-takeWhile:∧
S R.

dom (release (takeWhile (Not ◦ is-volatile-Writesb) sb) S R) =
dom R ∪ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)

apply (induct sb)
apply (clarsimp)
subgoal for a sb S R
apply (case-tac a)
apply (auto simp add: augment-rels-def domIff split: if-split-asm option.splits)
done
done

lemma share-all-until-volatile-write-share-acquired:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes a-notin: a /∈ dom S
assumes a-in: a ∈ dom (share-all-until-volatile-write ts S)
shows ∃ i < length ts.

let (-,-,-,sb,-,-,-) = ts!i
in a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)

using dist consis a-notin a-in
proof (induct ts arbitrary: S i)

case Nil thus ?case by simp
next

case (Cons t ts)

have a-notin: a /∈ dom S by fact
obtain pt ist Ot Rt Dt jt sbt where

t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

let ?take = (takeWhile (Not ◦ is-volatile-Writesb) sbt)
from t Cons.prems
have a-in: a ∈ dom (share-all-until-volatile-write ts (share ?take S))

by auto

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts.
have consis: sharing-consis S (t#ts) by fact
then interpret sharing-consis S t#ts.

from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

from sharing-consis-tl [OF consis]
have consis ′: sharing-consis S ts.
then

306

interpret consis ′: sharing-consis S ts.
let ?S ′ = (share ?take S)

from sharing-consis [of 0, simplified, OF t]
have sharing-consistent S Ot sbt.
from sharing-consistent-takeWhile [OF this]
have consis-sb: sharing-consistent S Ot ?take.
from freshly-shared-owned [OF consis-sb]
have fresh-owned: dom ?S ′ − dom S ⊆ Ot.
from unshared-all-unshared [OF consis-sb] unshared-acquired-or-owned [OF consis-sb]
have unshared-acq-owned: dom S − dom ?S ′

⊆ all-acquired ?take ∪ Ot

by simp

have sep:
∀ i < length ts. let (-,-,-,sb ′,-,-,-) = ts!i in

all-acquired sb ′ ∩ dom S − dom ?S ′ = {} ∧
all-unshared sb ′ ∩ dom ?S ′ − dom S = {}

proof −
{

fix i pi isi Oi Ri Di ji sbi

assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
have all-acquired sbi ∩ dom S − dom ?S ′ = {} ∧

all-unshared sbi ∩ dom ?S ′ − dom S = {}
proof −

from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (Ot ∪ all-acquired sbt) ∩ (Oi ∪ all-acquired sbi) = {}

by force

from dist unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sbt]
have all-acquired sbi ∩ dom S − dom ?S ′ = {}

by blast

moreover

from sharing-consis [of Suc i] ts-i i-bound
have sharing-consistent S Oi sbi

by force
from unshared-acquired-or-owned [OF this]
have all-unshared sbi ⊆ all-acquired sbi ∪ Oi.
with dist fresh-owned
have all-unshared sbi ∩ dom ?S ′ − dom S = {}

by blast

ultimately show ?thesis by simp
qed

}
thus ?thesis

307

by (fastforce simp add: Let-def)
qed

from consis ′.sharing-consis-preservation [OF this]
have consis-shared ′: sharing-consis ?S ′ ts.

have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)
by (rule ext) auto

show ?case
proof (cases a ∈ all-shared ?take)

case True
thus ?thesis
apply −
apply (rule-tac x=0 in exI)
apply (auto simp add: t aargh)
done

next
case False

have a-notin ′: a /∈ dom ?S ′

proof
assume a ∈ dom ?S ′

from share-all-shared-in [OF this] False a-notin
show False

by auto
qed
from Cons.hyps [OF dist ′ consis-shared ′ a-notin ′ a-in]
obtain i where i < length ts and

rel: let (p,is,j,sb,D,O,R) = ts!i
in a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)

by (auto simp add: Let-def aargh)
then show ?thesis

apply −
apply (rule-tac x = Suc i in exI)
apply (auto simp add: Let-def aargh)
done

qed
qed

lemma all-shared-share-acquired:
∧
S O. sharing-consistent S O sb =⇒

a ∈ all-shared sb =⇒ a ∈ dom (share sb S) ∪ acquired True sb O
proof (induct sb)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)

308

show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

a-shared: a ∈ R ∪ all-shared sb and A-shared-owns: A ⊆ dom S ∪ O and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and

consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

show ?thesis
proof (cases a ∈ all-shared sb)

case True
from Cons.hyps [OF consis ′ True]
show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case False
with a-shared have a ∈ R

by auto
with L-A A-R R-owns have a ∈ dom (S ⊕W R 	A L)

by auto
from shared-share-acquired [OF consis ′ this]
show ?thesis

by (clarsimp simp add: Writesb volatile)
qed

next
case False
with Cons
show ?thesis

by (auto simp add: Writesb)
qed

next
case Readsb

with Cons show ?thesis
by (auto simp add: Readsb)

next
case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A L R W)
from Cons.prems obtain

a-shared: a ∈ R ∪ all-shared sb and A-shared-owns: A ⊆ dom S ∪ O and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

show ?thesis
proof (cases a ∈ all-shared sb)

case True
from Cons.hyps [OF consis ′ True]

309

show ?thesis
by (clarsimp simp add: Ghostsb)

next
case False
with a-shared have a ∈ R

by auto
with L-A A-R R-owns have a ∈ dom (S ⊕W R 	A L)

by auto
from shared-share-acquired [OF consis ′ this]
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed
qed

lemma (in ownership-distinct) share-all-until-volatile-write-share-acquired:
assumes consis: sharing-consis S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-in: a ∈ dom (share-all-until-volatile-write ts S)
shows a ∈ dom (share sb S) ∨ a ∈ acquired True sb O ∨

(∃ j < length ts. j 6= i ∧
(let (-,-,-,sbj,-,-,-) = ts!j
in a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)))

proof −
from assms ownership-distinct have dist: ownership-distinct ts

apply −
apply (rule ownership-distinct.intro)
apply simp
done

from consis
interpret sharing-consis S ts .
from sharing-consis [OF i-bound ts-i]
have consis-sb: sharing-consistent S O sb.

let ?take-sb = takeWhile (Not ◦ is-volatile-Writesb) sb
let ?drop-sb = dropWhile (Not ◦ is-volatile-Writesb) sb

show ?thesis
proof (cases a ∈ dom S)

case True
from shared-share-acquired [OF consis-sb True]
have a ∈ dom (share sb S) ∪ acquired True sb O.
thus ?thesis by auto

next
case False
from share-all-until-volatile-write-share-acquired [OF dist consis False a-in]
obtain j where j-bound: j < length ts and

rel: let (-,-,-,sbj,-,-,-) = ts!j
in a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)

310

by auto
show ?thesis
proof (cases j=i)

case False
with j-bound rel
show ?thesis

by blast
next

case True
with rel ts-i have a ∈ all-shared ?take-sb

by (auto simp add: Let-def)
hence a ∈ all-shared sb
using all-shared-append [of ?take-sb ?drop-sb]

by auto
from all-shared-share-acquired [OF consis-sb this]
have a ∈ dom (share sb S) ∪ acquired True sb O.
thus ?thesis

by auto
qed

qed
qed

lemma acquired-all-shared-in:∧
A. a ∈ acquired True sb A =⇒ a ∈ acquired True sb {} ∨ (a ∈ A ∧ a /∈ all-shared sb)

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A ′ L R)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems
have a-in: a ∈ acquired True sb (A ∪ A ′ − R)

by (clarsimp simp add: Writesb True)
show ?thesis
proof (cases a ∈ A)

case True
from Cons.hyps [OF a-in]
have a ∈ acquired True sb {} ∨ a ∈ A ∪ A ′ − R ∧ a /∈ all-shared sb.
then show ?thesis
proof

311

assume a ∈ acquired True sb {}
from acquired-mono-in [OF this]
have a ∈ acquired True sb (A ′ − R) by auto
then show ?thesis

by (clarsimp simp add: Writesb volatile True)
next

assume a ∈ A ∪ A ′ − R ∧ a /∈ all-shared sb
then obtain a /∈ R a /∈ all-shared sb

by blast
then show ?thesis by (clarsimp simp add: Writesb volatile True)

qed
next

case False
have (A ∪ A ′ − R) ⊆ A ∪ (A ′ − R)

by blast
from acquired-mono [OF this] a-in
have a ∈ acquired True sb (A ∪ (A ′ − R)) by blast
from acquired-union-notin-first [OF this False]
have a ∈ acquired True sb (A ′ − R).
then show ?thesis

by (clarsimp simp add: Writesb True)
qed

next
case False
with Cons show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb

with Cons show ?thesis
by (auto simp add: Readsb)

next
case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A ′ L R W)
from Cons.prems
have a-in: a ∈ acquired True sb (A ∪ A ′ − R)

by (clarsimp simp add: Ghostsb)
show ?thesis
proof (cases a ∈ A)

case True
from Cons.hyps [OF a-in]
have a ∈ acquired True sb {} ∨ a ∈ A ∪ A ′ − R ∧ a /∈ all-shared sb.
then show ?thesis
proof

assume a ∈ acquired True sb {}
from acquired-mono-in [OF this]
have a ∈ acquired True sb (A ′ − R) by auto

312

then show ?thesis
by (clarsimp simp add: Ghostsb True)

next
assume a ∈ A ∪ A ′ − R ∧ a /∈ all-shared sb
then obtain a /∈ R a /∈ all-shared sb

by blast
then show ?thesis by (clarsimp simp add: Ghostsb True)

qed
next

case False
have (A ∪ A ′ − R) ⊆ A ∪ (A ′ − R)

by blast
from acquired-mono [OF this] a-in
have a ∈ acquired True sb (A ∪ (A ′ − R)) by blast
from acquired-union-notin-first [OF this False]
have a ∈ acquired True sb (A ′ − R).
then show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed
qed

lemma all-shared-acquired-in:
∧

A. a ∈ A =⇒ a /∈ all-shared sb =⇒ a ∈ acquired True
sb A
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A ′ L R W)
show ?thesis
proof (cases volatile)

case True
show ?thesis
proof −

from Cons.prems obtain a-A: a ∈ A and a-R: a /∈ R and a-sb: a /∈ all-shared sb
by (clarsimp simp add: Writesb True)

from a-A a-R have a ∈ A ∪ A ′ − R
by blast

from Cons.hyps [OF this a-sb]
show ?thesis

by (clarsimp simp add: Writesb True)
qed

next
case False
with Cons show ?thesis

by (auto simp add: Writesb False)
qed

313

next
case Readsb

with Cons show ?thesis
by (auto simp add: Readsb)

next
case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case Ghostsb
with Cons show ?thesis

by (auto simp add: Ghostsb)
qed

qed

lemma owned-share-acquired:
∧
S O. sharing-consistent S O sb =⇒

a ∈ O =⇒ a ∈ dom (share sb S) ∪ acquired True sb O
proof (induct sb)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

a-owned: a ∈ O and A-shared-owns: A ⊆ dom S ∪ O and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and

consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

show ?thesis
proof (cases a ∈ R)

case False with a-owned
have a ∈ O ∪ A − R

by auto
from Cons.hyps [OF consis ′ this]
show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case True
from True L-A A-R have a ∈ dom (S ⊕W R 	A L)

by auto
from shared-share-acquired [OF consis ′ this]
show ?thesis

by (clarsimp simp add: Writesb volatile True)
qed

next

314

case False
with Cons
show ?thesis

by (auto simp add: Writesb)
qed

next
case Readsb

with Cons show ?thesis
by (auto simp add: Readsb)

next
case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A L R W)
from Cons.prems obtain

a-owned: a ∈ O and A-shared-owns: A ⊆ dom S ∪ O and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

show ?thesis
proof (cases a ∈ R)

case False with a-owned
have a ∈ O ∪ A − R

by auto
from Cons.hyps [OF consis ′ this]
show ?thesis

by (clarsimp simp add: Ghostsb)
next

case True
from True L-A A-R have a ∈ dom (S ⊕W R 	A L)

by auto
from shared-share-acquired [OF consis ′ this]
show ?thesis

by (clarsimp simp add: Ghostsb True)
qed

qed
qed

lemma outstanding-refs-non-volatile-Readsb-all-acquired:∧
m S O pending-write.
[[reads-consistent pending-write O m sb;non-volatile-owned-or-read-only pending-write

S O sb;
a ∈ outstanding-refs is-non-volatile-Readsb sb]]
=⇒ a ∈ O ∨ a ∈ all-acquired sb ∨

a ∈ read-only-reads O sb
proof (induct sb)

case Nil thus ?case by simp
next

315

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

non-vo: non-volatile-owned-or-read-only True (S ⊕W R 	A L)
(O ∪ A − R) sb and

out-vol: outstanding-refs is-volatile-Readsb sb = {} and
out: a ∈ outstanding-refs is-non-volatile-Readsb sb
by (clarsimp simp add: Writesb True)

show ?thesis
proof (cases a ∈ O)

case True
show ?thesis

by (clarsimp simp add: Writesb True volatile)
next

case False
from outstanding-non-volatile-Readsb-acquired-or-read-only-reads [OF non-vo out]
have a-in: a ∈ acquired-reads True sb (O ∪ A − R) ∨

a ∈ read-only-reads (O ∪ A − R) sb
by auto

with acquired-reads-all-acquired [of True sb (O ∪ A − R)]
show ?thesis

by (auto simp add: Writesb volatile)
qed

next
case False
with Cons show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb

with Cons show ?thesis
apply (clarsimp simp del: o-apply simp add: Readsb

acquired-takeWhile-non-volatile-Writesb split: if-split-asm)
apply auto
done

next
case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A L)
with Cons show ?thesis

by (auto simp add: Ghostsb)
qed

316

qed

lemma outstanding-refs-non-volatile-Readsb-all-acquired-dropWhile:
assumes consis: reads-consistent pending-write O m sb
assumes nvo: non-volatile-owned-or-read-only pending-write S O sb
assumes out: a ∈ outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦
is-volatile-Writesb) sb)
shows a ∈ O ∨ a ∈ all-acquired sb ∨

a ∈ read-only-reads O sb
using outstanding-refs-append [of is-non-volatile-Readsb takeWhile (Not ◦
is-volatile-Writesb) sb

dropWhile (Not ◦ is-volatile-Writesb) sb]
outstanding-refs-non-volatile-Readsb-all-acquired [OF consis nvo, of a] out

by (auto)

lemma share-commute:∧
L R S O. [[sharing-consistent S O sb;

all-shared sb ∩ L = {}; all-shared sb ∩ A = {}; all-acquired sb ∩ R = {};
all-unshared sb ∩ R = {}; all-shared sb ∩ R = {}]] =⇒
(share sb (S ⊕W R 	A L)) =
(share sb S) ⊕W R 	A L

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A ′ L ′ R ′ W ′)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

L-prop: (R ′ ∪ all-shared sb) ∩ L = {} and
A-prop: (R ′ ∪ all-shared sb) ∩ A = {} and
R-acq-prop: (A ′ ∪ all-acquired sb) ∩ R = {} and
R-prop:(L ′ ∪ all-unshared sb) ∩ R = {} and
R-prop-sh: (R ′ ∪ all-shared sb) ∩ R = {} and
A ′-shared-owns: A ′ ⊆ dom S ∪ O and L ′-A ′: L ′ ⊆ A ′ and A ′-R ′: A ′ ∩ R ′ = {} and
R ′-owns: R ′ ⊆ O and

consis ′: sharing-consistent (S ⊕W ′ R ′ 	A ′ L ′) (O ∪ A ′ − R ′) sb
by (clarsimp simp add: Writesb volatile)

from L-prop obtain R ′-L: R ′ ∩ L = {} and acq-L: all-shared sb ∩ L = {}
by blast

from A-prop obtain R ′-A: R ′ ∩ A = {} and acq-A: all-shared sb ∩ A = {}

317

by blast
from R-acq-prop obtain A ′-R: A ′ ∩ R = {} and acq-R:all-acquired sb ∩ R = {}

by blast
from R-prop obtain L ′-R: L ′ ∩ R = {} and unsh-R: all-unshared sb ∩ R = {}

by blast
from R-prop-sh obtain R ′-R: R ′ ∩ R = {} and sh-R: all-shared sb ∩ R = {}

by blast

from Cons.hyps [OF consis ′ acq-L acq-A acq-R unsh-R sh-R]
have share sb ((S ⊕W ′ R ′ 	A ′ L ′) ⊕W R 	A L) = share sb (S ⊕W ′ R ′ 	A ′ L ′) ⊕W R

	A L.

moreover

from R ′-L L ′-R R ′-R R ′-A A ′-R
have ((S ⊕W R 	A L) ⊕W ′ R ′ 	A ′ L ′) = ((S ⊕W ′ R ′ 	A ′ L ′) ⊕W R 	A L)

apply −
apply (rule ext)
apply (clarsimp simp add: augment-shared-def restrict-shared-def)
apply (auto split: if-split-asm option.splits)
done

ultimately
have share sb ((S ⊕W R 	A L) ⊕W ′ R ′ 	A ′ L ′) = share sb (S ⊕W ′ R ′ 	A ′ L ′) ⊕W R

	A L
by simp

then
show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case False with Cons show ?thesis
by (clarsimp simp add: Writesb False)

qed
next

case Readsb with Cons show ?thesis
by (clarsimp simp add: Readsb)

next
case Progsb with Cons show ?thesis

by (clarsimp simp add: Progsb)
next

case (Ghostsb A ′ L ′ R ′ W ′)
from Cons.prems obtain

L-prop: (R ′ ∪ all-shared sb) ∩ L = {} and
A-prop: (R ′ ∪ all-shared sb) ∩ A = {} and
R-acq-prop: (A ′ ∪ all-acquired sb) ∩ R = {} and
R-prop:(L ′ ∪ all-unshared sb) ∩ R = {} and
R-prop-sh: (R ′ ∪ all-shared sb) ∩ R = {} and
A ′-shared-owns: A ′ ⊆ dom S ∪ O and L ′-A ′: L ′ ⊆ A ′ and A ′-R ′: A ′ ∩ R ′ = {} and
R ′-owns: R ′ ⊆ O and
consis ′: sharing-consistent (S ⊕W ′ R ′ 	A ′ L ′) (O ∪ A ′ − R ′) sb

318

by (clarsimp simp add: Ghostsb)

from L-prop obtain R ′-L: R ′ ∩ L = {} and acq-L: all-shared sb ∩ L = {}
by blast

from A-prop obtain R ′-A: R ′ ∩ A = {} and acq-A: all-shared sb ∩ A = {}
by blast

from R-acq-prop obtain A ′-R: A ′ ∩ R = {} and acq-R:all-acquired sb ∩ R = {}
by blast

from R-prop obtain L ′-R: L ′ ∩ R = {} and unsh-R: all-unshared sb ∩ R = {}
by blast

from R-prop-sh obtain R ′-R: R ′ ∩ R = {} and sh-R: all-shared sb ∩ R = {}
by blast

from Cons.hyps [OF consis ′ acq-L acq-A acq-R unsh-R sh-R]
have share sb ((S ⊕W ′ R ′ 	A ′ L ′) ⊕W R 	A L) = share sb (S ⊕W ′ R ′ 	A ′ L ′) ⊕W R

	A L.

moreover

from R ′-L L ′-R R ′-R R ′-A A ′-R
have ((S ⊕W R 	A L) ⊕W ′ R ′ 	A ′ L ′) = ((S ⊕W ′ R ′ 	A ′ L ′) ⊕W R 	A L)

apply −
apply (rule ext)
apply (clarsimp simp add: augment-shared-def restrict-shared-def)
apply (auto split: if-split-asm option.splits)
done

ultimately
have share sb ((S ⊕W R 	A L) ⊕W ′ R ′ 	A ′ L ′) = share sb (S ⊕W ′ R ′ 	A ′ L ′) ⊕W R

	A L
by simp

then
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

lemma share-all-until-volatile-write-commute:∧
S R L. [[ownership-distinct ts; sharing-consis S ts;

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {};

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {};

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {};

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {};

∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→

319

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}]]
=⇒

share-all-until-volatile-write ts S ⊕W R 	A L = share-all-until-volatile-write ts (S ⊕W R
	A L)
proof (induct ts)

case Nil
thus ?case by simp

next
case (Cons t ts)
obtain p is O R D j sb where

t: t=(p,is,j,sb,D,O,R)
by (cases t)

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts.
have consis: sharing-consis S (t#ts) by fact
then interpret sharing-consis S t#ts.

have L-prop: ∀ i p is O R D j sb. i < length (t#ts) −→ (t#ts)!i=(p,is,j,sb,D,O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {} by fact

hence L-prop ′: ∀ i p is O R D j sb. i < length (ts) −→ (ts)!i=(p,is,j,sb,D,O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {}

by force
have A-prop: ∀ i p is O R D j sb. i < length (t#ts) −→ (t#ts)!i=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {} by fact
hence A-prop ′: ∀ i p is O R D j sb. i < length (ts) −→ (ts)!i=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {}
by force

have R-prop-acq: ∀ i p is O R D j sb. i < length (t#ts) −→ (t#ts)!i=(p,is,j,sb,D,O,R)
−→

all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {} by fact
hence R-prop-acq ′: ∀ i p is O R D j sb. i < length (ts) −→ (ts)!i=(p,is,j,sb,D,O,R) −→

all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}
by force

have R-prop: ∀ i p is O R D j sb. i < length (t#ts) −→ (t#ts)!i=(p,is,j,sb,D,O,R)
−→

all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {} by fact
hence R-prop ′: ∀ i p is O R D j sb. i < length (ts) −→ (ts)!i=(p,is,j,sb,D,O,R) −→

all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}
by force

have R-prop-sh: ∀ i p is O R D j sb. i < length (t#ts) −→ (t#ts)!i=(p,is,j,sb,D,O,R)
−→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {} by fact
hence R-prop-sh ′: ∀ i p is O R D j sb. i < length (ts) −→ (ts)!i=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}
by force

from ownership-distinct-tl [OF dist]

320

have dist ′: ownership-distinct ts.

from sharing-consis-tl [OF consis]
have consis ′: sharing-consis S ts.
then
interpret consis ′: sharing-consis S ts.

from L-prop [rule-format, of 0 p is j sb D O] t
have sh-L: all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {}

by simp

from A-prop [rule-format, of 0 p is j sb D O] t
have sh-A: all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {}

by simp

from R-prop-acq [rule-format, of 0 p is j sb D O] t
have acq-R: all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}

by simp

from R-prop [rule-format, of 0 p is j sb D O] t
have unsh-R: all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}

by simp

from R-prop-sh [rule-format, of 0 p is j sb D O] t
have sh-R: all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}

by simp

from sharing-consis [of 0, simplified, OF t]
have sharing-consistent S O sb.
from sharing-consistent-takeWhile [OF this]
have consis-sb: sharing-consistent S O (takeWhile (Not ◦ is-volatile-Writesb) sb).

from share-commute [OF consis-sb sh-L sh-A acq-R unsh-R sh-R]
have share-eq:
(share (takeWhile (Not ◦ is-volatile-Writesb) sb) (S ⊕W R 	A L)) =

(share (takeWhile (Not ◦ is-volatile-Writesb) sb) S) ⊕W R 	A L.

let ?S ′ = (share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)

from freshly-shared-owned [OF consis-sb]
have fresh-owned: dom ?S ′ − dom S ⊆ O.
from unshared-all-unshared [OF consis-sb] unshared-acquired-or-owned [OF consis-sb]
have unshared-acq-owned: dom S − dom ?S ′

⊆ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪ O
by simp

have sep:
∀ i < length ts. let (-,-,-,sb ′,-,-,-) = ts!i in

321

all-acquired sb ′ ∩ dom S − dom ?S ′ = {} ∧
all-unshared sb ′ ∩ dom ?S ′ − dom S = {}

proof −
{

fix i pi isi Oi Ri Di ji sbi

assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
have all-acquired sbi ∩ dom S − dom ?S ′ = {} ∧

all-unshared sbi ∩ dom ?S ′ − dom S = {}
proof −

from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (O ∪ all-acquired sb) ∩ (Oi ∪ all-acquired sbi) = {}

by force

from dist unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sb]
have all-acquired sbi ∩ dom S − dom ?S ′ = {}

by blast

moreover

from sharing-consis [of Suc i] ts-i i-bound
have sharing-consistent S Oi sbi

by force
from unshared-acquired-or-owned [OF this]
have all-unshared sbi ⊆ all-acquired sbi ∪ Oi.
with dist fresh-owned
have all-unshared sbi ∩ dom ?S ′ − dom S = {}

by blast

ultimately show ?thesis by simp
qed

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

from consis ′.sharing-consis-preservation [OF sep]
have sharing-consis ′: sharing-consis (share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)

ts.

from Cons.hyps [OF dist ′ sharing-consis ′ L-prop ′ A-prop ′ R-prop-acq ′ R-prop ′

R-prop-sh ′]
have share-all-until-volatile-write ts ?S ′ ⊕W R 	A L =

share-all-until-volatile-write ts (?S ′ ⊕W R 	A L).

then
have share-all-until-volatile-write ts

?S ′ ⊕W R 	A L =
share-all-until-volatile-write ts

322

(share (takeWhile (Not ◦ is-volatile-Writesb) sb) (S ⊕W R 	A L))
by (simp add: share-eq)

then
show ?case

by (simp add: t)
qed

lemma share-append-Ghostsb:∧
S. outstanding-refs is-volatile-Writesb sb = {} =⇒ (share (sb @ [Ghostsb A L R W])

S) = (share sb S) ⊕W R 	A L
apply (induct sb)
apply simp
subgoal for a sb S
apply (case-tac a)
apply auto
done
done

lemma share-append-Ghostsb ′:∧
S. outstanding-refs is-volatile-Writesb sb 6= {} =⇒
(share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Ghostsb A L R W])) S) =
(share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)

apply (induct sb)
apply simp
subgoal for a sb S
apply (case-tac a)
apply force+
done
done

lemma share-all-until-volatile-write-append-Ghostsb:
assumes no-out-VWritesb: outstanding-refs is-volatile-Writesb sb = {}
shows

∧
S i. [[ownership-distinct ts; sharing-consis S ts;

i < length ts; ts!i = (p,is,j,sb,D,O,R);
∀ j p is O R D j sb. j < length ts −→ i 6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {};
∀ j p is O R D j sb. j < length ts −→ i 6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {};
∀ j p is O R D j sb. j < length ts −→ i6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {};
∀ j p is O R D j sb. j < length ts −→ i6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {};
∀ j p is O R D j sb. j < length ts −→ i6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}]]
=⇒
share-all-until-volatile-write (ts[i := (p ′, is ′,j ′, sb @ [Ghostsb A L R W], D ′, O ′)]) S

= share-all-until-volatile-write ts S ⊕W R 	A L
proof (induct ts)

case Nil
thus ?case by simp

323

next
case (Cons t ts)
obtain pt ist Ot Rt Dt acqt jt sbt where

t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts.
have consis: sharing-consis S (t#ts) by fact
then interpret sharing-consis S t#ts.

have L-prop: ∀ j p is O RD j sb. j < length (t#ts) −→ i6=j −→ (t#ts)!j=(p,is,j,sb,D,O,R)
−→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {} by fact

have A-prop: ∀ j p is O RD j sb. j < length (t#ts)−→ i 6=j −→ (t#ts)!j=(p,is,j,sb,D,O,R)
−→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {} by fact

have R-prop-acq: ∀ j p is O R D j sb. j < length (t#ts) −→ i6=j−→
(t#ts)!j=(p,is,j,sb,D,O,R) −→

all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {} by fact
have R-prop: ∀ j p is O R D j sb. j < length (t#ts) −→ i6=j−→

(t#ts)!j=(p,is,j,sb,D,O,R) −→
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {} by fact

have R-prop-sh: ∀ j p is O R D j sb. j < length (t#ts) −→ i6=j −→
(t#ts)!j=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {} by fact

from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

from sharing-consis-tl [OF consis]
have consis ′: sharing-consis S ts.
then
interpret consis ′: sharing-consis S ts.

from sharing-consis [of 0, simplified, OF t]
have sharing-consistent S Ot sbt .

from sharing-consistent-takeWhile [OF this]
have consis-sb: sharing-consistent S Ot (takeWhile (Not ◦ is-volatile-Writesb) sbt).

let ?S ′ = (share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S)

from freshly-shared-owned [OF consis-sb]
have fresh-owned: dom ?S ′ − dom S ⊆ Ot.
from unshared-all-unshared [OF consis-sb] unshared-acquired-or-owned [OF consis-sb]
have unshared-acq-owned: dom S − dom ?S ′

324

⊆ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbt) ∪ Ot

by simp

have sep:
∀ i < length ts. let (-,-,-,sb ′,-,-,-) = ts!i in

all-acquired sb ′ ∩ dom S − dom ?S ′ = {} ∧
all-unshared sb ′ ∩ dom ?S ′ − dom S = {}

proof −
{

fix i pi isi Oi Ri Di acqi ji sbi

assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
have all-acquired sbi ∩ dom S − dom ?S ′ = {} ∧

all-unshared sbi ∩ dom ?S ′ − dom S = {}
proof −

from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (Ot ∪ all-acquired sbt) ∩ (Oi ∪ all-acquired sbi) = {}

by force

from dist unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sbt]
have all-acquired sbi ∩ dom S − dom ?S ′ = {}

by blast

moreover

from sharing-consis [of Suc i] ts-i i-bound
have sharing-consistent S Oi sbi

by force
from unshared-acquired-or-owned [OF this]
have all-unshared sbi ⊆ all-acquired sbi ∪ Oi.
with dist fresh-owned
have all-unshared sbi ∩ dom ?S ′ − dom S = {}

by blast

ultimately show ?thesis by simp
qed

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

from consis ′.sharing-consis-preservation [OF sep]
have sharing-consis ′: sharing-consis (share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S)

ts.

show ?case
proof (cases i)

case 0

325

with t Cons.prems have eqs: pt=p ist=is Ot=O Rt=R jt=j sbt=sb Dt=D
by auto

from no-out-VWritesb
have flush-all: takeWhile (Not ◦ is-volatile-Writesb) sb = sb

by (auto simp add: outstanding-refs-conv)

from no-out-VWritesb
have flush-all ′: takeWhile (Not ◦ is-volatile-Writesb) (sb@[Ghostsb A L R W]) =

sb@[Ghostsb A L R W]
by (auto simp add: outstanding-refs-conv)

have share-eq:
(share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Ghostsb A L R W])) S) =

(share (takeWhile (Not ◦ is-volatile-Writesb) sb) S) ⊕W R 	A L
apply (simp only: flush-all flush-all ′)
apply (rule share-append-Ghostsb [OF no-out-VWritesb])
done

from L-prop 0 have L-prop ′:
∀ i p is O R D j sb.

i < length ts −→
ts ! i = (p, is,j, sb, D, O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {}
apply clarsimp
subgoal for i1 p is O R D j sb
apply (drule-tac x=Suc i1 in spec)
apply auto
done
done

from A-prop 0 have A-prop ′:
∀ i p is O R D j sb.

i < length ts −→
ts ! i = (p, is,j, sb, D, O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {}
apply clarsimp
subgoal for i1 p is O R D j sb
apply (drule-tac x=Suc i1 in spec)
apply auto
done
done

from R-prop-acq 0 have R-prop-acq ′:
∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→

all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}
apply clarsimp
subgoal for i1 p is O R D j sb
apply (drule-tac x=Suc i1 in spec)
apply auto
done

326

done
from R-prop 0
have R-prop ′:
∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→

all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}
apply clarsimp
subgoal for i1 p is O R D j sb
apply (drule-tac x=Suc i1 in spec)
apply auto
done
done

from R-prop-sh 0 have R-prop-sh ′:
∀ i p is O R D j sb. i < length ts −→ ts!i=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}
apply clarsimp
subgoal for i1 p is O R D j sb
apply (drule-tac x=Suc i1 in spec)
apply auto
done
done

from share-all-until-volatile-write-commute [OF dist ′ sharing-consis ′ L-prop ′ A-prop ′

R-prop-acq ′ R-prop ′

R-prop-sh ′]

have share-all-until-volatile-write ts (share (takeWhile (Not ◦ is-volatile-Writesb) sb)
S ⊕W R 	A L) =

share-all-until-volatile-write ts (share (takeWhile (Not ◦ is-volatile-Writesb) sbt)
S) ⊕W R 	A L

by (simp add: eqs)
with share-eq
show ?thesis

by (clarsimp simp add: 0 t)
next

case (Suc k)
from L-prop Suc
have L-prop ′: ∀ j p is O R D j sb. j < length (ts) −→ k6=j −→ (ts)!j=(p,is,j,sb,D,O,R)

−→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {} by force

from A-prop Suc
have A-prop ′: ∀ j p is O R D j sb. j < length (ts) −→ k 6=j −→ (ts)!j=(p,is,j,sb,D,O,R)

−→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {} by force

from R-prop-acq Suc have R-prop-acq ′:
∀ j p is O R D j sb. j < length ts −→ k 6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {} by force

from R-prop Suc

327

have R-prop ′:
∀ j p is O R D j sb. j < length ts −→ k 6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {} by force

from R-prop-sh Suc have R-prop-sh ′:
∀ j p is O R D j sb. j < length ts −→ k 6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {} by force

from Cons.prems Suc obtain k-bound: k < length ts and ts-k: ts!k = (p, is,j, sb, D,
O,R)

by auto

from Cons.hyps [OF dist ′ sharing-consis ′ k-bound ts-k L-prop ′ A-prop ′ R-prop-acq ′

R-prop ′ R-prop-sh ′]
show ?thesis

by (clarsimp simp add: t Suc)
qed

qed

lemma share-domain-changes:∧
S S ′. a ∈ all-shared sb ∪ all-unshared sb =⇒ share sb S ′ a = share sb S a

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain a-in: a ∈ R ∪ all-shared sb ∪ L ∪ all-unshared sb

by (clarsimp simp add: Writesb True)
show ?thesis
proof (cases a ∈ R)

case True
from True have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
from share-shared-eq [where S ′=S ′ ⊕W R 	A L and S=S ⊕W R 	A L, OF this]
have share sb (S ′ ⊕W R 	A L) a = share sb (S ⊕W R 	A L) a

by auto
then show ?thesis

by (clarsimp simp add: Writesb volatile)
next

328

case False
note not-R = this
show ?thesis
proof (cases a ∈ L)

case True
from not-R True have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
from share-shared-eq [where S ′=S ′ ⊕W R 	A L and S=S ⊕W R 	A L, OF

this]
have share sb (S ′ ⊕W R 	A L) a = share sb (S ⊕W R 	A L) a

by auto
then show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case False
with not-R a-in have a ∈ all-shared sb ∪ all-unshared sb

by auto
from Cons.hyps [OF this]
show ?thesis by (clarsimp simp add: Writesb volatile)

qed
qed

next
case False with Cons show ?thesis by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis by (auto)
next

case Progsb with Cons show ?thesis by (auto)
next

case (Ghostsb A L R W)
from Cons.prems obtain a-in: a ∈ R ∪ all-shared sb ∪ L ∪ all-unshared sb

by (clarsimp simp add: Ghostsb)
show ?thesis
proof (cases a ∈ R)

case True
from True have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
from share-shared-eq [where S ′=S ′ ⊕W R 	A L and S=S ⊕W R 	A L, OF this]
have share sb (S ′ ⊕W R 	A L) a = share sb (S ⊕W R 	A L) a

by auto
then show ?thesis
by (clarsimp simp add: Ghostsb)

next
case False
note not-R = this
show ?thesis
proof (cases a ∈ L)

case True
from not-R True have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)

329

from share-shared-eq [where S ′=S ′ ⊕W R 	A L and S=S ⊕W R 	A L, OF this]
have share sb (S ′ ⊕W R 	A L) a = share sb (S ⊕W R 	A L) a

by auto
then show ?thesis

by (clarsimp simp add: Ghostsb)
next

case False
with not-R a-in have a ∈ all-shared sb ∪ all-unshared sb

by auto
from Cons.hyps [OF this]
show ?thesis by (clarsimp simp add: Ghostsb)

qed
qed

qed
qed

lemma share-domain-changesX:∧
S S ′ X. ∀ a ∈ X. S ′ a = S a

=⇒ a ∈ all-shared sb ∪ all-unshared sb ∪ X =⇒ share sb S ′ a = share sb S a
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
then have shared-eq: ∀ a ∈ X. S ′ a = S a

by auto
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain a-in: a ∈ R ∪ all-shared sb ∪ L ∪ all-unshared sb ∪ X

by (clarsimp simp add: Writesb True)
show ?thesis
proof (cases a ∈ R)

case True
from True have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
from share-shared-eq [where S ′=S ′ ⊕W R 	A L and S=S ⊕W R 	A L, OF this]
have share sb (S ′ ⊕W R 	A L) a = share sb (S ⊕W R 	A L) a

by auto
then show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case False
note not-R = this
show ?thesis
proof (cases a ∈ L)

case True

330

from not-R True have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a
by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
from share-shared-eq [where S ′=S ′ ⊕W R 	A L and S=S ⊕W R 	A L, OF

this]
have share sb (S ′ ⊕W R 	A L) a = share sb (S ⊕W R 	A L) a

by auto
then show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case False
from shared-eq have shared-eq ′: ∀ a ∈ X. (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
from False not-R a-in have a ∈ all-shared sb ∪ all-unshared sb ∪ X

by auto
from Cons.hyps [OF shared-eq ′ this]
show ?thesis by (clarsimp simp add: Writesb volatile)

qed
qed

next
case False with Cons show ?thesis by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis by (auto)
next

case Progsb with Cons show ?thesis by (auto)
next

case (Ghostsb A L R W)
from Cons.prems obtain a-in: a ∈ R ∪ all-shared sb ∪ L ∪ all-unshared sb ∪ X

by (clarsimp simp add: Ghostsb)
show ?thesis
proof (cases a ∈ R)

case True
from True have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
from share-shared-eq [where S ′=S ′ ⊕W R 	A L and S=S ⊕W R 	A L, OF this]
have share sb (S ′ ⊕W R 	A L) a = share sb (S ⊕W R 	A L) a

by auto
then show ?thesis
by (clarsimp simp add: Ghostsb)

next
case False
note not-R = this
show ?thesis
proof (cases a ∈ L)

case True
from not-R True have (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
from share-shared-eq [where S ′=S ′ ⊕W R 	A L and S=S ⊕W R 	A L, OF this]
have share sb (S ′ ⊕W R 	A L) a = share sb (S ⊕W R 	A L) a

by auto

331

then show ?thesis
by (clarsimp simp add: Ghostsb)

next
case False
from shared-eq have shared-eq ′: ∀ a ∈ X. (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
from False not-R a-in have a ∈ all-shared sb ∪ all-unshared sb ∪ X

by auto
from Cons.hyps [OF shared-eq ′ this]
show ?thesis by (clarsimp simp add: Ghostsb)

qed
qed

qed
qed

lemma share-unchanged:∧
S. a /∈ all-shared sb ∪ all-unshared sb ∪ all-acquired sb =⇒ share sb S a = S a

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain a-R: a /∈ R and a-L: a /∈ L and a-A: a /∈ A

and a ′: a /∈ all-shared sb ∪ all-unshared sb ∪ all-acquired sb
by (clarsimp simp add: Writesb True)

from Cons.hyps [OF a ′]
have share sb (S ⊕W R 	A L) a = (S ⊕W R 	A L) a .
moreover
from a-R a-L a-A have (S ⊕W R 	A L) a = S a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
ultimately
show ?thesis
by (clarsimp simp add: Writesb True)

next
case False with Cons show ?thesis by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis by (auto)
next

case Progsb with Cons show ?thesis by (auto)
next

case (Ghostsb A L R W)
from Cons.prems obtain a-R: a /∈ R and a-L: a /∈ L and a-A: a /∈ A

and a ′: a /∈ all-shared sb ∪ all-unshared sb ∪ all-acquired sb

332

by (clarsimp simp add: Ghostsb)
from Cons.hyps [OF a ′]
have share sb (S ⊕W R 	A L) a = (S ⊕W R 	A L) a .
moreover
from a-R a-L a-A have (S ⊕W R 	A L) a = S a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
ultimately
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

lemma share-augment-release-commute:
assumes dist: (R ∪ L ∪ A) ∩ (all-shared sb ∪ all-unshared sb ∪ all-acquired sb) = {}
shows (share sb S ⊕W R 	A L) = share sb (S ⊕W R 	A L)
proof −

from dist have shared-eq: ∀ a ∈ all-acquired sb. (S ⊕W R 	A L) a = S a
by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)

{
fix a
assume a-in: a ∈ all-shared sb ∪ all-unshared sb ∪ all-acquired sb
from share-domain-changesX [OF shared-eq this]
have share sb (S ⊕W R 	A L) a = share sb S a.
also
from dist a-in have ... = (share sb S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
finally have share sb (S ⊕W R 	A L) a = (share sb S ⊕W R 	A L) a.

}
moreover
{

fix a
assume a-notin: a /∈ all-shared sb ∪ all-unshared sb ∪ all-acquired sb
from share-unchanged [OF a-notin]
have share sb (S ⊕W R 	A L) a = (S ⊕W R 	A L) a.
moreover
from share-unchanged [OF a-notin]
have share sb S a = S a.
hence (share sb S ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
ultimately have share sb (S ⊕W R 	A L) a = (share sb S ⊕W R 	A L) a

by simp
}
ultimately show ?thesis

apply −
apply (rule ext)
subgoal for x
apply (case-tac x ∈ all-shared sb ∪ all-unshared sb ∪ all-acquired sb)
apply auto
done

333

done
qed

lemma share-append-commute:∧
ys S. (all-shared xs ∪ all-unshared xs ∪ all-acquired xs) ∩

(all-shared ys ∪ all-unshared ys ∪ all-acquired ys) = {}
=⇒ share xs (share ys S) = share ys (share xs S)
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems have

dist ′: (all-shared xs ∪ all-unshared xs ∪ all-acquired xs) ∩
(all-shared ys ∪ all-unshared ys ∪ all-acquired ys) = {}

apply (clarsimp simp add: Writesb True)
apply blast
done

from Cons.prems have
dist: (R ∪ L ∪ A) ∩ (all-shared ys ∪ all-unshared ys ∪ all-acquired ys) = {}
apply (clarsimp simp add: Writesb True)
apply blast
done

from share-augment-release-commute [OF dist]
have (share ys S ⊕W R 	A L) = share ys (S ⊕W R 	A L).

with Cons.hyps [OF dist ′]
show ?thesis

by (clarsimp simp add: Writesb True)
next

case False with Cons show ?thesis
by (clarsimp simp add: Writesb False)

qed
next

case Readsb with Cons show ?thesis by auto
next

case Progsb with Cons show ?thesis by auto
next

case (Ghostsb A L R W)
from Cons.prems have

dist ′: (all-shared xs ∪ all-unshared xs ∪ all-acquired xs) ∩
(all-shared ys ∪ all-unshared ys ∪ all-acquired ys) = {}

apply (clarsimp simp add: Ghostsb)
apply blast

334

done
from Cons.prems have

dist: (R ∪ L ∪ A) ∩ (all-shared ys ∪ all-unshared ys ∪ all-acquired ys) = {}
apply (clarsimp simp add: Ghostsb)
apply blast
done

from share-augment-release-commute [OF dist]
have (share ys S ⊕W R 	A L) = share ys (S ⊕W R 	A L).

with Cons.hyps [OF dist ′]
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

lemma share-append-commute ′:
assumes dist: (all-shared xs ∪ all-unshared xs ∪ all-acquired xs) ∩

(all-shared ys ∪ all-unshared ys ∪ all-acquired ys) = {}
shows share (ys@xs) S = share (xs@ys) S

proof −
from share-append-commute [OF dist] share-append [of xs ys] share-append [of ys xs]
show ?thesis

by simp
qed

lemma share-all-until-volatile-write-share-commute:
shows

∧
S (sb ′:: ′a memref list). [[ownership-distinct ts; sharing-consis S ts;

∀ i p is O R D j (sb:: ′a memref list). i < length ts
−→ ts!i=(p,is,j,sb,D,O,R) −→

(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩
(all-shared sb ′ ∪ all-unshared sb ′ ∪ all-acquired sb ′) = {}]]

=⇒
share-all-until-volatile-write ts (share sb ′ S) =
share sb ′ (share-all-until-volatile-write ts S)
proof (induct ts)

case Nil
thus ?case by simp

next
case (Cons t ts)
obtain pt ist Ot Rt Dt jt sbt where

t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

let ?take = (takeWhile (Not ◦ is-volatile-Writesb) sbt)
have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts .
have consis: sharing-consis S (t#ts) by fact
then interpret sharing-consis S t#ts .

335

have dist-prop: ∀ i p is O R D j sb. i < length (t#ts)
−→ (t#ts)!i=(p,is,j,sb,D,O,R) −→

(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩
(all-shared sb ′ ∪ all-unshared sb ′ ∪ all-acquired sb ′) = {} by fact

from dist-prop [rule-format, of 0] t
have dist-t: (all-shared ?take ∪ all-unshared ?take ∪ all-acquired ?take) ∩

(all-shared sb ′ ∪ all-unshared sb ′ ∪ all-acquired sb ′) = {}
apply clarsimp
done

from dist-prop have
dist-prop ′:∀ i p is O R D j sb. i < length ts

−→ ts!i=(p,is,j,sb,D,O,R) −→
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩
(all-shared sb ′ ∪ all-unshared sb ′ ∪ all-acquired sb ′) = {}

apply (clarsimp)
subgoal for i p is O R D j sb
apply (drule-tac x=Suc i in spec)
apply clarsimp
done
done

from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

from sharing-consis-tl [OF consis]
have consis ′: sharing-consis S ts.
then
interpret consis ′: sharing-consis S ts .

from sharing-consis [of 0, simplified, OF t]
have sharing-consistent S Ot sbt .

from sharing-consistent-takeWhile [OF this]
have consis-sb: sharing-consistent S Ot ?take.

let ?S ′ = (share ?take S)

from freshly-shared-owned [OF consis-sb]
have fresh-owned: dom ?S ′ − dom S ⊆ Ot.
from unshared-all-unshared [OF consis-sb] unshared-acquired-or-owned [OF consis-sb]
have unshared-acq-owned: dom S − dom ?S ′

⊆ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbt) ∪ Ot

by simp

336

have sep:
∀ i < length ts. let (-,-,-,sb ′,-,-,-) = ts!i in

all-acquired sb ′ ∩ dom S − dom ?S ′ = {} ∧
all-unshared sb ′ ∩ dom ?S ′ − dom S = {}

proof −
{

fix i pi isi Oi Ri Di acqi ji sbi

assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
have all-acquired sbi ∩ dom S − dom ?S ′ = {} ∧

all-unshared sbi ∩ dom ?S ′ − dom S = {}
proof −

from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (Ot ∪ all-acquired sbt) ∩ (Oi ∪ all-acquired sbi) = {}

by force

from dist unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sbt]
have all-acquired sbi ∩ dom S − dom ?S ′ = {}

by blast

moreover

from sharing-consis [of Suc i] ts-i i-bound
have sharing-consistent S Oi sbi

by force
from unshared-acquired-or-owned [OF this]
have all-unshared sbi ⊆ all-acquired sbi ∪ Oi.
with dist fresh-owned
have all-unshared sbi ∩ dom ?S ′ − dom S = {}

by blast

ultimately show ?thesis by simp
qed

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

from consis ′.sharing-consis-preservation [OF sep]
have sharing-consis ′: sharing-consis ?S ′ ts.

have share-all-until-volatile-write ts (share ?take (share sb ′ S)) =
share sb ′ (share-all-until-volatile-write ts (share ?take S))

proof −
from share-append-commute [OF dist-t]
have (share ?take (share sb ′ S)) = (share sb ′ (share ?take S)) .
then
have share-all-until-volatile-write ts (share ?take (share sb ′ S)) =

share-all-until-volatile-write ts (share sb ′ (share ?take S))

337

by (simp)
also
from Cons.hyps [OF dist ′ sharing-consis ′ dist-prop ′]
have ... = share sb ′ (share-all-until-volatile-write ts (share ?take S)).
finally show ?thesis .

qed
then show ?case

by (clarsimp simp add: t)
qed

lemma all-shared-takeWhile-subset: all-shared (takeWhile P sb) ⊆ all-shared sb
using all-shared-append [of (takeWhile P sb) (dropWhile P sb)]

by auto
lemma all-shared-dropWhile-subset: all-shared (dropWhile P sb) ⊆ all-shared sb
using all-shared-append [of (takeWhile P sb) (dropWhile P sb)]

by auto

lemma all-unshared-takeWhile-subset: all-unshared (takeWhile P sb) ⊆ all-unshared sb
using all-unshared-append [of (takeWhile P sb) (dropWhile P sb)]

by auto
lemma all-unshared-dropWhile-subset: all-unshared (dropWhile P sb) ⊆ all-unshared sb
using all-unshared-append [of (takeWhile P sb) (dropWhile P sb)]

by auto

lemma all-acquired-takeWhile-subset: all-acquired (takeWhile P sb) ⊆ all-acquired sb
using all-acquired-append [of (takeWhile P sb) (dropWhile P sb)]

by auto
lemma all-acquired-dropWhile-subset: all-acquired (dropWhile P sb) ⊆ all-acquired sb
using all-acquired-append [of (takeWhile P sb) (dropWhile P sb)]

by auto

lemma share-all-until-volatile-write-flush-commute:
assumes takeWhile-empty: (takeWhile (Not ◦ is-volatile-Writesb) sb) = []
shows

∧
S R L W A i. [[ownership-distinct ts; sharing-consis S ts; i < length ts;

ts!i = (p,is,j,sb,D,O,R);
∀ i p is O R D j (sb:: ′a memref list). i < length ts

−→ ts!i=(p,is,j,sb,D,O,R) −→
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb ′) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb ′) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb ′)) = {};

∀ j p is O R D j (sb:: ′a memref list). j < length ts −→ i6=j
−→ ts!j=(p,is,j,sb,D,O,R) −→

(all-shared sb ∪ all-unshared sb ∪ all-acquired sb) ∩
(R ∪ L ∪ A) = {}]]

=⇒

338

share-all-until-volatile-write (ts[i :=(p ′,is ′,j ′,sb ′,D ′,O ′,R ′)]) (S ⊕W R 	A L) =
share (takeWhile (Not ◦ is-volatile-Writesb) sb ′) (share-all-until-volatile-write ts S ⊕W R
	A L)
proof (induct ts)

case Nil
thus ?case by simp

next
case (Cons t ts)
obtain pt ist Ot Rt Dt jt sbt where

t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

let ?take = (takeWhile (Not ◦ is-volatile-Writesb) sbt)
let ?take-sb ′ = (takeWhile (Not ◦ is-volatile-Writesb) sb ′)
let ?drop = (dropWhile (Not ◦ is-volatile-Writesb) sbt)
have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts .
have consis: sharing-consis S (t#ts) by fact
then interpret sharing-consis S t#ts .
have dist-prop: ∀ i p is O R D j sb. i < length (t#ts)

−→ (t#ts)!i=(p,is,j,sb,D,O,R) −→
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩
(all-shared ?take-sb ′ ∪ all-unshared ?take-sb ′ ∪ all-acquired ?take-sb ′) =

{} by fact
from dist-prop [rule-format, of 0] t
have dist-t: (all-shared ?take ∪ all-unshared ?take ∪ all-acquired ?take) ∩

(all-shared ?take-sb ′ ∪ all-unshared ?take-sb ′ ∪ all-acquired ?take-sb ′) = {}
apply clarsimp
done

from dist-prop have
dist-prop ′:∀ i p is O R D j sb. i < length ts

−→ ts!i=(p,is,j,sb,D,O,R) −→
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩

(all-shared ?take-sb ′ ∪ all-unshared ?take-sb ′ ∪ all-acquired ?take-sb ′) = {}
apply (clarsimp)
subgoal for i p is O R D j sb
apply (drule-tac x=Suc i in spec)
apply clarsimp
done
done

have dist-prop-R-L-A: ∀ j p is O R D j sb. j < length (t#ts) −→ i 6= j
−→ (t#ts)!j=(p,is,j,sb,D,O,R) −→

(all-shared sb ∪ all-unshared sb ∪ all-acquired sb) ∩
(R ∪ L ∪ A) = {} by fact

339

from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

from sharing-consis-tl [OF consis]
have consis ′: sharing-consis S ts.
then
interpret consis ′: sharing-consis S ts .

from sharing-consis [of 0, simplified, OF t]
have sharing-consistent S Ot sbt .

from sharing-consistent-takeWhile [OF this]
have consis-sb: sharing-consistent S Ot (takeWhile (Not ◦ is-volatile-Writesb) sbt).

have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)
by (rule ext) auto

show ?case
proof (cases i)

case 0

with t Cons.prems have eqs: pt=p ist=is Ot=O Rt=R jt=j sbt=sb Dt=D
by auto

let ?S ′ = S ⊕W R 	A L

from dist-prop-R-L-A 0 have
dist-prop-R-L-A ′:∀ i p is O R D j sb. i < length ts

−→ ts!i=(p,is,j,sb,D,O,R) −→
(all-shared sb ∪ all-unshared sb ∪ all-acquired sb) ∩
(R ∪ L ∪ A) = {}

apply (clarsimp)
subgoal for i1 p is O R D j sb
apply (drule-tac x=Suc i1 in spec)
apply clarsimp
done
done

then
have dist-prop-R-L-A ′′:∀ i p is O R D j sb. i < length ts

−→ ts!i=(p,is,j,sb,D,O,R) −→
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪ all-unshared (takeWhile (Not

◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩
(R ∪ L ∪ A) = {}
apply (clarsimp)
subgoal for i p is O R D j sb

apply (cut-tac sb=sb in all-shared-takeWhile-subset [where P=Not ◦
is-volatile-Writesb])

340

apply (cut-tac sb=sb in all-unshared-takeWhile-subset [where P=Not ◦
is-volatile-Writesb])

apply (cut-tac sb=sb in all-acquired-takeWhile-subset [where P=Not ◦
is-volatile-Writesb])

apply fastforce
done
done

have sep: ∀ i<length ts.
let (-, -, -, sb, -, -, -) = ts ! i
in ∀ a∈all-acquired sb. ?S ′ a = S a

proof −
{

fix i pi isi Oi Ri Di acqi ji sbi a
assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
assume a-in: a ∈ all-acquired sbi

have ?S ′ a = S a
proof −

from dist-prop-R-L-A ′ [rule-format, OF i-bound ts-i] a-in
show ?thesis

by (auto simp add: augment-shared-def restrict-shared-def split: option.splits)
qed

}
thus ?thesis by auto

qed
from consis ′.sharing-consis-shared-exchange [OF sep]
have sharing-consis ′: sharing-consis ?S ′ ts.

from share-all-until-volatile-write-share-commute [of ts (S ⊕W R 	A L) (takeWhile
(Not ◦ is-volatile-Writesb) sb ′), OF dist ′ sharing-consis ′ dist-prop ′]

have share-all-until-volatile-write ts (share ?take-sb ′ ?S ′) =
share ?take-sb ′ (share-all-until-volatile-write ts ?S ′) .

moreover

from dist-prop-R-L-A ′′

have (share-all-until-volatile-write ts (S ⊕W R 	A L)) =
(share-all-until-volatile-write ts S ⊕W R 	A L)

apply −
apply (rule share-all-until-volatile-write-commute [OF dist ′ consis ′, of L A R

W,symmetric])
apply (clarsimp,blast)+
done

ultimately
show ?thesis

using takeWhile-empty
by (clarsimp simp add: t 0 aargh eqs)

341

next
case (Suc k)
from Cons.prems Suc obtain k-bound: k < length ts and ts-k: ts!k = (p, is,j, sb, D,

O,R)
by auto

let ?S ′ = (share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S)
from freshly-shared-owned [OF consis-sb]
have fresh-owned: dom ?S ′ − dom S ⊆ Ot.
from unshared-all-unshared [OF consis-sb] unshared-acquired-or-owned [OF consis-sb]
have unshared-acq-owned: dom S − dom ?S ′

⊆ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbt) ∪ Ot

by simp

from freshly-shared-owned [OF consis-sb]
have fresh-owned: dom ?S ′ − dom S ⊆ Ot.
from unshared-all-unshared [OF consis-sb] unshared-acquired-or-owned [OF consis-sb]
have unshared-acq-owned: dom S − dom ?S ′

⊆ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbt) ∪ Ot

by simp

have sep:
∀ i < length ts. let (-,-,-,sb ′,-,-,-) = ts!i in

all-acquired sb ′ ∩ dom S − dom ?S ′ = {} ∧
all-unshared sb ′ ∩ dom ?S ′ − dom S = {}

proof −
{

fix i pi isi Oi Ri Di acqi ji sbi

assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
have all-acquired sbi ∩ dom S − dom ?S ′ = {} ∧

all-unshared sbi ∩ dom ?S ′ − dom S = {}
proof −

from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (Ot ∪ all-acquired sbt) ∩ (Oi ∪ all-acquired sbi) = {}

by force

from dist unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sbt]
have all-acquired sbi ∩ dom S − dom ?S ′ = {}

by blast

moreover

from sharing-consis [of Suc i] ts-i i-bound
have sharing-consistent S Oi sbi

by force

342

from unshared-acquired-or-owned [OF this]
have all-unshared sbi ⊆ all-acquired sbi ∪ Oi.
with dist fresh-owned
have all-unshared sbi ∩ dom ?S ′ − dom S = {}

by blast

ultimately show ?thesis by simp
qed

}
thus ?thesis

by (fastforce simp add: Let-def)
qed
from consis ′.sharing-consis-preservation [OF sep]
have sharing-consis ′: sharing-consis ?S ′ ts.

from dist-prop-R-L-A [rule-format, of 0] Suc t
have dist-t-R-L-A: (all-shared sbt ∪ all-unshared sbt ∪ all-acquired sbt) ∩

(R ∪ L ∪ A) = {}
apply clarsimp
done

from dist-t-R-L-A
have (R ∪ L ∪ A) ∩ (all-shared ?take ∪ all-unshared ?take ∪ all-acquired ?take) = {}

using all-shared-append [of ?take ?drop] all-unshared-append [of ?take ?drop]
all-acquired-append [of ?take ?drop]

by auto

from share-augment-release-commute [OF this]
have share ?take S ⊕W R 	A L = share ?take (S ⊕W R 	A L) .
moreover

from dist-prop-R-L-A Suc
have ∀ j p is O R D j sb. j < length (ts) −→ k 6= j
−→ (ts)!j=(p,is,j,sb,D,O,R) −→

(all-shared sb ∪ all-unshared sb ∪ all-acquired sb) ∩
(R ∪ L ∪ A) = {}

apply (clarsimp)
subgoal for j p is O R D j sb
apply (drule-tac x=Suc j in spec)
apply clarsimp
done
done

note Cons.hyps [OF dist ′ sharing-consis ′ k-bound ts-k dist-prop ′ this, of W]
ultimately
show ?thesis

by (clarsimp simp add: t Suc)
qed

qed

343

lemma share-all-until-volatile-write-Ghostsb-commute:
shows

∧
S i. [[ownership-distinct ts; sharing-consis S ts; i < length ts;

ts!i = (p,is,j,Ghostsb A L R W#sb,D,O,R);
∀ j p is O R D j sb. j < length ts −→ i6=j −→ ts!j=(p,is,j,sb,D,O,R) −→

(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪ all-unshared (takeWhile
(Not ◦ is-volatile-Writesb) sb) ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩

(R ∪ L ∪ A) = {}]]
=⇒

share-all-until-volatile-write (ts[i :=(p ′,is ′,j ′,sb,D ′,O ′,R ′)]) (S ⊕W R 	A L) =
share-all-until-volatile-write ts S
proof (induct ts)

case Nil
thus ?case by simp

next
case (Cons t ts)
obtain pt ist Ot Rt Dt jt sbt where

t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts .
have consis: sharing-consis S (t#ts) by fact
then interpret sharing-consis S t#ts .

have dist-prop: ∀ j p is O R D j sb. j < length (t#ts) −→ i 6=j −→
(t#ts)!j=(p,is,j,sb,D,O,R) −→

(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪ all-unshared (takeWhile
(Not ◦ is-volatile-Writesb) sb) ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩

(R ∪ L ∪ A) = {} by fact

from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

from sharing-consis-tl [OF consis]
have consis ′: sharing-consis S ts.
then
interpret consis ′: sharing-consis S ts .

from sharing-consis [of 0, simplified, OF t]
have sharing-consistent S Ot sbt .

from sharing-consistent-takeWhile [OF this]
have consis-sb: sharing-consistent S Ot (takeWhile (Not ◦ is-volatile-Writesb) sbt).

let ?S ′ = (share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S)

from freshly-shared-owned [OF consis-sb]
have fresh-owned: dom ?S ′ − dom S ⊆ Ot.
from unshared-all-unshared [OF consis-sb] unshared-acquired-or-owned [OF consis-sb]
have unshared-acq-owned: dom S − dom ?S ′

344

⊆ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbt) ∪ Ot

by simp

have sep:
∀ i < length ts. let (-,-,-,sb ′,-,-,-) = ts!i in

all-acquired sb ′ ∩ dom S − dom ?S ′ = {} ∧
all-unshared sb ′ ∩ dom ?S ′ − dom S = {}

proof −
{

fix i pi isi Oi Ri Di ji sbi

assume i-bound: i < length ts
assume ts-i: ts ! i = (pi,isi,ji,sbi,Di,Oi,Ri)
have all-acquired sbi ∩ dom S − dom ?S ′ = {} ∧

all-unshared sbi ∩ dom ?S ′ − dom S = {}
proof −

from ownership-distinct [of 0 Suc i] ts-i t i-bound
have dist: (Ot ∪ all-acquired sbt) ∩ (Oi ∪ all-acquired sbi) = {}

by force

from dist unshared-acq-owned all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sbt]
have all-acquired sbi ∩ dom S − dom ?S ′ = {}

by blast

moreover

from sharing-consis [of Suc i] ts-i i-bound
have sharing-consistent S Oi sbi

by force
from unshared-acquired-or-owned [OF this]
have all-unshared sbi ⊆ all-acquired sbi ∪ Oi.
with dist fresh-owned
have all-unshared sbi ∩ dom ?S ′ − dom S = {}

by blast

ultimately show ?thesis by simp
qed

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

from consis ′.sharing-consis-preservation [OF sep]
have sharing-consis ′: sharing-consis (share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S)

ts.

show ?case
proof (cases i)

case 0

345

with t Cons.prems have eqs: pt=p ist=is Ot=O Rt=R jt=j sbt=Ghostsb A L R W#sb
Dt=D

by auto

show ?thesis
by (clarsimp simp add: 0 t eqs)

next
case (Suc k)
from Cons.prems Suc obtain k-bound: k < length ts and ts-k: ts!k = (p, is,j, Ghostsb

A L R W#sb, D, O,R)
by auto

from dist-prop Suc
have dist-prop ′: ∀ j p is O R D j sb. j < length ts −→ k 6=j −→ ts!j=(p,is,j,sb,D,O,R)

−→
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪ all-unshared (takeWhile

(Not ◦ is-volatile-Writesb) sb) ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩

(R ∪ L ∪ A) = {}
apply (clarsimp)
subgoal for j p is O R D j sb
apply (drule-tac x=Suc j in spec)
apply auto
done
done

from Cons.hyps [OF dist ′ sharing-consis ′ k-bound ts-k dist-prop ′]
have share-all-until-volatile-write (ts[k := (p ′, is ′, j ′, sb, D ′, O ′, R ′)])

(share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S ⊕W R 	A L) =
share-all-until-volatile-write ts
(share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S) .

moreover
from dist-prop [rule-format, of 0 pt ist jt sbt Dt Ot Rt] t Suc

have (R ∪ L ∪ A) ∩ (all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbt) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sbt) ∪ all-acquired (takeWhile (Not
◦ is-volatile-Writesb) sbt)) = {}

apply clarsimp
apply blast
done

from share-augment-release-commute [OF this]
have share (takeWhile (Not ◦ is-volatile-Writesb) sbt) S ⊕W R 	A L =

share (takeWhile (Not ◦ is-volatile-Writesb) sbt) (S ⊕W R 	A L).
ultimately

show ?thesis
by (clarsimp simp add: Suc t)

qed
qed

346

lemma share-all-until-volatile-write-update-sb:
assumes congr:

∧
S. share (takeWhile (Not ◦ is-volatile-Writesb) sb ′) S = share (takeWhile

(Not ◦ is-volatile-Writesb) sb) S
shows

∧
S i. [[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]

=⇒
share-all-until-volatile-write ts S =

share-all-until-volatile-write (ts[i := (p ′, is ′,j ′, sb ′, D ′, O ′,R ′)]) S
proof (induct ts)

case Nil
thus ?case by simp

next
case (Cons t ts)
obtain pt ist Ot Rt Dt jt sbt where

t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

show ?case
proof (cases i)

case 0
with t Cons.prems have eqs: pt=p ist=is Ot=O Rt=R jt=j sbt=sb Dt=D

by auto

show ?thesis
by (clarsimp simp add: 0 t eqs congr)

next
case (Suc k)
from Cons.prems Suc obtain k-bound: k < length ts and ts-k: ts!k = (p, is,j, sb, D,

O, R)
by auto

from Cons.hyps [OF k-bound ts-k]
show ?thesis

by (clarsimp simp add: t Suc)
qed

qed

lemma share-all-until-volatile-write-append-Ghostsb ′:
assumes out-VWritesb: outstanding-refs is-volatile-Writesb sb 6= {}
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
shows share-all-until-volatile-write ts S =

share-all-until-volatile-write
(ts[i := (p ′, is ′,j ′, sb @ [Ghostsb A L R W], D ′, O ′,R ′)]) S

proof −
from out-VWritesb
have

∧
S. share (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Ghostsb A L R W])) S =
share (takeWhile (Not ◦ is-volatile-Writesb) sb) S

by (simp add: outstanding-vol-write-takeWhile-append)
from share-all-until-volatile-write-update-sb [OF this i-bound ts-i]
show ?thesis

by simp

347

qed

lemma acquired-append-Progsb:∧
S. (acquired pending-write (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb p1 p2

mis])) S) =
(acquired pending-write (takeWhile (Not ◦ is-volatile-Writesb) sb) S)

by (induct sb) (auto split: memref.splits)

lemma outstanding-refs-non-empty-dropWhile:
outstanding-refs P xs 6= {} =⇒ outstanding-refs P (dropWhile (Not ◦ P) xs) 6= {}

apply (induct xs)
apply simp
apply (simp split: if-split-asm)
done

lemma ex-not: Ex Not
by blast

lemma (in computation) concurrent-step-append:
assumes step: (ts,m,S) ⇒ (ts ′,m ′,S ′)
shows (xs@ts,m,S) ⇒ (xs@ts ′,m ′,S ′)

using step
proof (cases)

case (Program i p is j sb D O R p ′ is ′)
then obtain

i-bound: i < length ts and
ts-i: ts!i = (p,is,j,sb,D,O,R) and
prog-step: j`p →p (p ′,is ′) and
ts ′: ts ′=ts[i:=(p ′,is@is ′,j,record p p ′ is ′ sb,D,O,R)] and
S ′: S ′=S and
m ′: m ′=m
by auto

from i-bound have i-bound ′: i + length xs < length (xs@ts)
by auto

from ts-i i-bound have ts-i ′: (xs@ts)!(i + length xs) = (p,is,j,sb,D,O,R)
by (auto simp add: nth-append)

348

from concurrent-step.Program [OF i-bound ′ ts-i ′ prog-step, of m S] ts ′ i-bound
show ?thesis

by (auto simp add: ts ′ list-update-append S ′ m ′)
next

case (Memop i p is j sb D O R is ′ j ′ sb ′ D ′ O ′ R ′)
then obtain

i-bound: i < length ts and
ts-i: ts!i = (p,is,j,sb,D,O,R) and
memop-step: (is,j,sb,m,D,O,R,S) →m (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′) and
ts ′: ts ′=ts[i:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)]
by auto

from i-bound have i-bound ′: i + length xs < length (xs@ts)
by auto

from ts-i i-bound have ts-i ′: (xs@ts)!(i + length xs) = (p,is,j,sb,D,O,R)
by (auto simp add: nth-append)

from concurrent-step.Memop [OF i-bound ′ ts-i ′ memop-step] ts ′ i-bound
show ?thesis

by (auto simp add: ts ′ list-update-append)
next

case (StoreBuffer i p is j sb D O R sb ′ O ′ R ′)
then obtain

i-bound: i < length ts and
ts-i: ts!i = (p,is,j,sb,D,O,R) and
sb-step: (m,sb,O,R,S) →sb (m ′,sb ′,O ′,R ′,S ′) and
ts ′: ts ′=ts[i:=(p,is,j,sb ′,D,O ′,R ′)]
by auto

from i-bound have i-bound ′: i + length xs < length (xs@ts)
by auto

from ts-i i-bound have ts-i ′: (xs@ts)!(i + length xs) = (p,is,j,sb,D,O,R)
by (auto simp add: nth-append)

from concurrent-step.StoreBuffer [OF i-bound ′ ts-i ′ sb-step] ts ′ i-bound
show ?thesis

by (auto simp add: ts ′ list-update-append)
qed

primrec weak-sharing-consistent:: owns ⇒ ′a memref list ⇒ bool
where
weak-sharing-consistent O [] = True
| weak-sharing-consistent O (r#rs) =
(case r of

Writesb volatile - - - A L R W ⇒
(if volatile then L ⊆ A ∧ A ∩ R = {} ∧ R ⊆ O ∧

weak-sharing-consistent (O ∪ A − R) rs
else weak-sharing-consistent O rs)

349

| Ghostsb A L R W ⇒ L ⊆ A ∧ A ∩ R = {} ∧ R ⊆ O ∧ weak-sharing-consistent (O ∪
A − R) rs
| - ⇒ weak-sharing-consistent O rs)

lemma sharing-consistent-weak-sharing-consistent:∧
S O. sharing-consistent S O sb =⇒ weak-sharing-consistent O sb

apply (induct sb)
apply (auto split: memref.splits)
done

lemma weak-sharing-consistent-append:∧
O. weak-sharing-consistent O (xs @ ys) =
(weak-sharing-consistent O xs ∧ weak-sharing-consistent (acquired True xs O) ys)

apply (induct xs)
apply (auto split: memref.splits)
done

lemma read-only-share-unowned:
∧
O S.

[[weak-sharing-consistent O sb; a /∈ O ∪ all-acquired sb; a ∈ read-only (share sb S)]]
=⇒ a ∈ read-only S

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case False
with Cons Writesb show ?thesis by auto

next
case True
from Cons.hyps [where S=(S ⊕W R 	A L) and O=(O ∪ A − R)] Cons.prems
show ?thesis

by (auto simp add: Writesb True in-read-only-restrict-conv in-read-only-augment-conv
split: if-split-asm)

qed
next

case Readsb with Cons show ?thesis by auto
next

case Progsb with Cons show ?thesis by auto
next

case (Ghostsb A L R W)
with Cons.hyps [where S=(S ⊕W R 	A L) and O=(O ∪ A − R)] Cons.prems show

?thesis
by (auto simp add: in-read-only-restrict-conv in-read-only-augment-conv split:

if-split-asm)
qed

qed

350

lemma share-read-only-mono-in:
assumes a-in: a ∈ read-only (share sb S)
assumes ss: read-only S ⊆ read-only S ′

shows a ∈ read-only (share sb S ′)
using share-read-only-mono [OF ss] a-in
by auto

lemma read-only-unacquired-share:∧
S O. [[O ∩ read-only S = {}; weak-sharing-consistent O sb; a ∈ read-only S;

a /∈ all-acquired sb]]
=⇒ a ∈ read-only (share sb S)
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems
obtain a-ro: a ∈ read-only S and a-A: a /∈ A and a-unacq: a /∈ all-acquired sb and

owns-ro: O ∩ read-only S = {} and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L)
= {}
by (auto simp add: in-read-only-convs)

from a-ro a-A owns-ro R-owns L-A have a-ro ′: a ∈ read-only (S ⊕W R 	A L)
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF owns-ro ′ consis ′ a-ro ′ a-unacq]
show ?thesis

by (clarsimp simp add: Writesb True)
next

case False
with Cons show ?thesis

by (clarsimp simp add: Writesb False)

351

qed
next

case Readsb with Cons show ?thesis by (clarsimp)
next

case Progsb with Cons show ?thesis by (clarsimp)
next

case (Ghostsb A L R W)
from Cons.prems
obtain a-ro: a ∈ read-only S and a-A: a /∈ A and a-unacq: a /∈ all-acquired sb and

owns-ro: O ∩ read-only S = {} and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L)
= {}

by (auto simp add: in-read-only-convs)

from a-ro a-A owns-ro R-owns L-A have a-ro ′: a ∈ read-only (S ⊕W R 	A L)
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF owns-ro ′ consis ′ a-ro ′ a-unacq]
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

lemma read-only-share-unacquired:
∧

O S. O ∩ read-only S = {} =⇒
weak-sharing-consistent O sb =⇒
a ∈ read-only (share sb S) =⇒ a /∈ acquired True sb O

proof (induct sb)
case Nil thus ?case by auto

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case False
with Cons Writesb show ?thesis by auto

next
case True
note volatile=this
from Cons.prems
obtain a-ro: a ∈ read-only (share sb (S ⊕W R 	A L)) and

owns-ro: O ∩ read-only S = {} and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb

352

by (clarsimp simp add: Writesb volatile)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L)
= {}

by (auto simp add: in-read-only-convs)
from Cons.hyps [OF owns-ro ′ consis ′ a-ro]
show ?thesis

by (auto simp add: Writesb volatile)
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
from Cons.prems
obtain a-ro: a ∈ read-only (share sb (S ⊕W R 	A L)) and

owns-ro: O ∩ read-only S = {} and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L)
= {}

by (auto simp add: in-read-only-convs)
from Cons.hyps [OF owns-ro ′ consis ′ a-ro]
show ?thesis

by (auto simp add: Ghostsb)
qed

qed

lemma read-only-share-all-acquired-in:∧
S O. [[O ∩ read-only S = {}; weak-sharing-consistent O sb; a ∈ read-only (share sb S)]]

=⇒ a ∈ read-only (share sb Map.empty) ∨ (a ∈ read-only S ∧ a /∈ all-acquired sb)
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems
obtain a-in: a ∈ read-only (share sb (S ⊕W R 	A L)) and

owns-ro: O ∩ read-only S = {} and

353

L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L)
= {}
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF owns-ro ′ consis ′ a-in]
have hyp: a ∈ read-only (share sb Map.empty) ∨ a ∈ read-only (S ⊕W R 	A L) ∧ a

/∈ all-acquired sb.

have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)) ∨ (a ∈ read-only S ∧ a /∈ A
∧ a /∈ all-acquired sb)

proof −
{

assume a-emp: a ∈ read-only (share sb Map.empty)
have read-only Map.empty ⊆ read-only (Map.empty ⊕W R 	A L)

by (auto simp add: in-read-only-convs)

from share-read-only-mono-in [OF a-emp this]
have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)).

}
moreover
{

assume a-ro: a ∈ read-only (S ⊕W R 	A L) and a-unacq: a /∈ all-acquired sb
have ?thesis
proof (cases a ∈ read-only S)

case True
with a-ro obtain a /∈ A

by (auto simp add: in-read-only-convs)
with True a-unacq show ?thesis

by auto
next

case False
with a-ro have a-ro-empty: a ∈ read-only (Map.empty ⊕W R 	A L)

by (auto simp add: in-read-only-convs split: if-split-asm)

have read-only (Map.empty ⊕W R 	A L) ⊆ read-only (S ⊕W R 	A L)
by (auto simp add: in-read-only-convs)

with owns-ro ′

have owns-ro-empty: (O ∪ A − R) ∩ read-only (Map.empty ⊕W R 	A L) = {}
by blast

from read-only-unacquired-share [OF owns-ro-empty consis ′ a-ro-empty a-unacq]
have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)).
thus ?thesis

by simp
qed

354

}
moreover note hyp
ultimately show ?thesis by blast

qed

then show ?thesis
by (clarsimp simp add: Writesb True)

next
case False with Cons show ?thesis

by (auto simp add: Writesb)
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
from Cons.prems
obtain a-in: a ∈ read-only (share sb (S ⊕W R 	A L)) and

owns-ro: O ∩ read-only S = {} and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L)
= {}

by (auto simp add: in-read-only-convs)

from Cons.hyps [OF owns-ro ′ consis ′ a-in]
have hyp: a ∈ read-only (share sb Map.empty) ∨ a ∈ read-only (S ⊕W R 	A L) ∧ a

/∈ all-acquired sb.

have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)) ∨ (a ∈ read-only S ∧ a /∈ A
∧ a /∈ all-acquired sb)

proof −
{

assume a-emp: a ∈ read-only (share sb Map.empty)
have read-only Map.empty ⊆ read-only (Map.empty ⊕W R 	A L)

by (auto simp add: in-read-only-convs)

from share-read-only-mono-in [OF a-emp this]
have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)).

}
moreover
{

assume a-ro: a ∈ read-only (S ⊕W R 	A L) and a-unacq: a /∈ all-acquired sb
have ?thesis

proof (cases a ∈ read-only S)
case True
with a-ro obtain a /∈ A

355

by (auto simp add: in-read-only-convs)
with True a-unacq show ?thesis

by auto
next

case False
with a-ro have a-ro-empty: a ∈ read-only (Map.empty ⊕W R 	A L)

by (auto simp add: in-read-only-convs split: if-split-asm)

have read-only (Map.empty ⊕W R 	A L) ⊆ read-only (S ⊕W R 	A L)
by (auto simp add: in-read-only-convs)

with owns-ro ′

have owns-ro-empty: (O ∪ A − R) ∩ read-only (Map.empty ⊕W R 	A L) = {}
by blast

from read-only-unacquired-share [OF owns-ro-empty consis ′ a-ro-empty a-unacq]
have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)).
thus ?thesis

by simp
qed

}
moreover note hyp
ultimately show ?thesis by blast

qed
then show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed

lemma weak-sharing-consistent-preserves-distinct:∧
O S. weak-sharing-consistent O sb =⇒ O ∩ read-only S = {} =⇒

acquired True sb O ∩ read-only (share sb S) = {}
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

owns-ro: O ∩ read-only S = {} and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and consis ′: weak-sharing-consistent (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

356

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A

L) = {}
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF consis ′ owns-ro ′]
show ?thesis

by (auto simp add: Writesb True)
next

case False with Cons Writesb show ?thesis by auto
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
from Cons.prems obtain

owns-ro: O ∩ read-only S = {} and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and consis ′: weak-sharing-consistent (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L)
= {}

by (auto simp add: in-read-only-convs)
from Cons.hyps [OF consis ′ owns-ro ′]
show ?thesis

by (auto simp add: Ghostsb)
qed

qed

locale weak-sharing-consis =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes weak-sharing-consis:∧

i p is O R D j sb.
[[i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒
weak-sharing-consistent O sb

sublocale sharing-consis ⊆ weak-sharing-consis
proof

fix i p is O R D j sb
assume i-bound: i < length ts
assume ts-i: ts ! i = (p, is, j, sb, D, O,R)
from sharing-consistent-weak-sharing-consistent [OF sharing-consis [OF i-bound ts-i]]
show weak-sharing-consistent O sb.

qed

lemma weak-sharing-consis-tl: weak-sharing-consis (t#ts) =⇒ weak-sharing-consis ts

357

apply (unfold weak-sharing-consis-def)
apply force
done

lemma read-only-share-all-until-volatile-write-unacquired:∧
S. [[ownership-distinct ts; read-only-unowned S ts; weak-sharing-consis ts;

∀ i < length ts. (let (-,-,-,sb,-,O,R) = ts!i in
a /∈ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb));

a ∈ read-only S]]
=⇒ a ∈ read-only (share-all-until-volatile-write ts S)

proof (induct ts)
case Nil thus ?case by simp

next
case (Cons t ts)
obtain p is O R D j sb where

t: t = (p,is,j,sb,D,O,R)
by (cases t)

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts .
from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)
by (rule ext) auto

have a-ro: a ∈ read-only S by fact
have ro-unowned: read-only-unowned S (t#ts) by fact
then interpret read-only-unowned S t#ts .
have consis: weak-sharing-consis (t#ts) by fact
then interpret weak-sharing-consis t#ts .

note consis ′ = weak-sharing-consis-tl [OF consis]

let ?take-sb = (takeWhile (Not ◦ is-volatile-Writesb) sb)
let ?drop-sb = (dropWhile (Not ◦ is-volatile-Writesb) sb)

from weak-sharing-consis [of 0] t
have consis-sb: weak-sharing-consistent O sb

by force
with weak-sharing-consistent-append [of O ?take-sb ?drop-sb]
have consis-take: weak-sharing-consistent O ?take-sb

by auto

have ro-unowned ′: read-only-unowned (share ?take-sb S) ts
proof

fix j

358

fix pj isj Oj Rj Dj jj sbj

assume j-bound: j < length ts
assume jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show Oj ∩ read-only (share ?take-sb S) = {}
proof −

{
fix a
assume a-owns: a ∈ Oj

assume a-ro: a ∈ read-only (share ?take-sb S)
have False
proof −

from ownership-distinct [of 0 Suc j] j-bound jth t
have dist: (O ∪ all-acquired sb) ∩ (Oj ∪ all-acquired sbj) = {}

by fastforce

from read-only-unowned [of Suc j] j-bound jth
have dist-ro: Oj ∩ read-only S = {} by force
show ?thesis
proof (cases a ∈ (O ∪ all-acquired sb))

case True
with dist a-owns show False by auto

next
case False
hence a /∈ (O ∪ all-acquired ?take-sb)
using all-acquired-append [of ?take-sb ?drop-sb]

by auto
from read-only-share-unowned [OF consis-take this a-ro]
have a ∈ read-only S.
with dist-ro a-owns show False by auto

qed
qed

}
thus ?thesis by auto

qed
qed

from Cons.prems
obtain unacq-ts: ∀ i < length ts. (let (-,-,-,sb,-,O,-) = ts!i in

a /∈ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) and
unacq-sb: a /∈ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)
by (force simp add: t aargh)

from read-only-unowned [of 0] t
have owns-ro: O ∩ read-only S = {}

by force
from read-only-unacquired-share [OF owns-ro consis-take a-ro unacq-sb]
have a ∈ read-only (share (takeWhile (Not ◦ is-volatile-Writesb) sb) S).

359

from Cons.hyps [OF dist ′ ro-unowned ′ consis ′ unacq-ts this]
show ?case

by (simp add: t)
qed

lemma read-only-share-unowned-in:
[[weak-sharing-consistent O sb; a ∈ read-only (share sb S)]]
=⇒ a ∈ read-only S ∪ O ∪ all-acquired sb
using read-only-share-unowned [of O sb]
by auto

lemma read-only-shared-all-until-volatile-write-subset:∧
S. [[ownership-distinct ts;

weak-sharing-consis ts]] =⇒
read-only (share-all-until-volatile-write ts S) ⊆

read-only S ∪ (
⋃
((λ(-, -, -, sb, -, O,-). O ∪ all-acquired (takeWhile (Not ◦

is-volatile-Writesb) sb)) ‘ set ts))
proof (induct ts)

case Nil thus ?case by simp
next

case (Cons t ts)
obtain p is O R D j sb where

t: t = (p,is,j,sb,D,O,R)
by (cases t)

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts .
from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

have consis: weak-sharing-consis (t#ts) by fact
then interpret weak-sharing-consis t#ts .

have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)
by (rule ext) auto

note consis ′ = weak-sharing-consis-tl [OF consis]

let ?take-sb = (takeWhile (Not ◦ is-volatile-Writesb) sb)
let ?drop-sb = (dropWhile (Not ◦ is-volatile-Writesb) sb)

from weak-sharing-consis [of 0] t
have consis-sb: weak-sharing-consistent O sb

by force
with weak-sharing-consistent-append [of O ?take-sb ?drop-sb]
have consis-take: weak-sharing-consistent O ?take-sb

by auto

360

{
fix a
assume a-in: a ∈ read-only

(share-all-until-volatile-write ts
(share ?take-sb S)) and

a-notin-shared: a /∈ read-only S and
a-notin-rest: a /∈ (

⋃
((λ(-, -, -, sb, -, O,-). O ∪ all-acquired (takeWhile (Not ◦

is-volatile-Writesb) sb)) ‘ set ts))
have a ∈ O ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)
proof −

from Cons.hyps [OF dist ′ consis ′, of (share ?take-sb S)] a-in a-notin-rest
have a ∈ read-only (share ?take-sb S)

by (auto simp add: aargh)
from read-only-share-unowned-in [OF consis-take this] a-notin-shared
show ?thesis by auto

qed
}

then show ?case
by (auto simp add: t aargh)

qed

lemma weak-sharing-consistent-preserves-distinct-share-all-until-volatile-write:∧
S i. [[ownership-distinct ts; read-only-unowned S ts;weak-sharing-consis ts;

i < length ts; ts!i = (p,is,j,sb,D,O,R)]]
=⇒ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∩
read-only (share-all-until-volatile-write ts S) = {}

proof (induct ts)
case Nil thus ?case by simp

next
case (Cons t ts)
note ‹read-only-unowned S (t#ts)›
then interpret read-only-unowned S t#ts .
note i-bound = ‹i < length (t # ts)›
note ith = ‹(t # ts) ! i = (p,is,j, sb, D, O,R)›

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts .
from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

have consis: weak-sharing-consis (t#ts) by fact
then interpret weak-sharing-consis t#ts .

note consis ′ = weak-sharing-consis-tl [OF consis]

let ?take-sb = (takeWhile (Not ◦ is-volatile-Writesb) sb)
let ?drop-sb = (dropWhile (Not ◦ is-volatile-Writesb) sb)

361

have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)
by (rule ext) auto

show ?case
proof (cases i)

case 0
from read-only-unowned [of 0] ith 0
have owns-ro: O ∩ read-only S = {}

by force
from weak-sharing-consis [of 0] ith 0
have weak-sharing-consistent O sb

by force
with weak-sharing-consistent-append [of O ?take-sb ?drop-sb]
have consis-take: weak-sharing-consistent O ?take-sb

by auto
from weak-sharing-consistent-preserves-distinct [OF this owns-ro]
have dist-t: acquired True ?take-sb O ∩ read-only (share ?take-sb S) = {}.

from read-only-shared-all-until-volatile-write-subset [OF dist ′ consis ′, of (share ?take-sb
S)]

have ro-rest: read-only (share-all-until-volatile-write ts (share ?take-sb S)) ⊆
read-only (share ?take-sb S) ∪
(
⋃
((λ(-, -, -, sb, -, O,-). O ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb)

sb)) ‘ set ts))
by auto

{
fix a
assume a-in-sb: a ∈ acquired True ?take-sb O
assume a-in-ro: a ∈ read-only (share-all-until-volatile-write ts (share ?take-sb S))
have False
proof −

from Set.in-mono [rule-format, OF ro-rest a-in-ro] dist-t a-in-sb

have a ∈ (
⋃
((λ(-, -, -, sb, -, O,-). O ∪ all-acquired (takeWhile (Not ◦

is-volatile-Writesb) sb)) ‘ set ts))
by auto

then obtain j pj isj jj sbj Dj Oj Rj

where j-bound: j < length ts and ts-j: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
and a-in-j: a ∈ Oj ∪ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj)

by (fastforce simp add: in-set-conv-nth)
from ownership-distinct [of 0 Suc j] ith ts-j j-bound 0
have dist: (O ∪ all-acquired sb) ∩ (Oj ∪ all-acquired sbj) = {}

by fastforce
moreover

from acquired-all-acquired [of True ?take-sb O] a-in-sb all-acquired-append [of
?take-sb ?drop-sb]

have a ∈ O ∪ all-acquired sb
by auto
with a-in-j all-acquired-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)

(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

362

dist
have False by fastforce
thus ?thesis ..

qed
}
then show ?thesis
using 0 ith

by (auto simp add: aargh)
next

case (Suc k)
from i-bound Suc have k-bound: k < length ts

by auto
from ith Suc have kth: ts!k = (p, is, j, sb, D, O, R)

by auto

obtain pt ist Ot Rt Dt jt sbt

where t: t=(pt,ist,jt,sbt,Dt,Ot,Rt)
by (cases t)

let ?take-sbt = (takeWhile (Not ◦ is-volatile-Writesb) sbt)
let ?drop-sbt = (dropWhile (Not ◦ is-volatile-Writesb) sbt)

have ro-unowned ′: read-only-unowned (share ?take-sbt S) ts
proof

fix j
fix pj isj Oj Rj Dj jj sbj

assume j-bound: j < length ts
assume jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show Oj ∩ read-only (share ?take-sbt S) = {}
proof −

from read-only-unowned [of Suc j] j-bound jth
have dist: Oj ∩ read-only S = {} by force

from weak-sharing-consis [of 0] t
have weak-sharing-consistent Ot sbt

by fastforce
with weak-sharing-consistent-append [of Ot ?take-sbt ?drop-sbt]
have consis-t: weak-sharing-consistent Ot ?take-sbt

by auto
{

fix a
assume a-in-j: a ∈ Oj

assume a-ro: a ∈ read-only (share ?take-sbt S)
have False
proof −

from a-in-j ownership-distinct [of 0 Suc j] j-bound t jth
have (Ot ∪ all-acquired sbt) ∩ (Oj ∪ all-acquired sbj) = {}

by fastforce
with a-in-j all-acquired-append [of ?take-sbt ?drop-sbt]
have a /∈ (Ot ∪ all-acquired ?take-sbt)

363

by fastforce
from read-only-share-unowned [OF consis-t this a-ro]
have a ∈ read-only S .
with a-in-j dist
show False by auto

qed
}
then

show ?thesis
by auto

qed
qed

from Cons.hyps [OF dist ′ ro-unowned ′ consis ′ k-bound kth]
show ?thesis

by (simp add: t)
qed

qed

lemma in-read-only-share-all-until-volatile-write:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes ro-unowned: read-only-unowned S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-unacquired-others: ∀ j < length ts. i 6=j −→

(let (-,-,-,sbj,-,-,-) = ts!j in
a /∈ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj))

assumes a-ro-share: a ∈ read-only (share sb S)
shows a ∈ read-only (share (dropWhile (Not ◦ is-volatile-Writesb) sb)

(share-all-until-volatile-write ts S))
proof −

from consis
interpret sharing-consis S ts .
interpret read-only-unowned S ts by fact

from sharing-consis [OF i-bound ts-i]
have consis-sb: sharing-consistent S O sb.
from sharing-consistent-weak-sharing-consistent [OF this]
have weak-consis: weak-sharing-consistent O sb.
from read-only-unowned [OF i-bound ts-i]
have owns-ro: O ∩ read-only S = {}.
from read-only-share-all-acquired-in [OF owns-ro weak-consis a-ro-share]
have a ∈ read-only (share sb Map.empty) ∨ a ∈ read-only S ∧ a /∈ all-acquired sb.
moreover

let ?take-sb = (takeWhile (Not ◦ is-volatile-Writesb) sb)
let ?drop-sb = (dropWhile (Not ◦ is-volatile-Writesb) sb)

364

from weak-consis weak-sharing-consistent-append [of O ?take-sb ?drop-sb]
obtain weak-consis ′: weak-sharing-consistent (acquired True ?take-sb O) ?drop-sb and

weak-consis-take: weak-sharing-consistent O ?take-sb
by auto

{
assume a ∈ read-only (share sb Map.empty)
with share-append [of ?take-sb ?drop-sb]
have a-in ′: a ∈ read-only (share ?drop-sb (share ?take-sb Map.empty))

by auto

have owns-empty: O ∩ read-only Map.empty = {}
by auto

from weak-sharing-consistent-preserves-distinct [OF weak-consis-take owns-empty]
have acquired True ?take-sb O ∩ read-only (share ?take-sb Map.empty) = {}.

from read-only-share-all-acquired-in [OF this weak-consis ′ a-in ′]
have a ∈ read-only (share ?drop-sb Map.empty) ∨ a ∈ read-only (share ?take-sb

Map.empty) ∧ a /∈ all-acquired ?drop-sb.
moreover
{

assume a-ro-drop: a ∈ read-only (share ?drop-sb Map.empty)
have read-only Map.empty ⊆ read-only (share-all-until-volatile-write ts S)

by auto
from share-read-only-mono-in [OF a-ro-drop this]
have ?thesis .

}
moreover
{

assume a-ro-take: a ∈ read-only (share ?take-sb Map.empty)
assume a-unacq-drop: a /∈ all-acquired ?drop-sb
from read-only-share-unowned-in [OF weak-consis-take a-ro-take]
have a ∈ O ∪ all-acquired ?take-sb by auto
hence a ∈ O ∪ all-acquired sb using all-acquired-append [of ?take-sb ?drop-sb]

by auto
from share-all-until-volatile-write-thread-local ′ [OF dist consis i-bound ts-i this]

a-ro-share
have ?thesis by (auto simp add: read-only-def)

}
ultimately have ?thesis by blast

}

moreover

{
assume a-ro: a ∈ read-only S
assume a-unacq: a /∈ all-acquired sb
with all-acquired-append [of ?take-sb ?drop-sb]
obtain a /∈ all-acquired ?take-sb and a-notin-drop: a /∈ all-acquired ?drop-sb

365

by auto
with a-unacquired-others i-bound ts-i
have a-unacq: ∀ j < length ts.

(let (-,-,-,sbj,-,-,-) = ts!j in
a /∈ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj))

by (auto simp add: Let-def)

from local.weak-sharing-consis-axioms have weak-sharing-consis ts .
from read-only-share-all-until-volatile-write-unacquired [OF dist ro-unowned

‹weak-sharing-consis ts› a-unacq a-ro]
have a-ro-all: a ∈ read-only (share-all-until-volatile-write ts S) .

from weak-consis weak-sharing-consistent-append [of O ?take-sb ?drop-sb]
have weak-consis-drop: weak-sharing-consistent (acquired True ?take-sb O) ?drop-sb

by auto

from weak-sharing-consistent-preserves-distinct-share-all-until-volatile-write [OF dist
ro-unowned ‹weak-sharing-consis ts› i-bound ts-i]

have acquired True ?take-sb O ∩
read-only (share-all-until-volatile-write ts S) = {}.

from read-only-unacquired-share [OF this weak-consis-drop a-ro-all a-notin-drop]
have ?thesis .

}
ultimately show ?thesis by blast

qed

lemma all-acquired-dropWhile-in: x ∈ all-acquired (dropWhile P sb) =⇒ x ∈ all-acquired
sb

using all-acquired-append [of takeWhile P sb dropWhile P sb]
by auto

lemma all-acquired-takeWhile-in: x ∈ all-acquired (takeWhile P sb) =⇒ x ∈ all-acquired
sb

using all-acquired-append [of takeWhile P sb dropWhile P sb]
by auto

lemmas all-acquired-takeWhile-dropWhile-in = all-acquired-takeWhile-in
all-acquired-dropWhile-in

lemma split-in-read-only-reads:∧
O. a ∈ read-only-reads O xs =⇒

(∃ t v ys zs. xs=ys @ Readsb False a t v # zs ∧ a /∈ acquired True ys O)
proof (induct xs)

case Nil thus ?case by simp
next

case (Cons x xs)

366

have a-in: a ∈ read-only-reads O (x#xs) by fact
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case False
from a-in have a ∈ read-only-reads O xs

by (auto simp add: Writesb False)
from Cons.hyps [OF this] obtain t v ys zs where

xs: xs=ys@Readsb False a t v # zs and a-notin: a /∈ acquired True ys O
by auto

with xs a-notin obtain x#xs=(x#ys)@Readsb False a t v # zs a /∈ acquired True
(x#ys) O
by (simp add: Writesb False)

then show ?thesis
by blast

next
case True
from a-in have a ∈ read-only-reads (O ∪ A − R) xs

by (auto simp add: Writesb True)
from Cons.hyps [OF this] obtain t v ys zs where

xs: xs=ys@Readsb False a t v # zs and a-notin: a /∈ acquired True ys (O ∪ A − R)
by auto

with xs a-notin obtain x#xs=(x#ys)@Readsb False a t v # zs a /∈ acquired True
(x#ys) O
by (simp add: Writesb True)

then show ?thesis
by blast

qed
next

case (Readsb volatile a ′ t ′ v ′)
show ?thesis
proof (cases ¬ volatile ∧ a /∈ O ∧ a ′=a)

case True
with Readsb show ?thesis

by fastforce
next

case False
with a-in have a ∈ read-only-reads O xs

by (auto simp add: Readsb split: if-split-asm)
from Cons.hyps [OF this] obtain t v ys zs where

xs: xs=ys@Readsb False a t v # zs and a-notin: a /∈ acquired True ys O
by auto

with xs a-notin obtain x#xs=(x#ys)@Readsb False a t v # zs a /∈ acquired True
(x#ys) O
by (simp add: Readsb)

then show ?thesis
by blast

qed

367

next
case Progsb
with a-in have a ∈ read-only-reads O xs

by (auto)
from Cons.hyps [OF this] obtain t v ys zs where

xs: xs=ys@Readsb False a t v # zs and a-notin: a /∈ acquired True ys O
by auto

with xs a-notin obtain x#xs=(x#ys)@Readsb False a t v # zs a /∈ acquired True
(x#ys) O

by (simp add: Progsb)
then show ?thesis

by blast
next

case (Ghostsb A L R W)
with a-in have a ∈ read-only-reads (O ∪ A − R) xs

by (auto)
from Cons.hyps [OF this] obtain t v ys zs where

xs: xs=ys@Readsb False a t v # zs and a-notin: a /∈ acquired True ys (O ∪ A −R)
by auto

with xs a-notin obtain x#xs=(x#ys)@Readsb False a t v # zs a /∈ acquired True
(x#ys) O

by (simp add: Ghostsb)
then show ?thesis

by blast
qed

qed

lemma insert-monoD: W ⊆ W ′ =⇒ insert a W ⊆ insert a W ′

by blast

primrec unforwarded-non-volatile-reads:: ′a memref list ⇒ addr set ⇒ addr set
where
unforwarded-non-volatile-reads [] W = {}
| unforwarded-non-volatile-reads (x#xs) W =
(case x of

Readsb volatile a - - ⇒ (if a /∈ W ∧ ¬ volatile
then insert a (unforwarded-non-volatile-reads xs W)
else (unforwarded-non-volatile-reads xs W))

| Writesb - a - - - - - - ⇒ unforwarded-non-volatile-reads xs (insert a W)
| - ⇒ unforwarded-non-volatile-reads xs W)

lemma unforwarded-non-volatile-reads-non-volatile-Readsb:∧
W. unforwarded-non-volatile-reads sb W ⊆ outstanding-refs is-non-volatile-Readsb sb

apply (induct sb)
apply (auto split: memref.splits if-split-asm)
done

368

lemma in-unforwarded-non-volatile-reads-non-volatile-Readsb:
a ∈ unforwarded-non-volatile-reads sb W =⇒ a ∈ outstanding-refs is-non-volatile-Readsb

sb
using unforwarded-non-volatile-reads-non-volatile-Readsb

by blast

lemma unforwarded-non-volatile-reads-antimono:∧
W W ′. W ⊆ W ′ =⇒ unforwarded-non-volatile-reads xs W ′ ⊆ unfor-

warded-non-volatile-reads xs W
apply (induct xs)
apply (auto split: memref.splits dest: insert-monoD)
done

lemma unforwarded-non-volatile-reads-antimono-in:
x ∈ unforwarded-non-volatile-reads xs W ′ =⇒ W ⊆ W ′

=⇒ x ∈ unforwarded-non-volatile-reads xs W
using unforwarded-non-volatile-reads-antimono
by blast

lemma unforwarded-non-volatile-reads-append:
∧

W. unforwarded-non-volatile-reads
(xs@ys) W =
(unforwarded-non-volatile-reads xs W ∪
unforwarded-non-volatile-reads ys (W ∪ outstanding-refs is-Writesb xs))

apply (induct xs)
apply clarsimp
apply (auto split: memref.splits)
done

lemma reads-consistent-mem-eq-on-unforwarded-non-volatile-reads:
assumes mem-eq: ∀ a ∈ A ∪ W. m ′ a = m a
assumes subset: unforwarded-non-volatile-reads sb W ⊆ A
assumes consis-m: reads-consistent pending-write O m sb
shows reads-consistent pending-write O m ′ sb

using mem-eq subset consis-m
proof (induct sb arbitrary: A W m ′ m pending-write O)

case Nil thus ?case by simp
next

case (Cons r sb)
note mem-eq = ‹∀ a ∈ A ∪ W. m ′ a = m a›
note subset = ‹unforwarded-non-volatile-reads (r#sb) W ⊆ A›
note consis-m = ‹reads-consistent pending-write O m (r#sb)›

show ?case
proof (cases r)

case (Writesb volatile a sop v A ′ L R W ′)
from subset obtain

subset ′: unforwarded-non-volatile-reads sb (insert a W) ⊆ A
by (auto simp add: Writesb)

from mem-eq

369

have mem-eq ′:
∀ a ′ ∈ (A ∪ (insert a W)). (m ′(a:=v)) a ′ = (m(a:=v)) a ′

by (auto)
show ?thesis
proof (cases volatile)

case True
from consis-m obtain

consis ′: reads-consistent True (O ∪ A ′ − R) (m(a := v)) sb and
no-volatile-Readsb: outstanding-refs is-volatile-Readsb sb = {}

by (simp add: Writesb True)

from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
have reads-consistent True (O ∪ A ′ − R) (m ′(a := v)) sb.
with no-volatile-Readsb

show ?thesis
by (simp add: Writesb True)

next
case False
from consis-m obtain consis ′: reads-consistent pending-write O (m(a := v)) sb

by (simp add: Writesb False)
from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
have reads-consistent pending-write O (m ′(a := v)) sb.
then
show ?thesis

by (simp add: Writesb False)
qed

next
case (Readsb volatile a t v)
from mem-eq
have mem-eq ′:
∀ a ′ ∈ A ∪ W. m ′ a ′ = m a ′

by (auto)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from consis-m obtain

consis ′: reads-consistent pending-write O m sb
by (simp add: Readsb True)

show ?thesis
proof (cases a ∈ W)

case False
from subset obtain

subset ′: unforwarded-non-volatile-reads sb W ⊆ A
using False
by (auto simp add: Readsb True split: if-split-asm)

from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
show ?thesis

by (simp add: Readsb True)

370

next
case True
from subset have

subset ′: unforwarded-non-volatile-reads sb W ⊆
insert a A

using True
apply (auto simp add: Readsb volatile split: if-split-asm)
done

from mem-eq True have mem-eq ′: ∀ a ′ ∈ (insert a A) ∪ W. m ′ a ′ = m a ′

by auto
from Cons.hyps [OF mem-eq ′ subset ′ consis ′]
show ?thesis

by (simp add: Readsb volatile)
qed

next
case False
note non-vol = this
from consis-m obtain

consis ′: reads-consistent pending-write O m sb and
v: (pending-write ∨ a ∈ O) −→ v=m a
by (simp add: Readsb False)

show ?thesis
proof (cases a ∈ W)

case True
from mem-eq subset Readsb True non-vol have m ′ a = m a

by (auto simp add: False)
from subset obtain

subset ′: unforwarded-non-volatile-reads sb W ⊆ insert a A
using False
by (auto simp add: Readsb non-vol split: if-split-asm)

from mem-eq True have mem-eq ′: ∀ a ′ ∈ (insert a A) ∪ W. m ′ a ′ = m a ′

by auto

with Cons.hyps [OF mem-eq ′ subset ′ consis ′] v
show ?thesis

by (simp add: Readsb non-vol)
next

case False
from mem-eq subset Readsb False non-vol have meq: m ′ a = m a

by (clarsimp)
from subset obtain

subset ′: unforwarded-non-volatile-reads sb W ⊆ A
using non-vol False
by (auto simp add: Readsb non-vol split: if-split-asm)

from mem-eq non-vol have mem-eq ′: ∀ a ′ ∈ A ∪ W. m ′ a ′ = m a ′

by auto
with Cons.hyps [OF mem-eq ′ subset ′ consis ′] v meq
show ?thesis

by (simp add: Readsb non-vol False)
qed

371

qed
next

case Progsb with Cons show ?thesis by auto
next

case Ghostsb with Cons show ?thesis by auto
qed

qed

lemma reads-consistent-mem-eq-on-unforwarded-non-volatile-reads-drop:
assumes mem-eq: ∀ a ∈ A ∪ W. m ′ a = m a
assumes subset: unforwarded-non-volatile-reads (dropWhile (Not ◦ is-volatile-Writesb)

sb) W ⊆ A
assumes subset-acq: acquired-reads True (takeWhile (Not ◦ is-volatile-Writesb) sb) O

⊆ A
assumes consis-m: reads-consistent False O m sb
shows reads-consistent False O m ′ sb

using mem-eq subset subset-acq consis-m
proof (induct sb arbitrary: A W m ′ m O)

case Nil thus ?case by simp
next

case (Cons r sb)
note mem-eq = ‹∀ a ∈ A ∪ W. m ′ a = m a›
note subset = ‹unforwarded-non-volatile-reads
(dropWhile (Not ◦ is-volatile-Writesb) (r#sb)) W ⊆ A›

note subset-acq = ‹acquired-reads True (takeWhile (Not ◦ is-volatile-Writesb)(r#sb))
O ⊆ A›

note consis-m = ‹reads-consistent False O m (r#sb)›

show ?case
proof (cases r)

case (Writesb volatile a sop v A ′ L R W ′)
show ?thesis
proof (cases volatile)

case True
from mem-eq
have mem-eq ′:

∀ a ′ ∈ (A ∪ (insert a W)). (m ′(a:=v)) a ′ = (m(a:=v)) a ′

by (auto)

from consis-m obtain
consis ′: reads-consistent True (O ∪ A ′ − R) (m(a := v)) sb and

no-volatile-Readsb: outstanding-refs is-volatile-Readsb sb = {}
by (simp add: Writesb True)

from subset obtain unforwarded-non-volatile-reads sb (insert a W) ⊆ A
by (clarsimp simp add: Writesb True)

from reads-consistent-mem-eq-on-unforwarded-non-volatile-reads [OF mem-eq ′ this
consis ′]

372

have reads-consistent True (O ∪ A ′ − R) (m ′(a := v)) sb.
with no-volatile-Readsb

show ?thesis
by (simp add: Writesb True)

next
case False
from mem-eq
have mem-eq ′:

∀ a ′ ∈ (A ∪ W). (m ′(a:=v)) a ′ = (m(a:=v)) a ′

by (auto)
from subset obtain

subset ′: unforwarded-non-volatile-reads (dropWhile (Not ◦ is-volatile-Writesb) sb) W ⊆
A
by (auto simp add: Writesb False)

from subset-acq have
subset-acq ′: acquired-reads True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ⊆ A
by (auto simp add: Writesb False)

from consis-m obtain consis ′: reads-consistent False O (m(a := v)) sb
by (simp add: Writesb False)

from Cons.hyps [OF mem-eq ′ subset ′ subset-acq ′ consis ′]
have reads-consistent False O (m ′(a := v)) sb.
then
show ?thesis

by (simp add: Writesb False)
qed

next
case (Readsb volatile a t v)
from mem-eq
have mem-eq ′:
∀ a ′ ∈ A ∪ W. m ′ a ′ = m a ′

by (auto)
from subset obtain

subset ′: unforwarded-non-volatile-reads (dropWhile (Not ◦ is-volatile-Writesb) sb) W
⊆ A

by (clarsimp simp add: Readsb)
from subset-acq obtain

a-A: ¬ volatile −→ a ∈ O −→ a ∈ A and
subset-acq ′: acquired-reads True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ⊆ A
by (auto simp add: Readsb split: if-split-asm)

show ?thesis
proof (cases volatile)

case True
note volatile=this
from consis-m obtain

consis ′: reads-consistent False O m sb
by (simp add: Readsb True)

from Cons.hyps [OF mem-eq ′ subset ′ subset-acq ′ consis ′]
show ?thesis

373

by (simp add: Readsb True)
next

case False
note non-vol = this
from consis-m obtain

consis ′: reads-consistent False O m sb and
v: a ∈ O −→ v=m a
by (simp add: Readsb False)

from mem-eq a-A v have v ′: a ∈ O −→ v=m ′ a
by (auto simp add: non-vol)

from Cons.hyps [OF mem-eq ′ subset ′ subset-acq ′ consis ′] v ′

show ?thesis
by (simp add: Readsb False)

qed
next

case Progsb with Cons show ?thesis by auto
next

case Ghostsb with Cons show ?thesis by auto
qed

qed

lemma read-only-read-witness:
∧
S O.

[[non-volatile-owned-or-read-only True S O sb;
a ∈ read-only-reads O sb]]
=⇒
∃ xs ys t v. sb=xs@ Readsb False a t v # ys ∧ a ∈ read-only (share xs S) ∧ a /∈

read-only-reads O xs
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain
a-ro: a ∈ read-only-reads (O ∪ A − R) sb and
nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

from Cons.hyps [OF nvo ′ a-ro]

374

obtain xs ys t v where
sb = xs @ Readsb False a t v # ys ∧ a ∈ read-only (share xs (S ⊕W R 	A L)) ∧
a /∈ read-only-reads (O ∪ A − R) xs
by blast

thus ?thesis
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Writesb True)
done

next
case False
from Cons.prems obtain

a-ro: a ∈ read-only-reads O sb and
nvo ′: non-volatile-owned-or-read-only True S O sb
by (clarsimp simp add: Writesb False)

from Cons.hyps [OF nvo ′ a-ro]
obtain xs ys t v where

sb = xs @ Readsb False a t v # ys ∧ a ∈ read-only (share xs S) ∧ a /∈ read-only-reads O
xs
by blast

thus ?thesis
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Writesb False)
done

qed
next

case (Readsb volatile a ′ t v)
show ?thesis
proof (cases a ′=a ∧ a /∈ O ∧ ¬ volatile)

case True
with Cons.prems have a ∈ read-only S

by (simp add: Readsb)

with True show ?thesis
apply −
apply (rule-tac x=[] in exI)
apply (rule-tac x=sb in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Readsb)

375

done
next

case False
with Cons.prems obtain

a-ro: a ∈ read-only-reads O sb and
nvo ′: non-volatile-owned-or-read-only True S O sb
by (auto simp add: Readsb split: if-split-asm)

from Cons.hyps [OF nvo ′ a-ro]
obtain xs ys t ′ v ′ where

sb = xs @ Readsb False a t ′ v ′ # ys ∧ a ∈ read-only (share xs S) ∧ a /∈ read-only-reads
O xs
by blast

with False show ?thesis
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t ′ in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Readsb)
done

qed
next

case Progsb
from Cons.prems obtain

a-ro: a ∈ read-only-reads O sb and
nvo ′: non-volatile-owned-or-read-only True S O sb
by (clarsimp simp add: Progsb)

from Cons.hyps [OF nvo ′ a-ro]
obtain xs ys t v where
sb = xs @ Readsb False a t v # ys ∧ a ∈ read-only (share xs S) ∧ a /∈ read-only-reads

O xs
by blast

thus ?thesis
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Progsb)
done

next
case (Ghostsb A L R W)
from Cons.prems obtain

a-ro: a ∈ read-only-reads (O ∪ A − R) sb and
nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

376

from Cons.hyps [OF nvo ′ a-ro]
obtain xs ys t v where

sb = xs @ Readsb False a t v # ys ∧ a ∈ read-only (share xs (S ⊕W R 	A L)) ∧ a /∈
read-only-reads (O ∪ A − R) xs

by blast

thus ?thesis
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Ghostsb)
done

qed
qed

lemma read-only-read-acquired-witness:
∧
S O.

[[non-volatile-owned-or-read-only True S O sb; sharing-consistent S O sb;
a /∈ read-only S; a /∈ O; a ∈ read-only-reads O sb]]
=⇒
∃ xs ys t v. sb=xs@ Readsb False a t v # ys ∧ a ∈ all-acquired xs ∧ a ∈ read-only (share

xs S) ∧
a /∈ read-only-reads O xs

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
a-nro: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads (O ∪ A − R) sb and
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

from R-owns a-unowned
have a-R: a /∈ R

by auto
show ?thesis

377

proof (cases a ∈ A)
case True
from read-only-read-witness [OF nvo ′ a-ro ′]
obtain xs ys t v ′ where

sb: sb = xs @ Readsb False a t v ′ # ys and
ro: a ∈ read-only (share xs (S ⊕W R 	A L)) and
a-ro-xs: a /∈ read-only-reads (O ∪ A − R) xs
by blast

with True show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Writesb volatile)
done

next
case False
with a-unowned R-owns a-nro L-A A-R
obtain a-nro ′: a /∈ read-only (S ⊕W R 	A L) and a-unowned ′: a /∈ O ∪ A − R

by (force simp add: in-read-only-convs)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned ′ a-ro ′]
obtain xs ys t v ′ where sb = xs @ Readsb False a t v ′ # ys ∧

a ∈ all-acquired xs ∧ a ∈ read-only (share xs (S ⊕W R 	A L)) ∧
a /∈ read-only-reads (O ∪ A − R) xs
by blast

then show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Writesb volatile)
done

qed
next

case False
from Cons.prems obtain

consis ′: sharing-consistent S O sb and
a-nro ′: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads O sb and
a ′ ∈ O and
nvo ′: non-volatile-owned-or-read-only True S O sb
by (clarsimp simp add: Writesb False)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned a-ro ′]

378

obtain xs ys t v ′ where
sb = xs @ Readsb False a t v ′ # ys ∧

a ∈ all-acquired xs ∧ a ∈ read-only (share xs S) ∧ a /∈ read-only-reads O xs
by blast

then show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Writesb False)
done

qed
next

case (Readsb volatile a ′ t v)
from Cons.prems
obtain

consis ′: sharing-consistent S O sb and
a-nro ′: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads O sb and
nvo ′: non-volatile-owned-or-read-only True S O sb
by (auto simp add: Readsb split: if-split-asm)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned a-ro ′]
obtain xs ys t v ′ where

sb = xs @ Readsb False a t v ′ # ys ∧
a ∈ all-acquired xs ∧ a ∈ read-only (share xs S) ∧ a /∈ read-only-reads O xs
by blast

with Cons.prems show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Readsb)
done

next
case Progsb
from Cons.prems
obtain

consis ′: sharing-consistent S O sb and
a-nro ′: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads O sb and
nvo ′: non-volatile-owned-or-read-only True S O sb
by (auto simp add: Progsb)

379

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned a-ro ′]
obtain xs ys t v where

sb = xs @ Readsb False a t v # ys ∧
a ∈ all-acquired xs ∧ a ∈ read-only (share xs S) ∧ a /∈ read-only-reads O xs
by blast

then show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Progsb)
done

next
case (Ghostsb A L R W)
from Cons.prems obtain

nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
a-nro: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads (O ∪ A − R) sb and
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from R-owns a-unowned
have a-R: a /∈ R

by auto
show ?thesis
proof (cases a ∈ A)

case True
from read-only-read-witness [OF nvo ′ a-ro ′]
obtain xs ys t v ′ where

sb: sb = xs @ Readsb False a t v ′ # ys and
ro: a ∈ read-only (share xs (S ⊕W R 	A L)) and
a-ro-xs: a /∈ read-only-reads (O ∪ A − R) xs

by blast

with True show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Ghostsb)
done

next
case False
with a-unowned R-owns a-nro L-A A-R

380

obtain a-nro ′: a /∈ read-only (S ⊕W R 	A L) and a-unowned ′: a /∈ O ∪ A − R
by (force simp add: in-read-only-convs)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned ′ a-ro ′]
obtain xs ys t v ′ where sb = xs @ Readsb False a t v ′ # ys ∧

a ∈ all-acquired xs ∧ a ∈ read-only (share xs (S ⊕W R 	A L)) ∧
a /∈ read-only-reads (O ∪ A − R) xs

by blast

then show ?thesis
apply −

apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Ghostsb)
done

qed
qed

qed

lemma unforwarded-not-written:
∧

W. a ∈ unforwarded-non-volatile-reads sb W =⇒ a /∈
W
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W ′)
from Cons.prems
have a ∈ unforwarded-non-volatile-reads sb (insert a ′ W)

by (clarsimp simp add: Writesb)
from Cons.hyps [OF this]
have a /∈ insert a ′ W.
then show ?thesis

by blast
next

case (Readsb volatile a ′ t v)
with Cons.hyps [of W] Cons.prems show ?thesis

by (auto split: if-split-asm)
next

case Progsb
with Cons.hyps [of W] Cons.prems show ?thesis

by (auto split: if-split-asm)
next

case Ghostsb
with Cons.hyps [of W] Cons.prems show ?thesis

381

by (auto split: if-split-asm)
qed

qed

lemma unforwarded-witness:
∧

X.
[[a ∈ unforwarded-non-volatile-reads sb X]]
=⇒
∃ xs ys t v. sb=xs@ Readsb False a t v # ys ∧ a /∈ outstanding-refs is-Writesb xs

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain
a-unforw: a ∈ unforwarded-non-volatile-reads sb (insert a ′ X)
by (clarsimp simp add: Writesb True)

from unforwarded-not-written [OF a-unforw]
have a ′-a: a ′6=a

by auto

from Cons.hyps [OF a-unforw]
obtain xs ys t v where

sb = xs @ Readsb False a t v # ys ∧
a /∈ outstanding-refs is-Writesb xs
by blast

thus ?thesis
using a ′-a
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Writesb True)
done

next
case False
from Cons.prems obtain

a-unforw: a ∈ unforwarded-non-volatile-reads sb (insert a ′ X)
by (clarsimp simp add: Writesb False)

from unforwarded-not-written [OF a-unforw]

382

have a ′-a: a ′6=a
by auto

from Cons.hyps [OF a-unforw]
obtain xs ys t v where

sb = xs @ Readsb False a t v # ys ∧
a /∈ outstanding-refs is-Writesb xs
by blast

thus ?thesis
using a ′-a
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Writesb False)
done

qed
next

case (Readsb volatile a ′ t v)
show ?thesis
proof (cases a ′=a ∧ a /∈ X ∧ ¬ volatile)

case True

with True show ?thesis
apply −
apply (rule-tac x=[] in exI)
apply (rule-tac x=sb in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Readsb)
done

next
case False
note not-ror = this
with Cons.prems obtain a-unforw: a ∈ unforwarded-non-volatile-reads sb X

by (auto simp add: Readsb split: if-split-asm)

from Cons.hyps [OF a-unforw]
obtain xs ys t v where

sb = xs @ Readsb False a t v # ys ∧
a /∈ outstanding-refs is-Writesb xs
by blast

thus ?thesis
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)

383

apply (rule-tac x=v in exI)
apply (clarsimp simp add: Readsb)
done

qed
next

case Progsb
from Cons.prems obtain a-unforw: a ∈ unforwarded-non-volatile-reads sb X

by (auto simp add: Progsb)

from Cons.hyps [OF a-unforw]
obtain xs ys t v where

sb = xs @ Readsb False a t v # ys ∧
a /∈ outstanding-refs is-Writesb xs
by blast

thus ?thesis
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Progsb)
done

next
case (Ghostsb A L R W)
from Cons.prems obtain a-unforw: a ∈ unforwarded-non-volatile-reads sb X

by (auto simp add: Ghostsb)

from Cons.hyps [OF a-unforw]
obtain xs ys t v where

sb = xs @ Readsb False a t v # ys ∧
a /∈ outstanding-refs is-Writesb xs
by blast

thus ?thesis
apply −
apply (rule-tac x=(x#xs) in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Ghostsb)
done

qed
qed

lemma read-only-read-acquired-unforwarded-witness:
∧
S O X.

[[non-volatile-owned-or-read-only True S O sb; sharing-consistent S O sb;
a /∈ read-only S; a /∈ O; a ∈ read-only-reads O sb;
a ∈ unforwarded-non-volatile-reads sb X]]

384

=⇒
∃ xs ys t v. sb=xs@ Readsb False a t v # ys ∧ a ∈ all-acquired xs ∧

a /∈ outstanding-refs is-Writesb xs
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
a-nro: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads (O ∪ A − R) sb and
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-unforw: a ∈ unforwarded-non-volatile-reads sb (insert a ′ X)
by (clarsimp simp add: Writesb True)

from unforwarded-not-written [OF a-unforw]
have a-notin: a /∈ insert a ′ X.
from R-owns a-unowned
have a-R: a /∈ R

by auto
show ?thesis
proof (cases a ∈ A)

case True

from unforwarded-witness [OF a-unforw]
obtain xs ys t v ′ where

sb: sb = xs @ Readsb False a t v ′ # ys and
a-xs: a /∈ outstanding-refs is-Writesb xs
by blast

with True a-notin show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Writesb volatile)
done

next
case False

385

with a-unowned R-owns a-nro L-A A-R
obtain a-nro ′: a /∈ read-only (S ⊕W R 	A L) and a-unowned ′: a /∈ O ∪ A − R

by (force simp add: in-read-only-convs)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned ′ a-ro ′ a-unforw]
obtain xs ys t v ′ where sb = xs @ Readsb False a t v ′ # ys ∧

a ∈ all-acquired xs ∧
a /∈ outstanding-refs is-Writesb xs
by blast

with a-notin show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Writesb volatile)
done

qed
next

case False
from Cons.prems obtain

consis ′: sharing-consistent S O sb and
a-nro ′: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads O sb and
a ′ ∈ O and
nvo ′: non-volatile-owned-or-read-only True S O sb and
a-unforw ′: a ∈ unforwarded-non-volatile-reads sb (insert a ′ X)
by (auto simp add: Writesb False split: if-split-asm)

from unforwarded-not-written [OF a-unforw ′]
have a-notin: a /∈ insert a ′ X.

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned a-ro ′ a-unforw ′]
obtain xs ys t v ′ where

sb = xs @ Readsb False a t v ′ # ys ∧
a ∈ all-acquired xs ∧ a /∈ outstanding-refs is-Writesb xs

by blast

with a-notin show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Writesb False)
done

qed
next

386

case (Readsb volatile a ′ t v)
from Cons.prems
obtain

consis ′: sharing-consistent S O sb and
a-nro ′: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads O sb and
nvo ′: non-volatile-owned-or-read-only True S O sb and
a-unforw: a ∈ unforwarded-non-volatile-reads sb X
by (auto simp add: Readsb split: if-split-asm)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned a-ro ′ a-unforw]
obtain xs ys t v ′ where

sb = xs @ Readsb False a t v ′ # ys ∧
a ∈ all-acquired xs ∧ a /∈ outstanding-refs is-Writesb xs
by blast

with Cons.prems show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Readsb)
done

next
case Progsb
from Cons.prems
obtain

consis ′: sharing-consistent S O sb and
a-nro ′: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads O sb and
nvo ′: non-volatile-owned-or-read-only True S O sb and
a-unforw: a ∈ unforwarded-non-volatile-reads sb X
by (auto simp add: Progsb)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned a-ro ′ a-unforw]
obtain xs ys t v where

sb = xs @ Readsb False a t v # ys ∧
a ∈ all-acquired xs ∧ a /∈ outstanding-refs is-Writesb xs
by blast

then show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v in exI)
apply (clarsimp simp add: Progsb)

387

done
next

case (Ghostsb A L R W)
from Cons.prems obtain

nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
a-nro: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ∈ read-only-reads (O ∪ A − R) sb and
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-unforw: a ∈ unforwarded-non-volatile-reads sb (X)
by (clarsimp simp add: Ghostsb)

from unforwarded-not-written [OF a-unforw]
have a-notin: a /∈ X.
from R-owns a-unowned
have a-R: a /∈ R

by auto
show ?thesis
proof (cases a ∈ A)

case True

from unforwarded-witness [OF a-unforw]
obtain xs ys t v ′ where

sb: sb = xs @ Readsb False a t v ′ # ys and
a-xs: a /∈ outstanding-refs is-Writesb xs

by blast

with True a-notin show ?thesis
apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)

apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Ghostsb)
done

next
case False
with a-unowned R-owns a-nro L-A A-R
obtain a-nro ′: a /∈ read-only (S ⊕W R 	A L) and a-unowned ′: a /∈ O ∪ A − R

by (force simp add: in-read-only-convs)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned ′ a-ro ′ a-unforw]
obtain xs ys t v ′ where sb = xs @ Readsb False a t v ′ # ys ∧

a ∈ all-acquired xs ∧
a /∈ outstanding-refs is-Writesb xs

by blast

with a-notin show ?thesis

388

apply −
apply (rule-tac x=x#xs in exI)
apply (rule-tac x=ys in exI)
apply (rule-tac x=t in exI)
apply (rule-tac x=v ′ in exI)
apply (clarsimp simp add: Ghostsb)
done

qed
qed

qed

lemma takeWhile-prefix: ∃ ys. takeWhile P xs @ ys = xs
apply (induct xs)
apply auto
done

lemma unforwarded-empty-extend:∧
W. x ∈ unforwarded-non-volatile-reads sb {} =⇒ x /∈ W =⇒ x ∈ unfor-

warded-non-volatile-reads sb W
apply (induct sb)
apply clarsimp
subgoal for a sb W
apply (case-tac a)
apply clarsimp
apply (frule unforwarded-not-written)
apply (drule-tac W={} in unforwarded-non-volatile-reads-antimono-in)
apply blast
apply (auto split: if-split-asm)
done
done

lemma notin-unforwarded-empty:∧
W. a /∈ unforwarded-non-volatile-reads sb W =⇒ a /∈ W =⇒ a /∈ unfor-

warded-non-volatile-reads sb {}
using unforwarded-empty-extend
by blast

lemma
assumes ro: a ∈ read-only S −→ a ∈ read-only S ′

assumes a-in: a ∈ read-only (S ⊕W R)
shows a ∈ read-only (S ′ ⊕W R)
using ro a-in
by (auto simp add: in-read-only-convs)

lemma
assumes ro: a ∈ read-only S −→ a ∈ read-only S ′

assumes a-in: a ∈ read-only (S 	A L)
shows a ∈ read-only (S ′ 	A L)
using ro a-in

389

by (auto simp add: in-read-only-convs)

lemma non-volatile-owned-or-read-only-read-only-reads-eq:∧
S S ′ O pending-write.

[[non-volatile-owned-or-read-only pending-write S O sb;
∀ a ∈ read-only-reads O sb. a ∈ read-only S −→ a ∈ read-only S ′

]]
=⇒ non-volatile-owned-or-read-only pending-write S ′ O sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
ro ′: ∀ a∈read-only-reads (O ∪ A − R) sb. a ∈ read-only S −→ a ∈ read-only S ′

by (clarsimp simp add: Writesb volatile)

from ro ′

have ro ′′:∀ a∈read-only-reads (O ∪ A − R) sb.
a ∈ read-only (S ⊕W R 	A L) −→ a ∈ read-only (S ′ ⊕W R 	A L)

by (auto simp add: in-read-only-convs)
from Cons.hyps [OF nvo ′ ro ′′]
show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case False
with Cons.hyps [of pending-write S O S ′] Cons.prems show ?thesis

by (auto simp add: Writesb)
qed

next
case (Readsb volatile a t v)
show ?thesis
proof (cases volatile)

case True
with Cons.hyps [of pending-write S O S ′] Cons.prems show ?thesis

by (auto simp add: Readsb)
next

case False
note non-vol = this
show ?thesis
proof (cases a ∈ O)

case True
with Cons.hyps [of pending-write S O S ′] Cons.prems show ?thesis

390

by (auto simp add: Readsb non-vol)
next

case False
from Cons.prems Cons.hyps [of pending-write S O S ′] show ?thesis

by (clarsimp simp add: Readsb non-vol False)
qed

qed
next

case Progsb
with Cons.hyps [of pending-write S O S ′] Cons.prems show ?thesis

by (auto)
next

case (Ghostsb A L R W)
from Cons.hyps [of pending-write (S ⊕W R 	A L) O ∪ A − R S ′ ⊕W R 	A L]

Cons.prems
show ?thesis

by (auto simp add: Ghostsb in-read-only-convs)
qed

qed

lemma non-volatile-owned-or-read-only-read-only-reads-eq ′:∧
S S ′ O.

[[non-volatile-owned-or-read-only False S O sb;
∀ a ∈ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)

(dropWhile (Not ◦ is-volatile-Writesb) sb). a ∈ read-only S −→ a ∈ read-only S ′

]]
=⇒ non-volatile-owned-or-read-only False S ′ O sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
ro ′: ∀ a∈read-only-reads (O ∪ A − R) sb. a ∈ read-only S −→ a ∈ read-only S ′

by (clarsimp simp add: Writesb volatile)

from ro ′

have ro ′′:∀ a∈read-only-reads (O ∪ A − R) sb.
a ∈ read-only (S ⊕W R 	A L) −→ a ∈ read-only (S ′ ⊕W R 	A L)

by (auto simp add: in-read-only-convs)
from non-volatile-owned-or-read-only-read-only-reads-eq [OF nvo ′ ro ′′]
show ?thesis

391

by (clarsimp simp add: Writesb volatile)
next

case False
with Cons.hyps [of S O S ′] Cons.prems show ?thesis

by (auto simp add: Writesb)
qed

next
case (Readsb volatile a t v)
show ?thesis
proof (cases volatile)

case True
with Cons.hyps [of S O S ′] Cons.prems show ?thesis

by (auto simp add: Readsb)
next

case False
note non-vol = this
show ?thesis
proof (cases a ∈ O)

case True
with Cons.hyps [of S O S ′] Cons.prems show ?thesis

by (auto simp add: Readsb non-vol)
next

case False
from Cons.prems Cons.hyps [of S O S ′] show ?thesis

by (clarsimp simp add: Readsb non-vol False)
qed

qed
next

case Progsb
with Cons.hyps [of S O S ′] Cons.prems show ?thesis

by (auto)
next

case (Ghostsb A L R W)
from Cons.hyps [of (S ⊕W R 	A L) O ∪ A − R S ′ ⊕W R 	A L] Cons.prems
show ?thesis

by (auto simp add: Ghostsb in-read-only-convs)
qed

qed

lemma no-write-to-read-only-memory-read-only-reads-eq:∧
S S ′.

[[no-write-to-read-only-memory S sb;
∀ a ∈ outstanding-refs is-Writesb sb. a ∈ read-only S ′ −→ a ∈ read-only S
]]
=⇒ no-write-to-read-only-memory S ′ sb

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)

392

show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

nvo ′: no-write-to-read-only-memory (S ⊕W R 	A L) sb and
ro ′: ∀ a∈outstanding-refs is-Writesb sb. a ∈ read-only S ′ −→ a ∈ read-only S and
not-ro: a /∈ read-only S ′

by (auto simp add: Writesb volatile)

from ro ′

have ro ′′:∀ a∈outstanding-refs is-Writesb sb.
a ∈ read-only (S ′ ⊕W R 	A L) −→ a ∈ read-only (S ⊕W R 	A L)

by (auto simp add: in-read-only-convs)
from Cons.hyps [OF nvo ′ ro ′′] not-ro
show ?thesis

by (clarsimp simp add: Writesb volatile)
next

case False
with Cons.hyps [of S S ′] Cons.prems show ?thesis

by (auto simp add: Writesb)
qed

next
case (Readsb volatile a t v)
with Cons.hyps [of S S ′] Cons.prems show ?thesis

by (auto simp add: Readsb)
next

case Progsb
with Cons.hyps [of S S ′] Cons.prems show ?thesis

by (auto)
next

case (Ghostsb A L R W)
from Cons.hyps [of (S ⊕W R 	A L) S ′ ⊕W R 	A L] Cons.prems
show ?thesis

by (auto simp add: Ghostsb in-read-only-convs)
qed

qed

lemma reads-consistent-drop:
reads-consistent False O m sb
=⇒ reads-consistent True

(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(flush (takeWhile (Not ◦ is-volatile-Writesb) sb) m)
(dropWhile (Not ◦ is-volatile-Writesb) sb)

using reads-consistent-append [of False O m (takeWhile (Not ◦ is-volatile-Writesb) sb)
(dropWhile (Not ◦ is-volatile-Writesb) sb)]

393

apply (cases outstanding-refs is-volatile-Writesb sb = {})
apply (clarsimp simp add: outstanding-vol-write-take-drop-appends

takeWhile-not-vol-write-outstanding-refs dropWhile-not-vol-write-empty)
apply(clarsimp simp add: outstanding-vol-write-take-drop-appends

takeWhile-not-vol-write-outstanding-refs dropWhile-not-vol-write-empty)
apply (case-tac (dropWhile (Not ◦ is-volatile-Writesb) sb))
apply (fastforce simp add: outstanding-refs-conv)
apply (frule dropWhile-ConsD)
apply (clarsimp split: memref.splits)
done

lemma outstanding-refs-non-volatile-Readsb-all-acquired-dropWhile ′:∧
m S O pending-write.
[[reads-consistent pending-write O m sb;non-volatile-owned-or-read-only pending-write

S O sb;
a ∈ outstanding-refs is-non-volatile-Readsb (dropWhile (Not ◦ is-volatile-Writesb) sb)]]
=⇒ a ∈ O ∨ a ∈ all-acquired sb ∨

a ∈ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O)
(dropWhile (Not ◦ is-volatile-Writesb) sb)

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

non-vo: non-volatile-owned-or-read-only True (S ⊕W R 	A L)
(O ∪ A − R) sb and

out-vol: outstanding-refs is-volatile-Readsb sb = {} and
out: a ∈ outstanding-refs is-non-volatile-Readsb sb
by (clarsimp simp add: Writesb True)

show ?thesis
proof (cases a ∈ O)

case True
show ?thesis
by (clarsimp simp add: Writesb True volatile)

next
case False
from outstanding-non-volatile-Readsb-acquired-or-read-only-reads [OF non-vo out]
have a-in: a ∈ acquired-reads True sb (O ∪ A − R) ∨

a ∈ read-only-reads (O ∪ A − R) sb
by auto

with acquired-reads-all-acquired [of True sb (O ∪ A − R)]
show ?thesis

394

by (auto simp add: Writesb volatile)
qed

next
case False
with Cons show ?thesis

by (auto simp add: Writesb False)
qed

next
case Readsb

with Cons show ?thesis
apply (clarsimp simp del: o-apply simp add: Readsb

acquired-takeWhile-non-volatile-Writesb split: if-split-asm)
apply auto
done

next
case Progsb
with Cons show ?thesis

by (auto simp add: Readsb)
next

case (Ghostsb A L R W)
with Cons.hyps [of pending-write O ∪ A − R m S ⊕W R 	A L]

read-only-reads-antimono [of O O ∪ A − R]
Cons.prems show ?thesis
by (auto simp add: Ghostsb)

qed
qed

end

theory ReduceStoreBufferSimulation
imports ReduceStoreBuffer
begin

locale initialsb = simple-ownership-distinct + read-only-unowned + unowned-shared +
constrains ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes empty-sb: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ sb=[]
assumes empty-is: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ is=[]
assumes empty-rels: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ R=Map.empty

sublocale initialsb ⊆ outstanding-non-volatile-refs-owned-or-read-only
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show non-volatile-owned-or-read-only False S O sb
using empty-sb [OF i-bound ts-i] by auto

qed

395

sublocale initialsb ⊆ outstanding-volatile-writes-unowned-by-others
proof

fix i j pi isi Oi Ri Di ji sbi pj isj Oj Rj Dj jj sbj

assume i-bound: i < length ts and
j-bound: j < length ts and
neq-i-j: i 6= j and
ts-i: ts ! i = (pi, isi, ji, sbi, Di, Oi, Ri) and
ts-j: ts ! j = (pj, isj, jj, sbj, Dj, Oj, Rj)

show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sbi = {}
using empty-sb [OF i-bound ts-i] empty-sb [OF j-bound ts-j] by auto

qed

sublocale initialsb ⊆ read-only-reads-unowned
proof

fix i j pi isi Oi Ri Di ji sbi pj isj Oj Rj Dj jj sbj

assume i-bound: i < length ts and
j-bound: j < length ts and
neq-i-j: i 6= j and
ts-i: ts ! i = (pi, isi, ji, sbi, Di, Oi, Ri) and
ts-j: ts ! j = (pj, isj, jj, sbj, Dj, Oj, Rj)

show (Oj ∪ all-acquired sbj) ∩
read-only-reads (acquired True

(takeWhile (Not ◦ is-volatile-Writesb) sbi) Oi)
(dropWhile (Not ◦ is-volatile-Writesb) sbi) = {}

using empty-sb [OF i-bound ts-i] empty-sb [OF j-bound ts-j] by auto
qed

sublocale initialsb ⊆ ownership-distinct
proof

fix i j pi isi Oi Ri Di ji sbi pj isj Oj Rj Dj jj sbj

assume i-bound: i < length ts and
j-bound: j < length ts and
neq-i-j: i 6= j and
ts-i: ts ! i = (pi, isi, ji, sbi, Di, Oi, Ri) and
ts-j: ts ! j = (pj, isj, jj, sbj, Dj, Oj, Rj)

show (Oi ∪ all-acquired sbi) ∩ (Oj ∪ all-acquired sbj) = {}
using simple-ownership-distinct [OF i-bound j-bound neq-i-j ts-i ts-j] empty-sb [OF i-bound ts-i] empty-sb

[OF j-bound ts-j]
by auto

qed

sublocale initialsb ⊆ valid-ownership ..

sublocale initialsb ⊆ outstanding-non-volatile-writes-unshared
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show non-volatile-writes-unshared S sb
using empty-sb [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ sharing-consis
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show sharing-consistent S O sb
using empty-sb [OF i-bound ts-i] by auto

qed

396

sublocale initialsb ⊆ no-outstanding-write-to-read-only-memory
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show no-write-to-read-only-memory S sb
using empty-sb [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ valid-sharing ..
sublocale initialsb ⊆ valid-ownership-and-sharing ..

sublocale initialsb ⊆ load-tmps-distinct
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show distinct-load-tmps is
using empty-is [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ read-tmps-distinct
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show distinct-read-tmps sb
using empty-sb [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ load-tmps-read-tmps-distinct
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show load-tmps is ∩ read-tmps sb = {}
using empty-sb [OF i-bound ts-i] empty-is [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ load-tmps-read-tmps-distinct ..

sublocale initialsb ⊆ valid-write-sops
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show ∀ sop ∈ write-sops sb. valid-sop sop
using empty-sb [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ valid-store-sops
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show ∀ sop ∈ store-sops is. valid-sop sop
using empty-is [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ valid-sops ..

397

sublocale initialsb ⊆ valid-reads
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show reads-consistent False O m sb
using empty-sb [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ valid-history
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show program.history-consistent program-step j (hd-prog p sb) sb
using empty-sb [OF i-bound ts-i] by (auto simp add: program.history-consistent.simps)

qed

sublocale initialsb ⊆ valid-data-dependency
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show data-dependency-consistent-instrs (dom j) is
using empty-is [OF i-bound ts-i] by auto

next
fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show load-tmps is ∩

⋃
(fst ‘ write-sops sb) = {}

using empty-is [OF i-bound ts-i] empty-sb [OF i-bound ts-i] by auto
qed

sublocale initialsb ⊆ load-tmps-fresh
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show load-tmps is ∩ dom j = {}
using empty-is [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ enough-flushs
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show outstanding-refs is-volatile-Writesb sb = {}
using empty-sb [OF i-bound ts-i] by auto

qed

sublocale initialsb ⊆ valid-program-history
proof

fix i is O R D j sb p sb1 sb2

assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
assume sb: sb=sb1@sb2

show ∃ isa. instrs sb2 @ is = isa @ prog-instrs sb2

using empty-sb [OF i-bound ts-i] empty-is [OF i-bound ts-i] sb by auto
next

398

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show last-prog p sb = p
using empty-sb [OF i-bound ts-i] by auto

qed

inductive
sim-config:: (′p, ′p store-buffer,bool,owns,rels) thread-config list × memory × shared ⇒

(′p, unit,bool,owns,rels) thread-config list × memory × shared ⇒ bool
(‹- ∼ -› [60,60] 100)

where
[[m = flush-all-until-volatile-write tssb msb;
S = share-all-until-volatile-write tssb Ssb;
length tssb = length ts;
∀ i < length tssb.

let (p, issb, j, sb, Dsb, O, R) = tssb!i;
suspends = dropWhile (Not ◦ is-volatile-Writesb) sb

in ∃ is D. instrs suspends @ issb = is @ prog-instrs suspends ∧
Dsb = (D ∨ outstanding-refs is-volatile-Writesb sb 6= {}) ∧

ts!i = (hd-prog p suspends,
is,
j |‘ (dom j − read-tmps suspends),(),
D,
acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O,
release (takeWhile (Not ◦ is-volatile-Writesb) sb) (dom Ssb) R)

]]
=⇒
(tssb,msb,Ssb) ∼ (ts,m,S)
The machine without history only stores writes in the store-buffer.inductive

sim-history-config::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels) thread-config list ⇒ (′p, ′p store-buffer,bool,owns,rels) thread-config list
⇒ bool
(‹- ∼h - › [60,60] 100)

where
[[length ts = length tsh;
∀ i < length ts.

(∃O ′ D ′ R ′.
let (p,is, j, sb,D, O,R) = tsh!i in

ts!i=(p,is, j, filter is-Writesb sb,D ′,O ′,R ′) ∧
(filter is-Writesb sb = [] −→ sb=[]))

]]
=⇒
ts ∼h tsh

lemma (in initialsb) history-refl:ts ∼h ts
apply −
apply (rule sim-history-config.intros)
apply simp
apply clarsimp
subgoal for i
apply (case-tac ts!i)
apply (drule-tac i=i in empty-sb)
apply assumption
apply auto
done
done

lemma share-all-empty: ∀ i p is xs sb D O R. i < length ts −→ ts!i=(p,is,xs,sb,D,O,R)−→ sb=[]
=⇒ share-all-until-volatile-write ts S = S

399

apply (induct ts)
apply clarsimp
apply clarsimp
apply (frule-tac x=0 in spec)
apply clarsimp
apply force
done

lemma flush-all-empty: ∀ i p is xs sb D O R. i < length ts −→ ts!i=(p,is,xs,sb,D,O,R)−→ sb=[]
=⇒ flush-all-until-volatile-write ts m = m

apply (induct ts)
apply clarsimp
apply clarsimp
apply (frule-tac x=0 in spec)
apply clarsimp
apply force
done

lemma sim-config-emptyE:
assumes empty:
∀ i p is xs sb D O R. i < length tssb −→ tssb!i=(p,is,xs,sb,D,O,R)−→ sb=[]
assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
shows S = Ssb ∧ m = msb ∧ length ts = length tssb ∧

(∀ i < length tssb.
let (p, is, j, sb, D, O, R) = tssb!i
in ts!i = (p, is, j, (), D, O, R))

proof −
from sim
show ?thesis
apply cases
apply (clarsimp simp add: flush-all-empty [OF empty] share-all-empty [OF empty])
subgoal for i
apply (drule-tac x=i in spec)
apply (cut-tac i=i in empty [rule-format])
apply clarsimp
apply assumption
apply (auto simp add: Let-def)
done
done

qed

lemma sim-config-emptyI:
assumes empty:
∀ i p is xs sb D O R. i < length tssb −→ tssb!i=(p,is,xs,sb,D,O,R)−→ sb=[]
assumes leq: length ts = length tssb
assumes ts: (∀ i < length tssb.

let (p, is, j, sb, D, O, R) = tssb!i
in ts!i = (p, is, j, (), D, O, R))

shows (tssb,msb,Ssb) ∼ (ts,msb,Ssb)
apply (rule sim-config.intros)
apply (simp add: flush-all-empty [OF empty])
apply (simp add: share-all-empty [OF empty])
apply (simp add: leq)
apply (clarsimp)
apply (frule (1) empty [rule-format])
using ts
apply (auto simp add: Let-def)
done
lemma mem-eq-un-eq: [[length ts ′=length ts; ∀ i< length ts ′. P (ts ′!i) = Q (ts!i)]] =⇒ (

⋃
x∈set ts ′. P x) =

(
⋃

x∈set ts. Q x)
apply (auto simp add: in-set-conv-nth)

400

apply (force dest!: nth-mem)
apply (frule nth-mem)
subgoal for x i
apply (drule-tac x=i in spec)
apply auto
done
done

lemma (in program) trace-to-steps:
assumes trace: trace c 0 k
shows steps: c 0 ⇒d

∗ c k
using trace
proof (induct k)

case 0
show c 0 ⇒d

∗ c 0
by auto

next
case (Suc k)
have prem: trace c 0 (Suc k) by fact
hence trace c 0 k

by (auto simp add: program-trace-def)
from Suc.hyps [OF this]
have c 0 ⇒d

∗ c k .
also
term program-trace
from prem interpret program-trace program-step c 0 Suc k .
from step [of k] have c (k) ⇒d c (Suc k)

by auto
finally show ?case .

qed

lemma (in program) safe-reach-to-safe-reach-upto:
assumes safe-reach: safe-reach-direct safe c0
shows safe-reach-upto n safe c0

proof
fix k c l
assume k-n: k ≤ n
assume trace: trace c 0 k
assume c-0: c 0 = c0
assume l-k: l ≤ k
show safe (c l)
proof −

from trace k-n l-k have trace ′: trace c 0 l
by (auto simp add: program-trace-def)

from trace-to-steps [OF trace ′]
have c 0 ⇒d

∗ c l.
with safe-reach c-0 show safe (c l)
by (cases c l) (auto simp add: safe-reach-def)

qed
qed

lemma (in program-progress) safe-free-flowing-implies-safe-delayed ′:
assumes init: initialsb tssb Ssb

assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe-reach-ff: safe-reach-direct safe-free-flowing (ts,m,S)
shows safe-reach-direct safe-delayed (ts,m,S)

proof −
from init
interpret ini: initialsb tssb Ssb .
from sim obtain

401

m: m = flush-all-until-volatile-write tssb msb and
S: S = share-all-until-volatile-write tssb Ssb and
leq: length tssb = length ts and
t-sim: ∀ i < length tssb.

let (p, issb, j, sb, Dsb, O, R) = tssb!i;
suspends = dropWhile (Not ◦ is-volatile-Writesb) sb

in ∃ is D. instrs suspends @ issb = is @ prog-instrs suspends ∧
Dsb = (D ∨ outstanding-refs is-volatile-Writesb sb 6= {}) ∧

ts!i = (hd-prog p suspends,
is,
j |‘ (dom j − read-tmps suspends),(),
D,
acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O,
release (takeWhile (Not ◦ is-volatile-Writesb) sb) (dom Ssb) R)

by cases auto

from ini.empty-sb
have shared-eq: S = Ssb

apply (simp only: S)
apply (rule share-all-empty)
apply force
done

have sd: simple-ownership-distinct ts
proof

fix i j pi isi Oi Ri Di ji sbi pj isj Oj Rj Dj jj sbj

assume i-bound: i < length ts and
j-bound: j < length ts and
neq-i-j: i 6= j and
ts-i: ts ! i = (pi, isi, ji, sbi, Di, Oi, Ri) and
ts-j: ts ! j = (pj, isj, jj, sbj, Dj, Oj, Rj)

show (Oi) ∩ (Oj) = {}
proof −

from t-sim [simplified leq, rule-format, OF i-bound] ini.empty-sb [simplified leq, OF i-bound]
have ts-i: tssb!i = (pi,isi,ji,[],Di,Oi,Ri)
using ts-i

by (force simp add: Let-def)
from t-sim [simplified leq, rule-format, OF j-bound] ini.empty-sb [simplified leq, OF j-bound]
have ts-j: tssb!j = (pj,isj,jj,[],Dj,Oj,Rj)
using ts-j

by (force simp add: Let-def)
from ini.simple-ownership-distinct [simplified leq, OF i-bound j-bound neq-i-j ts-i ts-j]
show ?thesis .

qed
qed
have ro: read-only-unowned S ts
proof

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
show O ∩ read-only S = {}
proof −

from t-sim [simplified leq, rule-format, OF i-bound] ini.empty-sb [simplified leq, OF i-bound]
have ts-i: tssb!i = (p,is,j,[],D,O,R)
using ts-i

by (force simp add: Let-def)
from ini.read-only-unowned [simplified leq, OF i-bound ts-i] shared-eq
show ?thesis by simp

qed
qed
have us: unowned-shared S ts
proof

402

show − (
⋃

((λ(-, -, -, -, -, O, -). O) ‘ set ts)) ⊆ dom S
proof −

have (
⋃

((λ(-, -, -, -, -, O, -). O) ‘ set tssb)) = (
⋃

((λ(-, -, -, -, -, O, -). O) ‘ set ts))
apply clarsimp
apply (rule mem-eq-un-eq)
apply (simp add: leq)
apply clarsimp
apply (frule t-sim [rule-format])
apply (clarsimp simp add: Let-def)
apply (drule (1) ini.empty-sb)
apply auto
done

with ini.unowned-shared show ?thesis by (simp only: shared-eq)
qed

qed
{

fix i is O R D j sb p
assume i-bound: i < length ts
assume ts-i: ts!i = (p,is,j,sb,D,O,R)
have R = Map.empty
proof −

from t-sim [simplified leq, rule-format, OF i-bound] ini.empty-sb [simplified leq, OF i-bound]
have ts-i: tssb!i = (p,is,j,[],D,O,R)
using ts-i

by (force simp add: Let-def)
from ini.empty-rels [simplified leq, OF i-bound ts-i]
show ?thesis .

qed
}
with us have initial: initial (ts, m, S)

by (fastforce simp add: initial-def)

{
fix ts ′ S ′ m ′

assume steps: (ts,m,S) ⇒d
∗ (ts ′,m ′,S ′)

have safe-delayed (ts ′,m ′,S ′)
proof −

from steps-to-trace [OF steps] obtain c k
where trace: trace c 0 k and c-0: c 0 = (ts,m,S) and c-k: c k = (ts ′,m ′,S ′)

by auto
from safe-reach-to-safe-reach-upto [OF safe-reach-ff]
have safe-upto-k: safe-reach-upto k safe-free-flowing (ts, m, S).
from safe-free-flowing-implies-safe-delayed [OF - - - - safe-upto-k, simplified, OF initial sd ro us]
have safe-reach-upto k safe-delayed (ts, m, S).
then interpret program-safe-reach-upto program-step k safe-delayed (ts,m,S) .
from safe-config [where c=c and k=k and l=k, OF - trace c-0] c-k show ?thesis by simp

qed
}
then show ?thesis

by (clarsimp simp add: safe-reach-def)
qed

lemma map-onws-sb-owned:
∧

j. j < length ts =⇒ map O-sb ts ! j = (Oj,sbj) =⇒ map owned ts ! j = Oj

apply (induct ts)
apply simp
subgoal for t ts j
apply (case-tac j)
apply (case-tac t)
apply auto
done

403

done

lemma map-onws-sb-owned ′:
∧

j. j < length ts =⇒ O-sb (ts ! j) = (Oj,sbj) =⇒ owned (ts ! j) = Oj

apply (induct ts)
apply simp
subgoal for t ts j
apply (case-tac j)
apply (case-tac t)
apply auto
done
done

lemma read-only-read-acquired-unforwarded-acquire-witness:∧
S O X.[[non-volatile-owned-or-read-only True S O sb;

sharing-consistent S O sb; a /∈ read-only S; a /∈ O;
a ∈ unforwarded-non-volatile-reads sb X]]
=⇒(∃ sop a ′ v ys zs A L R W.

sb = ys @ Writesb True a ′ sop v A L R W # zs ∧
a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys ∧ a ′ 6= a) ∨

(∃A L R W ys zs. sb = ys @ Ghostsb A L R W# zs ∧ a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys)
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
a-nro: a /∈ read-only S and
a-unowned: a /∈ O and
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-unforw: a ∈ unforwarded-non-volatile-reads sb (insert a ′ X)
by (clarsimp simp add: Writesb True)

from unforwarded-not-written [OF a-unforw]
have a-notin: a /∈ insert a ′ X.
hence a ′-a: a ′ 6= a

by simp
from R-owns a-unowned
have a-R: a /∈ R

by auto
show ?thesis
proof (cases a ∈ A)

case True
then show ?thesis

apply −
apply (rule disjI1)
apply (rule-tac x=sop in exI)
apply (rule-tac x=a ′ in exI)
apply (rule-tac x=v in exI)
apply (rule-tac x=[] in exI)
apply (rule-tac x=sb in exI)
apply (simp add: Writesb volatile True a ′-a)

404

done
next

case False
with a-unowned R-owns a-nro L-A A-R
obtain a-nro ′: a /∈ read-only (S ⊕W R 	A L) and a-unowned ′: a /∈ O ∪ A − R

by (force simp add: in-read-only-convs)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned ′ a-unforw]
have (∃ sop a ′ v ys zs A L R W.

sb = ys @ Writesb True a ′ sop v A L R W # zs ∧
a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys ∧ a ′ 6= a) ∨

(∃A L R W ys zs. sb = ys @ Ghostsb A L R W# zs ∧ a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys)
(is ?write ∨ ?ghst)

by simp
then show ?thesis

proof
assume ?write

then obtain sop ′ a ′′ v ′ ys zs A ′ L ′ R ′ W ′ where
sb: sb = ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys ∧ a ′′ 6= a

by auto

show ?thesis
using props False a-notin sb

apply −
apply (rule disjI1)
apply (rule-tac x=sop ′ in exI)
apply (rule-tac x=a ′′ in exI)
apply (rule-tac x=v ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Writesb volatile False a ′-a)
done

next
assume ?ghst
then obtain ys zs A ′ L ′ R ′ W ′ where

sb: sb = ys @ Ghostsb A ′ L ′ R ′ W ′# zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys

by auto

show ?thesis
using props False a-notin sb

apply −
apply (rule disjI2)
apply (rule-tac x=A ′ in exI)
apply (rule-tac x=L ′ in exI)
apply (rule-tac x=R ′ in exI)
apply (rule-tac x=W ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Writesb volatile False a ′-a)
done

qed
qed

next
case False
from Cons.prems obtain

consis ′: sharing-consistent S O sb and

405

a-nro ′: a /∈ read-only S and
a-unowned: a /∈ O and
a-ro ′: a ′ ∈ O and
nvo ′: non-volatile-owned-or-read-only True S O sb and
a-unforw ′: a ∈ unforwarded-non-volatile-reads sb (insert a ′ X)
by (auto simp add: Writesb False split: if-split-asm)

from unforwarded-not-written [OF a-unforw ′]
have a-notin: a /∈ insert a ′ X.

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned a-unforw ′]
have (∃ sop a ′ v ys zs A L R W.

sb = ys @ Writesb True a ′ sop v A L R W # zs ∧
a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys ∧ a ′ 6= a) ∨

(∃A L R W ys zs. sb = ys @ Ghostsb A L R W# zs ∧ a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys)
(is ?write ∨ ?ghst)

by simp
then show ?thesis

proof
assume ?write

then obtain sop ′ a ′′ v ′ ys zs A ′ L ′ R ′ W ′ where
sb: sb = ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys ∧ a ′′ 6= a

by auto

show ?thesis
using props False a-notin sb

apply −
apply (rule disjI1)
apply (rule-tac x=sop ′ in exI)
apply (rule-tac x=a ′′ in exI)
apply (rule-tac x=v ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Writesb False)
done

next
assume ?ghst
then obtain ys zs A ′ L ′ R ′ W ′ where

sb: sb = ys @ Ghostsb A ′ L ′ R ′ W ′ # zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys

by auto

show ?thesis
using props False a-notin sb

apply −
apply (rule disjI2)
apply (rule-tac x=A ′ in exI)
apply (rule-tac x=L ′ in exI)
apply (rule-tac x=R ′ in exI)
apply (rule-tac x=W ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Writesb False)
done

qed
qed

next

406

case (Readsb volatile a ′ t v)
from Cons.prems
obtain

consis ′: sharing-consistent S O sb and
a-nro ′: a /∈ read-only S and
a-unowned: a /∈ O and
nvo ′: non-volatile-owned-or-read-only True S O sb and
a-unforw: a ∈ unforwarded-non-volatile-reads sb X
by (auto simp add: Readsb split: if-split-asm)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned a-unforw]
have (∃ sop a ′ v ys zs A L R W.

sb = ys @ Writesb True a ′ sop v A L R W # zs ∧
a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys ∧ a ′ 6= a) ∨

(∃A L R W ys zs. sb = ys @ Ghostsb A L R W# zs ∧ a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys)
(is ?write ∨ ?ghst)
by simp

then show ?thesis
proof

assume ?write

then obtain sop ′ a ′′ v ′ ys zs A ′ L ′ R ′ W ′ where
sb: sb = ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys ∧ a ′′ 6= a
by auto

show ?thesis
using props sb

apply −
apply (rule disjI1)
apply (rule-tac x=sop ′ in exI)
apply (rule-tac x=a ′′ in exI)
apply (rule-tac x=v ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Readsb)
done

next
assume ?ghst
then obtain ys zs A ′ L ′ R ′ W ′ where

sb: sb = ys @ Ghostsb A ′ L ′ R ′ W ′# zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys
by auto

show ?thesis
using props sb
apply −
apply (rule disjI2)
apply (rule-tac x=A ′ in exI)
apply (rule-tac x=L ′ in exI)
apply (rule-tac x=R ′ in exI)
apply (rule-tac x=W ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Readsb)
done

qed
next

case Progsb

from Cons.prems

407

obtain
consis ′: sharing-consistent S O sb and
a-nro ′: a /∈ read-only S and
a-unowned: a /∈ O and
nvo ′: non-volatile-owned-or-read-only True S O sb and
a-unforw: a ∈ unforwarded-non-volatile-reads sb X
by (auto simp add: Progsb)

from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned a-unforw]
have (∃ sop a ′ v ys zs A L R W.

sb = ys @ Writesb True a ′ sop v A L R W # zs ∧
a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys ∧ a ′ 6= a) ∨

(∃A L R W ys zs. sb = ys @ Ghostsb A L R W# zs ∧ a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys)
(is ?write ∨ ?ghst)
by simp

then show ?thesis
proof

assume ?write

then obtain sop ′ a ′′ v ′ ys zs A ′ L ′ R ′ W ′ where
sb: sb = ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys ∧ a ′′ 6= a
by auto

show ?thesis
using props sb

apply −
apply (rule disjI1)
apply (rule-tac x=sop ′ in exI)
apply (rule-tac x=a ′′ in exI)
apply (rule-tac x=v ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Progsb)
done

next
assume ?ghst
then obtain ys zs A ′ L ′ R ′ W ′ where

sb: sb = ys @ Ghostsb A ′ L ′ R ′ W ′# zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys
by auto

show ?thesis
using props sb
apply −
apply (rule disjI2)
apply (rule-tac x=A ′ in exI)
apply (rule-tac x=L ′ in exI)
apply (rule-tac x=R ′ in exI)
apply (rule-tac x=W ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Progsb)
done

qed
next

case (Ghostsb A L R W)
from Cons.prems obtain

nvo ′: non-volatile-owned-or-read-only True (S ⊕W R 	A L) (O ∪ A − R) sb and
a-nro: a /∈ read-only S and

408

a-unowned: a /∈ O and
A-shared-owns: A ⊆ dom S ∪ O and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and
consis ′: sharing-consistent (S ⊕W R 	A L) (O ∪ A − R) sb and
a-unforw: a ∈ unforwarded-non-volatile-reads sb X
by (clarsimp simp add: Ghostsb)

show ?thesis
proof (cases a ∈ A)

case True
then show ?thesis

apply −
apply (rule disjI2)
apply (rule-tac x=A in exI)
apply (rule-tac x=L in exI)
apply (rule-tac x=R in exI)
apply (rule-tac x=W in exI)
apply (rule-tac x=[] in exI)
apply (rule-tac x=sb in exI)
apply (simp add: Ghostsb True)
done

next
case False

with a-unowned a-nro L-A R-owns a-nro L-A A-R
obtain a-nro ′: a /∈ read-only (S ⊕W R 	A L) and a-unowned ′: a /∈ O ∪ A − R

by (force simp add: in-read-only-convs)
from Cons.hyps [OF nvo ′ consis ′ a-nro ′ a-unowned ′ a-unforw]
have (∃ sop a ′ v ys zs A L R W.

sb = ys @ Writesb True a ′ sop v A L R W # zs ∧
a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys ∧ a ′ 6= a) ∨

(∃A L R W ys zs. sb = ys @ Ghostsb A L R W# zs ∧ a ∈ A ∧ a /∈ outstanding-refs is-Writesb ys)
(is ?write ∨ ?ghst)

by simp
then show ?thesis
proof

assume ?write

then obtain sop ′ a ′′ v ′ ys zs A ′ L ′ R ′ W ′ where
sb: sb = ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys ∧ a ′′ 6= a

by auto

show ?thesis
using props sb

apply −
apply (rule disjI1)
apply (rule-tac x=sop ′ in exI)
apply (rule-tac x=a ′′ in exI)
apply (rule-tac x=v ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Ghostsb False)
done

next
assume ?ghst
then obtain ys zs A ′ L ′ R ′ W ′ where

sb: sb = ys @ Ghostsb A ′ L ′ R ′ W ′# zs and
props: a ∈ A ′ a /∈ outstanding-refs is-Writesb ys

by auto

409

show ?thesis
using props sb

apply −
apply (rule disjI2)
apply (rule-tac x=A ′ in exI)
apply (rule-tac x=L ′ in exI)
apply (rule-tac x=R ′ in exI)
apply (rule-tac x=W ′ in exI)
apply (rule-tac x=(x#ys) in exI)
apply (rule-tac x=zs in exI)
apply (simp add: Ghostsb False)
done

qed
qed

qed
qed

lemma release-shared-exchange-weak:
assumes shared-eq: ∀ a ∈ O ∪ all-acquired sb. (S ′::shared) a = S a
assumes consis: weak-sharing-consistent O sb
shows release sb (dom S ′) R = release sb (dom S) R
using shared-eq consis
proof (induct sb arbitrary: S S ′ O R)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True

from Cons.prems obtain
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb and

shared-eq: ∀ a ∈ O ∪ A ∪ all-acquired sb. S ′ a = S a
by (clarsimp simp add: Writesb True)

from shared-eq
have shared-eq ′: ∀ a∈O ∪ A − R ∪ all-acquired sb. (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def)
from Cons.hyps [OF shared-eq ′ consis ′]
have release sb (dom (S ′ ⊕W R 	A L)) Map.empty = release sb (dom (S ⊕W R 	A L)) Map.empty .
then show ?thesis

by (auto simp add: Writesb True domIff)
next

case False with Cons show ?thesis
by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis
by auto

next
case Progsb with Cons show ?thesis

by auto
next

case (Ghostsb A L R W)

410

from Cons.prems obtain
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb and
shared-eq: ∀ a ∈ O ∪ A ∪ all-acquired sb. S ′ a = S a
by (clarsimp simp add: Ghostsb)

from shared-eq
have shared-eq ′: ∀ a∈O ∪ A − R ∪ all-acquired sb. (S ′ ⊕W R 	A L) a = (S ⊕W R 	A L) a

by (auto simp add: augment-shared-def restrict-shared-def)
from shared-eq R-owns have ∀ a∈R. (a ∈ dom S) = (a ∈ dom S ′)

by (auto simp add: domIff)
from augment-rels-shared-exchange [OF this]
have (augment-rels (dom S ′) R R) = (augment-rels (dom S) R R).

with Cons.hyps [OF shared-eq ′ consis ′]
have release sb (dom (S ′ ⊕W R 	A L)) (augment-rels (dom S ′) R R) =

release sb (dom (S ⊕W R 	A L)) (augment-rels (dom S) R R) by simp
then show ?thesis

by (clarsimp simp add: Ghostsb domIff)
qed

qed

lemma read-only-share-all-shared:
∧
S. [[a ∈ read-only (share sb S)]]

=⇒ a ∈ read-only S ∪ all-shared sb
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a sop v A L R W)
show ?thesis
proof (cases volatile)

case True
with Writesb Cons.hyps [of (S ⊕W R 	A L)] Cons.prems
show ?thesis

by (auto simp add: read-only-def augment-shared-def restrict-shared-def
split: if-split-asm option.splits)

next
case False with Writesb Cons show ?thesis by auto

qed
next

case Readsb with Cons show ?thesis by auto
next

case Progsb with Cons show ?thesis by auto
next

case (Ghostsb A L R W)
with Cons.hyps [of (S ⊕W R 	A L)] Cons.prems
show ?thesis

by (auto simp add: read-only-def augment-shared-def restrict-shared-def
split: if-split-asm option.splits)

qed
qed

lemma read-only-shared-all-until-volatile-write-subset ′:∧
S.

read-only (share-all-until-volatile-write ts S) ⊆
read-only S ∪ (

⋃
((λ(-, -, -, sb, -, - ,-). all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ts))

proof (induct ts)
case Nil thus ?case by simp

next

411

case (Cons t ts)
obtain p is O R D j sb where

t: t = (p,is,j,sb,D,O,R)
by (cases t)

have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)
by (rule ext) auto

let ?take-sb = (takeWhile (Not ◦ is-volatile-Writesb) sb)
let ?drop-sb = (dropWhile (Not ◦ is-volatile-Writesb) sb)

{
fix a
assume a-in: a ∈ read-only

(share-all-until-volatile-write ts
(share ?take-sb S)) and

a-notin-shared: a /∈ read-only S and
a-notin-rest: a /∈ (

⋃
((λ(-, -, -, sb, -, - ,-). all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set ts))

have a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)
proof −

from Cons.hyps [of (share ?take-sb S)] a-in a-notin-rest
have a ∈ read-only (share ?take-sb S)

by (auto simp add: aargh)
from read-only-share-all-shared [OF this] a-notin-shared
show ?thesis by auto

qed
}

then show ?case
by (auto simp add: t aargh)

qed

lemma read-only-share-acquired-all-shared:∧
O S. weak-sharing-consistent O sb =⇒ O ∩ read-only S = {} =⇒

a ∈ read-only (share sb S) =⇒ a ∈ O ∪ all-acquired sb =⇒ a ∈ all-shared sb
proof (induct sb)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems obtain

owns-ro: O ∩ read-only S = {} and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and consis ′: weak-sharing-consistent (O ∪ A − R) sb and

a-share: a ∈ read-only (share sb (S ⊕W R 	A L)) and
a-A-all: a ∈ O ∪ A ∪ all-acquired sb

by (clarsimp simp add: Writesb True)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L) = {}
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF consis ′ owns-ro ′ a-share]

412

show ?thesis
using L-A A-R R-owns owns-ro a-A-all

by (auto simp add: Writesb volatile augment-shared-def restrict-shared-def read-only-def domIff
split: if-split-asm)

next
case False
with Cons Writesb show ?thesis by (auto)

qed
next

case Readsb with Cons show ?thesis by auto
next

case Progsb with Cons show ?thesis by auto
next

case (Ghostsb A L R W)
from Cons.prems obtain

owns-ro: O ∩ read-only S = {} and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and consis ′: weak-sharing-consistent (O ∪ A − R) sb and
a-share: a ∈ read-only (share sb (S ⊕W R 	A L)) and
a-A-all: a ∈ O ∪ A ∪ all-acquired sb
by (clarsimp simp add: Ghostsb)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L) = {}
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF consis ′ owns-ro ′ a-share]
show ?thesis
using L-A A-R R-owns owns-ro a-A-all

by (auto simp add: Ghostsb augment-shared-def restrict-shared-def read-only-def domIff
split: if-split-asm)

qed
qed

lemma read-only-share-unowned ′:
∧
O S.

[[weak-sharing-consistent O sb; O ∩ read-only S = {}; a /∈ O ∪ all-acquired sb; a ∈ read-only S]]
=⇒ a ∈ read-only (share sb S)

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case False
with Cons Writesb show ?thesis by auto

next
case True
from Cons.prems obtain

owns-ro: O ∩ read-only S = {} and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and consis ′: weak-sharing-consistent (O ∪ A − R) sb and

a-share: a ∈ read-only S and
a-notin: a /∈ O a /∈ A a /∈ all-acquired sb

by (clarsimp simp add: Writesb True)
from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L) = {}

by (auto simp add: in-read-only-convs)
from a-notin have a-notin ′: a /∈ O ∪ A − R ∪ all-acquired sb

by auto
from a-share a-notin L-A A-R R-owns have a-ro ′: a ∈ read-only (S ⊕W R 	A L)

by (auto simp add: read-only-def restrict-shared-def augment-shared-def)
from Cons.hyps [OF consis ′ owns-ro ′ a-notin ′ a-ro ′]
have a ∈ read-only (share sb (S ⊕W R 	A L))

413

by auto
then show ?thesis

by (auto simp add: Writesb True)
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
from Cons.prems obtain

owns-ro: O ∩ read-only S = {} and L-A: L ⊆ A and A-R: A ∩ R = {} and
R-owns: R ⊆ O and consis ′: weak-sharing-consistent (O ∪ A − R) sb and
a-share: a ∈ read-only S and
a-notin: a /∈ O a /∈ A a /∈ all-acquired sb
by (clarsimp simp add: Ghostsb)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L) = {}
by (auto simp add: in-read-only-convs)

from a-notin have a-notin ′: a /∈ O ∪ A − R ∪ all-acquired sb
by auto

from a-share a-notin L-A A-R R-owns have a-ro ′: a ∈ read-only (S ⊕W R 	A L)
by (auto simp add: read-only-def restrict-shared-def augment-shared-def)

from Cons.hyps [OF consis ′ owns-ro ′ a-notin ′ a-ro ′]
have a ∈ read-only (share sb (S ⊕W R 	A L))

by auto
then show ?thesis

by (auto simp add: Ghostsb)
qed

qed

lemma release-False-mono:∧
S R. R a = Some False =⇒ outstanding-refs is-volatile-Writesb sb = {} =⇒

release sb S R a = Some False
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Ghostsb A L R W)
have rels-a: R a = Some False by fact
then have (augment-rels S R R) a = Some False

by (auto simp add: augment-rels-def)
from Cons.hyps [where R = (augment-rels S R R), OF this] Cons.prems
show ?thesis

by (clarsimp simp add: Ghostsb)
next

case Writesb with Cons show ?thesis by auto
next

case Readsb with Cons show ?thesis by auto
next

case Progsb with Cons show ?thesis by auto
qed

qed

lemma release-False-mono-take:∧
S R. R a = Some False =⇒ release (takeWhile (Not ◦ is-volatile-Writesb) sb) S R a = Some False

proof (induct sb)

414

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Ghostsb A L R W)
have rels-a: R a = Some False by fact
then have (augment-rels S R R) a = Some False

by (auto simp add: augment-rels-def)
from Cons.hyps [where R = (augment-rels S R R), OF this]
show ?thesis

by (clarsimp simp add: Ghostsb)
next

case Writesb with Cons show ?thesis by auto
next

case Readsb with Cons show ?thesis by auto
next

case Progsb with Cons show ?thesis by auto
qed

qed

lemma shared-switch:∧
S O. [[weak-sharing-consistent O sb; read-only S ∩ O = {};
S a 6= Some False; share sb S a = Some False]]

=⇒ a ∈ O ∪ all-acquired sb
proof (induct sb)

case Nil thus ?case by (auto simp add: read-only-def)
next

case (Cons x sb)
have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)

by (rule ext) auto
show ?case
proof (cases x)

case (Ghostsb A L R W)
from Cons.prems obtain

dist: read-only S ∩ O = {} and
share: S a 6= Some False and
share ′: share sb (S ⊕W R 	A L) a = Some False and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb by (clarsimp simp add: Ghostsb aargh)

from dist L-A A-R R-owns have dist ′: read-only (S ⊕W R 	A L) ∩ (O ∪ A − R)= {}
by (auto simp add: in-read-only-convs)

show ?thesis
proof (cases (S ⊕W R 	A L) a = Some False)

case False
from Cons.hyps [OF consis ′ dist ′ this share ′]
show ?thesis by (auto simp add: Ghostsb)

next
case True
with share L-A A-R R-owns dist
have a ∈ O ∪ A

by (cases S a)
(auto simp add: augment-shared-def restrict-shared-def read-only-def split: if-split-asm)

thus ?thesis by (auto simp add: Ghostsb)
qed

next
case (Writesb volatile a ′ sop v A L R W)
show ?thesis

415

proof (cases volatile)
case True
note volatile=this
from Cons.prems obtain

dist: read-only S ∩ O = {} and
share: S a 6= Some False and
share ′: share sb (S ⊕W R 	A L) a = Some False and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb by (clarsimp simp add: Writesb True aargh)

from dist L-A A-R R-owns have dist ′: read-only (S ⊕W R 	A L) ∩ (O ∪ A − R)= {}
by (auto simp add: in-read-only-convs)

show ?thesis
proof (cases (S ⊕W R 	A L) a = Some False)

case False
from Cons.hyps [OF consis ′ dist ′ this share ′]
show ?thesis by (auto simp add: Writesb True)

next
case True
with share L-A A-R R-owns dist
have a ∈ O ∪ A

by (cases S a)
(auto simp add: augment-shared-def restrict-shared-def read-only-def split: if-split-asm)

thus ?thesis by (auto simp add: Writesb volatile)
qed

next
case False
with Cons show ?thesis by (auto simp add: Writesb)

qed
next

case Readsb with Cons show ?thesis by (auto)
next

case Progsb with Cons show ?thesis by (auto)
qed

qed

lemma shared-switch-release-False:∧
S R. [[
outstanding-refs is-volatile-Writesb sb = {};
a /∈ dom S;
a ∈ dom (share sb S)]]

=⇒
release sb (dom S) R a = Some False

proof (induct sb)
case Nil thus ?case by (auto simp add: read-only-def)

next
case (Cons x sb)
have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)

by (rule ext) auto
show ?case
proof (cases x)

case (Ghostsb A L R W)
from Cons.prems obtain

a-notin: a /∈ dom S and
share: a ∈ dom (share sb (S ⊕W R 	A L)) and
out ′: outstanding-refs is-volatile-Writesb sb = {}
by (clarsimp simp add: Ghostsb aargh)

show ?thesis
proof (cases a ∈ R)

416

case False
with a-notin have a /∈ dom (S ⊕W R 	A L)

by auto
from Cons.hyps [OF out ′ this share]
show ?thesis

by (auto simp add: Ghostsb)
next

case True
with a-notin have augment-rels (dom S) R R a = Some False

by (auto simp add: augment-rels-def split: option.splits)
from release-False-mono [of augment-rels (dom S) R R, OF this out ′]
show ?thesis

by (auto simp add: Ghostsb)
qed

next
case Writesb with Cons show ?thesis by (clarsimp split: if-split-asm)

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

qed
qed

lemma release-not-unshared-no-write:∧
S R. [[
outstanding-refs is-volatile-Writesb sb = {};

non-volatile-writes-unshared S sb;
release sb (dom S) R a 6= Some False;
a ∈ dom (share sb S)]]
=⇒
a /∈ outstanding-refs is-non-volatile-Writesb sb

proof (induct sb)
case Nil thus ?case by (auto simp add: read-only-def)

next
case (Cons x sb)
have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)

by (rule ext) auto
show ?case
proof (cases x)

case (Ghostsb A L R W)
from Cons.prems obtain

share: a ∈ dom (share sb (S ⊕W R 	A L)) and
rel: release sb

(dom (S ⊕W R 	A L)) (augment-rels (dom S) R R) a 6= Some False and
out ′: outstanding-refs is-volatile-Writesb sb = {} and
nvu: non-volatile-writes-unshared (S ⊕W R 	A L) sb
by (clarsimp simp add: Ghostsb)

from Cons.hyps [OF out ′ nvu rel share]
show ?thesis by (auto simp add: Ghostsb)

next
case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True with Writesb Cons.prems have False by auto
thus ?thesis ..

next
case False
note not-vol = this

417

from Cons.prems obtain
rel: release sb (dom S) R a 6= Some False and
out ′: outstanding-refs is-volatile-Writesb sb = {} and
nvo: non-volatile-writes-unshared S sb and
a ′-not-dom: a ′ /∈ dom S and
a-dom: a ∈ dom (share sb S)
by (auto simp add: Writesb False)

from Cons.hyps [OF out ′ nvo rel a-dom]
have a-notin-rest: a /∈ outstanding-refs is-non-volatile-Writesb sb.

show ?thesis
proof (cases a ′=a)

case False with a-notin-rest
show ?thesis by (clarsimp simp add: Writesb not-vol)

next
case True
from shared-switch-release-False [OF out ′ a ′-not-dom [simplified True] a-dom]
have release sb (dom S) R a = Some False.
with rel have False by simp
thus ?thesis ..

qed
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

qed
qed

corollary release-not-unshared-no-write-take:
assumes nvw: non-volatile-writes-unshared S (takeWhile (Not ◦ is-volatile-Writesb) sb)
assumes rel: release (takeWhile (Not ◦ is-volatile-Writesb) sb) (dom S) R a 6= Some False
assumes a-in: a ∈ dom (share (takeWhile (Not ◦ is-volatile-Writesb) sb) S)
shows

a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sb)
using release-not-unshared-no-write[OF takeWhile-not-vol-write-outstanding-refs [of sb] nvw rel a-in]
by simp

lemma read-only-unacquired-share ′:∧
S O. [[O ∩ read-only S = {}; weak-sharing-consistent O sb; a ∈ read-only S;

a /∈ all-shared sb; a /∈ acquired True sb O]]
=⇒ a ∈ read-only (share sb S)
proof (induct sb)

case Nil thus ?case by simp
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems
obtain a-ro: a ∈ read-only S and a-R: a /∈ R and a-unsh: a /∈ all-shared sb and

owns-ro: O ∩ read-only S = {} and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb and

a-notin: a /∈ acquired True sb (O ∪ A − R)
by (clarsimp simp add: Writesb True)

418

show ?thesis
proof (cases a ∈ A)

case True
with a-R have a ∈ O ∪ A − R by auto
from all-shared-acquired-in [OF this a-unsh]
have a ∈ acquired True sb (O ∪ A − R) by auto
with a-notin have False by auto
thus ?thesis ..

next
case False

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L) = {}
by (auto simp add: in-read-only-convs)

from a-ro False owns-ro R-owns L-A have a-ro ′: a ∈ read-only (S ⊕W R 	A L)
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF owns-ro ′ consis ′ a-ro ′ a-unsh a-notin]
show ?thesis

by (clarsimp simp add: Writesb True)
qed

next
case False
with Cons show ?thesis

by (clarsimp simp add: Writesb False)
qed

next
case Readsb with Cons show ?thesis by (clarsimp)

next
case Progsb with Cons show ?thesis by (clarsimp)

next
case (Ghostsb A L R W)
from Cons.prems
obtain a-ro: a ∈ read-only S and a-R: a /∈ R and a-unsh: a /∈ all-shared sb and

owns-ro: O ∩ read-only S = {} and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb and
a-notin: a /∈ acquired True sb (O ∪ A − R)
by (clarsimp simp add: Ghostsb)

show ?thesis
proof (cases a ∈ A)

case True
with a-R have a ∈ O ∪ A − R by auto
from all-shared-acquired-in [OF this a-unsh]
have a ∈ acquired True sb (O ∪ A − R) by auto
with a-notin have False by auto
thus ?thesis ..

next
case False

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L) = {}
by (auto simp add: in-read-only-convs)

from a-ro False owns-ro R-owns L-A have a-ro ′: a ∈ read-only (S ⊕W R 	A L)
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF owns-ro ′ consis ′ a-ro ′ a-unsh a-notin]
show ?thesis

by (clarsimp simp add: Ghostsb)
qed

qed
qed

419

lemma read-only-share-all-until-volatile-write-unacquired ′:∧
S. [[ownership-distinct ts; read-only-unowned S ts; weak-sharing-consis ts;
∀ i < length ts. (let (-,-,-,sb,-,O,R) = ts!i in

a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∧
a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb

));
a ∈ read-only S]]
=⇒ a ∈ read-only (share-all-until-volatile-write ts S)

proof (induct ts)
case Nil thus ?case by simp

next
case (Cons t ts)
obtain p is O R D j sb where

t: t = (p,is,j,sb,D,O,R)
by (cases t)

have dist: ownership-distinct (t#ts) by fact
then interpret ownership-distinct t#ts .
from ownership-distinct-tl [OF dist]
have dist ′: ownership-distinct ts.

have aargh: (Not ◦ is-volatile-Writesb) = (λa. ¬ is-volatile-Writesb a)
by (rule ext) auto

have a-ro: a ∈ read-only S by fact
have ro-unowned: read-only-unowned S (t#ts) by fact
then interpret read-only-unowned S t#ts .
have consis: weak-sharing-consis (t#ts) by fact
then interpret weak-sharing-consis t#ts .

note consis ′ = weak-sharing-consis-tl [OF consis]

let ?take-sb = (takeWhile (Not ◦ is-volatile-Writesb) sb)
let ?drop-sb = (dropWhile (Not ◦ is-volatile-Writesb) sb)

from weak-sharing-consis [of 0] t
have consis-sb: weak-sharing-consistent O sb

by force
with weak-sharing-consistent-append [of O ?take-sb ?drop-sb]
have consis-take: weak-sharing-consistent O ?take-sb

by auto

have ro-unowned ′: read-only-unowned (share ?take-sb S) ts
proof

fix j
fix pj isj Oj Rj Dj jj sbj

assume j-bound: j < length ts
assume jth: ts!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show Oj ∩ read-only (share ?take-sb S) = {}
proof −

{
fix a
assume a-owns: a ∈ Oj

assume a-ro: a ∈ read-only (share ?take-sb S)
have False
proof −

from ownership-distinct [of 0 Suc j] j-bound jth t
have dist: (O ∪ all-acquired sb) ∩ (Oj ∪ all-acquired sbj) = {}

by fastforce

420

from read-only-unowned [of Suc j] j-bound jth
have dist-ro: Oj ∩ read-only S = {} by force
show ?thesis
proof (cases a ∈ (O ∪ all-acquired sb))

case True
with dist a-owns show False by auto

next
case False
hence a /∈ (O ∪ all-acquired ?take-sb)
using all-acquired-append [of ?take-sb ?drop-sb]

by auto
from read-only-share-unowned [OF consis-take this a-ro]
have a ∈ read-only S.
with dist-ro a-owns show False by auto

qed
qed

}
thus ?thesis by auto

qed
qed

from Cons.prems
obtain unacq-ts: ∀ i < length ts. (let (-,-,-,sb,-,O,-) = ts!i in

a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O ∧
a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)) and

unacq-sb: a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) O and
unsh-sb: a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)

apply clarsimp
apply (rule that)
apply (auto simp add: t aargh)
done

from read-only-unowned [of 0] t
have owns-ro: O ∩ read-only S = {}

by force

from read-only-unacquired-share ′ [OF owns-ro consis-take a-ro unsh-sb unacq-sb]
have a ∈ read-only (share (takeWhile (Not ◦ is-volatile-Writesb) sb) S).
from Cons.hyps [OF dist ′ ro-unowned ′ consis ′ unacq-ts this]
show ?case

by (simp add: t)
qed

lemma not-shared-not-acquired-switch:∧
X Y. [[a /∈ all-shared sb; a /∈ X; a /∈ acquired True sb X; a /∈ Y]] =⇒ a /∈ acquired True sb Y

proof (induct sb)
case Nil thus ?case by simp

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis

421

proof (cases volatile)
case True
from Cons.prems obtain

a-X: a /∈ X and a-acq: a /∈ acquired True sb (X ∪ A − R) and
a-Y: a /∈ Y and a-R: a /∈ R and
a-shared: a /∈ all-shared sb
by (clarsimp simp add: Writesb True)

show ?thesis
proof (cases a ∈ A)

case True
with a-X a-R
have a ∈ X ∪ A − R by auto
from all-shared-acquired-in [OF this a-shared]
have a ∈ acquired True sb (X ∪ A − R).
with a-acq have False by simp
thus ?thesis ..

next
case False
with a-X a-Y obtain a-X ′: a /∈ X ∪ A − R and a-Y ′: a /∈ Y ∪ A − R

by auto
from Cons.hyps [OF a-shared a-X ′ a-acq a-Y ′]
show ?thesis

by (auto simp add: Writesb True)
qed

next
case False with Cons.hyps [of X Y] Cons.prems show ?thesis by (auto simp add: Writesb)

qed
next

case Readsb with Cons.hyps [of X Y] Cons.prems show ?thesis by (auto)
next

case Progsb with Cons.hyps [of X Y] Cons.prems show ?thesis by (auto)
next

case (Ghostsb A L R W)
from Cons.prems obtain

a-X: a /∈ X and a-acq: a /∈ acquired True sb (X ∪ A − R) and
a-Y: a /∈ Y and a-R: a /∈ R and
a-shared: a /∈ all-shared sb
by (clarsimp simp add: Ghostsb)

show ?thesis
proof (cases a ∈ A)

case True
with a-X a-R
have a ∈ X ∪ A − R by auto
from all-shared-acquired-in [OF this a-shared]
have a ∈ acquired True sb (X ∪ A − R).
with a-acq have False by simp
thus ?thesis ..

next
case False
with a-X a-Y obtain a-X ′: a /∈ X ∪ A − R and a-Y ′: a /∈ Y ∪ A − R

by auto
from Cons.hyps [OF a-shared a-X ′ a-acq a-Y ′]
show ?thesis

by (auto simp add: Ghostsb)
qed

qed
qed

lemma read-only-share-all-acquired-in ′:∧
S O. [[O ∩ read-only S = {}; weak-sharing-consistent O sb; a ∈ read-only (share sb S)]]

422

=⇒ a ∈ read-only (share sb Map.empty) ∨ (a ∈ read-only S ∧ a /∈ acquired True sb O ∧ a /∈ all-shared sb)
proof (induct sb)

case Nil thus ?case by auto
next

case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)
show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.prems
obtain a-in: a ∈ read-only (share sb (S ⊕W R 	A L)) and

owns-ro: O ∩ read-only S = {} and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb
by (clarsimp simp add: Writesb True)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L) = {}
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF owns-ro ′ consis ′ a-in]
have hyp: a ∈ read-only (share sb Map.empty) ∨

(a ∈ read-only (S ⊕W R 	A L) ∧ a /∈ acquired True sb (O ∪ A − R) ∧ a /∈ all-shared sb).

have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)) ∨
(a ∈ read-only S ∧ a /∈ R ∧ a /∈ acquired True sb (O ∪ A − R) ∧ a /∈ all-shared sb)

proof −
{

assume a-emp: a ∈ read-only (share sb Map.empty)
have read-only Map.empty ⊆ read-only (Map.empty ⊕W R 	A L)

by (auto simp add: in-read-only-convs)

from share-read-only-mono-in [OF a-emp this]
have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)).

}
moreover
{

assume a-ro: a ∈ read-only (S ⊕W R 	A L) and
a-not-acq: a /∈ acquired True sb (O ∪ A − R) and
a-unsh: a /∈ all-shared sb

have ?thesis
proof (cases a ∈ read-only S)

case True
with a-ro obtain a-A: a /∈ A

by (auto simp add: in-read-only-convs)
with True a-not-acq a-unsh R-owns owns-ro
show ?thesis

by auto
next

case False
with a-ro have a-ro-empty: a ∈ read-only (Map.empty ⊕W R 	A L)

by (auto simp add: in-read-only-convs split: if-split-asm)

have read-only (Map.empty ⊕W R 	A L) ⊆ read-only (S ⊕W R 	A L)
by (auto simp add: in-read-only-convs)

with owns-ro ′

have owns-ro-empty: (O ∪ A − R) ∩ read-only (Map.empty ⊕W R 	A L) = {}
by blast

423

from read-only-unacquired-share ′ [OF owns-ro-empty consis ′ a-ro-empty a-unsh a-not-acq]
have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)).
thus ?thesis

by simp
qed

}
moreover note hyp
ultimately show ?thesis by blast

qed

then show ?thesis
by (clarsimp simp add: Writesb True)

next
case False with Cons show ?thesis

by (auto simp add: Writesb)
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
from Cons.prems
obtain a-in: a ∈ read-only (share sb (S ⊕W R 	A L)) and

owns-ro: O ∩ read-only S = {} and
L-A: L ⊆ A and A-R: A ∩ R = {} and R-owns: R ⊆ O and
consis ′: weak-sharing-consistent (O ∪ A − R) sb
by (clarsimp simp add: Ghostsb)

from owns-ro A-R R-owns have owns-ro ′: (O ∪ A − R) ∩ read-only (S ⊕W R 	A L) = {}
by (auto simp add: in-read-only-convs)

from Cons.hyps [OF owns-ro ′ consis ′ a-in]
have hyp: a ∈ read-only (share sb Map.empty) ∨

(a ∈ read-only (S ⊕W R 	A L) ∧ a /∈ acquired True sb (O ∪ A − R) ∧ a /∈ all-shared sb).

have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)) ∨
(a ∈ read-only S ∧ a /∈ R ∧ a /∈ acquired True sb (O ∪ A − R) ∧ a /∈ all-shared sb)

proof −
{

assume a-emp: a ∈ read-only (share sb Map.empty)
have read-only Map.empty ⊆ read-only (Map.empty ⊕W R 	A L)

by (auto simp add: in-read-only-convs)

from share-read-only-mono-in [OF a-emp this]
have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)).

}
moreover
{

assume a-ro: a ∈ read-only (S ⊕W R 	A L) and
a-not-acq: a /∈ acquired True sb (O ∪ A − R) and
a-unsh: a /∈ all-shared sb

have ?thesis
proof (cases a ∈ read-only S)

case True
with a-ro obtain a-A: a /∈ A

by (auto simp add: in-read-only-convs)
with True a-not-acq a-unsh R-owns owns-ro
show ?thesis

by auto

424

next
case False

with a-ro have a-ro-empty: a ∈ read-only (Map.empty ⊕W R 	A L)
by (auto simp add: in-read-only-convs split: if-split-asm)

have read-only (Map.empty ⊕W R 	A L) ⊆ read-only (S ⊕W R 	A L)
by (auto simp add: in-read-only-convs)

with owns-ro ′

have owns-ro-empty: (O ∪ A − R) ∩ read-only (Map.empty ⊕W R 	A L) = {}
by blast

from read-only-unacquired-share ′ [OF owns-ro-empty consis ′ a-ro-empty a-unsh a-not-acq]
have a ∈ read-only (share sb (Map.empty ⊕W R 	A L)).
thus ?thesis

by simp
qed

}
moreover note hyp
ultimately show ?thesis by blast

qed

then show ?thesis
by (clarsimp simp add: Ghostsb)

qed
qed

lemma in-read-only-share-all-until-volatile-write ′:
assumes dist: ownership-distinct ts
assumes consis: sharing-consis S ts
assumes ro-unowned: read-only-unowned S ts
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes a-unacquired-others: ∀ j < length ts. i6=j −→

(let (-,-,-,sbj,-,O,-) = ts!j in
a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) O ∧
a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj))

assumes a-ro-share: a ∈ read-only (share sb S)
shows a ∈ read-only (share (dropWhile (Not ◦ is-volatile-Writesb) sb)

(share-all-until-volatile-write ts S))
proof −

from consis
interpret sharing-consis S ts .
interpret read-only-unowned S ts by fact

from sharing-consis [OF i-bound ts-i]
have consis-sb: sharing-consistent S O sb.
from sharing-consistent-weak-sharing-consistent [OF this]
have weak-consis: weak-sharing-consistent O sb.
from read-only-unowned [OF i-bound ts-i]
have owns-ro: O ∩ read-only S = {}.
from read-only-share-all-acquired-in ′ [OF owns-ro weak-consis a-ro-share]

have a ∈ read-only (share sb Map.empty) ∨ a ∈ read-only S ∧ a /∈ acquired True sb O ∧ a /∈ all-shared sb.
moreover

let ?take-sb = (takeWhile (Not ◦ is-volatile-Writesb) sb)
let ?drop-sb = (dropWhile (Not ◦ is-volatile-Writesb) sb)

from weak-consis weak-sharing-consistent-append [of O ?take-sb ?drop-sb]
obtain weak-consis ′: weak-sharing-consistent (acquired True ?take-sb O) ?drop-sb and

425

weak-consis-take: weak-sharing-consistent O ?take-sb
by auto

{
assume a ∈ read-only (share sb Map.empty)
with share-append [of ?take-sb ?drop-sb]
have a-in ′: a ∈ read-only (share ?drop-sb (share ?take-sb Map.empty))

by auto

have owns-empty: O ∩ read-only Map.empty = {}
by auto

from weak-sharing-consistent-preserves-distinct [OF weak-consis-take owns-empty]
have acquired True ?take-sb O ∩ read-only (share ?take-sb Map.empty) = {}.

from read-only-share-all-acquired-in [OF this weak-consis ′ a-in ′]
have a ∈ read-only (share ?drop-sb Map.empty) ∨ a ∈ read-only (share ?take-sb Map.empty) ∧ a /∈

all-acquired ?drop-sb.
moreover
{

assume a-ro-drop: a ∈ read-only (share ?drop-sb Map.empty)
have read-only Map.empty ⊆ read-only (share-all-until-volatile-write ts S)

by auto
from share-read-only-mono-in [OF a-ro-drop this]
have ?thesis .

}
moreover
{

assume a-ro-take: a ∈ read-only (share ?take-sb Map.empty)
assume a-unacq-drop: a /∈ all-acquired ?drop-sb
from read-only-share-unowned-in [OF weak-consis-take a-ro-take]
have a ∈ O ∪ all-acquired ?take-sb by auto
hence a ∈ O ∪ all-acquired sb using all-acquired-append [of ?take-sb ?drop-sb]

by auto
from share-all-until-volatile-write-thread-local ′ [OF dist consis i-bound ts-i this] a-ro-share
have ?thesis by (auto simp add: read-only-def)

}
ultimately have ?thesis by blast

}

moreover

{
assume a-ro: a ∈ read-only S
assume a-unacq: a /∈ acquired True sb O
assume a-unsh: a /∈ all-shared sb
with all-shared-append [of ?take-sb ?drop-sb]
obtain a-notin-take: a /∈ all-shared ?take-sb and a-notin-drop: a /∈ all-shared ?drop-sb

by auto
have ?thesis
proof (cases a ∈ acquired True ?take-sb O)

case True
from all-shared-acquired-in [OF this a-notin-drop] acquired-append [of True ?take-sb ?drop-sb O] a-unacq
have False

by auto
thus ?thesis ..

next
case False
with a-unacquired-others i-bound ts-i a-notin-take
have a-unacq ′: ∀ j < length ts.

(let (-,-,-,sbj,-,O,-) = ts!j in

426

a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) O ∧
a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj))

by (auto simp add: Let-def)

from local.weak-sharing-consis-axioms have weak-sharing-consis ts .
from read-only-share-all-until-volatile-write-unacquired ′ [OF dist ro-unowned
‹weak-sharing-consis ts› a-unacq ′ a-ro]

have a-ro-all: a ∈ read-only (share-all-until-volatile-write ts S) .

from weak-consis weak-sharing-consistent-append [of O ?take-sb ?drop-sb]
have weak-consis-drop: weak-sharing-consistent (acquired True ?take-sb O) ?drop-sb

by auto

from weak-sharing-consistent-preserves-distinct-share-all-until-volatile-write [OF dist
ro-unowned ‹weak-sharing-consis ts› i-bound ts-i]

have acquired True ?take-sb O ∩
read-only (share-all-until-volatile-write ts S) = {}.

from read-only-unacquired-share ′ [OF this weak-consis-drop a-ro-all a-notin-drop]
acquired-append [of True ?take-sb ?drop-sb O] a-unacq

show ?thesis by auto
qed

}
ultimately show ?thesis by blast

qed

lemma all-acquired-unshared-acquired:∧
O. a ∈ all-acquired sb ==> a /∈ all-shared sb ==> a ∈ acquired True sb O

apply (induct sb)
apply (auto split: memref.split intro: all-shared-acquired-in)
done

lemma safe-RMW-common:
assumes safe: Os,Rs,i` (RMW a t (D,f) cond ret A L R W# is, j, m, D, O, S)

√

shows (a ∈ O ∨ a ∈ dom S) ∧ (∀ j < length Os. i6=j −→ (Rs!j) a 6= Some False)
using safe
apply (cases)
apply (auto simp add: domIff)
done

lemma acquired-reads-all-acquired ′:
∧
O.

acquired-reads True sb O ⊆ acquired True sb O ∪ all-shared sb
apply (induct sb)
apply clarsimp
apply (auto split: memref.splits dest: all-shared-acquired-in)
done

lemma release-all-shared-exchange:∧
R S ′ S. ∀ a ∈ all-shared sb. (a ∈ S ′) = (a ∈ S) =⇒ release sb S ′ R = release sb S R

proof (induct sb)
case Nil thus ?case by auto

next
case (Cons x sb)
show ?case
proof (cases x)

case (Writesb volatile a ′ sop v A L R W)

427

show ?thesis
proof (cases volatile)

case True
note volatile=this
from Cons.hyps [of (S ′ ∪ R − L) (S ∪ R − L) Map.empty] Cons.prems
show ?thesis

by (auto simp add: Writesb volatile)
next

case False with Cons Writesb show ?thesis by auto
qed

next
case Readsb with Cons show ?thesis by auto

next
case Progsb with Cons show ?thesis by auto

next
case (Ghostsb A L R W)
from augment-rels-shared-exchange [of R S S ′ R] Cons.prems
have augment-rels S ′ R R = augment-rels S R R

by (auto simp add: Ghostsb)

with Cons.hyps [of (S ′ ∪ R − L) (S ∪ R − L) augment-rels S R R] Cons.prems
show ?thesis

by (auto simp add: Ghostsb)
qed

qed

lemma release-append-Progsb:∧
S R. (release (takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb p1 p2 mis])) S R) =

(release (takeWhile (Not ◦ is-volatile-Writesb) sb) S R)
by (induct sb) (auto split: memref.splits)

A.5 Simulation of Store Buffer Machine with History by Virtual Machine
with Delayed Releases

theorem (in xvalid-program) concurrent-direct-steps-simulates-store-buffer-history-step:
assumes step-sb: (tssb,msb,Ssb) ⇒sbh (tssb ′,msb

′,Ssb
′)

assumes valid-own: valid-ownership Ssb tssb
assumes valid-sb-reads: valid-reads msb tssb
assumes valid-hist: valid-history program-step tssb
assumes valid-sharing: valid-sharing Ssb tssb
assumes tmps-distinct: tmps-distinct tssb
assumes valid-sops: valid-sops tssb
assumes valid-dd: valid-data-dependency tssb
assumes load-tmps-fresh: load-tmps-fresh tssb
assumes enough-flushs: enough-flushs tssb
assumes valid-program-history: valid-program-history tssb
assumes valid: valid tssb
assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe-reach: safe-reach-direct safe-delayed (ts,m,S)
shows valid-ownership Ssb

′ tssb ′ ∧ valid-reads msb
′ tssb ′ ∧ valid-history program-step

tssb ′ ∧
valid-sharing Ssb

′ tssb ′ ∧ tmps-distinct tssb ′ ∧ valid-data-dependency tssb ′ ∧
valid-sops tssb ′ ∧ load-tmps-fresh tssb ′ ∧ enough-flushs tssb ′ ∧
valid-program-history tssb ′ ∧ valid tssb ′ ∧
(∃ ts ′ S ′ m ′. (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′) ∧

428

(tssb ′,msb
′,Ssb

′) ∼ (ts ′,m ′,S ′))

proof −

interpret direct-computation:
computation direct-memop-step empty-storebuffer-step program-step λp p ′ is sb. sb .

interpret sbh-computation:
computation sbh-memop-step flush-step program-step

λp p ′ is sb. sb @ [Progsb p p ′ is] .
interpret valid-ownership Ssb tssb by fact
interpret valid-reads msb tssb by fact
interpret valid-history program-step tssb by fact
interpret valid-sharing Ssb tssb by fact
interpret tmps-distinct tssb by fact
interpret valid-sops tssb by fact
interpret valid-data-dependency tssb by fact
interpret load-tmps-fresh tssb by fact
interpret enough-flushs tssb by fact
interpret valid-program-history tssb by fact
from valid-own valid-sharing
have valid-own-sharing: valid-ownership-and-sharing Ssb tssb

by (simp add: valid-sharing-def valid-ownership-and-sharing-def)
then
interpret valid-ownership-and-sharing Ssb tssb .

from safe-reach-safe-refl [OF safe-reach]
have safe: safe-delayed (ts,m,S).

from step-sb
show ?thesis
proof (cases)

case (Memop i psb issb jsb sb Dsb Osb Rsb issb ′ jsb ′ sb ′ Dsb
′ Osb

′ Rsb
′)

then obtain
tssb ′: tssb ′ = tssb[i := (psb, issb ′,jsb ′, sb ′, Dsb

′, Osb
′,Rsb

′)] and
i-bound: i < length tssb and
tssb-i: tssb ! i = (psb, issb,jsb,sb, Dsb, Osb,Rsb) and
sbh-step: (issb, jsb, sb, msb, Dsb, Osb, Rsb,Ssb) →sbh

(issb ′, jsb ′, sb ′, msb
′, Dsb

′, Osb
′, Rsb

′, Ssb
′)

by auto

from sim obtain
m: m = flush-all-until-volatile-write tssb msb and
S: S = share-all-until-volatile-write tssb Ssb and
leq: length tssb = length ts and
ts-sim: ∀ i<length tssb.

let (p, issb, j, sb, Dsb, Osb,R) = tssb ! i;
suspends = dropWhile (Not ◦ is-volatile-Writesb) sb

in ∃ is D. instrs suspends @ issb = is @ prog-instrs suspends ∧
Dsb = (D ∨ outstanding-refs is-volatile-Writesb sb 6= {}) ∧
ts ! i =

429

(hd-prog p suspends,
is,
j |‘ (dom j − read-tmps suspends), (),
D,
acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) Osb,
release (takeWhile (Not ◦ is-volatile-Writesb) sb) (dom Ssb) R)

by cases blast

from i-bound leq have i-bound ′: i < length ts
by auto

have split-sb: sb = takeWhile (Not ◦ is-volatile-Writesb) sb @ dropWhile (Not ◦
is-volatile-Writesb) sb

(is sb = ?take-sb@?drop-sb)
by simp

from ts-sim [rule-format, OF i-bound] tssb-i obtain suspends is D where
suspends: suspends = dropWhile (Not ◦ is-volatile-Writesb) sb and
is-sim: instrs suspends @ issb = is @ prog-instrs suspends and
D: Dsb = (D ∨ outstanding-refs is-volatile-Writesb sb 6= {}) and
ts-i: ts ! i =

(hd-prog psb suspends, is,
jsb |‘ (dom jsb − read-tmps suspends), (), D, acquired True ?take-sb Osb,
release ?take-sb (dom Ssb) Rsb)

by (auto simp add: Let-def)

from sbh-step-preserves-valid [OF i-bound tssb-i sbh-step valid]
have valid ′: valid tssb ′

by (simp add: tssb ′)

from D have Dsb: Dsb = (D ∨ outstanding-refs is-volatile-Writesb ?drop-sb 6= {})
apply −
apply (case-tac outstanding-refs is-volatile-Writesb sb = {})
apply (fastforce simp add: outstanding-refs-conv dest: set-dropWhileD)
apply (clarsimp)
apply (drule outstanding-refs-non-empty-dropWhile)
apply blast
done

let ?ts ′ = ts[i := (psb, issb, jsb, (), Dsb, acquired True sb Osb,
release sb (dom Ssb) Rsb)]

have i-bound-ts ′: i < length ?ts ′
using i-bound ′

by auto
hence ts ′-i: ?ts ′!i = (psb, issb, jsb, (),

Dsb, acquired True sb Osb, release sb (dom Ssb) Rsb)
by simp

from local.sharing-consis-axioms

430

have sharing-consis-tssb: sharing-consis Ssb tssb .
from sharing-consis [OF i-bound tssb-i]
have sharing-consis-sb: sharing-consistent Ssb Osb sb.
from sharing-consistent-weak-sharing-consistent [OF this]
have weak-consis-sb: weak-sharing-consistent Osb sb.
from this weak-sharing-consistent-append [of Osb ?take-sb ?drop-sb]
have weak-consis-drop:weak-sharing-consistent (acquired True ?take-sb Osb) ?drop-sb

by auto
from local.ownership-distinct-axioms
have ownership-distinct-tssb: ownership-distinct tssb .
have steps-flush-sb: (ts,m,S) ⇒d

∗ (?ts ′, flush ?drop-sb m, share ?drop-sb S)
proof −

from valid-reads [OF i-bound tssb-i]
have reads-consis: reads-consistent False Osb msb sb.
from reads-consistent-drop-volatile-writes-no-volatile-reads [OF this]
have no-vol-read: outstanding-refs is-volatile-Readsb ?drop-sb = {}.
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb.
then have cph: causal-program-history issb ?drop-sb

apply −
apply (rule causal-program-history-suffix [where sb=?take-sb])
apply (simp)
done

from valid-last-prog [OF i-bound tssb-i] have last-prog: last-prog psb sb = psb.
then
have lp: last-prog psb ?drop-sb = psb

apply −
apply (rule last-prog-same-append [where sb=?take-sb])
apply simp
done

from reads-consistent-flush-all-until-volatile-write [OF valid-own-sharing i-bound
tssb-i reads-consis]

have reads-consis-m: reads-consistent True (acquired True ?take-sb Osb) m ?drop-sb
by (simp add: m)

from valid-history [OF i-bound tssb-i]
have h-consis: history-consistent jsb (hd-prog psb (?take-sb@?drop-sb))

(?take-sb@?drop-sb)
by (simp)

have last-prog-hd-prog: last-prog (hd-prog psb sb) ?take-sb = (hd-prog psb ?drop-sb)
proof −

from last-prog-hd-prog-append ′ [OF h-consis] last-prog
have last-prog (hd-prog psb ?drop-sb) ?take-sb = hd-prog psb ?drop-sb

by (simp)
moreover
have last-prog (hd-prog psb (?take-sb @ ?drop-sb)) ?take-sb =

last-prog (hd-prog psb ?drop-sb) ?take-sb
by (rule last-prog-hd-prog-append)

431

ultimately show ?thesis
by (simp)

qed

from valid-write-sops [OF i-bound tssb-i]
have ∀ sop∈write-sops (?take-sb@?drop-sb). valid-sop sop

by (simp)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sb. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops ?drop-sb. valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps (?take-sb@?drop-sb)

by (simp)
then obtain

read-tmps-take-drop: read-tmps ?take-sb ∩ read-tmps ?drop-sb = {} and
distinct-read-tmps-drop: distinct-read-tmps ?drop-sb
by (simp only: distinct-read-tmps-append)

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop h-consis]

have hist-consis ′: history-consistent jsb (hd-prog psb ?drop-sb) ?drop-sb
by (simp add: last-prog-hd-prog)

have rel-eq: release ?drop-sb (dom S) (release ?take-sb (dom Ssb) Rsb) =
release sb (dom Ssb) Rsb

proof −
from release-append [of ?take-sb ?drop-sb]
have release sb (dom Ssb) Rsb =

release ?drop-sb (dom (share ?take-sb Ssb)) (release ?take-sb (dom Ssb) Rsb)
by simp

also
have dist: ownership-distinct tssb by fact
have consis: sharing-consis Ssb tssb by fact

have release ?drop-sb (dom (share ?take-sb Ssb)) (release ?take-sb (dom Ssb) Rsb)
=

release ?drop-sb (dom S) (release ?take-sb (dom Ssb) Rsb)
apply (simp only: S)
apply (rule release-shared-exchange-weak [rule-format, OF - weak-consis-drop])

apply (rule share-all-until-volatile-write-thread-local [OF dist consis i-bound tssb-i,
symmetric])

using acquired-all-acquired [of True ?take-sb Osb] all-acquired-append [of ?take-sb
?drop-sb]

by auto
finally
show ?thesis by simp

qed

432

from flush-store-buffer [OF i-bound ′ is-sim [simplified suspends]
cph ts-i [simplified suspends] refl lp reads-consis-m hist-consis ′
valid-sops-drop distinct-read-tmps-drop no-volatile-Readsb-volatile-reads-consistent [OF

no-vol-read], of S]
show ?thesis by (simp add: acquired-take-drop [where pending-write=True,

simplified] Dsb rel-eq)
qed

from safe-reach-safe-rtrancl [OF safe-reach steps-flush-sb]
have safe-ts ′: safe-delayed (?ts ′, flush ?drop-sb m, share ?drop-sb S).
from safe-delayedE [OF safe-ts ′ i-bound-ts ′ ts ′-i]
have safe-memop-flush-sb: map owned ?ts ′,map released ?ts ′,i`
(issb, jsb, flush ?drop-sb m, Dsb,acquired True sb Osb,

share ?drop-sb S)
√

.

from acquired-takeWhile-non-volatile-Writesb
have acquired-take-sb: acquired True ?take-sb Osb ⊆ Osb ∪ all-acquired ?take-sb .

from sbh-step
show ?thesis
proof (cases)

case (SBHReadBuffered a v volatile t)
then obtain

issb: issb = Read volatile a t # issb ′ and
Osb

′: Osb
′=Osb and

Dsb
′: Dsb

′=Dsb and
jsb ′: jsb ′ = jsb(t 7→v) and
sb ′: sb ′=sb@[Readsb volatile a t v] and
msb

′: msb
′ = msb and

Ssb
′: Ssb

′=Ssb and
Rsb

′: Rsb
′=Rsb and

buf-v: buffered-val sb a = Some v
by auto

from safe-memop-flush-sb [simplified issb]
obtain access-cond ′: a ∈ acquired True sb Osb ∨

a ∈ read-only (share ?drop-sb S) ∨
(volatile ∧ a ∈ dom (share ?drop-sb S)) and
volatile-clean: volatile −→ ¬ Dsb and

rels-cond: ∀ j < length ts. i6=j −→ released (ts!j) a 6= Some False and
rels-nv-cond: ¬volatile −→ (∀ j < length ts. i 6=j −→ a /∈ dom (released (ts!j)))

by cases auto

from clean-no-outstanding-volatile-Writesb [OF i-bound tssb-i] volatile-clean
have volatile-cond: volatile −→ outstanding-refs is-volatile-Writesb sb ={}

433

by auto

from buffered-val-witness [OF buf-v] obtain volatile ′ sop ′ A ′ L ′ R ′ W ′

where
witness: Writesb volatile ′ a sop ′ v A ′ L ′ R ′ W ′ ∈ set sb
by auto

{
fix j pj issbj Oj Rj Dsbj jsbj sbj

assume j-bound: j < length tssb
assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,issbj, jsbj, sbj, Dsbj, Oj,Rj)
assume non-vol: ¬ volatile
have a /∈ Oj ∪ all-acquired sbj

proof
assume a-j: a ∈ Oj ∪ all-acquired sbj

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

from ts-sim [rule-format, OF j-bound] jth
obtain suspendsj isj Dj where

suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,
jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by (auto simp add: Let-def)

from a-j ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
have a-notin-sb: a /∈ Osb ∪ all-acquired sb

by auto
with acquired-all-acquired [of True sb Osb]
have a-not-acq: a /∈ acquired True sb Osb by blast
with access-cond ′ non-vol
have a-ro: a ∈ read-only (share ?drop-sb S)

by auto
from read-only-share-unowned-in [OF weak-consis-drop a-ro] a-notin-sb

acquired-all-acquired [of True ?take-sb Osb]
all-acquired-append [of ?take-sb ?drop-sb]

have a-ro-shared: a ∈ read-only S
by auto

from rels-nv-cond [rule-format, OF non-vol j-bound [simplified leq] neq-i-j] tsj
have a /∈ dom (release ?take-sbj (dom (Ssb)) Rj)

by auto

434

with dom-release-takeWhile [of sbj (dom (Ssb)) Rj]
obtain

a-relsj: a /∈ dom Rj and
a-sharedj: a /∈ all-shared ?take-sbj

by auto

have a /∈
⋃

((λ(-, -, -, sb, -, -, -). all-shared (takeWhile (Not ◦ is-volatile-Writesb)
sb)) ‘

set tssb)
proof −

{
fix k pk isk jk sbk Dk Ok Rk

assume k-bound: k < length tssb
assume ts-k: tssb ! k = (pk,isk,jk,sbk,Dk,Ok,Rk)
assume a-in: a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbk)
have False
proof (cases k=j)

case True with a-sharedj jth ts-k a-in show False by auto
next

case False
from ownership-distinct [OF j-bound k-bound False [symmetric] jth ts-k] a-j
have a /∈ (Ok ∪ all-acquired sbk) by auto

with all-shared-acquired-or-owned [OF sharing-consis [OF k-bound ts-k]] a-in
show False
using all-acquired-append [of takeWhile (Not ◦ is-volatile-Writesb) sbk

dropWhile (Not ◦ is-volatile-Writesb) sbk]
all-shared-append [of takeWhile (Not ◦ is-volatile-Writesb) sbk

dropWhile (Not ◦ is-volatile-Writesb) sbk] by auto
qed

}
thus ?thesis by (fastforce simp add: in-set-conv-nth)

qed
with a-ro-shared

read-only-shared-all-until-volatile-write-subset ′ [of tssb Ssb]
have a-ro-sharedsb: a ∈ read-only Ssb

by (auto simp add: S)

with read-only-unowned [OF j-bound jth]
have a-notin-owns-j: a /∈ Oj

by auto

have own-dist: ownership-distinct tssb by fact
have share-consis: sharing-consis Ssb tssb by fact
from sharing-consistent-share-all-until-volatile-write [OF own-dist share-consis i-bound

tssb-i]
have consis ′: sharing-consistent S (acquired True ?take-sb Osb) ?drop-sb

by (simp add: S)

435

from share-all-until-volatile-write-thread-local [OF own-dist share-consis j-bound
jth a-j] a-ro-shared

have a-ro-take: a ∈ read-only (share ?take-sbj Ssb)
by (auto simp add: domIff S read-only-def)

from sharing-consis [OF j-bound jth]
have sharing-consistent Ssb Oj sbj.

from sharing-consistent-weak-sharing-consistent [OF this]
weak-sharing-consistent-append [of Oj ?take-sbj ?drop-sbj]

have weak-consis-drop:weak-sharing-consistent Oj ?take-sbj

by auto
from read-only-share-acquired-all-shared [OF this read-only-unowned [OF j-bound

jth] a-ro-take] a-notin-owns-j a-sharedj

have a /∈ all-acquired ?take-sbj

by auto
with a-j a-notin-owns-j
have a-drop: a ∈ all-acquired ?drop-sbj

using all-acquired-append [of ?take-sbj ?drop-sbj]
by simp

from i-bound j-bound leq have j-bound-ts ′: j < length ?ts ′
by auto

note conflict-drop = a-drop [simplified suspendsj [symmetric]]
from split-all-acquired-in [OF conflict-drop]

show False
proof

assume ∃ sop a ′ v ys zs A L R W.
(suspendsj = ys @ Writesb True a ′ sop v A L R W# zs) ∧ a ∈ A

then
obtain a ′ sop ′ v ′ ys zs A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs
(is suspendsj = ?suspends) and

a-A ′: a ∈ A ′

by blast

from sharing-consis [OF j-bound jth]
have sharing-consistent Ssb Oj sbj.
then have A ′-R ′: A ′ ∩ R ′ = {}

by (simp add: sharing-consistent-append [of - - ?take-sbj ?drop-sbj, simplified]
suspendsj [symmetric] split-suspendsj sharing-consistent-append)

from valid-program-history [OF j-bound jth]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

436

from tsj neq-i-j j-bound
have ts ′-j: ?ts ′!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj, release ?take-sbj (dom Ssb) Rj)
by auto

from valid-last-prog [OF j-bound jth] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj suspendsj = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound jth]
have reads-consis-j: reads-consistent False Oj msb sbj.
from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing

Ssb tssb› j-bound
jth reads-consis-j]

have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj
by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound neq-i-j tssb-i
jth]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m-j]
have reads-consis-flush-suspend: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) suspendsj.

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])
by (simp add: split-suspendsj reads-consistent-append)

from valid-write-sops [OF j-bound jth]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and
valid-sops-drop: ∀ sop∈write-sops (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]). valid-sop

sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound jth]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and

437

distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound jth]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]
have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]

split-suspendsj)

have acq-simp:
acquired True (ys @ [Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])

(acquired True ?take-sbj Oj) =
acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]
and sb ′=zs, simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts ′-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop

438

distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=share ?drop-sb S]

obtain isj ′ Rj
′ where

isj ′: instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

∗

(?ts ′[j:=(last-prog
(hd-prog pj (Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs)) (ys@[Writesb True a ′

sop ′ v ′ A ′ L ′ R ′ W ′]),
isj ′,
jsbj |‘ (dom jsbj − read-tmps zs),
(), True, acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′,Rj

′)],
flush (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (flush ?drop-sb m),
share (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (share ?drop-sb S))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append outstanding-refs-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb, jsb,(),
Dsb, acquired True sb Osb, release sb (dom Ssb) Rsb)
by simp

note conflict-computation = rtranclp-trans [OF steps-flush-sb steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this i-bound-ys ts-ys-i, simplified issb] non-vol a-not-acq
have a ∈ read-only (share (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (share ?drop-sb

S))
apply cases
apply (auto simp add: Let-def issb)
done

with a-A ′

show False
by (simp add: share-append in-read-only-convs)

next
assume ∃A L R W ys zs. suspendsj = ys @ Ghostsb A L R W # zs ∧ a ∈ A
then
obtain A ′ L ′ R ′ W ′ ys zs where

split-suspendsj: suspendsj = ys @ Ghostsb A ′ L ′ R ′ W ′# zs
(is suspendsj = ?suspends) and

a-A ′: a ∈ A ′

by blast

439

from valid-program-history [OF j-bound jth]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts ′-j: ?ts ′!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj, release ?take-sbj (dom Ssb) Rj)
by auto

from valid-last-prog [OF j-bound jth] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj suspendsj = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound jth]
have reads-consis-j: reads-consistent False Oj msb sbj.
from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing

Ssb tssb› j-bound
jth reads-consis-j]

have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj
by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound neq-i-j tssb-i
jth]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m-j]
have reads-consis-flush-suspend: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) suspendsj.

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) (ys@[Ghostsb A ′ L ′ R ′ W ′])
by (simp add: split-suspendsj reads-consistent-append)

from valid-write-sops [OF j-bound jth]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys@[Ghostsb A ′ L ′ R ′ W ′]). valid-sop sop
apply (simp only: write-sops-append)

440

apply auto
done

from read-tmps-distinct [OF j-bound jth]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound jth]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]
have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Ghostsb A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]

split-suspendsj)

have acq-simp:
acquired True (ys @ [Ghostsb A ′ L ′ R ′ W ′])

(acquired True ?take-sbj Oj) =

441

acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Ghostsb A ′ L ′ R ′ W ′] and sb ′=zs,
simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts ′-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop
distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=share ?drop-sb S]

obtain isj ′ Rj
′ where

isj ′: instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

∗

(?ts ′[j:=(last-prog
(hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs)) (ys@[Ghostsb A ′ L ′ R ′ W ′]),
isj ′,
jsbj |‘ (dom jsbj − read-tmps zs),
(),
Dj ∨ outstanding-refs is-volatile-Writesb (ys @ [Ghostsb A ′ L ′ R ′ W ′]) 6= {},

acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′,Rj
′)],

flush (ys@[Ghostsb A ′ L ′ R ′ W ′]) (flush ?drop-sb m),
share (ys@[Ghostsb A ′ L ′ R ′ W ′]) (share ?drop-sb S))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb,jsb,(),
Dsb, acquired True sb Osb, release sb (dom Ssb) Rsb)
by simp

note conflict-computation = rtranclp-trans [OF steps-flush-sb steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this i-bound-ys ts-ys-i, simplified issb] non-vol a-not-acq
have a ∈ read-only (share (ys@[Ghostsb A ′ L ′ R ′ W ′]) (share ?drop-sb S))

apply cases
apply (auto simp add: Let-def issb)
done

with a-A ′

show False
by (simp add: share-append in-read-only-convs)

qed
qed

}

442

note non-volatile-unowned-others = this

{
assume a-in: a ∈ read-only (share (dropWhile (Not ◦ is-volatile-Writesb) sb) S)
assume nv: ¬ volatile
have a ∈ read-only (share sb Ssb)
proof (cases a ∈ Osb ∪ all-acquired sb)

case True
from share-all-until-volatile-write-thread-local ′ [OF ownership-distinct-tssb

sharing-consis-tssb i-bound tssb-i True] True a-in
show ?thesis

by (simp add: S read-only-def)
next

case False
from read-only-share-unowned [OF weak-consis-drop - a-in] False

acquired-all-acquired [of True ?take-sb Osb] all-acquired-append [of ?take-sb
?drop-sb]

have a-ro-shared: a ∈ read-only S
by auto

have a /∈
⋃
((λ(-, -, -, sb, -, -, -).

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set tssb)
proof −

{
fix k pk isk jk sbk Dk Ok Rk

assume k-bound: k < length tssb
assume ts-k: tssb ! k = (pk,isk,jk,sbk,Dk,Ok,Rk)
assume a-in: a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbk)
have False
proof (cases k=i)

case True with False tssb-i ts-k a-in
all-shared-acquired-or-owned [OF sharing-consis [OF k-bound ts-k]]
all-shared-append [of takeWhile (Not ◦ is-volatile-Writesb) sbk

dropWhile (Not ◦ is-volatile-Writesb) sbk] show False by auto
next

case False
from rels-nv-cond [rule-format, OF nv k-bound [simplified leq] False [symmetric]

]
ts-sim [rule-format, OF k-bound] ts-k

have a /∈ dom (release (takeWhile (Not ◦ is-volatile-Writesb) sbk) (dom (Ssb))
Rk)

by (auto simp add: Let-def)
with dom-release-takeWhile [of sbk (dom (Ssb)) Rk]
obtain

a-relsj: a /∈ dom Rk and
a-sharedj: a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbk)
by auto

with False a-in show ?thesis
by auto

qed

443

}
thus ?thesis by (fastforce simp add: in-set-conv-nth)

qed
with read-only-shared-all-until-volatile-write-subset ′ [of tssb Ssb] a-ro-shared
have a ∈ read-only Ssb

by (auto simp add: S)
from read-only-share-unowned ′ [OF weak-consis-sb read-only-unowned [OF i-bound

tssb-i] False this]
show ?thesis .

qed
} note non-vol-ro-reduction = this

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof (cases volatile)
case False
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have non-volatile-owned-or-read-only False Ssb Osb sb.
then

have non-volatile-owned-or-read-only False Ssb Osb (sb@[Readsb False a t v])
using access-cond ′ False non-vol-ro-reduction
by (auto simp add: non-volatile-owned-or-read-only-append)

from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (auto simp add: False tssb ′ sb ′ Osb

′ Ssb
′)

next
case True
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have non-volatile-owned-or-read-only False Ssb Osb sb.
then
have non-volatile-owned-or-read-only False Ssb Osb (sb@[Readsb True a t v])

using True
by (simp add: non-volatile-owned-or-read-only-append)

from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (auto simp add: True tssb ′ sb ′ Osb

′ Ssb
′)

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof −
have out: outstanding-refs is-volatile-Writesb (sb @ [Readsb volatile a t v]) ⊆

outstanding-refs is-volatile-Writesb sb
by (auto simp add: outstanding-refs-append)

have all-acquired (sb @ [Readsb volatile a t v]) ⊆ all-acquired sb
by (auto simp add: all-acquired-append)

from outstanding-volatile-writes-unowned-by-others-store-buffer
[OF i-bound tssb-i out this]
show ?thesis by (simp add: tssb ′ sb ′ Osb

′)
qed

444

next
show read-only-reads-unowned tssb ′

proof (cases volatile)
case True
have r: read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) (sb @

[Readsb volatile a t v])) Osb)
(dropWhile (Not ◦ is-volatile-Writesb) (sb @ [Readsb volatile a t v]))

⊆ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb)
Osb)

(dropWhile (Not ◦ is-volatile-Writesb) sb)
apply (case-tac outstanding-refs (is-volatile-Writesb) sb = {})
apply (simp-all add: outstanding-vol-write-take-drop-appends
acquired-append read-only-reads-append True)
done

have Osb ∪ all-acquired (sb @ [Readsb volatile a t v]) ⊆ Osb ∪ all-acquired sb
by (simp add: all-acquired-append)

from read-only-reads-unowned-nth-update [OF i-bound tssb-i r this]
show ?thesis

by (simp add: tssb ′ Osb
′ sb ′)

next
case False
show ?thesis
proof (unfold-locales)

fix n m
fix pn isn On Rn Dn jn sbn pm ism Om Rm Dm jm sbm

assume n-bound: n < length tssb ′

and m-bound: m < length tssb ′

and neq-n-m: n6=m
and nth: tssb ′!n = (pn, isn, jn, sbn, Dn, On, Rn)
and mth: tssb ′!m =(pm, ism, jm, sbm, Dm, Om, Rm)
from n-bound have n-bound ′: n < length tssb by (simp add: tssb ′)
from m-bound have m-bound ′: m < length tssb by (simp add: tssb ′)

have acq-eq: (Osb
′ ∪ all-acquired sb ′) = (Osb ∪ all-acquired sb)

by (simp add: all-acquired-append sb ′ Osb
′)

show (Om ∪ all-acquired sbm) ∩
read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn) On)
(dropWhile (Not ◦ is-volatile-Writesb) sbn) =
{}

proof (cases m=i)
case True
with neq-n-m have neq-n-i: n6=i

by auto

with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On, Rn)
by (auto simp add: tssb ′)

445

note read-only-reads-unowned [OF n-bound ′ i-bound neq-n-i nth ′ tssb-i]
moreover
note acq-eq
ultimately show ?thesis

using True tssb-i nth mth n-bound ′ m-bound ′

by (simp add: tssb ′)
next

case False
note neq-m-i = this
with m-bound mth i-bound have mth ′: tssb!m = (pm, ism, jm, sbm, Dm, Om,Rm)

by (auto simp add: tssb ′)
show ?thesis
proof (cases n=i)

case True
note read-only-reads-unowned [OF i-bound m-bound ′ neq-m-i [symmetric] tssb-i mth ′]
moreover
note acq-eq
moreover
note non-volatile-unowned-others [OF m-bound ′ neq-m-i [symmetric] mth ′]
ultimately show ?thesis

using True tssb-i nth mth n-bound ′ m-bound ′ neq-m-i
apply (case-tac outstanding-refs (is-volatile-Writesb) sb = {})
apply (clarsimp simp add: outstanding-vol-write-take-drop-appends

acquired-append read-only-reads-append tssb ′ sb ′ Osb
′)+

done
next

case False
with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On, Rn)

by (auto simp add: tssb ′)
from read-only-reads-unowned [OF n-bound ′ m-bound ′ neq-n-m nth ′ mth ′] False neq-m-i
show ?thesis

by (clarsimp)
qed

qed
qed

qed
next

show ownership-distinct tssb ′

proof −
have all-acquired (sb @ [Readsb volatile a t v]) ⊆ all-acquired sb

by (auto simp add: all-acquired-append)
from ownership-distinct-instructions-read-value-store-buffer-independent
[OF i-bound tssb-i this]
show ?thesis by (simp add: tssb ′ sb ′ Osb

′)
qed

qed

have valid-hist ′: valid-history program-step tssb ′

proof −

446

from valid-history [OF i-bound tssb-i]
have hcons: history-consistent jsb (hd-prog psb sb) sb.
from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
have t-notin-reads: t /∈ read-tmps sb

by (auto simp add: issb)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i]
have t-notin-writes: t /∈

⋃
(fst ‘ write-sops sb)

by (auto simp add: issb)

from valid-write-sops [OF i-bound tssb-i]
have valid-sops: ∀ sop ∈ write-sops sb. valid-sop sop

by auto
from load-tmps-fresh [OF i-bound tssb-i]
have t-fresh: t /∈ dom jsb

using issb
by simp

have history-consistent (jsb(t 7→v))
(hd-prog psb (sb@ [Readsb volatile a t v])) (sb@ [Readsb volatile a t v])

using t-notin-writes valid-sops t-fresh hcons
valid-implies-valid-prog-hd [OF i-bound tssb-i valid]
apply −
apply (rule history-consistent-appendI)
apply (auto simp add: hd-prog-append-Readsb)
done

from valid-history-nth-update [OF i-bound this]
show ?thesis

by (auto simp add: tssb ′ sb ′ Osb
′ jsb ′)

qed

from reads-consistent-buffered-snoc [OF buf-v valid-reads [OF i-bound tssb-i]
volatile-cond]

have reads-consis ′: reads-consistent False Osb msb (sb @ [Readsb volatile a t v])
by (simp split: if-split-asm)

from valid-reads-nth-update [OF i-bound this]
have valid-reads ′: valid-reads msb tssb ′ by (simp add: tssb ′ sb ′ Osb

′)

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]
have non-volatile-writes-unshared Ssb (sb @ [Readsb volatile a t v])

by (auto simp add: non-volatile-writes-unshared-append)
from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ sb ′ Ssb
′)

next
from sharing-consis [OF i-bound tssb-i]
have sharing-consistent Ssb Osb sb.
then
have sharing-consistent Ssb Osb (sb @ [Readsb volatile a t v])

447

by (simp add: sharing-consistent-append)
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ sb ′ Ssb

′)
next

note read-only-unowned [OF i-bound tssb-i]
from read-only-unowned-nth-update [OF i-bound this]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb ′ Osb

′)
next

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′ by (simp add: tssb ′ Osb
′ Ssb

′)
next

from no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
have no-write-to-read-only-memory Ssb sb.
hence no-write-to-read-only-memory Ssb (sb@[Readsb volatile a t v])

by (simp add: no-write-to-read-only-memory-append)
from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound this]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: tssb ′ Ssb
′ sb ′)

qed

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]
have distinct-load-tmps issb ′

by (auto split: instr.splits simp add: issb)
from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′ by (simp add: tssb ′)

next
from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps sb.
moreover
from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
have t /∈ read-tmps sb

by (auto simp add: issb)
ultimately have distinct-read-tmps (sb @ [Readsb volatile a t v])

by (auto simp add: distinct-read-tmps-append)
from read-tmps-distinct-nth-update [OF i-bound this]
show read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′)

next
from load-tmps-read-tmps-distinct [OF i-bound tssb-i]

load-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩ read-tmps (sb @ [Readsb volatile a t v]) = {}

by (clarsimp simp add: read-tmps-append issb)
from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′)

qed

have valid-sops ′: valid-sops tssb ′

448

proof −
from valid-store-sops [OF i-bound tssb-i]
have valid-store-sops ′: ∀ sop∈store-sops issb ′. valid-sop sop

by (auto simp add: issb)
from valid-write-sops [OF i-bound tssb-i]
have valid-write-sops ′: ∀ sop∈write-sops (sb@ [Readsb volatile a t v]). valid-sop sop

by (auto simp add: write-sops-append)
from valid-sops-nth-update [OF i-bound valid-write-sops ′ valid-store-sops ′]
show ?thesis by (simp add: tssb ′ sb ′)

qed

have valid-dd ′: valid-data-dependency tssb ′

proof −
from data-dependency-consistent-instrs [OF i-bound tssb-i]
have dd-is: data-dependency-consistent-instrs (dom jsb ′) issb ′

by (auto simp add: issb jsb ′)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩

⋃
(fst ‘ write-sops (sb@ [Readsb volatile a t v])) = {}

by (auto simp add: write-sops-append issb)
from valid-data-dependency-nth-update [OF i-bound dd-is this]
show ?thesis by (simp add: tssb ′ sb ′)

qed

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −
from load-tmps-fresh [OF i-bound tssb-i]
have load-tmps (Read volatile a t # issb ′) ∩ dom jsb = {}

by (simp add: issb)
moreover
from load-tmps-distinct [OF i-bound tssb-i] have t /∈ load-tmps issb ′

by (auto simp add: issb)
ultimately have load-tmps issb ′ ∩ dom (jsb(t 7→ v)) = {}

by auto
from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ jsb ′)

qed

have enough-flushs ′: enough-flushs tssb ′

proof −
from clean-no-outstanding-volatile-Writesb [OF i-bound tssb-i]
have ¬ Dsb −→ outstanding-refs is-volatile-Writesb (sb@[Readsb volatile a t v]) = {}

by (auto simp add: outstanding-refs-append)
from enough-flushs-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′ sb ′ Dsb
′)

qed

have valid-program-history ′: valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]

449

have causal-program-history issb sb .
then have causal ′: causal-program-history issb ′ (sb@[Readsb volatile a t v])

by (auto simp: causal-program-history-Read issb)
from valid-last-prog [OF i-bound tssb-i]
have last-prog psb sb = psb.
hence last-prog psb (sb @ [Readsb volatile a t v]) = psb

by (simp add: last-prog-append-Readsb)

from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′ sb ′)
qed
show ?thesis
proof (cases outstanding-refs is-volatile-Writesb sb = {})

case True

from True have flush-all: takeWhile (Not ◦ is-volatile-Writesb) sb = sb
by (auto simp add: outstanding-refs-conv)

from True have suspend-nothing: dropWhile (Not ◦ is-volatile-Writesb) sb = []
by (auto simp add: outstanding-refs-conv)

hence suspends-empty: suspends = []
by (simp add: suspends)

from suspends-empty is-sim have is: is = Read volatile a t # issb ′

by (simp add: issb)
with suspends-empty ts-i
have ts-i: ts!i = (psb, Read volatile a t # issb ′, jsb,(), D, acquired True ?take-sb Osb,

release ?take-sb (dom Ssb) Rsb)
by simp

from direct-memop-step.Read
have (Read volatile a t # issb ′, jsb, (), m, D, acquired True ?take-sb Osb,

release ?take-sb (dom Ssb) Rsb, S) →
(issb ′, jsb(t 7→ m a), (), m, D, acquired True ?take-sb Osb,release ?take-sb (dom

Ssb) Rsb, S).
from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i this]
have (ts, m, S) ⇒d (ts[i := (psb, issb ′, jsb(t 7→ m a), (),

D, acquired True ?take-sb Osb, release ?take-sb (dom Ssb) Rsb)], m, S) .

moreover

from flush-all-until-volatile-write-Read-commute [OF i-bound tssb-i [simplified issb]]
have flush-commute: flush-all-until-volatile-write

(tssb[i := (psb,issb ′,
jsb(t 7→v), sb @ [Readsb volatile a t v], Dsb, Osb, Rsb)]) msb =

flush-all-until-volatile-write tssb msb.

from True witness have not-volatile ′: volatile ′ = False
by (auto simp add: outstanding-refs-conv)

450

from witness not-volatile ′ have a-out-sb: a ∈ outstanding-refs (Not ◦ is-volatile) sb
apply (cases sop ′)
apply (fastforce simp add: outstanding-refs-conv is-volatile-def split: memref.splits)
done

with non-volatile-owned-or-read-only-outstanding-refs
[OF outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]]
have a-owned: a ∈ Osb ∪ all-acquired sb ∪ read-only-reads Osb sb

by auto

have flush-all-until-volatile-write tssb msb a = v
proof −

have ∀ j < length tssb. i 6= j −→
(let (-,-,-,sbj,-,-,-) = tssb!j

in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦
is-volatile-Writesb) sbj))

proof −
{

fix j pj isj Oj Rj Dj xsj sbj

assume j-bound: j < length tssb
assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,isj, xsj, sbj, Dj, Oj, Rj)

have a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)
sbj)

proof
let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)
assume a-in: a ∈ outstanding-refs is-non-volatile-Writesb ?take-sbj

with outstanding-refs-takeWhile [where P ′= Not ◦ is-volatile-Writesb]
have a-in ′: a ∈ outstanding-refs is-non-volatile-Writesb sbj

by auto
with non-volatile-owned-or-read-only-outstanding-non-volatile-writes
[OF outstanding-non-volatile-refs-owned-or-read-only [OF j-bound jth]]
have j-owns: a ∈ Oj ∪ all-acquired sbj

by auto
with ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
have a-not-owns: a /∈ Osb ∪ all-acquired sb

by blast

from non-volatile-owned-or-read-only-append [of False Ssb Oj ?take-sbj ?drop-sbj]
outstanding-non-volatile-refs-owned-or-read-only [OF j-bound jth]

have non-volatile-owned-or-read-only False Ssb Oj ?take-sbj

by simp
from non-volatile-owned-or-read-only-outstanding-non-volatile-writes [OF this] a-in
have j-owns-drop: a ∈ Oj ∪ all-acquired ?take-sbj

by auto

451

from rels-cond [rule-format, OF j-bound [simplified leq] neq-i-j] ts-sim
[rule-format, OF j-bound] jth

have no-unsharing:release ?take-sbj (dom (Ssb)) Rj a 6= Some False
by (auto simp add: Let-def)

{
assume a ∈ acquired True sb Osb

with acquired-all-acquired-in [OF this] ownership-distinct [OF i-bound j-bound neq-i-j
tssb-i jth]

j-owns
have False

by auto
}
moreover
{

assume a-ro: a ∈ read-only (share ?drop-sb S)

from read-only-share-unowned-in [OF weak-consis-drop a-ro] a-not-owns
acquired-all-acquired [of True ?take-sb Osb]
all-acquired-append [of ?take-sb ?drop-sb]
have a ∈ read-only S

by auto
with share-all-until-volatile-write-thread-local [OF ownership-distinct-tssb

sharing-consis-tssb j-bound jth j-owns]
have a ∈ read-only (share ?take-sbj Ssb)

by (auto simp add: read-only-def S)
hence a-dom: a ∈ dom (share ?take-sbj Ssb)

by (auto simp add: read-only-def domIff)
from outstanding-non-volatile-writes-unshared [OF j-bound jth]
non-volatile-writes-unshared-append [of Ssb ?take-sbj ?drop-sbj]
have nvw: non-volatile-writes-unshared Ssb ?take-sbj by auto
from release-not-unshared-no-write-take [OF this no-unsharing a-dom] a-in
have False by auto

}
moreover
{

assume a-share: volatile ∧ a ∈ dom (share ?drop-sb S)
from outstanding-non-volatile-writes-unshared [OF j-bound jth]
have non-volatile-writes-unshared Ssb sbj.
with non-volatile-writes-unshared-append [of Ssb ?take-sbj

?drop-sbj]
have unshared-take: non-volatile-writes-unshared Ssb (takeWhile (Not ◦

is-volatile-Writesb) sbj)
by clarsimp

from valid-own have own-dist: ownership-distinct tssb
by (simp add: valid-ownership-def)

from valid-sharing have sharing-consis Ssb tssb
by (simp add: valid-sharing-def)

452

from sharing-consistent-share-all-until-volatile-write [OF own-dist this i-bound tssb-i]
have sc: sharing-consistent S (acquired True ?take-sb Osb) ?drop-sb

by (simp add: S)
from sharing-consistent-share-all-shared
have dom (share ?drop-sb S) ⊆ dom S ∪ all-shared ?drop-sb

by auto
also from sharing-consistent-all-shared [OF sc]
have . . . ⊆ dom S ∪ acquired True ?take-sb Osb by auto
also from acquired-all-acquired all-acquired-takeWhile
have . . . ⊆ dom S ∪ (Osb ∪ all-acquired sb) by force
finally
have a-shared: a ∈ dom S

using a-share a-not-owns
by auto

with share-all-until-volatile-write-thread-local [OF ownership-distinct-tssb
sharing-consis-tssb j-bound jth j-owns]

have a-dom: a ∈ dom (share ?take-sbj Ssb)
by (auto simp add: S domIff)

from release-not-unshared-no-write-take [OF unshared-take no-unsharing
a-dom] a-in

have False by auto

}
ultimately show False

using access-cond ′

by auto
qed

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

from flush-all-until-volatile-write-buffered-val-conv
[OF True i-bound tssb-i this]
show ?thesis

by (simp add: buf-v)
qed

hence m-a-v: m a = v
by (simp add: m)

have tmps-commute: jsb(t 7→ v) = (jsb |‘ (dom jsb − {t}))(t 7→ v)
apply (rule ext)
apply (auto simp add: restrict-map-def domIff)
done

from suspend-nothing
have suspend-nothing ′: (dropWhile (Not ◦ is-volatile-Writesb) sb ′) = []

453

by (simp add: sb ′)

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb (sb@[Readsb volatile a t v]) 6=
{})

by (auto simp: outstanding-refs-append)

have (tssb ′,msb,Ssb
′) ∼ (ts[i := (psb,issb ′,

jsb(t7→m a),(),D, acquired True ?take-sb Osb,
release ?take-sb (dom Ssb) Rsb)],m,S)

apply (rule sim-config.intros)
apply (simp add: m flush-commute tssb ′ Osb

′ jsb ′ sb ′ Dsb
′ Rsb

′)
using share-all-until-volatile-write-Read-commute [OF i-bound tssb-i [simplified issb]]
apply (simp add: S Ssb

′ tssb ′ sb ′ Osb
′ jsb ′ Rsb

′)
using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i True D ′

apply (clarsimp simp add: Let-def nth-list-update
outstanding-refs-conv m-a-v tssb ′ Osb

′ Ssb
′ jsb ′ sb ′ Rsb

′ suspend-nothing ′

Dsb
′ flush-all acquired-append release-append

split: if-split-asm)
apply (rule tmps-commute)
done

ultimately show ?thesis
using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′

valid-sops ′ valid-dd ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′

msb
′ Ssb

′ Osb
′

by (auto simp del: fun-upd-apply)
next

case False

then obtain r where r-in: r ∈ set sb and volatile-r: is-volatile-Writesb r
by (auto simp add: outstanding-refs-conv)

from takeWhile-dropWhile-real-prefix
[OF r-in, of (Not ◦ is-volatile-Writesb), simplified, OF volatile-r]
obtain a ′ v ′ sb ′′ sop ′ A ′ L ′ R ′ W ′ where

sb-split: sb = takeWhile (Not ◦ is-volatile-Writesb) sb @ Writesb True a ′ sop ′ v ′ A ′ L ′

R ′ W ′# sb ′′

and
drop: dropWhile (Not ◦ is-volatile-Writesb) sb = Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′#

sb ′′

apply (auto)
subgoal for y ys

apply (case-tac y)
apply auto
done
done

454

from drop suspends have suspends: suspends = Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′#
sb ′′

by simp

have (ts, m, S) ⇒d
∗ (ts, m, S) by auto

moreover

from flush-all-until-volatile-write-Read-commute [OF i-bound tssb-i
[simplified issb]]

have flush-commute: flush-all-until-volatile-write
(tssb[i := (psb,issb ′, jsb(t 7→ v), sb @ [Readsb volatile a t v], Dsb, Osb, Rsb)]) msb

=
flush-all-until-volatile-write tssb msb.

have Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′∈ set sb
by (subst sb-split) auto

from dropWhile-append1 [OF this, of (Not ◦ is-volatile-Writesb)]
have drop-app-comm:
(dropWhile (Not ◦ is-volatile-Writesb) (sb @ [Readsb volatile a t v])) =

dropWhile (Not ◦ is-volatile-Writesb) sb @ [Readsb volatile a t v]
by simp

from load-tmps-fresh [OF i-bound tssb-i]
have t /∈ dom jsb

by (auto simp add: issb)
then have tmps-commute:

jsb |‘ (dom jsb − read-tmps sb ′′) =
jsb |‘ (dom jsb − insert t (read-tmps sb ′′))

apply −
apply (rule ext)
apply auto
done

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb (sb@[Readsb volatile a t v]) 6=
{})

by (auto simp: outstanding-refs-append)

have (tssb ′,msb,Ssb) ∼ (ts,m,S)
apply (rule sim-config.intros)
apply (simp add: m flush-commute tssb ′ Osb

′ Rsb
′ jsb ′ sb ′ Dsb

′)
using share-all-until-volatile-write-Read-commute [OF i-bound tssb-i [simplified issb]]
apply (simp add: S Ssb

′ tssb ′ sb ′ Osb
′ Rsb

′ jsb ′)
using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i is-sim D ′

455

apply (clarsimp simp add: Let-def nth-list-update is-sim drop-app-comm
read-tmps-append suspends prog-instrs-append-Readsb instrs-append-Readsb

hd-prog-append-Readsb

drop issb tssb ′ sb ′ Osb
′ Rsb

′ jsb ′ Dsb
′ acquired-append takeWhile-append1 [OF r-in]

volatile-r
split: if-split-asm)

apply (simp add: drop tmps-commute)+
done

ultimately show ?thesis
using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ valid-dd ′

valid-sops ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′ msb

′ Ssb
′

by (auto simp del: fun-upd-apply)
qed

next
case (SBHReadUnbuffered a volatile t)
then obtain

issb: issb = Read volatile a t # issb ′ and
Osb

′: Osb
′=Osb and

Rsb
′: Rsb

′=Rsb and
jsb ′: jsb ′ = jsb(t 7→(msb a)) and
sb ′: sb ′=sb@[Readsb volatile a t (msb a)] and
msb

′: msb
′ = msb and

Ssb
′: Ssb

′=Ssb and
Dsb

′: Dsb
′=Dsb and

buf-None: buffered-val sb a = None

by auto

from safe-memop-flush-sb [simplified issb]
obtain access-cond ′: a ∈ acquired True sb Osb ∨

a ∈ read-only (share ?drop-sb S) ∨ (volatile ∧ a ∈ dom (share ?drop-sb S)) and
volatile-clean: volatile −→ ¬ Dsb and

rels-cond: ∀ j < length ts. i 6=j −→ released (ts!j) a 6= Some False and
rels-nv-cond: ¬volatile −→ (∀ j < length ts. i 6=j −→ a /∈ dom (released (ts!j)))

by cases auto

from clean-no-outstanding-volatile-Writesb [OF i-bound tssb-i] volatile-clean
have volatile-cond: volatile −→ outstanding-refs is-volatile-Writesb sb ={}

by auto

{
fix j pj issbj Oj Rj Dsbj jsbj sbj

assume j-bound: j < length tssb
assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,issbj, jsbj, sbj, Dsbj, Oj,Rj)
assume non-vol: ¬ volatile
have a /∈ Oj ∪ all-acquired sbj

456

proof
assume a-j: a ∈ Oj ∪ all-acquired sbj

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

from ts-sim [rule-format, OF j-bound] jth
obtain suspendsj isj Dj where

suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,
jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by (auto simp add: Let-def)

from a-j ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
have a-notin-sb: a /∈ Osb ∪ all-acquired sb

by auto
with acquired-all-acquired [of True sb Osb]
have a-not-acq: a /∈ acquired True sb Osb by blast
with access-cond ′ non-vol
have a-ro: a ∈ read-only (share ?drop-sb S)

by auto
from read-only-share-unowned-in [OF weak-consis-drop a-ro] a-notin-sb

acquired-all-acquired [of True ?take-sb Osb]
all-acquired-append [of ?take-sb ?drop-sb]

have a-ro-shared: a ∈ read-only S
by auto

from rels-nv-cond [rule-format, OF non-vol j-bound [simplified leq] neq-i-j] tsj
have a /∈ dom (release ?take-sbj (dom (Ssb)) Rj)

by auto
with dom-release-takeWhile [of sbj (dom (Ssb)) Rj]
obtain

a-relsj: a /∈ dom Rj and
a-sharedj: a /∈ all-shared ?take-sbj

by auto

have a /∈
⋃

((λ(-, -, -, sb, -, -, -). all-shared (takeWhile (Not ◦ is-volatile-Writesb)
sb)) ‘

set tssb)
proof −

{
fix k pk isk jk sbk Dk Ok Rk

assume k-bound: k < length tssb
assume ts-k: tssb ! k = (pk,isk,jk,sbk,Dk,Ok,Rk)
assume a-in: a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbk)

457

have False
proof (cases k=j)

case True with a-sharedj jth ts-k a-in show False by auto
next

case False
from ownership-distinct [OF j-bound k-bound False [symmetric] jth ts-k] a-j
have a /∈ (Ok ∪ all-acquired sbk) by auto

with all-shared-acquired-or-owned [OF sharing-consis [OF k-bound ts-k]] a-in
show False
using all-acquired-append [of takeWhile (Not ◦ is-volatile-Writesb) sbk

dropWhile (Not ◦ is-volatile-Writesb) sbk]
all-shared-append [of takeWhile (Not ◦ is-volatile-Writesb) sbk

dropWhile (Not ◦ is-volatile-Writesb) sbk] by auto
qed

}
thus ?thesis by (fastforce simp add: in-set-conv-nth)

qed
with a-ro-shared

read-only-shared-all-until-volatile-write-subset ′ [of tssb Ssb]
have a-ro-sharedsb: a ∈ read-only Ssb

by (auto simp add: S)

with read-only-unowned [OF j-bound jth]
have a-notin-owns-j: a /∈ Oj

by auto

have own-dist: ownership-distinct tssb by fact
have share-consis: sharing-consis Ssb tssb by fact
from sharing-consistent-share-all-until-volatile-write [OF own-dist share-consis i-bound

tssb-i]
have consis ′: sharing-consistent S (acquired True ?take-sb Osb) ?drop-sb

by (simp add: S)
from share-all-until-volatile-write-thread-local [OF own-dist share-consis j-bound

jth a-j] a-ro-shared
have a-ro-take: a ∈ read-only (share ?take-sbj Ssb)

by (auto simp add: domIff S read-only-def)
from sharing-consis [OF j-bound jth]
have sharing-consistent Ssb Oj sbj.

from sharing-consistent-weak-sharing-consistent [OF this]
weak-sharing-consistent-append [of Oj ?take-sbj ?drop-sbj]

have weak-consis-drop:weak-sharing-consistent Oj ?take-sbj

by auto
from read-only-share-acquired-all-shared [OF this read-only-unowned [OF j-bound

jth] a-ro-take] a-notin-owns-j a-sharedj

have a /∈ all-acquired ?take-sbj

by auto
with a-j a-notin-owns-j
have a-drop: a ∈ all-acquired ?drop-sbj

using all-acquired-append [of ?take-sbj ?drop-sbj]

458

by simp

from i-bound j-bound leq have j-bound-ts ′: j < length ?ts ′
by auto

note conflict-drop = a-drop [simplified suspendsj [symmetric]]
from split-all-acquired-in [OF conflict-drop]

show False
proof

assume ∃ sop a ′ v ys zs A L R W.
(suspendsj = ys @ Writesb True a ′ sop v A L R W# zs) ∧ a ∈ A

then
obtain a ′ sop ′ v ′ ys zs A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs
(is suspendsj = ?suspends) and

a-A ′: a ∈ A ′

by blast

from sharing-consis [OF j-bound jth]
have sharing-consistent Ssb Oj sbj.
then have A ′-R ′: A ′ ∩ R ′ = {}

by (simp add: sharing-consistent-append [of - - ?take-sbj ?drop-sbj, simplified]
suspendsj [symmetric] split-suspendsj sharing-consistent-append)

from valid-program-history [OF j-bound jth]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts ′-j: ?ts ′!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj, release ?take-sbj (dom Ssb) Rj)
by auto

from valid-last-prog [OF j-bound jth] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj suspendsj = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound jth]
have reads-consis-j: reads-consistent False Oj msb sbj.

459

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb› j-bound

jth reads-consis-j]
have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound neq-i-j tssb-i
jth]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m-j]
have reads-consis-flush-suspend: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) suspendsj.

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])
by (simp add: split-suspendsj reads-consistent-append)

from valid-write-sops [OF j-bound jth]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and
valid-sops-drop: ∀ sop∈write-sops (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]). valid-sop

sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound jth]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound jth]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp

460

from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]
have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]

split-suspendsj)

have acq-simp:
acquired True (ys @ [Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])

(acquired True ?take-sbj Oj) =
acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]
and sb ′=zs, simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts ′-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop
distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=share ?drop-sb S]

obtain isj ′ Rj
′ where

isj ′: instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

∗

(?ts ′[j:=(last-prog
(hd-prog pj (Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs)) (ys@[Writesb True a ′

sop ′ v ′ A ′ L ′ R ′ W ′]),
isj ′,
jsbj |‘ (dom jsbj − read-tmps zs),
(), True, acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′,Rj

′)],
flush (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (flush ?drop-sb m),
share (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (share ?drop-sb S))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

461

by (auto simp add: acquired-append outstanding-refs-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb, jsb,(),
Dsb, acquired True sb Osb, release sb (dom Ssb) Rsb)
by simp

note conflict-computation = rtranclp-trans [OF steps-flush-sb steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this i-bound-ys ts-ys-i, simplified issb] non-vol a-not-acq
have a ∈ read-only (share (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (share ?drop-sb

S))
apply cases
apply (auto simp add: Let-def issb)
done

with a-A ′

show False
by (simp add: share-append in-read-only-convs)

next
assume ∃A L R W ys zs. suspendsj = ys @ Ghostsb A L R W # zs ∧ a ∈ A
then
obtain A ′ L ′ R ′ W ′ ys zs where

split-suspendsj: suspendsj = ys @ Ghostsb A ′ L ′ R ′ W ′# zs
(is suspendsj = ?suspends) and

a-A ′: a ∈ A ′

by blast

from valid-program-history [OF j-bound jth]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts ′-j: ?ts ′!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj, release ?take-sbj (dom Ssb) Rj)
by auto

from valid-last-prog [OF j-bound jth] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj suspendsj = pj

462

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound jth]
have reads-consis-j: reads-consistent False Oj msb sbj.
from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing

Ssb tssb› j-bound
jth reads-consis-j]

have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj
by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound neq-i-j tssb-i
jth]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m-j]
have reads-consis-flush-suspend: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) suspendsj.

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) (ys@[Ghostsb A ′ L ′ R ′ W ′])
by (simp add: split-suspendsj reads-consistent-append)

from valid-write-sops [OF j-bound jth]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys@[Ghostsb A ′ L ′ R ′ W ′]). valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound jth]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound jth]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)

463

apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]
have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Ghostsb A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]

split-suspendsj)

have acq-simp:
acquired True (ys @ [Ghostsb A ′ L ′ R ′ W ′])

(acquired True ?take-sbj Oj) =
acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Ghostsb A ′ L ′ R ′ W ′] and sb ′=zs,
simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts ′-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop
distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=share ?drop-sb S]

obtain isj ′ Rj
′ where

isj ′: instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

∗

(?ts ′[j:=(last-prog
(hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs)) (ys@[Ghostsb A ′ L ′ R ′ W ′]),
isj ′,

464

jsbj |‘ (dom jsbj − read-tmps zs),
(),
Dj ∨ outstanding-refs is-volatile-Writesb (ys @ [Ghostsb A ′ L ′ R ′ W ′]) 6= {},

acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′,Rj
′)],

flush (ys@[Ghostsb A ′ L ′ R ′ W ′]) (flush ?drop-sb m),
share (ys@[Ghostsb A ′ L ′ R ′ W ′]) (share ?drop-sb S))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb,jsb,(),
Dsb, acquired True sb Osb, release sb (dom Ssb) Rsb)
by simp

note conflict-computation = rtranclp-trans [OF steps-flush-sb steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this i-bound-ys ts-ys-i, simplified issb] non-vol a-not-acq
have a ∈ read-only (share (ys@[Ghostsb A ′ L ′ R ′ W ′]) (share ?drop-sb S))

apply cases
apply (auto simp add: Let-def issb)
done

with a-A ′

show False
by (simp add: share-append in-read-only-convs)

qed
qed

}
note non-volatile-unowned-others = this

{
assume a-in: a ∈ read-only (share (dropWhile (Not ◦ is-volatile-Writesb) sb) S)
assume nv: ¬ volatile
have a ∈ read-only (share sb Ssb)
proof (cases a ∈ Osb ∪ all-acquired sb)

case True
from share-all-until-volatile-write-thread-local ′ [OF ownership-distinct-tssb

sharing-consis-tssb i-bound tssb-i True] True a-in
show ?thesis

by (simp add: S read-only-def)
next

case False
from read-only-share-unowned [OF weak-consis-drop - a-in] False

acquired-all-acquired [of True ?take-sb Osb] all-acquired-append [of ?take-sb
?drop-sb]

465

have a-ro-shared: a ∈ read-only S
by auto

have a /∈
⋃
((λ(-, -, -, sb, -, -, -).

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb)) ‘ set tssb)
proof −

{
fix k pk isk jk sbk Dk Ok Rk

assume k-bound: k < length tssb
assume ts-k: tssb ! k = (pk,isk,jk,sbk,Dk,Ok,Rk)
assume a-in: a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbk)
have False
proof (cases k=i)

case True with False tssb-i ts-k a-in
all-shared-acquired-or-owned [OF sharing-consis [OF k-bound ts-k]]
all-shared-append [of takeWhile (Not ◦ is-volatile-Writesb) sbk

dropWhile (Not ◦ is-volatile-Writesb) sbk] show False by auto
next

case False
from rels-nv-cond [rule-format, OF nv k-bound [simplified leq] False [symmetric]

]
ts-sim [rule-format, OF k-bound] ts-k

have a /∈ dom (release (takeWhile (Not ◦ is-volatile-Writesb) sbk) (dom (Ssb))
Rk)

by (auto simp add: Let-def)
with dom-release-takeWhile [of sbk (dom (Ssb)) Rk]
obtain

a-relsj: a /∈ dom Rk and
a-sharedj: a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbk)
by auto

with False a-in show ?thesis
by auto

qed
}
thus ?thesis

by (auto simp add: in-set-conv-nth)
qed
with read-only-shared-all-until-volatile-write-subset ′ [of tssb Ssb] a-ro-shared
have a ∈ read-only Ssb

by (auto simp add: S)

from read-only-share-unowned ′ [OF weak-consis-sb read-only-unowned [OF i-bound
tssb-i] False this]

show ?thesis .
qed

} note non-vol-ro-reduction = this

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof (cases volatile)

466

case False
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have non-volatile-owned-or-read-only False Ssb Osb sb.
then

have non-volatile-owned-or-read-only False Ssb Osb (sb@[Readsb False a t (msb a)])
using access-cond ′ False non-vol-ro-reduction
by (auto simp add: non-volatile-owned-or-read-only-append)

from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (auto simp add: False tssb ′ sb ′ Osb

′ Ssb
′)

next
case True
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have non-volatile-owned-or-read-only False Ssb Osb sb.
then
have non-volatile-owned-or-read-only False Ssb Osb (sb@[Readsb True a t (msb a)])

using True
by (simp add: non-volatile-owned-or-read-only-append)

from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (auto simp add: True tssb ′ sb ′ Osb

′ Ssb
′)

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof −
have out: outstanding-refs is-volatile-Writesb (sb @ [Readsb volatile a t (msb a)]) ⊆

outstanding-refs is-volatile-Writesb sb
by (auto simp add: outstanding-refs-append)

have all-acquired (sb @ [Readsb volatile a t (msb a)]) ⊆ all-acquired sb
by (auto simp add: all-acquired-append)

from outstanding-volatile-writes-unowned-by-others-store-buffer
[OF i-bound tssb-i out this]
show ?thesis by (simp add: tssb ′ sb ′ Osb

′)
qed

next
show read-only-reads-unowned tssb ′

proof (cases volatile)
case True
have r: read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb)

(sb @ [Readsb volatile a t (msb a)])) Osb)
(dropWhile (Not ◦ is-volatile-Writesb) (sb @ [Readsb volatile a t (msb a)]))

⊆ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb)
Osb)

(dropWhile (Not ◦ is-volatile-Writesb) sb)
apply (case-tac outstanding-refs (is-volatile-Writesb) sb = {})
apply (simp-all add: outstanding-vol-write-take-drop-appends
acquired-append read-only-reads-append True)
done

have Osb ∪ all-acquired (sb @ [Readsb volatile a t (msb a)]) ⊆ Osb ∪ all-acquired sb

467

by (simp add: all-acquired-append)

from read-only-reads-unowned-nth-update [OF i-bound tssb-i r this]
show ?thesis

by (simp add: tssb ′ Osb
′ sb ′)

next
case False
show ?thesis
proof (unfold-locales)

fix n m
fix pn isn On Rn Dn jn sbn pm ism Om Rm Dm jm sbm

assume n-bound: n < length tssb ′

and m-bound: m < length tssb ′

and neq-n-m: n6=m
and nth: tssb ′!n = (pn, isn, jn, sbn, Dn, On,Rn)
and mth: tssb ′!m =(pm, ism, jm, sbm, Dm, Om,Rm)
from n-bound have n-bound ′: n < length tssb by (simp add: tssb ′)
from m-bound have m-bound ′: m < length tssb by (simp add: tssb ′)

have acq-eq: (Osb
′ ∪ all-acquired sb ′) = (Osb ∪ all-acquired sb)

by (simp add: all-acquired-append sb ′ Osb
′)

show (Om ∪ all-acquired sbm) ∩
read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn) On)
(dropWhile (Not ◦ is-volatile-Writesb) sbn) =
{}

proof (cases m=i)
case True
with neq-n-m have neq-n-i: n6=i

by auto

with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)
by (auto simp add: tssb ′)

note read-only-reads-unowned [OF n-bound ′ i-bound neq-n-i nth ′ tssb-i]
moreover
note acq-eq
ultimately show ?thesis

using True tssb-i nth mth n-bound ′ m-bound ′

by (simp add: tssb ′)
next

case False
note neq-m-i = this
with m-bound mth i-bound have mth ′: tssb!m = (pm, ism, jm, sbm, Dm, Om,Rm)

by (auto simp add: tssb ′)
show ?thesis
proof (cases n=i)

case True
note read-only-reads-unowned [OF i-bound m-bound ′ neq-m-i [symmetric] tssb-i mth ′]
moreover

468

note acq-eq
moreover
note non-volatile-unowned-others [OF m-bound ′ neq-m-i [symmetric] mth ′]
ultimately show ?thesis

using True tssb-i nth mth n-bound ′ m-bound ′ neq-m-i
apply (case-tac outstanding-refs (is-volatile-Writesb) sb = {})
apply (clarsimp simp add: outstanding-vol-write-take-drop-appends

acquired-append read-only-reads-append tssb ′ sb ′ Osb
′)+

done
next

case False
with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)

by (auto simp add: tssb ′)
from read-only-reads-unowned [OF n-bound ′ m-bound ′ neq-n-m nth ′ mth ′] False neq-m-i
show ?thesis

by (clarsimp)
qed

qed
qed

qed
show ownership-distinct tssb ′

proof −
have all-acquired (sb @ [Readsb volatile a t (msb a)]) ⊆ all-acquired sb

by (auto simp add: all-acquired-append)
from ownership-distinct-instructions-read-value-store-buffer-independent
[OF i-bound tssb-i this]
show ?thesis by (simp add: tssb ′ sb ′ Osb

′)
qed

qed

have valid-hist ′: valid-history program-step tssb ′

proof −
from valid-history [OF i-bound tssb-i]
have hcons: history-consistent jsb (hd-prog psb sb) sb.
from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
have t-notin-reads: t /∈ read-tmps sb

by (auto simp add: issb)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i]
have t-notin-writes: t /∈

⋃
(fst ‘ write-sops sb)

by (auto simp add: issb)

from valid-write-sops [OF i-bound tssb-i]
have valid-sops: ∀ sop ∈ write-sops sb. valid-sop sop

by auto
from load-tmps-fresh [OF i-bound tssb-i]
have t-fresh: t /∈ dom jsb

using issb
by simp

469

from valid-implies-valid-prog-hd [OF i-bound tssb-i valid]
have history-consistent (jsb(t 7→msb a))

(hd-prog psb (sb@ [Readsb volatile a t (msb a)]))
(sb@ [Readsb volatile a t (msb a)])

using t-notin-writes valid-sops t-fresh hcons
apply −
apply (rule history-consistent-appendI)
apply (auto simp add: hd-prog-append-Readsb)
done

from valid-history-nth-update [OF i-bound this]
show ?thesis

by (auto simp add: tssb ′ sb ′ Osb
′ jsb ′)

qed

from
reads-consistent-unbuffered-snoc [OF buf-None refl valid-reads [OF i-bound tssb-i]

volatile-cond]
have reads-consis ′: reads-consistent False Osb msb (sb @ [Readsb volatile a t (msb a)])

by (simp split: if-split-asm)

from valid-reads-nth-update [OF i-bound this]
have valid-reads ′: valid-reads msb tssb ′ by (simp add: tssb ′ sb ′ Osb

′)

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]
have non-volatile-writes-unshared Ssb (sb @ [Readsb volatile a t (msb a)])

by (auto simp add: non-volatile-writes-unshared-append)
from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ sb ′ Ssb
′)

next
from sharing-consis [OF i-bound tssb-i]
have sharing-consistent Ssb Osb sb.
then
have sharing-consistent Ssb Osb (sb @ [Readsb volatile a t (msb a)])

by (simp add: sharing-consistent-append)
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ sb ′ Ssb

′)
next

note read-only-unowned [OF i-bound tssb-i]
from read-only-unowned-nth-update [OF i-bound this]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb ′ Osb

′)
next

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′ by (simp add: tssb ′ Osb
′ Ssb

′)
next

470

from no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
have no-write-to-read-only-memory Ssb sb.
hence no-write-to-read-only-memory Ssb (sb@[Readsb volatile a t (msb a)])

by (simp add: no-write-to-read-only-memory-append)
from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound this]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: tssb ′ Ssb
′ sb ′)

qed

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]
have distinct-load-tmps issb ′

by (auto split: instr.splits simp add: issb)
from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′ by (simp add: tssb ′)

next
from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps sb.
moreover
from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
have t /∈ read-tmps sb

by (auto simp add: issb)
ultimately have distinct-read-tmps (sb @ [Readsb volatile a t (msb a)])

by (auto simp add: distinct-read-tmps-append)
from read-tmps-distinct-nth-update [OF i-bound this]
show read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′)

next
from load-tmps-read-tmps-distinct [OF i-bound tssb-i]

load-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩ read-tmps (sb @ [Readsb volatile a t (msb a)]) = {}

by (clarsimp simp add: read-tmps-append issb)
from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′)

qed

have valid-sops ′: valid-sops tssb ′

proof −
from valid-store-sops [OF i-bound tssb-i]
have valid-store-sops ′: ∀ sop∈store-sops issb ′. valid-sop sop

by (auto simp add: issb)
from valid-write-sops [OF i-bound tssb-i]
have valid-write-sops ′: ∀ sop∈write-sops (sb@ [Readsb volatile a t (msb a)]).

valid-sop sop
by (auto simp add: write-sops-append)

from valid-sops-nth-update [OF i-bound valid-write-sops ′ valid-store-sops ′]
show ?thesis by (simp add: tssb ′ sb ′)

qed

have valid-dd ′: valid-data-dependency tssb ′

471

proof −
from data-dependency-consistent-instrs [OF i-bound tssb-i]
have dd-is: data-dependency-consistent-instrs (dom jsb ′) issb ′

by (auto simp add: issb jsb ′)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩

⋃
(fst ‘ write-sops (sb@ [Readsb volatile a t (msb a)])) = {}

by (auto simp add: write-sops-append issb)
from valid-data-dependency-nth-update [OF i-bound dd-is this]
show ?thesis by (simp add: tssb ′ sb ′)

qed

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −
from load-tmps-fresh [OF i-bound tssb-i]
have load-tmps (Read volatile a t # issb ′) ∩ dom jsb = {}

by (simp add: issb)
moreover
from load-tmps-distinct [OF i-bound tssb-i] have t /∈ load-tmps issb ′

by (auto simp add: issb)
ultimately have load-tmps issb ′ ∩ dom (jsb(t 7→ (msb a))) = {}

by auto
from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ jsb ′)

qed

have enough-flushs ′: enough-flushs tssb ′

proof −
from clean-no-outstanding-volatile-Writesb [OF i-bound tssb-i]
have ¬ Dsb −→ outstanding-refs is-volatile-Writesb (sb@[Readsb volatile a t (msb a)]) =
{}

by (auto simp add: outstanding-refs-append)
from enough-flushs-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′ sb ′ Dsb
′)

qed

have valid-program-history ′: valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb .
then have causal ′: causal-program-history issb ′ (sb@[Readsb volatile a t (msb a)])

by (auto simp: causal-program-history-Read issb)
from valid-last-prog [OF i-bound tssb-i]
have last-prog psb sb = psb.
hence last-prog psb (sb @ [Readsb volatile a t (msb a)]) = psb

by (simp add: last-prog-append-Readsb)
from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′ sb ′)
qed

472

show ?thesis
proof (cases outstanding-refs is-volatile-Writesb sb = {})

case True

from True have flush-all: takeWhile (Not ◦ is-volatile-Writesb) sb = sb
by (auto simp add: outstanding-refs-conv)

from True have suspend-nothing: dropWhile (Not ◦ is-volatile-Writesb) sb = []
by (auto simp add: outstanding-refs-conv)

hence suspends-empty: suspends = []
by (simp add: suspends)

from suspends-empty is-sim have is: is = Read volatile a t # issb ′

by (simp add: issb)
with suspends-empty ts-i
have ts-i: ts!i = (psb, Read volatile a t # issb ′, jsb,(),

D, acquired True ?take-sb Osb, release ?take-sb (dom Ssb) Rsb)
by simp

from direct-memop-step.Read
have (Read volatile a t # issb ′,jsb, (), m,

D, acquired True ?take-sb Osb,release ?take-sb (dom Ssb) Rsb,S) →
(issb ′, jsb(t 7→ m a), (), m, D, acquired True ?take-sb Osb,
release ?take-sb (dom Ssb) Rsb, S).

from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i this]
have (ts, m, S) ⇒d (ts[i := (psb, issb ′, jsb(t 7→ m a), (),
D, acquired True ?take-sb Osb,release ?take-sb (dom Ssb) Rsb)], m, S).

moreover

from flush-all-until-volatile-write-Read-commute [OF i-bound tssb-i [simplified issb]]
have flush-commute: flush-all-until-volatile-write

(tssb[i := (psb,issb ′, jsb(t 7→msb a), sb @ [Readsb volatile a t (msb a)], Dsb, Osb,Rsb)])

msb =
flush-all-until-volatile-write tssb msb.

have flush-all-until-volatile-write tssb msb a = msb a
proof −

have ∀ j < length tssb. i 6= j −→
(let (-,-,-,sbj,-,-,-) = tssb!j

in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦
is-volatile-Writesb) sbj))

proof −
{

fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb
assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,isj, xsj, sbj, Dj, Oj, Rj)

473

have a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)
sbj)

proof
let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)
assume a-in: a ∈ outstanding-refs is-non-volatile-Writesb ?take-sbj

with outstanding-refs-takeWhile [where P ′= Not ◦ is-volatile-Writesb]
have a-in ′: a ∈ outstanding-refs is-non-volatile-Writesb sbj

by auto
with non-volatile-owned-or-read-only-outstanding-non-volatile-writes
[OF outstanding-non-volatile-refs-owned-or-read-only [OF j-bound jth]]
have j-owns: a ∈ Oj ∪ all-acquired sbj

by auto
with ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
have a-not-owns: a /∈ Osb ∪ all-acquired sb

by blast

from non-volatile-owned-or-read-only-append [of False Ssb Oj ?take-sbj ?drop-sbj]
outstanding-non-volatile-refs-owned-or-read-only [OF j-bound jth]

have non-volatile-owned-or-read-only False Ssb Oj ?take-sbj

by simp
from non-volatile-owned-or-read-only-outstanding-non-volatile-writes [OF this] a-in
have j-owns-drop: a ∈ Oj ∪ all-acquired ?take-sbj

by auto

from rels-cond [rule-format, OF j-bound [simplified leq] neq-i-j] ts-sim
[rule-format, OF j-bound] jth

have no-unsharing:release ?take-sbj (dom (Ssb)) Rj a 6= Some False
by (auto simp add: Let-def)

{
assume a ∈ acquired True sb Osb

with acquired-all-acquired-in [OF this] ownership-distinct [OF i-bound j-bound neq-i-j
tssb-i jth]

j-owns
have False

by auto
}
moreover
{

assume a-ro: a ∈ read-only (share ?drop-sb S)
from read-only-share-unowned-in [OF weak-consis-drop a-ro] a-not-owns
acquired-all-acquired [of True ?take-sb Osb]
all-acquired-append [of ?take-sb ?drop-sb]
have a ∈ read-only S

by auto
with share-all-until-volatile-write-thread-local [OF ownership-distinct-tssb

sharing-consis-tssb j-bound jth j-owns]
have a ∈ read-only (share ?take-sbj Ssb)

by (auto simp add: read-only-def S)
hence a-dom: a ∈ dom (share ?take-sbj Ssb)

474

by (auto simp add: read-only-def domIff)
from outstanding-non-volatile-writes-unshared [OF j-bound jth]
non-volatile-writes-unshared-append [of Ssb ?take-sbj ?drop-sbj]
have nvw: non-volatile-writes-unshared Ssb ?take-sbj by auto
from release-not-unshared-no-write-take [OF this no-unsharing a-dom] a-in
have False by auto

}
moreover
{

assume a-share: volatile ∧ a ∈ dom (share ?drop-sb S)
from outstanding-non-volatile-writes-unshared [OF j-bound jth]
have non-volatile-writes-unshared Ssb sbj.

with non-volatile-writes-unshared-append [of Ssb (takeWhile (Not ◦ is-volatile-Writesb)
sbj)

(dropWhile (Not ◦ is-volatile-Writesb) sbj)]
have unshared-take: non-volatile-writes-unshared Ssb (takeWhile (Not ◦

is-volatile-Writesb) sbj)
by clarsimp

from valid-own have own-dist: ownership-distinct tssb
by (simp add: valid-ownership-def)

from valid-sharing have sharing-consis Ssb tssb
by (simp add: valid-sharing-def)

from sharing-consistent-share-all-until-volatile-write [OF own-dist this i-bound tssb-i]
have sc: sharing-consistent S (acquired True ?take-sb Osb) ?drop-sb

by (simp add: S)
from sharing-consistent-share-all-shared
have dom (share ?drop-sb S) ⊆ dom S ∪ all-shared ?drop-sb

by auto
also from sharing-consistent-all-shared [OF sc]
have . . . ⊆ dom S ∪ acquired True ?take-sb Osb by auto
also from acquired-all-acquired all-acquired-takeWhile
have . . . ⊆ dom S ∪ (Osb ∪ all-acquired sb) by force
finally
have a-shared: a ∈ dom S

using a-share a-not-owns
by auto

with share-all-until-volatile-write-thread-local [OF ownership-distinct-tssb
sharing-consis-tssb j-bound jth j-owns]

have a-dom: a ∈ dom (share ?take-sbj Ssb)
by (auto simp add: S domIff)

from release-not-unshared-no-write-take [OF unshared-take no-unsharing
a-dom] a-in

have False by auto
}
ultimately show False

using access-cond ′

by auto
qed

475

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

from flush-all-until-volatile-write-buffered-val-conv
[OF True i-bound tssb-i this]
show ?thesis

by (simp add: buf-None)
qed

hence m-a: m a = msb a
by (simp add: m)

have tmps-commute: jsb(t 7→ (msb a)) =
(jsb |‘ (dom jsb − {t}))(t 7→ (msb a))
apply (rule ext)
apply (auto simp add: restrict-map-def domIff)
done

from suspend-nothing
have suspend-nothing ′: (dropWhile (Not ◦ is-volatile-Writesb) sb ′) = []

by (simp add: sb ′)

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb (sb@[Readsb volatile a t (msb

a)]) 6= {})
by (auto simp: outstanding-refs-append)

have (tssb ′,msb,Ssb
′) ∼ (ts[i := (psb,issb ′, jsb(t 7→m a),(), D, acquired True ?take-sb

Osb,release ?take-sb (dom Ssb) Rsb)], m,S)
apply (rule sim-config.intros)
apply (simp add: m flush-commute tssb ′ Osb

′ Rsb
′ jsb ′ sb ′ Dsb

′)
using share-all-until-volatile-write-Read-commute [OF i-bound tssb-i [simplified issb]]
apply (simp add: S Ssb

′ tssb ′ sb ′ Osb
′ Rsb

′ jsb ′)
using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i True D ′

apply (clarsimp simp add: Let-def nth-list-update
outstanding-refs-conv m-a tssb ′ Osb

′ Rsb
′ Ssb

′ jsb ′ sb ′ Dsb
′ suspend-nothing ′

flush-all acquired-append release-append
split: if-split-asm)

apply (rule tmps-commute)
done

ultimately show ?thesis
using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′

valid-sops ′ valid-dd ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′

msb
′ Ssb

′

476

by (auto simp del: fun-upd-apply)
next

case False

then obtain r where r-in: r ∈ set sb and volatile-r: is-volatile-Writesb r
by (auto simp add: outstanding-refs-conv)

from takeWhile-dropWhile-real-prefix
[OF r-in, of (Not ◦ is-volatile-Writesb), simplified, OF volatile-r]
obtain a ′ v ′ sb ′′ sop ′ A ′ L ′ R ′ W ′ where

sb-split: sb = takeWhile (Not ◦ is-volatile-Writesb) sb @ Writesb True a ′ sop ′ v ′ A ′ L ′

R ′ W ′# sb ′′

and
drop: dropWhile (Not ◦ is-volatile-Writesb) sb = Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′#

sb ′′

apply (auto)
subgoal for y ys

apply (case-tac y)
apply auto
done
done

from drop suspends have suspends: suspends = Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′#
sb ′′

by simp

have (ts, m, S) ⇒d
∗ (ts, m, S) by auto

moreover

note flush-commute = flush-all-until-volatile-write-Read-commute [OF i-bound tssb-i
[simplified issb]]

have Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′∈ set sb
by (subst sb-split) auto

from dropWhile-append1 [OF this, of (Not ◦ is-volatile-Writesb)]
have drop-app-comm:
(dropWhile (Not ◦ is-volatile-Writesb) (sb @ [Readsb volatile a t (msb a)])) =

dropWhile (Not ◦ is-volatile-Writesb) sb @ [Readsb volatile a t (msb a)]
by simp

from load-tmps-fresh [OF i-bound tssb-i]
have t /∈ dom jsb

by (auto simp add: issb)
then have tmps-commute:

jsb |‘ (dom jsb − read-tmps sb ′′) =
jsb |‘ (dom jsb − insert t (read-tmps sb ′′))

apply −
apply (rule ext)
apply auto

477

done

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb (sb@[Readsb volatile a t (msb

a)]) 6= {})
by (auto simp: outstanding-refs-append)

have (tssb ′,msb,Ssb) ∼ (ts,m,S)
apply (rule sim-config.intros)
apply (simp add: m flush-commute tssb ′ Osb

′ Rsb
′ jsb ′ sb ′)

using share-all-until-volatile-write-Read-commute [OF i-bound tssb-i [simplified issb]]
apply (simp add: S Ssb

′ tssb ′ sb ′ Osb
′ Rsb

′ jsb ′)
using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i is-sim D ′

apply (clarsimp simp add: Let-def nth-list-update is-sim drop-app-comm
read-tmps-append suspends prog-instrs-append-Readsb instrs-append-Readsb

hd-prog-append-Readsb

drop issb tssb ′ sb ′ Osb
′ Rsb

′ jsb ′ Dsb
′ acquired-append takeWhile-append1 [OF r-in]

volatile-r split: if-split-asm)
apply (simp add: drop tmps-commute)+
done

ultimately show ?thesis
using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ valid-dd ′

valid-sops ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′

msb
′ Ssb

′

by (auto simp del: fun-upd-apply)
qed

next
case (SBHWriteNonVolatile a D f A L R W)
then obtain

issb: issb = Write False a (D, f) A L R W# issb ′ and
Osb

′: Osb
′=Osb and

Rsb
′: Rsb

′=Rsb and
jsb ′: jsb ′ = jsb and
Dsb

′: Dsb
′=Dsb and

sb ′: sb ′=sb@[Writesb False a (D, f) (f jsb) A L R W] and
msb

′: msb
′ = msb and

Ssb
′: Ssb

′=Ssb

by auto

from data-dependency-consistent-instrs [OF i-bound tssb-i]
have D-tmps: D ⊆ dom jsb

by (simp add: issb)

from safe-memop-flush-sb [simplified issb]

478

obtain a-owned ′: a ∈ acquired True sb Osb and a-unshared ′: a /∈ dom (share ?drop-sb
S) and

rels-cond: ∀ j < length ts. i6=j −→ a /∈ dom (released (ts!j))

by cases auto

from a-owned ′ acquired-all-acquired
have a-owned ′′: a ∈ Osb ∪ all-acquired sb

by auto

{
fix j
fix pj isj Oj Rj Dj jj sbj

assume j-bound: j < length tssb
assume tssb-j: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume neq-i-j: i 6= j
have a /∈ Oj ∪ all-acquired sbj

proof −
from ownership-distinct [OF i-bound j-bound neq-i-j tssb-i tssb-j] a-owned ′′

show ?thesis
by auto

qed
} note a-unowned-others = this

have a-unshared: a /∈ dom (share sb Ssb)
proof

assume a-share: a ∈ dom (share sb Ssb)
from valid-sharing have sharing-consis Ssb tssb

by (simp add: valid-sharing-def)
from in-shared-sb-share-all-until-volatile-write [OF this i-bound tssb-i a-owned ′′ a-share]
have a ∈ dom (share ?drop-sb S)

by (simp add: S)
with a-unshared ′

show False
by auto

qed

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof −
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have non-volatile-owned-or-read-only False Ssb Osb sb.

with a-owned ′

479

have non-volatile-owned-or-read-only False Ssb Osb (sb @ [Writesb False a (D,f) (f jsb)
A L R W])

by (simp add: non-volatile-owned-or-read-only-append)
from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ issb sb ′ Osb

′ Ssb
′)

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof −
have outstanding-refs is-volatile-Writesb (sb @ [Writesb False a (D,f) (f jsb) A L R W])

⊆
outstanding-refs is-volatile-Writesb sb
by (auto simp add: outstanding-refs-append)

from outstanding-volatile-writes-unowned-by-others-store-buffer
[OF i-bound tssb-i this]
show ?thesis by (simp add: tssb ′ issb sb ′ Osb

′ all-acquired-append)
qed

next
show read-only-reads-unowned tssb ′

proof −
have r: read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb)
(sb @ [Writesb False a (D,f) (f jsb) A L R W])) Osb)

(dropWhile (Not ◦ is-volatile-Writesb) (sb @ [Writesb False a (D,f) (f jsb) A L R
W]))

⊆
read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) Osb)

(dropWhile (Not ◦ is-volatile-Writesb) sb)
apply (case-tac outstanding-refs (is-volatile-Writesb) sb = {})
apply (simp-all add: outstanding-vol-write-take-drop-appends
acquired-append read-only-reads-append)
done
have Osb ∪ all-acquired (sb @ [Writesb False a (D,f) (f jsb) A L R W]) ⊆ Osb ∪

all-acquired sb
by (simp add: all-acquired-append)

from read-only-reads-unowned-nth-update [OF i-bound tssb-i r this]
show ?thesis

by (simp add: tssb ′ Osb
′ sb ′)

qed
next

show ownership-distinct tssb ′

proof −
from ownership-distinct-instructions-read-value-store-buffer-independent
[OF i-bound tssb-i]
show ?thesis by (simp add: tssb ′ issb sb ′ Osb

′ all-acquired-append)
qed

qed

have valid-hist ′: valid-history program-step tssb ′

480

proof −
from valid-history [OF i-bound tssb-i]
have history-consistent jsb (hd-prog psb sb) sb.
with valid-write-sops [OF i-bound tssb-i] D-tmps

valid-implies-valid-prog-hd [OF i-bound tssb-i valid]
have history-consistent jsb (hd-prog psb (sb@[Writesb False a (D,f) (f jsb) A L R W]))

(sb@ [Writesb False a (D,f) (f jsb) A L R W])
apply −
apply (rule history-consistent-appendI)
apply (auto simp add: hd-prog-append-Writesb)
done

from valid-history-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ issb sb ′ Osb

′ jsb ′)
qed

have valid-reads ′: valid-reads msb tssb ′

proof −
from valid-reads [OF i-bound tssb-i]
have reads-consistent False Osb msb sb .
from reads-consistent-snoc-Writesb [OF this]
have reads-consistent False Osb msb (sb @ [Writesb False a (D,f) (f jsb) A L R W]).
from valid-reads-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ issb sb ′ Osb

′ jsb ′)
qed

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i] a-unshared
have non-volatile-writes-unshared Ssb

(sb @ [Writesb False a (D,f) (f jsb) A L R W])
by (auto simp add: non-volatile-writes-unshared-append)

from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ issb sb ′ Osb
′ jsb ′ Ssb

′)
next

from sharing-consis [OF i-bound tssb-i]
have sharing-consistent Ssb Osb sb.
then
have sharing-consistent Ssb Osb (sb @ [Writesb False a (D,f) (f jsb) A L R W])

by (simp add: sharing-consistent-append)
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ sb ′ Ssb

′)
next

from read-only-unowned-nth-update [OF i-bound read-only-unowned [OF i-bound tssb-i]
]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ Osb

′)
next

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]

481

show unowned-shared Ssb
′ tssb ′

by (simp add: tssb ′ issb sb ′ Osb
′ jsb ′ Ssb

′)
next

from a-unshared
have a /∈ read-only (share sb Ssb)

by (auto simp add: read-only-def dom-def)
with no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]

have no-write-to-read-only-memory Ssb (sb @ [Writesb False a (D,f) (f jsb) A L R W])
by (simp add: no-write-to-read-only-memory-append)

from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound this]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb ′)

qed

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]
have distinct-load-tmps issb ′

by (auto split: instr.splits simp add: issb)
from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′

by (simp add: tssb ′ issb sb ′ Osb
′ jsb ′)

next
from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps sb.
hence distinct-read-tmps (sb @ [Writesb False a (D,f) (f jsb) A L R W])

by (simp add: distinct-read-tmps-append)
from read-tmps-distinct-nth-update [OF i-bound this]
show read-tmps-distinct tssb ′

by (simp add: tssb ′ issb sb ′ Osb
′ jsb ′)

next
from load-tmps-read-tmps-distinct [OF i-bound tssb-i]

load-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩ read-tmps (sb @ [Writesb False a (D,f) (f jsb) A L R W]) = {}

by (clarsimp simp add: read-tmps-append issb)
from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-read-tmps-distinct tssb ′

by (simp add: tssb ′ issb sb ′ Osb
′ jsb ′)

qed

have valid-sops ′: valid-sops tssb ′

proof −
from valid-store-sops [OF i-bound tssb-i]
obtain valid-Df: valid-sop (D,f) and

valid-store-sops ′: ∀ sop∈store-sops issb ′. valid-sop sop
by (auto simp add: issb)

from valid-Df valid-write-sops [OF i-bound tssb-i]
have valid-write-sops ′: ∀ sop∈write-sops (sb@ [Writesb False a (D, f) (f jsb) A L R W]).

482

valid-sop sop
by (auto simp add: write-sops-append)

from valid-sops-nth-update [OF i-bound valid-write-sops ′ valid-store-sops ′]
show ?thesis

by (simp add: tssb ′ issb sb ′ Osb
′ jsb ′)

qed

have valid-dd ′: valid-data-dependency tssb ′

proof −
from data-dependency-consistent-instrs [OF i-bound tssb-i]
obtain D-indep: D ∩ load-tmps issb ′ = {} and

dd-is: data-dependency-consistent-instrs (dom jsb ′) issb ′

by (auto simp add: issb jsb ′)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i] D-indep
have load-tmps issb ′ ∩⋃

(fst ‘ write-sops (sb@ [Writesb False a (D, f) (f jsb) A L R W])) = {}
by (auto simp add: write-sops-append issb)

from valid-data-dependency-nth-update [OF i-bound dd-is this]
show ?thesis

by (simp add: tssb ′ issb sb ′ Osb
′ jsb ′)

qed

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −
from load-tmps-fresh [OF i-bound tssb-i]
have load-tmps issb ′ ∩ dom jsb = {}

by (auto simp add: issb)
from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′ issb sb ′ Osb
′ jsb ′)

qed

have enough-flushs ′: enough-flushs tssb ′

proof −
from clean-no-outstanding-volatile-Writesb [OF i-bound tssb-i]
have ¬ Dsb −→ outstanding-refs is-volatile-Writesb (sb@[Writesb False a (D,f) (f jsb) A

L R W]) = {}
by (auto simp add: outstanding-refs-append)

from enough-flushs-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′ sb ′ Dsb
′)

qed

have valid-program-history ′: valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb .
then have causal ′: causal-program-history issb ′ (sb@[Writesb False a (D,f) (f jsb) A L R

W])

483

by (auto simp: causal-program-history-Write issb)
from valid-last-prog [OF i-bound tssb-i]
have last-prog psb sb = psb.
hence last-prog psb (sb @ [Writesb False a (D,f) (f jsb) A L R W]) = psb

by (simp add: last-prog-append-Writesb)
from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′ sb ′)
qed

from valid-store-sops [OF i-bound tssb-i, rule-format]
have valid-sop (D,f) by (auto simp add: issb)
then interpret valid-sop (D,f) .

show ?thesis
proof (cases outstanding-refs is-volatile-Writesb sb = {})

case True

from True have flush-all: takeWhile (Not ◦ is-volatile-Writesb) sb = sb
by (auto simp add: outstanding-refs-conv)

from True have suspend-nothing: dropWhile (Not ◦ is-volatile-Writesb) sb = []
by (auto simp add: outstanding-refs-conv)

hence suspends-empty: suspends = []
by (simp add: suspends)

from suspends-empty is-sim have is: is = Write False a (D,f) A L R W# issb ′

by (simp add: issb)
with suspends-empty ts-i
have ts-i: ts!i = (psb, Write False a (D,f) A L R W# issb ′,

jsb,(),
D, acquired True ?take-sb Osb,release ?take-sb (dom (Ssb)) Rsb)

by simp

from direct-memop-step.WriteNonVolatile [OF]
have (Write False a (D, f) A L R W# issb ′,

jsb, (),m,D,acquired True ?take-sb Osb ,release ?take-sb (dom (Ssb)) Rsb, S) →
(issb ′,

jsb, (), m(a := f jsb), D, acquired True ?take-sb Osb,
release ?take-sb (dom (Ssb)) Rsb, S).

from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i this]
have (ts, m, S) ⇒d

(ts[i := (psb, issb ′, jsb, (),D, acquired True ?take-sb Osb,
release ?take-sb (dom (Ssb)) Rsb)],

m(a := f jsb),S).

moreover

484

have ∀ j<length tssb. i 6= j −→
(let (-,-, -, sbj,-,-,-) = tssb ! j

in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)
sbj))
proof −

{
fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb
assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,isj, xsj, sbj, Dj, Oj,Rj)

have a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)
sbj)

proof
assume a-in: a ∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj)
hence a ∈ outstanding-refs is-non-volatile-Writesb sbj

using outstanding-refs-append [of is-non-volatile-Writesb (takeWhile (Not ◦
is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]
by auto

with non-volatile-owned-or-read-only-outstanding-non-volatile-writes
[OF outstanding-non-volatile-refs-owned-or-read-only [OF j-bound jth]]
have j-owns: a ∈ Oj ∪ all-acquired sbj

by auto

from j-owns a-owned ′′ ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
show False

by auto
qed

}
thus ?thesis by (fastforce simp add: Let-def)

qed

note flush-commute = flush-all-until-volatile-write-append-non-volatile-write-commute
[OF True i-bound tssb-i this]

from suspend-nothing
have suspend-nothing ′: (dropWhile (Not ◦ is-volatile-Writesb) sb ′) = []

by (simp add: sb ′)

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb
(sb@[Writesb False a (D,f) (f jsb) A L R W]) 6= {})
by (auto simp: outstanding-refs-append)

have (tssb ′,msb,Ssb
′) ∼

(ts[i := (psb,issb ′, jsb,(),D, acquired True ?take-sb Osb,
release ?take-sb (dom (Ssb)) Rsb)],

m(a:=f jsb),S)

485

apply (rule sim-config.intros)
apply (simp add: m flush-commute tssb ′ Osb

′ Rsb
′ sb ′ jsb ′ Dsb

′)
using share-all-until-volatile-write-Write-commute

[OF i-bound tssb-i [simplified issb]]
apply (clarsimp simp add: S Ssb

′ tssb ′ sb ′ Osb
′ Rsb

′ jsb ′)
using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i True D ′

apply (clarsimp simp add: Let-def nth-list-update
outstanding-refs-conv tssb ′ Osb

′ Rsb
′ Ssb

′ jsb ′ sb ′ Dsb
′ suspend-nothing ′ flush-all

acquired-append release-append split: if-split-asm)
done

ultimately
show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ valid-sops ′
valid-dd ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′ msb

′ Ssb
′

by (auto simp del: fun-upd-apply)
next

case False

then obtain r where r-in: r ∈ set sb and volatile-r: is-volatile-Writesb r
by (auto simp add: outstanding-refs-conv)

from takeWhile-dropWhile-real-prefix
[OF r-in, of (Not ◦ is-volatile-Writesb), simplified, OF volatile-r]
obtain a ′ v ′ sb ′′ sop ′ A ′ L ′ R ′ W ′ where

sb-split: sb = takeWhile (Not ◦ is-volatile-Writesb) sb @ Writesb True a ′ sop ′ v ′ A ′ L ′

R ′ W ′# sb ′′

and
drop: dropWhile (Not ◦ is-volatile-Writesb) sb = Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′#

sb ′′

apply (auto)
subgoal for y ys

apply (case-tac y)
apply auto
done
done

from drop suspends have suspends: suspends = Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′#
sb ′′

by simp

have (ts, m, S) ⇒d
∗ (ts, m, S) by auto

moreover

note flush-commute =
flush-all-until-volatile-write-append-unflushed [OF False i-bound tssb-i]

486

have Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′ ∈ set sb
by (subst sb-split) auto

note drop-app = dropWhile-append1 [OF this, of (Not ◦ is-volatile-Writesb), simplified]

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb (sb@[Writesb False a (D,f) (f

jsb) A L R W]) 6= {})
by (auto simp: outstanding-refs-append)

have (tssb ′,msb,Ssb
′) ∼ (ts,m,S)

apply (rule sim-config.intros)
apply (simp add: m flush-commute tssb ′ Osb

′ Rsb
′ jsb ′ sb ′)

using share-all-until-volatile-write-Write-commute
[OF i-bound tssb-i [simplified issb]]

apply (clarsimp simp add: S Ssb
′ tssb ′ sb ′ Osb

′ Rsb
′ jsb ′)

using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i is-sim D ′

apply (clarsimp simp add: Let-def nth-list-update is-sim drop-app
read-tmps-append suspends
prog-instrs-append-Writesb instrs-append-Writesb hd-prog-append-Writesb
drop issb tssb ′ sb ′ Osb

′ Rsb
′ Ssb

′

jsb ′ Dsb
′ acquired-append takeWhile-append1 [OF r-in]

volatile-r
split: if-split-asm)

done
ultimately show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ valid-dd ′

valid-sops ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′ msb

′ Ssb
′

by (auto simp del: fun-upd-apply)
qed

next
case (SBHWriteVolatile a D f A L R W)
then obtain

issb: issb = Write True a (D, f) A L R W# issb ′ and
Osb

′: Osb
′=Osb and

Rsb
′: Rsb

′=Rsb and
jsb ′: jsb ′ = jsb and
Dsb

′: Dsb
′=True and

sb ′: sb ′=sb@[Writesb True a (D, f) (f jsb) A L R W] and
msb

′: msb
′ = msb and

Ssb
′: Ssb

′=Ssb

by auto

from data-dependency-consistent-instrs [OF i-bound tssb-i]
have D-subset: D ⊆ dom jsb

by (simp add: issb)

487

from safe-memop-flush-sb [simplified issb] obtain
a-unowned-others-ts:

∀ j<length (map owned ts). i 6= j −→ (a /∈ owned (ts!j) ∪ dom (released (ts!j)))
and

L-subset: L ⊆ A and
A-shared-owned: A ⊆ dom (share ?drop-sb S) ∪ acquired True sb Osb and
R-acq: R ⊆ acquired True sb Osb and
A-R: A ∩ R = {} and

A-unowned-by-others-ts:
∀ j<length (map owned ts). i6=j −→ (A ∩ (owned (ts!j) ∪ dom (released (ts!j))) = {})

and
a-not-ro ′: a /∈ read-only (share ?drop-sb S)
by cases auto

from a-unowned-others-ts ts-sim leq
have a-unowned-others:
∀ j<length tssb. i 6= j −→
(let (-,-,-,sbj,-,Oj,-) = tssb!j in

a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj ∧
a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj))

apply (clarsimp simp add: Let-def)
subgoal for j

apply (drule-tac x=j in spec)
apply (auto simp add: dom-release-takeWhile)
done
done

have a-not-ro: a /∈ read-only (share sb Ssb)
proof

assume a: a ∈ read-only (share sb Ssb)
from local.read-only-unowned-axioms have read-only-unowned Ssb tssb.

from in-read-only-share-all-until-volatile-write ′ [OF ownership-distinct-tssb shar-
ing-consis-tssb

‹read-only-unowned Ssb tssb› i-bound tssb-i a-unowned-others a]
have a ∈ read-only (share ?drop-sb S)

by (simp add: S)
with a-not-ro ′ show False by simp

qed

from A-unowned-by-others-ts ts-sim leq
have A-unowned-by-others:

∀ j<length tssb. i 6=j −→ (let (-,-,-,sbj,-,Oj,-) = tssb!j
in A ∩ (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj ∪

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)) = {})
apply (clarsimp simp add: Let-def)
subgoal for j

apply (drule-tac x=j in spec)
apply (force simp add: dom-release-takeWhile)

488

done
done

have a-not-acquired-others: ∀ j<length (map O-sb tssb). i 6= j −→
(let (Oj,sbj) = (map O-sb tssb)!j in a /∈ all-acquired sbj)

proof −
{

fix j Oj sbj

assume j-bound: j < length (map owned tssb)
assume neq-i-j: i6=j
assume tssb-j: (map O-sb tssb)!j = (Oj,sbj)
assume conflict: a ∈ all-acquired sbj

have False
proof −

from j-bound leq
have j-bound ′: j < length (map owned ts)

by auto
from j-bound have j-bound ′′: j < length tssb

by auto
from j-bound ′ have j-bound ′′′: j < length ts

by simp

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

from ts-sim [rule-format, OF j-bound ′′] tssb-j j-bound ′′

obtain pj suspendsj issbj Rj Dsbj Dj jsbj isj where
tssb-j: tssb ! j = (pj,issbj, jsbj, sbj, Dsbj,Oj,Rj) and
suspendsj: suspendsj = dropWhile (Not ◦ is-volatile-Writesb) sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and

Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj,

acquired True ?take-sbj Oj,
release ?take-sbj (dom Ssb) Rj)

apply (cases tssb!j)
apply (force simp add: Let-def)
done

from a-unowned-others [rule-format,OF - neq-i-j] tssb-j j-bound
obtain a-unacq: a /∈ acquired True ?take-sbj Oj and a-not-shared: a /∈ all-shared

?take-sbj

by auto
have conflict-drop: a ∈ all-acquired suspendsj
proof (rule ccontr)

assume a /∈ all-acquired suspendsj
with all-acquired-append [of ?take-sbj ?drop-sbj] conflict
have a ∈ all-acquired ?take-sbj

489

by (auto simp add: suspendsj)
from all-acquired-unshared-acquired [OF this a-not-shared] a-unacq
show False by auto

qed

from j-bound ′′′ i-bound ′ have j-bound-ts ′: j < length ?ts ′
by simp

from split-all-acquired-in [OF conflict-drop]
show ?thesis
proof

assume ∃ sop a ′ v ys zs A L R W.
suspendsj = ys @ Writesb True a ′ sop v A L R W# zs ∧ a ∈ A

then
obtain a ′ sop ′ v ′ ys zs A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs
(is suspendsj = ?suspends) and
a-A ′: a ∈ A ′

by blast

from sharing-consis [OF j-bound ′′ tssb-j]
have sharing-consis-j: sharing-consistent Ssb Oj sbj.
then have A ′-R ′: A ′ ∩ R ′ = {}

by (simp add: sharing-consistent-append [of - - ?take-sbj ?drop-sbj, simplified]
suspendsj [symmetric] split-suspendsj sharing-consistent-append)

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts ′-j: ?ts ′!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by auto

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj suspendsj = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

490

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis-j: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb›

j-bound ′′ tssb-j this]
have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j
tssb-i tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m-j]
have reads-consis-flush-suspend: reads-consistent True (acquired True ?take-sbj Oj)

(flush ?drop-sb m) suspendsj.

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])
by (simp add: split-suspendsj reads-consistent-append)

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]). valid-sop
sop

apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

491

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]
have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]

split-suspendsj)

have acq-simp:
acquired True (ys @ [Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])

(acquired True ?take-sbj Oj) =
acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]
and sb ′=zs, simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts ′-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop
distinct-read-tmps-drop [simplified split-suspendsj]

no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=share ?drop-sb S]
obtain isj ′ Rj

′ where
isj ′: instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

∗

(?ts ′[j:=(last-prog
(hd-prog pj (Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs)) (ys@[Writesb

True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]),
isj ′,
jsbj |‘ (dom jsbj − read-tmps zs),

492

(), True, acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ −
R ′,Rj

′)],
flush (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (flush ?drop-sb m),
share (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (share ?drop-sb S))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append outstanding-refs-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb, jsb,(),

Dsb, acquired True sb Osb, release sb (dom Ssb) Rsb)
by simp

note conflict-computation = rtranclp-trans [OF steps-flush-sb steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this i-bound-ys ts-ys-i, simplified issb]
have a-unowned:

∀ j < length ?ts-ys. i6=j −→ (let (Oj) = map owned ?ts-ys!j in a /∈ Oj)
apply cases
apply (auto simp add: Let-def issb)
done

from a-A ′ a-unowned [rule-format, of j] neq-i-j j-bound ′ A ′-R ′

show False
by (auto simp add: Let-def)

next
assume ∃A L R W ys zs. suspendsj = ys @ Ghostsb A L R W# zs ∧ a ∈ A
then
obtain A ′ L ′ R ′ W ′ ys zs where

split-suspendsj: suspendsj = ys @ Ghostsb A ′ L ′ R ′ W ′# zs
(is suspendsj = ?suspends) and

a-A ′: a ∈ A ′

by blast

from sharing-consis [OF j-bound ′′ tssb-j]
have sharing-consis-j: sharing-consistent Ssb Oj sbj.
then have A ′-R ′: A ′ ∩ R ′ = {}

by (simp add: sharing-consistent-append [of - - ?take-sbj ?drop-sbj, simplified]
suspendsj [symmetric] split-suspendsj sharing-consistent-append)

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

493

from tsj neq-i-j j-bound
have ts ′-j: ?ts ′!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj, release ?take-sbj (dom Ssb) Rj)
by auto

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj suspendsj = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis-j: reads-consistent False Oj msb sbj.
from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing

Ssb tssb›
j-bound ′′ tssb-j this]

have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj
by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j
tssb-i tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m-j]
have reads-consis-flush-suspend: reads-consistent True (acquired True ?take-sbj Oj)

(flush ?drop-sb m) suspendsj.

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) (ys@[Ghostsb A ′ L ′ R ′ W ′])
by (simp add: split-suspendsj reads-consistent-append)

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys@[Ghostsb A ′ L ′ R ′ W ′]). valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

494

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]
have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Ghostsb A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]

split-suspendsj)

have acq-simp:
acquired True (ys @ [Ghostsb A ′ L ′ R ′ W ′])

(acquired True ?take-sbj Oj) =
acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Ghostsb A ′ L ′ R ′ W ′] and sb ′=zs,
simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts ′-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys

495

hist-consis ′ [simplified split-suspendsj] valid-sops-drop
distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=share ?drop-sb S]
obtain isj ′ Rj

′ where
isj ′: instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

∗

(?ts ′[j:=(last-prog
(hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs)) (ys@[Ghostsb A ′ L ′ R ′ W ′]),
isj ′,
jsbj |‘ (dom jsbj − read-tmps zs),
(),
Dj ∨ outstanding-refs is-volatile-Writesb (ys @ [Ghostsb A ′ L ′ R ′

W ′]) 6= {}, acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′,Rj
′)],

flush (ys@[Ghostsb A ′ L ′ R ′ W ′]) (flush ?drop-sb m),
share (ys@[Ghostsb A ′ L ′ R ′ W ′]) (share ?drop-sb S))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb,jsb,(),

Dsb, acquired True sb Osb, release sb (dom Ssb) Rsb)
by simp

note conflict-computation = rtranclp-trans [OF steps-flush-sb steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this i-bound-ys ts-ys-i, simplified issb]
have a-unowned:

∀ j < length ?ts-ys. i6=j −→ (let (Oj) = map owned ?ts-ys!j in a /∈ Oj)
apply cases
apply (auto simp add: Let-def issb)
done

from a-A ′ a-unowned [rule-format, of j] neq-i-j j-bound ′ A ′-R ′

show False
by (auto simp add: Let-def)

qed
qed

}
thus ?thesis

by (auto simp add: Let-def)
qed

have A-unused-by-others:
∀ j<length (map O-sb tssb). i 6= j −→

496

(let (Oj, sbj) = map O-sb tssb! j
in A ∩ outstanding-refs is-volatile-Writesb sbj = {})

proof −
{

fix j Oj sbj

assume j-bound: j < length (map owned tssb)
assume neq-i-j: i6=j
assume tssb-j: (map O-sb tssb)!j = (Oj,sbj)
assume conflict: A ∩ outstanding-refs is-volatile-Writesb sbj 6= {}
have False
proof −

from j-bound leq
have j-bound ′: j < length (map owned ts)

by auto
from j-bound have j-bound ′′: j < length tssb

by auto
from j-bound ′ have j-bound ′′′: j < length ts

by simp

from conflict obtain a ′ where
a ′-in: a ′ ∈ A and

a ′-in-j: a ′ ∈ outstanding-refs is-volatile-Writesb sbj

by auto

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

from ts-sim [rule-format, OF j-bound ′′] tssb-j j-bound ′′

obtain pj suspendsj issbj Dsbj Dj Rj jsbj isj where
tssb-j: tssb ! j = (pj,issbj, jsbj, sbj,Dsbj,Oj,Rj) and
suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(), Dj,
acquired True ?take-sbj Oj,
release ?take-sbj (dom Ssb) Rj)

apply (cases tssb!j)
apply (force simp add: Let-def)
done

have a ′ ∈ outstanding-refs is-volatile-Writesb suspendsj
proof −

from a ′-in-j
have a ′ ∈ outstanding-refs is-volatile-Writesb (?take-sbj @ ?drop-sbj)

by simp
thus ?thesis

apply (simp only: outstanding-refs-append suspendsj)
apply (auto simp add: outstanding-refs-conv dest: set-takeWhileD)
done

497

qed

from split-volatile-Writesb-in-outstanding-refs [OF this]
obtain sop v ys zs A ′ L ′ R ′ W ′ where
split-suspendsj: suspendsj = ys @ Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs (is suspendsj

= ?suspends)
by blast

from direct-memop-step.WriteVolatile [where j=jsb and m=flush ?drop-sb m]
have (Write True a (D, f) A L R W# issb ′,

jsb, (), flush ?drop-sb m,Dsb,acquired True sb Osb,
release sb (dom Ssb) Rsb,
share ?drop-sb S) →

(issb ′, jsb, (), (flush ?drop-sb m)(a := f jsb), True, acquired True sb Osb ∪
A − R, Map.empty,

share ?drop-sb S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF
i-bound-ts ′ [simplified issb] ts ′-i [simplified issb] this [simplified issb]]

have store-step: (?ts ′, flush ?drop-sb m,share ?drop-sb S) ⇒d

(?ts ′[i := (psb, issb ′, jsb, (),
True, acquired True sb Osb ∪ A − R,Map.empty)],
(flush ?drop-sb m)(a := f jsb), share ?drop-sb S ⊕W R 	A L)

(is - ⇒d (?ts-A, ?m-A, ?share-A))
by (simp add: issb)

from i-bound ′ have i-bound ′′: i < length ?ts-A
by simp

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts-A-j: ?ts-A!j = (hd-prog pj (ys @ Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs), isj,

jsbj |‘ (dom jsbj − read-tmps (ys @ Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs)), (), Dj,
acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by (simp add: split-suspendsj)

from j-bound ′′′ i-bound ′ neq-i-j have j-bound ′′′′: j < length ?ts-A
by simp

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.

498

then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb› j-bound ′′

tssb-j reads-consis]
have reads-consis-m: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j tssb-i
tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m]
have reads-consis-flush-m: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) suspendsj.

from a-unowned-others [rule-format, OF - neq-i-j] j-bound tssb-j
obtain a-notin-owns-j: a /∈ acquired True ?take-sbj Oj and a-unshared: a /∈ all-shared

?take-sbj

by auto
from a-not-acquired-others [rule-format, OF - neq-i-j] j-bound tssb-j
have a-not-acquired-j: a /∈ all-acquired sbj

by auto

from outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′′ tssb-j]
have nvo-j: non-volatile-owned-or-read-only False Ssb Oj sbj.

have a-no-non-vol-read: a /∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj

proof
assume a-in-nvr:a ∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj

from reads-consistent-drop [OF reads-consis]
have rc: reads-consistent True (acquired True ?take-sbj Oj) (flush ?take-sbj msb)

?drop-sbj.

from non-volatile-owned-or-read-only-drop [OF nvo-j]
have nvo-j-drop: non-volatile-owned-or-read-only True (share ?take-sbj Ssb)
(acquired True ?take-sbj Oj)
?drop-sbj

499

by simp

from outstanding-refs-non-volatile-Readsb-all-acquired [OF rc this a-in-nvr]

have a-owns-acq-ror:
a ∈ Oj ∪ all-acquired sbj ∪ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by (auto dest!: acquired-all-acquired-in all-acquired-takeWhile-dropWhile-in
simp add: acquired-takeWhile-non-volatile-Writesb)

have a-unowned-j: a /∈ Oj ∪ all-acquired sbj

proof (cases a ∈ Oj)
case False with a-not-acquired-j show ?thesis by auto

next
case True
from all-shared-acquired-in [OF True a-unshared] a-notin-owns-j
have False by auto thus ?thesis ..

qed
with a-owns-acq-ror
have a-ror: a ∈ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by auto

with read-only-reads-unowned [OF j-bound ′′ i-bound neq-i-j [symmetric] tssb-j tssb-i]
have a-unowned-sb: a /∈ Osb ∪ all-acquired sb

by auto

from sharing-consis [OF j-bound ′′ tssb-j] sharing-consistent-append [of Ssb Oj ?take-sbj

?drop-sbj]
have consis-j-drop: sharing-consistent (share ?take-sbj Ssb) (acquired True ?take-sbj

Oj) ?drop-sbj

by auto

from read-only-reads-read-only [OF nvo-j-drop consis-j-drop] a-ror a-unowned-j
all-acquired-append [of ?take-sbj ?drop-sbj] acquired-takeWhile-non-volatile-Writesb

[of sbj Oj]
have a ∈ read-only (share ?take-sbj Ssb)

by (auto simp add:)
from read-only-share-all-shared [OF this] a-unshared

have a ∈ read-only Ssb

by fastforce

from read-only-unacquired-share [OF read-only-unowned [OF i-bound tssb-i]
weak-sharing-consis [OF i-bound tssb-i] this] a-unowned-sb

have a ∈ read-only (share sb Ssb)
by auto

with a-not-ro show False
by simp

qed

500

with reads-consistent-mem-eq-on-non-volatile-reads [OF - subset-refl
reads-consis-flush-m]

have reads-consistent True (acquired True ?take-sbj Oj) ?m-A suspendsj
by (auto simp add: suspendsj)

hence reads-consis-m-A-ys: reads-consistent True (acquired True ?take-sbj Oj) ?m-A
ys

by (simp add: split-suspendsj reads-consistent-append)

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops ys. valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)

501

done

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop h-consis]
last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb ys = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from flush-store-buffer-append [
OF j-bound ′′′′ isj [simplified split-suspendsj] cph [simplified suspendsj]

ts-A-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-m-A-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop distinct-read-tmps-drop

[simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?share-A]

obtain isj ′ Rj
′ where

isj ′: instrs (Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs) @ issbj =
isj ′ @ prog-instrs (Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs) and

steps-ys: (?ts-A, ?m-A, ?share-A) ⇒d
∗

(?ts-A[j:= (last-prog (hd-prog pj (Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs)) ys,
isj ′,

jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′ sop v A ′ L ′ R ′ W ′ #
zs)),(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys
(acquired True ?take-sbj Oj),Rj

′)],
flush ys ?m-A,
share ys ?share-A)

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto)

note conflict-computation = rtranclp-trans [OF rtranclp-r-rtranclp [OF steps-flush-sb,
OF store-step] steps-ys]

from cph
have causal-program-history issbj ((ys @ [Writesb True a ′ sop v A ′ L ′ R ′ W ′]) @ zs)

by simp
from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Write True a ′ sop A ′ L ′ R ′ W ′#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from j-bound ′′′

502

have j-bound-ys: j < length ?ts-ys
by auto

from j-bound-ys neq-i-j
have ts-ys-j: ?ts-ys!j=(last-prog (hd-prog pj (Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs))

ys, isj ′,
jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs)),(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {},
acquired True ys (acquired True ?take-sbj Oj),Rj

′)
by auto

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j, simplified isj ′]
have a-unowned:

∀ i < length ?ts-ys. j 6=i −→ (let (Oi) = map owned ?ts-ys!i in a ′ /∈ Oi)
apply cases
apply (auto simp add: Let-def issb)
done

from a ′-in a-unowned [rule-format, of i] neq-i-j i-bound ′ A-R
show False

by (auto simp add: Let-def)
qed

}
thus ?thesis

by (auto simp add: Let-def)
qed

have A-unaquired-by-others:
∀ j<length (map O-sb tssb). i 6= j −→

(let (Oj, sbj) = map O-sb tssb! j
in A ∩ all-acquired sbj = {})

proof −
{

fix j Oj sbj

assume j-bound: j < length (map owned tssb)
assume neq-i-j: i6=j
assume tssb-j: (map O-sb tssb)!j = (Oj,sbj)
assume conflict: A ∩ all-acquired sbj 6= {}
have False
proof −

from j-bound leq
have j-bound ′: j < length (map owned ts)

by auto
from j-bound have j-bound ′′: j < length tssb

by auto
from j-bound ′ have j-bound ′′′: j < length ts

by simp

503

from conflict obtain a ′ where
a ′-in: a ′ ∈ A and

a ′-in-j: a ′ ∈ all-acquired sbj

by auto

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

from ts-sim [rule-format, OF j-bound ′′] tssb-j j-bound ′′

obtain pj suspendsj issbj Dsbj Dj Rj jsbj isj where
tssb-j: tssb ! j = (pj,issbj, jsbj, sbj,Dsbj,Oj,Rj) and
suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)

apply (cases tssb!j)
apply (force simp add: Let-def)
done

from a ′-in-j all-acquired-append [of ?take-sbj ?drop-sbj]
have a ′ ∈ all-acquired ?take-sbj ∨ a ′ ∈ all-acquired suspendsj

by (auto simp add: suspendsj)
thus False
proof

assume a ′ ∈ all-acquired ?take-sbj

with A-unowned-by-others [rule-format, OF - neq-i-j] tssb-j j-bound a ′-in
show False

by (auto dest: all-acquired-unshared-acquired)
next

assume conflict-drop: a ′ ∈ all-acquired suspendsj
from split-all-acquired-in [OF conflict-drop]

show False
proof

assume ∃ sop a ′′ v ys zs A L R W.
suspendsj = ys @ Writesb True a ′′ sop v A L R W# zs ∧ a ′ ∈ A

then
obtain a ′′ sop ′ v ′ ys zs A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′# zs
(is suspendsj = ?suspends) and

a ′-A ′: a ′ ∈ A ′

by auto

from direct-memop-step.WriteVolatile [where j=jsb and m=flush ?drop-sb m]
have (Write True a (D, f) A L R W # issb ′,

jsb, (), flush ?drop-sb m ,Dsb, acquired True sb Osb,
release sb (dom Ssb) Rsb,
share ?drop-sb S) →

504

(issb ′, jsb, (), (flush ?drop-sb m)(a := f jsb), True, acquired True sb Osb ∪
A − R,Map.empty,

share ?drop-sb S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF
i-bound-ts ′ [simplified issb] ts ′-i [simplified issb] this [simplified issb]]

have store-step: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

(?ts ′[i := (psb, issb ′,
jsb, (),True, acquired True sb Osb ∪ A − R,Map.empty)],

(flush ?drop-sb m)(a := f jsb),share ?drop-sb S ⊕W R 	A L)
(is - ⇒d (?ts-A, ?m-A, ?share-A))

by (simp add: issb)

from i-bound ′ have i-bound ′′: i < length ?ts-A
by simp

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts-A-j: ?ts-A!j = (hd-prog pj (ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′# zs),

isj,
jsbj |‘ (dom jsbj − read-tmps (ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′# zs)), (), Dj,
acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)

by (simp add: split-suspendsj)

from j-bound ′′′ i-bound ′ neq-i-j have j-bound ′′′′: j < length ?ts-A
by simp

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.

505

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb›

j-bound ′′

tssb-j reads-consis]
have reads-consis-m: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j
tssb-i tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m]
have reads-consis-flush-m: reads-consistent True (acquired True ?take-sbj Oj)

(flush ?drop-sb m) suspendsj.

from a-unowned-others [rule-format, OF - neq-i-j] j-bound tssb-j
obtain a-notin-owns-j: a /∈ acquired True ?take-sbj Oj and a-unshared: a /∈ all-shared

?take-sbj

by auto
from a-not-acquired-others [rule-format, OF - neq-i-j] j-bound tssb-j
have a-not-acquired-j: a /∈ all-acquired sbj

by auto

from outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′′ tssb-j]
have nvo-j: non-volatile-owned-or-read-only False Ssb Oj sbj.

have a-no-non-vol-read: a /∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj

proof
assume a-in-nvr:a ∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj

from reads-consistent-drop [OF reads-consis]
have rc: reads-consistent True (acquired True ?take-sbj Oj) (flush ?take-sbj msb)

?drop-sbj.

from non-volatile-owned-or-read-only-drop [OF nvo-j]
have nvo-j-drop: non-volatile-owned-or-read-only True (share ?take-sbj Ssb)
(acquired True ?take-sbj Oj)
?drop-sbj

by simp

from outstanding-refs-non-volatile-Readsb-all-acquired [OF rc this a-in-nvr]

have a-owns-acq-ror:
a ∈ Oj ∪ all-acquired sbj ∪ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by (auto dest!: acquired-all-acquired-in all-acquired-takeWhile-dropWhile-in
simp add: acquired-takeWhile-non-volatile-Writesb)

have a-unowned-j: a /∈ Oj ∪ all-acquired sbj

proof (cases a ∈ Oj)
case False with a-not-acquired-j show ?thesis by auto

506

next
case True
from all-shared-acquired-in [OF True a-unshared] a-notin-owns-j
have False by auto thus ?thesis ..

qed

with a-owns-acq-ror
have a-ror: a ∈ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by auto

with read-only-reads-unowned [OF j-bound ′′ i-bound neq-i-j [symmetric] tssb-j tssb-i]
have a-unowned-sb: a /∈ Osb ∪ all-acquired sb

by auto

from sharing-consis [OF j-bound ′′ tssb-j] sharing-consistent-append [of Ssb Oj ?take-sbj

?drop-sbj]
have consis-j-drop: sharing-consistent (share ?take-sbj Ssb) (acquired True ?take-sbj Oj)

?drop-sbj

by auto

from read-only-reads-read-only [OF nvo-j-drop consis-j-drop] a-ror a-unowned-j
all-acquired-append [of ?take-sbj ?drop-sbj] acquired-takeWhile-non-volatile-Writesb

[of sbj Oj]
have a ∈ read-only (share ?take-sbj Ssb)

by (auto)
from read-only-share-all-shared [OF this] a-unshared
have a ∈ read-only Ssb

by fastforce

from read-only-unacquired-share [OF read-only-unowned [OF i-bound tssb-i]
weak-sharing-consis [OF i-bound tssb-i] this] a-unowned-sb

have a ∈ read-only (share sb Ssb)
by auto

with a-not-ro show False
by simp

qed
with reads-consistent-mem-eq-on-non-volatile-reads [OF - subset-refl

reads-consis-flush-m]
have reads-consistent True (acquired True ?take-sbj Oj) ?m-A suspendsj

by (auto simp add: suspendsj)

hence reads-consis-m-A-ys: reads-consistent True (acquired True ?take-sbj Oj) ?m-A
ys

by (simp add: split-suspendsj reads-consistent-append)

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

507

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops ys. valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop h-consis]

last-prog-hd-prog
have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj

by (simp add: split-suspendsj [symmetric] suspendsj)
from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb ys = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

508

from flush-store-buffer-append [
OF j-bound ′′′′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts-A-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-m-A-ys

hist-consis ′ [simplified split-suspendsj] valid-sops-drop distinct-read-tmps-drop
[simplified split-suspendsj]

no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?share-A]

obtain isj ′ Rj
′ where

isj ′: instrs (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs) @ issbj =
isj ′ @ prog-instrs (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs) and

steps-ys: (?ts-A, ?m-A, ?share-A) ⇒d
∗

(?ts-A[j:= (last-prog (hd-prog pj (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs)) ys,
isj ′,
jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ #

zs)),(),
Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys (acquired

True ?take-sbj Oj),Rj
′)],

flush ys ?m-A, share ys ?share-A)
(is (-,-,-) ⇒d

∗ (?ts-ys,?m-ys,?shared-ys))
by (auto)

note conflict-computation = rtranclp-trans [OF rtranclp-r-rtranclp [OF
steps-flush-sb, OF store-step] steps-ys]

from cph
have causal-program-history issbj ((ys @ [Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′]) @

zs)
by simp

from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Write True a ′′ sop ′ A ′ L ′ R ′ W ′#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from j-bound ′′′

have j-bound-ys: j < length ?ts-ys
by auto

from j-bound-ys neq-i-j
have ts-ys-j: ?ts-ys!j=(last-prog (hd-prog pj (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′#

zs)) ys, isj ′,
jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′# zs)),(),Dj

∨ outstanding-refs is-volatile-Writesb ys 6= {},
acquired True ys (acquired True ?take-sbj Oj),Rj

′)
by auto

509

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j, simplified isj ′]
have A ′-unowned:

∀ i < length ?ts-ys. j 6=i −→ (let (Oi) = map owned ?ts-ys!i in A ′ ∩ Oi = {})
apply cases
apply (fastforce simp add: Let-def issb)+
done

from a ′-in a ′-A ′ A ′-unowned [rule-format, of i] neq-i-j i-bound ′ A-R
show False

by (auto simp add: Let-def)
next

assume ∃A L R W ys zs.
suspendsj = ys @ Ghostsb A L R W # zs ∧ a ′ ∈ A

then
obtain ys zs A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Ghostsb A ′ L ′ R ′ W ′# zs (is suspendsj = ?suspends)
and

a ′-A ′: a ′ ∈ A ′

by auto

from direct-memop-step.WriteVolatile [where j=jsb and m=flush ?drop-sb m]
have (Write True a (D, f) A L R W# issb ′,

jsb, (), flush ?drop-sb m,Dsb,acquired True sb Osb,
release sb (dom Ssb) Rsb,

share ?drop-sb S) →
(issb ′, jsb, (), (flush ?drop-sb m)(a := f jsb), True, acquired True sb Osb ∪

A − R, Map.empty,
share ?drop-sb S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF
i-bound-ts ′ [simplified issb] ts ′-i [simplified issb] this [simplified issb]]

have store-step: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

(?ts ′[i := (psb, issb ′,
jsb, (), True, acquired True sb Osb ∪ A − R,Map.empty)],

(flush ?drop-sb m)(a := f jsb),share ?drop-sb S ⊕W R 	A L)
(is - ⇒d (?ts-A, ?m-A, ?share-A))

by (simp add: issb)

from i-bound ′ have i-bound ′′: i < length ?ts-A
by simp

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)

510

apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts-A-j: ?ts-A!j = (hd-prog pj (ys @ Ghostsb A ′ L ′ R ′ W ′# zs), isj,

jsbj |‘ (dom jsbj − read-tmps (ys @ Ghostsb A ′ L ′ R ′ W ′# zs)), (),Dj,
acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by (simp add: split-suspendsj)

from j-bound ′′′ i-bound ′ neq-i-j have j-bound ′′′′: j < length ?ts-A
by simp

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb›

j-bound ′′

tssb-j reads-consis]
have reads-consis-m: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j
tssb-i tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m]
have reads-consis-flush-m: reads-consistent True (acquired True ?take-sbj Oj)

(flush ?drop-sb m) suspendsj.

from a-unowned-others [rule-format, OF - neq-i-j] j-bound tssb-j
obtain a-notin-owns-j: a /∈ acquired True ?take-sbj Oj and a-unshared: a /∈ all-shared

?take-sbj

by auto
from a-not-acquired-others [rule-format, OF - neq-i-j] j-bound tssb-j
have a-not-acquired-j: a /∈ all-acquired sbj

by auto

from outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′′ tssb-j]

511

have nvo-j: non-volatile-owned-or-read-only False Ssb Oj sbj.

have a-no-non-vol-read: a /∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj

proof
assume a-in-nvr:a ∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj

from reads-consistent-drop [OF reads-consis]
have rc: reads-consistent True (acquired True ?take-sbj Oj) (flush ?take-sbj msb)

?drop-sbj.

from non-volatile-owned-or-read-only-drop [OF nvo-j]
have nvo-j-drop: non-volatile-owned-or-read-only True (share ?take-sbj Ssb)
(acquired True ?take-sbj Oj)
?drop-sbj

by simp

from outstanding-refs-non-volatile-Readsb-all-acquired [OF rc this a-in-nvr]

have a-owns-acq-ror:
a ∈ Oj ∪ all-acquired sbj ∪ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by (auto dest!: acquired-all-acquired-in all-acquired-takeWhile-dropWhile-in
simp add: acquired-takeWhile-non-volatile-Writesb)

have a-unowned-j: a /∈ Oj ∪ all-acquired sbj

proof (cases a ∈ Oj)
case False with a-not-acquired-j show ?thesis by auto

next
case True
from all-shared-acquired-in [OF True a-unshared] a-notin-owns-j
have False by auto thus ?thesis ..

qed

with a-owns-acq-ror
have a-ror: a ∈ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by auto

with read-only-reads-unowned [OF j-bound ′′ i-bound neq-i-j [symmetric] tssb-j tssb-i]
have a-unowned-sb: a /∈ Osb ∪ all-acquired sb

by auto

from sharing-consis [OF j-bound ′′ tssb-j] sharing-consistent-append [of Ssb Oj ?take-sbj

?drop-sbj]
have consis-j-drop: sharing-consistent (share ?take-sbj Ssb) (acquired True ?take-sbj Oj)

?drop-sbj

by auto

from read-only-reads-read-only [OF nvo-j-drop consis-j-drop] a-ror a-unowned-j
all-acquired-append [of ?take-sbj ?drop-sbj] acquired-takeWhile-non-volatile-Writesb

[of sbj Oj]
have a ∈ read-only (share ?take-sbj Ssb)

512

by (auto)
from read-only-share-all-shared [OF this] a-unshared
have a ∈ read-only Ssb

by fastforce

from read-only-unacquired-share [OF read-only-unowned [OF i-bound tssb-i]
weak-sharing-consis [OF i-bound tssb-i] this] a-unowned-sb

have a ∈ read-only (share sb Ssb)
by auto

with a-not-ro show False
by simp

qed

with reads-consistent-mem-eq-on-non-volatile-reads [OF - subset-refl
reads-consis-flush-m]

have reads-consistent True (acquired True ?take-sbj Oj) ?m-A suspendsj
by (auto simp add: suspendsj)

hence reads-consis-m-A-ys: reads-consistent True (acquired True ?take-sbj Oj) ?m-A
ys

by (simp add: split-suspendsj reads-consistent-append)

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

513

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops ys. valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop h-consis]

last-prog-hd-prog
have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj

by (simp add: split-suspendsj [symmetric] suspendsj)
from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb ys = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from flush-store-buffer-append [
OF j-bound ′′′′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts-A-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-m-A-ys

hist-consis ′ [simplified split-suspendsj] valid-sops-drop distinct-read-tmps-drop
[simplified split-suspendsj]

no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?share-A]

obtain isj ′ Rj
′ where

isj ′: instrs (Ghostsb A ′ L ′ R ′ W ′ # zs) @ issbj =
isj ′ @ prog-instrs (Ghostsb A ′ L ′ R ′ W ′# zs) and

steps-ys: (?ts-A, ?m-A, ?share-A) ⇒d
∗

(?ts-A[j:= (last-prog (hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs)) ys,
isj ′,
jsbj |‘ (dom jsbj − read-tmps (Ghostsb A ′ L ′ R ′ W ′# zs)),(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys (acquired
True ?take-sbj Oj),Rj

′)],
flush ys ?m-A,
share ys ?share-A)

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto)

514

note conflict-computation = rtranclp-trans [OF rtranclp-r-rtranclp [OF
steps-flush-sb, OF store-step] steps-ys]

from cph
have causal-program-history issbj ((ys @ [Ghostsb A ′ L ′ R ′ W ′]) @ zs)

by simp
from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Ghost A ′ L ′ R ′ W ′#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from j-bound ′′′

have j-bound-ys: j < length ?ts-ys
by auto

from j-bound-ys neq-i-j
have ts-ys-j: ?ts-ys!j=(last-prog (hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs)) ys, isj ′,

jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′# zs)),(),Dj

∨ outstanding-refs is-volatile-Writesb ys 6= {},
acquired True ys (acquired True ?take-sbj Oj),Rj

′)
by auto

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j, simplified isj ′]
have A ′-unowned:

∀ i < length ?ts-ys. j 6=i −→ (let (Oi) = map owned ?ts-ys!i in A ′ ∩ Oi = {})
apply cases
apply (fastforce simp add: Let-def issb)+
done

from a ′-in a ′-A ′ A ′-unowned [rule-format, of i] neq-i-j i-bound ′ A-R
show False

by (auto simp add: Let-def)
qed

qed
qed

}
thus ?thesis

by (auto simp add: Let-def)
qed

have A-no-read-only-reads-by-others:
∀ j<length (map O-sb tssb). i 6= j −→

(let (Oj, sbj) = map O-sb tssb! j

515

in A ∩ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj)
Oj)

(dropWhile (Not ◦ is-volatile-Writesb) sbj) = {})
proof −

{
fix j Oj sbj

assume j-bound: j < length (map O-sb tssb)
assume neq-i-j: i6=j
assume tssb-j: (map O-sb tssb)!j = (Oj,sbj)
let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

assume conflict: A ∩ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj 6= {}
have False
proof −

from j-bound leq
have j-bound ′: j < length (map owned ts)

by auto
from j-bound have j-bound ′′: j < length tssb

by auto
from j-bound ′ have j-bound ′′′: j < length ts

by simp

from conflict obtain a ′ where
a ′-in: a ′ ∈ A and

a ′-in-j: a ′ ∈ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by auto

from ts-sim [rule-format, OF j-bound ′′] tssb-j j-bound ′′

obtain pj suspendsj issbj Dsbj Dj Rj jsbj isj where
tssb-j: tssb ! j = (pj,issbj, jsbj, sbj,Dsbj,Oj,Rj) and
suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(), Dj, acquired True ?take-sbj Oj,release
?take-sbj (dom Ssb) Rj)

apply (cases tssb!j)
apply (force simp add: Let-def)
done

from split-in-read-only-reads [OF a ′-in-j [simplified suspendsj [symmetric]]]
obtain t v ys zs where
split-suspendsj: suspendsj = ys @ Readsb False a ′ t v# zs (is suspendsj = ?suspends)

and
a ′-unacq: a ′ /∈ acquired True ys (acquired True ?take-sbj Oj)
by blast

516

from direct-memop-step.WriteVolatile [where j=jsb and m=flush ?drop-sb m]
have (Write True a (D, f) A L R W# issb ′,

jsb, (), flush ?drop-sb m, Dsb,acquired True sb Osb,
release sb (dom Ssb) Rsb, share ?drop-sb S) →
(issb ′, jsb, (), (flush ?drop-sb m)(a := f jsb), True, acquired True sb Osb ∪

A − R,Map.empty,
share ?drop-sb S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF
i-bound-ts ′ [simplified issb] ts ′-i [simplified issb] this [simplified issb]]

have store-step: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

(?ts ′[i := (psb, issb ′, jsb, (),
True, acquired True sb Osb ∪ A − R,Map.empty)],
(flush ?drop-sb m)(a := f jsb),share ?drop-sb S ⊕W R 	A L)

(is - ⇒d (?ts-A, ?m-A, ?share-A))
by (simp add: issb)

from i-bound ′ have i-bound ′′: i < length ?ts-A
by simp

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts-A-j: ?ts-A!j = (hd-prog pj (ys @ Readsb False a ′ t v# zs), isj,

jsbj |‘ (dom jsbj − read-tmps (ys @ Readsb False a ′ t v# zs)), (), Dj,
acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by (simp add: split-suspendsj)

from j-bound ′′′ i-bound ′ neq-i-j have j-bound ′′′′: j < length ?ts-A
by simp

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]

517

have reads-consis: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb› j-bound ′′

tssb-j reads-consis]
have reads-consis-m: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j tssb-i
tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m]
have reads-consis-flush-m: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) suspendsj.

from a-unowned-others [rule-format, OF j-bound ′′ neq-i-j] j-bound tssb-j
obtain a-notin-owns-j: a /∈ acquired True ?take-sbj Oj and a-unshared: a /∈ all-shared

?take-sbj

by auto
from a-not-acquired-others [rule-format, OF j-bound neq-i-j] j-bound tssb-j
have a-not-acquired-j: a /∈ all-acquired sbj

by auto

from outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′′ tssb-j]
have nvo-j: non-volatile-owned-or-read-only False Ssb Oj sbj.

have a-no-non-vol-read: a /∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj

proof
assume a-in-nvr:a ∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj

from reads-consistent-drop [OF reads-consis]
have rc: reads-consistent True (acquired True ?take-sbj Oj) (flush ?take-sbj msb)

?drop-sbj.

from non-volatile-owned-or-read-only-drop [OF nvo-j]
have nvo-j-drop: non-volatile-owned-or-read-only True (share ?take-sbj Ssb)
(acquired True ?take-sbj Oj)
?drop-sbj

by simp

from outstanding-refs-non-volatile-Readsb-all-acquired [OF rc this a-in-nvr]

have a-owns-acq-ror:
a ∈ Oj ∪ all-acquired sbj ∪ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by (auto dest!: acquired-all-acquired-in all-acquired-takeWhile-dropWhile-in
simp add: acquired-takeWhile-non-volatile-Writesb)

have a-unowned-j: a /∈ Oj ∪ all-acquired sbj

518

proof (cases a ∈ Oj)
case False with a-not-acquired-j show ?thesis by auto

next
case True
from all-shared-acquired-in [OF True a-unshared] a-notin-owns-j
have False by auto thus ?thesis ..

qed

with a-owns-acq-ror
have a-ror: a ∈ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by auto

with read-only-reads-unowned [OF j-bound ′′ i-bound neq-i-j [symmetric] tssb-j tssb-i]
have a-unowned-sb: a /∈ Osb ∪ all-acquired sb

by auto

from sharing-consis [OF j-bound ′′ tssb-j] sharing-consistent-append [of Ssb Oj ?take-sbj

?drop-sbj]
have consis-j-drop: sharing-consistent (share ?take-sbj Ssb) (acquired True ?take-sbj

Oj) ?drop-sbj

by auto

from read-only-reads-read-only [OF nvo-j-drop consis-j-drop] a-ror a-unowned-j
all-acquired-append [of ?take-sbj ?drop-sbj] acquired-takeWhile-non-volatile-Writesb

[of sbj Oj]
have a ∈ read-only (share ?take-sbj Ssb)

by (auto)
from read-only-share-all-shared [OF this] a-unshared
have a ∈ read-only Ssb

by fastforce

from read-only-unacquired-share [OF read-only-unowned [OF i-bound tssb-i]
weak-sharing-consis [OF i-bound tssb-i] this] a-unowned-sb

have a ∈ read-only (share sb Ssb)
by auto

with a-not-ro show False
by simp

qed

with reads-consistent-mem-eq-on-non-volatile-reads [OF - subset-refl
reads-consis-flush-m]

have reads-consistent True (acquired True ?take-sbj Oj) ?m-A suspendsj
by (auto simp add: suspendsj)

hence reads-consis-m-A-ys: reads-consistent True (acquired True ?take-sbj Oj) ?m-A
ys

by (simp add: split-suspendsj reads-consistent-append)

519

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops ys. valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop h-consis]
last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb ys = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]

520

split-suspendsj)

from flush-store-buffer-append [
OF j-bound ′′′′ isj [simplified split-suspendsj] cph [simplified suspendsj]

ts-A-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-m-A-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop distinct-read-tmps-drop

[simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?share-A]

obtain isj ′ Rj
′ where

isj ′: instrs (Readsb False a ′ t v# zs) @ issbj =
isj ′ @ prog-instrs (Readsb False a ′ t v# zs) and

steps-ys: (?ts-A, ?m-A, ?share-A) ⇒d
∗

(?ts-A[j:= (last-prog (hd-prog pj (Readsb False a ′ t v# zs)) ys,
isj ′,
jsbj |‘ (dom jsbj − read-tmps (Readsb False a ′ t v# zs)),(),
Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys

(acquired True ?take-sbj Oj),Rj
′)],

flush ys ?m-A,
share ys ?share-A)

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto)

note conflict-computation = rtranclp-trans [OF rtranclp-r-rtranclp [OF steps-flush-sb,
OF store-step] steps-ys]

from cph
have causal-program-history issbj ((ys @ [Readsb False a ′ t v]) @ zs)

by simp
from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Read False a ′ t#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from j-bound ′′′

have j-bound-ys: j < length ?ts-ys
by auto

from j-bound-ys neq-i-j
have ts-ys-j: ?ts-ys!j=(last-prog (hd-prog pj (Readsb False a ′ t v# zs)) ys, isj ′,

jsbj |‘ (dom jsbj − read-tmps (Readsb False a ′ t v# zs)),(),
Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {},

acquired True ys (acquired True ?take-sbj Oj),Rj
′)

by auto

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]

521

have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j, simplified isj ′]
have a ′ ∈ acquired True ys (acquired True ?take-sbj Oj) ∨

a ′ ∈ read-only (share ys (share ?drop-sb S ⊕W R 	A L))
apply cases
apply (auto simp add: Let-def issb)
done

with a ′-unacq
have a ′-ro: a ′ ∈ read-only (share ys (share ?drop-sb S ⊕W R 	A L))

by auto
from a ′-in
have a ′-not-ro: a ′ /∈ read-only (share ?drop-sb S ⊕W R 	A L)

by (auto simp add: in-read-only-convs)

have a ′ ∈ Oj ∪ all-acquired sbj

proof −
{

assume a-notin: a ′ /∈ Oj ∪ all-acquired sbj

from weak-sharing-consis [OF j-bound ′′ tssb-j]
have weak-sharing-consistent Oj sbj.
with weak-sharing-consistent-append [of Oj ?take-sbj ?drop-sbj]
have weak-sharing-consistent (acquired True ?take-sbj Oj) suspendsj

by (auto simp add: suspendsj)

with split-suspendsj
have weak-consis: weak-sharing-consistent (acquired True ?take-sbj Oj) ys

by (simp add: weak-sharing-consistent-append)
from all-acquired-append [of ?take-sbj ?drop-sbj]
have all-acquired ys ⊆ all-acquired sbj

apply (clarsimp)
apply (clarsimp simp add: suspendsj [symmetric] split-suspendsj all-acquired-append)
done

with a-notin acquired-takeWhile-non-volatile-Writesb [of sbj Oj]
all-acquired-append [of ?take-sbj ?drop-sbj]

have a ′ /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj ∪ all-acquired ys
by auto

from read-only-share-unowned [OF weak-consis this a ′-ro]
have a ′ ∈ read-only (share ?drop-sb S ⊕W R 	A L) .

with a ′-not-ro have False
by auto

}
thus ?thesis by blast

qed

moreover
from A-unaquired-by-others [rule-format, OF j-bound neq-i-j] tssb-j j-bound

522

have A ∩ all-acquired sbj = {}
by (auto simp add: Let-def)

moreover
from A-unowned-by-others [rule-format, OF j-bound ′′ neq-i-j] tssb-j j-bound
have A ∩ Oj = {}

by (auto simp add: Let-def dest: all-shared-acquired-in)
moreover note a ′-in
ultimately
show False

by auto
qed

}
thus ?thesis

by (auto simp add: Let-def)
qed

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof −
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have non-volatile-owned-or-read-only False Ssb Osb (sb @ [Writesb True a (D,f) (f jsb)

A L R W])
by (auto simp add: non-volatile-owned-or-read-only-append)

from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ Osb

′ Ssb
′)

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof (unfold-locales)
fix i1 j p1 is1 O1 R1 D1 xs1 sb1 pj isj Oj Rj Dj xsj sbj

assume i1-bound: i1 < length tssb ′

assume j-bound: j < length tssb ′

assume i1-j: i1 6= j
assume ts-i1: tssb ′!i1 = (p1,is1,xs1,sb1,D1,O1,R1)
assume ts-j: tssb ′!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {}
proof (cases i1=i)

case True
with i1-j have i-j: i 6=j

by simp

from j-bound have j-bound ′: j < length tssb
by (simp add: tssb ′)

hence j-bound ′′: j < length (map owned tssb)
by simp

from ts-j i-j have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
by (simp add: tssb ′)

from a-unowned-others [rule-format, OF - i-j] i-j ts-j j-bound
obtain a-notin-j: a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj and

523

a-unshared: a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
by (auto simp add: Let-def tssb ′)

from a-not-acquired-others [rule-format, OF - i-j] i-j ts-j j-bound
have a-notin-acq: a /∈ all-acquired sbj

by (auto simp add: Let-def tssb ′)
from outstanding-volatile-writes-unowned-by-others
[OF i-bound j-bound ′ i-j tssb-i ts-j ′]
have (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb = {}.
with ts-i1 a-notin-j a-unshared a-notin-acq True i-bound show ?thesis

by (auto simp add: tssb ′ sb ′ outstanding-refs-append
acquired-takeWhile-non-volatile-Writesb dest: all-shared-acquired-in)
next

case False
note i1-i = this
from i1-bound have i1-bound ′: i1 < length tssb

by (simp add: tssb ′)
from ts-i1 False have ts-i1 ′: tssb!i1 = (p1,is1,xs1,sb1,D1,O1,R1)

by (simp add: tssb ′)
show ?thesis
proof (cases j=i)

case True

from i1-bound ′

have i1-bound ′′: i1 < length (map owned tssb)
by simp

from outstanding-volatile-writes-unowned-by-others
[OF i1-bound ′ i-bound i1-i ts-i1 ′ tssb-i]
have (Osb ∪ all-acquired sb) ∩ outstanding-refs is-volatile-Writesb sb1 = {}.
moreover
from A-unused-by-others [rule-format, OF - False [symmetric]] False ts-i1 i1-bound
have A ∩ outstanding-refs is-volatile-Writesb sb1 = {}

by (auto simp add: Let-def tssb ′)

ultimately
show ?thesis

using ts-j True tssb ′

by (auto simp add: i-bound tssb ′ Osb
′ sb ′ all-acquired-append)

next
case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j False have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from outstanding-volatile-writes-unowned-by-others

[OF i1-bound ′ j-bound ′ i1-j ts-i1 ′ ts-j ′]
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {} .

qed
qed

qed

524

next
show ownership-distinct tssb ′

proof −
have ∀ j<length tssb. i 6= j −→
(let (pj, isj, jj, sbj, Dj, Oj,Rj) = tssb ! j

in (Osb ∪ all-acquired sb ′) ∩ (Oj ∪ all-acquired sbj) = {})
proof −

{
fix j pj isj Oj Rj Dj acqj jj sbj

assume neq-i-j: i 6= j
assume j-bound: j < length tssb
assume tssb-j: tssb ! j = (pj, isj, jj, sbj, Dj, Oj,Rj)
have (Osb ∪ all-acquired sb ′) ∩ (Oj ∪ all-acquired sbj) = {}
proof −

{
fix a ′

assume a ′-in-i: a ′ ∈ (Osb ∪ all-acquired sb ′)
assume a ′-in-j: a ′ ∈ (Oj ∪ all-acquired sbj)
have False
proof −

from a ′-in-i have a ′ ∈ (Osb ∪ all-acquired sb) ∨ a ′ ∈ A
by (simp add: sb ′ all-acquired-append)

then show False
proof

assume a ′ ∈ (Osb ∪ all-acquired sb)
with ownership-distinct [OF i-bound j-bound neq-i-j tssb-i tssb-j] a ′-in-j
show ?thesis

by auto
next

assume a ′ ∈ A
moreover
have j-bound ′: j < length (map owned tssb)

using j-bound by auto
from A-unowned-by-others [rule-format, OF - neq-i-j] tssb-j j-bound
obtain A ∩ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj = {} and

A ∩ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) = {}
by (auto simp add: Let-def)

moreover
from A-unaquired-by-others [rule-format, OF - neq-i-j] tssb-j j-bound
have A ∩ all-acquired sbj = {}

by auto
ultimately
show ?thesis

using a ′-in-j
by (auto dest: all-shared-acquired-in)

qed
qed

}
then show ?thesis by auto

qed

525

}
then show ?thesis by (fastforce simp add: Let-def)

qed

from ownership-distinct-nth-update [OF i-bound tssb-i this]
show ?thesis by (simp add: tssb ′ Osb

′ sb ′)
qed

next
show read-only-reads-unowned tssb ′

proof
fix n m
fix pn isn On Rn Dn jn sbn pm ism Om Rm Dm jm sbm

assume n-bound: n < length tssb ′

and m-bound: m < length tssb ′

and neq-n-m: n6=m
and nth: tssb ′!n = (pn, isn, jn, sbn, Dn, On,Rn)
and mth: tssb ′!m =(pm, ism, jm, sbm, Dm, Om,Rm)

from n-bound have n-bound ′: n < length tssb by (simp add: tssb ′)
from m-bound have m-bound ′: m < length tssb by (simp add: tssb ′)

show (Om ∪ all-acquired sbm) ∩
read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn) On)
(dropWhile (Not ◦ is-volatile-Writesb) sbn) =
{}

proof (cases m=i)
case True
with neq-n-m have neq-n-i: n 6=i

by auto
with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)

by (auto simp add: tssb ′)
note read-only-reads-unowned [OF n-bound ′ i-bound neq-n-i nth ′ tssb-i]
moreover
from A-no-read-only-reads-by-others [rule-format, OF - neq-n-i [symmetric]] n-bound ′

nth ′

have A ∩ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn)
On)

(dropWhile (Not ◦ is-volatile-Writesb) sbn) =
{}

by auto
ultimately
show ?thesis

using True tssb-i nth ′ mth n-bound ′ m-bound ′

by (auto simp add: tssb ′ Osb
′ sb ′ all-acquired-append)

next
case False
note neq-m-i = this
with m-bound mth i-bound have mth ′: tssb!m = (pm, ism, jm, sbm, Dm, Om,Rm)

by (auto simp add: tssb ′)
show ?thesis
proof (cases n=i)

526

case True
note read-only-reads-unowned [OF i-bound m-bound ′ neq-m-i [symmetric] tssb-i

mth ′]
then show ?thesis

using True neq-m-i tssb-i nth mth n-bound ′ m-bound ′

apply (case-tac outstanding-refs (is-volatile-Writesb) sb = {})
apply (clarsimp simp add: outstanding-vol-write-take-drop-appends

acquired-append read-only-reads-append tssb ′ sb ′ Osb
′)+

done
next

case False
with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)

by (auto simp add: tssb ′)
from read-only-reads-unowned [OF n-bound ′ m-bound ′ neq-n-m nth ′ mth ′] False

neq-m-i
show ?thesis

by (clarsimp)
qed

qed
qed

qed

have valid-hist ′: valid-history program-step tssb ′

proof −
from valid-history [OF i-bound tssb-i]
have history-consistent jsb (hd-prog psb sb) sb.
with valid-write-sops [OF i-bound tssb-i] D-subset

valid-implies-valid-prog-hd [OF i-bound tssb-i valid]
have history-consistent jsb (hd-prog psb (sb@[Writesb True a (D,f) (f jsb) A L R W]))

(sb@ [Writesb True a (D,f) (f jsb) A L R W])
apply −
apply (rule history-consistent-appendI)
apply (auto simp add: hd-prog-append-Writesb)
done

from valid-history-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ jsb ′)

qed

have valid-reads ′: valid-reads msb tssb ′

proof −
from valid-reads [OF i-bound tssb-i]
have reads-consistent False Osb msb sb .
from reads-consistent-snoc-Writesb [OF this]
have reads-consistent False Osb msb (sb @ [Writesb True a (D,f) (f jsb) A L R W]).
from valid-reads-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ Osb

′)
qed

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)

527

from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]
have non-volatile-writes-unshared Ssb (sb @ [Writesb True a (D,f) (f jsb) A L R W])

by (auto simp add: non-volatile-writes-unshared-append)
from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ sb ′ Ssb
′)

next
from sharing-consis [OF i-bound tssb-i]
have consis ′: sharing-consistent Ssb Osb sb.
from A-shared-owned
have A ⊆ dom (share ?drop-sb S) ∪ acquired True sb Osb

by (simp add: sharing-consistent-append acquired-takeWhile-non-volatile-Writesb)
moreover have dom (share ?drop-sb S) ⊆ dom S ∪ dom (share sb Ssb)
proof

fix a ′

assume a ′-in: a ′ ∈ dom (share ?drop-sb S)
from share-unshared-in [OF a ′-in]
show a ′ ∈ dom S ∪ dom (share sb Ssb)
proof

assume a ′ ∈ dom (share ?drop-sb Map.empty)
from share-mono-in [OF this] share-append [of ?take-sb ?drop-sb]
have a ′ ∈ dom (share sb Ssb)

by auto
thus ?thesis

by simp
next

assume a ′ ∈ dom S ∧ a ′ /∈ all-unshared ?drop-sb
thus ?thesis by auto

qed
qed
ultimately
have A-subset: A ⊆ dom S ∪ dom (share sb Ssb) ∪ acquired True sb Osb

by auto

with A-unowned-by-others

have A ⊆ dom (share sb Ssb) ∪ acquired True sb Osb

proof −
{

fix x
assume x-A: x ∈ A
have x ∈ dom (share sb Ssb) ∪ acquired True sb Osb

proof −
{

assume x ∈ dom S

from share-all-until-volatile-write-share-acquired [OF ‹sharing-consis Ssb tssb›

i-bound tssb-i this [simplified S]]
A-unowned-by-others x-A

528

have ?thesis
by (fastforce simp add: Let-def)

}
with A-subset show ?thesis using x-A by auto

qed
}
thus ?thesis by blast

qed
with consis ′ L-subset A-R R-acq
have sharing-consistent Ssb Osb (sb @ [Writesb True a (D,f) (f jsb) A L R W])

by (simp add: sharing-consistent-append acquired-takeWhile-non-volatile-Writesb)
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ sb ′ Ssb

′)
next

from read-only-unowned-nth-update [OF i-bound read-only-unowned [OF i-bound tssb-i]
]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ Osb

′)
next

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′

by (simp add: tssb ′ sb ′ Osb
′ Ssb

′)
next

from a-not-ro no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
have no-write-to-read-only-memory Ssb (sb @ [Writesb True a (D,f) (f jsb) A L R W])

by (simp add: no-write-to-read-only-memory-append)

from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound this]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb ′)

qed

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]
have distinct-load-tmps issb ′ by (simp add: issb)
from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′ by (simp add: tssb ′)

next
from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps (sb @ [Writesb True a (D, f) (f jsb) A L R W])

by (auto simp add: distinct-read-tmps-append)
from read-tmps-distinct-nth-update [OF i-bound this]
show read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′)

next
from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩ read-tmps (sb @ [Writesb True a (D, f) (f jsb) A L R W]) ={}

by (auto simp add: read-tmps-append issb)
from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]

529

show load-tmps-read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′)
qed

have valid-sops ′: valid-sops tssb ′

proof −
from valid-store-sops [OF i-bound tssb-i]
obtain valid-Df: valid-sop (D,f) and

valid-store-sops ′: ∀ sop∈store-sops issb ′. valid-sop sop
by (auto simp add: issb)

from valid-Df valid-write-sops [OF i-bound tssb-i]
have valid-write-sops ′: ∀ sop∈write-sops (sb@ [Writesb True a (D, f) (f jsb) A L R W]).

valid-sop sop
by (auto simp add: write-sops-append)

from valid-sops-nth-update [OF i-bound valid-write-sops ′ valid-store-sops ′]
show ?thesis by (simp add: tssb ′ sb ′)

qed

have valid-dd ′: valid-data-dependency tssb ′

proof −
from data-dependency-consistent-instrs [OF i-bound tssb-i]
obtain D-indep: D ∩ load-tmps issb ′ = {} and

dd-is: data-dependency-consistent-instrs (dom jsb ′) issb ′

by (auto simp add: issb jsb ′)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i] D-indep
have load-tmps issb ′ ∩

⋃
(fst ‘ write-sops (sb@ [Writesb True a (D, f) (f jsb) A L R W]))

={}
by (auto simp add: write-sops-append issb)

from valid-data-dependency-nth-update [OF i-bound dd-is this]
show ?thesis by (simp add: tssb ′ sb ′)

qed

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −
from load-tmps-fresh [OF i-bound tssb-i]
have load-tmps issb ′ ∩ dom jsb = {}

by (auto simp add: issb)
from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ jsb ′)

qed

have enough-flushs ′: enough-flushs tssb ′

proof −
from clean-no-outstanding-volatile-Writesb [OF i-bound tssb-i]
have ¬ True −→ outstanding-refs is-volatile-Writesb (sb@[Writesb True a (D,f) (f jsb) A

L R W]) = {}
by (auto simp add: outstanding-refs-append)

from enough-flushs-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′ sb ′ Dsb
′)

qed

530

have valid-program-history ′: valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb .
then have causal ′: causal-program-history issb ′ (sb@[Writesb True a (D,f) (f jsb) A L R

W])
by (auto simp: causal-program-history-Write issb)

from valid-last-prog [OF i-bound tssb-i]
have last-prog psb sb = psb.
hence last-prog psb (sb @ [Writesb True a (D,f) (f jsb) A L R W]) = psb

by (simp add: last-prog-append-Writesb)
from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′ sb ′)
qed

show ?thesis
proof (cases outstanding-refs is-volatile-Writesb sb = {})

case True

from True have flush-all: takeWhile (Not ◦ is-volatile-Writesb) sb = sb
by (auto simp add: outstanding-refs-conv)

from True have suspend-nothing: dropWhile (Not ◦ is-volatile-Writesb) sb = []
by (auto simp add: outstanding-refs-conv)

hence suspends-empty: suspends = []
by (simp add: suspends)

from suspends-empty is-sim have is: is = Write True a (D,f) A L R W# issb ′

by (simp add: issb)
with suspends-empty ts-i
have ts-i: ts!i = (psb, Write True a (D,f) A L R W# issb ′, jsb,(),D, acquired True ?take-sb
Osb, release ?take-sb (dom Ssb) Rsb)

by simp

have (ts, m, S) ⇒d
∗ (ts, m, S) by auto

moreover

note flush-commute =
flush-all-until-volatile-write-append-volatile-write-commute

[OF True i-bound tssb-i]

from True
have drop-app: dropWhile (Not ◦ is-volatile-Writesb)
(sb@[Writesb True a (D,f) (f jsb) A L R W]) =

[Writesb True a (D,f) (f jsb) A L R W]

531

by (auto simp add: outstanding-refs-conv)

have (tssb ′,msb,Ssb
′) ∼ (ts,m,S)

apply (rule sim-config.intros)
apply (simp add: m flush-commute tssb ′ jsb ′ Osb

′ Rsb
′ sb ′)

using share-all-until-volatile-write-Write-commute
[OF i-bound tssb-i [simplified issb]]

apply (clarsimp simp add: S Ssb
′ tssb ′ sb ′ Osb

′ Rsb
′ jsb ′)

using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i
apply (clarsimp simp add: Let-def nth-list-update drop-app

tssb ′ sb ′ Osb
′ Rsb

′ Ssb
′ jsb ′ Dsb

′ outstanding-refs-append takeWhile-tail flush-all
split: if-split-asm)

done

ultimately show ?thesis
using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′

valid-sops ′
valid-dd ′ load-tmps-fresh ′ enough-flushs ′

valid-program-history ′ valid ′ msb
′ Ssb

′

by auto
next

case False

then obtain r where r-in: r ∈ set sb and volatile-r: is-volatile-Writesb r
by (auto simp add: outstanding-refs-conv)

from takeWhile-dropWhile-real-prefix
[OF r-in, of (Not ◦ is-volatile-Writesb), simplified, OF volatile-r]
obtain a ′ v ′ sb ′′ A ′′ L ′′ R ′′ W ′′ sop ′ where

sb-split: sb = takeWhile (Not ◦ is-volatile-Writesb) sb @ Writesb True a ′ sop ′ v ′ A ′′ L ′′

R ′′ W ′′# sb ′′

and
drop: dropWhile (Not ◦ is-volatile-Writesb) sb = Writesb True a ′ sop ′ v ′ A ′′ L ′′ R ′′ W ′′#

sb ′′

apply (auto)
subgoal for y ys

apply (case-tac y)
apply auto
done
done

from drop suspends have suspends: suspends = Writesb True a ′ sop ′ v ′ A ′′ L ′′ R ′′ W ′′#
sb ′′

by simp

have (ts, m, S) ⇒d
∗ (ts, m, S) by auto

moreover

note flush-commute =

532

flush-all-until-volatile-write-append-unflushed [OF False i-bound tssb-i]

have Writesb True a ′ sop ′ v ′ A ′′ L ′′ R ′′ W ′′ ∈ set sb
by (subst sb-split) auto

note drop-app = dropWhile-append1
[OF this, of (Not ◦ is-volatile-Writesb), simplified]

have (tssb ′,msb,Ssb
′) ∼ (ts,m,S)

apply (rule sim-config.intros)
apply (simp add: m flush-commute tssb ′ Osb

′ Rsb
′ jsb ′ sb ′)

using share-all-until-volatile-write-Write-commute
[OF i-bound tssb-i [simplified issb]]

apply (clarsimp simp add: S Ssb
′ tssb ′ sb ′ Osb

′ Rsb
′ jsb ′)

using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i is-sim
apply (clarsimp simp add: Let-def nth-list-update is-sim drop-app

read-tmps-append suspends
prog-instrs-append-Writesb instrs-append-Writesb hd-prog-append-Writesb

drop issb tssb ′ sb ′ Osb
′ Ssb

′ Rsb
′ jsb ′ Dsb

′ outstanding-refs-append takeWhile-tail
release-append split: if-split-asm)

done
ultimately show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ valid-dd ′

valid-sops ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′ msb

′ Ssb
′

by (auto simp del: fun-upd-apply)
qed

next
case SBHFence
then obtain

issb: issb = Fence # issb ′ and
sb: sb=[] and
Osb

′: Osb
′=Osb and

Rsb
′: Rsb

′=Map.empty and
jsb ′: jsb ′ = jsb and
Dsb

′: ¬ Dsb
′ and

sb ′: sb ′=sb and
msb

′: msb
′ = msb and

Ssb
′: Ssb

′=Ssb

by auto

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof −
have non-volatile-owned-or-read-only False Ssb Osb []

by simp
from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ sb Osb

′ Ssb
′)

533

qed
next

from outstanding-volatile-writes-unowned-by-others-store-buffer
[OF i-bound tssb-i subset-refl]
show outstanding-volatile-writes-unowned-by-others tssb ′

by (simp add: tssb ′ sb ′ sb Osb
′)

next
from read-only-reads-unowned-nth-update [OF i-bound tssb-i, of [] Osb]
show read-only-reads-unowned tssb ′

by (simp add: tssb ′ sb ′ sb Osb
′)

next
from ownership-distinct-instructions-read-value-store-buffer-independent
[OF i-bound tssb-i]
show ownership-distinct tssb ′

by (simp add: tssb ′ sb ′ sb Osb
′)

qed

have valid-hist ′: valid-history program-step tssb ′

proof −
from valid-history [OF i-bound tssb-i]
have history-consistent jsb (hd-prog psb []) [] by simp
from valid-history-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ sb Osb

′ jsb ′)
qed

have valid-reads ′: valid-reads msb tssb ′

proof −
have reads-consistent False Osb msb [] by simp
from valid-reads-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ sb Osb

′)
qed

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
have non-volatile-writes-unshared Ssb []

by (simp add: sb)
from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ sb sb ′ Ssb
′)

next
have sharing-consistent Ssb Osb [] by simp
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ sb ′ sb Ssb

′)
next

from read-only-unowned-nth-update [OF i-bound read-only-unowned [OF i-bound tssb-i]
]
show read-only-unowned Ssb

′ tssb ′

534

by (simp add: Ssb
′ tssb ′ Osb

′)
next

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′ by (simp add: tssb ′ sb ′ sb Osb
′ Ssb

′)
next

from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound, of []]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb ′ sb)

qed

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]
have distinct-load-tmps issb ′

by (auto simp add: issb split: instr.splits)
from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′ sb Osb

′ issb)
next

from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps [] by (simp add: tssb ′ sb ′ sb Osb

′)
from read-tmps-distinct-nth-update [OF i-bound this]
show read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′ sb Osb

′)
next

from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
load-tmps-distinct [OF i-bound tssb-i]

have load-tmps issb ′ ∩ read-tmps [] = {}
by (clarsimp)

from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′ sb Osb

′)
qed

have valid-sops ′: valid-sops tssb ′

proof −
from valid-store-sops [OF i-bound tssb-i]
obtain

valid-store-sops ′: ∀ sop∈store-sops issb ′. valid-sop sop
by (auto simp add: issb tssb ′ sb ′ sb Osb

′)

from valid-sops-nth-update [OF i-bound - valid-store-sops ′, where sb= []]
show ?thesis by (auto simp add: tssb ′ sb ′ sb Osb

′)
qed

have valid-dd ′: valid-data-dependency tssb ′

proof −
from data-dependency-consistent-instrs [OF i-bound tssb-i]
obtain

dd-is: data-dependency-consistent-instrs (dom jsb ′) issb ′

by (auto simp add: issb jsb ′)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩

⋃
(fst ‘ write-sops []) = {}

535

by (auto simp add: write-sops-append)
from valid-data-dependency-nth-update [OF i-bound dd-is this]
show ?thesis by (simp add: tssb ′ sb ′ sb Osb

′)
qed

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −
from load-tmps-fresh [OF i-bound tssb-i]
have load-tmps issb ′ ∩ dom jsb = {}

by (auto simp add: issb)
from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis by (simp add: issb tssb ′ sb ′ sb jsb ′)

qed

from enough-flushs-nth-update [OF i-bound, where sb=[]]
have enough-flushs ′: enough-flushs tssb ′

by (auto simp add: tssb ′ sb ′ sb)

have valid-program-history ′: valid-program-history tssb ′

proof −
have causal ′: causal-program-history issb ′ sb ′

by (simp add: issb sb sb ′)
have last-prog psb sb ′ = psb

by (simp add: sb ′ sb)
from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′ sb ′)
qed

from is-sim have is: is = Fence # issb ′

by (simp add: suspends sb issb)
with ts-i
have ts-i: ts!i = (psb, Fence # issb ′, jsb,(), D, acquired True ?take-sb Osb, release

?take-sb (dom Ssb) Rsb)
by (simp add: suspends sb)

from direct-memop-step.Fence
have (Fence # issb ′,

jsb, (),m,D, acquired True ?take-sb Osb, release ?take-sb (dom Ssb) Rsb, S) →
(issb ′, jsb, (), m, False, acquired True ?take-sb Osb, Map.empty, S).

from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i this]
have (ts, m, S) ⇒d

(ts[i := (psb, issb ′, jsb, (), False, acquired True ?take-sb Osb,Map.empty)], m, S).

moreover

have (tssb ′,msb,Ssb
′) ∼ (ts[i := (psb,issb ′, jsb,(), False,acquired True ?take-sb

Osb,Map.empty)],m,S)
apply (rule sim-config.intros)

536

apply (simp add: tssb ′ sb ′ Osb
′ Rsb

′ Ssb
′ m

flush-all-until-volatile-nth-update-unused [OF i-bound tssb-i])
using share-all-until-volatile-write-Fence-commute

[OF i-bound tssb-i [simplified issb sb]]
apply (clarsimp simp add: S tssb ′ Ssb

′ issb Osb
′ Rsb

′ jsb ′ sb ′ sb)
using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim
apply (clarsimp simp add: Let-def nth-list-update

tssb ′ sb ′ sb Osb
′ Rsb

′ Ssb
′ Dsb

′ ex-not jsb ′

split: if-split-asm)
done

ultimately
show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ valid-sops ′
valid-dd ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′ msb

′ Ssb
′

by (auto simp del: fun-upd-apply)
next

case (SBHRMWReadOnly cond t a D f ret A L R W)
then obtain

issb: issb = RMW a t (D,f) cond ret A L R W # issb ′ and
cond: ¬ (cond (jsb(t7→msb a))) and
Osb

′: Osb
′=Osb and

Rsb
′: Rsb

′=Map.empty and
jsb ′: jsb ′ = jsb(t 7→msb a) and
Dsb

′: ¬ Dsb
′ and

sb: sb=[] and
sb ′: sb ′=[] and
msb

′: msb
′ = msb and

Ssb
′: Ssb

′=Ssb

by auto

from safe-RMW-common [OF safe-memop-flush-sb [simplified issb]]
obtain access-cond: a ∈ Osb ∨ a ∈ dom S and
rels-cond: ∀ j < length ts. i6=j −→ released (ts!j) a 6= Some False

by (auto simp add: S sb)

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof −
have non-volatile-owned-or-read-only False Ssb Osb []

by simp
from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ sb Osb

′ Ssb
′)

qed
next

from outstanding-volatile-writes-unowned-by-others-store-buffer

537

[OF i-bound tssb-i subset-refl]
show outstanding-volatile-writes-unowned-by-others tssb ′

by (simp add: tssb ′ sb ′ sb Osb
′ Ssb

′)
next

from read-only-reads-unowned-nth-update [OF i-bound tssb-i, of [] Osb]
show read-only-reads-unowned tssb ′

by (simp add: tssb ′ sb ′ sb Osb
′)

next
from ownership-distinct-instructions-read-value-store-buffer-independent
[OF i-bound tssb-i]
show ownership-distinct tssb ′

by (simp add: tssb ′ sb ′ sb Osb
′)

qed

have valid-hist ′: valid-history program-step tssb ′

proof −
from valid-history [OF i-bound tssb-i]
have history-consistent (jsb(t 7→msb a)) (hd-prog psb []) [] by simp
from valid-history-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ sb Osb

′ jsb ′)
qed

have valid-reads ′: valid-reads msb tssb ′

proof −
have reads-consistent False Osb msb [] by simp
from valid-reads-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ sb Osb

′)
qed

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]
have non-volatile-writes-unshared Ssb []

by (simp add: sb)
from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ sb sb ′ Ssb
′)

next
have sharing-consistent Ssb Osb [] by simp
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ sb ′ sb Ssb

′)
next

from read-only-unowned-nth-update [OF i-bound read-only-unowned [OF i-bound tssb-i]
]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ Osb

′)
next

538

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′ by (simp add: tssb ′ sb ′ sb Osb
′ Ssb

′)
next

from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound, of []]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb ′ sb)

qed

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]
have distinct-load-tmps issb ′

by (auto simp add: issb split: instr.splits)
from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′ sb Osb

′ issb)
next

from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps [] by (simp add: tssb ′ sb ′ sb Osb

′)
from read-tmps-distinct-nth-update [OF i-bound this]
show read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′ sb Osb

′)
next

from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
load-tmps-distinct [OF i-bound tssb-i]

have load-tmps issb ′ ∩ read-tmps [] = {}
by (clarsimp)

from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′ sb Osb

′)
qed

have valid-sops ′: valid-sops tssb ′

proof −
from valid-store-sops [OF i-bound tssb-i]
obtain

valid-store-sops ′: ∀ sop∈store-sops issb ′. valid-sop sop
by (auto simp add: issb tssb ′ sb ′ sb Osb

′)

from valid-sops-nth-update [OF i-bound - valid-store-sops ′, where sb= []]
show ?thesis by (auto simp add: tssb ′ sb ′ sb Osb

′)
qed

have valid-dd ′: valid-data-dependency tssb ′

proof −
from data-dependency-consistent-instrs [OF i-bound tssb-i]
obtain

dd-is: data-dependency-consistent-instrs (dom jsb ′) issb ′

by (auto simp add: issb jsb ′)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩

⋃
(fst ‘ write-sops []) = {}

by (auto simp add: write-sops-append)
from valid-data-dependency-nth-update [OF i-bound dd-is this]

539

show ?thesis by (simp add: tssb ′ sb ′ sb Osb
′)

qed

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −
from load-tmps-fresh [OF i-bound tssb-i]
have load-tmps (RMW a t (D,f) cond ret A L R W# issb ′) ∩ dom jsb = {}

by (simp add: issb)
moreover
from load-tmps-distinct [OF i-bound tssb-i] have t /∈ load-tmps issb ′

by (auto simp add: issb)
ultimately have load-tmps issb ′ ∩ dom (jsb(t 7→ msb a)) = {}

by auto
from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ jsb ′)

qed

from enough-flushs-nth-update [OF i-bound, where sb=[]]
have enough-flushs ′: enough-flushs tssb ′

by (auto simp add: tssb ′ sb ′ sb)

have valid-program-history ′: valid-program-history tssb ′

proof −
have causal ′: causal-program-history issb ′ sb ′

by (simp add: issb sb sb ′)
have last-prog psb sb ′ = psb

by (simp add: sb ′ sb)
from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′ sb ′)
qed

from is-sim have is: is = RMW a t (D,f) cond ret A L R W# issb ′

by (simp add: suspends sb issb)
with ts-i
have ts-i: ts!i = (psb, RMW a t (D,f) cond ret A L R W# issb ′, jsb,(),

D, acquired True ?take-sb Osb, release ?take-sb (dom Ssb) Rsb)
by (simp add: suspends sb)

have flush-all-until-volatile-write tssb msb a = msb a
proof −

have ∀ j < length tssb. i 6= j −→
(let (-,-,-,sbj,-,-,-) = tssb!j

in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)
sbj))
proof −

{
fix j pj isj Oj Rj Dj xsj sbj

540

assume j-bound: j < length tssb
assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,isj, xsj, sbj, Dj, Oj,Rj)

have a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)
sbj)

proof
let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)
assume a-in: a ∈ outstanding-refs is-non-volatile-Writesb ?take-sbj

with outstanding-refs-takeWhile [where P ′= Not ◦ is-volatile-Writesb]
have a-in ′: a ∈ outstanding-refs is-non-volatile-Writesb sbj

by auto
with non-volatile-owned-or-read-only-outstanding-non-volatile-writes
[OF outstanding-non-volatile-refs-owned-or-read-only [OF j-bound jth]]
have j-owns: a ∈ Oj ∪ all-acquired sbj

by auto
from rels-cond [rule-format, OF j-bound [simplified leq] neq-i-j] ts-sim [rule-format,

OF j-bound] jth
have no-unsharing:release ?take-sbj (dom (Ssb)) Rj a 6= Some False

by (auto simp add: Let-def)
from access-cond
show False
proof

assume a ∈ Osb

with ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
j-owns

show False
by auto

next
assume a-shared: a ∈ dom S

with share-all-until-volatile-write-thread-local [OF ownership-distinct-tssb
sharing-consis-tssb j-bound jth j-owns]

have a-dom: a ∈ dom (share ?take-sbj Ssb)
by (auto simp add: S domIff)

from outstanding-non-volatile-writes-unshared [OF j-bound jth]
have non-volatile-writes-unshared Ssb sbj.
with non-volatile-writes-unshared-append [of Ssb (takeWhile (Not ◦ is-volatile-Writesb)

sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

have unshared-take: non-volatile-writes-unshared Ssb (takeWhile (Not ◦
is-volatile-Writesb) sbj)

by clarsimp

from release-not-unshared-no-write-take [OF unshared-take no-unsharing
a-dom] a-in

show False by auto
qed

qed
}
thus ?thesis

541

by (fastforce simp add: Let-def)
qed

from flush-all-until-volatile-write-buffered-val-conv
[OF - i-bound tssb-i this]
show ?thesis

by (simp add: sb)
qed

hence m-a: m a = msb a
by (simp add: m)

from cond have cond ′: ¬ cond (jsb(t 7→ m a))
by (simp add: m-a)

from direct-memop-step.RMWReadOnly [where cond=cond and j=jsb and m=m,
OF cond ′]

have (RMW a t (D, f) cond ret A L R W # issb ′,
jsb, (),m, D, Osb, Rsb, S) →
(issb ′, jsb(t 7→ m a), (), m, False, Osb, Map.empty, S).

from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i [simplified sb,
simplified] this]

have (ts, m, S) ⇒d (ts[i := (psb, issb ′,
jsb(t 7→ m a), (), False, Osb,Map.empty)], m, S).

moreover

have tmps-commute: jsb(t 7→ (msb a)) =
(jsb |‘ (dom jsb − {t}))(t 7→ (msb a))
apply (rule ext)
apply (auto simp add: restrict-map-def domIff)
done

have (tssb ′,msb,Ssb
′) ∼ (ts[i := (psb,issb ′, jsb(t 7→ m a),(), False,Osb,Map.empty)],m,S)

apply (rule sim-config.intros)
apply (simp add: tssb ′ sb ′ Osb

′ Rsb
′ m

flush-all-until-volatile-nth-update-unused [OF i-bound tssb-i, simplified sb])
using share-all-until-volatile-write-RMW-commute [OF i-bound tssb-i [simplified issb sb]]
apply (clarsimp simp add: S tssb ′ Ssb

′ issb Osb
′ jsb ′ sb ′ sb)

using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim
apply (clarsimp simp add: Let-def nth-list-update

tssb ′ sb ′ sb Osb
′ Rsb

′ Ssb
′ jsb ′ Dsb

′ ex-not m-a
split: if-split-asm)

apply (rule tmps-commute)
done

ultimately
show ?thesis

542

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ valid-sops ′
valid-dd ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′ msb

′ Ssb
′

by (auto simp del: fun-upd-apply)
next

case (SBHRMWWrite cond t a D f ret A L R W)
then obtain

issb: issb = RMW a t (D,f) cond ret A L R W # issb ′ and
cond: (cond (jsb(t7→msb a))) and
Osb

′: Osb
′=Osb ∪ A − R and

Rsb
′: Rsb

′=Map.empty and
Dsb

′: ¬ Dsb
′ and

jsb ′: jsb ′ = jsb(t 7→ret (msb a) (f (jsb(t7→msb a)))) and
sb: sb=[] and
sb ′: sb ′=[] and
msb

′: msb
′ = msb(a := f (jsb(t 7→msb a))) and

Ssb
′: Ssb

′=Ssb ⊕W R 	A L
by auto

from data-dependency-consistent-instrs [OF i-bound tssb-i]
have D-subset: D ⊆ dom jsb

by (simp add: issb)

from is-sim have is: is = RMW a t (D,f) cond ret A L R W # issb ′

by (simp add: suspends sb issb)
with ts-i
have ts-i: ts!i = (psb, RMW a t (D,f) cond ret A L R W # issb ′, jsb,(), D, Osb,Rsb)

by (simp add: suspends sb)

from safe-RMW-common [OF safe-memop-flush-sb [simplified issb]]
obtain access-cond: a ∈ Osb ∨ a ∈ dom S and
rels-cond: ∀ j < length ts. i6=j −→ released (ts!j) a 6= Some False

by (auto simp add: S sb)

have a-unflushed:
∀ j < length tssb. i 6= j −→

(let (-,-,-,sbj,-,-,-) = tssb!j
in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))
proof −

{
fix j pj isj Oj Rj Dj xsj sbj

assume j-bound: j < length tssb
assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,isj, xsj, sbj, Dj, Oj, Rj)
have a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)

sbj)
proof

543

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)
assume a-in: a ∈ outstanding-refs is-non-volatile-Writesb ?take-sbj

with outstanding-refs-takeWhile [where P ′= Not ◦ is-volatile-Writesb]
have a-in ′: a ∈ outstanding-refs is-non-volatile-Writesb sbj

by auto
with non-volatile-owned-or-read-only-outstanding-non-volatile-writes
[OF outstanding-non-volatile-refs-owned-or-read-only [OF j-bound jth]]
have j-owns: a ∈ Oj ∪ all-acquired sbj

by auto
with ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
have a-not-owns: a /∈ Osb ∪ all-acquired sb

by blast
assume a-in: a ∈ outstanding-refs is-non-volatile-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sbj)
with outstanding-refs-takeWhile [where P ′= Not ◦ is-volatile-Writesb]
have a-in ′: a ∈ outstanding-refs is-non-volatile-Writesb sbj

by auto
from rels-cond [rule-format, OF j-bound [simplified leq] neq-i-j] ts-sim [rule-format,

OF j-bound] jth
have no-unsharing:release ?take-sbj (dom (Ssb)) Rj a 6= Some False

by (auto simp add: Let-def)
from access-cond
show False
proof

assume a ∈ Osb

with ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
j-owns

show False
by auto

next
assume a-shared: a ∈ dom S

with share-all-until-volatile-write-thread-local [OF ownership-distinct-tssb
sharing-consis-tssb j-bound jth j-owns]

have a-dom: a ∈ dom (share ?take-sbj Ssb)
by (auto simp add: S domIff)

from outstanding-non-volatile-writes-unshared [OF j-bound jth]
have non-volatile-writes-unshared Ssb sbj.

with non-volatile-writes-unshared-append [of Ssb (takeWhile (Not ◦
is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

have unshared-take: non-volatile-writes-unshared Ssb (takeWhile (Not ◦
is-volatile-Writesb) sbj)

by clarsimp

from release-not-unshared-no-write-take [OF unshared-take no-unsharing
a-dom] a-in

show False by auto
qed

qed

544

}
thus ?thesis

by (fastforce simp add: Let-def)
qed

have flush-all-until-volatile-write tssb msb a = msb a
proof −

from flush-all-until-volatile-write-buffered-val-conv
[OF - i-bound tssb-i a-unflushed]
show ?thesis

by (simp add: sb)
qed

hence m-a: m a = msb a
by (simp add: m)

from cond have cond ′: cond (jsb(t 7→ m a))
by (simp add: m-a)

from safe-memop-flush-sb [simplified issb] cond ′

obtain
L-subset: L ⊆ A and
A-shared-owned: A ⊆ dom S ∪ Osb and
R-owned: R ⊆ Osb and

A-R: A ∩ R = {} and
a-unowned-others-ts:
∀ j<length ts. i 6= j −→ (a /∈ owned (ts!j) ∪ dom (released (ts!j))) and

A-unowned-by-others-ts:
∀ j<length ts. i 6= j −→ (A ∩ (owned (ts!j) ∪ dom (released (ts!j))) = {}) and

a-not-ro: a /∈ read-only S
by cases (auto simp add: sb)

from a-unowned-others-ts ts-sim leq
have a-unowned-others:
∀ j<length tssb. i 6= j −→
(let (-,-,-,sbj,-,Oj,-) = tssb!j in

a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj ∧
a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj))

apply (clarsimp simp add: Let-def)
subgoal for j

apply (drule-tac x=j in spec)
apply (auto simp add: dom-release-takeWhile)
done
done

from A-unowned-by-others-ts ts-sim leq
have A-unowned-by-others:

∀ j<length tssb. i 6=j −→ (let (-,-,-,sbj,-,Oj,-) = tssb!j
in A ∩ (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj ∪

545

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)) = {})
apply (clarsimp simp add: Let-def)
subgoal for j

apply (drule-tac x=j in spec)
apply (force simp add: dom-release-takeWhile)
done
done

have a-not-ro ′: a /∈ read-only Ssb

proof
assume a: a ∈ read-only (Ssb)

from local.read-only-unowned-axioms have read-only-unowned Ssb tssb.
from in-read-only-share-all-until-volatile-write ′ [OF ownership-distinct-tssb shar-

ing-consis-tssb
‹read-only-unowned Ssb tssb› i-bound tssb-i a-unowned-others, simplified sb,

simplified,
OF a]

have a ∈ read-only (S)
by (simp add: S)

with a-not-ro show False by simp
qed

{
fix j
fix pj issbj Oj Rj Dsbj jj sbj

assume j-bound: j < length tssb
assume tssb-j: tssb!j=(pj,issbj,jj,sbj,Dsbj,Oj,Rj)
assume neq-i-j: i6=j
have a /∈ unforwarded-non-volatile-reads (dropWhile (Not ◦ is-volatile-Writesb) sbj) {}
proof

let ?take-sbj = takeWhile (Not ◦ is-volatile-Writesb) sbj

let ?drop-sbj = dropWhile (Not ◦ is-volatile-Writesb) sbj

assume a-in: a ∈ unforwarded-non-volatile-reads ?drop-sbj {}

from a-unowned-others [rule-format, OF - neq-i-j] tssb-j j-bound
obtain a-unacq-take: a /∈ acquired True ?take-sbj Oj and a-not-shared: a /∈ all-shared

?take-sbj

by auto

note nvo-j = outstanding-non-volatile-refs-owned-or-read-only [OF j-bound tssb-j]

from non-volatile-owned-or-read-only-drop [OF nvo-j]
have nvo-drop-j: non-volatile-owned-or-read-only True (share ?take-sbj Ssb)

(acquired True ?take-sbj Oj) ?drop-sbj .

note consis-j = sharing-consis [OF j-bound tssb-j]
with sharing-consistent-append [of Ssb Oj ?take-sbj ?drop-sbj]
obtain consis-take-j: sharing-consistent Ssb Oj ?take-sbj and

consis-drop-j: sharing-consistent (share ?take-sbj Ssb)

546

(acquired True ?take-sbj Oj) ?drop-sbj

by auto

from in-unforwarded-non-volatile-reads-non-volatile-Readsb [OF a-in]
have a-in ′: a ∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj.

note reads-consis-j = valid-reads [OF j-bound tssb-j]
from reads-consistent-drop [OF this]
have reads-consis-drop-j:

reads-consistent True (acquired True ?take-sbj Oj) (flush ?take-sbj msb) ?drop-sbj.

from read-only-share-all-shared [of a ?take-sbj Ssb] a-not-ro ′ a-not-shared
have a-not-ro-j: a /∈ read-only (share ?take-sbj Ssb)

by auto

from ts-sim [rule-format, OF j-bound] tssb-j j-bound
obtain suspendsj isj Dj where

suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,
jj |‘ (dom jj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by (auto simp: Let-def)

from tsj neq-i-j j-bound
have ts ′-j: ?ts ′!j = (hd-prog pj suspendsj, isj,

jj |‘ (dom jj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by auto

from valid-last-prog [OF j-bound tssb-j] have last-prog: last-prog pj sbj = pj.

from j-bound i-bound ′ leq have j-bound-ts ′: j < length ?ts ′
by simp

from read-only-read-acquired-unforwarded-acquire-witness [OF nvo-drop-j consis-drop-j
a-not-ro-j a-unacq-take a-in]
have False
proof

assume ∃ sop a ′ v ys zs A L R W.
?drop-sbj= ys @ Writesb True a ′ sop v A L R W # zs ∧ a ∈ A ∧

a /∈ outstanding-refs is-Writesb ys ∧ a ′6=a
with suspendsj
obtain a ′ sop ′ v ′ ys zs ′ A ′ L ′ R ′ W ′ where

547

split-suspendsj: suspendsj = ys @ Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs ′ (is
suspendsj=?suspends) and

a-A ′: a ∈ A ′ and
no-write: a /∈ outstanding-refs is-Writesb (ys @ [Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])

by(auto simp add: outstanding-refs-append)

from last-prog
have lp: last-prog pj suspendsj = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from sharing-consis [OF j-bound tssb-j]
have sharing-consis-j: sharing-consistent Ssb Oj sbj.
then have A ′-R ′: A ′ ∩ R ′ = {}

by (simp add: sharing-consistent-append [of - - ?take-sbj ?drop-sbj, simplified]
suspendsj [symmetric] split-suspendsj sharing-consistent-append)

from valid-program-history [OF j-bound tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from valid-reads [OF j-bound tssb-j]
have reads-consis-j: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb›

j-bound tssb-j this]
have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj
by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound neq-i-j tssb-i
tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m-j]
have reads-consis-flush-suspend: reads-consistent True (acquired True ?take-sbj Oj)

(flush ?drop-sb m) suspendsj.

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])

by (simp add: split-suspendsj reads-consistent-append)

548

from valid-write-sops [OF j-bound tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]). valid-sop
sop

apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound tssb-j]
have h-consis:

history-consistent jj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]

549

have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]

split-suspendsj)

have acq-simp:
acquired True (ys @ [Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])

(acquired True ?take-sbj Oj) =
acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]
and sb ′=zs ′, simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts ′-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop
distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=share ?drop-sb S]

obtain isj ′ Rj
′ where

isj ′: instrs zs ′ @ issbj = isj ′ @ prog-instrs zs ′ and
steps-ys: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

∗

(?ts ′[j:=(last-prog
(hd-prog pj (Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs ′)) (ys@[Writesb

True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]),
isj ′,
jj |‘ (dom jj − read-tmps zs ′),

(), True, acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ −
R ′,Rj

′)],
flush (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (flush ?drop-sb m),
share (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) (share ?drop-sb S))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append outstanding-refs-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb, jsb,(),

Dsb, acquired True sb Osb, release sb (dom Ssb) Rsb)
by simp

note conflict-computation = rtranclp-trans [OF steps-flush-sb steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe: safe-delayed (?ts-ys,?m-ys,?shared-ys).

from flush-unchanged-addresses [OF no-write]
have flush (ys @ [Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) m a = m a.

550

with safe-delayedE [OF safe i-bound-ys ts-ys-i, simplified issb] cond ′

have a-unowned:

∀ j < length ?ts-ys. i6=j −→ (let (Oj) = map owned ?ts-ys!j in a /∈ Oj)
apply cases
apply (auto simp add: Let-def issb sb)
done

from a-A ′ a-unowned [rule-format, of j] neq-i-j j-bound leq A ′-R ′

show False
by (auto simp add: Let-def)

next
assume ∃A L R W ys zs. ?drop-sbj = ys @ Ghostsb A L R W# zs ∧ a ∈ A ∧ a /∈

outstanding-refs is-Writesb ys
with suspendsj
obtain ys zs ′ A ′ L ′ R ′ W ′ where
split-suspendsj: suspendsj = ys @ Ghostsb A ′ L ′ R ′ W ′# zs ′ (is suspendsj=?suspends)

and
a-A ′: a ∈ A ′ and
no-write: a /∈ outstanding-refs is-Writesb (ys @ [Ghostsb A ′ L ′ R ′ W ′])
by (auto simp add: outstanding-refs-append)

from last-prog
have lp: last-prog pj suspendsj = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from sharing-consis [OF j-bound tssb-j]
have sharing-consis-j: sharing-consistent Ssb Oj sbj.
then have A ′-R ′: A ′ ∩ R ′ = {}

by (simp add: sharing-consistent-append [of - - ?take-sbj ?drop-sbj, simplified]
suspendsj [symmetric] split-suspendsj sharing-consistent-append)

from valid-program-history [OF j-bound tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from valid-reads [OF j-bound tssb-j]
have reads-consis-j: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb›

j-bound tssb-j this]

551

have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj
by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound neq-i-j tssb-i
tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m-j]
have reads-consis-flush-suspend: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) suspendsj.

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
(flush ?drop-sb m) (ys@[Ghostsb A ′ L ′ R ′ W ′])
by (simp add: split-suspendsj reads-consistent-append)

from valid-write-sops [OF j-bound tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys@[Ghostsb A ′ L ′ R ′ W ′]). valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound tssb-j]
have h-consis:

history-consistent jj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover

552

have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =
last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]
have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Ghostsb A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]

split-suspendsj)

have acq-simp:
acquired True (ys @ [Ghostsb A ′ L ′ R ′ W ′])

(acquired True ?take-sbj Oj) =
acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Ghostsb A ′ L ′ R ′ W ′] and sb ′=zs ′,
simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts ′-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop
distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=share ?drop-sb S]

obtain isj ′ Rj
′ where

isj ′: instrs zs ′ @ issbj = isj ′ @ prog-instrs zs ′ and
steps-ys: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

∗

(?ts ′[j:=(last-prog
(hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs ′)) (ys@[Ghostsb A ′ L ′ R ′ W ′]),
isj ′,
jj |‘ (dom jj − read-tmps zs ′),
(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys
(acquired True ?take-sbj Oj) ∪ A ′ − R ′,Rj

′)],
flush (ys@[Ghostsb A ′ L ′ R ′ W ′]) (flush ?drop-sb m),
share (ys@[Ghostsb A ′ L ′ R ′ W ′]) (share ?drop-sb S))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append outstanding-refs-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys

553

by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb, jsb,(),
Dsb, acquired True sb Osb, release sb (dom Ssb) Rsb)
by simp

note conflict-computation = rtranclp-trans [OF steps-flush-sb steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe: safe-delayed (?ts-ys,?m-ys,?shared-ys).

from flush-unchanged-addresses [OF no-write]
have flush (ys @ [Ghostsb A ′ L ′ R ′ W ′]) m a = m a.

with safe-delayedE [OF safe i-bound-ys ts-ys-i, simplified issb] cond ′

have a-unowned:

∀ j < length ?ts-ys. i6=j −→ (let (Oj) = map owned ?ts-ys!j in a /∈ Oj)
apply cases
apply (auto simp add: Let-def issb sb)
done

from a-A ′ a-unowned [rule-format, of j] neq-i-j j-bound leq A ′-R ′

show False
by (auto simp add: Let-def)

qed
then show False

by simp
qed

}
note a-notin-unforwarded-non-volatile-reads-drop = this

have A-unused-by-others:
∀ j<length (map O-sb tssb). i 6= j −→

(let (Oj, sbj) = map O-sb tssb! j
in A ∩ (Oj ∪ outstanding-refs is-volatile-Writesb sbj) = {})

proof −
{

fix j Oj sbj

assume j-bound: j < length (map owned tssb)
assume neq-i-j: i6=j
assume tssb-j: (map O-sb tssb)!j = (Oj,sbj)
assume conflict: A ∩ (Oj ∪ outstanding-refs is-volatile-Writesb sbj) 6= {}
have False
proof −

from j-bound leq
have j-bound ′: j < length (map owned ts)

by auto
from j-bound have j-bound ′′: j < length tssb

554

by auto
from j-bound ′ have j-bound ′′′: j < length ts

by simp

from conflict obtain a ′ where
a-in: a ′ ∈ A and

conflict: a ′ ∈ Oj ∨ a ′ ∈ outstanding-refs is-volatile-Writesb sbj

by auto
from A-unowned-by-others [rule-format, OF - neq-i-j] j-bound tssb-j
have A-unshared-j: A ∩ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) =

{}
by (auto simp add: Let-def)

from conflict
show ?thesis
proof

assume a ′ ∈ Oj

from all-shared-acquired-in [OF this] A-unshared-j a-in
have conflict: a ′ ∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj

by (auto)
with A-unowned-by-others [rule-format, OF - neq-i-j] j-bound tssb-j a-in
show False by auto

next
assume a-in-j: a ′ ∈ outstanding-refs is-volatile-Writesb sbj

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

from ts-sim [rule-format, OF j-bound ′′] tssb-j j-bound ′′

obtain pj suspendsj issbj Dsbj Dj Rj jsbj isj where
tssb-j: tssb ! j = (pj,issbj, jsbj, sbj,Dsbj,Oj,Rj) and
suspendsj: suspendsj = ?drop-sbj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(), Dj, acquired True ?take-sbj Oj,release
?take-sbj (dom Ssb) Rj)

apply (cases tssb!j)
apply (force simp add: Let-def)
done

have a ′ ∈ outstanding-refs is-volatile-Writesb suspendsj
proof −

from a-in-j
have a ′ ∈ outstanding-refs is-volatile-Writesb (?take-sbj @ ?drop-sbj)

by simp
thus ?thesis

555

apply (simp only: outstanding-refs-append suspendsj)
apply (auto simp add: outstanding-refs-conv dest: set-takeWhileD)
done

qed

from split-volatile-Writesb-in-outstanding-refs [OF this]
obtain sop ′ v ′ ys zs A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs (is suspendsj
= ?suspends)

by blast

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.
from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing

Ssb tssb›
j-bound ′′

tssb-j this]
have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′′ tssb-j]
have nvo-j: non-volatile-owned-or-read-only False Ssb Oj sbj.
with non-volatile-owned-or-read-only-append [of False Ssb Oj ?take-sbj ?drop-sbj]
have nvo-take-j: non-volatile-owned-or-read-only False Ssb Oj ?take-sbj

by auto

from a-unowned-others [rule-format, OF - neq-i-j] tssb-j j-bound
have a-not-acq: a /∈ acquired True ?take-sbj Oj

by auto

556

from a-notin-unforwarded-non-volatile-reads-drop[OF j-bound ′′ tssb-j neq-i-j]
have a-notin-unforwarded-reads: a /∈ unforwarded-non-volatile-reads suspendsj {}

by (simp add: suspendsj)

let ?ma=(m(a := f (jsb(t7→m a))))

from reads-consistent-mem-eq-on-unforwarded-non-volatile-reads [where W={}
and m ′=?ma,simplified, OF - subset-refl reads-consis-m-j]
a-notin-unforwarded-reads

have reads-consis-ma-j:
reads-consistent True (acquired True ?take-sbj Oj) ?ma suspendsj
by auto

from reads-consis-ma-j
have reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj) ?ma (ys)

by (simp add: split-suspendsj reads-consistent-append)

from direct-memop-step.RMWWrite [where cond=cond and j=jsb and m=m, OF
cond ′]

have (RMW a t (D, f) cond ret A L R W# issb ′, jsb, (), m,D, Osb, Rsb, S) →
(issb ′, jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))), (), ?ma, False, Osb ∪ A − R,

Map.empty,S ⊕W R 	A L).
from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i this]
have step-a: (ts, m, S) ⇒d

(ts[i := (psb, issb ′, jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))), (), False, Osb ∪ A
− R,Map.empty)],

?ma,S ⊕W R 	A L)
(is - ⇒d (?ts-a, -, ?shared-a)).

from tsj neq-i-j j-bound

have ts-a-j: ?ts-a!j = (hd-prog pj suspendsj, isj,
jsbj |‘ (dom jsbj − read-tmps suspendsj),(), Dj, acquired True ?take-sbj Oj,release ?take-sbj

(dom (Ssb)) Rj)
by auto

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys). valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

557

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj

apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb (ys) = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from j-bound ′ have j-bound-ts-a: j < length ?ts-a by auto

from flush-store-buffer-append [where sb=ys and sb ′=Writesb True a ′ sop ′ v ′ A ′ L ′

R ′ W ′#zs, simplified,
OF j-bound-ts-a isj [simplified split-suspendsj] cph [simplified suspendsj]

ts-a-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop

distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where

S=?shared-a]

558

obtain isj ′ Rj
′ where

isj ′: Write True a ′ sop ′ A ′ L ′ R ′ W ′# instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts-a, ?ma, ?shared-a) ⇒d

∗

(?ts-a[j:=(last-prog
(hd-prog pj zs) ys,

isj ′,
jsbj |‘ (dom jsbj − read-tmps zs),
(), Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True

ys (acquired True ?take-sbj Oj),Rj
′)],

flush ys (?ma), share ys (?shared-a))
(is (-,-,-) ⇒d

∗ (?ts-ys,?m-ys,?shared-ys))
by (auto simp add: acquired-append)

from cph
have causal-program-history issbj ((ys @ [Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) @ zs)

by simp
from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Write True a ′ sop ′ A ′ L ′ R ′ W ′#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb ′,

jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))),(), False, Osb ∪ A − R,Map.empty)
by simp

from j-bound-ts-a have j-bound-ys: j < length ?ts-ys
by auto

then have ts-ys-j: ?ts-ys!j = (last-prog (hd-prog pj zs) ys, Write True a ′ sop ′ A ′ L ′ R ′

W ′#isj ′′, jsbj |‘ (dom jsbj − read-tmps zs), (), Dj ∨ outstanding-refs is-volatile-Writesb ys
6= {},

acquired True ys (acquired True ?take-sbj Oj),Rj
′)

by (clarsimp simp add: isj ′)
note conflict-computation = r-rtranclp-rtranclp [OF step-a steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j]
have a-unowned:

∀ i < length ts. j 6=i −→ (let (Oi) = map owned ?ts-ys!i in a ′ /∈ Oi)

559

apply cases
apply (auto simp add: Let-def)
done

from a-in a-unowned [rule-format, of i] neq-i-j i-bound ′ A-R
show False

by (auto simp add: Let-def)
qed

qed
}
thus ?thesis

by (auto simp add: Let-def)
qed

have A-unacquired-by-others:
∀ j<length (map O-sb tssb). i 6= j −→

(let (Oj, sbj) = map O-sb tssb! j
in A ∩ all-acquired sbj = {})

proof −
{

fix j Oj sbj

assume j-bound: j < length (map owned tssb)
assume neq-i-j: i6=j
assume tssb-j: (map O-sb tssb)!j = (Oj,sbj)
assume conflict: A ∩ all-acquired sbj 6= {}
have False
proof −

from j-bound leq
have j-bound ′: j < length (map owned ts)

by auto
from j-bound have j-bound ′′: j < length tssb

by auto
from j-bound ′ have j-bound ′′′: j < length ts

by simp

from conflict obtain a ′ where
a ′-in: a ′ ∈ A and

a ′-in-j: a ′ ∈ all-acquired sbj

by auto

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

from ts-sim [rule-format, OF j-bound ′′] tssb-j j-bound ′′

obtain pj suspendsj issbj jsbj Dsbj Rj Dj isj where
tssb-j: tssb ! j = (pj,issbj,jsbj, sbj,Dsbj,Oj,Rj) and
suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),

560

Dj, acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
apply (cases tssb!j)
apply (force simp add: Let-def)
done

from a ′-in-j all-acquired-append [of ?take-sbj ?drop-sbj]
have a ′ ∈ all-acquired ?take-sbj ∨ a ′ ∈ all-acquired suspendsj

by (auto simp add: suspendsj)
thus False
proof

assume a ′ ∈ all-acquired ?take-sbj

with A-unowned-by-others [rule-format, OF - neq-i-j] tssb-j j-bound a ′-in
show False

by (auto dest: all-acquired-unshared-acquired)
next

assume conflict-drop: a ′ ∈ all-acquired suspendsj

from split-all-acquired-in [OF conflict-drop]
show ?thesis
proof

assume ∃ sop a ′′ v ys zs A L R W.
suspendsj = ys @ Writesb True a ′′ sop v A L R W# zs ∧ a ′ ∈ A

then
obtain a ′′ sop ′ v ′ ys zs A ′ L ′ R ′ W ′ where
split-suspendsj: suspendsj = ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′# zs (is suspendsj

= ?suspends) and
a ′-A ′: a ′ ∈ A ′

by blast

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]

561

have reads-consis: reads-consistent False Oj msb sbj.
from reads-consistent-flush-all-until-volatile-write [OF

‹valid-ownership-and-sharing Ssb tssb› j-bound ′′

tssb-j this]
have reads-consis-m-j:

reads-consistent True (acquired True ?take-sbj Oj) m suspendsj
by (simp add: m suspendsj)

from outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′′ tssb-j]
have nvo-j: non-volatile-owned-or-read-only False Ssb Oj sbj.
with non-volatile-owned-or-read-only-append [of False Ssb Oj ?take-sbj ?drop-sbj]
have nvo-take-j: non-volatile-owned-or-read-only False Ssb Oj ?take-sbj

by auto

from a-unowned-others [rule-format, OF - neq-i-j] tssb-j j-bound
have a-not-acq: a /∈ acquired True ?take-sbj Oj

by auto

from a-notin-unforwarded-non-volatile-reads-drop[OF j-bound ′′ tssb-j neq-i-j]
have a-notin-unforwarded-reads: a /∈ unforwarded-non-volatile-reads suspendsj {}

by (simp add: suspendsj)

let ?ma=(m(a := f (jsb(t7→m a))))

from reads-consistent-mem-eq-on-unforwarded-non-volatile-reads [where W={}
and m ′=?ma,simplified, OF - subset-refl reads-consis-m-j]
a-notin-unforwarded-reads

have reads-consis-ma-j:
reads-consistent True (acquired True ?take-sbj Oj) ?ma suspendsj
by auto

from reads-consis-ma-j
have reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj) ?ma (ys)

by (simp add: split-suspendsj reads-consistent-append)

from direct-memop-step.RMWWrite [where cond=cond and j=jsb and m=m, OF
cond ′]

have (RMW a t (D, f) cond ret A L R W# issb ′,
jsb, (), m, D, Osb, Rsb, S) →

(issb ′,
jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))), (), ?ma, False, Osb ∪ A − R,Map.empty, S

⊕W R 	A L).
from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i [simplified sb,

simplified] this]
have step-a: (ts, m, S) ⇒d

(ts[i := (psb, issb ′, jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))), (), False, Osb ∪ A
− R,Map.empty)],

?ma,S ⊕W R 	A L)

562

(is - ⇒d (?ts-a, -, ?shared-a)).

from tsj neq-i-j j-bound

have ts-a-j: ?ts-a!j = (hd-prog pj suspendsj, isj,
jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by auto

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys). valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis

563

by (simp add: split-suspendsj [symmetric] suspendsj)
qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb (ys) = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from j-bound ′ have j-bound-ts-a: j < length ?ts-a by auto

from flush-store-buffer-append [where sb=ys and sb ′=Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′

W ′#zs, simplified,
OF j-bound-ts-a isj [simplified split-suspendsj] cph [simplified suspendsj]
ts-a-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop

distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?shared-a]

obtain isj ′ Rj
′ where

isj ′: Write True a ′′ sop ′ A ′ L ′ R ′ W ′# instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts-a, ?ma, ?shared-a) ⇒d

∗

(?ts-a[j:=(last-prog
(hd-prog pj zs) ys,

isj ′,
jsbj |‘ (dom jsbj − read-tmps zs),
(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys (acquired
True ?take-sbj Oj),Rj

′)],
flush ys (?ma),
share ys (?shared-a))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append)

from cph
have causal-program-history issbj ((ys @ [Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′]) @ zs)

by simp
from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Write True a ′′ sop ′ A ′ L ′ R ′ W ′#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

564

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb ′,

jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))),(), False, Osb ∪ A − R,Map.empty)
by simp

from j-bound-ts-a have j-bound-ys: j < length ?ts-ys
by auto

then have ts-ys-j: ?ts-ys!j = (last-prog (hd-prog pj zs) ys, Write True a ′′ sop ′ A ′ L ′ R ′

W ′#isj ′′,
jsbj |‘ (dom jsbj − read-tmps zs), (),
Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {},
acquired True ys (acquired True ?take-sbj Oj),Rj

′)
by (clarsimp simp add: isj ′)

note conflict-computation = r-rtranclp-rtranclp [OF step-a steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j]
have A ′-unowned:
∀ i < length ?ts-ys. j 6=i −→ (let (Oi) = map owned ?ts-ys!i in A ′ ∩ Oi = {})
apply cases
apply (fastforce simp add: Let-def issb)+
done

from a ′-in a ′-A ′ A ′-unowned [rule-format, of i] neq-i-j i-bound ′ A-R
show False

by (auto simp add: Let-def)
next

assume ∃A L R W ys zs. suspendsj = ys @ Ghostsb A L R W# zs ∧ a ′ ∈ A
then
obtain ys zs A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Ghostsb A ′ L ′ R ′ W ′# zs (is suspendsj = ?suspends)
and

a ′-A ′: a ′ ∈ A ′

by blast

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

565

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.
from reads-consistent-flush-all-until-volatile-write [OF

‹valid-ownership-and-sharing Ssb tssb› j-bound ′′

tssb-j this]
have reads-consis-m-j:

reads-consistent True (acquired True ?take-sbj Oj) m suspendsj
by (simp add: m suspendsj)

from outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′′ tssb-j]
have nvo-j: non-volatile-owned-or-read-only False Ssb Oj sbj.
with non-volatile-owned-or-read-only-append [of False Ssb Oj ?take-sbj ?drop-sbj]
have nvo-take-j: non-volatile-owned-or-read-only False Ssb Oj ?take-sbj

by auto

from a-unowned-others [rule-format, OF - neq-i-j] tssb-j j-bound
have a-not-acq: a /∈ acquired True ?take-sbj Oj

by auto

from a-notin-unforwarded-non-volatile-reads-drop[OF j-bound ′′ tssb-j neq-i-j]
have a-notin-unforwarded-reads: a /∈ unforwarded-non-volatile-reads suspendsj {}

by (simp add: suspendsj)

let ?ma=(m(a := f (jsb(t7→m a))))

from reads-consistent-mem-eq-on-unforwarded-non-volatile-reads [where W={}
and m ′=?ma,simplified, OF - subset-refl reads-consis-m-j]
a-notin-unforwarded-reads

have reads-consis-ma-j:
reads-consistent True (acquired True ?take-sbj Oj) ?ma suspendsj
by auto

from reads-consis-ma-j
have reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj) ?ma (ys)

by (simp add: split-suspendsj reads-consistent-append)

from direct-memop-step.RMWWrite [where cond=cond and j=jsb and m=m, OF
cond ′]

566

have (RMW a t (D, f) cond ret A L R W# issb ′,
jsb, (), m, D,Osb, Rsb, S) →

(issb ′,
jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))), (), ?ma, False, Osb ∪ A −

R,Map.empty,S ⊕W R 	A L).
from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i [simplified sb,

simplified] this]
have step-a: (ts, m, S) ⇒d

(ts[i := (psb, issb ′, jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))), (), False, Osb ∪ A
− R,Map.empty)],

?ma,S ⊕W R 	A L)
(is - ⇒d (?ts-a, -, ?shared-a)).

from tsj neq-i-j j-bound

have ts-a-j: ?ts-a!j = (hd-prog pj suspendsj, isj,
jsbj |‘ (dom jsbj − read-tmps suspendsj),(), Dj, acquired True ?take-sbj Oj,release

?take-sbj (dom Ssb) Rj)
by auto

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys). valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

567

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb (ys) = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from j-bound ′ have j-bound-ts-a: j < length ?ts-a by auto

from flush-store-buffer-append [where sb=ys and sb ′=Ghostsb A ′ L ′ R ′ W ′#zs,
simplified,

OF j-bound-ts-a isj [simplified split-suspendsj] cph [simplified suspendsj]
ts-a-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop

distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?shared-a]

obtain isj ′ Rj
′ where

isj ′: Ghost A ′ L ′ R ′ W ′# instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts-a, ?ma, ?shared-a) ⇒d

∗

(?ts-a[j:=(last-prog
(hd-prog pj zs) ys,

isj ′,
jsbj |‘ (dom jsbj − read-tmps zs),
(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys (acquired
True ?take-sbj Oj),Rj

′)],
flush ys (?ma),
share ys (?shared-a))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append)

from cph

568

have causal-program-history issbj ((ys @ [Ghostsb A ′ L ′ R ′ W ′]) @ zs)
by simp

from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Ghost A ′ L ′ R ′ W ′#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb ′,

jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))),(), False, Osb ∪ A − R,Map.empty)
by simp

from j-bound-ts-a have j-bound-ys: j < length ?ts-ys
by auto

then have ts-ys-j: ?ts-ys!j = (last-prog (hd-prog pj zs) ys, Ghost A ′ L ′ R ′ W ′#isj ′′,
jsbj |‘ (dom jsbj − read-tmps zs), (),
Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {},
acquired True ys (acquired True ?take-sbj Oj),Rj

′)
by (clarsimp simp add: isj ′)

note conflict-computation = r-rtranclp-rtranclp [OF step-a steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j]
have A ′-unowned:

∀ i < length ?ts-ys. j 6=i −→ (let (Oi) = map owned ?ts-ys!i in A ′ ∩ Oi = {})
apply cases
apply (fastforce simp add: Let-def issb)+
done

from a ′-in a ′-A ′ A ′-unowned [rule-format, of i] neq-i-j i-bound ′ A-R
show False

by (auto simp add: Let-def)
qed

qed
qed

}
thus ?thesis

by (auto simp add: Let-def)
qed

569

{
fix j
fix pj issbj Oj Rj Dsbj jj sbj

assume j-bound: j < length tssb
assume tssb-j: tssb!j=(pj,issbj,jj,sbj,Dsbj,Oj,Rj)
assume neq-i-j: i6=j
have A ∩ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj)

(dropWhile (Not ◦ is-volatile-Writesb) sbj) = {}
proof −

{
let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

assume conflict: A ∩ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj 6= {}
have False
proof −

from conflict obtain a ′ where
a ′-in: a ′ ∈ A and
a ′-in-j: a ′ ∈ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by auto

from ts-sim [rule-format, OF j-bound] tssb-j j-bound
obtain pj suspendsj issbj Dsbj Dj jsbj isj where

tssb-j: tssb ! j = (pj,issbj, jsbj, sbj,Dsbj,Oj,Rj) and
suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(), Dj, acquired True ?take-sbj Oj,release
?take-sbj (dom Ssb) Rj)

apply (cases tssb!j)
apply (clarsimp simp add: Let-def)
done

from split-in-read-only-reads [OF a ′-in-j [simplified suspendsj [symmetric]]]
obtain t ′ v ′ ys zs where

split-suspendsj: suspendsj = ys @ Readsb False a ′ t ′ v ′# zs (is suspendsj = ?suspends)
and

a ′-unacq: a ′ /∈ acquired True ys (acquired True ?take-sbj Oj)
by blast

from valid-program-history [OF j-bound tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)

570

done

from valid-last-prog [OF j-bound tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.
from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing

Ssb tssb›
j-bound
tssb-j this]

have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj
by (simp add: m suspendsj)

from outstanding-non-volatile-refs-owned-or-read-only [OF j-bound tssb-j]
have nvo-j: non-volatile-owned-or-read-only False Ssb Oj sbj.
with non-volatile-owned-or-read-only-append [of False Ssb Oj ?take-sbj ?drop-sbj]
have nvo-take-j: non-volatile-owned-or-read-only False Ssb Oj ?take-sbj

by auto

from a-unowned-others [rule-format, OF - neq-i-j] tssb-j j-bound
have a-not-acq: a /∈ acquired True ?take-sbj Oj

by auto

from a-notin-unforwarded-non-volatile-reads-drop[OF j-bound tssb-j neq-i-j]
have a-notin-unforwarded-reads: a /∈ unforwarded-non-volatile-reads suspendsj {}

by (simp add: suspendsj)

let ?ma=(m(a := f (jsb(t7→m a))))

from reads-consistent-mem-eq-on-unforwarded-non-volatile-reads [where W={}
and m ′=?ma,simplified, OF - subset-refl reads-consis-m-j]
a-notin-unforwarded-reads

have reads-consis-ma-j:
reads-consistent True (acquired True ?take-sbj Oj) ?ma suspendsj
by auto

from reads-consis-ma-j
have reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj) ?ma (ys)

by (simp add: split-suspendsj reads-consistent-append)

from direct-memop-step.RMWWrite [where cond=cond and j=jsb and m=m, OF
cond ′]

have (RMW a t (D, f) cond ret A L R W# issb ′, jsb, (), m, D,Osb,Rsb,S) →

571

(issb ′, jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))), (), ?ma, False, Osb ∪ A −
R,Map.empty, S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i this]
have step-a: (ts, m, S) ⇒d

(ts[i := (psb, issb ′, jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))), (), False, Osb ∪ A −
R,Map.empty)],

?ma,S ⊕W R 	A L)
(is - ⇒d (?ts-a, -, ?shared-a)).

from tsj neq-i-j j-bound

have ts-a-j: ?ts-a!j = (hd-prog pj suspendsj, isj,
jsbj |‘ (dom jsbj − read-tmps suspendsj),(), Dj, acquired True ?take-sbj Oj,release ?take-sbj

(dom Ssb) Rj)
by auto

from valid-write-sops [OF j-bound tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys). valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)

572

moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb (ys) = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from j-bound leq have j-bound-ts-a: j < length ?ts-a by auto

from flush-store-buffer-append [where sb=ys and sb ′=Readsb False a ′ t ′ v ′#zs,
simplified,

OF j-bound-ts-a isj [simplified split-suspendsj] cph [simplified suspendsj]
ts-a-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop

distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?shared-a]

obtain isj ′ Rj
′ where

isj ′: Read False a ′ t ′# instrs zs @ issbj = isj ′ @ prog-instrs zs and
steps-ys: (?ts-a, ?ma, ?shared-a) ⇒d

∗

(?ts-a[j:=(last-prog
(hd-prog pj zs) ys,

isj ′,
jsbj |‘ (dom jsbj − insert t ′ (read-tmps zs)),

(), Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys (acquired
True ?take-sbj Oj),Rj

′)],
flush ys (?ma),
share ys (?shared-a))

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append)

from cph
have causal-program-history issbj ((ys @ [Readsb False a ′ t ′ v ′]) @ zs)

by simp
from causal-program-history-suffix [OF this]

573

have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Read False a ′ t ′#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j
have ts-ys-i: ?ts-ys!i = (psb, issb ′,

jsb(t 7→ ret (m a) (f (jsb(t 7→ m a)))),(), False, Osb ∪ A − R,Map.empty)
by simp

from j-bound-ts-a have j-bound-ys: j < length ?ts-ys
by auto

then have ts-ys-j: ?ts-ys!j = (last-prog (hd-prog pj zs) ys, Read False a ′ t ′#isj ′′, jsbj
|‘ (dom jsbj − insert t ′ (read-tmps zs)), (), Dj ∨ outstanding-refs is-volatile-Writesb ys 6=
{},

acquired True ys (acquired True ?take-sbj Oj),Rj
′)

by (clarsimp simp add: isj ′)
note conflict-computation = r-rtranclp-rtranclp [OF step-a steps-ys]

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j]

have a ′ ∈ acquired True ys (acquired True ?take-sbj Oj) ∨
a ′ ∈ read-only (share ys (S ⊕W R 	A L))
apply cases
apply (auto simp add: Let-def issb)
done

with a ′-unacq
have a ′-ro: a ′ ∈ read-only (share ys (S ⊕W R 	A L))

by auto
from a ′-in
have a ′-not-ro: a ′ /∈ read-only (S ⊕W R 	A L)

by (auto simp add: in-read-only-convs)

have a ′ ∈ Oj ∪ all-acquired sbj

proof −
{

assume a-notin: a ′ /∈ Oj ∪ all-acquired sbj

from weak-sharing-consis [OF j-bound tssb-j]

574

have weak-sharing-consistent Oj sbj.
with weak-sharing-consistent-append [of Oj ?take-sbj ?drop-sbj]
have weak-sharing-consistent (acquired True ?take-sbj Oj) suspendsj

by (auto simp add: suspendsj)
with split-suspendsj
have weak-consis: weak-sharing-consistent (acquired True ?take-sbj Oj) ys

by (simp add: weak-sharing-consistent-append)
from all-acquired-append [of ?take-sbj ?drop-sbj]
have all-acquired ys ⊆ all-acquired sbj

apply (clarsimp)
apply (clarsimp simp add: suspendsj [symmetric] split-suspendsj all-acquired-append)
done

with a-notin acquired-takeWhile-non-volatile-Writesb [of sbj Oj]
all-acquired-append [of ?take-sbj ?drop-sbj]

have a ′ /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj ∪ all-acquired
ys

by auto

from read-only-share-unowned [OF weak-consis this a ′-ro]
have a ′ ∈ read-only (S ⊕W R 	A L) .

with a ′-not-ro have False
by auto

with a-notin read-only-share-unowned [OF weak-consis - a ′-ro]
all-acquired-takeWhile [of (Not ◦ is-volatile-Writesb) sbj]

have a ′ ∈ read-only (S ⊕W R 	A L)
by (auto simp add: acquired-takeWhile-non-volatile-Writesb)

with a ′-not-ro have False
by auto

}
thus ?thesis by blast

qed

moreover
from A-unacquired-by-others [rule-format, OF - neq-i-j] tssb-j j-bound
have A ∩ all-acquired sbj = {}

by (auto simp add: Let-def)
moreover
from A-unowned-by-others [rule-format, OF - neq-i-j] tssb-j j-bound
have A ∩ Oj = {}

by (auto simp add: Let-def dest: all-shared-acquired-in)
moreover note a ′-in
ultimately
show False

by auto
qed

}
thus ?thesis

by (auto simp add: Let-def)

575

qed
} note A-no-read-only-reads = this

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof
fix j isj Oj Rj Dj jj sbj pj

assume j-bound: j < length tssb ′

assume tssb ′-j: tssb ′!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show non-volatile-owned-or-read-only False Ssb

′ Oj sbj

proof (cases j=i)
case True
have non-volatile-owned-or-read-only False
(Ssb ⊕W R 	A L) (Osb ∪ A − R) []
by simp

then show ?thesis
using True i-bound tssb ′-j
by (auto simp add: tssb ′ Ssb

′ sb sb ′)
next

case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
with tssb ′-j False i-bound
have tssb-j: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)

note nvo = outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′ tssb-j]

from read-only-unowned [OF i-bound tssb-i] R-owned
have R ∩ read-only Ssb = {}

by auto
with A-no-read-only-reads [OF j-bound ′ tssb-j False [symmetric]] L-subset
have ∀ a∈read-only-reads
(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj).

a ∈ read-only Ssb −→ a ∈ read-only (Ssb ⊕W R 	A L)
by (auto simp add: in-read-only-convs)

from non-volatile-owned-or-read-only-read-only-reads-eq ′ [OF nvo this]
have non-volatile-owned-or-read-only False (Ssb ⊕W R 	A L) Oj sbj.
thus ?thesis by (simp add: Ssb

′)
qed

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof (unfold-locales)
fix i1 j p1 is1 O1 R1 D1 xs1 sb1 pj isj Oj Rj Dj xsj sbj

assume i1-bound: i1 < length tssb ′

assume j-bound: j < length tssb ′

576

assume i1-j: i1 6= j
assume ts-i1: tssb ′!i1 = (p1,is1,xs1,sb1,D1,O1,R1)
assume ts-j: tssb ′!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {}
proof (cases i1=i)

case True
with ts-i1 i-bound show ?thesis

by (simp add: tssb ′ sb ′ sb)
next

case False
note i1-i = this
from i1-bound have i1-bound ′: i1 < length tssb

by (simp add: tssb ′ sb ′ sb)
hence i1-bound ′′: i1 < length (map owned tssb)

by auto
from ts-i1 False have ts-i1 ′: tssb!i1 = (p1,is1,xs1,sb1,D1,O1,R1)

by (simp add: tssb ′ sb ′ sb)
show ?thesis
proof (cases j=i)

case True

from i-bound ts-j tssb ′ True have sbj: sbj=[]
by (simp add: tssb ′ sb ′)

from A-unused-by-others [rule-format, OF - False [symmetric]] ts-i1 i1-bound ′′

False i1-bound ′

have A ∩ (O1 ∪ outstanding-refs is-volatile-Writesb sb1) = {}
by (auto simp add: Let-def tssb ′ Osb

′ sb ′ owned-def)
moreover
from outstanding-volatile-writes-unowned-by-others
[OF i1-bound ′ i-bound i1-i ts-i1 ′ tssb-i]
have Osb ∩ outstanding-refs is-volatile-Writesb sb1 = {} by (simp add: sb)

ultimately show ?thesis using ts-j True
by (auto simp add: i-bound tssb ′ Osb

′ sbj)
next

case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j False have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from outstanding-volatile-writes-unowned-by-others

[OF i1-bound ′ j-bound ′ i1-j ts-i1 ′ ts-j ′]
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {} .

qed
qed

qed
next

show read-only-reads-unowned tssb ′

proof
fix n m

577

fix pn isn On Rn Dn jn sbn pm ism Om Rm Dm jm sbm

assume n-bound: n < length tssb ′

and m-bound: m < length tssb ′

and neq-n-m: n6=m
and nth: tssb ′!n = (pn, isn, jn, sbn, Dn, On,Rn)
and mth: tssb ′!m =(pm, ism, jm, sbm, Dm, Om,Rm)

from n-bound have n-bound ′: n < length tssb by (simp add: tssb ′)
from m-bound have m-bound ′: m < length tssb by (simp add: tssb ′)
show (Om ∪ all-acquired sbm) ∩

read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn) On)
(dropWhile (Not ◦ is-volatile-Writesb) sbn) =
{}

proof (cases m=i)
case True
with neq-n-m have neq-n-i: n 6=i

by auto

with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)
by (auto simp add: tssb ′)

note read-only-reads-unowned [OF n-bound ′ i-bound neq-n-i nth ′ tssb-i]
moreover
note A-no-read-only-reads [OF n-bound ′ nth ′]
ultimately
show ?thesis

using True tssb-i neq-n-i nth mth n-bound ′ m-bound ′

by (auto simp add: tssb ′ Osb
′ sb sb ′)

next
case False
note neq-m-i = this
with m-bound mth i-bound have mth ′: tssb!m = (pm, ism, jm, sbm, Dm, Om,Rm)

by (auto simp add: tssb ′)
show ?thesis
proof (cases n=i)

case True
with tssb-i nth mth neq-m-i n-bound ′

show ?thesis
by (auto simp add: tssb ′ sb ′)

next
case False
with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)

by (auto simp add: tssb ′)
from read-only-reads-unowned [OF n-bound ′ m-bound ′ neq-n-m nth ′ mth ′] False

neq-m-i
show ?thesis

by (clarsimp)
qed

qed
qed

next
show ownership-distinct tssb ′

578

proof (unfold-locales)
fix i1 j p1 is1 O1 R1 D1 xs1 sb1 pj isj Oj Rj Dj xsj sbj

assume i1-bound: i1 < length tssb ′

assume j-bound: j < length tssb ′

assume i1-j: i1 6= j
assume ts-i1: tssb ′!i1 = (p1,is1,xs1,sb1,D1,O1,R1)
assume ts-j: tssb ′!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show (O1 ∪ all-acquired sb1) ∩ (Oj ∪ all-acquired sbj)= {}
proof (cases i1=i)

case True
with i1-j have i-j: i 6=j

by simp

from i-bound ts-i1 tssb ′ True have sb1: sb1=[]
by (simp add: tssb ′ sb ′)

from j-bound have j-bound ′: j < length tssb
by (simp add: tssb ′)

hence j-bound ′′: j < length (map owned tssb)
by simp

from ts-j i-j have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
by (simp add: tssb ′)

from A-unused-by-others [rule-format, OF - i-j] ts-j i-j j-bound ′

have A ∩ (Oj ∪ outstanding-refs is-volatile-Writesb sbj) = {}
by (auto simp add: Let-def tssb ′ owned-def)

moreover
from A-unacquired-by-others [rule-format, OF - i-j] ts-j i-j j-bound ′

have A ∩ all-acquired sbj = {}
by (auto simp add: Let-def tssb ′)

moreover
from ownership-distinct [OF i-bound j-bound ′ i-j tssb-i ts-j ′]
have Osb ∩ (Oj ∪ all-acquired sbj)= {} by (simp add: sb)
ultimately show ?thesis using ts-i1 True

by (auto simp add: i-bound tssb ′ Osb
′ sb ′ sb1)

next
case False
note i1-i = this
from i1-bound have i1-bound ′: i1 < length tssb

by (simp add: tssb ′)
hence i1-bound ′′: i1 < length (map owned tssb)

by simp
from ts-i1 False have ts-i1 ′: tssb!i1 = (p1,is1,xs1,sb1,D1,O1,R1)

by (simp add: tssb ′)
show ?thesis
proof (cases j=i)

case True
from A-unused-by-others [rule-format, OF - False [symmetric]] ts-i1

False i1-bound ′

have A ∩ (O1 ∪ outstanding-refs is-volatile-Writesb sb1) = {}

579

by (auto simp add: Let-def tssb ′ owned-def)
moreover

from A-unacquired-by-others [rule-format, OF - False [symmetric]] ts-i1 False
i1-bound ′

have A ∩ all-acquired sb1 = {}
by (auto simp add: Let-def tssb ′ owned-def)

moreover
from ownership-distinct [OF i1-bound ′ i-bound i1-i ts-i1 ′ tssb-i]
have (O1 ∪ all-acquired sb1) ∩ Osb = {} by (simp add: sb)
ultimately show ?thesis

using ts-j True
by (auto simp add: i-bound tssb ′ Osb

′ sb ′)
next

case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j False have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from ownership-distinct [OF i1-bound ′ j-bound ′ i1-j ts-i1 ′ ts-j ′]
show (O1 ∪ all-acquired sb1) ∩ (Oj ∪ all-acquired sbj) = {} .

qed
qed

qed
qed

have valid-hist ′: valid-history program-step tssb ′

proof −
from valid-history [OF i-bound tssb-i]
have history-consistent (jsb(t 7→ret (msb a) (f (jsb(t7→msb a))))) (hd-prog psb []) [] by simp
from valid-history-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ jsb ′ sb ′ sb)

qed

from valid-reads [OF i-bound tssb-i]
have reads-consis: reads-consistent False Osb msb sb .

have valid-reads ′: valid-reads msb
′ tssb ′

proof (unfold-locales)
fix j pj isj Oj Rj Dj acqj jj sbj

assume j-bound: j < length tssb ′

assume ts-j: tssb ′!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show reads-consistent False Oj msb

′ sbj

proof (cases i=j)
case True
from reads-consis ts-j j-bound sb show ?thesis

by (clarsimp simp add: True msb
′ Writesb tssb ′ sb ′)

next
case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)

580

moreover from ts-j False have ts-j ′: tssb ! j = (pj,isj,jj,sbj,Dj,Oj,Rj)
using j-bound by (simp add: tssb ′)

ultimately have consis-m: reads-consistent False Oj msb sbj

by (rule valid-reads)
let ?m ′ = (msb(a := f (jsb(t 7→ msb a))))
from a-unowned-others [rule-format, OF - False] j-bound ′ ts-j ′

obtain a-acq: a /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj and
a-unsh: a /∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)

by auto
with a-notin-unforwarded-non-volatile-reads-drop [OF j-bound ′ ts-j ′ False]

have ∀ a∈acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj ∪
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ∪

unforwarded-non-volatile-reads (dropWhile (Not ◦ is-volatile-Writesb) sbj) {}.
?m ′ a = msb a
by auto

from reads-consistent-mem-eq-on-unforwarded-non-volatile-reads-drop
[where W={},simplified, OF this - - consis-m]

acquired-reads-all-acquired ′ [of (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj]
have reads-consistent False Oj (msb(a := f (jsb(t 7→ msb a)))) sbj

by (auto simp del: fun-upd-apply)
thus ?thesis

by (simp add: msb
′)

qed
qed

have valid-sharing ′: valid-sharing (Ssb ⊕W R 	A L) tssb ′

proof (intro-locales)
show outstanding-non-volatile-writes-unshared (Ssb ⊕W R 	A L) tssb ′

proof (unfold-locales)
fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show non-volatile-writes-unshared (Ssb ⊕W R 	A L) sbj

proof (cases i=j)
case True
with i-bound jth show ?thesis

by (simp add: tssb ′ sb ′ sb)
next

case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
from jth False have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from outstanding-non-volatile-writes-unshared [OF j-bound ′ jth ′]
have unshared: non-volatile-writes-unshared Ssb sbj.

have ∀ a∈dom (Ssb ⊕W R 	A L)− dom Ssb. a /∈ outstanding-refs is-non-volatile-Writesb
sbj

proof −
{

fix a

581

assume a-in: a ∈ dom (Ssb ⊕W R 	A L) − dom Ssb

hence a-R: a ∈ R
by clarsimp

assume a-in-j: a ∈ outstanding-refs is-non-volatile-Writesb sbj

have False
proof −

from non-volatile-owned-or-read-only-outstanding-non-volatile-writes [OF
outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′ jth ′]]
a-in-j
have a ∈ Oj ∪ all-acquired sbj

by auto
moreover
with ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′] a-R R-owned
show False

by blast
qed

}
thus ?thesis by blast

qed

from non-volatile-writes-unshared-no-outstanding-non-volatile-Writesb
[OF unshared this]
show ?thesis .

qed
qed

next
show sharing-consis (Ssb ⊕W R 	A L) tssb ′

proof (unfold-locales)
fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show sharing-consistent (Ssb ⊕W R 	A L) Oj sbj

proof (cases i=j)
case True
with i-bound jth show ?thesis

by (simp add: tssb ′ sb ′ sb)
next

case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
from jth False have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from sharing-consis [OF j-bound ′ jth ′]
have consis: sharing-consistent Ssb Oj sbj.

have acq-cond: all-acquired sbj ∩ dom Ssb − dom (Ssb ⊕W R 	A L) = {}
proof −

{
fix a
assume a-acq: a ∈ all-acquired sbj

582

assume a ∈ dom Ssb

assume a-L: a ∈ L
have False
proof −

from A-unacquired-by-others [rule-format, of j,OF - False] j-bound ′ jth ′

have A ∩ all-acquired sbj = {}
by auto

with a-acq a-L L-subset
show False

by blast
qed

}
thus ?thesis

by auto
qed
have uns-cond: all-unshared sbj ∩ dom (Ssb ⊕W R 	A L) − dom Ssb = {}
proof −

{
fix a
assume a-uns: a ∈ all-unshared sbj

assume a /∈ L
assume a-R: a ∈ R
have False
proof −

from unshared-acquired-or-owned [OF consis] a-uns
have a ∈ all-acquired sbj ∪ Oj by auto
with ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′] R-owned a-R
show False

by blast
qed

}
thus ?thesis

by auto
qed

from sharing-consistent-preservation [OF consis acq-cond uns-cond]
show ?thesis

by (simp add: tssb ′)
qed

qed
next

show unowned-shared (Ssb ⊕W R 	A L) tssb ′

proof (unfold-locales)
show −

⋃
((λ(-,-, -, -,-, O,-). O) ‘ set tssb ′) ⊆ dom (Ssb ⊕W R 	A L)

proof −

have s:
⋃
((λ(-,-, -, -,-, O,-). O) ‘ set tssb ′) =⋃

((λ(-,-, -, -,-, O,-). O) ‘ set tssb) ∪ A − R

apply (unfold tssb ′ Osb
′)

583

apply (rule acquire-release-ownership-nth-update [OF R-owned i-bound tssb-i])
apply fact
done

note unowned-shared L-subset A-R
then
show ?thesis

apply (simp only: s)
apply auto
done

qed
qed

next
show read-only-unowned (Ssb ⊕W R 	A L) tssb ′

proof
fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show Oj ∩ read-only (Ssb ⊕W R 	A L) = {}
proof (cases i=j)

case True
from read-only-unowned [OF i-bound tssb-i] R-owned A-R
have (Osb ∪ A − R) ∩ read-only (Ssb ⊕W R 	A L) = {}

by (auto simp add: in-read-only-convs)
with jth tssb-i i-bound True
show ?thesis

by (auto simp add: Osb
′ tssb ′)

next
case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
with False jth have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from read-only-unowned [OF j-bound ′ jth ′]
have Oj ∩ read-only Ssb = {}.
moreover
from A-unowned-by-others [rule-format, OF - False] j-bound ′ jth ′

have A ∩ Oj = {}
by (auto dest: all-shared-acquired-in)

moreover
from ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′]
have Osb ∩ Oj = {}

by auto
moreover note R-owned A-R
ultimately show ?thesis

by (fastforce simp add: in-read-only-convs split: if-split-asm)
qed

qed
next

show no-outstanding-write-to-read-only-memory (Ssb ⊕W R 	A L) tssb ′

584

proof
fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show no-write-to-read-only-memory (Ssb ⊕W R 	A L) sbj

proof (cases i=j)
case True
with jth tssb-i i-bound
show ?thesis

by (auto simp add: sb sb ′ tssb ′)
next

case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
with False jth have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from no-outstanding-write-to-read-only-memory [OF j-bound ′ jth ′]
have nw: no-write-to-read-only-memory Ssb sbj.
have R ∩ outstanding-refs is-Writesb sbj = {}
proof −

note dist = ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′]
from non-volatile-owned-or-read-only-outstanding-non-volatile-writes
[OF outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′ jth ′]]

dist
have outstanding-refs is-non-volatile-Writesb sbj ∩ Osb = {}

by auto
moreover
from outstanding-volatile-writes-unowned-by-others [OF j-bound ′ i-bound

False [symmetric] jth ′ tssb-i]
have outstanding-refs is-volatile-Writesb sbj ∩ Osb = {}

by auto
ultimately have outstanding-refs is-Writesb sbj ∩ Osb = {}

by (auto simp add: misc-outstanding-refs-convs)
with R-owned
show ?thesis by blast

qed
then
have ∀ a∈outstanding-refs is-Writesb sbj.

a ∈ read-only (Ssb ⊕W R 	A L) −→ a ∈ read-only Ssb

by (auto simp add: in-read-only-convs)

from no-write-to-read-only-memory-read-only-reads-eq [OF nw this]
show ?thesis .

qed
qed

qed

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]

585

have distinct-load-tmps issb ′

by (auto simp add: issb split: instr.splits)
from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′ sb Osb

′ issb)
next

from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps [] by (simp add: tssb ′ sb ′ sb Osb

′)
from read-tmps-distinct-nth-update [OF i-bound this]
show read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′ sb Osb

′)
next

from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
load-tmps-distinct [OF i-bound tssb-i]

have load-tmps issb ′ ∩ read-tmps [] = {}
by (clarsimp)

from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′ sb Osb

′)
qed

have valid-sops ′: valid-sops tssb ′

proof −
from valid-store-sops [OF i-bound tssb-i]
obtain

valid-store-sops ′: ∀ sop∈store-sops issb ′. valid-sop sop
by (auto simp add: issb tssb ′ sb ′ sb Osb

′)

from valid-sops-nth-update [OF i-bound - valid-store-sops ′, where sb= []]
show ?thesis by (auto simp add: tssb ′ sb ′ sb Osb

′)
qed

have valid-dd ′: valid-data-dependency tssb ′

proof −
from data-dependency-consistent-instrs [OF i-bound tssb-i]
obtain

dd-is: data-dependency-consistent-instrs (dom jsb ′) issb ′

by (auto simp add: issb jsb ′)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩

⋃
(fst ‘ write-sops []) = {}

by (auto simp add: write-sops-append)
from valid-data-dependency-nth-update [OF i-bound dd-is this]
show ?thesis by (simp add: tssb ′ sb ′ sb Osb

′)
qed

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −
from load-tmps-fresh [OF i-bound tssb-i]
have load-tmps (RMW a t (D,f) cond ret A L R W # issb ′) ∩ dom jsb = {}

by (simp add: issb)
moreover
from load-tmps-distinct [OF i-bound tssb-i] have t /∈ load-tmps issb ′

by (auto simp add: issb)

586

ultimately have load-tmps issb ′ ∩ dom (jsb(t 7→ ret (msb a) (f (jsb(t 7→msb a))))) = {}
by auto

from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ jsb ′)

qed

from enough-flushs-nth-update [OF i-bound, where sb=[]]
have enough-flushs ′: enough-flushs tssb ′

by (auto simp: tssb ′ sb ′ sb)

have valid-program-history ′: valid-program-history tssb ′

proof −
have causal ′: causal-program-history issb ′ sb ′

by (simp add: issb sb sb ′)
have last-prog psb sb ′ = psb

by (simp add: sb ′ sb)
from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′ sb ′)
qed

from is-sim have is: is = RMW a t (D,f) cond ret A L R W # issb ′

by (simp add: suspends sb issb)

from direct-memop-step.RMWWrite [where cond=cond and j=jsb and m=m, OF
cond ′]

have (RMW a t (D, f) cond ret A L R W # issb ′, jsb, (),m, D, Osb,Rsb, S) →
(issb ′,jsb(t 7→ ret (m a) (f (jsb(t7→m a)))), (),
m(a := f (jsb(t 7→ m a))), False, Osb ∪ A − R, Map.empty, S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i this]
have (ts, m, S) ⇒d (ts[i := (psb, issb ′,jsb(t 7→ ret (m a) (f (jsb(t 7→m a)))), (), False,

Osb ∪ A − R,Map.empty)],
m(a := f (jsb(t 7→ m a))),S ⊕W R 	A L).

moreover

have tmps-commute: jsb(t 7→ ret (msb a) (f (jsb(t7→msb a)))) =
(jsb |‘ (dom jsb − {t}))(t 7→ ret (msb a) (f (jsb(t 7→msb a))))
apply (rule ext)
apply (auto simp add: restrict-map-def domIff)
done

from a-unflushed tssb-i sb
have a-unflushed ′:

∀ j < length tssb.
(let (-,-,-,sbj,-,-,-) = tssb!j

587

in a /∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦
is-volatile-Writesb) sbj))
by auto

have all-shared-L: ∀ i p is O R D acq j sb. i < length tssb −→
tssb ! i = (p, is, j, sb, D, O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume x-shared: x ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-L: x ∈ L
have False
proof (cases i=j)

case True with x-shared tssb-i jth show False by (simp add: sb)
next

case False
show False
proof −

from all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
have all-shared sbj ⊆ all-acquired sbj ∪ Oj.

moreover have all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ⊆ all-shared
sbj

using all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

by auto
moreover
from A-unacquired-by-others [rule-format, OF - False] jth j-bound
have A ∩ all-acquired sbj = {} by auto
moreover

from A-unowned-by-others [rule-format, OF - False] jth j-bound
have A ∩ Oj = {}

by (auto dest: all-shared-acquired-in)

ultimately
show False

using L-subset x-L x-shared
by blast

qed
qed

}
thus ?thesis by blast

qed

have all-shared-A: ∀ i p is O R D j sb. i < length tssb −→
tssb ! i = (p, is, j, sb, D, O,R) −→

588

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {}
proof −

{
fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume x-shared: x ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-A: x ∈ A
have False
proof (cases i=j)

case True with x-shared tssb-i jth show False by (simp add: sb)
next

case False
show False
proof −

from all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
have all-shared sbj ⊆ all-acquired sbj ∪ Oj.

moreover have all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ⊆ all-shared
sbj

using all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

by auto
moreover
from A-unacquired-by-others [rule-format, OF - False] jth j-bound
have A ∩ all-acquired sbj = {} by auto
moreover

from A-unowned-by-others [rule-format, OF - False] jth j-bound
have A ∩ Oj = {}

by (auto dest: all-shared-acquired-in)

ultimately
show False

using x-A x-shared
by blast

qed
qed

}
thus ?thesis by blast

qed
hence all-shared-L: ∀ i p is O R D j sb. i < length tssb −→

tssb ! i = (p, is, j, sb, D, O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {}

using L-subset by blast

have all-unshared-R: ∀ i p is O R D j sb. i < length tssb −→
tssb ! i = (p, is, j, sb, D, O,R) −→
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}

589

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume x-unshared: x ∈ all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-R: x ∈ R
have False
proof (cases i=j)

case True with x-unshared tssb-i jth show False by (simp add: sb)
next

case False
show False
proof −

from unshared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
have all-unshared sbj ⊆ all-acquired sbj ∪ Oj.

moreover have all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ⊆
all-unshared sbj

using all-unshared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

by auto
moreover

note ownership-distinct [OF i-bound j-bound False tssb-i jth]

ultimately
show False

using R-owned x-R x-unshared
by blast

qed
qed

}
thus ?thesis by blast

qed

have all-acquired-R: ∀ i p is O R D j sb. i < length tssb −→
tssb ! i = (p, is, j, sb, D, O,R) −→
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume x-acq: x ∈ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-R: x ∈ R
have False
proof (cases i=j)

case True with x-acq tssb-i jth show False by (simp add: sb)
next

590

case False
show False
proof −

from x-acq have x ∈ all-acquired sbj

using all-acquired-append [of takeWhile (Not ◦ is-volatile-Writesb) sbj

dropWhile (Not ◦ is-volatile-Writesb) sbj]
by auto

moreover
note ownership-distinct [OF i-bound j-bound False tssb-i jth]
ultimately
show False

using R-owned x-R
by blast

qed
qed

}
thus ?thesis by blast

qed

have all-shared-R: ∀ i p is O R D j sb. i < length tssb −→
tssb ! i = (p, is, j, sb, D, O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume x-shared: x ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-R: x ∈ R
have False
proof (cases i=j)

case True with x-shared tssb-i jth show False by (simp add: sb)
next

case False
show False
proof −

from all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
have all-shared sbj ⊆ all-acquired sbj ∪ Oj.

moreover have all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ⊆ all-shared
sbj

using all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

by auto
moreover
note ownership-distinct [OF i-bound j-bound False tssb-i jth]
ultimately
show False

using R-owned x-R x-shared

591

by blast
qed

qed
}
thus ?thesis by blast

qed

from share-all-until-volatile-write-commute [OF ‹ownership-distinct tssb›
‹sharing-consis Ssb tssb›
all-shared-L all-shared-A all-acquired-R all-unshared-R all-shared-R]

have share-commute: share-all-until-volatile-write tssb Ssb ⊕W R 	A L =
share-all-until-volatile-write tssb (Ssb ⊕W R 	A L).

{
fix j pj isj Oj Rj Dj jj sbj x
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume j-bound: j < length tssb

assume neq: i 6= j

have release (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dom Ssb ∪ R − L) Rj

= release (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dom Ssb) Rj

proof −
{

fix a
assume a-in: a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
have (a ∈ (dom Ssb ∪ R − L)) = (a ∈ dom Ssb)
proof −

from A-unowned-by-others [rule-format, OF j-bound neq] jth
A-unacquired-by-others [rule-format, OF - neq] j-bound
have A-dist: A ∩ (Oj ∪ all-acquired sbj) = {}

by (auto dest: all-shared-acquired-in)

from all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]] a-in
all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

have a-in: a ∈ Oj ∪ all-acquired sbj

by auto
with ownership-distinct [OF i-bound j-bound neq tssb-i jth]
have a /∈ (Osb ∪ all-acquired sb) by auto

with A-dist R-owned A-R A-shared-owned L-subset a-in
obtain a /∈ R and a /∈ L

by fastforce
then show ?thesis by auto

qed
}
then

592

show ?thesis
apply −
apply (rule release-all-shared-exchange)
apply auto
done

qed
}
note release-commute = this
have (tssb ′,msb(a := f (jsb(t 7→ msb a))),Ssb

′) ∼ (ts[i := (psb,issb ′,
jsb(t 7→ ret (m a) (f (jsb(t 7→m a)))),(), False,Osb ∪ A − R,Map.empty)],m(a := f

(jsb(t 7→ m a))),S ⊕W R 	A L)
apply (rule sim-config.intros)
apply (simp only: m-a)
apply (simp only: m)
apply (simp only: flush-all-until-volatile-write-update-other [OF a-unflushed ′,

symmetric] tssb ′)
apply (simp add: flush-all-until-volatile-nth-update-unused [OF i-bound tssb-i, simpli-

fied sb] sb ′)
apply (simp add: tssb ′ sb ′ Osb

′ m
flush-all-until-volatile-nth-update-unused [OF i-bound tssb-i, simplified sb])

using share-all-until-volatile-write-RMW-commute [OF i-bound tssb-i [simplified issb sb]]
apply (clarsimp simp add: S tssb ′ Ssb

′ issb Osb
′ Rsb

′ jsb ′ sb ′ sb share-commute)
using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim
apply (clarsimp simp add: Let-def nth-list-update

tssb ′ sb ′ sb Osb
′ Rsb

′ Ssb
′ jsb ′ Dsb

′ ex-not m-a
split: if-split-asm)

apply (rule conjI)
apply clarsimp
apply (rule tmps-commute)
apply clarsimp
apply (frule (2) release-commute)
apply clarsimp
apply fastforce

done
ultimately
show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ valid-sops ′
valid-dd ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′ msb

′ Ssb
′

by (auto simp del: fun-upd-apply)
next

case (SBHGhost A L R W)
then obtain

issb: issb = Ghost A L R W# issb ′ and
Osb

′: Osb
′=Osb and

Rsb
′: Rsb

′=Rsb and
jsb ′: jsb ′ = jsb and
Dsb

′: Dsb
′=Dsb and

593

sb ′: sb ′=sb@[Ghostsb A L R W] and
msb

′: msb
′ = msb and

Ssb
′: Ssb

′=Ssb

by auto

from safe-memop-flush-sb [simplified issb] obtain
L-subset: L ⊆ A and

A-shared-owned: A ⊆ dom (share ?drop-sb S) ∪ acquired True sb Osb and
R-acq: R ⊆ acquired True sb Osb and
A-R: A ∩ R = {} and

A-unowned-by-others-ts:
∀ j<length (map owned ts). i6=j −→ (A ∩ (owned (ts!j) ∪ dom (released (ts!j))) = {})
by cases auto

from A-unowned-by-others-ts ts-sim leq
have A-unowned-by-others:

∀ j<length tssb. i 6=j −→ (let (-,-,-,sbj,-,Oj,-) = tssb!j
in A ∩ (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj ∪

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)) = {})
apply (clarsimp simp add: Let-def)
subgoal for j

apply (drule-tac x=j in spec)
apply (force simp add: dom-release-takeWhile)
done
done

have A-unused-by-others:
∀ j<length (map O-sb tssb). i 6= j −→

(let (Oj, sbj) = map O-sb tssb! j
in A ∩ outstanding-refs is-volatile-Writesb sbj = {})

proof −
{

fix j Oj sbj

assume j-bound: j < length (map owned tssb)
assume neq-i-j: i6=j
assume tssb-j: (map O-sb tssb)!j = (Oj,sbj)
assume conflict: A ∩ outstanding-refs is-volatile-Writesb sbj 6= {}
have False
proof −

from j-bound leq
have j-bound ′: j < length (map owned ts)

by auto
from j-bound have j-bound ′′: j < length tssb

by auto
from j-bound ′ have j-bound ′′′: j < length ts

by simp

from conflict obtain a ′ where
a ′-in: a ′ ∈ A and

a ′-in-j: a ′ ∈ outstanding-refs is-volatile-Writesb sbj

by auto

594

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

from ts-sim [rule-format, OF j-bound ′′] tssb-j j-bound ′′

obtain pj suspendsj issbj jsbj Dsbj Dj Rj isj where
tssb-j: tssb ! j = (pj,issbj,jsbj, sbj,Dsbj,Oj,Rj) and
suspendsj: suspendsj = ?drop-sbj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj, release ?take-sbj (dom Ssb) Rj)

apply (cases tssb!j)
apply (force simp add: Let-def)
done

have a ′ ∈ outstanding-refs is-volatile-Writesb suspendsj
proof −

from a ′-in-j
have a ′ ∈ outstanding-refs is-volatile-Writesb (?take-sbj @ ?drop-sbj)

by simp
thus ?thesis

apply (simp only: outstanding-refs-append suspendsj)
apply (auto simp add: outstanding-refs-conv dest: set-takeWhileD)
done

qed

from split-volatile-Writesb-in-outstanding-refs [OF this]
obtain sop v ys zs A ′ L ′ R ′ W ′ where
split-suspendsj: suspendsj = ys @ Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs (is suspendsj

= ?suspends)
by blast

from direct-memop-step.Ghost [where j=jsb and m=flush ?drop-sb m]
have (Ghost A L R W# issb ′,

jsb, (), flush ?drop-sb m, Dsb,
acquired True sb Osb, release sb (dom Ssb) Rsb, share ?drop-sb S) →

(issb ′, jsb, (), flush ?drop-sb m, Dsb,
acquired True sb Osb ∪ A − R,
augment-rels (dom (share ?drop-sb S)) R (release sb (dom Ssb) Rsb),
share ?drop-sb S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF
i-bound-ts ′ [simplified issb] ts ′-i [simplified issb] this [simplified issb]]

have store-step: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

(?ts ′[i := (psb, issb ′, jsb, (),Dsb, acquired True sb Osb ∪ A − R,augment-rels
(dom (share ?drop-sb S)) R (release sb (dom Ssb) Rsb))],

flush ?drop-sb m,share ?drop-sb S ⊕W R 	A L)
(is - ⇒d (?ts-A, ?m-A, ?share-A))

595

by (simp add: issb)

from i-bound ′ have i-bound ′′: i < length ?ts-A
by simp

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts-A-j: ?ts-A!j = (hd-prog pj (ys @ Writesb True a ′ sop v A ′ L ′ R ′ W ′ # zs), isj,

jsbj |‘ (dom jsbj − read-tmps (ys @ Writesb True a ′ sop v A ′ L ′ R ′ W ′ # zs)), (), Dj,
acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by (simp add: split-suspendsj)

from j-bound ′′′ i-bound ′ neq-i-j have j-bound ′′′′: j < length ?ts-A
by simp

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb› j-bound ′′

tssb-j reads-consis]
have reads-consis-m: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j tssb-i
tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m]
have reads-consis-flush-m: reads-consistent True (acquired True ?take-sbj Oj)

596

?m-A suspendsj.
hence reads-consis-m-A-ys: reads-consistent True (acquired True ?take-sbj Oj) ?m-A

ys
by (simp add: split-suspendsj reads-consistent-append)

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops ys. valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop h-consis]
last-prog-hd-prog

597

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb ys = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from flush-store-buffer-append [
OF j-bound ′′′′ isj [simplified split-suspendsj] cph [simplified suspendsj]

ts-A-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-m-A-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop distinct-read-tmps-drop

[simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?share-A]

obtain isj ′ Rj
′ where

isj ′: instrs (Writesb True a ′ sop v A ′ L ′ R ′ W ′ # zs) @ issbj =
isj ′ @ prog-instrs (Writesb True a ′ sop v A ′ L ′ R ′ W ′ # zs) and

steps-ys: (?ts-A, ?m-A, ?share-A) ⇒d
∗

(?ts-A[j:= (last-prog (hd-prog pj (Writesb True a ′ sop v A ′ L ′ R ′ W ′ # zs)) ys,
isj ′,

jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′ sop v A ′ L ′ R ′ W ′ #
zs)),(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys
(acquired True ?take-sbj Oj),Rj

′)],
flush ys ?m-A,
share ys ?share-A)

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto)

note conflict-computation = rtranclp-trans [OF rtranclp-r-rtranclp [OF steps-flush-sb,
OF store-step] steps-ys]

from cph
have causal-program-history issbj ((ys @ [Writesb True a ′ sop v A ′ L ′ R ′ W ′]) @ zs)

by simp
from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Write True a ′ sop A ′ L ′ R ′ W ′ #isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from j-bound ′′′

have j-bound-ys: j < length ?ts-ys
by auto

from j-bound-ys neq-i-j

598

have ts-ys-j: ?ts-ys!j=(last-prog (hd-prog pj (Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs))
ys, isj ′,

jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′ sop v A ′ L ′ R ′ W ′# zs)),(),
Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {},
acquired True ys (acquired True ?take-sbj Oj),Rj

′)
by auto

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j, simplified isj ′]
have a-unowned:

∀ i < length ?ts-ys. j 6=i −→ (let (Oi) = map owned ?ts-ys!i in a ′ /∈ Oi)
apply cases
apply (auto simp add: Let-def issb)
done

from a ′-in a-unowned [rule-format, of i] neq-i-j i-bound ′ A-R
show False

by (auto simp add: Let-def)
qed

}
thus ?thesis

by (auto simp add: Let-def)
qed

have A-unaquired-by-others:
∀ j<length (map O-sb tssb). i 6= j −→

(let (Oj, sbj) = map O-sb tssb! j
in A ∩ all-acquired sbj = {})

proof −
{

fix j Oj sbj

assume j-bound: j < length (map owned tssb)
assume neq-i-j: i6=j
assume tssb-j: (map O-sb tssb)!j = (Oj,sbj)
assume conflict: A ∩ all-acquired sbj 6= {}
have False
proof −

from j-bound leq
have j-bound ′: j < length (map owned ts)

by auto
from j-bound have j-bound ′′: j < length tssb

by auto
from j-bound ′ have j-bound ′′′: j < length ts

by simp

from conflict obtain a ′ where
a ′-in: a ′ ∈ A and

a ′-in-j: a ′ ∈ all-acquired sbj

by auto

599

let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

from ts-sim [rule-format, OF j-bound ′′] tssb-j j-bound ′′

obtain pj suspendsj issbj jsbj Dsbj Dj Rj isj where
tssb-j: tssb ! j = (pj,issbj, jsbj, sbj,Dsbj,Oj,Rj) and
suspendsj: suspendsj = ?drop-sbj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)

apply (cases tssb!j)
apply (force simp add: Let-def)
done

from a ′-in-j all-acquired-append [of ?take-sbj ?drop-sbj]
have a ′ ∈ all-acquired ?take-sbj ∨ a ′ ∈ all-acquired suspendsj

by (auto simp add: suspendsj)
thus False
proof

assume a ′ ∈ all-acquired ?take-sbj

with A-unowned-by-others [rule-format, OF - neq-i-j] tssb-j j-bound a ′-in
show False

by (auto dest: all-acquired-unshared-acquired)
next

assume conflict-drop: a ′ ∈ all-acquired suspendsj
from split-all-acquired-in [OF conflict-drop]

show False
proof

assume ∃ sop a ′′ v ys zs A L R W.
suspendsj = ys @ Writesb True a ′′ sop v A L R W# zs ∧ a ′ ∈ A

then
obtain a ′′ sop ′ v ′ ys zs A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs
(is suspendsj = ?suspends) and

a ′-A ′: a ′ ∈ A ′

by auto

from direct-memop-step.Ghost [where j=jsb and m=flush ?drop-sb m]
have (Ghost A L R W# issb ′,

jsb, (), flush ?drop-sb m,Dsb,
acquired True sb Osb, release sb (dom Ssb) Rsb,share ?drop-sb S) →

(issb ′, jsb, (), flush ?drop-sb m, Dsb,
acquired True sb Osb ∪ A − R,
augment-rels (dom (share ?drop-sb S)) R (release sb (dom Ssb) Rsb),
share ?drop-sb S ⊕W R 	A L).

600

from direct-computation.concurrent-step.Memop [OF
i-bound-ts ′ [simplified issb] ts ′-i [simplified issb] this [simplified issb]]

have store-step: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

(?ts ′[i := (psb, issb ′,jsb, (),Dsb,
acquired True sb Osb ∪ A − R,

augment-rels (dom (share ?drop-sb S)) R (release sb (dom Ssb) Rsb))],

flush ?drop-sb m,share ?drop-sb S ⊕W R 	A L)
(is - ⇒d (?ts-A, ?m-A, ?share-A))

by (simp add: issb)

from i-bound ′ have i-bound ′′: i < length ?ts-A
by simp

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts-A-j: ?ts-A!j = (hd-prog pj (ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs),

isj,
jsbj |‘ (dom jsbj − read-tmps (ys @ Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs)), (), Dj,
acquired True ?take-sbj Oj, release ?take-sbj (dom Ssb) Rj)

by (simp add: split-suspendsj)

from j-bound ′′′ i-bound ′ neq-i-j have j-bound ′′′′: j < length ?ts-A
by simp

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb› j-bound ′′

601

tssb-j reads-consis]
have reads-consis-m: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j
tssb-i tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m]
have reads-consis-flush-m: reads-consistent True (acquired True ?take-sbj Oj)

?m-A suspendsj.
hence reads-consis-m-A-ys: reads-consistent True (acquired True ?take-sbj Oj) ?m-A

ys
by (simp add: split-suspendsj reads-consistent-append)

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops ys. valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

602

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop h-consis]

last-prog-hd-prog
have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj

by (simp add: split-suspendsj [symmetric] suspendsj)
from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb ys = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from flush-store-buffer-append [
OF j-bound ′′′′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts-A-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-m-A-ys

hist-consis ′ [simplified split-suspendsj] valid-sops-drop distinct-read-tmps-drop
[simplified split-suspendsj]

no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?share-A]

obtain isj ′ Rj
′ where

isj ′: instrs (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs) @ issbj =
isj ′ @ prog-instrs (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs) and

steps-ys: (?ts-A, ?m-A, ?share-A) ⇒d
∗

(?ts-A[j:= (last-prog (hd-prog pj (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ # zs)) ys,
isj ′,
jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′ #

zs)),(),
Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys

(acquired True ?take-sbj Oj),Rj
′)],

flush ys ?m-A,share ys ?share-A)
(is (-,-,-) ⇒d

∗ (?ts-ys,?m-ys,?shared-ys))
by (auto)

note conflict-computation = rtranclp-trans [OF rtranclp-r-rtranclp [OF
steps-flush-sb, OF store-step] steps-ys]

from cph
have causal-program-history issbj ((ys @ [Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′]) @

zs)
by simp

from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

603

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Write True a ′′ sop ′ A ′ L ′ R ′ W ′#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from j-bound ′′′

have j-bound-ys: j < length ?ts-ys
by auto

from j-bound-ys neq-i-j
have ts-ys-j: ?ts-ys!j=(last-prog (hd-prog pj (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′#

zs)) ys, isj ′,
jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′# zs)),(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {},
acquired True ys (acquired True ?take-sbj Oj),Rj

′)
by auto

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j, simplified isj ′]
have A ′-unowned:

∀ i < length ?ts-ys. j 6=i −→ (let (Oi) = map owned ?ts-ys!i in A ′ ∩ Oi = {})
apply cases
apply (fastforce simp add: Let-def issb)+
done

from a ′-in a ′-A ′ A ′-unowned [rule-format, of i] neq-i-j i-bound ′ A-R
show False

by (auto simp add: Let-def)
next

assume ∃A L R W ys zs.
suspendsj = ys @ Ghostsb A L R W # zs ∧ a ′ ∈ A

then
obtain ys zs A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Ghostsb A ′ L ′ R ′ W ′# zs (is suspendsj = ?suspends)
and

a ′-A ′: a ′ ∈ A ′

by auto

from direct-memop-step.Ghost [where j=jsb and m=flush ?drop-sb m]
have (Ghost A L R W# issb ′,

jsb, (), flush ?drop-sb m, Dsb,
acquired True sb Osb, release sb (dom Ssb) Rsb, share ?drop-sb S) →

(issb ′, jsb, (), flush ?drop-sb m, Dsb,
acquired True sb Osb ∪ A − R,
augment-rels (dom (share ?drop-sb S)) R (release sb (dom Ssb) Rsb),
share ?drop-sb S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF

604

i-bound-ts ′ [simplified issb] ts ′-i [simplified issb] this [simplified issb]]
have store-step: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

(?ts ′[i := (psb, issb ′, jsb, (), Dsb, acquired True sb Osb ∪ A − R,augment-rels
(dom (share ?drop-sb S)) R (release sb (dom Ssb) Rsb))],

flush ?drop-sb m,share ?drop-sb S ⊕W R 	A L)
(is - ⇒d (?ts-A, ?m-A, ?share-A))

by (simp add: issb)

from i-bound ′ have i-bound ′′: i < length ?ts-A
by simp

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts-A-j: ?ts-A!j = (hd-prog pj (ys @ Ghostsb A ′ L ′ R ′ W ′# zs), isj,

jsbj |‘ (dom jsbj − read-tmps (ys @ Ghostsb A ′ L ′ R ′ W ′# zs)), (),Dj,
acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by (simp add: split-suspendsj)

from j-bound ′′′ i-bound ′ neq-i-j have j-bound ′′′′: j < length ?ts-A
by simp

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb› j-bound ′′

tssb-j reads-consis]
have reads-consis-m: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j
tssb-i tssb-j]

605

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m]
have reads-consis-flush-m: reads-consistent True (acquired True ?take-sbj Oj)

?m-A suspendsj.
hence reads-consis-m-A-ys: reads-consistent True (acquired True ?take-sbj Oj) ?m-A

ys
by (simp add: split-suspendsj reads-consistent-append)

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops ys. valid-sop sop
apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)

606

apply (simp only: distinct-read-tmps-append)
done

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop h-consis]

last-prog-hd-prog
have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj

by (simp add: split-suspendsj [symmetric] suspendsj)
from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb ys = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from flush-store-buffer-append [
OF j-bound ′′′′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts-A-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-m-A-ys

hist-consis ′ [simplified split-suspendsj] valid-sops-drop distinct-read-tmps-drop
[simplified split-suspendsj]

no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?share-A]

obtain isj ′ Rj
′ where

isj ′: instrs (Ghostsb A ′ L ′ R ′ W ′# zs) @ issbj =
isj ′ @ prog-instrs (Ghostsb A ′ L ′ R ′ W ′# zs) and

steps-ys: (?ts-A, ?m-A, ?share-A) ⇒d
∗

(?ts-A[j:= (last-prog (hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs)) ys,
isj ′,
jsbj |‘ (dom jsbj − read-tmps (Ghostsb A ′ L ′ R ′ W ′# zs)),(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys (acquired
True ?take-sbj Oj),Rj

′)],
flush ys ?m-A, share ys ?share-A)

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto)

note conflict-computation = rtranclp-trans [OF rtranclp-r-rtranclp [OF
steps-flush-sb, OF store-step] steps-ys]

from cph
have causal-program-history issbj ((ys @ [Ghostsb A ′ L ′ R ′ W ′]) @ zs)

by simp
from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Ghost A ′ L ′ R ′ W ′#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from j-bound ′′′

607

have j-bound-ys: j < length ?ts-ys
by auto

from j-bound-ys neq-i-j
have ts-ys-j: ?ts-ys!j=(last-prog (hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs)) ys, isj ′,

jsbj |‘ (dom jsbj − read-tmps (Writesb True a ′′ sop ′ v ′ A ′ L ′ R ′ W ′# zs)),(),
Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {},

acquired True ys (acquired True ?take-sbj Oj),Rj
′)

by auto

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j, simplified isj ′]
have A ′-unowned:

∀ i < length ?ts-ys. j 6=i −→ (let (Oi) = map owned ?ts-ys!i in A ′ ∩ Oi = {})
apply cases
apply (fastforce simp add: Let-def issb)+
done

from a ′-in a ′-A ′ A ′-unowned [rule-format, of i] neq-i-j i-bound ′ A-R
show False

by (auto simp add: Let-def)
qed

qed
qed

}
thus ?thesis

by (auto simp add: Let-def)
qed

have A-no-read-only-reads-by-others:
∀ j<length (map O-sb tssb). i 6= j −→

(let (Oj, sbj) = map O-sb tssb! j
in A ∩ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj)

Oj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj) = {})

proof −
{

fix j Oj sbj

assume j-bound: j < length (map owned tssb)
assume neq-i-j: i6=j
assume tssb-j: (map O-sb tssb)!j = (Oj,sbj)
let ?take-sbj = (takeWhile (Not ◦ is-volatile-Writesb) sbj)
let ?drop-sbj = (dropWhile (Not ◦ is-volatile-Writesb) sbj)

assume conflict: A ∩ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj 6= {}
have False
proof −

from j-bound leq
have j-bound ′: j < length (map owned ts)

608

by auto
from j-bound have j-bound ′′: j < length tssb

by auto
from j-bound ′ have j-bound ′′′: j < length ts

by simp

from conflict obtain a ′ where
a ′-in: a ′ ∈ A and

a ′-in-j: a ′ ∈ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by auto

from ts-sim [rule-format, OF j-bound ′′] tssb-j j-bound ′′

obtain pj suspendsj issbj Dsbj Dj Rj jsbj isj where
tssb-j: tssb ! j = (pj,issbj, jsbj, sbj,Dsbj,Oj,Rj) and
suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,

jsbj |‘ (dom jsbj − read-tmps suspendsj),(), Dj, acquired True ?take-sbj Oj,release
?take-sbj (dom Ssb) Rj)

apply (cases tssb!j)
apply (force simp add: Let-def)
done

from split-in-read-only-reads [OF a ′-in-j [simplified suspendsj [symmetric]]]
obtain t v ys zs where
split-suspendsj: suspendsj = ys @ Readsb False a ′ t v# zs (is suspendsj = ?suspends)

and
a ′-unacq: a ′ /∈ acquired True ys (acquired True ?take-sbj Oj)
by blast

from direct-memop-step.Ghost [where j=jsb and m=flush ?drop-sb m]
have (Ghost A L R W# issb ′,

jsb, (), flush ?drop-sb m, Dsb,
acquired True sb Osb, release sb (dom Ssb) Rsb, share ?drop-sb S) →

(issb ′, jsb, (), flush ?drop-sb m, Dsb,
acquired True sb Osb ∪ A − R,
augment-rels (dom (share ?drop-sb S)) R (release sb (dom Ssb) Rsb),
share ?drop-sb S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF
i-bound-ts ′ [simplified issb] ts ′-i [simplified issb] this [simplified issb]]

have store-step: (?ts ′, flush ?drop-sb m, share ?drop-sb S) ⇒d

(?ts ′[i := (psb, issb ′, jsb, (),Dsb, acquired True sb Osb ∪ A − R,augment-rels
(dom (share ?drop-sb S)) R (release sb (dom Ssb) Rsb))],

flush ?drop-sb m,share ?drop-sb S ⊕W R 	A L)
(is - ⇒d (?ts-A, ?m-A, ?share-A))

609

by (simp add: issb)

from i-bound ′ have i-bound ′′: i < length ?ts-A
by simp

from valid-program-history [OF j-bound ′′ tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from tsj neq-i-j j-bound
have ts-A-j: ?ts-A!j = (hd-prog pj (ys @ Readsb False a ′ t v# zs), isj,

jsbj |‘ (dom jsbj − read-tmps (ys @ Readsb False a ′ t v# zs)), (),Dj,
acquired True ?take-sbj Oj,release ?take-sbj (dom Ssb) Rj)
by (simp add: split-suspendsj)

from j-bound ′′′ i-bound ′ neq-i-j have j-bound ′′′′: j < length ?ts-A
by simp

from valid-last-prog [OF j-bound ′′ tssb-j] have last-prog: last-prog pj sbj = pj.
then
have lp: last-prog pj ?suspends = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-reads [OF j-bound ′′ tssb-j]
have reads-consis: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb› j-bound ′′

tssb-j reads-consis]
have reads-consis-m: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

from outstanding-non-write-non-vol-reads-drop-disj [OF i-bound j-bound ′′ neq-i-j tssb-i
tssb-j]

have outstanding-refs is-Writesb ?drop-sb ∩ outstanding-refs is-non-volatile-Readsb

suspendsj = {}
by (simp add: suspendsj)

from reads-consistent-flush-independent [OF this reads-consis-m]
have reads-consis-flush-m: reads-consistent True (acquired True ?take-sbj Oj)

?m-A suspendsj.

610

hence reads-consis-m-A-ys: reads-consistent True (acquired True ?take-sbj Oj) ?m-A
ys

by (simp add: split-suspendsj reads-consistent-append)

from valid-history [OF j-bound ′′ tssb-j]
have h-consis:

history-consistent jsbj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from valid-write-sops [OF j-bound ′′ tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and
valid-sops-drop: ∀ sop∈write-sops ys. valid-sop sop

apply (simp only: write-sops-append)
apply auto
done

from read-tmps-distinct [OF j-bound ′′ tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop h-consis]
last-prog-hd-prog

have hist-consis ′: history-consistent jsbj (hd-prog pj suspendsj) suspendsj

611

by (simp add: split-suspendsj [symmetric] suspendsj)
from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis]
have no-vol-read: outstanding-refs is-volatile-Readsb ys = {}

by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

from flush-store-buffer-append [
OF j-bound ′′′′ isj [simplified split-suspendsj] cph [simplified suspendsj]
ts-A-j [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-m-A-ys

hist-consis ′ [simplified split-suspendsj] valid-sops-drop distinct-read-tmps-drop
[simplified split-suspendsj]

no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=?share-A]

obtain isj ′ Rj
′ where

isj ′: instrs (Readsb False a ′ t v # zs) @ issbj =
isj ′ @ prog-instrs (Readsb False a ′ t v # zs) and

steps-ys: (?ts-A, ?m-A, ?share-A) ⇒d
∗

(?ts-A[j:= (last-prog (hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs)) ys,
isj ′,
jsbj |‘ (dom jsbj − read-tmps (Readsb False a ′ t v # zs)),(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys (acquired
True ?take-sbj Oj),Rj

′)],
flush ys ?m-A,
share ys ?share-A)

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto)

note conflict-computation = rtranclp-trans [OF rtranclp-r-rtranclp [OF steps-flush-sb,
OF store-step] steps-ys]

from cph
have causal-program-history issbj ((ys @ [Readsb False a ′ t v]) @ zs)

by simp
from causal-program-history-suffix [OF this]
have cph ′: causal-program-history issbj zs.
interpret causalj: causal-program-history issbj zs by (rule cph ′)

from causalj.causal-program-history [of [], simplified, OF refl] isj ′
obtain isj ′′

where isj ′: isj ′ = Read False a ′ t#isj ′′ and
isj ′′: instrs zs @ issbj = isj ′′ @ prog-instrs zs
by clarsimp

from j-bound ′′′

have j-bound-ys: j < length ?ts-ys
by auto

from j-bound-ys neq-i-j
have ts-ys-j: ?ts-ys!j=(last-prog (hd-prog pj (Readsb False a ′ t v# zs)) ys, isj ′,

612

jsbj |‘ (dom jsbj − read-tmps (Readsb False a ′ t v# zs)),(),
Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {},

acquired True ys (acquired True ?take-sbj Oj),Rj
′)

by auto

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe-delayed (?ts-ys,?m-ys,?shared-ys).

from safe-delayedE [OF this j-bound-ys ts-ys-j, simplified isj ′]
have a ′ ∈ acquired True ys (acquired True ?take-sbj Oj) ∨

a ′ ∈ read-only (share ys (share ?drop-sb S ⊕W R 	A L))
apply cases
apply (auto simp add: Let-def issb)
done

with a ′-unacq
have a ′-ro: a ′ ∈ read-only (share ys (share ?drop-sb S ⊕W R 	A L))

by auto
from a ′-in
have a ′-not-ro: a ′ /∈ read-only (share ?drop-sb S ⊕W R 	A L)

by (auto simp add: in-read-only-convs)

have a ′ ∈ Oj ∪ all-acquired sbj

proof −
{

assume a-notin: a ′ /∈ Oj ∪ all-acquired sbj

from weak-sharing-consis [OF j-bound ′′ tssb-j]
have weak-sharing-consistent Oj sbj.
with weak-sharing-consistent-append [of Oj ?take-sbj ?drop-sbj]
have weak-sharing-consistent (acquired True ?take-sbj Oj) suspendsj

by (auto simp add: suspendsj)
with split-suspendsj
have weak-consis: weak-sharing-consistent (acquired True ?take-sbj Oj) ys

by (simp add: weak-sharing-consistent-append)
from all-acquired-append [of ?take-sbj ?drop-sbj]
have all-acquired ys ⊆ all-acquired sbj

apply (clarsimp)
apply (clarsimp simp add: suspendsj [symmetric] split-suspendsj all-acquired-append)
done

with a-notin acquired-takeWhile-non-volatile-Writesb [of sbj Oj]
all-acquired-append [of ?take-sbj ?drop-sbj]

have a ′ /∈ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj ∪ all-acquired ys
by auto

from read-only-share-unowned [OF weak-consis this a ′-ro]
have a ′ ∈ read-only (share ?drop-sb S ⊕W R 	A L) .

with a ′-not-ro have False
by auto

}
thus ?thesis by blast

613

qed

moreover
from A-unaquired-by-others [rule-format, OF - neq-i-j] tssb-j j-bound
have A ∩ all-acquired sbj = {}

by (auto simp add: Let-def)
moreover
from A-unowned-by-others [rule-format, OF - neq-i-j] tssb-j j-bound
have A ∩ Oj = {}

by (auto simp add: Let-def dest: all-shared-acquired-in)
moreover note a ′-in
ultimately
show False

by auto
qed

}
thus ?thesis

by (auto simp add: Let-def)
qed

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof −
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have non-volatile-owned-or-read-only False Ssb Osb (sb @ [Ghostsb A L R W])

by (auto simp add: non-volatile-owned-or-read-only-append)
from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ Osb

′ Ssb
′)

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof (unfold-locales)
fix i1 j p1 is1 O1 R1 D1 xs1 sb1 pj isj Oj Rj Dj xsj sbj

assume i1-bound: i1 < length tssb ′

assume j-bound: j < length tssb ′

assume i1-j: i1 6= j
assume ts-i1: tssb ′!i1 = (p1,is1,xs1,sb1,D1,O1,R1)
assume ts-j: tssb ′!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {}
proof (cases i1=i)

case True
with i1-j have i-j: i 6=j

by simp

from j-bound have j-bound ′: j < length tssb
by (simp add: tssb ′)

hence j-bound ′′: j < length (map owned tssb)
by simp

from ts-j i-j have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

614

by (simp add: tssb ′)

from outstanding-volatile-writes-unowned-by-others
[OF i-bound j-bound ′ i-j tssb-i ts-j ′]
have (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb = {}.
with ts-i1 True i-bound show ?thesis

by (clarsimp simp add: tssb ′ sb ′ outstanding-refs-append
acquired-takeWhile-non-volatile-Writesb)
next

case False
note i1-i = this
from i1-bound have i1-bound ′: i1 < length tssb

by (simp add: tssb ′)
from ts-i1 False have ts-i1 ′: tssb!i1 = (p1,is1,xs1,sb1,D1,O1,R1)

by (simp add: tssb ′)
show ?thesis
proof (cases j=i)

case True

from i1-bound ′

have i1-bound ′′: i1 < length (map owned tssb)
by simp

from outstanding-volatile-writes-unowned-by-others
[OF i1-bound ′ i-bound i1-i ts-i1 ′ tssb-i]
have (Osb ∪ all-acquired sb) ∩ outstanding-refs is-volatile-Writesb sb1 = {}.
moreover
from A-unused-by-others [rule-format, OF - False [symmetric]] False ts-i1 i1-bound
have A ∩ outstanding-refs is-volatile-Writesb sb1 = {}

by (auto simp add: Let-def tssb ′)

ultimately
show ?thesis

using ts-j True tssb ′

by (auto simp add: i-bound tssb ′ Osb
′ sb ′ all-acquired-append)

next
case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j False have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from outstanding-volatile-writes-unowned-by-others

[OF i1-bound ′ j-bound ′ i1-j ts-i1 ′ ts-j ′]
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {} .

qed
qed

qed
next

show read-only-reads-unowned tssb ′

proof

615

fix n m
fix pn isn On Rn Dn jn sbn pm ism Om Rm Dm jm sbm

assume n-bound: n < length tssb ′

and m-bound: m < length tssb ′

and neq-n-m: n6=m
and nth: tssb ′!n = (pn, isn, jn, sbn, Dn, On,Rn)
and mth: tssb ′!m =(pm, ism, jm, sbm, Dm, Om,Rm)

from n-bound have n-bound ′: n < length tssb by (simp add: tssb ′)
from m-bound have m-bound ′: m < length tssb by (simp add: tssb ′)
show (Om ∪ all-acquired sbm) ∩

read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn) On)
(dropWhile (Not ◦ is-volatile-Writesb) sbn) =
{}

proof (cases m=i)
case True
with neq-n-m have neq-n-i: n 6=i

by auto
with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)

by (auto simp add: tssb ′)
note read-only-reads-unowned [OF n-bound ′ i-bound neq-n-i nth ′ tssb-i]
moreover
from A-no-read-only-reads-by-others [rule-format, OF - neq-n-i [symmetric]] n-bound ′

nth ′

have A ∩ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn)
On)

(dropWhile (Not ◦ is-volatile-Writesb) sbn) =
{}

by auto
ultimately
show ?thesis

using True tssb-i nth ′ mth n-bound ′ m-bound ′

by (auto simp add: tssb ′ Osb
′ sb ′ all-acquired-append)

next
case False
note neq-m-i = this
with m-bound mth i-bound have mth ′: tssb!m = (pm, ism, jm, sbm, Dm, Om,Rm)

by (auto simp add: tssb ′)
show ?thesis
proof (cases n=i)

case True
note read-only-reads-unowned [OF i-bound m-bound ′ neq-m-i [symmetric] tssb-i

mth ′]
then show ?thesis

using True neq-m-i tssb-i nth mth n-bound ′ m-bound ′

apply (case-tac outstanding-refs (is-volatile-Writesb) sb = {})
apply (clarsimp simp add: outstanding-vol-write-take-drop-appends

acquired-append read-only-reads-append tssb ′ sb ′ Osb
′)+

done
next

case False

616

with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)
by (auto simp add: tssb ′)

from read-only-reads-unowned [OF n-bound ′ m-bound ′ neq-n-m nth ′ mth ′] False
neq-m-i

show ?thesis
by (clarsimp)

qed
qed

qed
next

show ownership-distinct tssb ′

proof −
have ∀ j<length tssb. i 6= j −→
(let (pj, isj,jj, sbj, Dj, Oj,Rj) = tssb ! j

in (Osb ∪ all-acquired sb ′) ∩ (Oj ∪ all-acquired sbj) = {})
proof −

{
fix j pj isj Oj Rj Dj jj sbj

assume neq-i-j: i 6= j
assume j-bound: j < length tssb
assume tssb-j: tssb ! j = (pj, isj, jj, sbj, Dj, Oj,Rj)
have (Osb ∪ all-acquired sb ′) ∩ (Oj ∪ all-acquired sbj) = {}
proof −

{
fix a ′

assume a ′-in-i: a ′ ∈ (Osb ∪ all-acquired sb ′)
assume a ′-in-j: a ′ ∈ (Oj ∪ all-acquired sbj)
have False
proof −

from a ′-in-i have a ′ ∈ (Osb ∪ all-acquired sb) ∨ a ′ ∈ A
by (simp add: sb ′ all-acquired-append)

then show False
proof

assume a ′ ∈ (Osb ∪ all-acquired sb)
with ownership-distinct [OF i-bound j-bound neq-i-j tssb-i tssb-j] a ′-in-j
show ?thesis

by auto
next

assume a ′ ∈ A
moreover
have j-bound ′: j < length (map owned tssb)

using j-bound by auto
from A-unowned-by-others [rule-format, OF - neq-i-j] tssb-j j-bound
obtain A ∩ acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj = {} and

A ∩ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) = {}
by (auto simp add: Let-def)

moreover
from A-unaquired-by-others [rule-format, OF - neq-i-j] tssb-j j-bound
have A ∩ all-acquired sbj = {}

by auto

617

ultimately
show ?thesis

using a ′-in-j
by (auto dest: all-shared-acquired-in)

qed
qed

}
then show ?thesis by auto

qed
}
then show ?thesis by (fastforce simp add: Let-def)

qed

from ownership-distinct-nth-update [OF i-bound tssb-i this]
show ?thesis by (simp add: tssb ′ Osb

′ sb ′)
qed

qed

have valid-hist ′: valid-history program-step tssb ′

proof −
from valid-history [OF i-bound tssb-i]
have history-consistent jsb (hd-prog psb sb) sb.
with valid-write-sops [OF i-bound tssb-i]

valid-implies-valid-prog-hd [OF i-bound tssb-i valid]
have history-consistent jsb (hd-prog psb (sb@[Ghostsb A L R W]))

(sb@ [Ghostsb A L R W])
apply −
apply (rule history-consistent-appendI)
apply (auto simp add: hd-prog-append-Ghostsb)
done

from valid-history-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ jsb ′)

qed

have valid-reads ′: valid-reads msb tssb ′

proof −
from valid-reads [OF i-bound tssb-i]
have reads-consistent False Osb msb sb .
from reads-consistent-snoc-Ghostsb [OF this]
have reads-consistent False Osb msb (sb @ [Ghostsb A L R W]).
from valid-reads-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ sb ′ Osb

′)
qed

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]
have non-volatile-writes-unshared Ssb (sb @ [Ghostsb A L R W])

by (auto simp add: non-volatile-writes-unshared-append)
from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]

618

show outstanding-non-volatile-writes-unshared Ssb
′ tssb ′

by (simp add: tssb ′ sb ′ Ssb
′)

next
from sharing-consis [OF i-bound tssb-i]
have consis ′: sharing-consistent Ssb Osb sb.
from A-shared-owned
have A ⊆ dom (share ?drop-sb S) ∪ acquired True sb Osb

by (simp add: sharing-consistent-append acquired-takeWhile-non-volatile-Writesb)
moreover have dom (share ?drop-sb S) ⊆ dom S ∪ dom (share sb Ssb)
proof

fix a ′

assume a ′-in: a ′ ∈ dom (share ?drop-sb S)
from share-unshared-in [OF a ′-in]
show a ′ ∈ dom S ∪ dom (share sb Ssb)
proof

assume a ′ ∈ dom (share ?drop-sb Map.empty)
from share-mono-in [OF this] share-append [of ?take-sb ?drop-sb]
have a ′ ∈ dom (share sb Ssb)

by auto
thus ?thesis

by simp
next

assume a ′ ∈ dom S ∧ a ′ /∈ all-unshared ?drop-sb
thus ?thesis by auto

qed
qed
ultimately
have A-subset: A ⊆ dom S ∪ dom (share sb Ssb) ∪ acquired True sb Osb

by auto
have A ⊆ dom (share sb Ssb) ∪ acquired True sb Osb

proof −
{

fix x
assume x-A: x ∈ A
have x ∈ dom (share sb Ssb) ∪ acquired True sb Osb

proof −
{

assume x ∈ dom S

from share-all-until-volatile-write-share-acquired [OF ‹sharing-consis Ssb tssb›

i-bound tssb-i this [simplified S]]
A-unowned-by-others x-A

have ?thesis
by (fastforce simp add: Let-def)

}
with A-subset show ?thesis using x-A by auto

qed
}
thus ?thesis by blast

619

qed
with consis ′ L-subset A-R R-acq
have sharing-consistent Ssb Osb (sb @ [Ghostsb A L R W])

by (simp add: sharing-consistent-append acquired-takeWhile-non-volatile-Writesb)
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ sb ′ Ssb

′)

next
from read-only-unowned-nth-update [OF i-bound read-only-unowned [OF i-bound tssb-i]
]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ Osb

′)
next

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′

by (simp add: tssb ′ sb ′ Osb
′ Ssb

′)
next

from no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
have no-write-to-read-only-memory Ssb (sb @ [Ghostsb A L R W])

by (simp add: no-write-to-read-only-memory-append)

from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound this]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb ′)

qed

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]
have distinct-load-tmps issb ′ by (simp add: issb)
from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′ by (simp add: tssb ′)

next
from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps (sb @ [Ghostsb A L R W])

by (auto simp add: distinct-read-tmps-append)
from read-tmps-distinct-nth-update [OF i-bound this]
show read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′)

next
from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩ read-tmps (sb @ [Ghostsb A L R W]) ={}

by (auto simp add: read-tmps-append issb)
from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-read-tmps-distinct tssb ′ by (simp add: tssb ′ sb ′)

qed

have valid-sops ′: valid-sops tssb ′

proof −
from valid-store-sops [OF i-bound tssb-i]

620

obtain
valid-store-sops ′: ∀ sop∈store-sops issb ′. valid-sop sop
by (auto simp add: issb)

from valid-write-sops [OF i-bound tssb-i]
have valid-write-sops ′: ∀ sop∈write-sops (sb@ [Ghostsb A L R W]).

valid-sop sop
by (auto simp add: write-sops-append)

from valid-sops-nth-update [OF i-bound valid-write-sops ′ valid-store-sops ′]
show ?thesis by (simp add: tssb ′ sb ′)

qed

have valid-dd ′: valid-data-dependency tssb ′

proof −
from data-dependency-consistent-instrs [OF i-bound tssb-i]
obtain

dd-is: data-dependency-consistent-instrs (dom jsb ′) issb ′

by (auto simp add: issb jsb ′)
from load-tmps-write-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ′ ∩

⋃
(fst ‘ write-sops (sb@ [Ghostsb A L R W])) ={}

by (auto simp add: write-sops-append issb)
from valid-data-dependency-nth-update [OF i-bound dd-is this]
show ?thesis by (simp add: tssb ′ sb ′)

qed

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −
from load-tmps-fresh [OF i-bound tssb-i]
have load-tmps issb ′ ∩ dom jsb = {}

by (auto simp add: issb)
from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ jsb ′)

qed

have enough-flushs ′: enough-flushs tssb ′

proof −
from clean-no-outstanding-volatile-Writesb [OF i-bound tssb-i]
have ¬ Dsb −→ outstanding-refs is-volatile-Writesb (sb@[Ghostsb A L R W])= {}

by (auto simp add: outstanding-refs-append)
from enough-flushs-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′ sb ′ Dsb
′)

qed

have valid-program-history ′: valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb .
then have causal ′: causal-program-history issb ′ (sb@[Ghostsb A L R W])

by (auto simp: causal-program-history-Ghost issb)

621

from valid-last-prog [OF i-bound tssb-i]
have last-prog psb sb = psb.
hence last-prog psb (sb @ [Ghostsb A L R W]) = psb

by (simp add: last-prog-append-Ghostsb)
from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′ sb ′)
qed

show ?thesis
proof (cases outstanding-refs is-volatile-Writesb sb = {})

case True

from True have flush-all: takeWhile (Not ◦ is-volatile-Writesb) sb = sb
by (auto simp add: outstanding-refs-conv)

from True have suspend-nothing: dropWhile (Not ◦ is-volatile-Writesb) sb = []
by (auto simp add: outstanding-refs-conv)

hence suspends-empty: suspends = []
by (simp add: suspends)

from suspends-empty is-sim have is: is =Ghost A L R W# issb ′

by (simp add: issb)

with suspends-empty ts-i
have ts-i: ts!i = (psb, Ghost A L R W# issb ′,

jsb,(), D, acquired True ?take-sb Osb,release ?take-sb (dom Ssb) Rsb)
by simp

from direct-memop-step.Ghost
have (Ghost A L R W# issb ′,

jsb, (),m, D, acquired True ?take-sb Osb,
release ?take-sb (dom Ssb) Rsb, S) →
(issb ′,

jsb, (), m, D, acquired True ?take-sb Osb ∪ A − R,
augment-rels (dom S) R (release ?take-sb (dom Ssb) Rsb),
S ⊕W R 	A L).

from direct-computation.concurrent-step.Memop [OF i-bound ′ ts-i this]
have (ts, m, S) ⇒d

(ts[i := (psb, issb ′,
jsb, (),D, acquired True ?take-sb Osb ∪ A − R,

augment-rels (dom S) R (release ?take-sb (dom Ssb) Rsb))],
m,S ⊕W R 	A L).

moreover

from suspend-nothing
have suspend-nothing ′: (dropWhile (Not ◦ is-volatile-Writesb) sb ′) = []

by (simp add: sb ′)

622

have all-shared-A: ∀ j p is O R D j sb. j < length tssb −→ i 6= j −→
tssb ! j = (p, is, j, sb, D, O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,isj, jj,sbj,Dj,Oj,Rj)
assume x-shared: x ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-A: x ∈ A
have False
proof −

from all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
have all-shared sbj ⊆ all-acquired sbj ∪ Oj.

moreover have all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ⊆ all-shared
sbj

using all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

by auto
moreover

from A-unaquired-by-others [rule-format, OF - neq-i-j] jth j-bound
have A ∩ all-acquired sbj = {} by auto
moreover

from A-unowned-by-others [rule-format, OF - neq-i-j] jth j-bound
have A ∩ Oj = {}

by (auto dest: all-shared-acquired-in)

ultimately
show False

using x-A x-shared
by blast

qed
}
thus ?thesis by blast

qed

hence all-shared-L: ∀ j p is O R D j sb. j < length tssb −→ i 6= j −→
tssb ! j = (p, is, j, sb, D, O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {}
using L-subset by blast

have all-shared-A: ∀ j p is O R D j sb. j < length tssb −→ i 6= j −→
tssb ! j = (p, is, j, sb, D, O,R) −→

623

all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ A = {}
proof −

{
fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)

assume neq-i-j: i 6= j
assume x-shared: x ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-A: x ∈ A
have False
proof −

from all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
have all-shared sbj ⊆ all-acquired sbj ∪ Oj.

moreover have all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ⊆ all-shared
sbj

using all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

by auto
moreover
from A-unaquired-by-others [rule-format, OF - neq-i-j] jth j-bound
have A ∩ all-acquired sbj = {} by auto
moreover

from A-unowned-by-others [rule-format, OF - neq-i-j] jth j-bound
have A ∩ Oj = {}

by (auto dest: all-shared-acquired-in)

ultimately
show False

using x-A x-shared
by blast

qed
}
thus ?thesis by blast

qed
hence all-shared-L: ∀ j p is O R D j sb. j < length tssb −→ i 6= j −→

tssb ! j = (p, is, j, sb, D, O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ L = {}

using L-subset by blast

have all-unshared-R: ∀ j p is O R D j sb. j < length tssb −→ i 6= j −→
tssb ! j = (p, is, j, sb, D, O,R) −→
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb

assume neq-i-j: i 6= j

624

assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume x-unshared: x ∈ all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-R: x ∈ R
have False
proof −

from unshared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
have all-unshared sbj ⊆ all-acquired sbj ∪ Oj.

moreover have all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ⊆
all-unshared sbj

using all-unshared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

by auto
moreover

note ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]

ultimately
show False

using R-acq x-R x-unshared acquired-all-acquired [of True sb Osb]
by blast

qed
}
thus ?thesis by blast

qed

have all-acquired-R: ∀ j p is O R D j sb. j < length tssb −→ i 6= j −→
tssb ! j = (p, is, j, sb, D, O,R) −→
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)

assume neq-i-j: i 6= j
assume x-acq: x ∈ all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-R: x ∈ R

have False
proof −

from x-acq have x ∈ all-acquired sbj

using all-acquired-append [of takeWhile (Not ◦ is-volatile-Writesb) sbj

dropWhile (Not ◦ is-volatile-Writesb) sbj]
by auto

moreover
note ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
ultimately
show False

using R-acq x-R acquired-all-acquired [of True sb Osb]
by blast

625

qed
}
thus ?thesis by blast

qed

have all-shared-R: ∀ j p is O R D j sb. j < length tssb −→ i 6= j −→
tssb ! j = (p, is, j, sb, D, O,R) −→
all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∩ R = {}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)

assume neq-i-j: i 6= j
assume x-shared: x ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
assume x-R: x ∈ R
have False
proof −

from all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
have all-shared sbj ⊆ all-acquired sbj ∪ Oj.

moreover have all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ⊆ all-shared
sbj

using all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

by auto
moreover
note ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
ultimately
show False

using R-acq x-R x-shared acquired-all-acquired [of True sb Osb]
by blast

qed
}
thus ?thesis by blast

qed

note share-commute =
share-all-until-volatile-write-append-Ghostsb [OF True ‹ownership-distinct tssb›

‹sharing-consis Ssb tssb›
i-bound tssb-i all-shared-L all-shared-A all-acquired-R all-unshared-R all-shared-R]

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb (sb@[Ghostsb A L R W]) 6= {})

by (auto simp: outstanding-refs-append)

have ∀ a ∈ R. (a ∈ (dom (share sb Ssb))) = (a ∈ dom S)
proof −

{

626

fix a
assume a-R: a ∈ R
have (a ∈ (dom (share sb Ssb))) = (a ∈ dom S)
proof −

from a-R R-acq acquired-all-acquired [of True sb Osb]
have a ∈ Osb ∪ all-acquired sb

by auto

from share-all-until-volatile-write-thread-local ′ [OF ownership-distinct-tssb
sharing-consis-tssb i-bound tssb-i this] suspend-nothing

show ?thesis by (auto simp add: domIff S)
qed

}
then show ?thesis by auto

qed
from augment-rels-shared-exchange [OF this]
have rel-commute:

augment-rels (dom S) R (release sb (dom Ssb) Rsb) =
release (sb @ [Ghostsb A L R W]) (dom Ssb

′) Rsb

by (clarsimp simp add: release-append Ssb
′)

have (tssb ′,msb,Ssb
′) ∼

(ts[i := (psb,issb ′,
jsb,(), D, acquired True ?take-sb Osb ∪ A − R,

augment-rels (dom S) R (release ?take-sb (dom Ssb) Rsb))],
m,S ⊕W R 	A L)

apply (rule sim-config.intros)
apply (simp add: m tssb ′ Osb

′ sb ′ jsb ′

flush-all-until-volatile-write-append-Ghost-commute [OF i-bound tssb-i])
apply (clarsimp simp add: S Ssb

′ tssb ′ sb ′ Osb
′ jsb ′ share-commute)

using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i True D ′

apply (clarsimp simp add: Let-def nth-list-update
outstanding-refs-conv tssb ′ Osb

′ Rsb
′ Ssb

′ jsb ′ sb ′ Dsb
′ suspend-nothing ′ flush-all

rel-commute
acquired-append split: if-split-asm)

done

ultimately show ?thesis
using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′

valid-sops ′
valid-dd ′ load-tmps-fresh ′ enough-flushs ′

valid-program-history ′ valid ′ msb
′ Ssb

′ Rsb
′

by auto
next

case False

then obtain r where r-in: r ∈ set sb and volatile-r: is-volatile-Writesb r

627

by (auto simp add: outstanding-refs-conv)
from takeWhile-dropWhile-real-prefix
[OF r-in, of (Not ◦ is-volatile-Writesb), simplified, OF volatile-r]
obtain a ′ v ′ sb ′′ A ′′ L ′′ R ′′ W ′′ sop ′ where

sb-split: sb = takeWhile (Not ◦ is-volatile-Writesb) sb @ Writesb True a ′ sop ′ v ′ A ′′ L ′′

R ′′ W ′′# sb ′′

and
drop: dropWhile (Not ◦ is-volatile-Writesb) sb = Writesb True a ′ sop ′ v ′ A ′′ L ′′ R ′′ W ′′#

sb ′′

apply (auto)
subgoal for y ys

apply (case-tac y)
apply auto
done
done

from drop suspends have suspends: suspends = Writesb True a ′ sop ′ v ′ A ′′ L ′′ R ′′ W ′′#
sb ′′

by simp

have (ts, m, S) ⇒d
∗ (ts, m, S) by auto

moreover

have Writesb True a ′ sop ′ v ′ A ′′ L ′′ R ′′ W ′′∈ set sb
by (subst sb-split) auto

note drop-app = dropWhile-append1
[OF this, of (Not ◦ is-volatile-Writesb), simplified]

from takeWhile-append1 [where P=Not ◦ is-volatile-Writesb, OF r-in] volatile-r
have takeWhile-app:
(takeWhile (Not ◦ is-volatile-Writesb) (sb @ [Ghostsb A L R W])) = (takeWhile (Not ◦

is-volatile-Writesb) sb)
by simp

note share-commute = share-all-until-volatile-write-append-Ghostsb ′ [OF False i-bound
tssb-i]

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb (sb@[Ghostsb A L R W]) 6= {})

by (auto simp: outstanding-refs-append)

have (tssb ′,msb,Ssb
′) ∼ (ts,m,S)

apply (rule sim-config.intros)
apply (simp add: m flush-all-until-volatile-write-append-Ghost-commute [OF i-bound

tssb-i] tssb ′ Osb
′ jsb ′ sb ′)

apply (clarsimp simp add: S Ssb
′ tssb ′ sb ′ Osb

′ jsb ′ share-commute)
using leq
apply (simp add: tssb ′)
using i-bound i-bound ′ ts-sim ts-i is-sim D ′

apply (clarsimp simp add: Let-def nth-list-update is-sim drop-app

628

read-tmps-append suspends
prog-instrs-append-Ghostsb instrs-append-Ghostsb hd-prog-append-Ghostsb
drop issb tssb ′ sb ′ Osb

′ Rsb
′ Ssb

′ jsb ′ Dsb
′ takeWhile-app split: if-split-asm)

done
ultimately show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ valid-dd ′

valid-sops ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′ msb

′ Ssb
′

by (auto simp del: fun-upd-apply)
qed

qed
next

case (StoreBuffer i psb issb jsb sb Dsb Osb Rsb sb ′ Osb
′ Rsb

′)
then obtain

tssb ′: tssb ′ = tssb[i := (psb, issb, jsb, sb ′, Dsb, Osb
′,Rsb

′)] and
i-bound: i < length tssb and
tssb-i: tssb ! i = (psb, issb, jsb,sb, Dsb, Osb,Rsb) and
flush: (msb,sb,Osb,Rsb,Ssb) →f

(msb
′,sb ′,Osb

′,Rsb
′,Ssb

′)
by auto

from sim obtain
m: m = flush-all-until-volatile-write tssb msb and
S: S = share-all-until-volatile-write tssb Ssb and
leq: length tssb = length ts and
ts-sim: ∀ i<length tssb.

let (p, issb, j, sb,Dsb, Osb,R) = tssb ! i;
suspends = dropWhile (Not ◦ is-volatile-Writesb) sb

in ∃ is D. instrs suspends @ issb = is @ prog-instrs suspends ∧
Dsb = (D ∨ outstanding-refs is-volatile-Writesb sb 6= {}) ∧

ts ! i =
(hd-prog p suspends,
is,
j |‘ (dom j − read-tmps suspends), (),
D,
acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) Osb,
release (takeWhile (Not ◦ is-volatile-Writesb) sb) (dom Ssb) R)

by cases blast

from i-bound leq have i-bound ′: i < length ts
by auto

have split-sb: sb = takeWhile (Not ◦ is-volatile-Writesb) sb @ dropWhile (Not ◦
is-volatile-Writesb) sb

(is sb = ?take-sb@?drop-sb)
by simp

from ts-sim [rule-format, OF i-bound] tssb-i obtain suspends is D where

629

suspends: suspends = dropWhile (Not ◦ is-volatile-Writesb) sb and
is-sim: instrs suspends @ issb = is @ prog-instrs suspends and
D: Dsb = (D ∨ outstanding-refs is-volatile-Writesb sb 6= {}) and
ts-i: ts ! i =

(hd-prog psb suspends, is,
jsb |‘ (dom jsb − read-tmps suspends), (),D, acquired True ?take-sb Osb,
release ?take-sb (dom Ssb) Rsb)

by (auto simp add: Let-def)

from flush-step-preserves-valid [OF i-bound tssb-i flush valid]
have valid ′: valid tssb ′

by (simp add: tssb ′)

from flush obtain r where sb: sb=r#sb ′

by (cases) auto

from valid-history [OF i-bound tssb-i]
have history-consistent jsb (hd-prog psb sb) sb.
then
have hist-consis ′: history-consistent jsb (hd-prog psb sb ′) sb ′

by (auto simp add: sb intro: history-consistent-hd-prog
split: memref.splits option.splits)

from valid-history-nth-update [OF i-bound this]
have valid-hist ′: valid-history program-step tssb ′ by (simp add: tssb ′)

from read-tmps-distinct [OF i-bound tssb-i]
have dist-sb ′: distinct-read-tmps sb ′

by (simp add: sb split: memref.splits)

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]
have distinct-load-tmps issb.

from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′

by (simp add: tssb ′)
next

from read-tmps-distinct-nth-update [OF i-bound dist-sb ′]
show read-tmps-distinct tssb ′

by (simp add: tssb ′)
next

from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
have load-tmps issb ∩ read-tmps sb ′ = {}

by (auto simp add: sb split: memref.splits)
from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-read-tmps-distinct tssb ′ by (simp add: tssb ′)

qed

from load-tmps-write-tmps-distinct [OF i-bound tssb-i]

630

have load-tmps issb ∩
⋃
(fst ‘ write-sops sb ′) = {}

by (auto simp add: sb split: memref.splits)
from valid-data-dependency-nth-update
[OF i-bound data-dependency-consistent-instrs [OF i-bound tssb-i] this]

have valid-dd ′: valid-data-dependency tssb ′

by (simp add: tssb ′)

from valid-store-sops [OF i-bound tssb-i] valid-write-sops [OF i-bound tssb-i]
valid-sops-nth-update [OF i-bound]
have valid-sops ′: valid-sops tssb ′

by (cases r) (auto simp add: sb tssb ′)

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −
from load-tmps-fresh [OF i-bound tssb-i]
have load-tmps issb ∩ dom jsb = {}.
from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′)

qed

have enough-flushs ′: enough-flushs tssb ′

proof −
from clean-no-outstanding-volatile-Writesb [OF i-bound tssb-i]
have ¬ Dsb −→ outstanding-refs is-volatile-Writesb sb ′ = {}

by (auto simp add: sb split: if-split-asm)
from enough-flushs-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′ sb)
qed

show ?thesis
proof (cases r)

case (Writesb volatile a sop v A L R W)
from flush this
have msb

′: msb
′ = (msb(a := v))

by cases (auto simp add: sb)

have non-volatile-owned: ¬ volatile −→ a ∈ Osb

proof (cases volatile)
case True thus ?thesis by simp

next
case False
with outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have a ∈ Osb

by (simp add: sb Writesb)
thus ?thesis by simp

qed

have a-unowned-by-others:
∀ j < length tssb. i 6= j −→ (let (-,-,-,sbj,-,Oj,-) = tssb ! j in

631

a /∈ Oj ∪ all-acquired sbj)
proof (unfold Let-def, clarify del: notI)

fix j pj isj Oj Rj Dj jj sbj

assume j-bound: j < length tssb
assume neq: i 6= j
assume ts-j: tssb ! j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show a /∈ Oj ∪ all-acquired sbj

proof (cases volatile)
case True
from outstanding-volatile-writes-unowned-by-others [OF i-bound j-bound neq

tssb-i ts-j]
show ?thesis

by (simp add: sb Writesb True)
next

case False
with non-volatile-owned
have a ∈ Osb

by simp
with ownership-distinct [OF i-bound j-bound neq tssb-i ts-j]
show ?thesis

by blast
qed

qed

from valid-reads [OF i-bound tssb-i]
have reads-consis: reads-consistent False Osb msb sb .

{
fix j
fix pj issbj Oj Rj Dsbj jj sbj

assume j-bound: j < length tssb
assume tssb-j: tssb!j=(pj,issbj,jj,sbj,Dsbj,Oj,Rj)
assume neq-i-j: i6=j
have a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj)
proof

assume a ∈ outstanding-refs is-Writesb (takeWhile (Not ◦ is-volatile-Writesb) sbj)
hence a ∈ outstanding-refs is-non-volatile-Writesb (takeWhile (Not ◦ is-volatile-Writesb)

sbj)
by (simp add: outstanding-refs-is-non-volatile-Writesb-takeWhile-conv)

hence a ∈ outstanding-refs is-non-volatile-Writesb sbj

using outstanding-refs-append [of - (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

by auto
with non-volatile-owned-or-read-only-outstanding-non-volatile-writes
[OF outstanding-non-volatile-refs-owned-or-read-only [OF j-bound tssb-j]]
have a ∈ Oj ∪ all-acquired sbj

by auto
with a-unowned-by-others [rule-format, OF j-bound neq-i-j] tssb-j
show False

632

by auto
qed

}
note a-notin-others = this

from a-notin-others
have a-notin-others ′:

∀ j < length tssb. i 6= j −→
(let (-,-,-,sbj,-,-,-) = tssb!j in a /∈ outstanding-refs is-Writesb (takeWhile (Not ◦

is-volatile-Writesb) sbj))
by (fastforce simp add: Let-def)

obtain D f where sop: sop=(D,f) by (cases sop) auto
from valid-history [OF i-bound tssb-i] sop sb Writesb
obtain D-tmps: D ⊆ dom jsb and f-v: f jsb = v and

D-sb ′: D ∩ read-tmps sb ′ = {}
by auto

let ?j = (jsb |‘ (dom jsb − read-tmps sb ′))
from D-tmps D-sb ′

have D-tmps ′: D ⊆ dom ?j
by auto

from valid-write-sops [OF i-bound tssb-i, rule-format, of sop]
have valid-sop sop

by (auto simp add: sb Writesb)
from this [simplified sop]
interpret valid-sop (D,f) .
from D-tmps D-sb ′

have ((dom jsb − read-tmps sb ′) ∩ D) = D
by blast

with valid-sop [OF refl D-tmps] valid-sop [OF refl D-tmps ′] f-v
have f-v ′: f ?j = v

by auto

have valid-program-history ′: valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb .
then have causal ′: causal-program-history issb sb ′

by (simp add: sb Writesb causal-program-history-def)

from valid-last-prog [OF i-bound tssb-i]
have last-prog psb sb = psb.
hence last-prog psb sb ′ = psb

by (simp add: sb Writesb)

from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

633

by (simp add: tssb ′)
qed

show ?thesis
proof (cases volatile)

case True
note volatile = this
from flush Writesb volatile
obtain
Osb

′: Osb
′=Osb ∪ A − R and

Ssb
′: Ssb

′= Ssb ⊕W R 	A L and
Rsb

′: Rsb
′ = Map.empty

by cases (auto simp add: sb)

from sharing-consis [OF i-bound tssb-i]
obtain

A-shared-owned: A ⊆ dom Ssb ∪ Osb and
L-subset: L ⊆ A and
A-R: A ∩ R = {} and
R-owned: R ⊆ Osb

by (clarsimp simp add: sb Writesb volatile)

from sb Writesb True have take-empty: takeWhile (Not ◦ is-volatile-Writesb) sb = []
by (auto simp add: outstanding-refs-conv)

from sb Writesb True have suspend-all: dropWhile (Not ◦ is-volatile-Writesb) sb = sb
by (auto simp add: outstanding-refs-conv)

hence suspends-all: suspends = sb
by (simp add: suspends)

from is-sim
have is-sim: Write True a (D, f) A L R W# instrs sb ′ @ issb = is @ prog-instrs sb ′

by (simp add: True Writesb suspends-all sb sop)

from valid-program-history [OF i-bound tssb-i]
interpret causal-program-history issb sb .
from valid-last-prog [OF i-bound tssb-i]
have last-prog: last-prog psb sb = psb.

from causal-program-history [of [Writesb True a (D, f) v A L R W] sb ′] is-sim
obtain is ′ where

is: is = Write True a (D, f) A L R W# is ′ and
is ′-sim: instrs sb ′@issb = is ′ @ prog-instrs sb ′

by (auto simp add: sb Writesb volatile sop)

634

from causal-program-history have
causal-program-history-sb ′: causal-program-history issb sb ′

apply −
apply (rule causal-program-history.intro)
apply (auto simp add: sb Writesb)
done

from ts-i have ts-i: ts ! i =
(hd-prog psb sb ′, Write True a (D, f) A L R W# is ′, ?j, (), D,acquired True

?take-sb Osb,
release ?take-sb (dom Ssb) Rsb)

by (simp add: suspends-all sb Writesb is)

let ?ts ′ = ts[i := (hd-prog psb sb ′, is ′, ?j, (), True, acquired True ?take-sb Osb ∪ A − R,
Map.empty)]

from i-bound ′ have ts ′-i: ?ts ′!i = (hd-prog psb sb ′, is ′, ?j, (),True, acquired True ?take-sb
Osb ∪ A − R,Map.empty)

by simp

from no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
have a-not-ro: a /∈ read-only Ssb

by (clarsimp simp add: sb Writesb volatile)

{
fix j
fix pj issbj Oj Rj Dsbj jj sbj

assume j-bound: j < length tssb
assume tssb-j: tssb!j=(pj,issbj,jj,sbj,Dsbj,Oj,Rj)
assume neq-i-j: i6=j
have a /∈ unforwarded-non-volatile-reads (dropWhile (Not ◦ is-volatile-Writesb) sbj) {}
proof

let ?take-sbj = takeWhile (Not ◦ is-volatile-Writesb) sbj

let ?drop-sbj = dropWhile (Not ◦ is-volatile-Writesb) sbj

assume a-in: a ∈ unforwarded-non-volatile-reads ?drop-sbj {}

from a-unowned-by-others [rule-format, OF j-bound neq-i-j] tssb-j
obtain a-unowned: a /∈ Oj and a-unacq: a /∈ all-acquired sbj

by auto
with all-acquired-append [of ?take-sbj ?drop-sbj] ac-

quired-takeWhile-non-volatile-Writesb [of sbj Oj]
have a-unacq-take: a /∈ acquired True ?take-sbj Oj

by (auto simp add:)

note nvo-j = outstanding-non-volatile-refs-owned-or-read-only [OF j-bound tssb-j]

from non-volatile-owned-or-read-only-drop [OF nvo-j]
have nvo-drop-j: non-volatile-owned-or-read-only True (share ?take-sbj Ssb)
(acquired True ?take-sbj Oj) ?drop-sbj .

635

note consis-j = sharing-consis [OF j-bound tssb-j]
with sharing-consistent-append [of Ssb Oj ?take-sbj ?drop-sbj]
obtain consis-take-j: sharing-consistent Ssb Oj ?take-sbj and

consis-drop-j: sharing-consistent (share ?take-sbj Ssb)
(acquired True ?take-sbj Oj) ?drop-sbj

by auto

from in-unforwarded-non-volatile-reads-non-volatile-Readsb [OF a-in]
have a-in ′: a ∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj.

note reads-consis-j = valid-reads [OF j-bound tssb-j]
from reads-consistent-drop [OF this]
have reads-consis-drop-j:

reads-consistent True (acquired True ?take-sbj Oj) (flush ?take-sbj msb) ?drop-sbj.

from read-only-share-all-shared [of a ?take-sbj Ssb] a-not-ro
all-shared-acquired-or-owned [OF consis-take-j]
all-acquired-append [of ?take-sbj ?drop-sbj] a-unowned a-unacq

have a-not-ro-j: a /∈ read-only (share ?take-sbj Ssb)
by auto

from ts-sim [rule-format, OF j-bound] tssb-j j-bound
obtain suspendsj isj Dj Rj where

suspendsj: suspendsj = ?drop-sbj and
isj: instrs suspendsj @ issbj = isj @ prog-instrs suspendsj and
Dj: Dsbj = (Dj ∨ outstanding-refs is-volatile-Writesb sbj 6= {}) and
tsj: ts!j = (hd-prog pj suspendsj, isj,
jj |‘ (dom jj − read-tmps suspendsj),(),
Dj, acquired True ?take-sbj Oj,Rj)
by (auto simp: Let-def)

from valid-last-prog [OF j-bound tssb-j] have last-prog: last-prog pj sbj = pj.

from j-bound i-bound ′ leq have j-bound-ts ′: j < length ts
by simp

from read-only-read-acquired-unforwarded-acquire-witness [OF nvo-drop-j con-
sis-drop-j

a-not-ro-j a-unacq-take a-in]

have False
proof

assume ∃ sop a ′ v ys zs A L R W.
?drop-sbj = ys @ Writesb True a ′ sop v A L R W # zs ∧ a ∈ A ∧
a /∈ outstanding-refs is-Writesb ys ∧ a ′6=a

with suspendsj
obtain a ′ sop ′ v ′ ys zs ′ A ′ L ′ R ′ W ′ where

636

split-suspendsj: suspendsj = ys @ Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs ′ (is
suspendsj=?suspends) and

a-A ′: a ∈ A ′ and
no-write: a /∈ outstanding-refs is-Writesb (ys @ [Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])
by (auto simp add: outstanding-refs-append)

from last-prog
have lp: last-prog pj suspendsj = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from sharing-consis [OF j-bound tssb-j]
have sharing-consis-j: sharing-consistent Ssb Oj sbj.
then have A ′-R ′: A ′ ∩ R ′ = {}

by (simp add: sharing-consistent-append [of - - ?take-sbj ?drop-sbj, simplified]
suspendsj [symmetric] split-suspendsj sharing-consistent-append)

from valid-program-history [OF j-bound tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from valid-reads [OF j-bound tssb-j]
have reads-consis-j: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb›

j-bound tssb-j this]
have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
m (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])
by (simp add: split-suspendsj reads-consistent-append)

from valid-write-sops [OF j-bound tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]). valid-sop
sop

apply (simp only: write-sops-append)
apply auto

637

done

from read-tmps-distinct [OF j-bound tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound tssb-j]
have h-consis:

history-consistent jj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]
have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]
split-suspendsj)

have acq-simp:
acquired True (ys @ [Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′])
(acquired True ?take-sbj Oj) =
acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

638

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]
and sb ′=zs ′, simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj] tsj [simplified
split-suspendsj]

refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop
distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=S]

obtain isj ′ Rj
′ where

isj ′: instrs zs ′ @ issbj = isj ′ @ prog-instrs zs ′ and
steps-ys: (ts, m, S) ⇒d

∗

(ts[j:=(last-prog
(hd-prog pj (Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′# zs ′)) (ys@[Writesb

True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]),
isj ′,
jj |‘ (dom jj − read-tmps zs ′),

(), True, acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ −
R ′,Rj

′)],
flush (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) m,
share (ys@[Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′]) S)

(is (-,-,-) ⇒d
∗ (?ts-ys,?m-ys,?shared-ys))

by (auto simp add: acquired-append outstanding-refs-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j ts-i
have ts-ys-i: ?ts-ys!i = (hd-prog psb sb ′, Write True a (D, f) A L R W# is ′, ?j, (),

D,
acquired True ?take-sb Osb,release ?take-sb (dom Ssb) Rsb)
by simp

note conflict-computation = steps-ys

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe: safe-delayed (?ts-ys,?m-ys,?shared-ys).

with safe-delayedE [OF safe i-bound-ys ts-ys-i]
have a-unowned:

∀ j < length ?ts-ys. i6=j −→ (let (Oj) = map owned ?ts-ys!j in a /∈ Oj)
apply cases
apply (auto simp add: Let-def sb)
done

from a-A ′ a-unowned [rule-format, of j] neq-i-j j-bound leq A ′-R ′

show False
by (auto simp add: Let-def)

639

next
assume ∃A L R W ys zs. ?drop-sbj = ys @ Ghostsb A L R W# zs ∧ a ∈ A ∧ a /∈

outstanding-refs is-Writesb ys
with suspendsj
obtain ys zs ′ A ′ L ′ R ′ W ′ where

split-suspendsj: suspendsj = ys @ Ghostsb A ′ L ′ R ′ W ′# zs ′ (is suspendsj=?suspends)
and

a-A ′: a ∈ A ′ and
no-write: a /∈ outstanding-refs is-Writesb (ys @ [Ghostsb A ′ L ′ R ′ W ′])
by (auto simp add: outstanding-refs-append)

from last-prog
have lp: last-prog pj suspendsj = pj

apply −
apply (rule last-prog-same-append [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from valid-program-history [OF j-bound tssb-j]
have causal-program-history issbj sbj.
then have cph: causal-program-history issbj ?suspends

apply −
apply (rule causal-program-history-suffix [where sb=?take-sbj])
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp add: split-suspendsj)
done

from valid-reads [OF j-bound tssb-j]
have reads-consis-j: reads-consistent False Oj msb sbj.

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing
Ssb tssb›

j-bound tssb-j this]
have reads-consis-m-j: reads-consistent True (acquired True ?take-sbj Oj) m suspendsj

by (simp add: m suspendsj)

hence reads-consis-ys: reads-consistent True (acquired True ?take-sbj Oj)
m (ys@[Ghostsb A ′ L ′ R ′ W ′])
by (simp add: split-suspendsj reads-consistent-append)

from valid-write-sops [OF j-bound tssb-j]
have ∀ sop∈write-sops (?take-sbj@?suspends). valid-sop sop

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain valid-sops-take: ∀ sop∈write-sops ?take-sbj. valid-sop sop and

valid-sops-drop: ∀ sop∈write-sops (ys@[Ghostsb A ′ L ′ R ′ W ′]). valid-sop sop
apply (simp only: write-sops-append)
apply auto

640

done

from read-tmps-distinct [OF j-bound tssb-j]
have distinct-read-tmps (?take-sbj@suspendsj)

by (simp add: split-suspendsj [symmetric] suspendsj)
then obtain

read-tmps-take-drop: read-tmps ?take-sbj ∩ read-tmps suspendsj = {} and
distinct-read-tmps-drop: distinct-read-tmps suspendsj
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply (simp only: distinct-read-tmps-append)
done

from valid-history [OF j-bound tssb-j]
have h-consis:

history-consistent jj (hd-prog pj (?take-sbj@suspendsj)) (?take-sbj@suspendsj)
apply (simp only: split-suspendsj [symmetric] suspendsj)
apply simp
done

from sharing-consis [OF j-bound tssb-j]
have sharing-consis-j: sharing-consistent Ssb Oj sbj.
then have A ′-R ′: A ′ ∩ R ′ = {}

by (simp add: sharing-consistent-append [of - - ?take-sbj ?drop-sbj, simplified]
suspendsj [symmetric] split-suspendsj sharing-consistent-append)

have last-prog-hd-prog: last-prog (hd-prog pj sbj) ?take-sbj = (hd-prog pj suspendsj)
proof −

from last-prog have last-prog pj (?take-sbj@?drop-sbj) = pj

by simp
from last-prog-hd-prog-append ′ [OF h-consis] this
have last-prog (hd-prog pj suspendsj) ?take-sbj = hd-prog pj suspendsj

by (simp only: split-suspendsj [symmetric] suspendsj)
moreover
have last-prog (hd-prog pj (?take-sbj @ suspendsj)) ?take-sbj =

last-prog (hd-prog pj suspendsj) ?take-sbj

apply (simp only: split-suspendsj [symmetric] suspendsj)
by (rule last-prog-hd-prog-append)

ultimately show ?thesis
by (simp add: split-suspendsj [symmetric] suspendsj)

qed

from history-consistent-appendD [OF valid-sops-take read-tmps-take-drop
h-consis] last-prog-hd-prog

have hist-consis ′: history-consistent jj (hd-prog pj suspendsj) suspendsj
by (simp add: split-suspendsj [symmetric] suspendsj)

from reads-consistent-drop-volatile-writes-no-volatile-reads
[OF reads-consis-j]
have no-vol-read: outstanding-refs is-volatile-Readsb

(ys@[Ghostsb A ′ L ′ R ′ W ′]) = {}
by (auto simp add: outstanding-refs-append suspendsj [symmetric]

641

split-suspendsj)

have acq-simp:
acquired True (ys @ [Ghostsb A ′ L ′ R ′ W ′])
(acquired True ?take-sbj Oj) =
acquired True ys (acquired True ?take-sbj Oj) ∪ A ′ − R ′

by (simp add: acquired-append)

from flush-store-buffer-append [where sb=ys@[Ghostsb A ′ L ′ R ′ W ′] and sb ′=zs ′,
simplified,

OF j-bound-ts ′ isj [simplified split-suspendsj] cph [simplified suspendsj]
tsj [simplified split-suspendsj] refl lp [simplified split-suspendsj] reads-consis-ys
hist-consis ′ [simplified split-suspendsj] valid-sops-drop
distinct-read-tmps-drop [simplified split-suspendsj]
no-volatile-Readsb-volatile-reads-consistent [OF no-vol-read], where
S=S]

obtain isj ′ Rj
′ where

isj ′: instrs zs ′ @ issbj = isj ′ @ prog-instrs zs ′ and
steps-ys: (ts, m,S) ⇒d

∗

(ts[j:=(last-prog
(hd-prog pj (Ghostsb A ′ L ′ R ′ W ′# zs ′)) (ys@[Ghostsb A ′ L ′ R ′ W ′]),
isj ′,
jj |‘ (dom jj − read-tmps zs ′),
(),

Dj ∨ outstanding-refs is-volatile-Writesb ys 6= {}, acquired True ys
(acquired True ?take-sbj Oj) ∪ A ′ − R ′,Rj

′)],
flush (ys@[Ghostsb A ′ L ′ R ′ W ′]) m, share (ys@[Ghostsb A ′

L ′ R ′ W ′]) S)
(is (-,-,-) ⇒d

∗ (?ts-ys,?m-ys,?shared-ys))
by (auto simp add: acquired-append outstanding-refs-append)

from i-bound ′ have i-bound-ys: i < length ?ts-ys
by auto

from i-bound ′ neq-i-j ts-i
have ts-ys-i: ?ts-ys!i = (hd-prog psb sb ′, Write True a (D, f) A L R W# is ′, ?j, (),

D,
acquired True ?take-sb Osb,release ?take-sb (dom Ssb) Rsb)
by simp

note conflict-computation = steps-ys

from safe-reach-safe-rtrancl [OF safe-reach conflict-computation]
have safe: safe-delayed (?ts-ys,?m-ys,?shared-ys).

with safe-delayedE [OF safe i-bound-ys ts-ys-i]
have a-unowned:

∀ j < length ?ts-ys. i6=j −→ (let (Oj) = map owned ?ts-ys!j in a /∈ Oj)

642

apply cases
apply (auto simp add: Let-def sb)
done

from a-A ′ a-unowned [rule-format, of j] neq-i-j j-bound leq A ′-R ′

show False
by (auto simp add: Let-def)

qed
then show False

by simp
qed

}
note a-notin-unforwarded-non-volatile-reads-drop = this

have valid-reads ′: valid-reads msb
′ tssb ′

proof (unfold-locales)
fix j pj isj Oj Rj Dj jj sbj

assume j-bound: j < length tssb ′

assume ts-j: tssb ′!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show reads-consistent False Oj msb

′ sbj

proof (cases i=j)
case True
from reads-consis ts-j j-bound sb show ?thesis

by (clarsimp simp add: True msb
′ Writesb tssb ′ Osb

′ volatile
reads-consistent-pending-write-antimono)

next
case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
moreover from ts-j False have ts-j ′: tssb ! j = (pj,isj,jj,sbj,Dj,Oj,Rj)

using j-bound by (simp add: tssb ′)
ultimately have consis-m: reads-consistent False Oj msb sbj

by (rule valid-reads)
from a-unowned-by-others [rule-format, OF j-bound ′ False] ts-j ′
have a-unowned:a /∈ Oj ∪ all-acquired sbj

by simp

let ?take-sbj = takeWhile (Not ◦ is-volatile-Writesb) sbj

let ?drop-sbj = dropWhile (Not ◦ is-volatile-Writesb) sbj

from a-unowned acquired-reads-all-acquired [of True ?take-sbj Oj]
all-acquired-append [of ?take-sbj ?drop-sbj]
have a-not-acq-reads: a /∈ acquired-reads True ?take-sbj Oj

by auto
moreover
note a-unfw= a-notin-unforwarded-non-volatile-reads-drop [OF j-bound ′ ts-j ′ False]
ultimately
show ?thesis

using reads-consistent-mem-eq-on-unforwarded-non-volatile-reads-drop [where
W={} and

643

A=unforwarded-non-volatile-reads ?drop-sbj {} ∪ acquired-reads True ?take-sbj Oj and
m ′= (msb(a:=v)), OF - - - consis-m]

by (fastforce simp add: msb
′)

qed
qed

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof
fix j isj Oj Rj Dj jj sbj pj

assume j-bound: j < length tssb ′

assume tssb ′-j: tssb ′!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show non-volatile-owned-or-read-only False Ssb

′ Oj sbj

proof (cases j=i)
case True
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have non-volatile-owned-or-read-only False
(Ssb ⊕W R 	A L) (Osb ∪ A − R) sb ′

by (auto simp add: sb Writesb volatile non-volatile-owned-or-read-only-pending-write-antimono)
then show ?thesis

using True i-bound tssb ′-j
by (auto simp add: tssb ′ Ssb

′ sb Osb
′)

next
case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
with tssb ′-j False i-bound
have tssb-j: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)

note nvo = outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′ tssb-j]

from read-only-unowned [OF i-bound tssb-i] R-owned
have R ∩ read-only Ssb = {}

by auto
with read-only-reads-unowned [OF j-bound ′ i-bound False tssb-j tssb-i] L-subset
have ∀ a∈read-only-reads
(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj)

(dropWhile (Not ◦ is-volatile-Writesb) sbj).
a ∈ read-only Ssb −→ a ∈ read-only (Ssb ⊕W R 	A L)
by (auto simp add: in-read-only-convs sb Writesb volatile)

from non-volatile-owned-or-read-only-read-only-reads-eq ′ [OF nvo this]
have non-volatile-owned-or-read-only False (Ssb ⊕W R 	A L) Oj sbj.
thus ?thesis by (simp add: Ssb

′)
qed

qed
next

644

show outstanding-volatile-writes-unowned-by-others tssb ′

proof (unfold-locales)
fix i1 j p1 is1 O1 R1 D1 xs1 sb1 pj isj Oj Rj Dj xsj sbj

assume i1-bound: i1 < length tssb ′

assume j-bound: j < length tssb ′

assume i1-j: i1 6= j
assume ts-i1: tssb ′!i1 = (p1,is1,xs1,sb1,D1,O1,R1)
assume ts-j: tssb ′!j = (pj,isj, xsj,sbj,Dj,Oj,Rj)
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {}
proof (cases i1=i)

case True
from i1-j True have neq-i-j: i 6=j

by auto
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j neq-i-j have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from outstanding-volatile-writes-unowned-by-others [OF i-bound j-bound ′ neq-i-j

tssb-i ts-j ′] ts-i1 i-bound tssb-i True show ?thesis
by (clarsimp simp add: tssb ′ sb Writesb volatile)

next
case False
note i1-i = this
from i1-bound have i1-bound ′: i1 < length tssb

by (simp add: tssb ′ sb)
hence i1-bound ′′: i1 < length (map owned tssb)

by auto
from ts-i1 False have ts-i1 ′: tssb!i1 = (p1,is1,xs1,sb1,D1,O1,R1)

by (simp add: tssb ′ sb)
show ?thesis
proof (cases j=i)

case True
from outstanding-volatile-writes-unowned-by-others [OF i1-bound ′ i-bound i1-i ts-i1 ′

tssb-i]
have (Osb ∪ all-acquired sb) ∩ outstanding-refs is-volatile-Writesb sb1 = {}.
then show ?thesis

using True i1-i ts-j tssb-i i-bound
by (auto simp add: sb Writesb volatile tssb ′ Osb

′)
next

case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j False have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from outstanding-volatile-writes-unowned-by-others
[OF i1-bound ′ j-bound ′ i1-j ts-i1 ′ ts-j ′]
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {} .

qed
qed

qed

645

next
show read-only-reads-unowned tssb ′

proof
fix n m
fix pn isn On Rn Dn jn sbn pm ism Om Rm Dm jm sbm

assume n-bound: n < length tssb ′

and m-bound: m < length tssb ′

and neq-n-m: n 6=m
and nth: tssb ′!n = (pn, isn, jn, sbn, Dn, On,Rn)
and mth: tssb ′!m =(pm, ism, jm, sbm, Dm, Om,Rm)

from n-bound have n-bound ′: n < length tssb by (simp add: tssb ′)
from m-bound have m-bound ′: m < length tssb by (simp add: tssb ′)
show (Om ∪ all-acquired sbm) ∩

read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn) On)
(dropWhile (Not ◦ is-volatile-Writesb) sbn) =
{}

proof (cases m=i)
case True
with neq-n-m have neq-n-i: n6=i

by auto

with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)
by (auto simp add: tssb ′)

note read-only-reads-unowned [OF n-bound ′ i-bound neq-n-i nth ′ tssb-i]
then
show ?thesis

using True tssb-i neq-n-i nth mth n-bound ′ m-bound ′ L-subset
by (auto simp add: tssb ′ Osb

′ sb Writesb volatile)
next

case False
note neq-m-i = this
with m-bound mth i-bound have mth ′: tssb!m = (pm, ism, jm, sbm, Dm, Om,Rm)

by (auto simp add: tssb ′)
show ?thesis
proof (cases n=i)

case True
from read-only-reads-append [of (Osb ∪ A − R) (takeWhile (Not ◦ is-volatile-Writesb)

sbn)
(dropWhile (Not ◦ is-volatile-Writesb) sbn)]

have read-only-reads
(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn) (Osb ∪ A − R))
(dropWhile (Not ◦ is-volatile-Writesb) sbn) ⊆ read-only-reads (Osb ∪ A −

R) sbn

by auto

with tssb-i nth mth neq-m-i n-bound ′ True
read-only-reads-unowned [OF i-bound m-bound ′ False [symmetric] tssb-i mth ′]

show ?thesis
by (auto simp add: tssb ′ sb Osb

′ Writesb volatile)
next

646

case False
with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)

by (auto simp add: tssb ′)
from read-only-reads-unowned [OF n-bound ′ m-bound ′ neq-n-m nth ′ mth ′] False neq-m-i
show ?thesis

by (clarsimp)
qed

qed
qed

next
show ownership-distinct tssb ′

proof (unfold-locales)
fix i1 j p1 is1 O1 R1 D1 xs1 sb1 pj isj Oj Rj Dj xsj sbj

assume i1-bound: i1 < length tssb ′

assume j-bound: j < length tssb ′

assume i1-j: i1 6= j
assume ts-i1: tssb ′!i1 = (p1,is1,xs1,sb1,D1,O1,R1)
assume ts-j: tssb ′!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show (O1 ∪ all-acquired sb1) ∩ (Oj ∪ all-acquired sbj)= {}
proof (cases i1=i)

case True
with i1-j have i-j: i6=j

by simp

from j-bound have j-bound ′: j < length tssb
by (simp add: tssb ′)

hence j-bound ′′: j < length (map owned tssb)
by simp

from ts-j i-j have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
by (simp add: tssb ′)

from ownership-distinct [OF i-bound j-bound ′ i-j tssb-i ts-j ′]
show ?thesis

using tssb-i True ts-i1 i-bound Osb
′

by (auto simp add: tssb ′ sb Writesb volatile)
next

case False
note i1-i = this
from i1-bound have i1-bound ′: i1 < length tssb

by (simp add: tssb ′)
hence i1-bound ′′: i1 < length (map owned tssb)

by simp
from ts-i1 False have ts-i1 ′: tssb!i1 = (p1,is1,xs1,sb1,D1,O1,R1)

by (simp add: tssb ′)
show ?thesis
proof (cases j=i)

case True
from ownership-distinct [OF i1-bound ′ i-bound i1-i ts-i1 ′ tssb-i]
show ?thesis

using tssb-i True ts-j i-bound Osb
′

647

by (auto simp add: tssb ′ sb Writesb volatile)
next

case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j False have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from ownership-distinct [OF i1-bound ′ j-bound ′ i1-j ts-i1 ′ ts-j ′]
show ?thesis .

qed
qed

qed
qed

have valid-sharing ′: valid-sharing (Ssb ⊕W R 	A L) tssb ′

proof (intro-locales)
show outstanding-non-volatile-writes-unshared (Ssb ⊕W R 	A L) tssb ′

proof (unfold-locales)
fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show non-volatile-writes-unshared (Ssb ⊕W R 	A L) sbj

proof (cases i=j)
case True
with outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]

i-bound jth tssb-i show ?thesis
by (clarsimp simp add: tssb ′ sb Writesb volatile)

next
case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
from jth False have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from outstanding-non-volatile-writes-unshared [OF j-bound ′ jth ′]
have unshared: non-volatile-writes-unshared Ssb sbj.

have ∀ a∈dom (Ssb ⊕W R 	A L) − dom Ssb. a /∈ outstanding-refs
is-non-volatile-Writesb sbj

proof −
{

fix a
assume a-in: a ∈ dom (Ssb ⊕W R 	A L) − dom Ssb

hence a-R: a ∈ R
by clarsimp

assume a-in-j: a ∈ outstanding-refs is-non-volatile-Writesb sbj

have False
proof −

from non-volatile-owned-or-read-only-outstanding-non-volatile-writes [OF
outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′ jth ′]]
a-in-j

648

have a ∈ Oj ∪ all-acquired sbj

by auto

moreover
with ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′] a-R R-owned
show False

by blast
qed

}
thus ?thesis by blast

qed

from non-volatile-writes-unshared-no-outstanding-non-volatile-Writesb
[OF unshared this]
show ?thesis .

qed
qed

next
show sharing-consis (Ssb ⊕W R 	A L) tssb ′

proof (unfold-locales)
fix j pj isj Oj Rj Dj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show sharing-consistent (Ssb ⊕W R 	A L) Oj sbj

proof (cases i=j)
case True
with i-bound jth tssb-i sharing-consis [OF i-bound tssb-i]
show ?thesis

by (clarsimp simp add: tssb ′ sb Writesb volatile Osb
′)

next
case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
from jth False have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from sharing-consis [OF j-bound ′ jth ′]
have consis: sharing-consistent Ssb Oj sbj.

have acq-cond: all-acquired sbj ∩ dom Ssb − dom (Ssb ⊕W R 	A L) = {}
proof −

{
fix a
assume a-acq: a ∈ all-acquired sbj

assume a ∈ dom Ssb

assume a-L: a ∈ L
have False
proof −

from ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′]

649

have A ∩ all-acquired sbj = {}
by (auto simp add: sb Writesb volatile)

with a-acq a-L L-subset
show False

by blast
qed

}
thus ?thesis

by auto
qed
have uns-cond: all-unshared sbj ∩ dom (Ssb ⊕W R 	A L) − dom Ssb = {}
proof −

{
fix a
assume a-uns: a ∈ all-unshared sbj

assume a /∈ L
assume a-R: a ∈ R
have False
proof −

from unshared-acquired-or-owned [OF consis] a-uns
have a ∈ all-acquired sbj ∪ Oj by auto
with ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′] R-owned a-R
show False

by blast
qed

}
thus ?thesis

by auto
qed

from sharing-consistent-preservation [OF consis acq-cond uns-cond]
show ?thesis

by (simp add: tssb ′)
qed

qed
next

show read-only-unowned (Ssb ⊕W R 	A L) tssb ′

proof
fix j pj isj Oj Rj Dj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show Oj ∩ read-only (Ssb ⊕W R 	A L) = {}
proof (cases i=j)

case True
from read-only-unowned [OF i-bound tssb-i] R-owned A-R
have (Osb ∪ A − R) ∩ read-only (Ssb ⊕W R 	A L) = {}

by (auto simp add: in-read-only-convs)
with jth tssb-i i-bound True
show ?thesis

by (auto simp add: Osb
′ tssb ′)

650

next
case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
with False jth have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from read-only-unowned [OF j-bound ′ jth ′]
have Oj ∩ read-only Ssb = {}.
moreover
from ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′] R-owned
have (Osb ∪ A) ∩ Oj = {}

by (auto simp add: sb Writesb volatile)
moreover note R-owned A-R
ultimately show ?thesis

by (fastforce simp add: in-read-only-convs split: if-split-asm)
qed

qed
next

show unowned-shared (Ssb ⊕W R 	A L) tssb ′

proof (unfold-locales)
show −

⋃
((λ(-,-, -, -,-, O,-). O) ‘ set tssb ′) ⊆ dom (Ssb ⊕W R 	A L)

proof −

have s:
⋃

((λ(-,-, -, -,-, O,-). O) ‘ set tssb ′) =⋃
((λ(-,-, -, -,-, O,-). O) ‘ set tssb) ∪ A − R

apply (unfold tssb ′ Osb
′)

apply (rule acquire-release-ownership-nth-update [OF R-owned i-bound tssb-i])
apply (rule local.ownership-distinct-axioms)
done

note unowned-shared L-subset A-R
then
show ?thesis

apply (simp only: s)
apply auto
done

qed
qed

next
show no-outstanding-write-to-read-only-memory (Ssb ⊕W R 	A L) tssb ′

proof
fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show no-write-to-read-only-memory (Ssb ⊕W R 	A L) sbj

proof (cases i=j)
case True

with jth tssb-i i-bound no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
show ?thesis

651

by (auto simp add: sb tssb ′ Writesb volatile)
next

case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
with False jth have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from no-outstanding-write-to-read-only-memory [OF j-bound ′ jth ′]
have nw: no-write-to-read-only-memory Ssb sbj.
have R ∩ outstanding-refs is-Writesb sbj = {}
proof −

note dist = ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′]
from non-volatile-owned-or-read-only-outstanding-non-volatile-writes
[OF outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′ jth ′]]

dist
have outstanding-refs is-non-volatile-Writesb sbj ∩ Osb = {}

by auto
moreover
from outstanding-volatile-writes-unowned-by-others [OF j-bound ′ i-bound

False [symmetric] jth ′ tssb-i]
have outstanding-refs is-volatile-Writesb sbj ∩ Osb = {}

by auto
ultimately have outstanding-refs is-Writesb sbj ∩ Osb = {}

by (auto simp add: misc-outstanding-refs-convs)
with R-owned
show ?thesis by blast

qed
then
have ∀ a∈outstanding-refs is-Writesb sbj.

a ∈ read-only (Ssb ⊕W R 	A L) −→ a ∈ read-only Ssb

by (auto simp add: in-read-only-convs)

from no-write-to-read-only-memory-read-only-reads-eq [OF nw this]
show ?thesis .

qed
qed

qed

from direct-memop-step.WriteVolatile [OF]
have (Write True a (D, f) A L R W# is ′,

?j, (), m,D, acquired True ?take-sb Osb, release ?take-sb (dom Ssb) Rsb,S) →
(is ′, ?j, (), m (a := v),True, acquired True ?take-sb Osb ∪ A − R, Map.empty,S

⊕W R 	A L)
by (simp add: f-v ′ [symmetric])

from direct-computation.Memop [OF i-bound ′ ts-i this]
have store-step:
(ts, m, S) ⇒d (?ts ′, m(a := v),S ⊕W R 	A L).

have sb ′-split:

652

sb ′ = takeWhile (Not ◦ is-volatile-Writesb) sb ′ @
dropWhile (Not ◦ is-volatile-Writesb) sb ′

by simp

from reads-consis
have no-vol-reads: outstanding-refs is-volatile-Readsb sb ′ = {}

by (simp add: sb Writesb True)
hence outstanding-refs is-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) sb ′)
= {}
by (auto simp add: outstanding-refs-conv dest: set-takeWhileD)

moreover
have outstanding-refs is-volatile-Writesb

(takeWhile (Not ◦ is-volatile-Writesb) sb ′) = {}
proof −

have ∀ r ∈ set (takeWhile (Not ◦ is-volatile-Writesb) sb ′). ¬ (is-volatile-Writesb r)
by (auto dest: set-takeWhileD)

thus ?thesis
by (simp add: outstanding-refs-conv)

qed
ultimately
have no-volatile:

outstanding-refs is-volatile (takeWhile (Not ◦ is-volatile-Writesb) sb ′) = {}
by (auto simp add: outstanding-refs-conv is-volatile-split)

moreover

from no-vol-reads have ∀ r ∈ set sb ′. ¬ is-volatile-Readsb r
by (fastforce simp add: outstanding-refs-conv is-volatile-Readsb-def

split: memref.splits)
hence ∀ r ∈ set sb ′. (Not ◦ is-volatile-Writesb) r = (Not ◦ is-volatile) r

by (auto simp add: is-volatile-split)

hence takeWhile-eq: (takeWhile (Not ◦ is-volatile-Writesb) sb ′) =
(takeWhile (Not ◦ is-volatile) sb ′)

apply −
apply (rule takeWhile-cong)
apply auto
done

from leq
have leq ′: length tssb = length ?ts ′

by simp
hence i-bound-ts ′: i < length ?ts ′ using i-bound by simp

from is ′-sim
have is ′-sim-split:

instrs
(takeWhile (Not ◦ is-volatile-Writesb) sb ′ @
dropWhile (Not ◦ is-volatile-Writesb) sb ′) @ issb =

is ′ @ prog-instrs (takeWhile (Not ◦ is-volatile-Writesb) sb ′ @

653

dropWhile (Not ◦ is-volatile-Writesb) sb ′)
by (simp add: sb ′-split [symmetric])

from reads-consistent-flush-all-until-volatile-write [OF ‹valid-ownership-and-sharing Ssb

tssb›
i-bound tssb-i reads-consis]
have reads-consistent True (acquired True ?take-sb Osb) m (Writesb True a (D,f) v A L

R W#sb ′)
by (simp add: m sb Writesb volatile)

hence reads-consistent True (acquired True ?take-sb Osb ∪ A − R) (m(a:=v)) sb ′

by simp
from reads-consistent-takeWhile [OF this]
have r-consis ′: reads-consistent True (acquired True ?take-sb Osb ∪ A − R) (m(a:=v))

(takeWhile (Not ◦ is-volatile-Writesb) sb ′).

from last-prog have last-prog-sb ′: last-prog psb sb ′ = psb

by (simp add: sb Writesb)

from valid-write-sops [OF i-bound tssb-i]
have ∀ sop ∈ write-sops sb ′. valid-sop sop

by (auto simp add: sb Writesb)
hence valid-sop ′: ∀ sop∈write-sops (takeWhile (Not ◦ is-volatile-Writesb) sb ′).

valid-sop sop
by (fastforce dest: set-takeWhileD simp add: in-write-sops-conv)

from no-volatile
have no-volatile-Readsb:

outstanding-refs is-volatile-Readsb (takeWhile (Not ◦ is-volatile-Writesb) sb ′) =
{}

by (auto simp add: outstanding-refs-conv is-volatile-Readsb-def split: memref.splits)
from flush-store-buffer-append [OF i-bound-ts ′ is ′-sim-split, simplified,
OF causal-program-history-sb ′ ts ′-i refl last-prog-sb ′ r-consis ′ hist-consis ′

valid-sop ′ dist-sb ′ no-volatile-Readsb-volatile-reads-consistent [OF no-volatile-Readsb],
where S=(S ⊕W R 	A L)]

obtain is ′′ where
is ′′-sim: instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′) @ issb =

is ′′ @ prog-instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′) and

steps: (?ts ′, m(a := v), S ⊕W R 	A L) ⇒d
∗

(ts[i := (last-prog (hd-prog psb (dropWhile (Not ◦ is-volatile-Writesb) sb ′))
(takeWhile (Not ◦ is-volatile-Writesb) sb ′),

is ′′,
jsb |‘ (dom jsb −

read-tmps (dropWhile (Not ◦ is-volatile-Writesb) sb ′)),

654

(), True, acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb ′)
(acquired True ?take-sb Osb ∪ A − R),
release (takeWhile (Not ◦ is-volatile-Writesb) sb ′)
(dom (S ⊕W R 	A L)) Map.empty)],

flush (takeWhile (Not ◦ is-volatile-Writesb) sb ′) (m(a := v)),
share (takeWhile (Not ◦ is-volatile-Writesb) sb ′) (S ⊕W R 	A L))

by (auto)

note sim-flush = r-rtranclp-rtranclp [OF store-step steps]

moreover
note flush-commute =
flush-flush-all-until-volatile-write-Writesb-volatile-commute [OF i-bound tssb-i [simplified

sb Writesb True]
outstanding-refs-is-Writesb-takeWhile-disj a-notin-others ′]

from last-prog-hd-prog-append ′ [where sb=(takeWhile (Not ◦ is-volatile-Writesb) sb ′)
and sb ′=(dropWhile (Not ◦ is-volatile-Writesb) sb ′),

simplified sb ′-split [symmetric], OF hist-consis ′ last-prog-sb ′]
have last-prog-eq:

last-prog (hd-prog psb (dropWhile (Not ◦ is-volatile-Writesb) sb ′))
(takeWhile (Not ◦ is-volatile-Writesb) sb ′) =

hd-prog psb (dropWhile (Not ◦ is-volatile-Writesb) sb ′).

have take-emtpy: takeWhile (Not ◦ is-volatile-Writesb) (r#sb) = []
by (simp add: Writesb True)

have dist-sb ′: ∀ i p is O R D j sb.
i < length tssb −→
tssb ! i = (p, is, j, sb, D, O, R) −→
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb ′) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb ′) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb ′)) =
{}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb
assume jth: tssb!j = (pj,isj, jj,sbj,Dj,Oj,Rj)
assume x-shared: x ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ∪

all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj)

assume x-sb ′: x ∈ (all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb ′) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb ′) ∪

655

all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb ′))
have False
proof (cases i=j)
case True with x-shared tssb-i jth show False by (simp add: sb volatile Writesb)
next

case False
from x-shared all-shared-acquired-or-owned [OF sharing-consis [OF j-bound

jth]]
unshared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)

(dropWhile (Not ◦ is-volatile-Writesb) sbj)]
all-unshared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)

(dropWhile (Not ◦ is-volatile-Writesb) sbj)]
all-acquired-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)

(dropWhile (Not ◦ is-volatile-Writesb) sbj)]
have x ∈ all-acquired sbj ∪ Oj

by auto
moreover

from x-sb ′ all-shared-acquired-or-owned [OF sharing-consis [OF i-bound tssb-i]]
unshared-acquired-or-owned [OF sharing-consis [OF i-bound tssb-i]]
all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sb ′)

(dropWhile (Not ◦ is-volatile-Writesb) sb ′)]
all-unshared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sb ′)

(dropWhile (Not ◦ is-volatile-Writesb) sb ′)]
all-acquired-append [of (takeWhile (Not ◦ is-volatile-Writesb) sb ′)

(dropWhile (Not ◦ is-volatile-Writesb) sb ′)]
have x ∈ all-acquired sb ∪ Osb

by (auto simp add: sb Writesb volatile)
moreover
note ownership-distinct [OF i-bound j-bound False tssb-i jth]
ultimately show False by blast

qed
}
thus ?thesis by blast

qed

have dist-R-L-A: ∀ j p is O R D j sb.
j < length tssb −→ i 6= j−→
tssb ! j = (p, is, j, sb, D, O, R) −→
(all-shared sb ∪ all-unshared sb ∪ all-acquired sb) ∩ (R ∪ L ∪ A) = {}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb

assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,isj, jj,sbj,Dj,Oj,Rj)
assume x-shared: x ∈ all-shared sbj ∪

all-unshared sbj ∪
all-acquired sbj

assume x-R-L-A: x ∈ R ∪ L ∪ A

656

have False
proof −

from x-shared all-shared-acquired-or-owned [OF sharing-consis [OF j-bound
jth]]

unshared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]

have x ∈ all-acquired sbj ∪ Oj

by auto
moreover
from x-R-L-A R-owned L-subset
have x ∈ all-acquired sb ∪ Osb

by (auto simp add: sb Writesb volatile)
moreover
note ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
ultimately show False by blast

qed
}
thus ?thesis by blast

qed
from local.ownership-distinct-axioms have ownership-distinct tssb .
from local.sharing-consis-axioms have sharing-consis Ssb tssb.
note share-commute=

share-all-until-volatile-write-flush-commute [OF take-empty ‹ownership-distinct
tssb› ‹sharing-consis Ssb tssb› i-bound tssb-i dist-sb ′ dist-R-L-A]

have rel-commute-empty:
release (takeWhile (Not ◦ is-volatile-Writesb) sb ′) (dom S ∪ R − L) Map.empty =

release (takeWhile (Not ◦ is-volatile-Writesb) sb ′) (dom Ssb ∪ R − L)
Map.empty

proof −
{

fix a
assume a-in: a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb ′)
have (a ∈ (dom S ∪ R − L)) = (a ∈ (dom Ssb ∪ R − L))
proof −

from all-shared-acquired-or-owned [OF sharing-consis [OF i-bound tssb-i]] a-in
all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sb ′) (dropWhile

(Not ◦ is-volatile-Writesb) sb ′)]
have a ∈ Osb ∪ all-acquired sb

by (auto simp add: sb Writesb volatile)
from share-all-until-volatile-write-thread-local [OF ‹ownership-distinct tssb›

‹sharing-consis Ssb tssb› i-bound tssb-i this]
have S a = Ssb a

by (auto simp add: sb Writesb volatile S)
then show ?thesis

by (auto simp add: domIff)
qed

}
then show ?thesis

657

apply −
apply (rule release-all-shared-exchange)
apply auto
done

qed

{
fix j pj isj Oj Rj Dj jj sbj x
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume j-bound: j < length tssb

assume neq: i 6= j
have release (takeWhile (Not ◦ is-volatile-Writesb) sbj)

(dom Ssb ∪ R − L) Rj

= release (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dom Ssb) Rj

proof −
{

fix a
assume a-in: a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
have (a ∈ (dom Ssb ∪ R − L)) = (a ∈ dom Ssb)
proof −

from ownership-distinct [OF i-bound j-bound neq tssb-i jth]

have A-dist: A ∩ (Oj ∪ all-acquired sbj) = {}
by (auto simp add: sb Writesb volatile)

from all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]] a-in
all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

have a-in: a ∈ Oj ∪ all-acquired sbj

by auto
with ownership-distinct [OF i-bound j-bound neq tssb-i jth]
have a /∈ (Osb ∪ all-acquired sb) by auto

with A-dist R-owned A-R A-shared-owned L-subset a-in
obtain a /∈ R and a /∈ L

by fastforce
then show ?thesis by auto

qed
}
then
show ?thesis

apply −
apply (rule release-all-shared-exchange)
apply auto
done

qed
}
note release-commute = this

658

have (tssb [i := (psb,issb, jsb, sb ′, Dsb, Osb ∪ A − R,Map.empty)],msb(a:=v),Ssb
′) ∼

(ts[i := (last-prog (hd-prog psb (dropWhile (Not ◦ is-volatile-Writesb) sb ′))
(takeWhile (Not ◦ is-volatile-Writesb) sb ′),

is ′′,
jsb |‘ (dom jsb −

read-tmps (dropWhile (Not ◦ is-volatile-Writesb) sb ′)),
(),True, acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb ′)

(acquired True ?take-sb Osb ∪ A − R),
release (takeWhile (Not ◦ is-volatile-Writesb) sb ′)

(dom (S ⊕W R 	A L)) Map.empty)],
flush (takeWhile (Not ◦ is-volatile-Writesb) sb ′) (m(a := v)),
share (takeWhile (Not ◦ is-volatile-Writesb) sb ′) (S ⊕W R 	A L))

apply (rule sim-config.intros)
apply (simp add: flush-commute m)
apply (clarsimp simp add: Ssb

′ S share-commute simp del: restrict-restrict)
using leq
apply simp
using i-bound i-bound ′ ts-sim D

apply (clarsimp simp add: Let-def nth-list-update is ′′-sim last-prog-eq sb Writesb volatile
Ssb

′

rel-commute-empty
split: if-split-asm)

apply (rule conjI)
apply blast
apply clarsimp
apply (frule (2) release-commute)
apply clarsimp
apply fastforce

done

ultimately
show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′
valid-dd ′ valid-sops ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′

msb
′ Ssb

′ tssb ′

by (auto simp del: fun-upd-apply simp add: Osb
′ Rsb

′)

next

case False
note non-vol = this

from flush Writesb False
obtain
Osb

′: Osb
′=Osb and

Ssb
′: Ssb

′=Ssb and
Rsb

′: Rsb
′ = Rsb

by cases (auto simp add: sb)

659

from non-volatile-owned non-vol have a-owned: a ∈ Osb

by simp

{
fix j
fix pj issbj Oj Dsbj jj Rj sbj

assume j-bound: j < length tssb
assume tssb-j: tssb!j=(pj,issbj,jj,sbj,Dsbj,Oj,Rj)
assume neq-i-j: i6=j
have a /∈ unforwarded-non-volatile-reads (dropWhile (Not ◦ is-volatile-Writesb) sbj) {}
proof

let ?take-sbj = takeWhile (Not ◦ is-volatile-Writesb) sbj

let ?drop-sbj = dropWhile (Not ◦ is-volatile-Writesb) sbj

assume a-in: a ∈ unforwarded-non-volatile-reads ?drop-sbj {}

from a-unowned-by-others [rule-format, OF j-bound neq-i-j] tssb-j
obtain a-unowned: a /∈ Oj and a-unacq: a /∈ all-acquired sbj

by auto
with all-acquired-append [of ?take-sbj ?drop-sbj] ac-

quired-takeWhile-non-volatile-Writesb [of sbj Oj]
have a-unacq-take: a /∈ acquired True ?take-sbj Oj

by (auto)

note nvo-j = outstanding-non-volatile-refs-owned-or-read-only [OF j-bound tssb-j]

from non-volatile-owned-or-read-only-drop [OF nvo-j]
have nvo-drop-j: non-volatile-owned-or-read-only True (share ?take-sbj Ssb)
(acquired True ?take-sbj Oj) ?drop-sbj .

from in-unforwarded-non-volatile-reads-non-volatile-Readsb [OF a-in]
have a-in ′: a ∈ outstanding-refs is-non-volatile-Readsb ?drop-sbj.

from non-volatile-owned-or-read-only-outstanding-refs [OF nvo-drop-j] a-in ′

have a ∈ acquired True ?take-sbj Oj ∪ all-acquired ?drop-sbj ∪
read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

by (auto simp add: misc-outstanding-refs-convs)

moreover
from acquired-append [of True ?take-sbj ?drop-sbj Oj] acquired-all-acquired [of True

?take-sbj Oj]
all-acquired-append [of ?take-sbj ?drop-sbj]

have acquired True ?take-sbj Oj ∪ all-acquired ?drop-sbj ⊆ Oj ∪ all-acquired sbj

by auto
ultimately
have a ∈ read-only-reads (acquired True ?take-sbj Oj) ?drop-sbj

using a-owned ownership-distinct [OF i-bound j-bound neq-i-j tssb-i tssb-j]
by auto

660

with read-only-reads-unowned [OF j-bound i-bound neq-i-j [symmetric] tssb-j tssb-i]
a-owned

show False
by auto

qed
} note a-notin-unforwarded-non-volatile-reads-drop = this

have valid-reads ′: valid-reads msb
′ tssb ′

proof (unfold-locales)
fix j pj isj Oj Rj Dj jj sbj

assume j-bound: j < length tssb ′

assume ts-j: tssb ′!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show reads-consistent False Oj msb

′ sbj

proof (cases i=j)
case True
from reads-consis ts-j j-bound sb show ?thesis

by (clarsimp simp add: True msb
′ Writesb tssb ′ Osb

′ False
reads-consistent-pending-write-antimono)

next
case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
moreover from ts-j False have ts-j ′: tssb ! j = (pj,isj,jj,sbj,Dj,Oj,Rj)

using j-bound by (simp add: tssb ′)
ultimately have consis-m: reads-consistent False Oj msb sbj

by (rule valid-reads)
from a-unowned-by-others [rule-format, OF j-bound ′ False] ts-j ′
have a-unowned:a /∈ Oj ∪ all-acquired sbj

by simp

let ?take-sbj = takeWhile (Not ◦ is-volatile-Writesb) sbj

let ?drop-sbj = dropWhile (Not ◦ is-volatile-Writesb) sbj

from a-unowned acquired-reads-all-acquired [of True ?take-sbj Oj]
all-acquired-append [of ?take-sbj ?drop-sbj]
have a-not-acq-reads: a /∈ acquired-reads True ?take-sbj Oj

by auto
moreover

note a-unfw= a-notin-unforwarded-non-volatile-reads-drop [OF j-bound ′ ts-j ′ False]
ultimately
show ?thesis

using reads-consistent-mem-eq-on-unforwarded-non-volatile-reads-drop [where
W={} and

A=unforwarded-non-volatile-reads ?drop-sbj {} ∪ acquired-reads True ?take-sbj Oj and
m ′= (msb(a:=v)), OF - - - consis-m]

by (fastforce simp add: msb
′)

qed

661

qed

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof −
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i] sb
have non-volatile-owned-or-read-only False Ssb Osb sb ′

by (auto simp add: Writesb False)
from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ Writesb False Osb

′ Ssb
′)

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof −
from sb
have out: outstanding-refs is-volatile-Writesb sb ′ ⊆ outstanding-refs is-volatile-Writesb

sb
by (auto simp add: Writesb False)

have acq: all-acquired sb ′ ⊆ all-acquired sb
by (auto simp add: Writesb False sb)

from outstanding-volatile-writes-unowned-by-others-store-buffer
[OF i-bound tssb-i out acq]
show ?thesis by (simp add: tssb ′ Writesb False Osb

′)
qed

next
show read-only-reads-unowned tssb ′

proof −
have ro: read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb ′)

Osb)
(dropWhile (Not ◦ is-volatile-Writesb) sb ′)
⊆ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) Osb)
(dropWhile (Not ◦ is-volatile-Writesb) sb)
by (auto simp add: sb Writesb non-vol)

have Osb ∪ all-acquired sb ′ ⊆ Osb ∪ all-acquired sb
by (auto simp add: sb Writesb non-vol)

from read-only-reads-unowned-nth-update [OF i-bound tssb-i ro this]
show ?thesis

by (simp add: tssb ′ sb Osb
′)

qed
next

show ownership-distinct tssb ′

proof −
have acq: all-acquired sb ′ ⊆ all-acquired sb

by (auto simp add: Writesb False sb)
with ownership-distinct-instructions-read-value-store-buffer-independent
[OF i-bound tssb-i]
show ?thesis by (simp add: tssb ′ Writesb False Osb

′)
qed

qed

662

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]
have non-volatile-writes-unshared Ssb sb ′

by (auto simp add: sb Writesb False)
from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ Ssb
′)

next
from sharing-consis [OF i-bound tssb-i]
have sharing-consistent Ssb Osb sb ′

by (auto simp add: sb Writesb False)
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ Ssb

′)
next
from read-only-unowned-nth-update [OF i-bound read-only-unowned [OF i-bound tssb-i]

]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ Osb

′)
next

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ Ssb

′)
next

from no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
have no-write-to-read-only-memory Ssb sb ′

by (auto simp add: sb Writesb False)
from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound this]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb)

qed

from is-sim
obtain is-sim: instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′) @ issb =

is @ prog-instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′)
by (simp add: suspends sb Writesb False)

have (ts,m,S) ⇒d
∗ (ts,m,S) by blast

moreover

note flush-commute =
flush-all-until-volatile-write-Writesb-non-volatile-commute [OF i-bound tssb-i [simplified

sb Writesb non-vol]
outstanding-refs-is-Writesb-takeWhile-disj a-notin-others ′]

note share-commute =

663

share-all-until-volatile-write-update-sb [of sb ′ sb, OF - i-bound tssb-i, simplified sb
Writesb False, simplified]
have (tssb [i := (psb,issb,jsb, sb ′, Dsb, Osb,Rsb)], msb(a:=v),Ssb

′) ∼
(ts,m,S)

apply (rule sim-config.intros)
apply (simp add: m flush-commute)
apply (clarsimp simp add: S Ssb

′ share-commute)
using leq
apply simp
using i-bound i-bound ′ is-sim ts-i ts-sim D
apply (clarsimp simp add: Let-def nth-list-update suspends sb Writesb False Ssb

′

split: if-split-asm)
done

ultimately
show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ msb
′

valid-dd ′ valid-sops ′ load-tmps-fresh ′ enough-flushs ′ valid-program-history ′ valid ′

tssb ′ Osb
′ Ssb

′ Rsb
′

by (auto simp del: fun-upd-apply)
qed

next
case (Readsb volatile a t v)
from flush this obtain msb

′: msb
′=msb and

Osb
′: Osb

′=Osb and Ssb
′: Ssb

′=Ssb and
Rsb

′: Rsb
′=Rsb

by cases (auto simp add: sb)

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof −
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i] sb
have non-volatile-owned-or-read-only False Ssb Osb sb ′

by (auto simp add: Readsb)
from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ Readsb Osb

′ Ssb
′)

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof −
from sb
have out: outstanding-refs is-volatile-Writesb sb ′ ⊆ outstanding-refs is-volatile-Writesb

sb
by (auto simp add: Readsb)

have acq: all-acquired sb ′ ⊆ all-acquired sb
by (auto simp add: Readsb sb)

from outstanding-volatile-writes-unowned-by-others-store-buffer
[OF i-bound tssb-i out acq]
show ?thesis by (simp add: tssb ′ Readsb Osb

′)

664

qed
next

show read-only-reads-unowned tssb ′

proof −
have ro: read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb ′) Osb)
(dropWhile (Not ◦ is-volatile-Writesb) sb ′)
⊆ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) Osb)
(dropWhile (Not ◦ is-volatile-Writesb) sb)
by (auto simp add: sb Readsb)

have Osb ∪ all-acquired sb ′ ⊆ Osb ∪ all-acquired sb
by (auto simp add: sb Readsb)

from read-only-reads-unowned-nth-update [OF i-bound tssb-i ro this]
show ?thesis

by (simp add: tssb ′ sb Osb
′)

qed
next

show ownership-distinct tssb ′

proof −
have acq: all-acquired sb ′ ⊆ all-acquired sb

by (auto simp add: Readsb sb)
with ownership-distinct-instructions-read-value-store-buffer-independent
[OF i-bound tssb-i]
show ?thesis by (simp add: tssb ′ Readsb Osb

′)
qed

qed

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]
have non-volatile-writes-unshared Ssb sb ′

by (auto simp add: sb Readsb)
from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ Ssb
′)

next
from sharing-consis [OF i-bound tssb-i]
have sharing-consistent Ssb Osb sb ′

by (auto simp add: sb Readsb)
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ Ssb

′)
next

from read-only-unowned-nth-update [OF i-bound read-only-unowned [OF i-bound tssb-i]
]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ Osb

′)
next

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ Ssb

′)

665

next
from no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
have no-write-to-read-only-memory Ssb sb ′

by (auto simp add: sb Readsb)
from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound this]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb)

qed

have valid-reads ′: valid-reads msb
′ tssb ′

proof −
from valid-reads [OF i-bound tssb-i]
have reads-consistent False Osb msb sb ′

by (simp add: sb Readsb)
from valid-reads-nth-update [OF i-bound this]
show ?thesis by (simp add: msb

′ tssb ′ Osb
′)

qed

have valid-program-history ′: valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb .
then have causal ′: causal-program-history issb sb ′

by (simp add: sb Readsb causal-program-history-def)

from valid-last-prog [OF i-bound tssb-i]
have last-prog psb sb = psb.
hence last-prog psb sb ′ = psb

by (simp add: sb Readsb)

from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′)
qed

from is-sim
have is-sim: instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′) @ issb =

is @ prog-instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′)
by (simp add: sb Readsb suspends)

from valid-history [OF i-bound tssb-i]
have jsb-v: jsb t = Some v

by (simp add: history-consistent-access-last-read sb Readsb split:option.splits)

have (ts,m,S) ⇒d
∗ (ts,m,S) by blast

moreover

note flush-commute= flush-all-until-volatile-write-Readsb-commute [OF i-bound tssb-i
[simplified sb Readsb]]

666

note share-commute =
share-all-until-volatile-write-update-sb [of sb ′ sb, OF - i-bound tssb-i, simplified sb

Readsb, simplified]
have (tssb [i := (psb,issb, jsb, sb ′,Dsb, Osb,Rsb

′)],msb,Ssb
′) ∼ (ts,m,S)

apply (rule sim-config.intros)
apply (simp add: m flush-commute)
apply (clarsimp simp add: S Ssb

′ share-commute)
using leq
apply simp

using i-bound i-bound ′ ts-sim ts-i is-sim D
apply (clarsimp simp add: Let-def nth-list-update sb suspends Readsb Ssb

′ Rsb
′

split: if-split-asm)
done

ultimately show ?thesis
using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ msb

′

valid-dd ′ valid-sops ′ load-tmps-fresh ′ enough-flushs ′ valid-sharing ′

valid-program-history ′ valid ′

tssb ′ Osb
′ Ssb

′

by (auto simp del: fun-upd-apply)
next

case (Progsb p1 p2 mis)
from flush this obtain msb

′: msb
′=msb and

Osb
′: Osb

′=Osb and Ssb
′: Ssb

′=Ssb and
Rsb

′: Rsb
′=Rsb

by cases (auto simp add: sb)

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof −
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i] sb
have non-volatile-owned-or-read-only False Ssb Osb sb ′

by (auto simp add: Progsb)
from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ Progsb Osb

′ Ssb
′)

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof −
from sb
have out: outstanding-refs is-volatile-Writesb sb ′ ⊆ outstanding-refs is-volatile-Writesb

sb
by (auto simp add: Progsb)

have acq: all-acquired sb ′ ⊆ all-acquired sb
by (auto simp add: Progsb sb)

from outstanding-volatile-writes-unowned-by-others-store-buffer
[OF i-bound tssb-i out acq]

667

show ?thesis by (simp add: tssb ′ Progsb Osb
′)

qed
next

show read-only-reads-unowned tssb ′

proof −
have ro: read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb ′) Osb)
(dropWhile (Not ◦ is-volatile-Writesb) sb ′)
⊆ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) Osb)

(dropWhile (Not ◦ is-volatile-Writesb) sb)
by (auto simp add: sb Progsb)

have Osb ∪ all-acquired sb ′ ⊆ Osb ∪ all-acquired sb
by (auto simp add: sb Progsb)

from read-only-reads-unowned-nth-update [OF i-bound tssb-i ro this]
show ?thesis

by (simp add: tssb ′ sb Osb
′)

qed
next

show ownership-distinct tssb ′

proof −
have acq: all-acquired sb ′ ⊆ all-acquired sb

by (auto simp add: Progsb sb)
with ownership-distinct-instructions-read-value-store-buffer-independent
[OF i-bound tssb-i]
show ?thesis by (simp add: tssb ′ Progsb Osb

′)
qed

qed

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]
have non-volatile-writes-unshared Ssb sb ′

by (auto simp add: sb Progsb)
from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ Ssb
′)

next
from sharing-consis [OF i-bound tssb-i]
have sharing-consistent Ssb Osb sb ′

by (auto simp add: sb Progsb)
from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Osb
′ Ssb

′)
next

from read-only-unowned-nth-update [OF i-bound read-only-unowned [OF i-bound tssb-i]
]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ Osb

′)
next

from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′

668

by (simp add: tssb ′ Osb
′ Ssb

′)
next

from no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
have no-write-to-read-only-memory Ssb sb ′

by (auto simp add: sb Progsb)
from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound this]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′ sb)

qed

have valid-reads ′: valid-reads msb
′ tssb ′

proof −
from valid-reads [OF i-bound tssb-i]
have reads-consistent False Osb msb sb ′

by (simp add: sb Progsb)
from valid-reads-nth-update [OF i-bound this]
show ?thesis by (simp add: msb

′ tssb ′ Osb
′)

qed

have valid-program-history ′: valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb .
then have causal ′: causal-program-history issb sb ′

by (simp add: sb Progsb causal-program-history-def)

from valid-last-prog [OF i-bound tssb-i]
have last-prog psb sb = psb.
hence last-prog p2 sb ′ = psb

by (simp add: sb Progsb)
from last-prog-to-last-prog-same [OF this]
have last-prog psb sb ′ = psb.

from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′)
qed

from is-sim
have is-sim: instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′) @ issb =

is @ prog-instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′)
by (simp add: suspends sb Progsb)

have (ts,m,S) ⇒d
∗ (ts,m,S) by blast

moreover

note flush-commute = flush-all-until-volatile-write-Progsb-commute [OF i-bound
tssb-i [simplified sb Progsb]]

669

note share-commute =
share-all-until-volatile-write-update-sb [of sb ′ sb, OF - i-bound tssb-i, simplified sb

Progsb, simplified]

have (tssb [i := (psb,issb, jsb, sb ′,Dsb, Osb,Rsb)],msb,Ssb
′) ∼ (ts,m,S)

apply (rule sim-config.intros)
apply (simp add: m flush-commute)
apply (clarsimp simp add: S Ssb

′ share-commute)
using leq
apply simp

using i-bound i-bound ′ ts-sim ts-i is-sim D
apply (clarsimp simp add: Let-def nth-list-update sb suspends Progsb Rsb

′ Ssb
′

split: if-split-asm)
done

ultimately show ?thesis
using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ msb

′

valid-dd ′ valid-sops ′ load-tmps-fresh ′ enough-flushs ′ valid-sharing ′

valid-program-history ′ valid ′

tssb ′ Ssb
′ Osb

′ Rsb
′ Ssb

′

by (auto simp del: fun-upd-apply)
next

case (Ghostsb A L R W)
from flush Ghostsb
obtain

Osb
′: Osb

′=Osb ∪ A − R and
Ssb

′: Ssb
′=Ssb ⊕W R 	A L and

Rsb
′: Rsb

′= augment-rels (dom Ssb) R Rsb and
msb

′: msb
′=msb

by cases (auto simp add: sb)

from sharing-consis [OF i-bound tssb-i]
obtain

A-shared-owned: A ⊆ dom Ssb ∪ Osb and
L-subset: L ⊆ A and
A-R: A ∩ R = {} and
R-owned: R ⊆ Osb

by (clarsimp simp add: sb Ghostsb)

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof
fix j isj Oj Rj Dj acqj jj sbj pj

assume j-bound: j < length tssb ′

assume tssb ′-j: tssb ′!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
show non-volatile-owned-or-read-only False Ssb

′ Oj sbj

proof (cases j=i)
case True
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]

670

have non-volatile-owned-or-read-only False (Ssb ⊕W R 	A L) (Osb ∪ A − R) sb ′

by (auto simp add: sb Ghostsb non-volatile-owned-or-read-only-pending-write-antimono)
then show ?thesis

using True i-bound tssb ′-j
by (auto simp add: tssb ′ Ssb

′ sb Osb
′)

next
case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
with tssb ′-j False i-bound
have tssb-j: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)

note nvo = outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′ tssb-j]

from read-only-unowned [OF i-bound tssb-i] R-owned
have R ∩ read-only Ssb = {}

by auto

with read-only-reads-unowned [OF j-bound ′ i-bound False tssb-j tssb-i] L-subset
have ∀ a∈read-only-reads
(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbj) Oj)

(dropWhile (Not ◦ is-volatile-Writesb) sbj).
a ∈ read-only Ssb −→ a ∈ read-only (Ssb ⊕W R 	A L)

by (auto simp add: in-read-only-convs sb Ghostsb)
from non-volatile-owned-or-read-only-read-only-reads-eq ′ [OF nvo this]
have non-volatile-owned-or-read-only False (Ssb ⊕W R 	A L) Oj sbj.
thus ?thesis by (simp add: Ssb

′)
qed

qed
next

show outstanding-volatile-writes-unowned-by-others tssb ′

proof (unfold-locales)
fix i1 j p1 is1 O1 R1 D1 xs1 sb1 pj isj Oj Rj Dj xsj sbj

assume i1-bound: i1 < length tssb ′

assume j-bound: j < length tssb ′

assume i1-j: i1 6= j
assume ts-i1: tssb ′!i1 = (p1,is1,xs1,sb1,D1,O1,R1)
assume ts-j: tssb ′!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {}
proof (cases i1=i)

case True
from i1-j True have neq-i-j: i6=j

by auto
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j neq-i-j have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from outstanding-volatile-writes-unowned-by-others [OF i-bound j-bound ′ neq-i-j

671

tssb-i ts-j ′] ts-i1 i-bound tssb-i True show ?thesis
by (clarsimp simp add: tssb ′ sb Ghostsb)

next
case False
note i1-i = this
from i1-bound have i1-bound ′: i1 < length tssb

by (simp add: tssb ′ sb)
hence i1-bound ′′: i1 < length (map owned tssb)

by auto
from ts-i1 False have ts-i1 ′: tssb!i1 = (p1,is1,xs1,sb1,D1,O1,R1)

by (simp add: tssb ′ sb)
show ?thesis
proof (cases j=i)

case True
from outstanding-volatile-writes-unowned-by-others [OF i1-bound ′ i-bound i1-i ts-i1 ′

tssb-i]
have (Osb ∪ all-acquired sb) ∩ outstanding-refs is-volatile-Writesb sb1 = {}.
then show ?thesis

using True i1-i ts-j tssb-i i-bound
by (auto simp add: sb Ghostsb tssb ′ Osb

′)
next

case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j False have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from outstanding-volatile-writes-unowned-by-others
[OF i1-bound ′ j-bound ′ i1-j ts-i1 ′ ts-j ′]
show (Oj ∪ all-acquired sbj) ∩ outstanding-refs is-volatile-Writesb sb1 = {} .

qed
qed

qed
next

show read-only-reads-unowned tssb ′

proof
fix n m
fix pn isn On Rn Dn jn sbn pm ism Om Rm Dm jm sbm

assume n-bound: n < length tssb ′

and m-bound: m < length tssb ′

and neq-n-m: n6=m
and nth: tssb ′!n = (pn, isn, jn, sbn, Dn, On,Rn)
and mth: tssb ′!m =(pm, ism, jm, sbm, Dm, Om,Rm)

from n-bound have n-bound ′: n < length tssb by (simp add: tssb ′)
from m-bound have m-bound ′: m < length tssb by (simp add: tssb ′)
show (Om ∪ all-acquired sbm) ∩

read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn) On)
(dropWhile (Not ◦ is-volatile-Writesb) sbn) =
{}

proof (cases m=i)
case True

672

with neq-n-m have neq-n-i: n 6=i
by auto

with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)
by (auto simp add: tssb ′)

note read-only-reads-unowned [OF n-bound ′ i-bound neq-n-i nth ′ tssb-i]
then
show ?thesis

using True tssb-i neq-n-i nth mth n-bound ′ m-bound ′ L-subset
by (auto simp add: tssb ′ Osb

′ sb Ghostsb)
next

case False
note neq-m-i = this
with m-bound mth i-bound have mth ′: tssb!m = (pm, ism, jm, sbm, Dm, Om,Rm)

by (auto simp add: tssb ′)
show ?thesis
proof (cases n=i)

case True
from read-only-reads-append [of (Osb ∪ A − R) (takeWhile (Not ◦ is-volatile-Writesb)

sbn)
(dropWhile (Not ◦ is-volatile-Writesb) sbn)]

have read-only-reads
(acquired True (takeWhile (Not ◦ is-volatile-Writesb) sbn) (Osb ∪ A − R))
(dropWhile (Not ◦ is-volatile-Writesb) sbn) ⊆ read-only-reads (Osb ∪ A − R)

sbn

by auto

with tssb-i nth mth neq-m-i n-bound ′ True
read-only-reads-unowned [OF i-bound m-bound ′ False [symmetric] tssb-i mth ′]

show ?thesis
by (auto simp add: tssb ′ sb Osb

′ Ghostsb)
next

case False
with n-bound nth i-bound have nth ′: tssb!n =(pn, isn, jn, sbn, Dn, On,Rn)

by (auto simp add: tssb ′)
from read-only-reads-unowned [OF n-bound ′ m-bound ′ neq-n-m nth ′ mth ′] False

neq-m-i
show ?thesis

by (clarsimp)
qed

qed
qed

next
show ownership-distinct tssb ′

proof (unfold-locales)
fix i1 j p1 is1 O1 R1 D1 xs1 sb1 pj isj Oj Rj Dj xsj sbj

assume i1-bound: i1 < length tssb ′

assume j-bound: j < length tssb ′

assume i1-j: i1 6= j
assume ts-i1: tssb ′!i1 = (p1,is1,xs1,sb1,D1,O1,R1)

673

assume ts-j: tssb ′!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show (O1 ∪ all-acquired sb1) ∩ (Oj ∪ all-acquired sbj)= {}
proof (cases i1=i)

case True
with i1-j have i-j: i 6=j

by simp

from j-bound have j-bound ′: j < length tssb
by (simp add: tssb ′)

hence j-bound ′′: j < length (map owned tssb)
by simp

from ts-j i-j have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
by (simp add: tssb ′)

from ownership-distinct [OF i-bound j-bound ′ i-j tssb-i ts-j ′]
show ?thesis

using tssb-i True ts-i1 i-bound Osb
′

by (auto simp add: tssb ′ sb Ghostsb)
next

case False
note i1-i = this
from i1-bound have i1-bound ′: i1 < length tssb

by (simp add: tssb ′)
hence i1-bound ′′: i1 < length (map owned tssb)

by simp
from ts-i1 False have ts-i1 ′: tssb!i1 = (p1,is1,xs1,sb1,D1,O1,R1)

by (simp add: tssb ′)
show ?thesis
proof (cases j=i)

case True
from ownership-distinct [OF i1-bound ′ i-bound i1-i ts-i1 ′ tssb-i]
show ?thesis

using tssb-i True ts-j i-bound Osb
′

by (auto simp add: tssb ′ sb Ghostsb)
next

case False
from j-bound have j-bound ′: j < length tssb

by (simp add: tssb ′)
from ts-j False have ts-j ′: tssb!j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (simp add: tssb ′)
from ownership-distinct [OF i1-bound ′ j-bound ′ i1-j ts-i1 ′ ts-j ′]
show ?thesis .

qed
qed

qed
qed

have valid-sharing ′: valid-sharing (Ssb ⊕W R 	A L) tssb ′

proof (intro-locales)
show outstanding-non-volatile-writes-unshared (Ssb ⊕W R 	A L) tssb ′

674

proof (unfold-locales)
fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show non-volatile-writes-unshared (Ssb ⊕W R 	A L) sbj

proof (cases i=j)
case True
with outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]

i-bound jth tssb-i show ?thesis
by (clarsimp simp add: tssb ′ sb Ghostsb)

next
case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
from jth False have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from j-bound jth i-bound False
have j: non-volatile-writes-unshared Ssb sbj

apply −
apply (rule outstanding-non-volatile-writes-unshared)
apply (auto simp add: tssb ′)
done

from jth False have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
by (auto simp add: tssb ′)

from outstanding-non-volatile-writes-unshared [OF j-bound ′ jth ′]
have unshared: non-volatile-writes-unshared Ssb sbj.

have ∀ a∈dom (Ssb ⊕W R 	A L)− dom Ssb. a /∈ outstanding-refs is-non-volatile-Writesb
sbj

proof −
{

fix a
assume a-in: a ∈ dom (Ssb ⊕W R 	A L) − dom Ssb

hence a-R: a ∈ R
by clarsimp

assume a-in-j: a ∈ outstanding-refs is-non-volatile-Writesb sbj

have False
proof −

from non-volatile-owned-or-read-only-outstanding-non-volatile-writes [OF
outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′ jth ′]]
a-in-j

have a ∈ Oj ∪ all-acquired sbj

by auto

moreover
with ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′] a-R R-owned
show False

by blast
qed

}

675

thus ?thesis by blast
qed

from non-volatile-writes-unshared-no-outstanding-non-volatile-Writesb
[OF unshared this]

show ?thesis .
qed

qed
next

show sharing-consis (Ssb ⊕W R 	A L) tssb ′

proof (unfold-locales)
fix j pj isj Oj Rj Dj acqj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show sharing-consistent (Ssb ⊕W R 	A L) Oj sbj

proof (cases i=j)
case True
with i-bound jth tssb-i sharing-consis [OF i-bound tssb-i]
show ?thesis

by (clarsimp simp add: tssb ′ sb Ghostsb Osb
′)

next
case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
from jth False have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from sharing-consis [OF j-bound ′ jth ′]
have consis: sharing-consistent Ssb Oj sbj.

have acq-cond: all-acquired sbj ∩ dom Ssb − dom (Ssb ⊕W R 	A L) = {}
proof −

{
fix a
assume a-acq: a ∈ all-acquired sbj

assume a ∈ dom Ssb

assume a-L: a ∈ L
have False
proof −

from ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′]
have A ∩ all-acquired sbj = {}

by (auto simp add: sb Ghostsb)
with a-acq a-L L-subset
show False

by blast
qed

}
thus ?thesis

by auto

676

qed

have uns-cond: all-unshared sbj ∩ dom (Ssb ⊕W R 	A L) − dom Ssb = {}
proof −

{
fix a
assume a-uns: a ∈ all-unshared sbj

assume a /∈ L
assume a-R: a ∈ R
have False

proof −
from unshared-acquired-or-owned [OF consis] a-uns
have a ∈ all-acquired sbj ∪ Oj by auto
with ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′] R-owned a-R
show False

by blast
qed

}
thus ?thesis

by auto
qed

from sharing-consistent-preservation [OF consis acq-cond uns-cond]
show ?thesis

by (simp add: tssb ′)
qed

qed
next

show unowned-shared (Ssb ⊕W R 	A L) tssb ′

proof (unfold-locales)
show −

⋃
((λ(-,-, -, -,-, O,-). O) ‘ set tssb ′) ⊆ dom (Ssb ⊕W R 	A L)

proof −

have s:
⋃
((λ(-,-, -, -,-, O,-). O) ‘ set tssb ′) =⋃

((λ(-,-, -, -,-, O,-). O) ‘ set tssb) ∪ A − R

apply (unfold tssb ′ Osb
′)

apply (rule acquire-release-ownership-nth-update [OF R-owned i-bound tssb-i])
apply (rule local.ownership-distinct-axioms)
done

note unowned-shared L-subset A-R
then
show ?thesis

apply (simp only: s)
apply auto
done

qed
qed

next

677

show read-only-unowned (Ssb ⊕W R 	A L) tssb ′

proof
fix j pj isj Oj Rj Dj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show Oj ∩ read-only (Ssb ⊕W R 	A L) = {}
proof (cases i=j)

case True
from read-only-unowned [OF i-bound tssb-i]
have (Osb ∪ A − R) ∩ read-only (Ssb ⊕W R 	A L) = {}

by (auto simp add: in-read-only-convs)
with jth tssb-i i-bound True
show ?thesis

by (auto simp add: Osb
′ tssb ′)

next
case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
with False jth have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from read-only-unowned [OF j-bound ′ jth ′]
have Oj ∩ read-only Ssb = {}.
moreover
from ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′] R-owned
have (Osb ∪ A) ∩ Oj = {}

by (auto simp add: sb Ghostsb)
moreover note R-owned A-R
ultimately show ?thesis

by (fastforce simp add: in-read-only-convs split: if-split-asm)
qed

qed
next

show no-outstanding-write-to-read-only-memory (Ssb ⊕W R 	A L) tssb ′

proof
fix j pj isj Oj Rj Dj xsj sbj

assume j-bound: j < length tssb ′

assume jth: tssb ′ ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)
show no-write-to-read-only-memory (Ssb ⊕W R 	A L) sbj

proof (cases i=j)
case True
with jth tssb-i i-bound no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]
show ?thesis

by (auto simp add: sb tssb ′ Ghostsb)
next

case False
from j-bound have j-bound ′: j < length tssb

by (auto simp add: tssb ′)
with False jth have jth ′: tssb ! j = (pj,isj,xsj,sbj,Dj,Oj,Rj)

by (auto simp add: tssb ′)
from no-outstanding-write-to-read-only-memory [OF j-bound ′ jth ′]

678

have nw: no-write-to-read-only-memory Ssb sbj.

have R ∩ outstanding-refs is-Writesb sbj = {}
proof −

note dist = ownership-distinct [OF i-bound j-bound ′ False tssb-i jth ′]
from non-volatile-owned-or-read-only-outstanding-non-volatile-writes
[OF outstanding-non-volatile-refs-owned-or-read-only [OF j-bound ′ jth ′]]

dist
have outstanding-refs is-non-volatile-Writesb sbj ∩ Osb = {}

by auto
moreover
from outstanding-volatile-writes-unowned-by-others [OF j-bound ′ i-bound

False [symmetric] jth ′ tssb-i]
have outstanding-refs is-volatile-Writesb sbj ∩ Osb = {}

by auto
ultimately have outstanding-refs is-Writesb sbj ∩ Osb = {}

by (auto simp add: misc-outstanding-refs-convs)
with R-owned
show ?thesis by blast

qed
then
have ∀ a∈outstanding-refs is-Writesb sbj.

a ∈ read-only (Ssb ⊕W R 	A L) −→ a ∈ read-only Ssb

by (auto simp add: in-read-only-convs)

from no-write-to-read-only-memory-read-only-reads-eq [OF nw this]
show ?thesis .

qed
qed

qed

have valid-reads ′: valid-reads msb
′ tssb ′

proof −
from valid-reads [OF i-bound tssb-i]
have reads-consistent False (Osb ∪ A − R) msb sb ′

by (simp add: sb Ghostsb)
from valid-reads-nth-update [OF i-bound this]
show ?thesis by (simp add: msb

′ tssb ′ Osb
′)

qed

have valid-program-history ′: valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb .
then have causal ′: causal-program-history issb sb ′

by (simp add: sb Ghostsb causal-program-history-def)

from valid-last-prog [OF i-bound tssb-i]
have last-prog psb sb = psb.
hence last-prog psb sb ′ = psb

679

by (simp add: sb Ghostsb)

from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′)
qed

from is-sim
have is-sim: instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′) @ issb =

is @ prog-instrs (dropWhile (Not ◦ is-volatile-Writesb) sb ′)
by (simp add: sb Ghostsb suspends)

have (ts,m,S) ⇒d
∗ (ts,m,S) by blast

moreover

note flush-commute =
flush-all-until-volatile-write-Ghostsb-commute [OF i-bound tssb-i [simplified sb Ghostsb]]

have dist-R-L-A: ∀ j p is O R D j sb.
j < length tssb −→ i6= j−→
tssb ! j = (p, is, j, sb, D, O, R) −→
(all-shared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sb) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sb)) ∩ (R ∪ L ∪ A) = {}

proof −
{

fix j pj isj Oj Rj Dj jj sbj x
assume j-bound: j < length tssb

assume neq-i-j: i 6= j
assume jth: tssb!j = (pj,isj, jj,sbj,Dj,Oj,Rj)
assume x-shared: x ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ∪

all-unshared (takeWhile (Not ◦ is-volatile-Writesb) sbj) ∪
all-acquired (takeWhile (Not ◦ is-volatile-Writesb) sbj)

assume x-R-L-A: x ∈ R ∪ L ∪ A
have False
proof −
from x-shared all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]

unshared-acquired-or-owned [OF sharing-consis [OF j-bound jth]]
all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj) (dropWhile

(Not ◦ is-volatile-Writesb) sbj)]
all-unshared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj) (dropWhile

(Not ◦ is-volatile-Writesb) sbj)]
all-acquired-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj) (dropWhile

(Not ◦ is-volatile-Writesb) sbj)]
have x ∈ all-acquired sbj ∪ Oj

by auto
moreover
from x-R-L-A R-owned L-subset
have x ∈ all-acquired sb ∪ Osb

680

by (auto simp add: sb Ghostsb)
moreover
note ownership-distinct [OF i-bound j-bound neq-i-j tssb-i jth]
ultimately show False by blast

qed
}
thus ?thesis by blast

qed

{
fix j pj isj Oj Rj Dj jj sbj x
assume jth: tssb!j = (pj,isj,jj,sbj,Dj,Oj,Rj)
assume j-bound: j < length tssb

assume neq: i 6= j
have release (takeWhile (Not ◦ is-volatile-Writesb) sbj)

(dom Ssb ∪ R − L) Rj

= release (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dom Ssb) Rj

proof −
{

fix a
assume a-in: a ∈ all-shared (takeWhile (Not ◦ is-volatile-Writesb) sbj)
have (a ∈ (dom Ssb ∪ R − L)) = (a ∈ dom Ssb)
proof −

from ownership-distinct [OF i-bound j-bound neq tssb-i jth]

have A-dist: A ∩ (Oj ∪ all-acquired sbj) = {}
by (auto simp add: sb Ghostsb)

from all-shared-acquired-or-owned [OF sharing-consis [OF j-bound jth]] a-in
all-shared-append [of (takeWhile (Not ◦ is-volatile-Writesb) sbj)
(dropWhile (Not ◦ is-volatile-Writesb) sbj)]

have a-in: a ∈ Oj ∪ all-acquired sbj

by auto
with ownership-distinct [OF i-bound j-bound neq tssb-i jth]
have a /∈ (Osb ∪ all-acquired sb) by auto

with A-dist R-owned A-R A-shared-owned L-subset a-in
obtain a /∈ R and a /∈ L

by fastforce
then show ?thesis by auto

qed
}
then
show ?thesis

apply −
apply (rule release-all-shared-exchange)
apply auto
done

681

qed
}
note release-commute = this

from ownership-distinct-axioms have ownership-distinct tssb.
from sharing-consis-axioms have sharing-consis Ssb tssb.

note share-commute = share-all-until-volatile-write-Ghostsb-commute [OF
‹ownership-distinct tssb›
‹sharing-consis Ssb tssb› i-bound tssb-i [simplified sb Ghostsb] dist-R-L-A]

have (tssb [i := (psb,issb, jsb, sb ′, Dsb, Osb ∪ A − R,augment-rels (dom Ssb) R
Rsb)],msb,Ssb

′) ∼ (ts,m,S)
apply (rule sim-config.intros)
apply (simp add: m flush-commute)
apply (clarsimp simp add: S Ssb

′ share-commute)
using leq
apply simp
using i-bound i-bound ′ ts-sim ts-i is-sim D
apply (clarsimp simp add: Let-def nth-list-update sb suspends Ghostsb Rsb

′ Ssb
′

split: if-split-asm)
apply (rule conjI)
apply fastforce
apply clarsimp
apply (frule (2) release-commute)
apply clarsimp
apply auto

done
ultimately
show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′
valid-dd ′ valid-sops ′ load-tmps-fresh ′ enough-flushs ′
valid-program-history ′ valid ′

msb
′ Ssb

′ tssb ′

by (auto simp del: fun-upd-apply simp add: Osb
′ Rsb

′)
qed

next
case (Program i psb issb jsb sb Dsb Osb Rsb psb

′ mis)
then obtain

tssb ′: tssb ′ = tssb[i := (psb
′, issb@mis, jsb, sb@[Progsb psb psb

′ mis], Dsb, Osb,Rsb)]
and

i-bound: i < length tssb and
tssb-i: tssb ! i = (psb, issb,jsb,sb, Dsb, Osb,Rsb) and
prog: jsb ` psb →p (psb

′,mis) and
Ssb

′: Ssb
′=Ssb and

msb
′: msb

′=msb

by auto

from sim obtain
m: m = flush-all-until-volatile-write tssb msb and
S: S = share-all-until-volatile-write tssb Ssb and
leq: length tssb = length ts and

682

ts-sim: ∀ i<length tssb.
let (p, issb, j, sb, Dsb, Osb,R) = tssb ! i;

suspends = dropWhile (Not ◦ is-volatile-Writesb) sb
in ∃ is D. instrs suspends @ issb = is @ prog-instrs suspends ∧

Dsb = (D ∨ outstanding-refs is-volatile-Writesb sb 6= {}) ∧
ts ! i =

(hd-prog p suspends,
is,
j |‘ (dom j − read-tmps suspends), (),
D,
acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) Osb,
release (takeWhile (Not ◦ is-volatile-Writesb) sb) (dom Ssb) R)

by cases blast

from i-bound leq have i-bound ′: i < length ts
by auto

have split-sb: sb = takeWhile (Not ◦ is-volatile-Writesb) sb @ dropWhile (Not ◦
is-volatile-Writesb) sb

(is sb = ?take-sb@?drop-sb)
by simp

from ts-sim [rule-format, OF i-bound] tssb-i obtain suspends is D where
suspends: suspends = dropWhile (Not ◦ is-volatile-Writesb) sb and
is-sim: instrs suspends @ issb = is @ prog-instrs suspends and
D: Dsb = (D ∨ outstanding-refs is-volatile-Writesb sb 6= {}) and
ts-i: ts ! i =

(hd-prog psb suspends, is,
jsb |‘ (dom jsb − read-tmps suspends), (), D, acquired True ?take-sb Osb,
release ?take-sb (dom Ssb) Rsb)

by (auto simp add: Let-def)

from prog-step-preserves-valid [OF i-bound tssb-i prog valid]
have valid ′: valid tssb ′

by (simp add: tssb ′)

have valid-own ′: valid-ownership Ssb
′ tssb ′

proof (intro-locales)
show outstanding-non-volatile-refs-owned-or-read-only Ssb

′ tssb ′

proof −
from outstanding-non-volatile-refs-owned-or-read-only [OF i-bound tssb-i]
have non-volatile-owned-or-read-only False Ssb Osb (sb@[Progsb psb psb

′ mis])
by (auto simp add: non-volatile-owned-or-read-only-append)

from outstanding-non-volatile-refs-owned-or-read-only-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′ Ssb

′)
qed

next
show outstanding-volatile-writes-unowned-by-others tssb ′

proof −
have out: outstanding-refs is-volatile-Writesb (sb@[Progsb psb psb

′ mis]) ⊆

683

outstanding-refs is-volatile-Writesb sb
by (auto simp add: outstanding-refs-conv)

from outstanding-volatile-writes-unowned-by-others-store-buffer
[OF i-bound tssb-i this]
show ?thesis by (simp add: tssb ′ all-acquired-append)

qed
next

show read-only-reads-unowned tssb ′

proof −
have ro: read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb)

(sb@[Progsb psb psb
′ mis])) Osb)

(dropWhile (Not ◦ is-volatile-Writesb) (sb@[Progsb psb psb
′ mis]))

⊆ read-only-reads (acquired True (takeWhile (Not ◦ is-volatile-Writesb) sb) Osb)
(dropWhile (Not ◦ is-volatile-Writesb) sb)
apply (case-tac outstanding-refs (is-volatile-Writesb) sb = {})
apply (simp-all add: outstanding-vol-write-take-drop-appends

acquired-append read-only-reads-append)
done

have Osb ∪ all-acquired (sb@[Progsb psb psb
′ mis]) ⊆ Osb ∪ all-acquired sb

by (auto simp add: all-acquired-append)
from read-only-reads-unowned-nth-update [OF i-bound tssb-i ro this]
show ?thesis

by (simp add: tssb ′)
qed

next
show ownership-distinct tssb ′

proof −
from ownership-distinct-instructions-read-value-store-buffer-independent
[OF i-bound tssb-i, where sb ′=(sb@[Progsb psb psb

′ mis])]
show ?thesis by (simp add: tssb ′ all-acquired-append)

qed
qed

from valid-last-prog [OF i-bound tssb-i]
have last-prog: last-prog psb sb = psb.

have valid-hist ′: valid-history program-step tssb ′

proof −
from valid-history [OF i-bound tssb-i]
have history-consistent jsb (hd-prog psb sb) sb.
from history-consistent-append-Progsb [OF prog this last-prog]
have hist-consis ′: history-consistent jsb (hd-prog psb

′ (sb@[Progsb psb psb
′ mis]))

(sb@[Progsb psb psb
′ mis]).

from valid-history-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′)

qed

have valid-reads ′: valid-reads msb tssb ′

proof −

684

from valid-reads [OF i-bound tssb-i]
have reads-consistent False Osb msb sb .
from reads-consistent-snoc-Progsb [OF this]
have reads-consistent False Osb msb (sb@[Progsb psb psb

′ mis]).
from valid-reads-nth-update [OF i-bound this]
show ?thesis by (simp add: tssb ′)

qed

have valid-sharing ′: valid-sharing Ssb
′ tssb ′

proof (intro-locales)
from outstanding-non-volatile-writes-unshared [OF i-bound tssb-i]
have non-volatile-writes-unshared Ssb (sb@[Progsb psb psb

′ mis])
by (auto simp add: non-volatile-writes-unshared-append)

from outstanding-non-volatile-writes-unshared-nth-update [OF i-bound this]
show outstanding-non-volatile-writes-unshared Ssb

′ tssb ′

by (simp add: tssb ′ Ssb
′)

next
from sharing-consis [OF i-bound tssb-i]
have sharing-consistent Ssb Osb (sb@[Progsb psb psb

′ mis])
by (auto simp add: sharing-consistent-append)

from sharing-consis-nth-update [OF i-bound this]
show sharing-consis Ssb

′ tssb ′

by (simp add: tssb ′ Ssb
′)

next
from read-only-unowned-nth-update [OF i-bound read-only-unowned [OF i-bound

tssb-i]]
show read-only-unowned Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′)

next
from unowned-shared-nth-update [OF i-bound tssb-i subset-refl]
show unowned-shared Ssb

′ tssb ′

by (simp add: tssb ′ Ssb
′)

next
from no-outstanding-write-to-read-only-memory [OF i-bound tssb-i]

have no-write-to-read-only-memory Ssb (sb @ [Progsb psb psb
′ mis])

by (simp add: no-write-to-read-only-memory-append)

from no-outstanding-write-to-read-only-memory-nth-update [OF i-bound this]
show no-outstanding-write-to-read-only-memory Ssb

′ tssb ′

by (simp add: Ssb
′ tssb ′)

qed

have tmps-distinct ′: tmps-distinct tssb ′

proof (intro-locales)
from load-tmps-distinct [OF i-bound tssb-i]
have distinct-load-tmps issb.
with distinct-load-tmps-prog-step [OF i-bound tssb-i prog valid]
have distinct-load-tmps (issb@mis)

by (auto simp add: distinct-load-tmps-append)

685

from load-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-distinct tssb ′

by (simp add: tssb ′)
next

from read-tmps-distinct [OF i-bound tssb-i]
have distinct-read-tmps (sb@[Progsb psb psb

′ mis])
by (simp add: distinct-read-tmps-append)

from read-tmps-distinct-nth-update [OF i-bound this]
show read-tmps-distinct tssb ′

by (simp add: tssb ′)
next

from load-tmps-read-tmps-distinct [OF i-bound tssb-i]
distinct-load-tmps-prog-step [OF i-bound tssb-i prog valid]

have load-tmps (issb@mis) ∩ read-tmps (sb@[Progsb psb psb
′ mis]) = {}

by (auto simp add: read-tmps-append load-tmps-append)
from load-tmps-read-tmps-distinct-nth-update [OF i-bound this]
show load-tmps-read-tmps-distinct tssb ′ by (simp add: tssb ′)

qed

have valid-dd ′: valid-data-dependency tssb ′

proof −
from data-dependency-consistent-instrs [OF i-bound tssb-i]
have data-dependency-consistent-instrs (dom jsb) issb.
with valid-data-dependency-prog-step [OF i-bound tssb-i prog valid]

load-tmps-write-tmps-distinct [OF i-bound tssb-i]
obtain

data-dependency-consistent-instrs (dom jsb) (issb@mis)
load-tmps (issb@mis) ∩

⋃
(fst ‘ write-sops (sb@[Progsb psb psb

′ mis])) = {}
by (force simp add: load-tmps-append data-dependency-consistent-instrs-append
write-sops-append)

from valid-data-dependency-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′)
qed

have load-tmps-fresh ′: load-tmps-fresh tssb ′

proof −

from load-tmps-fresh [OF i-bound tssb-i]
load-tmps-fresh-prog-step [OF i-bound tssb-i prog valid]
have load-tmps (issb@mis) ∩ dom jsb = {}

by (auto simp add: load-tmps-append)
from load-tmps-fresh-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′)
qed

have enough-flushs ′: enough-flushs tssb ′

proof −

686

from clean-no-outstanding-volatile-Writesb [OF i-bound tssb-i]
have ¬ Dsb −→ outstanding-refs is-volatile-Writesb (sb@[Progsb psb psb

′ mis]) = {}
by (auto simp add: outstanding-refs-append)

from enough-flushs-nth-update [OF i-bound this]
show ?thesis

by (simp add: tssb ′)
qed

have valid-sops ′: valid-sops tssb ′

proof −
from valid-store-sops [OF i-bound tssb-i] valid-sops-prog-step [OF prog]

valid-implies-valid-prog[OF i-bound tssb-i valid]
have valid-store: ∀ sop∈store-sops (issb@mis). valid-sop sop

by (auto simp add: store-sops-append)

from valid-write-sops [OF i-bound tssb-i]
have ∀ sop∈write-sops (sb@[Progsb psb psb

′ mis]). valid-sop sop
by (auto simp add: write-sops-append)

from valid-sops-nth-update [OF i-bound this valid-store]
show ?thesis

by (simp add: tssb ′)
qed

have valid-program-history ′:valid-program-history tssb ′

proof −
from valid-program-history [OF i-bound tssb-i]
have causal-program-history issb sb .
from causal-program-history-Progsb [OF this]
have causal ′: causal-program-history (issb@mis) (sb@[Progsb psb psb

′ mis]).
from last-prog-append-Progsb
have last-prog psb

′ (sb@[Progsb psb psb
′ mis]) = psb

′.
from valid-program-history-nth-update [OF i-bound causal ′ this]
show ?thesis

by (simp add: tssb ′)
qed

show ?thesis
proof (cases outstanding-refs is-volatile-Writesb sb = {})

case True
from True have flush-all: takeWhile (Not ◦ is-volatile-Writesb) sb = sb

by (auto simp add: outstanding-refs-conv)

from True have suspend-nothing: dropWhile (Not ◦ is-volatile-Writesb) sb = []
by (auto simp add: outstanding-refs-conv)

hence suspends-empty: suspends = []
by (simp add: suspends)

from suspends-empty is-sim have is: is = issb

687

by (simp)

from ts-i have ts-i: ts ! i = (psb, issb, jsb, (),
D, acquired True ?take-sb Osb,release ?take-sb (dom Ssb) Rsb)
by (simp add: suspends-empty is)

from direct-computation.Program [OF i-bound ′ ts-i prog]
have (ts,m,S) ⇒d (ts[i := (psb

′, issb @ mis, jsb, (),
D, acquired True ?take-sb Osb,release ?take-sb (dom Ssb) Rsb)], m, S).

moreover

note flush-commute = flush-all-until-volatile-write-append-Progsb-commute [OF
i-bound tssb-i]

from True
have suspend-nothing ′:

(dropWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb psb psb
′ mis])) = []

by (auto simp add: outstanding-refs-conv)

note share-commute =
share-all-until-volatile-write-update-sb [OF share-append-Progsb i-bound tssb-i]

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb (sb@[Progsb psb psb

′ mis])
6= {})
by (auto simp: outstanding-refs-append)

have (tssb [i := (psb
′,issb@mis, jsb, sb@[Progsb psb psb

′ mis], Dsb, Osb,Rsb)],
msb,Ssb

′) ∼
(ts[i:=(psb

′, issb @ mis, jsb, (), D,
acquired True (takeWhile (Not ◦ is-volatile-Writesb)
(sb@[Progsb psb psb

′ mis])) Osb,
release (sb@[Progsb psb psb

′ mis]) (dom Ssb) Rsb)],m,S)
apply (rule sim-config.intros)
apply (simp add: m flush-commute)
apply (clarsimp simp add: S Ssb

′ share-commute)
using leq
apply simp

using i-bound i-bound ′ ts-sim ts-i D ′

apply (clarsimp simp add: Let-def nth-list-update flush-all suspend-nothing ′ Progsb Ssb
′

release-append-Progsb release-append
split: if-split-asm)

done
ultimately show ?thesis

using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ msb
′

valid-dd ′ valid-sops ′ load-tmps-fresh ′ enough-flushs ′ valid-sharing ′

valid-program-history ′ valid ′

688

Ssb
′ tssb ′

by (auto simp del: fun-upd-apply simp add: acquired-append-Progsb re-
lease-append-Progsb release-append flush-all)

next
case False

then obtain r where r-in: r ∈ set sb and volatile-r: is-volatile-Writesb r
by (auto simp add: outstanding-refs-conv)

from takeWhile-dropWhile-real-prefix
[OF r-in, of (Not ◦ is-volatile-Writesb), simplified, OF volatile-r]
obtain a ′ v ′ sb ′′ sop ′ A ′ L ′ R ′ W ′ where

sb-split: sb = takeWhile (Not ◦ is-volatile-Writesb) sb @ Writesb True a ′ sop ′ v ′ A ′ L ′ R ′

W ′# sb ′′

and
drop: dropWhile (Not ◦ is-volatile-Writesb) sb = Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′#

sb ′′

apply (auto)
subgoal for y
apply (case-tac y)
apply auto
done
done

from drop suspends have suspends ′: suspends = Writesb True a ′ sop ′ v ′ A ′ L ′ R ′

W ′# sb ′′

by simp

have (ts, m, S) ⇒d
∗ (ts, m, S) by auto

moreover

note flush-commute= flush-all-until-volatile-write-append-Progsb-commute [OF
i-bound tssb-i]

have Writesb True a ′ sop ′ v ′ A ′ L ′ R ′ W ′ ∈ set sb
by (subst sb-split) auto

from dropWhile-append1 [OF this, of (Not ◦ is-volatile-Writesb)]
have drop-app-comm:

(dropWhile (Not ◦ is-volatile-Writesb) (sb @ [Progsb psb psb
′ mis])) =

dropWhile (Not ◦ is-volatile-Writesb) sb @ [Progsb psb psb
′ mis]

by simp

note share-commute =
share-all-until-volatile-write-update-sb [OF share-append-Progsb i-bound tssb-i]

from D
have D ′: Dsb = (D ∨ outstanding-refs is-volatile-Writesb (sb@[Progsb psb psb

′ mis])
6= {})
by (auto simp: outstanding-refs-append)

have (tssb [i := (psb
′,issb@mis,jsb, sb@[Progsb psb psb

′ mis], Dsb, Osb,Rsb)],

689

msb,Ssb
′) ∼

(ts,m,S)
apply (rule sim-config.intros)
apply (simp add: m flush-commute)
apply (clarsimp simp add: S Ssb

′ share-commute)
using leq
apply simp

using i-bound i-bound ′ ts-sim ts-i is-sim suspends suspends ′ [simplified suspends] D ′

apply (clarsimp simp add: Let-def nth-list-update Progsb
drop-app-comm instrs-append prog-instrs-append

read-tmps-append hd-prog-append-Progsb acquired-append-Progsb re-
lease-append-Progsb release-append Ssb

′

split: if-split-asm)
done

ultimately show ?thesis
using valid-own ′ valid-hist ′ valid-reads ′ valid-sharing ′ tmps-distinct ′ msb

′

valid-dd ′ valid-sops ′ load-tmps-fresh ′ enough-flushs ′ valid-sharing ′

valid-program-history ′ valid ′

Ssb
′ tssb ′

by (auto simp del: fun-upd-apply)
qed

qed
qed

theorem (in xvalid-program) concurrent-direct-steps-simulates-store-buffer-history-steps:
assumes step-sb: (tssb,msb,Ssb) ⇒sbh

∗ (tssb ′,msb
′,Ssb

′)
assumes valid-own: valid-ownership Ssb tssb
assumes valid-sb-reads: valid-reads msb tssb
assumes valid-hist: valid-history program-step tssb
assumes valid-sharing: valid-sharing Ssb tssb
assumes tmps-distinct: tmps-distinct tssb
assumes valid-sops: valid-sops tssb
assumes valid-dd: valid-data-dependency tssb
assumes load-tmps-fresh: load-tmps-fresh tssb
assumes enough-flushs: enough-flushs tssb
assumes valid-program-history: valid-program-history tssb
assumes valid: valid tssb
shows

∧
ts S m. (tssb,msb,Ssb) ∼ (ts,m,S) =⇒ safe-reach-direct safe-delayed (ts,m,S)

=⇒
valid-ownership Ssb

′ tssb ′ ∧ valid-reads msb
′ tssb ′ ∧ valid-history program-step tssb ′

∧
valid-sharing Ssb

′ tssb ′ ∧ tmps-distinct tssb ′ ∧ valid-data-dependency tssb ′ ∧
valid-sops tssb ′ ∧ load-tmps-fresh tssb ′ ∧ enough-flushs tssb ′ ∧
valid-program-history tssb ′ ∧ valid tssb ′ ∧
(∃ ts ′ m ′ S ′. (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′) ∧ (tssb ′,msb
′,Ssb

′) ∼ (ts ′,m ′,S ′))
using step-sb valid-own valid-sb-reads valid-hist valid-sharing tmps-distinct valid-sops

valid-dd load-tmps-fresh enough-flushs valid-program-history valid

690

proof (induct rule: converse-rtranclp-induct-sbh-steps)
case refl thus ?case

by auto
next

case (step tssb msb Ssb tssb ′′ msb
′′ Ssb

′′)
note first = ‹(tssb, msb, Ssb) ⇒sbh (tssb ′′, msb

′′, Ssb
′′)›

note sim = ‹(tssb, msb, Ssb) ∼ (ts, m, S)›
note safe-reach = ‹safe-reach-direct safe-delayed (ts, m, S)›
note valid-own = ‹valid-ownership Ssb tssb›
note valid-reads = ‹valid-reads msb tssb›
note valid-hist = ‹valid-history program-step tssb›
note valid-sharing = ‹valid-sharing Ssb tssb›
note tmps-distinct = ‹tmps-distinct tssb›
note valid-sops = ‹valid-sops tssb›
note valid-dd = ‹valid-data-dependency tssb›
note load-tmps-fresh = ‹load-tmps-fresh tssb›
note enough-flushs = ‹enough-flushs tssb›
note valid-prog-hist = ‹valid-program-history tssb›
note valid = ‹valid tssb›
from concurrent-direct-steps-simulates-store-buffer-history-step [OF first
valid-own valid-reads valid-hist valid-sharing tmps-distinct valid-sops valid-dd
load-tmps-fresh enough-flushs valid-prog-hist valid sim safe-reach]
obtain ts ′′ m ′′ S ′′ where

valid-own ′′: valid-ownership Ssb
′′ tssb ′′ and

valid-reads ′′: valid-reads msb
′′ tssb ′′ and

valid-hist ′′: valid-history program-step tssb ′′ and
valid-sharing ′′: valid-sharing Ssb

′′ tssb ′′ and
tmps-dist ′′: tmps-distinct tssb ′′ and
valid-dd ′′: valid-data-dependency tssb ′′ and
valid-sops ′′: valid-sops tssb ′′ and
load-tmps-fresh ′′: load-tmps-fresh tssb ′′ and
enough-flushs ′′: enough-flushs tssb ′′ and
valid-prog-hist ′′: valid-program-history tssb ′′and
valid ′′: valid tssb ′′ and
steps: (ts, m, S) ⇒d

∗ (ts ′′, m ′′, S ′′) and
sim: (tssb ′′, msb

′′,Ssb
′′) ∼ (ts ′′, m ′′,S ′′)

by blast

from step.hyps (3) [OF sim safe-reach-steps [OF safe-reach steps] valid-own ′′ valid-reads ′′
valid-hist ′′ valid-sharing ′′

tmps-dist ′′ valid-sops ′′ valid-dd ′′ load-tmps-fresh ′′ enough-flushs ′′ valid-prog-hist ′′ valid ′′

]

obtain ts ′ m ′ S ′ where
valid: valid-ownership Ssb

′ tssb ′ valid-reads msb
′ tssb ′ valid-history program-step tssb ′

valid-sharing Ssb
′ tssb ′ tmps-distinct tssb ′ valid-data-dependency tssb ′

valid-sops tssb ′ load-tmps-fresh tssb ′ enough-flushs tssb ′

valid-program-history tssb ′ valid tssb ′ and
last: (ts ′′, m ′′, S ′′) ⇒d

∗ (ts ′, m ′, S ′) and

691

sim ′: (tssb ′, msb
′,Ssb

′) ∼ (ts ′, m ′,S ′)
by blast

note steps also note last
finally show ?case

using valid sim ′

by blast
qed

sublocale initialsb ⊆ tmps-distinct ..
locale xvalid-program-progress = program-progress + xvalid-program

theorem (in xvalid-program-progress) concurrent-direct-execution-simulates-store-buffer-history-execution:
assumes exec-sb: (tssb,msb,Ssb) ⇒sbh

∗ (tssb ′,msb
′,Ssb

′)
assumes init: initialsb tssb Ssb

assumes valid: valid tssb
assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe: safe-reach-direct safe-free-flowing (ts,m,S)
shows ∃ ts ′ m ′ S ′. (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′) ∧
(tssb ′,msb

′,Ssb
′) ∼ (ts ′,m ′,S ′)

proof −
from init interpret ini: initialsb tssb Ssb .
from safe-free-flowing-implies-safe-delayed ′ [OF init sim safe]
have safe-delayed: safe-reach-direct safe-delayed (ts, m, S).
from local.ini.valid-ownership-axioms have valid-ownership Ssb tssb .
from local.ini.valid-reads-axioms have valid-reads msb tssb.
from local.ini.valid-history-axioms have valid-history program-step tssb.
from local.ini.valid-sharing-axioms have valid-sharing Ssb tssb.
from local.ini.tmps-distinct-axioms have tmps-distinct tssb.
from local.ini.valid-sops-axioms have valid-sops tssb.
from local.ini.valid-data-dependency-axioms have valid-data-dependency tssb.
from local.ini.load-tmps-fresh-axioms have load-tmps-fresh tssb.
from local.ini.enough-flushs-axioms have enough-flushs tssb.
from local.ini.valid-program-history-axioms have valid-program-history tssb.
from concurrent-direct-steps-simulates-store-buffer-history-steps [OF exec-sb

‹valid-ownership Ssb tssb›
‹valid-reads msb tssb› ‹valid-history program-step tssb›
‹valid-sharing Ssb tssb› ‹tmps-distinct tssb› ‹valid-sops tssb›
‹valid-data-dependency tssb› ‹load-tmps-fresh tssb› ‹enough-flushs tssb›

‹valid-program-history tssb› valid sim safe-delayed]
show ?thesis by auto

qed

lemma filter-is-Writesb-Cons-Writesb: filter is-Writesb xs = Writesb volatile a sop v A L
R W#ys

692

=⇒ ∃ rs rws. (∀ r ∈ set rs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r) ∧
xs=rs@Writesb volatile a sop v A L R W#rws ∧ ys=filter is-Writesb rws

proof (induct xs)
case Nil thus ?case by simp

next
case (Cons x xs)
note feq = ‹filter is-Writesb (x#xs) = Writesb volatile a sop v A L R W# ys›
show ?case
proof (cases x)

case (Writesb volatile ′ a ′ sop ′ v ′ A ′ L ′ R ′ W ′)
with feq obtain volatile ′=volatile a ′=a v ′=v sop ′=sop A ′=A L ′=L R ′=R W ′=W

ys = filter is-Writesb xs
by auto

thus ?thesis
apply −
apply (rule-tac x=[] in exI)
apply (rule-tac x=xs in exI)
apply (simp add: Writesb)
done

next
case (Readsb volatile ′ a ′ t ′ v ′)
from feq have filter is-Writesb xs = Writesb volatile a sop v A L R W#ys

by (simp add: Readsb)
from Cons.hyps [OF this] obtain rs rws where
∀ r ∈ set rs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r and
xs=rs @ Writesb volatile a sop v A L R W# rws and
ys=filter is-Writesb rws
by clarsimp

then show ?thesis
apply −
apply (rule-tac x=Readsb volatile ′ a ′ t ′ v ′#rs in exI)
apply (rule-tac x=rws in exI)
apply (simp add: Readsb)
done

next
case (Progsb p1 p2 mis)
from feq have filter is-Writesb xs = Writesb volatile a sop v A L R W#ys

by (simp add: Progsb)
from Cons.hyps [OF this] obtain rs rws where
∀ r ∈ set rs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r and
xs=rs @ Writesb volatile a sop v A L R W# rws and
ys=filter is-Writesb rws
by clarsimp

then show ?thesis
apply −
apply (rule-tac x=Progsb p1 p2 mis#rs in exI)
apply (rule-tac x=rws in exI)
apply (simp add: Progsb)
done

next

693

case (Ghostsb A ′ L ′ R ′ W ′)
from feq have filter is-Writesb xs = Writesb volatile a sop v A L R W # ys

by (simp add: Ghostsb)
from Cons.hyps [OF this] obtain rs rws where
∀ r ∈ set rs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r and
xs=rs @ Writesb volatile a sop v A L R W# rws and
ys=filter is-Writesb rws
by clarsimp

then show ?thesis
apply −
apply (rule-tac x=Ghostsb A ′ L ′ R ′ W ′#rs in exI)
apply (rule-tac x=rws in exI)
apply (simp add: Ghostsb)
done

qed
qed

lemma filter-is-Writesb-empty: filter is-Writesb xs = []
=⇒ (∀ r ∈ set xs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r)

proof (induct xs)
case Nil thus ?case by simp

next
case (Cons x xs)
note feq = ‹filter is-Writesb (x#xs) = []›
show ?case
proof (cases x)

case (Writesb volatile ′ a ′ v ′)
with feq have False

by simp
thus ?thesis ..

next
case (Readsb a ′ v ′)
from feq have filter is-Writesb xs = []

by (simp add: Readsb)
from Cons.hyps [OF this] obtain
∀ r ∈ set xs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r
by clarsimp

then show ?thesis
by (simp add: Readsb)

next
case (Progsb p2 p2 mis)
from feq have filter is-Writesb xs = []

by (simp add: Progsb)
from Cons.hyps [OF this] obtain
∀ r ∈ set xs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r
by clarsimp

then show ?thesis
by (simp add: Progsb)

next
case (Ghostsb A ′ L ′ R ′ W ′)

694

from feq have filter is-Writesb xs = []
by (simp add: Ghostsb)

from Cons.hyps [OF this] obtain
∀ r ∈ set xs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r
by clarsimp

then show ?thesis
by (simp add: Ghostsb)

qed
qed

lemma flush-reads-program:
∧
O S R .

∀ r ∈ set sb. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r =⇒
∃O ′ R ′ S ′. (m,sb,O,R,S) →f

∗ (m,[],O ′,R ′,S ′)
proof (induct sb)

case Nil thus ?case by auto
next

case (Cons x sb)
note ‹∀ r∈set (x # sb). is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r›
then obtain x: is-Readsb x ∨ is-Progsb x ∨ is-Ghostsb x and sb: ∀ r∈set sb. is-Readsb

r ∨ is-Progsb r ∨ is-Ghostsb r
by (cases x) auto

{
assume is-Readsb x
then obtain volatile a t v where x: x=Readsb volatile a t v

by (cases x) auto

have (m,Readsb volatile a t v#sb,O,R,S) →f (m,sb,O,R,S)
by (rule Readsb)

also
from Cons.hyps [OF sb] obtain O ′ S ′ acq ′ R ′

where (m, sb,O,R,S) →f
∗ (m, [],O ′,R ′,S ′) by blast

finally
have ?case

by (auto simp add: x)
}
moreover
{

assume is-Progsb x
then obtain p1 p2 mis where x: x=Progsb p1 p2 mis

by (cases x) auto

have (m,Progsb p1 p2 mis#sb,O,R,S) →f (m,sb,O,R,S)
by (rule Progsb)

also
from Cons.hyps [OF sb] obtain O ′ R ′ S ′ acq ′

where (m, sb,O,R,S) →f
∗ (m, [],O ′,R ′,S ′) by blast

finally
have ?case

695

by (auto simp add: x)
}
moreover
{

assume is-Ghostsb x
then obtain A L R W where x: x=Ghostsb A L R W

by (cases x) auto

have (m,Ghostsb A L R W#sb,O,R,S) →f (m,sb,O ∪ A − R,augment-rels (dom S) R
R,S ⊕W R 	A L)

by (rule Ghost)
also
from Cons.hyps [OF sb] obtain O ′ S ′ R ′ acq ′

where (m, sb,O ∪ A − R ,augment-rels (dom S) R R,S ⊕W R 	A L) →f
∗ (m,

[],O ′,R ′,S ′) by blast
finally
have ?case

by (auto simp add: x)
}
ultimately show ?case

using x by blast
qed

lemma flush-progress: ∃m ′ O ′ S ′ R ′. (m,r#sb,O,R,S) →f (m ′,sb,O ′,R ′,S ′)
proof (cases r)

case (Writesb volatile a sop v A L R W)
from flush-step.Writesb [OF refl refl refl, of m volatile a sop v A L R W sb O R S]
show ?thesis

by (auto simp add: Writesb)
next

case (Readsb volatile a t v)
from flush-step.Readsb [of m volatile a t v sb O R S]
show ?thesis

by (auto simp add: Readsb)
next

case (Progsb p1 p2 mis)
from flush-step.Progsb [of m p1 p2 mis sb O R S]
show ?thesis

by (auto simp add: Progsb)
next

case (Ghostsb A L R W)
from flush-step.Ghost [of m A L R W sb O R S]
show ?thesis

by (auto simp add: Ghostsb)
qed

lemma flush-empty:
assumes steps: (m, sb,O,R, S) →f

∗ (m ′, sb ′,O ′,R ′,S ′)
shows sb=[] =⇒ m ′=m ∧ sb ′=[] ∧ O ′=O ∧ R ′=R ∧ S ′=S

696

using steps
apply (induct rule: converse-rtranclp-induct5)
apply (auto elim: flush-step.cases)
done

lemma flush-append:
assumes steps: (m, sb,O,R,S) →f

∗ (m ′, sb ′,O ′,R ′,S ′)
shows

∧
xs. (m, sb@xs,O,R,S) →f

∗ (m ′, sb ′@xs,O ′,R ′,S ′)
using steps
proof (induct rule: converse-rtranclp-induct5)

case refl thus ?case by auto
next

case (step m sb O R S m ′′ sb ′′ O ′′ R ′′ S ′′)
note first= ‹(m,sb,O,R,S) →f (m ′′,sb ′′,O ′′,R ′′,S ′′)›
note rest = ‹(m ′′, sb ′′,O ′′,R ′′,S ′′) →f

∗ (m ′, sb ′,O ′,R ′,S ′)›
from step.hyps (3) have append-rest: (m ′′, sb ′′@xs,O ′′,R ′′,S ′′) →f

∗ (m ′,
sb ′@xs,O ′,R ′,S ′).

from first show ?case
proof (cases)

case (Writesb volatile A R W L a sop v)
then obtain sb: sb=Writesb volatile a sop v A L R W#sb ′′ and m ′′: m ′′=m(a:=v)

and
O ′′: O ′′=(if volatile then O ∪ A − R else O) and
R ′′: R ′′=(if volatile then Map.empty else R) and
S ′′: S ′′=(if volatile then S ⊕W R 	A L else S)
by auto

have (m,Writesb volatile a sop v A L R W#sb ′′@xs,O,R,S) →f

(m(a:=v),sb ′′@xs,if volatile then O ∪ A − R else O,if volatile then Map.empty else
R,

if volatile then S ⊕W R 	A L else S)
apply (rule flush-step.Writesb)
apply auto
done

hence (m,sb@xs,O,R,S) →f (m ′′,sb ′′@xs,O ′′,R ′′,S ′′)
by (simp add: sb m ′′ O ′′ R ′′ S ′′)

also note append-rest
finally show ?thesis .

next
case (Readsb volatile a t v)
then obtain sb: sb=Readsb volatile a t v #sb ′′ and m ′′: m ′′=m

and O ′′: O ′′=O and S ′′: S ′′=S and R ′′: R ′′=R
by auto

have (m,Readsb volatile a t v#sb ′′@xs,O,R,S) →f (m,sb ′′@xs,O,R,S)
by (rule flush-step.Readsb)

hence (m,sb@xs,O,R,S) →f (m ′′,sb ′′@xs,O ′′,R ′′,S ′′)
by (simp add: sb m ′′ O ′′ R ′′ S ′′)

also note append-rest
finally show ?thesis .

next
case (Progsb p1 p2 mis)

697

then obtain sb: sb=Progsb p1 p2 mis#sb ′′ and m ′′: m ′′=m
and O ′′: O ′′=O and S ′′: S ′′=S and R ′′: R ′′=R
by auto

have (m,Progsb p1 p2 mis#sb ′′@xs,O,R,S) →f (m,sb ′′@xs,O,R,S)
by (rule flush-step.Progsb)

hence (m,sb@xs,O,R,S) →f (m ′′,sb ′′@xs,O ′′,R ′′,S ′′)
by (simp add: sb m ′′ O ′′ R ′′ S ′′)

also note append-rest
finally show ?thesis .

next
case (Ghost A L R W)
then obtain sb: sb=Ghostsb A L R W#sb ′′ and m ′′: m ′′=m

and O ′′: O ′′=O ∪ A − R and S ′′: S ′′=S ⊕W R 	A L and
R ′′: R ′′=augment-rels (dom S) R R
by auto

have (m,Ghostsb A L R W#sb ′′@xs,O,R,S) →f (m,sb ′′@xs,O ∪ A − R,augment-rels
(dom S) R R,S ⊕W R 	A L)

by (rule flush-step.Ghost)
hence (m,sb@xs,O,R,S) →f (m ′′,sb ′′@xs,O ′′,R ′′,S ′′)

by (simp add: sb m ′′ O ′′ R ′′ S ′′)
also note append-rest
finally show ?thesis .

qed
qed

lemmas store-buffer-step-induct =
store-buffer-step.induct [split-format (complete),
consumes 1, case-names SBWritesb]

theorem flush-simulates-filter-writes:
assumes step: (m,sb,O,R,S) →w (m ′,sb ′,O ′,R ′,S ′)
shows

∧
sbh Oh Rh Sh. sb=filter is-Writesb sbh

=⇒
∃ sbh

′ Oh
′ Rh

′ Sh
′. (m,sbh,Oh,Rh,Sh) →f

∗ (m ′,sbh
′,Oh

′,Rh
′,Sh

′) ∧
sb ′=filter is-Writesb sbh

′ ∧ (sb ′=[] −→ sbh
′=[])

using step
proof (induct rule: store-buffer-step-induct)

case (SBWritesb m volatile a D f v A L R W sb O R S)
note filter-Writesb = ‹Writesb volatile a (D,f) v A L R W# sb = filter is-Writesb sbh›

from filter-is-Writesb-Cons-Writesb [OF filter-Writesb [symmetric]]
obtain rs rws where

rs-reads: ∀ r∈set rs. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r and
sbh: sbh = rs @ Writesb volatile a (D,f) v A L R W# rws and
sb: sb = filter is-Writesb rws
by blast

from flush-reads-program [OF rs-reads] obtain Oh
′ Rh

′ Sh
′ acqh

′

where (m, rs,Oh,Rh,Sh) →f
∗ (m, [],Oh

′,Rh
′,Sh

′) by blast
from flush-append [OF this]

698

have (m, rs@Writesb volatile a (D,f) v A L R W# rws,Oh,Rh,Sh) →f
∗

(m, Writesb volatile a (D,f) v A L R W# rws,Oh
′,Rh

′,Sh
′)

by simp
also
from flush-step.Writesb [OF refl refl refl, of m volatile a (D,f) v A L R W rws Oh

′ Rh
′

Sh
′]

obtain Oh
′′ Rh

′′ Sh
′′

where (m, Writesb volatile a (D,f) v A L R W# rws,Oh
′,Rh

′,Sh
′) →f (m(a:=v), rws,

Oh
′′,Rh

′′,Sh
′′)

by auto
finally have steps: (m, sbh,Oh,Rh,Sh) →f

∗ (m(a:=v), rws,Oh
′′,Rh

′′,Sh
′′)

by (simp add: sbh sb)
show ?case
proof (cases sb)

case Cons
with steps sb show ?thesis

by fastforce
next

case Nil
from filter-is-Writesb-empty [OF sb [simplified Nil, symmetric]]
have ∀ r∈set rws. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r.
from flush-reads-program [OF this] obtain Oh

′′′ Rh
′′′ Sh

′′′ acqh
′′′

where (m(a:=v), rws,Oh
′′,Rh

′′,Sh
′′) →f

∗ (m(a:=v), [],Oh
′′′,Rh

′′′,Sh
′′′) by blast

with steps
have (m, sbh,Oh,Rh,Sh) →f

∗ (m(a:=v), [],Oh
′′′,Rh

′′′,Sh
′′′) by force

with sb Nil show ?thesis by fastforce
qed

qed

lemma bufferd-val-filter-is-Writesb-eq-ext:
buffered-val (filter is-Writesb sb) a = buffered-val sb a
by (induct sb) (auto split: memref.splits)

lemma bufferd-val-filter-is-Writesb-eq:
buffered-val (filter is-Writesb sb) = buffered-val sb
by (rule ext) (rule bufferd-val-filter-is-Writesb-eq-ext)

lemma outstanding-refs-is-volatile-Writesb-filter-writes:
outstanding-refs is-volatile-Writesb (filter is-Writesb xs) =
outstanding-refs is-volatile-Writesb xs

by (induct xs) (auto simp add: is-volatile-Writesb-def split: memref.splits)

A.6 Simulation of Store Buffer Machine without History by Store Buffer
Machine with History

theorem (in valid-program) concurrent-history-steps-simulates-store-buffer-step:
assumes step-sb: (ts,m,S) ⇒sb (ts ′,m ′,S ′)
assumes sim: ts ∼h tsh
shows ∃ tsh ′ Sh

′. (tsh,m,Sh) ⇒sbh
∗ (tsh ′,m ′,Sh

′) ∧ ts ′ ∼h tsh ′

proof −

699

interpret sbh-computation:
computation sbh-memop-step flush-step program-step

λp p ′ is sb. sb @ [Progsb p p ′ is] .
from step-sb
show ?thesis
proof (cases rule: concurrent-step-cases)

case (Memop i - p is j sb D O R - - is ′ j ′ sb ′ - D ′ O ′ R ′)
then obtain

ts ′: ts ′ = ts[i := (p, is ′, j ′, sb ′, D ′, O ′,R ′)] and
i-bound: i < length ts and
ts-i: ts ! i = (p, is, j, sb, D, O,R) and
step-sb: (is, j, sb, m, D, O, R,S) →sb

(is ′, j ′, sb ′, m ′, D ′, O ′, R ′,S ′)
by auto

from sim obtain
lts-eq: length ts = length tsh and
sim-loc: ∀ i < length ts. (∃O ′ D ′ R ′.

let (p,is, j, sb,D, O,R) = tsh!i in
ts!i=(p,is, j, filter is-Writesb sb,D ′,O ′,R ′) ∧
(filter is-Writesb sb = [] −→ sb=[]))

by cases (auto)

from lts-eq i-bound have i-bound ′: i < length tsh
by simp

from step-sb
show ?thesis
proof (cases)

case (SBReadBuffered a v volatile t)
then obtain

is: is = Read volatile a t#is ′ and
O ′: O ′=O and
S ′: S ′=S and

R ′: R ′=R and
D ′: D ′=D and
m ′: m ′=m and
j ′: j ′=j(t 7→v) and
sb ′: sb ′ = sb and
buf-val: buffered-val sb a = Some v
by auto

from sim-loc [rule-format, OF i-bound] ts-i is
obtain sbh Oh Rh Dh where

tsh-i: tsh!i = (p,Read volatile a t#is ′,j,sbh,Dh,Oh,Rh) and
sb: sb = filter is-Writesb sbh and

sb-empty: filter is-Writesb sbh = [] −→ sbh=[]
by (auto simp add: Let-def)

from buf-val

700

have buf-val ′: buffered-val sbh a = Some v
by (simp add: bufferd-val-filter-is-Writesb-eq sb)

let ?tsh-i ′ = (p, is ′, j(t 7→ v), sbh @ [Readsb volatile a t v], Dh, Oh,Rh)
let ?tsh ′ = tsh[i := ?tsh-i ′]
from sbh-memop-step.SBHReadBuffered [OF buf-val ′]
have (Read volatile a t # is ′, j, sbh, m,Dh, Oh, Rh,Sh) →sbh

(is ′, j(t 7→ v), sbh@ [Readsb volatile a t v], m, Dh, Oh, Rh, Sh).
from sbh-computation.Memop [OF i-bound ′ tsh-i this]
have step: (tsh, m, Sh) ⇒sbh (?tsh ′, m, Sh).

from sb have sb: sb = filter is-Writesb (sbh @ [Readsb volatile a t v])
by simp

show ?thesis
proof (cases filter is-Writesb sbh = [])

case False

have ts [i := (p,is ′,j(t 7→ v),sb,D,O,R)] ∼h ?tsh ′

apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb sb-empty False
apply (auto simp add: Let-def nth-list-update)
done

with step show ?thesis
by (auto simp del: fun-upd-apply simp add: S ′ m ′ ts ′ O ′ j ′ D ′ sb ′ R ′)

next
case True
with sb-empty have empty: sbh=[] by simp
from i-bound ′ have ?tsh ′!i = ?tsh-i ′

by auto

from sbh-computation.StoreBuffer [OF - this, simplified empty, simplified, OF -
flush-step.Readsb, of m Sh] i-bound ′

have (?tsh ′, m, Sh)
⇒sbh (tsh[i := (p, is ′, j(t 7→ v), [], Dh, Oh,Rh)], m, Sh)

by (simp add: empty list-update-overwrite)
with step have (tsh, m, Sh) ⇒sbh

∗

(tsh[i := (p, is ′, j(t 7→ v), [], Dh, Oh,Rh)], m,Sh)
by force

moreover
have ts [i := (p,is ′,j(t 7→ v),sb,D,O,R)] ∼h tsh[i := (p, is ′, j(t 7→ v), [], Dh, Oh,Rh)]

apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb empty
apply (auto simp add: Let-def nth-list-update)

701

done
ultimately show ?thesis

by (auto simp del: fun-upd-apply simp add: S ′ m ′ ts ′ O ′ j ′ D ′ sb ′ R ′)
qed

next
case (SBReadUnbuffered a volatile t)
then obtain

is: is = Read volatile a t#is ′ and
O ′: O ′=O and

R ′: R ′=R and
S ′: S ′=S and
D ′: D ′=D and
m ′: m ′=m and
j ′: j ′=j(t 7→m a) and
sb ′: sb ′ = sb and
buf: buffered-val sb a = None
by auto

from sim-loc [rule-format, OF i-bound] ts-i is
obtain sbh Oh Rh Dh where

tsh-i: tsh!i = (p,Read volatile a t#is ′,j,sbh,Dh,Oh,Rh) and
sb: sb = filter is-Writesb sbh and

sb-empty: filter is-Writesb sbh = [] −→ sbh=[]
by (auto simp add: Let-def)

from buf
have buf ′: buffered-val sbh a = None

by (simp add: bufferd-val-filter-is-Writesb-eq sb)

let ?tsh-i ′ = (p, is ′, j(t 7→ m a), sbh @ [Readsb volatile a t (m a)], Dh, Oh,Rh)
let ?tsh ′ = tsh[i := ?tsh-i ′]

from sbh-memop-step.SBHReadUnbuffered [OF buf ′]
have (Read volatile a t # is ′,j, sbh, m, Dh, Oh, Rh,Sh) →sbh

(is ′, j(t 7→ (m a)), sbh@ [Readsb volatile a t (m a)], m,Dh, Oh, Rh,Sh).
from sbh-computation.Memop [OF i-bound ′ tsh-i this]
have step: (tsh, m, Sh) ⇒sbh

(?tsh ′, m, Sh).
moreover
from sb have sb: sb = filter is-Writesb (sbh @ [Readsb volatile a t (m a)])

by simp

show ?thesis
proof (cases filter is-Writesb sbh = [])

case False
have ts [i := (p,is ′,j (t7→m a),sb,D,O,R)] ∼h ?tsh ′

apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb sb-empty False

702

apply (auto simp add: Let-def nth-list-update)
done

with step show ?thesis
by (auto simp del: fun-upd-apply simp add: S ′ m ′ ts ′ O ′ R ′ D ′ j ′ sb ′)

next
case True
with sb-empty have empty: sbh=[] by simp
from i-bound ′ have ?tsh ′!i = ?tsh-i ′

by auto

from sbh-computation.StoreBuffer [OF - this, simplified empty, simplified, OF -
flush-step.Readsb, of m Sh] i-bound ′

have (?tsh ′, m, Sh)
⇒sbh (tsh[i := (p, is ′, j(t 7→ (m a)), [], Dh, Oh,Rh)], m, Sh)

by (simp add: empty)
with step have (tsh, m, Sh) ⇒sbh

∗

(tsh[i := (p, is ′, j(t 7→ m a), [], Dh, Oh,Rh)], m, Sh)
by force

moreover
have ts [i := (p,is ′,j(t 7→ m a),sb,D,O,R)] ∼h tsh[i := (p, is ′, j(t 7→ m a), [], Dh,

Oh,Rh)]
apply (rule sim-history-config.intros)

using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb empty
apply (auto simp add: Let-def nth-list-update)
done

ultimately show ?thesis
by (auto simp del: fun-upd-apply simp add: S ′ m ′ ts ′ O ′ j ′ D ′ sb ′ R ′)

qed
next

case (SBWriteNonVolatile a D f A L R W)
then obtain

is: is = Write False a (D, f) A L R W#is ′ and
O ′: O ′=O and

R ′: R ′=R and
S ′: S ′=S and
D ′: D ′=D and
m ′: m ′=m and
j ′: j ′=j and
sb ′: sb ′ = sb@[Writesb False a (D, f) (f j) A L R W]
by auto

from sim-loc [rule-format, OF i-bound] ts-i
obtain sbh Oh Rh Dh where

tsh-i: tsh!i = (p,Write False a (D,f) A L R W#is ′,j,sbh,Dh,Oh,Rh) and
sb: sb = filter is-Writesb sbh

by (auto simp add: Let-def is)

703

from sbh-memop-step.SBHWriteNonVolatile
have (Write False a (D, f) A L R W# is ′,j, sbh, m, Dh, Oh, Rh,Sh) →sbh

(is ′, j, sbh @ [Writesb False a (D, f) (f j) A L R W], m,Dh, Oh, Rh,Sh).
from sbh-computation.Memop [OF i-bound ′ tsh-i this]
have (tsh, m, Sh) ⇒sbh

(tsh[i := (p, is ′,j, sbh @ [Writesb False a (D, f) (f j) A L R W], Dh, Oh,Rh)],
m, Sh).

moreover
have ts [i := (p,is ′,j,sb @ [Writesb False a (D,f) (f j) A L R W],D,O,R)] ∼h

tsh[i := (p,is ′,j, sbh @ [Writesb False a (D,f) (f j) A L R W],Dh, Oh,Rh)]
apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb
apply (auto simp add: Let-def nth-list-update)
done

ultimately show ?thesis
by (auto simp add: S ′ m ′ j ′ O ′ R ′ D ′ ts ′ sb ′)

next
case (SBWriteVolatile a D f A L R W)
then obtain

is: is = Write True a (D, f) A L R W#is ′ and
O ′: O ′=O and

R ′: R ′=R and
S ′: S ′=S and
D ′: D ′=D and
m ′: m ′=m and
j ′: j ′=j and
sb ′: sb ′ = sb@[Writesb True a (D, f) (f j) A L R W]
by auto

from sim-loc [rule-format, OF i-bound] ts-i is
obtain sbh Oh Rh Dh where

tsh-i: tsh!i = (p,Write True a (D,f) A L R W#is ′,j,sbh,Dh,Oh,Rh) and
sb: sb = filter is-Writesb sbh

by (auto simp add: Let-def)

from sbh-computation.Memop [OF i-bound ′ tsh-i SBHWriteVolatile
]

have (tsh, m, Sh) ⇒sbh

(tsh[i := (p, is ′,j, sbh @ [Writesb True a (D, f) (f j) A L R W], True, Oh,Rh)],
m, Sh).

moreover
have ts [i := (p,is ′,j,sb @ [Writesb True a (D,f) (f j) A L R W],D,O,R)] ∼h

tsh[i := (p,is ′, j, sbh @ [Writesb True a (D,f) (f j) A L R W],True, Oh,Rh)]
apply (rule sim-history-config.intros)
using lts-eq

704

apply simp
using sim-loc i-bound i-bound ′ sb
apply (auto simp add: Let-def nth-list-update)
done

ultimately show ?thesis
by (auto simp add: ts ′ O ′ j ′ m ′ sb ′ D ′ R ′ S ′)

next
case SBFence
then obtain

is: is = Fence #is ′ and
O ′: O ′=O and

R ′: R ′=R and
S ′: S ′=S and
D ′: D ′=D and
m ′: m ′=m and
j ′: j ′=j and
sb: sb = [] and
sb ′: sb ′ = []
by auto

from sim-loc [rule-format, OF i-bound] ts-i sb is
obtain sbh Oh Rh Dh where

tsh-i: tsh!i = (p,Fence # is ′,j,sbh,Dh,Oh,Rh) and
sb: [] = filter is-Writesb sbh

by (auto simp add: Let-def)

from filter-is-Writesb-empty [OF sb [symmetric]]
have ∀ r ∈ set sbh. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r.

from flush-reads-program [OF this] obtain Oh
′ Sh

′ Rh
′

where flsh: (m, sbh,Oh,Rh,Sh) →f
∗ (m, [],Oh

′,Rh
′,Sh

′) by blast

let ?tsh ′ = tsh[i := (p,Fence # is ′, j, [], Dh, Oh
′,Rh

′)]
from sbh-computation.store-buffer-steps [OF flsh i-bound ′ tsh-i]
have (tsh, m, Sh) ⇒sbh

∗ (?tsh ′, m, Sh
′).

also

from i-bound ′ have i-bound ′′: i < length ?tsh ′

by auto

from i-bound ′ have tsh ′-i: ?tsh ′!i = (p,Fence#is ′,j,[],Dh,Oh
′,Rh

′)
by simp

from sbh-computation.Memop [OF i-bound ′′ tsh ′-i SBHFence] i-bound ′

have (?tsh ′, m, Sh
′) ⇒sbh (tsh[i := (p, is ′,j, [], False, Oh

′,Map.empty)], m,Sh
′)

by (simp)
finally
have (tsh, m, Sh) ⇒sbh

∗ (tsh[i := (p, is ′, j, [],False, Oh
′,Map.empty)],m, Sh

′).

705

moreover

have ts [i := (p,is ′,j,[],D,O,R)] ∼h tsh[i := (p,is ′, j, [],False, Oh
′,Map.empty)]

apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb
apply (auto simp add: Let-def nth-list-update)
done

ultimately show ?thesis
by (auto simp add: ts ′ O ′ j ′ m ′ sb ′ D ′ S ′ R ′)

next
case (SBRMWReadOnly cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W#is ′ and
O ′: O ′=O and

R ′: R ′=R and
S ′: S ′=S and
D ′: D ′=D and
m ′: m ′=m and
j ′: j ′=j(t 7→ m a) and
sb: sb=[] and
sb ′: sb ′ = [] and
cond: ¬ cond (j(t 7→ m a))
by auto

from sim-loc [rule-format, OF i-bound] ts-i sb is
obtain sbh Oh Rh Dh where

tsh-i: tsh!i = (p,RMW a t (D, f) cond ret A L R W# is ′,j,sbh,Dh,Oh,Rh) and
sb: [] = filter is-Writesb sbh

by (auto simp add: Let-def)

from filter-is-Writesb-empty [OF sb [symmetric]]
have ∀ r ∈ set sbh. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r.

from flush-reads-program [OF this] obtain Oh
′ Sh

′ Rh
′

where flsh: (m, sbh,Oh,Rh,Sh) →f
∗ (m, [],Oh

′,Rh
′,Sh

′) by blast

let ?tsh ′ = tsh[i := (p,RMW a t (D, f) cond ret A L R W# is ′,j, [], Dh, Oh
′,Rh

′)]
from sbh-computation.store-buffer-steps [OF flsh i-bound ′ tsh-i]
have (tsh, m, Sh) ⇒sbh

∗ (?tsh ′, m, Sh
′).

also

from i-bound ′ have i-bound ′′: i < length ?tsh ′

706

by auto

from i-bound ′ have tsh ′-i: ?tsh ′!i = (p,RMW a t (D, f) cond ret A L R
W#is ′,j,[],Dh,Oh

′,Rh
′)

by simp

note step= SBHRMWReadOnly [where cond=cond and j=j and m=m, OF cond]
from sbh-computation.Memop [OF i-bound ′′ tsh ′-i step] i-bound ′

have (?tsh ′, m, Sh
′) ⇒sbh (tsh[i := (p, is ′,j(t 7→m a), [], False, Oh

′,Map.empty)],m,
Sh

′)
by (simp)

finally
have (tsh, m, Sh) ⇒sbh

∗ (tsh[i := (p, is ′,j(t7→m a), [], False, Oh
′,Map.empty)],m, Sh

′).

moreover

have ts [i := (p,is ′,j(t 7→m a),[],D,O,R)] ∼h tsh[i := (p,is ′, j(t7→m a), [], False,
Oh

′,Map.empty)]
apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb
apply (auto simp add: Let-def nth-list-update)
done

ultimately show ?thesis
by (auto simp add: ts ′ O ′ j ′ m ′ sb ′ D ′ S ′ R ′)

next
case (SBRMWWrite cond t a D f ret A L R W)
then obtain

is: is = RMW a t (D, f) cond ret A L R W#is ′ and
O ′: O ′=O and

R ′: R ′=R and
S ′: S ′=S and
D ′: D ′=D and
m ′: m ′=m(a := f (j(t 7→ (m a)))) and
j ′: j ′=j(t 7→ ret (m a) (f (j(t 7→ (m a))))) and
sb: sb=[] and
sb ′: sb ′ = [] and
cond: cond (j(t 7→ m a))
by auto

from sim-loc [rule-format, OF i-bound] ts-i sb is
obtain sbh Oh Rh Dh acqh where

tsh-i: tsh!i = (p,RMW a t (D, f) cond ret A L R W# is ′,j,sbh,Dh,Oh,Rh) and
sb: [] = filter is-Writesb sbh

by (auto simp add: Let-def)

from filter-is-Writesb-empty [OF sb [symmetric]]

707

have ∀ r ∈ set sbh. is-Readsb r ∨ is-Progsb r ∨ is-Ghostsb r.

from flush-reads-program [OF this] obtain Oh
′ Sh

′ Rh
′

where flsh: (m, sbh,Oh,Rh,Sh) →f
∗ (m, [],Oh

′,Rh
′,Sh

′) by blast

let ?tsh ′ = tsh[i := (p,RMW a t (D, f) cond ret A L R W# is ′,j, [], Dh, Oh
′,Rh

′)]

from sbh-computation.store-buffer-steps [OF flsh i-bound ′ tsh-i]
have (tsh, m, Sh) ⇒sbh

∗ (?tsh ′, m, Sh
′).

also

from i-bound ′ have i-bound ′′: i < length ?tsh ′

by auto

from i-bound ′ have tsh ′-i: ?tsh ′!i = (p,RMW a t (D, f) cond ret A L R
W#is ′,j,[],Dh,Oh

′,Rh
′)

by simp

note step= SBHRMWWrite [where cond=cond and j=j and m=m, OF cond]
from sbh-computation.Memop [OF i-bound ′′ tsh ′-i step] i-bound ′

have (?tsh ′, m, Sh
′) ⇒sbh (tsh[i := (p, is ′,

j(t 7→ ret (m a) (f (j(t 7→ (m a))))), [], False, Oh
′ ∪ A − R,Map.empty)],

m(a := f (j(t 7→ (m a)))),Sh
′ ⊕W R 	A L)

by (simp)
finally
have (tsh, m, Sh) ⇒sbh

∗ (tsh[i := (p, is ′,
j(t 7→ ret (m a) (f (j(t 7→ (m a))))), [], False, Oh

′ ∪ A − R,Map.empty)],
m(a := f (j(t 7→ (m a)))),Sh

′ ⊕W R 	A L).

moreover

have ts [i := (p,is ′,j(t 7→ ret (m a) (f (j(t 7→ (m a))))),[],D,O,R)] ∼h

tsh[i := (p,is ′,j(t 7→ ret (m a) (f (j(t 7→ (m a))))), [],False, Oh
′∪ A − R,Map.empty)]

apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb
apply (auto simp add: Let-def nth-list-update)
done

ultimately show ?thesis
by (auto simp add: ts ′ O ′ j ′ m ′ sb ′ D ′ S ′ R ′)

next
case (SBGhost A L R W)
then obtain

is: is = Ghost A L R W#is ′ and
O ′: O ′=O and

R ′: R ′=R and
S ′: S ′=S and

708

D ′: D ′=D and
m ′: m ′=m and
j ′: j ′=j and
sb ′: sb ′ = sb
by auto

from sim-loc [rule-format, OF i-bound] ts-i is
obtain sbh Oh Rh Dh where

tsh-i: tsh!i = (p,Ghost A L R W# is ′,j,sbh,Dh,Oh,Rh) and
sb: sb = filter is-Writesb sbh and

sb-empty: filter is-Writesb sbh = [] −→ sbh=[]
by (auto simp add: Let-def)

let ?tsh-i ′ = (p, is ′, j, sbh@[Ghostsb A L R W],Dh, Oh,Rh)
let ?tsh ′ = tsh[i := ?tsh-i ′]
note step= SBHGhost
from sbh-computation.Memop [OF i-bound ′ tsh-i step] i-bound ′

have step: (tsh, m, Sh) ⇒sbh (?tsh ′,m, Sh)
by (simp)

from sb have sb: sb = filter is-Writesb (sbh @ [Ghostsb A L R W])
by simp

show ?thesis
proof (cases filter is-Writesb sbh = [])

case False

have ts [i := (p,is ′,j,sb,D,O,R)] ∼h ?tsh ′

apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb sb-empty False
apply (auto simp add: Let-def nth-list-update)
done

with step show ?thesis
by (auto simp del: fun-upd-apply simp add: S ′ m ′ ts ′ O ′ D ′ j ′ sb ′ R ′)

next
case True
with sb-empty have empty: sbh=[] by simp
from i-bound ′ have ?tsh ′!i = ?tsh-i ′

by auto
from sbh-computation.StoreBuffer [OF - this, simplified empty, simplified, OF -

flush-step.Ghost, of m Sh] i-bound ′

have (?tsh ′, m, Sh)
⇒sbh (tsh[i := (p, is ′, j, [], Dh, Oh ∪ A − R,augment-rels (dom Sh) R Rh)], m,

Sh ⊕W R 	A L)
by (simp add: empty)

with step have (tsh, m, Sh) ⇒sbh
∗

709

(tsh[i := (p, is ′, j, [], Dh, Oh ∪ A − R,augment-rels (dom Sh) R Rh)], m, Sh

⊕W R 	A L)
by force

moreover
have ts [i := (p,is ′,j,sb,D,O,R)] ∼h

tsh[i := (p, is ′, j, [], Dh, Oh ∪ A − R,augment-rels (dom Sh) R Rh)]
apply (rule sim-history-config.intros)

using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb empty
apply (auto simp add: Let-def nth-list-update)
done

ultimately show ?thesis
by (auto simp del: fun-upd-apply simp add: S ′ m ′ ts ′ O ′ j ′ D ′ sb ′ R ′)

qed
qed

next
case (Program i - p is j sb D O R p ′ is ′)
then obtain

ts ′: ts ′ = ts[i := (p ′, is@is ′,j, sb, D, O,R)] and
i-bound: i < length ts and
ts-i: ts ! i = (p, is, j,sb,D, O,R) and
prog-step: j` p →p (p ′, is ′) and
S ′: S ′=S and
m ′: m ′=m
by auto

from sim obtain
lts-eq: length ts = length tsh and
sim-loc: ∀ i < length ts. (∃O ′ D ′ R ′.

let (p,is,j, sb, D, O,R) = tsh!i in ts!i=(p,is, j, filter is-Writesb sb,D ′,O ′,R ′) ∧
(filter is-Writesb sb = [] −→ sb = []))

by cases auto

from sim-loc [rule-format, OF i-bound] ts-i
obtain sbh Oh Rh Dh acqh where

tsh-i: tsh!i = (p,is,j,sbh,Dh,Oh,Rh) and
sb: sb = filter is-Writesb sbh and

sb-empty: filter is-Writesb sbh = [] −→ sbh=[]
by (auto simp add: Let-def)

from lts-eq i-bound have i-bound ′: i < length tsh
by simp

let ?tsh-i ′ = (p ′, is @ is ′,j, sbh @ [Progsb p p ′ is ′], Dh, Oh,Rh)
let ?tsh ′ = tsh[i := ?tsh-i ′]

from sbh-computation.Program [OF i-bound ′ tsh-i prog-step]
have step: (tsh, m, Sh) ⇒sbh (?tsh ′,m, Sh).

show ?thesis

710

proof (cases filter is-Writesb sbh = [])
case False
have ts[i := (p ′, is@is ′, j, sb,D, O,R)] ∼h ?tsh ′

apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb False sb-empty
apply (auto simp add: Let-def nth-list-update)
done

with step show ?thesis
by (auto simp add: ts ′ S ′ m ′)

next
case True
with sb-empty have empty: sbh=[] by simp
from i-bound ′ have ?tsh ′!i = ?tsh-i ′

by auto

from sbh-computation.StoreBuffer [OF - this, simplified empty, simplified, OF -
flush-step.Progsb, of m Sh] i-bound ′

have (?tsh ′, m, Sh)
⇒sbh (tsh[i := (p ′, is@is ′, j, [], Dh, Oh,Rh)], m, Sh)

by (simp add: empty)
with step have (tsh, m, Sh) ⇒sbh

∗

(tsh[i := (p ′, is@is ′, j, [], Dh, Oh,Rh)], m, Sh)
by force

moreover
have ts[i := (p ′, is@is ′, j, sb,D, O,R)] ∼h tsh[i := (p ′, is@is ′, j, [], Dh, Oh,Rh)]

apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb empty
apply (auto simp add: Let-def nth-list-update)
done

ultimately show ?thesis
by (auto simp del: fun-upd-apply simp add: S ′ m ′ ts ′)

qed
next

case (StoreBuffer i - p is j sb D O R - - - sb ′ O ′ R ′)
then obtain

ts ′: ts ′ = ts[i := (p, is,j, sb ′, D, O ′,R ′)] and
i-bound: i < length ts and
ts-i: ts ! i = (p, is,j,sb, D, O,R) and
sb-step: (m,sb,O,R,S) →w (m ′, sb ′,O ′,R ′,S ′)
by auto

from sim obtain
lts-eq: length ts = length tsh and
sim-loc: ∀ i < length ts. (∃O ′ D ′ R ′.

let (p,is, j, sb,D, O,R) = tsh!i in ts!i=(p,is, j, filter is-Writesb sb,D ′,O ′,R ′) ∧

711

(filter is-Writesb sb = [] −→ sb=[]))
by cases auto

from sim-loc [rule-format, OF i-bound] ts-i
obtain sbh Oh Rh Dh acqh where

tsh-i: tsh!i = (p,is,j,sbh,Dh,Oh,Rh) and
sb: sb = filter is-Writesb sbh and

sb-empty: filter is-Writesb sbh = [] −→ sbh=[]
by (auto simp add: Let-def)

from lts-eq i-bound have i-bound ′: i < length tsh
by simp

from flush-simulates-filter-writes [OF sb-step sb, of Oh Rh Sh]
obtain sbh

′ Oh
′ Rh

′ Sh
′

where flush ′: (m, sbh,Oh,Rh,Sh) →f
∗ (m ′, sbh

′,Oh
′,Rh

′,Sh
′) and

sb ′: sb ′ = filter is-Writesb sbh
′ and

sb ′-empty: filter is-Writesb sbh
′ = [] −→ sbh

′=[]
by auto

from sb-step obtain volatile a sop v A L R W where sb=Writesb volatile a sop v A
L R W#sb ′

by cases force
from sbh-computation.store-buffer-steps [OF flush ′ i-bound ′ tsh-i]
have (tsh, m, Sh) ⇒sbh

∗ (tsh[i := (p, is, j, sbh
′,Dh, Oh

′,Rh
′)], m ′, Sh

′).

moreover
have ts[i := (p, is, j, sb ′,D, O ′,R ′)] ∼h

tsh[i := (p, is, j, sbh
′,Dh, Oh

′,Rh
′)]

apply (rule sim-history-config.intros)
using lts-eq
apply simp
using sim-loc i-bound i-bound ′ sb sb ′ sb ′-empty
apply (auto simp add: Let-def nth-list-update)
done

ultimately show ?thesis
by (auto simp add: ts ′)

qed
qed

theorem (in valid-program) concurrent-history-steps-simulates-store-buffer-steps:
assumes step-sb: (ts,m,S) ⇒sb

∗ (ts ′,m ′,S ′)
shows

∧
tsh Sh. ts ∼h tsh =⇒ ∃ tsh ′ Sh

′. (tsh,m,Sh) ⇒sbh
∗ (tsh ′,m ′,Sh

′) ∧ ts ′ ∼h tsh ′

using step-sb
proof (induct rule: converse-rtranclp-induct-sbh-steps)

case refl thus ?case by auto
next

712

case (step ts m S ts ′′ m ′′ S ′′)
have first: (ts,m,S) ⇒sb (ts ′′,m ′′,S ′′) by fact
have sim: ts ∼h tsh by fact
from concurrent-history-steps-simulates-store-buffer-step [OF first sim, of Sh]
obtain tsh ′′ Sh

′′ where
exec: (tsh,m,Sh) ⇒sbh

∗ (tsh ′′,m ′′,Sh
′′) and sim: ts ′′ ∼h tsh ′′

by auto
from step.hyps (3) [OF sim, of Sh

′′]
obtain tsh ′ Sh

′ where exec-rest: (tsh ′′,m ′′,Sh
′′) ⇒sbh

∗ (tsh ′,m ′,Sh
′) and sim ′: ts ′ ∼h

tsh ′

by auto
note exec also note exec-rest
finally show ?case
using sim ′ by blast

qed

theorem (in xvalid-program-progress) concurrent-direct-execution-simulates-store-buffer-execution:
assumes exec-sb: (tssb,msb,x) ⇒sb

∗ (tssb ′,msb
′,x ′)

assumes init: initialsb tssb Ssb

assumes valid: valid tssb
assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe: safe-reach-direct safe-free-flowing (ts,m,S)
shows ∃ tsh ′ Sh

′ ts ′ m ′ S ′.
(tssb,msb,Ssb) ⇒sbh

∗ (tsh ′,msb
′,Sh

′) ∧
tssb ′ ∼h tsh ′ ∧

(ts,m,S) ⇒d
∗ (ts ′,m ′,S ′) ∧

(tsh ′,msb
′,Sh

′) ∼ (ts ′,m ′,S ′)
proof −

from init interpret ini: initialsb tssb Ssb .
from concurrent-history-steps-simulates-store-buffer-steps [OF exec-sb ini.history-refl,

of Ssb]
obtain tsh ′ Sh

′ where
sbh: (tssb,msb,Ssb) ⇒sbh

∗ (tsh ′,msb
′,Sh

′) and
sim-sbh: tssb ′ ∼h tsh ′

by auto
from concurrent-direct-execution-simulates-store-buffer-history-execution [OF sbh init

valid sim safe]
obtain ts ′ m ′ S ′ where

d: (ts,m,S) ⇒d
∗ (ts ′,m ′,S ′) and

d-sim: (tsh ′,msb
′,Sh

′) ∼ (ts ′,m ′,S ′)
by auto

with sbh sim-sbh show ?thesis by blast
qed

inductive sim-direct-config::
(′p, ′p store-buffer, ′dirty, ′owns, ′rels) thread-config list ⇒ (′p,unit,bool, ′owns ′, ′rels ′)

thread-config list ⇒ bool
(‹- ∼d - › [60,60] 100)

713

where
[[length ts = length tsd;
∀ i < length ts.

(∃O ′ D ′ R ′.
let (p,is, j,sb,D, O,R) = tsd!i in

ts!i=(p,is, j, [] ,D ′,O ′,R ′))
]]
=⇒
ts ∼d tsd

lemma empty-sb-sims:
assumes empty:
∀ i p is xs sb D O R. i < length tssb −→ tssb!i=(p,is,xs,sb,D,O,R)−→ sb=[]

assumes sim-h: tssb ∼h tsh
assumes sim-d: (tsh,mh,Sh) ∼ (ts,m,S)
shows tssb ∼d ts ∧ mh=m ∧ length tssb = length ts
proof−

from sim-h empty
have empty ′:
∀ i p is xs sb D O R. i < length tsh −→ tsh!i=(p,is,xs,sb,D,O,R)−→ sb=[]

apply (cases)
apply clarsimp
subgoal for i
apply (drule-tac x=i in spec)
apply (auto simp add: Let-def)
done
done

from sim-h sim-config-emptyE [OF empty ′ sim-d]
show ?thesis

apply cases
apply clarsimp
apply (rule sim-direct-config.intros)
apply clarsimp
apply clarsimp
using empty ′

subgoal for i
apply (drule-tac x=i in spec)
apply (drule-tac x=i in spec)
apply (drule-tac x=i in spec)
apply (auto simp add: Let-def)
done
done

qed

lemma empty-d-sims:
assumes sim: tssb ∼d ts
shows ∃ tsh. tssb ∼h tsh ∧ (tsh,m,S) ∼ (ts,m,S)
proof −

from sim obtain
leq: length tssb = length ts and

714

sim: ∀ i < length tssb.
(∃O ′ D ′ R ′.

let (p,is, j,sb,D, O,R) = ts!i in
tssb!i=(p,is, j, [] ,D ′,O ′,R ′))

by cases auto
define tsh where tsh ≡ map (λ(p,is, j,sb,D, O,R). (p,is, j,[]:: ′a memref list,D, O,R)) ts
have tssb ∼h tsh

apply (rule sim-history-config.intros)
using leq sim
apply (auto simp add: tsh-def Let-def leq)
done

moreover
have empty:
∀ i p is xs sb D O R. i < length tsh −→ tsh!i=(p,is,xs,sb,D,O,R)−→ sb=[]

apply (clarsimp simp add: tsh-def Let-def)
subgoal for i
apply (case-tac ts!i)
apply auto
done
done

have (tsh,m,S) ∼ (ts,m,S)
apply (rule sim-config-emptyI [OF empty])
apply (clarsimp simp add: tsh-def)
apply (clarsimp simp add: tsh-def Let-def)
subgoal for i
apply (case-tac ts!i)
apply auto
done
done

ultimately show ?thesis by blast
qed

theorem (in xvalid-program-progress) concurrent-direct-execution-simulates-store-buffer-execution-empty:
assumes exec-sb: (tssb,msb,x) ⇒sb

∗ (tssb ′,msb
′,x ′)

assumes init: initialsb tssb Ssb

assumes valid: valid tssb
assumes empty:
∀ i p is xs sb D O R. i < length tssb ′ −→ tssb ′!i=(p,is,xs,sb,D,O,R)−→ sb=[]

assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes safe: safe-reach-direct safe-free-flowing (ts,m,S)
shows ∃ ts ′ S ′.

(ts,m,S) ⇒d
∗ (ts ′,msb

′,S ′) ∧ tssb ′ ∼d ts ′
proof −

from concurrent-direct-execution-simulates-store-buffer-execution [OF exec-sb init valid
sim safe]

obtain tsh ′ Sh
′ ts ′ m ′ S ′ where

(tssb,msb,Ssb) ⇒sbh
∗ (tsh ′,msb

′,Sh
′) and

sim-h: tssb ′ ∼h tsh ′ and

715

exec: (ts,m,S) ⇒d
∗ (ts ′,m ′,S ′) and

sim: (tsh ′,msb
′,Sh

′) ∼ (ts ′,m ′,S ′)
by auto

from empty-sb-sims [OF empty sim-h sim]
obtain tssb ′ ∼d ts ′ msb

′ = m ′ length tssb ′ = length ts ′
by auto

thus ?thesis
using exec
by blast

qed

locale initiald = simple-ownership-distinct + read-only-unowned + unowned-shared +
fixes valid
assumes empty-is: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ is=[]
assumes empty-rels: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ R=Map.empty
assumes valid-init: valid (map (λ(p,is, j,sb,D, O,R). (p,is, j,[],D, O,R)) ts)

locale empty-store-buffers =
fixes ts::(′p, ′p store-buffer,bool,owns,rels) thread-config list
assumes empty-sb: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ sb=[]

lemma initial-d-sb:
assumes init: initiald ts S valid
shows initialsb (map (λ(p,is, j,sb,D, O,R). (p,is, j,[],D, O,R)) ts) S

(is initialsb ?map S)
proof −

from init interpret ini: initiald ts S .
show ?thesis
proof (intro-locales)

show simple-ownership-distinct ?map
apply (clarsimp simp add: simple-ownership-distinct-def)
subgoal for i j
apply (case-tac ts!i)
apply (case-tac ts!j)
apply (cut-tac i=i and j=j in ini.simple-ownership-distinct)
apply clarsimp
apply clarsimp
apply clarsimp
apply assumption
apply assumption
apply auto
done
done

next
show read-only-unowned S ?map
apply (clarsimp simp add: read-only-unowned-def)
subgoal for i
apply (case-tac ts!i)
apply (cut-tac i=i in ini.read-only-unowned)
apply clarsimp

716

apply assumption
apply auto
done
done

next
show unowned-shared S ?map
apply (clarsimp simp add: unowned-shared-def ′)
apply (rule ini.unowned-shared ′)
apply clarsimp
subgoal for a i
apply (case-tac ts!i)
apply auto
done
done

next
show initialsb-axioms ?map
apply (unfold-locales)

subgoal for i
apply (case-tac ts!i)
apply simp
done

subgoal for i
apply (case-tac ts!i)
apply clarsimp
apply (rule-tac i=i in ini.empty-is)
apply clarsimp
apply fastforce
done

subgoal for i
apply (case-tac ts!i)
apply clarsimp
apply (rule-tac i=i in ini.empty-rels)
apply clarsimp
apply fastforce
done
done

qed
qed

theorem (in xvalid-program-progress) store-buffer-execution-result-sequential-consistent:
assumes exec-sb: (tssb,m,x) ⇒sb

∗ (tssb ′,m ′,x ′)
assumes empty ′: empty-store-buffers tssb ′

assumes sim: tssb ∼d ts
assumes init: initiald ts S valid
assumes safe: safe-reach-direct safe-free-flowing (ts,m,S)
shows ∃ ts ′ S ′.

(ts,m,S) ⇒d
∗ (ts ′,m ′,S ′) ∧ tssb ′ ∼d ts ′

proof −
from empty ′

have empty ′:

717

∀ i p is xs sb D O R. i < length tssb ′ −→ tssb ′!i=(p,is,xs,sb,D,O,R)−→ sb=[]
by (auto simp add: empty-store-buffers-def)

define tsh where tsh ≡ map (λ(p,is, j,sb,D, O,R). (p,is, j,[]:: ′a memref list,D, O,R)) ts
from initial-d-sb [OF init]
have init-h:initialsb tsh S

by (simp add: tsh-def)
from initiald.valid-init [OF init]
have valid-h: valid tsh

by (simp add: tsh-def)
from sim obtain

leq: length tssb = length ts and
sim: ∀ i < length tssb.

(∃O ′ D ′ R ′.
let (p,is, j,sb,D, O,R) = ts!i in

tssb!i=(p,is, j, [] ,D ′,O ′,R ′))
by cases auto

have sim-h: tssb ∼h tsh
apply (rule sim-history-config.intros)
using leq sim
apply (auto simp add: tsh-def Let-def leq)
done

from concurrent-history-steps-simulates-store-buffer-steps [OF exec-sb sim-h, of S]
obtain tsh ′ Sh

′ where steps-h: (tsh,m,S) ⇒sbh
∗ (tsh ′,m ′,Sh

′) and
sim-h ′: tssb ′ ∼h tsh ′

by auto

moreover
have empty:
∀ i p is xs sb D O R. i < length tsh −→ tsh!i=(p,is,xs,sb,D,O,R)−→ sb=[]

apply (clarsimp simp add: tsh-def Let-def)
subgoal for i
apply (case-tac ts!i)
apply auto
done
done

have sim ′: (tsh,m,S) ∼ (ts,m,S)
apply (rule sim-config-emptyI [OF empty])
apply (clarsimp simp add: tsh-def)
apply (clarsimp simp add: tsh-def Let-def)
subgoal for i
apply (case-tac ts!i)
apply auto
done

done

from concurrent-direct-execution-simulates-store-buffer-history-execution [OF steps-h
init-h valid-h sim ′ safe]

718

obtain ts ′ m ′′ S ′′ where steps: (ts, m, S) ⇒d
∗ (ts ′, m ′′, S ′′)

and sim ′: (tsh ′, m ′, Sh
′) ∼ (ts ′, m ′′, S ′′)

by blast
from empty-sb-sims [OF empty ′ sim-h ′ sim ′] steps
show ?thesis

by auto
qed

locale initialv = simple-ownership-distinct + read-only-unowned + unowned-shared +
fixes valid
assumes empty-is: [[i < length ts; ts!i=(p,is,xs,sb,D,O,R)]] =⇒ is=[]
assumes valid-init: valid (map (λ(p,is, j,sb,D, O,R). (p,is, j,[],D, O,Map.empty)) ts)

theorem (in xvalid-program-progress) store-buffer-execution-result-sequential-consistent ′:
assumes exec-sb: (tssb,m,x) ⇒sb

∗ (tssb ′,m ′,x ′)
assumes empty ′: empty-store-buffers tssb ′

assumes sim: tssb ∼d ts
assumes init: initialv ts S valid
assumes safe: safe-reach-virtual safe-free-flowing (ts,m,S)
shows ∃ ts ′ S ′.

(ts,m,S) ⇒v
∗ (ts ′,m ′,S ′) ∧ tssb ′ ∼d ts ′

proof −
define tsd where tsd == (map (λ(p,is, j,sb,D, O,R ′). (p,is, j,sb,D, O,Map.empty::rels))

ts)
have rem-ts: remove-rels tsd = ts

apply (rule nth-equalityI)
apply (simp add: tsd-def remove-rels-def)
apply (clarsimp simp add: tsd-def remove-rels-def)
subgoal for i
apply (case-tac ts!i)
apply clarsimp
done
done

from sim
have sim ′: tssb ∼d tsd

apply cases
apply (rule sim-direct-config.intros)
apply (auto simp add: tsd-def)
done

have init ′: initiald tsd S valid
proof (intro-locales)

from init have simple-ownership-distinct ts
by (simp add: initialv-def)

then

719

show simple-ownership-distinct tsd
apply (clarsimp simp add: tsd-def simple-ownership-distinct-def)
subgoal for i j
apply (case-tac ts!i)
apply (case-tac ts!j)
apply force
done
done

next
from init have read-only-unowned S ts

by (simp add: initialv-def)
then show read-only-unowned S tsd

apply (clarsimp simp add: tsd-def read-only-unowned-def)
subgoal for i
apply (case-tac ts!i)
apply force
done
done

next
from init have unowned-shared S ts

by (simp add: initialv-def)
then
show unowned-shared S tsd

apply (clarsimp simp add: tsd-def unowned-shared-def)
apply force
done

next
have eq: ((λ(p, is, j, sb, D, O, R). (p, is, j, [], D, O, R)) ◦

(λ(p, is, j, sb, D, O, R ′). (p, is, j, (), D, O, Map.empty)))
= (λ(p, is, j, sb, D, O, R ′). (p, is, j, [], D, O, Map.empty))
apply (rule ext)
subgoal for x
apply (case-tac x)
apply auto
done
done

from init have initialv-axioms ts valid
by (simp add: initialv-def)

then
show initiald-axioms tsd valid

apply (clarsimp simp add: tsd-def initialv-axioms-def initiald-axioms-def eq)
apply (rule conjI)
apply clarsimp

subgoal for i
apply (case-tac ts!i)
apply force
done

apply clarsimp
subgoal for i

720

apply (case-tac ts!i)
apply force
done
done

qed

{
fix tsd ′ m ′ S ′

assume exec: (tsd, m, S) ⇒d
∗ (tsd ′, m ′, S ′)

have safe-free-flowing (tsd ′, m ′, S ′)
proof −

from virtual-simulates-direct-steps [OF exec]
have exec-v: (ts, m, S) ⇒v

∗ (remove-rels tsd ′, m ′, S ′)
by (simp add: rem-ts)

have eq: map (owned ◦
(λ(p, is, j, sb, D, O, R). (p, is, j, (), D, O, ())))

tsd ′ = map owned tsd ′

by auto
from exec-v safe
have safe-free-flowing (remove-rels tsd ′, m ′, S ′)

by (auto simp add: safe-reach-def)
then show ?thesis

by (auto simp add: safe-free-flowing-def remove-rels-def owned-def eq)
qed

}
hence safe ′: safe-reach-direct safe-free-flowing (tsd, m, S)

by (simp add: safe-reach-def)

from store-buffer-execution-result-sequential-consistent [OF exec-sb empty ′ sim ′ init ′
safe ′]

obtain tsd ′ S ′ where
exec-d: (tsd, m, S) ⇒d

∗ (tsd ′, m ′, S ′) and sim-d: tssb ′ ∼d tsd ′

by blast

from virtual-simulates-direct-steps [OF exec-d]
have (ts, m, S) ⇒v

∗ (remove-rels tsd ′, m ′, S ′)
by (simp add: rem-ts)

moreover
from sim-d
have tssb ′ ∼d remove-rels tsd ′

apply (cases)
apply (rule sim-direct-config.intros)
apply (auto simp add: remove-rels-def)
done

ultimately show ?thesis
by auto

qed

721

A.7 Plug Together the Two Simulations

corollary (in xvalid-program) concurrent-direct-steps-simulates-store-buffer-step:
assumes step-sb: (tssb,msb,Ssb) ⇒sb (tssb ′,msb

′,Ssb
′)

assumes sim-h: tssb ∼h tssbh
assumes sim: (tssbh,msb,Ssbh) ∼ (ts,m,S)
assumes valid-own: valid-ownership Ssbh tssbh
assumes valid-sb-reads: valid-reads msb tssbh
assumes valid-hist: valid-history program-step tssbh
assumes valid-sharing: valid-sharing Ssbh tssbh
assumes tmps-distinct: tmps-distinct tssbh
assumes valid-sops: valid-sops tssbh
assumes valid-dd: valid-data-dependency tssbh
assumes load-tmps-fresh: load-tmps-fresh tssbh
assumes enough-flushs: enough-flushs tssbh
assumes valid-program-history: valid-program-history tssbh
assumes valid: valid tssbh
assumes safe-reach: safe-reach-direct safe-delayed (ts,m,S)
shows ∃ tssbh ′ Ssbh

′.
(tssbh,msb,Ssbh) ⇒sbh

∗ (tssbh ′,msb
′,Ssbh

′) ∧ tssb ′ ∼h tssbh ′ ∧
valid-ownership Ssbh

′ tssbh ′ ∧ valid-reads msb
′ tssbh ′ ∧

valid-history program-step tssbh ′ ∧
valid-sharing Ssbh

′ tssbh ′ ∧ tmps-distinct tssbh ′ ∧ valid-data-dependency tssbh ′ ∧
valid-sops tssbh ′ ∧ load-tmps-fresh tssbh ′ ∧ enough-flushs tssbh ′ ∧
valid-program-history tssbh ′ ∧ valid tssbh ′ ∧
(∃ ts ′ S ′ m ′. (ts,m,S) ⇒d

∗ (ts ′,m ′,S ′) ∧
(tssbh ′,msb

′,Ssbh
′) ∼ (ts ′,m ′,S ′))

proof −
from concurrent-history-steps-simulates-store-buffer-step [OF step-sb sim-h]
obtain tssbh ′ Ssbh

′ where
steps-h: (tssbh,msb,Ssbh) ⇒sbh

∗ (tssbh ′,msb
′,Ssbh

′) and
sim-h ′: tssb ′ ∼h tssbh ′

by blast
moreover
from concurrent-direct-steps-simulates-store-buffer-history-steps [OF steps-h
valid-own valid-sb-reads valid-hist valid-sharing tmps-distinct valid-sops valid-dd
load-tmps-fresh enough-flushs valid-program-history valid sim safe-reach]
obtain m ′ ts ′ S ′ where
(ts,m,S) ⇒d

∗ (ts ′,m ′,S ′) (tssbh ′, msb
′,Ssbh

′) ∼ (ts ′, m ′, S ′)
valid-ownership Ssbh

′ tssbh ′ valid-reads msb
′ tssbh ′ valid-history program-step tssbh ′

valid-sharing Ssbh
′ tssbh ′ tmps-distinct tssbh ′ valid-data-dependency tssbh ′

valid-sops tssbh ′ load-tmps-fresh tssbh ′ enough-flushs tssbh ′

valid-program-history tssbh ′ valid tssbh ′

by blast
ultimately
show ?thesis

by blast
qed

722

lemma conj-commI: P ∧ Q =⇒ Q ∧ P
by simp

lemma def-to-eq: P = Q =⇒ P ≡ Q
by simp

context xvalid-program
begin

definition
invariant ts S m ≡

valid-ownership S ts ∧ valid-reads m ts ∧ valid-history program-step ts ∧
valid-sharing S ts ∧ tmps-distinct ts ∧ valid-data-dependency ts ∧
valid-sops ts ∧ load-tmps-fresh ts ∧ enough-flushs ts ∧ valid-program-history ts ∧
valid ts

definition ownership-inv ≡ valid-ownership
definition sharing-inv ≡ valid-sharing
definition temporaries-inv ts ≡ tmps-distinct ts ∧ load-tmps-fresh ts
definition history-inv ts m ≡ valid-history program-step ts ∧ valid-program-history ts ∧
valid-reads m ts
definition data-dependency-inv ts ≡ valid-data-dependency ts ∧ load-tmps-fresh ts ∧
valid-sops ts
definition barrier-inv ≡ enough-flushs

lemma invariant-grouped-def: invariant ts S m ≡
ownership-inv S ts ∧ sharing-inv S ts ∧ temporaries-inv ts ∧ data-dependency-inv ts ∧

history-inv ts m ∧ barrier-inv ts ∧ valid ts
apply (rule def-to-eq)

apply (auto simp add: ownership-inv-def sharing-inv-def barrier-inv-def tempo-
raries-inv-def history-inv-def data-dependency-inv-def invariant-def)

done

theorem (in xvalid-program) simulation ′:
assumes step-sb: (tssb,msb,Ssb) ⇒sbh (tssb ′,msb

′,Ssb
′)

assumes sim: (tssb,msb,Ssb) ∼ (ts,m,S)
assumes inv: invariant tssb Ssb msb

assumes safe-reach: safe-reach-direct safe-delayed (ts,m,S)
shows invariant tssb ′ Ssb

′ msb
′ ∧

(∃ ts ′ S ′ m ′. (ts,m,S) ⇒d
∗ (ts ′,m ′,S ′) ∧ (tssb ′,msb

′,Ssb
′) ∼ (ts ′,m ′,S ′))

using inv sim safe-reach
apply (unfold invariant-def)
apply (simp only: conj-assoc)
apply (rule concurrent-direct-steps-simulates-store-buffer-history-step [OF step-sb])
apply simp-all
done

lemmas (in xvalid-program) simulation = conj-commI [OF simulation ′]
end

723

end

A.8 PIMP

theory PIMP
imports ReduceStoreBufferSimulation
begin

datatype expr = Const val | Mem bool addr | Tmp sop
| Unop val ⇒ val expr
| Binop val ⇒ val ⇒ val expr expr

datatype stmt =
Skip
| Assign bool expr expr tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns tmps ⇒

owns
| CAS expr expr expr tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns
| Seq stmt stmt
| Cond expr stmt stmt
| While expr stmt

| SGhost tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns tmps ⇒ owns
| SFence

primrec used-tmps:: expr ⇒ nat — number of temporaries used
where
used-tmps (Const v) = 0
| used-tmps (Mem volatile addr) = 1
| used-tmps (Tmp sop) = 0
| used-tmps (Unop f e) = used-tmps e
| used-tmps (Binop f e1 e2) = used-tmps e1 + used-tmps e2

primrec issue-expr:: tmp ⇒ expr ⇒ instr list — load operations
where
issue-expr t (Const v) = []
|issue-expr t (Mem volatile a) = [Read volatile a t]
|issue-expr t (Tmp sop) = []
|issue-expr t (Unop f e) = issue-expr t e
|issue-expr t (Binop f e1 e2) = issue-expr t e1 @ issue-expr (t + (used-tmps e1)) e2

primrec eval-expr:: tmp ⇒ expr ⇒ sop — calculate result
where
eval-expr t (Const v) = ({},λj. v)
|eval-expr t (Mem volatile a) = ({t},λj. the (j t))
|eval-expr t (Tmp sop) = sop

724

— trick to enforce sop to be sensible in the current context, without
having to include wellformedness constraints
|eval-expr t (Unop f e) = (let (D,fe) = eval-expr t e in (D,λj. f (fe j)))
|eval-expr t (Binop f e1 e2) = (let (D1,f1) = eval-expr t e1;

(D2,f2) = eval-expr (t + (used-tmps e1)) e2
in (D1 ∪ D2,λj. f (f1 j) (f2 j)))

primrec valid-sops-expr:: nat ⇒ expr ⇒ bool
where
valid-sops-expr t (Const v) = True
|valid-sops-expr t (Mem volatile a) = True
|valid-sops-expr t (Tmp sop) = ((∀ t ′ ∈ fst sop. t ′ < t) ∧ valid-sop sop)
|valid-sops-expr t (Unop f e) = valid-sops-expr t e
|valid-sops-expr t (Binop f e1 e2) = (valid-sops-expr t e1 ∧ valid-sops-expr t e2)

primrec valid-sops-stmt:: nat ⇒ stmt ⇒ bool
where
valid-sops-stmt t Skip = True
|valid-sops-stmt t (Assign volatile a e A L R W) = (valid-sops-expr t a ∧ valid-sops-expr
t e)
|valid-sops-stmt t (CAS a ce se A L R W) = (valid-sops-expr t a ∧ valid-sops-expr t ce ∧

valid-sops-expr t se)
|valid-sops-stmt t (Seq s1 s2) = (valid-sops-stmt t s1 ∧ valid-sops-stmt t s2)
|valid-sops-stmt t (Cond e s1 s2) = (valid-sops-expr t e ∧ valid-sops-stmt t s1 ∧
valid-sops-stmt t s2)
|valid-sops-stmt t (While e s) = (valid-sops-expr t e ∧ valid-sops-stmt t s)
|valid-sops-stmt t (SGhost A L R W) = True
|valid-sops-stmt t SFence = True

type-synonym stmt-config = stmt × nat
consts isTrue:: val ⇒ bool

inductive stmt-step:: tmps ⇒ stmt-config ⇒ stmt-config × instrs ⇒ bool
(‹-` - →s -› [60,60,60] 100)

for j
where

AssignAddr:
∀ sop. a 6= Tmp sop =⇒
j` (Assign volatile a e A L R W, t) →s

((Assign volatile (Tmp (eval-expr t a)) e A L R W, t + used-tmps a), issue-expr t
a)

| Assign:
D ⊆ dom j =⇒
j` (Assign volatile (Tmp (D,a)) e A L R W, t) →s

((Skip, t + used-tmps e),
issue-expr t e@[Write volatile (a j) (eval-expr t e) (A j) (L j) (R j) (W j)])

725

| CASAddr:
∀ sop. a 6= Tmp sop =⇒
j` (CAS a ce se A L R W, t) →s

((CAS (Tmp (eval-expr t a)) ce se A L R W, t + used-tmps a), issue-expr t a)

| CASComp:
∀ sop. ce 6= Tmp sop =⇒
j` (CAS (Tmp (Da,a)) ce se A L R W, t) →s

((CAS (Tmp (Da,a)) (Tmp (eval-expr t ce)) se A L R W, t + used-tmps ce),
issue-expr t ce)

| CAS:
[[Da ⊆ dom j; Dc ⊆ dom j; eval-expr t se = (D,f)]]
=⇒
j` (CAS (Tmp (Da,a)) (Tmp (Dc,c)) se A L R W, t) →s

((Skip, Suc (t + used-tmps se)), issue-expr t se@
[RMW (a j) (t + used-tmps se) (D,f) (λj. the (j (t + used-tmps se)) = c j) (λv1

v2. v1)
(A j) (L j) (R j) (W j)])

| Seq:
j` (s1, t) →s ((s1 ′, t ′), is)
=⇒
j` (Seq s1 s2, t) →s ((Seq s1 ′ s2, t ′),is)

| SeqSkip:
j` (Seq Skip s2, t) →s ((s2, t), [])

| Cond:
∀ sop. e 6= Tmp sop
=⇒
j` (Cond e s1 s2, t) →s

((Cond (Tmp (eval-expr t e)) s1 s2, t + used-tmps e), issue-expr t e)

| CondTrue:
[[D ⊆ dom j; isTrue (e j)]]
=⇒
j` (Cond (Tmp (D,e)) s1 s2, t) →s ((s1, t),[])

| CondFalse:
[[D ⊆ dom j; ¬ isTrue (e j)]]
=⇒
j` (Cond (Tmp (D,e)) s1 s2, t) →s ((s2, t),[])

| While:
j` (While e s, t) →s

726

((Cond e (Seq s (While e s)) Skip, t),[])

| SGhost:
j` (SGhost A L R W, t) →s ((Skip, t),[Ghost (A j) (L j) (R j) (W j)])

| SFence:
j` (SFence, t) →s ((Skip, t),[Fence])

inductive-cases stmt-step-cases [cases set]:
j` (Skip, t) →s c
j` (Assign volatile a e A L R W, t) →s c
j` (CAS a ce se A L R W, t) →s c
j` (Seq s1 s2, t) →s c
j` (Cond e s1 s2, t) →s c
j` (While e s, t) →s c
j` (SGhost A L R W, t) →s c
j` (SFence, t) →s c

lemma valid-sops-expr-mono:
∧

t t ′. valid-sops-expr t e =⇒ t ≤ t ′ =⇒ valid-sops-expr t ′
e

by (induct e) auto

lemma valid-sops-stmt-mono:
∧

t t ′. valid-sops-stmt t s =⇒ t ≤ t ′ =⇒ valid-sops-stmt
t ′ s

by (induct s) (auto intro: valid-sops-expr-mono)

lemma valid-sops-expr-valid-sop:
∧

t. valid-sops-expr t e =⇒ valid-sop (eval-expr t e)
proof (induct e)

case (Unop f e)
then obtain valid-sops-expr t e

by simp
from Unop.hyps [OF this]
have vs: valid-sop (eval-expr t e)

by simp
obtain D g where eval-e: eval-expr t e = (D,g)

by (cases eval-expr t e)

interpret valid-sop (D,g)
using vs eval-e
by simp

show ?case
apply (clarsimp simp add: Let-def valid-sop-def eval-e)
apply (drule valid-sop [OF refl])
apply simp
done

next
case (Binop f e1 e2)
then obtain v1: valid-sops-expr t e1 and v2: valid-sops-expr t e2

by simp

727

with Binop.hyps (1) [of t] Binop.hyps (2) [of (t + used-tmps e1)]
valid-sops-expr-mono [OF v2, of (t + used-tmps e1)]

obtain vs1: valid-sop (eval-expr t e1) and vs2: valid-sop (eval-expr (t + used-tmps e1)
e2)

by auto
obtain D1 g1 where eval-e1: eval-expr t e1 = (D1,g1)

by (cases eval-expr t e1)
obtain D2 g2 where eval-e2: eval-expr (t + used-tmps e1) e2 = (D2,g2)

by (cases eval-expr (t + used-tmps e1) e2)
interpret vs1: valid-sop (D1,g1)

using vs1 eval-e1 by auto
interpret vs2: valid-sop (D2,g2)

using vs2 eval-e2 by auto
{

fix j:: nat⇒val option
assume D1: D1 ⊆ dom j
assume D2: D2 ⊆ dom j
have f (g1 j) (g2 j) = f (g1 (j |‘ (D1 ∪ D2))) (g2 (j |‘ (D1 ∪ D2)))
proof −

from vs1.valid-sop [OF refl D1]
have g1 j = g1 (j |‘ D1).
also
from D1 have D1 ′: D1 ⊆ dom (j |‘ (D1 ∪ D2))

by auto
have j |‘ (D1 ∪ D2) |‘ D1 = j |‘ D1

apply (rule ext)
apply (auto simp add: restrict-map-def)
done

with vs1.valid-sop [OF refl D1 ′]
have g1 (j |‘ D1) = g1 (j |‘ (D1 ∪ D2))

by auto
finally have g1: g1 (j |‘ (D1 ∪ D2)) = g1 j

by simp

from vs2.valid-sop [OF refl D2]
have g2 j = g2 (j |‘ D2).
also
from D2 have D2 ′: D2 ⊆ dom (j |‘ (D1 ∪ D2))

by auto
have j |‘ (D1 ∪ D2) |‘ D2 = j |‘ D2

apply (rule ext)
apply (auto simp add: restrict-map-def)
done

with vs2.valid-sop [OF refl D2 ′]
have g2 (j |‘ D2) = g2 (j |‘ (D1 ∪ D2))

by auto
finally have g2: g2 (j |‘ (D1 ∪ D2)) = g2 j

by simp

from g1 g2 show ?thesis by simp

728

qed
}

note lem=this
show ?case

apply (clarsimp simp add: Let-def valid-sop-def eval-e1 eval-e2)
apply (rule lem)
by auto

qed (auto simp add: valid-sop-def)

lemma valid-sops-expr-eval-expr-in-range:∧
t. valid-sops-expr t e =⇒ ∀ t ′ ∈ fst (eval-expr t e). t ′ < t + used-tmps e

proof (induct e)
case (Unop f e)
thus ?case

apply (cases eval-expr t e)
apply auto
done

next
case (Binop f e1 e2)
then obtain v1: valid-sops-expr t e1 and v2: valid-sops-expr t e2

by simp
from valid-sops-expr-mono [OF v2]
have v2 ′: valid-sops-expr (t + used-tmps e1) e2

by auto
from Binop.hyps (1) [OF v1] Binop.hyps (2) [OF v2 ′]
show ?case

apply (cases eval-expr t e1)
apply (cases eval-expr (t + used-tmps e1) e2)
apply auto
done

qed auto

lemma stmt-step-tmps-count-mono:
assumes step: j` (s,t) →s ((s ′,t ′),is)
shows t ≤ t ′

using step
by (induct x==(s,t) y==((s ′,t ′),is) arbitrary: s t s ′ t ′ is rule: stmt-step.induct) force+

lemma valid-sops-stmt-invariant:
assumes step: j` (s,t) →s ((s ′,t ′),is)
shows valid-sops-stmt t s =⇒ valid-sops-stmt t ′ s ′

using step
proof (induct x==(s,t) y==((s ′,t ′),is) arbitrary: s t s ′ t ′ is rule: stmt-step.induct)

case AssignAddr thus ?case by
(force simp add: valid-sops-expr-valid-sop intro: valid-sops-stmt-mono

valid-sops-expr-mono

729

dest: valid-sops-expr-eval-expr-in-range)
next

case Assign thus ?case by simp
next

case CASAddr thus ?case by
(force simp add: valid-sops-expr-valid-sop intro: valid-sops-stmt-mono

valid-sops-expr-mono
dest: valid-sops-expr-eval-expr-in-range)

next
case CASComp thus ?case by

(force simp add: valid-sops-expr-valid-sop intro: valid-sops-stmt-mono
valid-sops-expr-mono

dest: valid-sops-expr-eval-expr-in-range)
next

case CAS thus ?case by simp
next

case Seq thus ?case by (force intro: valid-sops-stmt-mono dest:
stmt-step-tmps-count-mono)
next

case SeqSkip thus ?case by auto
next

case Cond thus ?case
by (fastforce simp add: valid-sops-expr-valid-sop intro: valid-sops-stmt-mono
dest: valid-sops-expr-eval-expr-in-range)

next
case CondTrue thus ?case by force

next
case CondFalse thus ?case by force

next
case While thus ?case by auto

next
case SGhost thus ?case by simp

next
case SFence thus ?case by simp

qed

lemma map-le-restrict-map-eq: m1 ⊆m m2 =⇒ D ⊆ dom m1 =⇒ m2 |‘ D = m1 |‘ D
apply (rule ext)
apply (force simp add: restrict-map-def map-le-def)
done

lemma sbh-step-preserves-load-tmps-bound:
assumes step: (is,O,D,j,sb,S,m) →sbh (is ′,O ′,D ′,j ′,sb ′,S ′,m ′)
assumes less: ∀ i ∈ load-tmps is. i < n
shows ∀ i ∈ load-tmps is ′. i < n
using step less
by cases auto

730

lemma sbh-step-preserves-read-tmps-bound:
assumes step: (is,j,sb,m,D,O,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,S ′)
assumes less-is: ∀ i ∈ load-tmps is. i < n
assumes less-sb: ∀ i ∈ read-tmps sb. i < n
shows ∀ i ∈ read-tmps sb ′. i < n
using step less-is less-sb
by cases (auto simp add: read-tmps-append)

lemma sbh-step-preserves-tmps-bound:
assumes step: (is,j,sb,m,D,O,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,S ′)
assumes less-dom: ∀ i ∈ dom j. i < n
assumes less-is: ∀ i ∈ load-tmps is. i < n
shows ∀ i ∈ dom j ′. i < n
using step less-dom less-is
by cases (auto simp add: read-tmps-append)

lemma flush-step-preserves-read-tmps:
assumes step: (m,sb,O) →f (m ′,sb ′,O ′)
assumes less-sb: ∀ i ∈ read-tmps sb. i < n
shows ∀ i ∈ read-tmps sb ′. i < n
using step less-sb
by cases (auto simp add: read-tmps-append)

lemma flush-step-preserves-write-sops:
assumes step: (m,sb,O) →f (m ′,sb ′,O ′)
assumes less-sb: ∀ i∈

⋃
(fst ‘ write-sops sb). i < t

shows ∀ i∈
⋃

(fst ‘ write-sops sb ′). i < t
using step less-sb
by cases (auto simp add: read-tmps-append)

lemma issue-expr-load-tmps-range ′:∧
t. load-tmps (issue-expr t e) = {i. t ≤ i ∧ i < t + used-tmps e}

apply (induct e)
apply (force simp add: load-tmps-append)+
done

lemma issue-expr-load-tmps-range:∧
t. ∀ i ∈ load-tmps (issue-expr t e). t ≤ i ∧ i < t + (used-tmps e)

by (auto simp add: issue-expr-load-tmps-range ′)

lemma stmt-step-load-tmps-range ′:
assumes step: j` (s, t) →s ((s ′, t ′),is)
shows load-tmps is = {i. t ≤ i ∧ i < t ′}
using step
apply (induct x==(s,t) y==((s ′,t ′),is) arbitrary: s t s ′ t ′ is rule: stmt-step.induct)
apply (force simp add: load-tmps-append simp add: issue-expr-load-tmps-range ′)+
done

731

lemma stmt-step-load-tmps-range:
assumes step: j` (s, t) →s ((s ′, t ′),is)
shows ∀ i ∈ load-tmps is. t ≤ i ∧ i < t ′

using stmt-step-load-tmps-range ′ [OF step]
by auto

lemma distinct-load-tmps-issue-expr:
∧

t. distinct-load-tmps (issue-expr t e)
apply (induct e)
apply (auto simp add: distinct-load-tmps-append dest!: issue-expr-load-tmps-range

[rule-format])
done

lemma max-used-load-tmps: t + used-tmps e /∈ load-tmps (issue-expr t e)
proof −

from issue-expr-load-tmps-range [rule-format, of t+used-tmps e]
show ?thesis

by auto
qed

lemma stmt-step-distinct-load-tmps:
assumes step: j` (s, t) →s ((s ′, t ′),is)
shows distinct-load-tmps is
using step
apply (induct x==(s,t) y==((s ′,t ′),is) arbitrary: s t s ′ t ′ is rule: stmt-step.induct)

apply (force simp add: distinct-load-tmps-append distinct-load-tmps-issue-expr
max-used-load-tmps)+

done

lemma store-sops-issue-expr [simp]:
∧

t. store-sops (issue-expr t e) = {}
apply (induct e)
apply (auto simp add: store-sops-append)
done

lemma stmt-step-data-store-sops-range:
assumes step: j` (s, t) →s ((s ′, t ′),is)
assumes valid: valid-sops-stmt t s
shows ∀ (D,f) ∈ store-sops is. ∀ i ∈ D. i < t ′

using step valid
proof (induct x==(s,t) y==((s ′,t ′),is) arbitrary: s t s ′ t ′ is rule: stmt-step.induct)

case AssignAddr
thus ?case

by auto
next

case (Assign D volatile a e)
thus ?case

apply (cases eval-expr t e)

732

apply (auto simp add: store-sops-append intro: valid-sops-expr-eval-expr-in-range
[rule-format])

done
next

case CASAddr
thus ?case

by auto
next

case CASComp
thus ?case

by auto
next

case (CAS - - D f a A L R)
thus ?case

by (fastforce simp add: store-sops-append dest: valid-sops-expr-eval-expr-in-range
[rule-format])
next

case Seq
thus ?case

by (force intro: valid-sops-stmt-mono)
next

case SeqSkip thus ?case by simp
next

case Cond thus ?case
by auto

next
case CondTrue thus ?case by auto

next
case CondFalse thus ?case by auto

next
case While thus ?case by auto

next
case SGhost thus ?case by auto

next
case SFence thus ?case by auto

qed

lemma sbh-step-distinct-load-tmps-prog-step:
assumes step: j`(s,t) →s ((s ′,t ′),is ′)

assumes load-tmps-le: ∀ i ∈ load-tmps is. i < t
assumes read-tmps-le: ∀ i ∈ read-tmps sb. i < t
shows distinct-load-tmps is ′ ∧ (load-tmps is ′ ∩ load-tmps is = {}) ∧

(load-tmps is ′ ∩ read-tmps sb) = {}
proof −

from stmt-step-load-tmps-range [OF step] stmt-step-distinct-load-tmps [OF step]
load-tmps-le read-tmps-le

show ?thesis
by force

qed

733

lemma data-dependency-consistent-instrs-issue-expr:∧
t T. data-dependency-consistent-instrs T (issue-expr t e)

apply (induct e)
apply (auto simp add: data-dependency-consistent-instrs-append

dest!: issue-expr-load-tmps-range [rule-format]
)

done

lemma dom-eval-expr:∧
t. [[valid-sops-expr t e; x ∈ fst (eval-expr t e)]] =⇒ x ∈ {i. i < t} ∪ load-tmps (issue-expr

t e)
proof (induct e)

case Const thus ?case by simp
next

case Mem thus ?case by simp
next

case Tmp thus ?case by simp
next

case (Unop f e)
thus ?case

by (cases eval-expr t e) auto
next

case (Binop f e1 e2)
then obtain valid1: valid-sops-expr t e1 and valid2: valid-sops-expr t e2

by auto
from valid-sops-expr-mono [OF valid2] have valid2 ′: valid-sops-expr (t+used-tmps e1)

e2
by auto

from Binop.hyps (1) [OF valid1] Binop.hyps (2) [OF valid2 ′] Binop.prems
show ?case

apply (case-tac eval-expr t e1)
apply (case-tac eval-expr (t+used-tmps e1) e2)
apply (auto simp add: load-tmps-append issue-expr-load-tmps-range ′)
done

qed

lemma Cond-not-s1: s1 6= Cond e s1 s2
by (induct s1) auto

lemma Cond-not-s2: s2 6= Cond e s1 s2
by (induct s2) auto

lemma Seq-not-s1: s1 6= Seq s1 s2
by (induct s1) auto

lemma Seq-not-s2: s2 6= Seq s1 s2
by (induct s2) auto

734

lemma prog-step-progress:
assumes step: j`(s,t) →s ((s ′,t ′),is)
shows (s ′,t ′) 6= (s,t) ∨ is 6= []

using step
proof (induct x==(s,t) y==((s ′,t ′),is) arbitrary: s t s ′ t ′ is rule: stmt-step.induct)

case (AssignAddr a - - - - - - t) thus ?case
by (cases eval-expr t a) auto

next
case Assign thus ?case by auto

next
case (CASAddr a - - - - - - t) thus ?case by (cases eval-expr t a) auto

next
case (CASComp ce - - - - - - - t) thus ?case by (cases eval-expr t ce) auto

next
case CAS thus ?case by auto

next
case (Cond e - - t) thus ?case by (cases eval-expr t e) auto

next
case CondTrue thus ?case using Cond-not-s1 by auto

next
case CondFalse thus ?case using Cond-not-s2 by auto

next
case Seq thus ?case by force

next
case SeqSkip thus ?case using Seq-not-s2 by auto

next
case While thus ?case by auto

next
case SGhost thus ?case by auto

next
case SFence thus ?case by auto

qed

lemma stmt-step-data-dependency-consistent-instrs:
assumes step: j` (s, t) →s ((s ′, t ′),is)
assumes valid: valid-sops-stmt t s
shows data-dependency-consistent-instrs ({i. i < t}) is
using step valid

proof (induct x==(s,t) y==((s ′,t ′),is) arbitrary: s t s ′ t ′ is T rule: stmt-step.induct)
case AssignAddr
thus ?case

by (fastforce simp add: simp add: data-dependency-consistent-instrs-append
data-dependency-consistent-instrs-issue-expr load-tmps-append
dest: dom-eval-expr)

next
case Assign
thus ?case

by (fastforce simp add: simp add: data-dependency-consistent-instrs-append
data-dependency-consistent-instrs-issue-expr load-tmps-append

735

dest: dom-eval-expr)
next

case CASAddr
thus ?case

by (fastforce simp add: simp add: data-dependency-consistent-instrs-append
data-dependency-consistent-instrs-issue-expr load-tmps-append
dest: dom-eval-expr)

next
case CASComp
thus ?case

by (fastforce simp add: simp add: data-dependency-consistent-instrs-append
data-dependency-consistent-instrs-issue-expr load-tmps-append
dest: dom-eval-expr)

next
case CAS
thus ?case

by (fastforce simp add: simp add: data-dependency-consistent-instrs-append
data-dependency-consistent-instrs-issue-expr load-tmps-append
dest: dom-eval-expr)

next
case Seq
thus ?case

by (fastforce simp add: simp add: data-dependency-consistent-instrs-append)
next

case SeqSkip thus ?case by auto
next

case Cond
thus ?case

by (fastforce simp add: simp add: data-dependency-consistent-instrs-append
data-dependency-consistent-instrs-issue-expr load-tmps-append
dest: dom-eval-expr)

next
case CondTrue thus ?case by auto

next
case CondFalse thus ?case by auto

next
case While
thus ?case by auto

next
case SGhost thus ?case by auto

next
case SFence thus ?case by auto

qed

lemma sbh-valid-data-dependency-prog-step:
assumes step: j`(s,t) →s ((s ′,t ′),is ′)
assumes store-sops-le: ∀ i ∈

⋃
(fst ‘ store-sops is). i < t

assumes write-sops-le: ∀ i ∈
⋃

(fst ‘ write-sops sb). i < t

736

assumes valid: valid-sops-stmt t s
shows data-dependency-consistent-instrs ({i. i < t}) is ′ ∧

load-tmps is ′ ∩
⋃
(fst ‘ store-sops is) = {} ∧

load-tmps is ′ ∩
⋃
(fst ‘ write-sops sb) = {}

proof −
from stmt-step-data-dependency-consistent-instrs [OF step valid]

stmt-step-load-tmps-range [OF step]
store-sops-le write-sops-le
show ?thesis

by fastforce
qed

lemma sbh-load-tmps-fresh-prog-step:
assumes step: j`(s,t) →s ((s ′,t ′),is ′)
assumes tmps-le: ∀ i ∈ dom j. i < t
shows load-tmps is ′ ∩ dom j = {}

proof −
from stmt-step-load-tmps-range [OF step] tmps-le
show ?thesis

apply auto
subgoal for x
apply (drule-tac x=x in bspec)
apply assumption
apply (drule-tac x=x in bspec)
apply fastforce
apply simp
done
done

qed

lemma sbh-valid-sops-prog-step:
assumes step: j`(s,t) →s ((s ′,t ′),is)
assumes valid: valid-sops-stmt t s
shows ∀ sop∈store-sops is. valid-sop sop

using step valid
proof (induct x==(s,t) y==((s ′,t ′),is) arbitrary: s t s ′ t ′ is rule: stmt-step.induct)

case AssignAddr
thus ?case by auto

next
case Assign
thus ?case

by (auto simp add: store-sops-append valid-sops-expr-valid-sop)
next

case CASAddr
thus ?case by auto

next
case CASComp
thus ?case by auto

next
case CAS

737

thus ?case
by (fastforce simp add: store-sops-append dest: valid-sops-expr-valid-sop)

next
case Seq
thus ?case

by (force intro: valid-sops-stmt-mono)
next

case SeqSkip thus ?case by simp
next

case Cond thus ?case
by auto

next
case CondTrue thus ?case by auto

next
case CondFalse thus ?case by auto

next
case While thus ?case by auto

next
case SGhost thus ?case by auto

next
case SFence thus ?case by auto

qed

primrec prog-configs:: ′a memref list ⇒ ′a set
where
prog-configs [] = {}
|prog-configs (x#xs) = (case x of

Progsb p p ′ is ⇒ {p,p ′} ∪ prog-configs xs
| - ⇒ prog-configs xs)

lemma prog-configs-append:
∧

ys. prog-configs (xs@ys) = prog-configs xs ∪ prog-configs
ys

by (induct xs) (auto split: memref.splits)

lemma prog-configs-in1: Progsb p1 p2 is ∈ set xs =⇒ p1 ∈ prog-configs xs
by (induct xs) (auto split: memref.splits)

lemma prog-configs-in2: Progsb p1 p2 is ∈ set xs =⇒ p2 ∈ prog-configs xs
by (induct xs) (auto split: memref.splits)

lemma prog-configs-mono:
∧

ys. set xs ⊆ set ys =⇒ prog-configs xs ⊆ prog-configs ys
by (induct xs) (auto split: memref.splits simp add: prog-configs-append
prog-configs-in1 prog-configs-in2)

locale separated-tmps =
fixes ts
assumes valid-sops-stmt: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ valid-sops-stmt t s

assumes valid-sops-stmt-sb: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O); (s ′,t ′) ∈ prog-configs
sb]]

738

=⇒ valid-sops-stmt t ′ s ′
assumes load-tmps-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ ∀ i ∈ load-tmps is. i < t

assumes read-tmps-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ ∀ i ∈ read-tmps sb. i < t

assumes store-sops-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ ∀ i ∈

⋃
(fst ‘ store-sops is). i < t

assumes write-sops-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ ∀ i ∈

⋃
(fst ‘ write-sops sb). i < t

assumes tmps-le: [[i < length ts; ts!i = ((s,t),is,j,sb,D,O)]]
=⇒ dom j ∪ load-tmps is = {i. i < t}

lemma (in separated-tmps)
tmps-le ′:
assumes i-bound: i < length ts
assumes ts-i: ts!i = ((s,t),is,j,sb,D,O)
shows ∀ i ∈ dom j. i < t

using tmps-le [OF i-bound ts-i] by auto

lemma (in separated-tmps) separated-tmps-nth-update:
[[i < length ts; valid-sops-stmt t s; ∀ (s ′,t ′) ∈ prog-configs sb. valid-sops-stmt t ′ s ′;
∀ i ∈ load-tmps is. i < t;∀ i ∈ read-tmps sb. i < t;
∀ i ∈

⋃
(fst ‘ store-sops is). i < t; ∀ i ∈

⋃
(fst ‘ write-sops sb). i < t; dom j ∪ load-tmps

is = {i. i < t}]]
=⇒
separated-tmps (ts[i:=((s,t),is,j,sb,D,O)])

apply (unfold-locales)
apply (force intro: valid-sops-stmt simp add: nth-list-update split: if-split-asm)
apply (fastforce intro: valid-sops-stmt-sb simp add: nth-list-update split: if-split-asm)
apply (fastforce intro: load-tmps-le [rule-format] simp add: nth-list-update split:

if-split-asm)
apply (fastforce intro: read-tmps-le [rule-format] simp add: nth-list-update split:

if-split-asm)
apply (fastforce intro: store-sops-le [rule-format] simp add: nth-list-update split:

if-split-asm)
apply (fastforce intro: write-sops-le [rule-format] simp add: nth-list-update split:

if-split-asm)
apply (fastforce dest: tmps-le [rule-format] simp add: nth-list-update split: if-split-asm)
done

lemma hd-prog-app-in-first:
∧

ys. Progsb p p ′ is ∈ set xs =⇒ hd-prog q (xs @ ys) =
hd-prog q xs

by (induct xs) (auto split: memref.splits)

lemma hd-prog-app-in-eq:
∧

ys. Progsb p p ′ is ∈ set xs =⇒ hd-prog q xs = hd-prog x xs
by (induct xs) (auto split: memref.splits)

739

lemma hd-prog-app-notin-first:
∧

ys. ∀p p ′ is. Progsb p p ′ is /∈ set xs =⇒ hd-prog q (xs
@ ys) = hd-prog q ys

by (induct xs) (auto split: memref.splits)

lemma union-eq-subsetD: A ∪ B = C =⇒ A ∪ B ⊆ C ∧ C ⊆ A ∪ B
by auto

lemma prog-step-preserves-separated-tmps:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O)
assumes prog-step: j` p →s (p ′, is ′)
assumes sep: separated-tmps ts
shows separated-tmps

(ts [i:=(p ′,is@is ′,j,sb@[Progsb p p ′ is ′],D,O)])
proof −

obtain s t where p: p=(s,t) by (cases p)
obtain s ′ t ′ where p ′: p ′=(s ′,t ′) by (cases p ′)
note ts-i = ts-i [simplified p]
note step = prog-step [simplified p p ′]
interpret separated-tmps ts by fact
have separated-tmps (ts[i := ((s ′,t ′), is @ is ′, j,

sb @ [Progsb (s,t) (s ′,t ′) is ′], D,O)])
proof (rule separated-tmps-nth-update [OF i-bound])

from stmt-step-load-tmps-range [OF step] load-tmps-le [OF i-bound ts-i]
stmt-step-tmps-count-mono [OF step]
show ∀ i∈load-tmps (is @ is ′). i < t ′

by (auto simp add: load-tmps-append)
next

from read-tmps-le [OF i-bound ts-i] stmt-step-tmps-count-mono [OF step]
show ∀ i∈read-tmps (sb @ [Progsb (s, t) (s ′, t ′) is ′]). i < t ′

by (auto simp add: read-tmps-append)
next

from stmt-step-data-store-sops-range [OF step] stmt-step-tmps-count-mono [OF step]
store-sops-le [OF i-bound ts-i] valid-sops-stmt [OF i-bound ts-i]
show ∀ i∈

⋃
(fst ‘ store-sops (is @ is ′)). i < t ′

by (fastforce simp add: store-sops-append)
next

from
stmt-step-tmps-count-mono [OF step] write-sops-le [OF i-bound ts-i]

show ∀ i∈
⋃

(fst ‘ write-sops (sb @ [Progsb (s, t) (s ′, t ′) is ′])). i < t ′
by (fastforce simp add: write-sops-append)

next
from tmps-le [OF i-bound ts-i]
have dom j ∪ load-tmps is = {i. i < t} by simp
with stmt-step-load-tmps-range ′ [OF step] stmt-step-tmps-count-mono [OF step]
show dom j ∪ load-tmps (is @ is ′) = {i. i < t ′}

apply (clarsimp simp add: load-tmps-append)
apply rule
apply (drule union-eq-subsetD)
apply fastforce

740

apply clarsimp
subgoal for x
apply (case-tac t ≤ x)
apply simp
apply (subgoal-tac x < t)
apply fastforce
apply fastforce
done
done

next
from valid-sops-stmt-invariant [OF prog-step [simplified p p ′] valid-sops-stmt [OF

i-bound ts-i]]
show valid-sops-stmt t ′ s ′.

next
show ∀ (s ′, t ′)∈prog-configs (sb @ [Progsb (s, t) (s ′, t ′) is ′]).

valid-sops-stmt t ′ s ′
proof −

{
fix s1 t1
assume cfgs: (s1,t1) ∈ prog-configs (sb @ [Progsb (s, t) (s ′, t ′) is ′])
have valid-sops-stmt t1 s1
proof −

from valid-sops-stmt [OF i-bound ts-i]
have valid-sops-stmt t s.
moreover
from valid-sops-stmt-invariant [OF prog-step [simplified p p ′] valid-sops-stmt [OF

i-bound ts-i]]
have valid-sops-stmt t ′ s ′.
moreover
note valid-sops-stmt-sb [OF i-bound ts-i]
ultimately
show ?thesis

using cfgs
by (auto simp add: prog-configs-append)

qed
}
thus ?thesis

by auto
qed

qed
then
show ?thesis

by (simp add: p p ′)
qed

lemma flush-step-sb-subset:
assumes step: (m,sb,O) →f (m ′, sb ′,O ′)
shows set sb ′ ⊆ set sb

using step
apply (induct c1==(m,sb,O) c2==(m ′,sb ′,O ′) arbitrary: m sb O acq m ′ sb ′ O ′ acq

741

rule: flush-step.induct)
apply auto
done

lemma flush-step-preserves-separated-tmps:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes flush-step: (m,sb,O,R,S) →f (m ′, sb ′,O ′,R ′,S ′)
assumes sep: separated-tmps ts
shows separated-tmps (ts [i:=(p,is,j,sb ′,D,O ′,R ′)])

proof −
obtain s t where p: p=(s,t) by (cases p)
note ts-i = ts-i [simplified p]
interpret separated-tmps ts by fact
have separated-tmps (ts [i:=((s,t),is,j,sb ′,D,O ′,R ′)])
proof (rule separated-tmps-nth-update [OF i-bound])

from load-tmps-le [OF i-bound ts-i]
show ∀ i∈load-tmps is. i < t.

next
from flush-step-preserves-read-tmps [OF flush-step read-tmps-le [OF i-bound ts-i]]
show ∀ i∈read-tmps sb ′. i < t.

next
from store-sops-le [OF i-bound ts-i]
show ∀ i∈

⋃
(fst ‘ store-sops is). i < t.

next
from flush-step-preserves-write-sops [OF flush-step write-sops-le [OF i-bound ts-i]]
show ∀ i∈

⋃
(fst ‘ write-sops sb ′). i < t.

next
from tmps-le [OF i-bound ts-i]
show dom j ∪ load-tmps is = {i. i < t}

by auto
next

from valid-sops-stmt [OF i-bound ts-i]
show valid-sops-stmt t s.

next
from valid-sops-stmt-sb [OF i-bound ts-i] flush-step-sb-subset [OF flush-step]
show ∀ (s ′, t ′)∈prog-configs sb ′. valid-sops-stmt t ′ s ′

by (auto dest!: prog-configs-mono)
qed
then
show ?thesis

by (simp add: p)
qed

lemma sbh-step-preserves-store-sops-bound:
assumes step: (is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)
assumes store-sops-le: ∀ i∈

⋃
(fst ‘ store-sops is). i < t

shows ∀ i∈
⋃

(fst ‘ store-sops is ′). i < t
using step store-sops-le
by cases auto

742

lemma sbh-step-preserves-write-sops-bound:
assumes step: (is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)
assumes store-sops-le: ∀ i∈

⋃
(fst ‘ store-sops is). i < t

assumes write-sops-le: ∀ i∈
⋃
(fst ‘ write-sops sb). i < t

shows ∀ i∈
⋃

(fst ‘ write-sops sb ′). i < t
using step store-sops-le write-sops-le
by cases (auto simp add: write-sops-append)

lemma sbh-step-prog-configs-eq:
assumes step: (is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)
shows prog-configs sb ′ = prog-configs sb

using step
apply (cases)
apply (auto simp add: prog-configs-append)
done

lemma sbh-step-preserves-tmps-bound ′:
assumes step: (is,j,sb,m,D,O,R,S) →sbh (is ′,j ′,sb ′,m ′,D ′,O ′,R ′,S ′)
shows dom j ∪ load-tmps is = dom j ′ ∪ load-tmps is ′
using step
apply cases
apply (auto simp add: read-tmps-append)
done

lemma sbh-step-preserves-separated-tmps:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb,D,O,R)
assumes memop-step: (is, j, sb, m,D, O, R,S) →sbh

(is ′, j ′, sb ′, m ′,D ′, O ′, R ′,S ′)
assumes instr: separated-tmps ts
shows separated-tmps (ts [i:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)])

proof −
obtain s t where p: p=(s,t) by (cases p)
note ts-i = ts-i [simplified p]
interpret separated-tmps ts by fact
have separated-tmps (ts [i:=((s,t),is ′,j ′,sb ′,D ′,O ′,R ′)])
proof (rule separated-tmps-nth-update [OF i-bound])

from sbh-step-preserves-load-tmps-bound [OF memop-step load-tmps-le [OF i-bound
ts-i]]

show ∀ i∈load-tmps is ′. i < t.
next

from sbh-step-preserves-read-tmps-bound [OF memop-step load-tmps-le [OF i-bound
ts-i]

read-tmps-le [OF i-bound ts-i]]
show ∀ i∈read-tmps sb ′. i < t.

next
from sbh-step-preserves-store-sops-bound [OF memop-step store-sops-le [OF i-bound

ts-i]]
show ∀ i∈

⋃
(fst ‘ store-sops is ′). i < t.

743

next
from sbh-step-preserves-write-sops-bound [OF memop-step store-sops-le [OF i-bound

ts-i]
write-sops-le [OF i-bound ts-i]]

show ∀ i∈
⋃

(fst ‘ write-sops sb ′). i < t.
next

from sbh-step-preserves-tmps-bound ′ [OF memop-step] tmps-le [OF i-bound ts-i]
show dom j ′ ∪ load-tmps is ′ = {i. i < t}

by auto
next

from valid-sops-stmt [OF i-bound ts-i]
show valid-sops-stmt t s.

next
from valid-sops-stmt-sb [OF i-bound ts-i] sbh-step-prog-configs-eq [OF memop-step]
show ∀ (s ′, t ′)∈prog-configs sb ′. valid-sops-stmt t ′ s ′

by auto
qed
then show ?thesis

by (simp add: p)
qed

definition
valid-pimp ts ≡ separated-tmps ts

lemma prog-step-preserves-valid:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb::stmt-config store-buffer,D,O,R)
assumes prog-step: j` p →s (p ′, is ′)
assumes valid: valid-pimp ts
shows valid-pimp (ts [i:=(p ′,is@is ′,j,sb@[Progsb p p ′ is ′],D,O,R)])

using prog-step-preserves-separated-tmps [OF i-bound ts-i prog-step] valid
by (auto simp add: valid-pimp-def)

lemma flush-step-preserves-valid:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb::stmt-config store-buffer,D,O,R)
assumes flush-step: (m,sb,O,R,S) →f (m ′, sb ′,O ′,R ′,S ′)
assumes valid: valid-pimp ts
shows valid-pimp (ts [i:=(p,is,j,sb ′,D,O ′,R ′)])

using flush-step-preserves-separated-tmps [OF i-bound ts-i flush-step] valid
by (auto simp add: valid-pimp-def)

lemma sbh-step-preserves-valid:
assumes i-bound: i < length ts
assumes ts-i: ts!i = (p,is,j,sb::stmt-config store-buffer,D,O,R)
assumes memop-step: (is, j, sb, m,D, O, R,S) →sbh

(is ′, j ′, sb ′, m ′,D ′, O ′, R ′, S ′)
assumes valid: valid-pimp ts
shows valid-pimp (ts [i:=(p,is ′,j ′,sb ′,D ′,O ′,R ′)])

using

744

sbh-step-preserves-separated-tmps [OF i-bound ts-i memop-step] valid
by (auto simp add: valid-pimp-def)

lemma hd-prog-prog-configs: hd-prog p sb = p ∨ hd-prog p sb ∈ prog-configs sb
by (induct sb) (auto split:memref.splits)

interpretation PIMP: xvalid-program-progress stmt-step λ(s,t). valid-sops-stmt t s
valid-pimp
proof

fix j p p ′ is ′
assume step: j` p →s (p ′, is ′)
obtain s t where p: p = (s,t)

by (cases p)
obtain s ′ t ′ where p ′: p ′ = (s ′,t ′)

by (cases p ′)
from prog-step-progress [OF step [simplified p p ′]]
show p ′ 6= p ∨ is ′ 6= []

by (simp add: p p ′)
next

fix j p p ′ is ′
assume step: j` p →s (p ′, is ′)

and valid-stmt: (λ(s, t). valid-sops-stmt t s) p
obtain s t where p: p = (s,t)

by (cases p)
obtain s ′ t ′ where p ′: p ′ = (s ′,t ′)

by (cases p ′)
from valid-sops-stmt-invariant [OF step [simplified p p ′] valid-stmt [simplified p,

simplified]]
have valid-sops-stmt t ′ s ′.
then show (λ(s, t). valid-sops-stmt t s) p ′ by (simp add: p ′)

next
fix i ts p is O R D j sb
assume i-bound: i < length ts

and ts-i: ts ! i = (p, is, j, sb::(stmt × nat) memref list, D, O,R)
and valid: valid-pimp ts

from valid have separated-tmps ts
by (simp add: valid-pimp-def)

then interpret separated-tmps ts .
obtain s t where p: p = (s,t)

by (cases p)
from valid-sops-stmt [OF i-bound ts-i [simplified p]]
show (λ(s, t). valid-sops-stmt t s) p

by (auto simp add: p)
next

fix i ts p is O R D j sb
assume i-bound: i < length ts

and ts-i: ts ! i = (p, is, j, sb::(stmt × nat) memref list, D, O,R)
and valid: valid-pimp ts

from valid have separated-tmps ts

745

by (simp add: valid-pimp-def)
then interpret separated-tmps ts .
obtain s t where p: p = (s,t)

by (cases p)
from hd-prog-prog-configs [of p sb] valid-sops-stmt [OF i-bound ts-i [simplified p]]
valid-sops-stmt-sb [OF i-bound ts-i [simplified p]]
show (λ(s, t). valid-sops-stmt t s) (hd-prog p sb)

by (auto simp add: p)
next

fix i ts p is O R D j sb p ′ is ′
assume i-bound: i < length ts

and ts-i: ts ! i = (p, is, j, sb, D, O,R)
and step: j` p →s (p ′, is ′)
and valid: valid-pimp ts

show distinct-load-tmps is ′ ∧
load-tmps is ′ ∩ load-tmps is = {} ∧
load-tmps is ′ ∩ read-tmps sb = {}

proof −
obtain s t where p: p=(s,t) by (cases p)
obtain s ′ t ′ where p ′: p ′=(s ′,t ′) by (cases p ′)
note ts-i = ts-i [simplified p]
note step = step [simplified p p ′]
from valid
interpret separated-tmps ts

by (simp add: valid-pimp-def)

from sbh-step-distinct-load-tmps-prog-step [OF step load-tmps-le [OF i-bound ts-i]
read-tmps-le [OF i-bound ts-i]]

show ?thesis .
qed

next
fix i ts p is O R D j sb p ′ is ′
assume i-bound: i < length ts

and ts-i: ts ! i = (p, is, j, sb, D, O,R)
and step: j` p →s (p ′, is ′)
and valid: valid-pimp ts

show data-dependency-consistent-instrs (dom j ∪ load-tmps is) is ′ ∧
load-tmps is ′ ∩

⋃
(fst ‘ store-sops is) = {} ∧

load-tmps is ′ ∩
⋃
(fst ‘ write-sops sb) = {}

proof −
obtain s t where p: p=(s,t) by (cases p)
obtain s ′ t ′ where p ′: p ′=(s ′,t ′) by (cases p ′)
note ts-i = ts-i [simplified p]
note step = step [simplified p p ′]
from valid
interpret separated-tmps ts

by (simp add: valid-pimp-def)

from sbh-valid-data-dependency-prog-step [OF step store-sops-le [OF i-bound ts-i]

746

write-sops-le [OF i-bound ts-i] valid-sops-stmt [OF i-bound ts-i]] tmps-le [OF i-bound
ts-i]

show ?thesis by auto
qed

next
fix i ts p is O R D j sb p ′ is ′
assume i-bound: i < length ts

and ts-i: ts ! i = (p, is, j, sb, D, O,R)
and step: j` p →s (p ′, is ′)
and valid: valid-pimp ts

show load-tmps is ′ ∩ dom j = {}
proof −

obtain s t where p: p=(s,t) by (cases p)
obtain s ′ t ′ where p ′: p ′=(s ′,t ′) by (cases p ′)
note ts-i = ts-i [simplified p]
note step = step [simplified p p ′]
from valid
interpret separated-tmps ts

by (simp add: valid-pimp-def)
from sbh-load-tmps-fresh-prog-step [OF step tmps-le ′ [OF i-bound ts-i]]
show ?thesis .

qed
next

fix j p p ′ is
assume step: j` p →s (p ′, is)

and valid: (λ(s, t). valid-sops-stmt t s) p
show ∀ sop∈store-sops is. valid-sop sop
proof −

obtain s t where p: p=(s,t) by (cases p)
obtain s ′ t ′ where p ′: p ′=(s ′,t ′) by (cases p ′)
note step = step [simplified p p ′]
from sbh-valid-sops-prog-step [OF step valid [simplified p,simplified]]
show ?thesis .

qed
next

fix i ts p is O R D j sb p ′ is ′
assume i-bound: i < length ts

and ts-i: ts ! i = (p, is, j, sb::stmt-config store-buffer, D, O,R)
and step: j` p →s (p ′, is ′)
and valid: valid-pimp ts

from prog-step-preserves-valid [OF i-bound ts-i step valid]
show valid-pimp (ts[i := (p ′, is @ is ′, j, sb @ [Progsb p p ′ is ′], D, O,R)]) .

next
fix i ts p is O R D j sb S m m ′ sb ′ O ′ R ′ S ′

assume i-bound: i < length ts
and ts-i: ts ! i = (p, is, j, sb::stmt-config store-buffer, D, O,R)
and step: (m, sb, O, R,S) →f (m ′, sb ′,O ′,R ′,S ′)
and valid: valid-pimp ts

thm flush-step-preserves-valid [OF]
from flush-step-preserves-valid [OF i-bound ts-i step valid]

747

show valid-pimp (ts[i := (p, is, j, sb ′, D, O ′,R ′)]) .
next

fix i ts p is O R D j sb S m is ′ O ′ R ′ D ′ j ′ sb ′ S ′ m ′

assume i-bound: i < length ts
and ts-i: ts ! i = (p, is, j, sb::stmt-config store-buffer, D, O,R)
and step: (is, j, sb, m, D, O, R, S) →sbh

(is ′, j ′, sb ′, m ′,D ′, O ′, R ′,S ′)
and valid: valid-pimp ts

from sbh-step-preserves-valid [OF i-bound ts-i step valid]
show valid-pimp (ts[i := (p, is ′, j ′, sb ′, D ′, O ′,R ′)]) .

qed

thm PIMP.concurrent-direct-steps-simulates-store-buffer-history-step
thm PIMP.concurrent-direct-steps-simulates-store-buffer-history-steps
thm PIMP.concurrent-direct-steps-simulates-store-buffer-step

We can instantiate PIMP with the various memory models.interpretation direct:
computation direct-memop-step empty-storebuffer-step stmt-step λp p ′ is sb. ().

interpretation virtual:
computation virtual-memop-step empty-storebuffer-step stmt-step λp p ′ is sb. ().

interpretation store-buffer:
computation sb-memop-step store-buffer-step stmt-step λp p ′ is sb. sb .

interpretation store-buffer-history:
computation sbh-memop-step flush-step stmt-step λp p ′ is sb. sb @ [Progsb p p ′ is].

abbreviation direct-pimp-step::
(stmt-config,unit,bool,owns,rels,shared) global-config ⇒

(stmt-config,unit,bool,owns,rels,shared) global-config ⇒ bool
(‹- ⇒dp -› [60,60] 100)

where
c ⇒dp d ≡ direct.concurrent-step c d

abbreviation direct-pimp-steps::
(stmt-config,unit,bool,owns,rels,shared) global-config ⇒

(stmt-config,unit,bool,owns,rels,shared) global-config ⇒ bool
(‹- ⇒dp

∗ -› [60,60] 100)
where
direct-pimp-steps == direct-pimp-step^∗∗

Execution exampleslemma Assign-Const-ex:
([((Assign True (Tmp ({},λj. a)) (Const c) (λj. A) (λj. L) (λj. R) (λj.
W),t),[],j,(),D,O,R)],m,S) ⇒dp

∗

([((Skip,t),[],j,(),True,O ∪ A − R,Map.empty)],m(a := c),S ⊕W R 	A L)
apply (rule converse-rtranclp-into-rtranclp)
apply (rule direct.Program [where i=0])
apply simp
apply simp
apply (rule Assign)
apply simp
apply (rule converse-rtranclp-into-rtranclp)
apply (rule direct.Memop [where i=0])
apply simp

748

apply simp
apply (rule direct-memop-step.WriteVolatile)
apply simp
done

lemma
([((Assign True (Tmp ({},λj. a)) (Binop (+) (Mem True x) (Mem True y)) (λj. A) (λj.

L) (λj. R) (λj. W),t),[],j,(),D,O,R)],m,S)
⇒dp

∗

([((Skip,t + 2),[],j(t7→m x, t + 1 7→m y),(),True,O ∪ A − R,Map.empty)],m(a := m x +
m y),S ⊕W R 	A L)
apply (rule converse-rtranclp-into-rtranclp)
apply (rule direct.Program [where i=0])
apply simp
apply simp
apply (rule Assign)
apply simp

apply (rule converse-rtranclp-into-rtranclp)
apply (rule direct.Memop)
apply simp
apply simp
apply (rule direct-memop-step.Read)
apply simp

apply (rule converse-rtranclp-into-rtranclp)
apply (rule direct.Memop)
apply simp
apply simp
apply (rule direct-memop-step.Read)
apply simp

apply (rule converse-rtranclp-into-rtranclp)
apply (rule direct.Memop)
apply simp
apply simp
apply (rule direct-memop-step.WriteVolatile)
apply simp
done

lemma
assumes isTrue: isTrue c
shows
([((Cond (Const c) (Assign True (Tmp ({},λj. a)) (Const c) (λj. A) (λj. L) (λj. R) (λj.
W)) Skip,t) ,[],j,(),D,O,R)],m,S) ⇒dp

∗

([((Skip,t),[],j,(),True,O ∪ A − R,Map.empty)],m(a := c),S ⊕W R 	A L)
apply (rule converse-rtranclp-into-rtranclp)
apply (rule direct.Program [where i=0])
apply simp

749

apply simp
apply (rule Cond)
apply simp
apply simp

apply (rule converse-rtranclp-into-rtranclp)
apply (rule direct.Program [where i=0])
apply simp
apply simp
apply (rule CondTrue)
apply simp
apply (simp add: isTrue)
apply simp

apply (rule Assign-Const-ex)
done

end

References

1. Advanced Micro Devices (AMD), Inc. AMD64 Architecture Programmer’s Manual: Volumes 1–3.
September 2007. rev. 3.14.

2. Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial. IEEE
Computer, 29(12):66–76, 1996.

3. David Aspinall and Jaroslav Sevcík. Formalising Java’s data race free guarantee. In Klaus Schneider
and Jens Brandt, editors, TPHOLs, volume 4732, pages 22–37, 2007.

4. Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Stefano Berardi, Mario Coppo,
and Ferruccio Damiani, editors, Types for Proofs and Programs, International Workshop, TYPES 2003,
Torino, Italy, April 30 – May 4, 2003, Revised Selected Papers, volume 3085, pages 34–50. Springer,
2003.

5. Clemens Ballarin. Interpretation of locales in Isabelle: Theories and proof contexts. In Jonathan M.
Borwein and William M. Farmer, editors, Mathematical Knowledge Management, 5th International
Conference, MKM 2006, Wokingham, UK, August 11–12, 2006, Proceedings, volume 4108, pages 31–43.
Springer, 2006.

6. Sebastian Burckhardt and Madanlal Musuvathi. Effective program verification for relaxed memory
models. In CAV ’08: Proceedings of the 20th international conference on Computer Aided Verification,
pages 107–120, Berlin, Heidelberg, 2008. Springer-Verlag.

7. Geng Chen, Ernie Cohen, and Mikhail Kovalev. Store buffer reduction with MMUs. In Dimitra
Giannakopoulou and Daniel Kroening, editors, Verified Software: Theories, Tools and Experiments,
pages 117–132, Cham, 2014. Springer International Publishing.

8. Ernie Cohen and Bert Schirmer. From total store order to sequential consistency: A practical re-
duction theorem. In Matt Kaufmann, Lawrence Paulson, and Michael Norrish, editors, Interactive
Theorem Proving (ITP 2010), volume 6172 of Lecture Notes in Computer Science, Edinburgh, UK,
2010. Springer.

9. Intel. Intel 64 architecture memory ordering white paper. SKU 318147-001, 2007.
10. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual: Volumes 1–3b. 2009.

rev. 29.
11. Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook. In V. Chandru

and V. Vinay, editors, Foundations of Software Technology and Theoretical Computer Science, volume
1180, pages 180–192, 1996.

12. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283. Springer, 2002.

13. Jonas Oberhauser. A simpler reduction theorem for x86-tso. In Arie Gurfinkel and Sanjit A. Seshia,
editors, Verified Software: Theories, Tools, and Experiments, pages 142–164, Cham, 2016. Springer
International Publishing.

750

14. Scott Owens. Reasoning about the implementation of concurrency abstractions on x86-TSO. Technical
report, University of Cambridge, 2009.

15. Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-TSO. In 22nd
International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2009), 2009.

16. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828. Springer, 1994.
17. Tom Ridge. Operational reasoning for concurrent Caml programs and weak memory models. In Klaus

Schneider and Jens Brandt, editors, Theorem Proving in Higher Order Logics, 20th International
Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Proceedings, volume
4732, pages 278–293, 2007.

18. Jaroslav Sevcík and David Aspinall. On validity of program transformations in the Java memory
model. In Jan Vitek, editor, ECOOP, volume 5142, pages 27–51, 2008.

751

	A Reduction Theorem for Store Buffers
	Introduction
	Preliminaries
	Programming discipline
	Formalization
	Store buffer machine
	Virtual machine
	Reduction

	Building blocks of the proof
	Intermediate models
	Coupling relation
	Simulation

	PIMP
	Conclusion
	Appendix
	Memory Instructions
	Abstract Program Semantics
	Memory Transitions
	Safe Configurations of Virtual Machines
	Simulation of Store Buffer Machine with History by Virtual Machine with Delayed Releases
	Simulation of Store Buffer Machine without History by Store Buffer Machine with History
	Plug Together the Two Simulations
	PIMP

