
Stone Relation Algebras

Walter Guttmann

March 17, 2025

Abstract

We develop Stone relation algebras, which generalise relation al-
gebras by replacing the underlying Boolean algebra structure with a
Stone algebra. We show that finite matrices over bounded linear orders
form an instance. As a consequence, relation-algebraic concepts and
methods can be used for reasoning about weighted graphs. We also
develop a fixpoint calculus and apply it to compare different definitions
of reflexive-transitive closures in semirings.

Contents
1 Synopsis and Motivation 2

2 Fixpoints 3

3 Semirings 17
3.1 Idempotent Semirings . 18
3.2 Bounded Idempotent Semirings 27

4 Relation Algebras 31
4.1 Single-Object Bounded Distributive Allegories 31
4.2 Single-Object Pseudocomplemented Distributive Allegories . 54
4.3 Stone Relation Algebras . 68
4.4 Relation Algebras . 70

5 Subalgebras of Relation Algebras 78

6 Matrix Relation Algebras 84
6.1 Finite Suprema . 84
6.2 Square Matrices . 87
6.3 Stone Algebras . 88
6.4 Semirings . 90
6.5 Stone Relation Algebras . 94

7 Matrices over Bounded Linear Orders 98

1

8 An Operation to Select Components 117

1 Synopsis and Motivation
This document describes the following six theory files:

∗ Fixpoints develops a fixpoint calculus based on partial orders. We also
consider least (pre)fixpoints and greatest (post)fixpoints. The derived
rules include unfold, square, rolling, fusion, exchange and diagonal
rules studied in [1]. Our results are based on the existence of fixpoints
instead of completeness of the underlying structure.

∗ Semirings contains a hierarchy of structures generalising idempotent
semirings. In particular, several of these algebras do not assume that
multiplication is associative in order to capture models such as mul-
tirelations. Even in such a weak setting we can derive several results
comparing different definitions of reflexive-transitive closures based on
fixpoints.

∗ Relation Algebras introduces Stone relation algebras, which weaken
the Boolean algebra structure of relation algebras to Stone algebras.
This is motivated by the wish to represent weighted graphs (matri-
ces over numbers) in addition to unweighted graphs (Boolean matri-
ces) that form relations. Many results of relation algebras can be
derived from the weaker axioms and therefore also apply to weighted
graphs. Some results hold in Stone relation algebras after small mod-
ifications. This allows us to apply relational concepts and methods
also to weighted graphs. In particular, we prove a number of proper-
ties that have been used to verify graph algorithms. Tarski’s relation
algebras [28] arise as a special case by imposing further axioms.

∗ Subalgebras of Relation Algebras studies the structures of subsets of
elements characterised by a given property. In particular we look at
regular elements (which correspond to unweighted graphs), coreflexives
(tests), vectors and covectors (which can be used to represent sets).
The subsets are turned into Isabelle/HOL types, which are shown to
form instances of various algebras.

∗ Matrix Relation Algebras lifts the Stone algebra hierarchy, the semir-
ing structure and, finally, Stone relation algebras to finite square ma-
trices. These are mostly standard constructions similar to those in
[3, 4] implemented so that they work for many algebraic structures.
In particular, they can be instantiated to weighted graphs (see below)
and extended to Kleene algebras (not part of this development).

2

∗ Matrices over Bounded Linear Orders studies relational properties. In
particular, we characterise univalent, injective, total, surjective, map-
ping, bijective, vector, covector, point, atom, reflexive, coreflexive,
irreflexive, symmetric, antisymmetric and asymmetric matrices. Def-
initions of these properties are taken from relation algebras and their
meaning for matrices over bounded linear orders (weighted graphs) is
explained by logical formulas in terms of matrix entries.

Following a refactoring, the selection of components of a graph in Stone rela-
tion algebras, which was originally part of Nicolas Robinson-O’Brien’s the-
ory Relational_Minimum_Spanning_Trees/Boruvka.thy, has been moved
into a new theory in this entry.

The development is based on a theory of Stone algebras [15] and forms
the basis for an extension to Kleene algebras to capture further properties
of graphs. We apply Stone relation algebras to verify Prim’s minimum
spanning tree algorithm in Isabelle/HOL in [14].

Related libraries for semirings and relation algebras in the Archive of For-
mal Proofs are [3, 4]. The theory Kleene_Algebra/Dioid.thy introduces
a number of structures that generalise idempotent semirings, but does not
cover most of the semiring structures in the present development. The the-
ory Relation_Algebra/Relation_Algebra.thy covers Tarski’s relation al-
gebras and hence cannot be reused for the present development as most prop-
erties need to be derived from the weaker axioms of Stone relation algebras.
The matrix constructions in theories Kleene_Algebra/Inf_Matrix.thy and
Relation_Algebra/Relation_Algebra_Models.thy are similar, but have
strong restrictions on the matrix entry types not appropriate for many al-
gebraic structures in the present development. We also deviate from these
hierarchies by basing idempotent semirings directly on the Isabelle/HOL
semilattice structures instead of a separate structure; this results in a some-
what smoother integration with the lattice structure of relation algebras.

2 Fixpoints
This theory develops a fixpoint calculus based on partial orders. Besides fix-
points we consider least prefixpoints and greatest postfixpoints of functions
on a partial order. We do not assume that the underlying structure is com-
plete or that all functions are continuous or isotone. Assumptions about the
existence of fixpoints and necessary properties of the involved functions will
be stated explicitly in each theorem. This way, the results can be instan-
tiated by various structures, such as complete lattices and Kleene algebras,
which impose different kinds of restriction. See, for example, [1, 10] for
fixpoint calculi in complete lattices. Our fixpoint calculus contains similar
rules, in particular:

∗ unfold rule,

3

∗ fixpoint operators preserve isotonicity,

∗ square rule,

∗ rolling rule,

∗ various fusion rules,

∗ exchange rule and

∗ diagonal rule.

All of our rules are based on existence rather than completeness of the un-
derlying structure. We have applied results from this theory in [13] and
subsequent papers for unifying and reasoning about the semantics of recur-
sion in various relational and matrix-based computation models.
theory Fixpoints

imports Stone-Algebras.Lattice-Basics

begin

The whole calculus is based on partial orders only.
context order
begin

We first define when an element x is a least/greatest (pre/post)fixpoint
of a given function f .
definition is-fixpoint :: (′a ⇒ ′a) ⇒ ′a ⇒ bool where is-fixpoint
f x ≡ f x = x
definition is-prefixpoint :: (′a ⇒ ′a) ⇒ ′a ⇒ bool where is-prefixpoint
f x ≡ f x ≤ x
definition is-postfixpoint :: (′a ⇒ ′a) ⇒ ′a ⇒ bool where is-postfixpoint
f x ≡ f x ≥ x
definition is-least-fixpoint :: (′a ⇒ ′a) ⇒ ′a ⇒ bool where is-least-fixpoint
f x ≡ f x = x ∧ (∀ y . f y = y −→ x ≤ y)
definition is-greatest-fixpoint :: (′a ⇒ ′a) ⇒ ′a ⇒ bool where
is-greatest-fixpoint f x ≡ f x = x ∧ (∀ y . f y = y −→ x ≥ y)
definition is-least-prefixpoint :: (′a ⇒ ′a) ⇒ ′a ⇒ bool where
is-least-prefixpoint f x ≡ f x ≤ x ∧ (∀ y . f y ≤ y −→ x ≤ y)
definition is-greatest-postfixpoint :: (′a ⇒ ′a) ⇒ ′a ⇒ bool where
is-greatest-postfixpoint f x ≡ f x ≥ x ∧ (∀ y . f y ≥ y −→ x ≥ y)

Next follows the existence of the corresponding fixpoints for a given
function f .
definition has-fixpoint :: (′a ⇒ ′a) ⇒ bool where has-fixpoint
f ≡ ∃ x . is-fixpoint f x
definition has-prefixpoint :: (′a ⇒ ′a) ⇒ bool where has-prefixpoint
f ≡ ∃ x . is-prefixpoint f x

4

definition has-postfixpoint :: (′a ⇒ ′a) ⇒ bool where has-postfixpoint
f ≡ ∃ x . is-postfixpoint f x
definition has-least-fixpoint :: (′a ⇒ ′a) ⇒ bool where has-least-fixpoint
f ≡ ∃ x . is-least-fixpoint f x
definition has-greatest-fixpoint :: (′a ⇒ ′a) ⇒ bool where
has-greatest-fixpoint f ≡ ∃ x . is-greatest-fixpoint f x
definition has-least-prefixpoint :: (′a ⇒ ′a) ⇒ bool where
has-least-prefixpoint f ≡ ∃ x . is-least-prefixpoint f x
definition has-greatest-postfixpoint :: (′a ⇒ ′a) ⇒ bool where
has-greatest-postfixpoint f ≡ ∃ x . is-greatest-postfixpoint f x

The actual least/greatest (pre/post)fixpoints of a given function f are
extracted by the following operators.
definition the-least-fixpoint :: (′a ⇒ ′a) ⇒ ′a (‹µ -› [201] 200) where µ f
= (THE x . is-least-fixpoint f x)
definition the-greatest-fixpoint :: (′a ⇒ ′a) ⇒ ′a (‹ν -› [201] 200) where ν
f = (THE x . is-greatest-fixpoint f x)
definition the-least-prefixpoint :: (′a ⇒ ′a) ⇒ ′a (‹pµ -› [201] 200) where pµ
f = (THE x . is-least-prefixpoint f x)
definition the-greatest-postfixpoint :: (′a ⇒ ′a) ⇒ ′a (‹pν -› [201] 200) where
pν f = (THE x . is-greatest-postfixpoint f x)

We start with basic consequences of the above definitions.
lemma least-fixpoint-unique:

has-least-fixpoint f =⇒ ∃ !x . is-least-fixpoint f x
using has-least-fixpoint-def is-least-fixpoint-def order .antisym by auto

lemma greatest-fixpoint-unique:
has-greatest-fixpoint f =⇒ ∃ !x . is-greatest-fixpoint f x
using has-greatest-fixpoint-def is-greatest-fixpoint-def order .antisym by auto

lemma least-prefixpoint-unique:
has-least-prefixpoint f =⇒ ∃ !x . is-least-prefixpoint f x
using has-least-prefixpoint-def is-least-prefixpoint-def order .antisym by auto

lemma greatest-postfixpoint-unique:
has-greatest-postfixpoint f =⇒ ∃ !x . is-greatest-postfixpoint f x
using has-greatest-postfixpoint-def is-greatest-postfixpoint-def order .antisym by

auto

lemma least-fixpoint:
has-least-fixpoint f =⇒ is-least-fixpoint f (µ f)
by (simp add: least-fixpoint-unique theI ′ the-least-fixpoint-def)

lemma greatest-fixpoint:
has-greatest-fixpoint f =⇒ is-greatest-fixpoint f (ν f)
by (simp add: greatest-fixpoint-unique theI ′ the-greatest-fixpoint-def)

lemma least-prefixpoint:

5

has-least-prefixpoint f =⇒ is-least-prefixpoint f (pµ f)
by (simp add: least-prefixpoint-unique theI ′ the-least-prefixpoint-def)

lemma greatest-postfixpoint:
has-greatest-postfixpoint f =⇒ is-greatest-postfixpoint f (pν f)
by (simp add: greatest-postfixpoint-unique theI ′ the-greatest-postfixpoint-def)

lemma least-fixpoint-same:
is-least-fixpoint f x =⇒ x = µ f
by (simp add: is-least-fixpoint-def order .antisym the-equality

the-least-fixpoint-def)

lemma greatest-fixpoint-same:
is-greatest-fixpoint f x =⇒ x = ν f
using greatest-fixpoint greatest-fixpoint-unique has-greatest-fixpoint-def by auto

lemma least-prefixpoint-same:
is-least-prefixpoint f x =⇒ x = pµ f
using has-least-prefixpoint-def least-prefixpoint least-prefixpoint-unique by blast

lemma greatest-postfixpoint-same:
is-greatest-postfixpoint f x =⇒ x = pν f
using greatest-postfixpoint greatest-postfixpoint-unique

has-greatest-postfixpoint-def by auto

lemma least-fixpoint-char :
is-least-fixpoint f x ←→ has-least-fixpoint f ∧ x = µ f
using has-least-fixpoint-def least-fixpoint-same by auto

lemma least-prefixpoint-char :
is-least-prefixpoint f x ←→ has-least-prefixpoint f ∧ x = pµ f
using has-least-prefixpoint-def least-prefixpoint-same by auto

lemma greatest-fixpoint-char :
is-greatest-fixpoint f x ←→ has-greatest-fixpoint f ∧ x = ν f
using greatest-fixpoint-same has-greatest-fixpoint-def by auto

lemma greatest-postfixpoint-char :
is-greatest-postfixpoint f x ←→ has-greatest-postfixpoint f ∧ x = pν f
using greatest-postfixpoint-same has-greatest-postfixpoint-def by auto

Next come the unfold rules for least/greatest (pre/post)fixpoints.
lemma mu-unfold:

has-least-fixpoint f =⇒ f (µ f) = µ f
using is-least-fixpoint-def least-fixpoint by auto

lemma pmu-unfold:
has-least-prefixpoint f =⇒ f (pµ f) ≤ pµ f
using is-least-prefixpoint-def least-prefixpoint by blast

6

lemma nu-unfold:
has-greatest-fixpoint f =⇒ ν f = f (ν f)
by (metis is-greatest-fixpoint-def greatest-fixpoint)

lemma pnu-unfold:
has-greatest-postfixpoint f =⇒ pν f ≤ f (pν f)
using greatest-postfixpoint is-greatest-postfixpoint-def by auto

Pre-/postfixpoints of isotone functions are fixpoints.
lemma least-prefixpoint-fixpoint:

has-least-prefixpoint f =⇒ isotone f =⇒ is-least-fixpoint f (pµ f)
using is-least-fixpoint-def is-least-prefixpoint-def least-prefixpoint order .antisym

isotone-def by auto

lemma pmu-mu:
has-least-prefixpoint f =⇒ isotone f =⇒ pµ f = µ f
by (simp add: least-fixpoint-same least-prefixpoint-fixpoint)

lemma greatest-postfixpoint-fixpoint:
has-greatest-postfixpoint f =⇒ isotone f =⇒ is-greatest-fixpoint f (pν f)
using greatest-postfixpoint is-greatest-fixpoint-def is-greatest-postfixpoint-def

order .antisym isotone-def by auto

lemma pnu-nu:
has-greatest-postfixpoint f =⇒ isotone f =⇒ pν f = ν f
by (simp add: greatest-fixpoint-same greatest-postfixpoint-fixpoint)

The fixpoint operators preserve isotonicity.
lemma pmu-isotone:

has-least-prefixpoint f =⇒ has-least-prefixpoint g =⇒ f ≤≤ g =⇒ pµ f ≤ pµ g
by (metis is-least-prefixpoint-def least-prefixpoint order-trans lifted-less-eq-def)

lemma mu-isotone:
has-least-prefixpoint f =⇒ has-least-prefixpoint g =⇒ isotone f =⇒ isotone g

=⇒ f ≤≤ g =⇒ µ f ≤ µ g
using pmu-isotone pmu-mu by fastforce

lemma pnu-isotone:
has-greatest-postfixpoint f =⇒ has-greatest-postfixpoint g =⇒ f ≤≤ g =⇒ pν f
≤ pν g

by (metis greatest-postfixpoint is-greatest-postfixpoint-def order-trans
lifted-less-eq-def)

lemma nu-isotone:
has-greatest-postfixpoint f =⇒ has-greatest-postfixpoint g =⇒ isotone f =⇒

isotone g =⇒ f ≤≤ g =⇒ ν f ≤ ν g
using pnu-isotone pnu-nu by fastforce

The square rule for fixpoints of a function applied twice.

7

lemma mu-square:
isotone f =⇒ has-least-fixpoint f =⇒ has-least-fixpoint (f ◦ f) =⇒ µ f = µ (f ◦

f)
by (metis (no-types, opaque-lifting) order .antisym is-least-fixpoint-def

isotone-def least-fixpoint-char least-fixpoint-unique o-apply)

lemma nu-square:
isotone f =⇒ has-greatest-fixpoint f =⇒ has-greatest-fixpoint (f ◦ f) =⇒ ν f =

ν (f ◦ f)
by (metis (no-types, opaque-lifting) order .antisym is-greatest-fixpoint-def

isotone-def greatest-fixpoint-char greatest-fixpoint-unique o-apply)

The rolling rule for fixpoints of the composition of two functions.
lemma mu-roll:

assumes isotone g
and has-least-fixpoint (f ◦ g)
and has-least-fixpoint (g ◦ f)

shows µ (g ◦ f) = g (µ (f ◦ g))
proof (rule order .antisym)

show µ (g ◦ f) ≤ g (µ (f ◦ g))
by (metis assms(2−3) comp-apply is-least-fixpoint-def least-fixpoint)

next
have is-least-fixpoint (g ◦ f) (µ (g ◦ f))

by (simp add: assms(3) least-fixpoint)
thus g (µ (f ◦ g)) ≤ µ (g ◦ f)

by (metis (no-types) assms(1−2) comp-def is-least-fixpoint-def least-fixpoint
isotone-def)
qed

lemma nu-roll:
assumes isotone g

and has-greatest-fixpoint (f ◦ g)
and has-greatest-fixpoint (g ◦ f)

shows ν (g ◦ f) = g (ν (f ◦ g))
proof (rule order .antisym)

have 1 : is-greatest-fixpoint (f ◦ g) (ν (f ◦ g))
by (simp add: assms(2) greatest-fixpoint)

have is-greatest-fixpoint (g ◦ f) (ν (g ◦ f))
by (simp add: assms(3) greatest-fixpoint)

thus ν (g ◦ f) ≤ g (ν (f ◦ g))
using 1 by (metis (no-types) assms(1) comp-def is-greatest-fixpoint-def

isotone-def)
next

show g (ν (f ◦ g)) ≤ ν (g ◦ f)
by (metis assms(2−3) comp-apply greatest-fixpoint is-greatest-fixpoint-def)

qed

Least (pre)fixpoints are below greatest (post)fixpoints.
lemma mu-below-nu:

8

has-least-fixpoint f =⇒ has-greatest-fixpoint f =⇒ µ f ≤ ν f
using greatest-fixpoint is-greatest-fixpoint-def mu-unfold by auto

lemma pmu-below-pnu-fix:
has-fixpoint f =⇒ has-least-prefixpoint f =⇒ has-greatest-postfixpoint f =⇒ pµ f
≤ pν f

by (metis greatest-postfixpoint has-fixpoint-def is-fixpoint-def
is-greatest-postfixpoint-def is-least-prefixpoint-def least-prefixpoint order-refl
order-trans)

lemma pmu-below-pnu-iso:
isotone f =⇒ has-least-prefixpoint f =⇒ has-greatest-postfixpoint f =⇒ pµ f ≤

pν f
using greatest-postfixpoint-fixpoint is-greatest-fixpoint-def is-least-fixpoint-def

least-prefixpoint-fixpoint by auto

Several variants of the fusion rule for fixpoints follow.
lemma mu-fusion-1 :

assumes galois l u
and isotone h
and has-least-prefixpoint g
and has-least-fixpoint h
and l (g (u (µ h))) ≤ h (l (u (µ h)))

shows l (pµ g) ≤ µ h
proof −

have l (g (u (µ h))) ≤ µ h
by (metis assms(1 ,2 ,4 ,5) galois-char isotone-def order-lesseq-imp mu-unfold)

thus l (pµ g) ≤ µ h
using assms(1 ,3) is-least-prefixpoint-def least-prefixpoint galois-def by auto

qed

lemma mu-fusion-2 :
galois l u =⇒ isotone h =⇒ has-least-prefixpoint g =⇒ has-least-fixpoint h =⇒ l
◦ g ≤≤ h ◦ l =⇒ l (pµ g) ≤ µ h

by (simp add: mu-fusion-1 lifted-less-eq-def)

lemma mu-fusion-equal-1 :
galois l u =⇒ isotone g =⇒ isotone h =⇒ has-least-prefixpoint g =⇒

has-least-fixpoint h =⇒ l (g (u (µ h))) ≤ h(l(u(µ h))) =⇒ l (g (pµ g)) = h (l (pµ
g)) =⇒ µ h = l (pµ g) ∧ µ h = l (µ g)

by (metis order .antisym least-fixpoint least-prefixpoint-fixpoint
is-least-fixpoint-def mu-fusion-1 pmu-mu)

lemma mu-fusion-equal-2 :
galois l u =⇒ isotone h =⇒ has-least-prefixpoint g =⇒ has-least-prefixpoint h

=⇒ l (g (u (µ h))) ≤ h (l (u (µ h))) ∧ l (g (pµ g)) = h (l (pµ g)) −→ pµ h = l
(pµ g) ∧ µ h = l (pµ g)

by (metis is-least-prefixpoint-def least-fixpoint-char least-prefixpoint
least-prefixpoint-fixpoint order .antisym galois-char isotone-def mu-fusion-1)

9

lemma mu-fusion-equal-3 :
assumes galois l u

and isotone g
and isotone h
and has-least-prefixpoint g
and has-least-fixpoint h
and l ◦ g = h ◦ l

shows µ h = l (pµ g)
and µ h = l (µ g)

proof −
have ∀ x . l (g x) = h (l x)

using assms(6) comp-eq-elim by blast
thus µ h = l (pµ g)

using assms(1−5) mu-fusion-equal-1 by auto
thus µ h = l (µ g)

by (simp add: assms(2 ,4) pmu-mu)
qed

lemma mu-fusion-equal-4 :
assumes galois l u

and isotone h
and has-least-prefixpoint g
and has-least-prefixpoint h
and l ◦ g = h ◦ l

shows pµ h = l (pµ g)
and µ h = l (pµ g)

proof −
have ∀ x . l (g x) = h (l x)

using assms(5) comp-eq-elim by blast
thus pµ h = l (pµ g)

using assms(1−4) mu-fusion-equal-2 by auto
thus µ h = l (pµ g)

by (simp add: assms(2 ,4) pmu-mu)
qed

lemma nu-fusion-1 :
assumes galois l u

and isotone h
and has-greatest-postfixpoint g
and has-greatest-fixpoint h
and h (u (l (ν h))) ≤ u (g (l (ν h)))

shows ν h ≤ u (pν g)
proof −

have ν h ≤ u (g (l (ν h)))
by (metis assms(1 ,2 ,4 ,5) order-trans galois-char isotone-def nu-unfold)

thus ν h ≤ u (pν g)
by (metis assms(1 ,3) greatest-postfixpoint is-greatest-postfixpoint-def

ord.galois-def)

10

qed

lemma nu-fusion-2 :
galois l u =⇒ isotone h =⇒ has-greatest-postfixpoint g =⇒ has-greatest-fixpoint

h =⇒ h ◦ u ≤≤ u ◦ g =⇒ ν h ≤ u (pν g)
by (simp add: nu-fusion-1 lifted-less-eq-def)

lemma nu-fusion-equal-1 :
galois l u =⇒ isotone g =⇒ isotone h =⇒ has-greatest-postfixpoint g =⇒

has-greatest-fixpoint h =⇒ h (u (l (ν h))) ≤ u (g (l (ν h))) =⇒ h (u (pν g)) = u
(g (pν g)) =⇒ ν h = u (pν g) ∧ ν h = u (ν g)

by (metis greatest-fixpoint-char greatest-postfixpoint-fixpoint
is-greatest-fixpoint-def order .antisym nu-fusion-1)

lemma nu-fusion-equal-2 :
galois l u =⇒ isotone h =⇒ has-greatest-postfixpoint g =⇒

has-greatest-postfixpoint h =⇒ h (u (l (ν h))) ≤ u (g (l (ν h))) ∧ h (u (pν g)) =
u (g (pν g)) =⇒ pν h = u (pν g) ∧ ν h = u (pν g)

by (metis greatest-fixpoint-char greatest-postfixpoint greatest-postfixpoint-fixpoint
is-greatest-postfixpoint-def order .antisym galois-char nu-fusion-1 isotone-def)

lemma nu-fusion-equal-3 :
assumes galois l u

and isotone g
and isotone h
and has-greatest-postfixpoint g
and has-greatest-fixpoint h
and h ◦ u = u ◦ g

shows ν h = u (pν g)
and ν h = u (ν g)

proof −
have ∀ x . u (g x) = h (u x)

using assms(6) comp-eq-dest by fastforce
thus ν h = u (pν g)

using assms(1−5) nu-fusion-equal-1 by auto
thus ν h = u (ν g)

by (simp add: assms(2−4) pnu-nu)
qed

lemma nu-fusion-equal-4 :
assumes galois l u

and isotone h
and has-greatest-postfixpoint g
and has-greatest-postfixpoint h
and h ◦ u = u ◦ g

shows pν h = u (pν g)
and ν h = u (pν g)

proof −
have ∀ x . u (g x) = h (u x)

11

using assms(5) comp-eq-dest by fastforce
thus pν h = u (pν g)

using assms(1−4) nu-fusion-equal-2 by auto
thus ν h = u (pν g)

by (simp add: assms(2 ,4) pnu-nu)
qed

Next come the exchange rules for replacing the first/second function in
a composition.
lemma mu-exchange-1 :

assumes galois l u
and isotone g
and isotone h
and has-least-prefixpoint (l ◦ h)
and has-least-prefixpoint (h ◦ g)
and has-least-fixpoint (g ◦ h)
and l ◦ h ◦ g ≤≤ g ◦ h ◦ l

shows µ (l ◦ h) ≤ µ (g ◦ h)
proof −

have 1 : l ◦ (h ◦ g) ≤≤ (g ◦ h) ◦ l
by (simp add: assms(7) rewriteL-comp-comp)

have (l ◦ h) (µ (g ◦ h)) = l (µ (h ◦ g))
by (metis assms(2 ,3 ,5 ,6) comp-apply least-fixpoint-char

least-prefixpoint-fixpoint isotone-def mu-roll)
also have ... ≤ µ (g ◦ h)

using 1 by (metis assms(1−3 ,5 ,6) comp-apply least-fixpoint-char
least-prefixpoint-fixpoint isotone-def mu-fusion-2)

finally have pµ (l ◦ h) ≤ µ (g ◦ h)
using assms(4) is-least-prefixpoint-def least-prefixpoint by blast

thus µ (l ◦ h) ≤ µ (g ◦ h)
by (metis assms(1 ,3 ,4) galois-char isotone-def least-fixpoint-char

least-prefixpoint-fixpoint o-apply)
qed

lemma mu-exchange-2 :
assumes galois l u

and isotone g
and isotone h
and has-least-prefixpoint (l ◦ h)
and has-least-prefixpoint (h ◦ l)
and has-least-prefixpoint (h ◦ g)
and has-least-fixpoint (g ◦ h)
and has-least-fixpoint (h ◦ g)
and l ◦ h ◦ g ≤≤ g ◦ h ◦ l

shows µ (h ◦ l) ≤ µ (h ◦ g)
proof −

have µ (h ◦ l) = h (µ (l ◦ h))
by (metis (no-types, lifting) assms(1 ,3−5) galois-char isotone-def

least-fixpoint-char least-prefixpoint-fixpoint mu-roll o-apply)

12

also have ... ≤ h (µ (g ◦ h))
using assms(1−4 ,6 ,7 ,9) isotone-def mu-exchange-1 by blast

also have ... = µ (h ◦ g)
by (simp add: assms(3 ,7 ,8) mu-roll)

finally show ?thesis
.

qed

lemma mu-exchange-equal:
assumes galois l u

and galois k t
and isotone h
and has-least-prefixpoint (l ◦ h)
and has-least-prefixpoint (h ◦ l)
and has-least-prefixpoint (k ◦ h)
and has-least-prefixpoint (h ◦ k)
and l ◦ h ◦ k = k ◦ h ◦ l

shows µ (l ◦ h) = µ (k ◦ h)
and µ (h ◦ l) = µ (h ◦ k)

proof −
have 1 : has-least-fixpoint (k ◦ h)

using assms(2 ,3 ,6) least-fixpoint-char least-prefixpoint-fixpoint galois-char
isotone-def by auto

have 2 : has-least-fixpoint (h ◦ k)
using assms(2 ,3 ,7) least-fixpoint-char least-prefixpoint-fixpoint galois-char

isotone-def by auto
have 3 : has-least-fixpoint (l ◦ h)

using assms(1 ,3 ,4) least-fixpoint-char least-prefixpoint-fixpoint galois-char
isotone-def by auto

have 4 : has-least-fixpoint (h ◦ l)
using assms(1 ,3 ,5) least-fixpoint-char least-prefixpoint-fixpoint galois-char

isotone-def by auto
show µ (h ◦ l) = µ (h ◦ k)

using 1 2 3 4 assms order .antisym galois-char lifted-reflexive mu-exchange-2
by auto

show µ (l ◦ h) = µ (k ◦ h)
using 1 2 3 4 assms order .antisym galois-char lifted-reflexive mu-exchange-1

by auto
qed

lemma nu-exchange-1 :
assumes galois l u

and isotone g
and isotone h
and has-greatest-postfixpoint (u ◦ h)
and has-greatest-postfixpoint (h ◦ g)
and has-greatest-fixpoint (g ◦ h)
and g ◦ h ◦ u ≤≤ u ◦ h ◦ g

shows ν (g ◦ h) ≤ ν (u ◦ h)

13

proof −
have (g ◦ h) ◦ u ≤≤ u ◦ (h ◦ g)

by (simp add: assms(7) o-assoc)
hence ν (g ◦ h) ≤ u (ν (h ◦ g))

by (metis assms(1−3 ,5 ,6) greatest-fixpoint-char greatest-postfixpoint-fixpoint
isotone-def nu-fusion-2 o-apply)

also have ... = (u ◦ h) (ν (g ◦ h))
by (metis assms(2 ,3 ,5 ,6) greatest-fixpoint-char greatest-postfixpoint-fixpoint

isotone-def nu-roll o-apply)
finally have ν (g ◦ h) ≤ pν (u ◦ h)

using assms(4) greatest-postfixpoint is-greatest-postfixpoint-def by blast
thus ν (g ◦ h) ≤ ν (u ◦ h)

using assms(1 ,3 ,4) galois-char greatest-fixpoint-char
greatest-postfixpoint-fixpoint isotone-def by auto
qed

lemma nu-exchange-2 :
assumes galois l u

and isotone g
and isotone h
and has-greatest-postfixpoint (u ◦ h)
and has-greatest-postfixpoint (h ◦ u)
and has-greatest-postfixpoint (h ◦ g)
and has-greatest-fixpoint (g ◦ h)
and has-greatest-fixpoint (h ◦ g)
and g ◦ h ◦ u ≤≤ u ◦ h ◦ g

shows ν (h ◦ g) ≤ ν (h ◦ u)
proof −

have ν (h ◦ g) = h (ν (g ◦ h))
by (simp add: assms(3 ,7 ,8) nu-roll)

also have ... ≤ h (ν (u ◦ h))
using assms(1−4 ,6 ,7 ,9) isotone-def nu-exchange-1 by blast

also have ... = ν (h ◦ u)
by (metis (no-types, lifting) assms(1 ,3−5) galois-char greatest-fixpoint-char

greatest-postfixpoint-fixpoint isotone-def nu-roll o-apply)
finally show ν (h ◦ g) ≤ ν (h ◦ u)

.
qed

lemma nu-exchange-equal:
assumes galois l u

and galois k t
and isotone h
and has-greatest-postfixpoint (u ◦ h)
and has-greatest-postfixpoint (h ◦ u)
and has-greatest-postfixpoint (t ◦ h)
and has-greatest-postfixpoint (h ◦ t)
and u ◦ h ◦ t = t ◦ h ◦ u

shows ν (u ◦ h) = ν (t ◦ h)

14

and ν (h ◦ u) = ν (h ◦ t)
proof −

have 1 : has-greatest-fixpoint (u ◦ h)
using assms(1 ,3 ,4) greatest-fixpoint-char greatest-postfixpoint-fixpoint

galois-char isotone-def by auto
have 2 : has-greatest-fixpoint (h ◦ u)

using assms(1 ,3 ,5) greatest-fixpoint-char greatest-postfixpoint-fixpoint
galois-char isotone-def by auto

have 3 : has-greatest-fixpoint (t ◦ h)
using assms(2 ,3 ,6) greatest-fixpoint-char greatest-postfixpoint-fixpoint

galois-char isotone-def by auto
have 4 : has-greatest-fixpoint (h ◦ t)

using assms(2 ,3 ,7) greatest-fixpoint-char greatest-postfixpoint-fixpoint
galois-char isotone-def by auto

show ν (u ◦ h) = ν (t ◦ h)
using 1 2 3 4 assms order .antisym galois-char lifted-reflexive nu-exchange-1

by auto
show ν (h ◦ u) = ν (h ◦ t)

using 1 2 3 4 assms order .antisym galois-char lifted-reflexive nu-exchange-2
by auto
qed

The following results generalise parts of [10, Exercise 8.27] from contin-
uous functions on complete partial orders to the present setting.
lemma mu-commute-fixpoint-1 :

isotone f =⇒ has-least-fixpoint (f ◦ g) =⇒ f ◦ g = g ◦ f =⇒ is-fixpoint f (µ (f
◦ g))

by (metis is-fixpoint-def mu-roll)

lemma mu-commute-fixpoint-2 :
isotone g =⇒ has-least-fixpoint (f ◦ g) =⇒ f ◦ g = g ◦ f =⇒ is-fixpoint g (µ (f
◦ g))

by (simp add: mu-commute-fixpoint-1)

lemma mu-commute-least-fixpoint:
isotone f =⇒ isotone g =⇒ has-least-fixpoint f =⇒ has-least-fixpoint g =⇒

has-least-fixpoint (f ◦ g) =⇒ f ◦ g = g ◦ f =⇒ µ (f ◦ g) = µ f =⇒ µ g ≤ µ f
by (metis is-least-fixpoint-def least-fixpoint mu-roll)

The converse of the preceding result is claimed for continuous f , g on a
complete partial order; it is unknown whether it holds without these addi-
tional assumptions.
lemma nu-commute-fixpoint-1 :

isotone f =⇒ has-greatest-fixpoint (f ◦ g) =⇒ f ◦ g = g ◦ f =⇒ is-fixpoint f
(ν(f ◦ g))

by (metis is-fixpoint-def nu-roll)

lemma nu-commute-fixpoint-2 :
isotone g =⇒ has-greatest-fixpoint (f ◦ g) =⇒ f ◦ g = g ◦ f =⇒ is-fixpoint g

15

(ν(f ◦ g))
by (simp add: nu-commute-fixpoint-1)

lemma nu-commute-greatest-fixpoint:
isotone f =⇒ isotone g =⇒ has-greatest-fixpoint f =⇒ has-greatest-fixpoint g

=⇒ has-greatest-fixpoint (f ◦ g) =⇒ f ◦ g = g ◦ f =⇒ ν (f ◦ g) = ν f =⇒ ν f ≤
ν g

by (metis greatest-fixpoint is-greatest-fixpoint-def nu-roll)

Finally, we show a number of versions of the diagonal rule for functions
with two arguments.
lemma mu-diagonal-1 :

assumes isotone (λx . µ (λy . f x y))
and ∀ x . has-least-fixpoint (λy . f x y)
and has-least-prefixpoint (λx . µ (λy . f x y))

shows µ (λx . f x x) = µ (λx . µ (λy . f x y))
proof −

let ?g = λx . µ (λy . f x y)
have 1 : is-least-prefixpoint ?g (µ ?g)

using assms(1 ,3) least-prefixpoint pmu-mu by fastforce
have f (µ ?g) (µ ?g) = µ ?g

by (metis (no-types, lifting) assms is-least-fixpoint-def least-fixpoint-char
least-prefixpoint-fixpoint)

hence is-least-fixpoint (λx . f x x) (µ ?g)
using 1 assms(2) is-least-fixpoint-def is-least-prefixpoint-def least-fixpoint by

auto
thus ?thesis

using least-fixpoint-same by simp
qed

lemma mu-diagonal-2 :
∀ x . isotone (λy . f x y) ∧ isotone (λy . f y x) ∧ has-least-prefixpoint (λy . f x

y) =⇒ has-least-prefixpoint (λx . µ (λy . f x y)) =⇒ µ (λx . f x x) = µ (λx . µ
(λy . f x y))

apply (rule mu-diagonal-1)
using isotone-def lifted-less-eq-def mu-isotone apply simp
using has-least-fixpoint-def least-prefixpoint-fixpoint apply blast
by simp

lemma nu-diagonal-1 :
assumes isotone (λx . ν (λy . f x y))

and ∀ x . has-greatest-fixpoint (λy . f x y)
and has-greatest-postfixpoint (λx . ν (λy . f x y))

shows ν (λx . f x x) = ν (λx . ν (λy . f x y))
proof −

let ?g = λx . ν (λy . f x y)
have 1 : is-greatest-postfixpoint ?g (ν ?g)

using assms(1 ,3) greatest-postfixpoint pnu-nu by fastforce
have f (ν ?g) (ν ?g) = ν ?g

16

by (metis (no-types, lifting) assms is-greatest-fixpoint-def greatest-fixpoint-char
greatest-postfixpoint-fixpoint)

hence is-greatest-fixpoint (λx . f x x) (ν ?g)
using 1 assms(2) is-greatest-fixpoint-def is-greatest-postfixpoint-def

greatest-fixpoint by auto
thus ?thesis

using greatest-fixpoint-same by simp
qed

lemma nu-diagonal-2 :
∀ x . isotone (λy . f x y) ∧ isotone (λy . f y x) ∧ has-greatest-postfixpoint (λy . f

x y) =⇒ has-greatest-postfixpoint (λx . ν (λy . f x y)) =⇒ ν (λx . f x x) = ν (λx .
ν (λy . f x y))

apply (rule nu-diagonal-1)
using isotone-def lifted-less-eq-def nu-isotone apply simp
using has-greatest-fixpoint-def greatest-postfixpoint-fixpoint apply blast
by simp

end

end

3 Semirings
This theory develops a hierarchy of idempotent semirings. All kinds of
semiring considered here are bounded semilattices, but many lack additional
properties typically assumed for semirings. In particular, we consider the
variants of semirings, in which

∗ multiplication is not required to be associative;

∗ a right zero and unit of multiplication need not exist;

∗ multiplication has a left residual;

∗ multiplication from the left is not required to distribute over addition;

∗ the semilattice order has a greatest element.

We have applied results from this theory a number of papers for unifying
computation models. For example, see [13] for various relational and matrix-
based computation models and [6] for multirelational models.

The main results in this theory relate different ways of defining reflexive-
transitive closures as discussed in [6].
theory Semirings

imports Fixpoints

begin

17

3.1 Idempotent Semirings
The following definitions are standard for relations. Putting them into a
general class that depends only on the signature facilitates reuse. Core-
flexives are sometimes called partial identities, subidentities, monotypes or
tests.
class times-one-ord = times + one + ord
begin

abbreviation reflexive :: ′a ⇒ bool where reflexive x ≡ 1 ≤ x
abbreviation coreflexive :: ′a ⇒ bool where coreflexive x ≡ x ≤ 1

abbreviation transitive :: ′a ⇒ bool where transitive x ≡ x ∗ x ≤ x
abbreviation dense-rel :: ′a ⇒ bool where dense-rel x ≡ x ≤ x ∗ x
abbreviation idempotent :: ′a ⇒ bool where idempotent x ≡ x ∗ x = x

abbreviation preorder :: ′a ⇒ bool where preorder x ≡ reflexive x ∧
transitive x

abbreviation coreflexives ≡ { x . coreflexive x }

end

The first algebra is a very weak idempotent semiring, in which multipli-
cation is not necessarily associative.
class non-associative-left-semiring = bounded-semilattice-sup-bot + times + one
+

assumes mult-left-sub-dist-sup: x ∗ y t x ∗ z ≤ x ∗ (y t z)
assumes mult-right-dist-sup: (x t y) ∗ z = x ∗ z t y ∗ z
assumes mult-left-zero [simp]: bot ∗ x = bot
assumes mult-left-one [simp]: 1 ∗ x = x
assumes mult-sub-right-one: x ≤ x ∗ 1

begin

subclass times-one-ord .

We first show basic isotonicity and subdistributivity properties of mul-
tiplication.
lemma mult-left-isotone:

x ≤ y =⇒ x ∗ z ≤ y ∗ z
using mult-right-dist-sup sup-right-divisibility by auto

lemma mult-right-isotone:
x ≤ y =⇒ z ∗ x ≤ z ∗ y
using mult-left-sub-dist-sup sup.bounded-iff sup-right-divisibility by auto

lemma mult-isotone:
w ≤ y =⇒ x ≤ z =⇒ w ∗ x ≤ y ∗ z
using order-trans mult-left-isotone mult-right-isotone by blast

18

lemma affine-isotone:
isotone (λx . y ∗ x t z)
using isotone-def mult-right-isotone sup-left-isotone by auto

lemma mult-left-sub-dist-sup-left:
x ∗ y ≤ x ∗ (y t z)
by (simp add: mult-right-isotone)

lemma mult-left-sub-dist-sup-right:
x ∗ z ≤ x ∗ (y t z)
by (simp add: mult-right-isotone)

lemma mult-right-sub-dist-sup-left:
x ∗ z ≤ (x t y) ∗ z
by (simp add: mult-left-isotone)

lemma mult-right-sub-dist-sup-right:
y ∗ z ≤ (x t y) ∗ z
by (simp add: mult-left-isotone)

lemma case-split-left:
assumes 1 ≤ w t z

and w ∗ x ≤ y
and z ∗ x ≤ y

shows x ≤ y
proof −

have (w t z) ∗ x ≤ y
by (simp add: assms(2−3) mult-right-dist-sup)

thus ?thesis
by (metis assms(1) dual-order .trans mult-left-one mult-left-isotone)

qed

lemma case-split-left-equal:
w t z = 1 =⇒ w ∗ x = w ∗ y =⇒ z ∗ x = z ∗ y =⇒ x = y
by (metis mult-left-one mult-right-dist-sup)

Next we consider under which semiring operations the above properties
are closed.
lemma reflexive-one-closed:

reflexive 1
by simp

lemma reflexive-sup-closed:
reflexive x =⇒ reflexive (x t y)
by (simp add: le-supI1)

lemma reflexive-mult-closed:
reflexive x =⇒ reflexive y =⇒ reflexive (x ∗ y)

19

using mult-isotone by fastforce

lemma coreflexive-bot-closed:
coreflexive bot
by simp

lemma coreflexive-one-closed:
coreflexive 1
by simp

lemma coreflexive-sup-closed:
coreflexive x =⇒ coreflexive y =⇒ coreflexive (x t y)
by simp

lemma coreflexive-mult-closed:
coreflexive x =⇒ coreflexive y =⇒ coreflexive (x ∗ y)
using mult-isotone by fastforce

lemma transitive-bot-closed:
transitive bot
by simp

lemma transitive-one-closed:
transitive 1
by simp

lemma dense-bot-closed:
dense-rel bot
by simp

lemma dense-one-closed:
dense-rel 1
by simp

lemma dense-sup-closed:
dense-rel x =⇒ dense-rel y =⇒ dense-rel (x t y)
by (metis mult-right-dist-sup order-lesseq-imp sup.mono

mult-left-sub-dist-sup-left mult-left-sub-dist-sup-right)

lemma idempotent-bot-closed:
idempotent bot
by simp

lemma idempotent-one-closed:
idempotent 1
by simp

lemma preorder-one-closed:
preorder 1

20

by simp

lemma coreflexive-transitive:
coreflexive x =⇒ transitive x
using mult-left-isotone by fastforce

lemma preorder-idempotent:
preorder x =⇒ idempotent x
using order .antisym mult-isotone by fastforce

We study the following three ways of defining reflexive-transitive clo-
sures. Each of them is given as a least prefixpoint, but the underlying
functions are different. They implement left recursion, right recursion and
symmetric recursion, respectively.
abbreviation Lf :: ′a ⇒ (′a ⇒ ′a) where Lf y ≡ (λx . 1 t x ∗ y)
abbreviation Rf :: ′a ⇒ (′a ⇒ ′a) where Rf y ≡ (λx . 1 t y ∗ x)
abbreviation Sf :: ′a ⇒ (′a ⇒ ′a) where Sf y ≡ (λx . 1 t y t x ∗ x)

abbreviation lstar :: ′a ⇒ ′a where lstar y ≡ pµ (Lf y)
abbreviation rstar :: ′a ⇒ ′a where rstar y ≡ pµ (Rf y)
abbreviation sstar :: ′a ⇒ ′a where sstar y ≡ pµ (Sf y)

All functions are isotone and, therefore, if the prefixpoints exist they are
also fixpoints.
lemma lstar-rec-isotone:

isotone (Lf y)
using isotone-def sup-right-divisibility sup-right-isotone

mult-right-sub-dist-sup-right by auto

lemma rstar-rec-isotone:
isotone (Rf y)
using isotone-def sup-right-divisibility sup-right-isotone

mult-left-sub-dist-sup-right by auto

lemma sstar-rec-isotone:
isotone (Sf y)
using isotone-def sup-right-isotone mult-isotone by auto

lemma lstar-fixpoint:
has-least-prefixpoint (Lf y) =⇒ lstar y = µ (Lf y)
by (simp add: pmu-mu lstar-rec-isotone)

lemma rstar-fixpoint:
has-least-prefixpoint (Rf y) =⇒ rstar y = µ (Rf y)
by (simp add: pmu-mu rstar-rec-isotone)

lemma sstar-fixpoint:
has-least-prefixpoint (Sf y) =⇒ sstar y = µ (Sf y)
by (simp add: pmu-mu sstar-rec-isotone)

21

lemma sstar-increasing:
has-least-prefixpoint (Sf y) =⇒ y ≤ sstar y
using order-trans pmu-unfold sup-ge1 sup-ge2 by blast

The fixpoint given by right recursion is always below the one given by
symmetric recursion.
lemma rstar-below-sstar :

assumes has-least-prefixpoint (Rf y)
and has-least-prefixpoint (Sf y)

shows rstar y ≤ sstar y
proof −

have y ≤ sstar y
using assms(2) pmu-unfold by force

hence Rf y (sstar y) ≤ Sf y (sstar y)
by (meson sup.cobounded1 sup.mono mult-left-isotone)

also have ... ≤ sstar y
using assms(2) pmu-unfold by blast

finally show ?thesis
using assms(1) is-least-prefixpoint-def least-prefixpoint by auto

qed

end

Our next structure adds one half of the associativity property. This
inequality holds, for example, for multirelations under the compositions de-
fined by Parikh and Peleg [23, 25]. The converse inequality requires up-
closed multirelations for Parikh’s composition.
class pre-left-semiring = non-associative-left-semiring +

assumes mult-semi-associative: (x ∗ y) ∗ z ≤ x ∗ (y ∗ z)
begin

lemma mult-one-associative [simp]:
x ∗ 1 ∗ y = x ∗ y
by (metis dual-order .antisym mult-left-isotone mult-left-one

mult-semi-associative mult-sub-right-one)

lemma mult-sup-associative-one:
(x ∗ (y ∗ 1)) ∗ z ≤ x ∗ (y ∗ z)
by (metis mult-semi-associative mult-one-associative)

lemma rstar-increasing:
assumes has-least-prefixpoint (Rf y)

shows y ≤ rstar y
proof −

have Rf y (rstar y) ≤ rstar y
using assms pmu-unfold by blast

thus ?thesis
by (metis le-supE mult-right-isotone mult-sub-right-one sup.absorb-iff2)

22

qed

end

For the next structure we add a left residual operation. Such a residual
is available, for example, for multirelations.

The operator notation for binary division is introduced in a class that
requires a unary inverse. This is appropriate for fields, but too strong in the
present context of semirings. We therefore reintroduce it without requiring
a unary inverse.
no-notation

inverse-divide (infixl ‹ ′/› 70)

notation
divide (infixl ‹ ′/› 70)

class residuated-pre-left-semiring = pre-left-semiring + divide +
assumes lres-galois: x ∗ y ≤ z ←→ x ≤ z / y

begin

We first derive basic properties of left residuals from the Galois connec-
tion.
lemma lres-left-isotone:

x ≤ y =⇒ x / z ≤ y / z
using dual-order .trans lres-galois by blast

lemma lres-right-antitone:
x ≤ y =⇒ z / y ≤ z / x
using dual-order .trans lres-galois mult-right-isotone by blast

lemma lres-inverse:
(x / y) ∗ y ≤ x
by (simp add: lres-galois)

lemma lres-one:
x / 1 ≤ x
using mult-sub-right-one order-trans lres-inverse by blast

lemma lres-mult-sub-lres-lres:
x / (z ∗ y) ≤ (x / y) / z
using lres-galois mult-semi-associative order .trans by blast

lemma mult-lres-sub-assoc:
x ∗ (y / z) ≤ (x ∗ y) / z
by (meson dual-order .trans lres-galois mult-right-isotone lres-inverse

lres-mult-sub-lres-lres)

With the help of a left residual, it follows that left recursion is below
right recursion.

23

lemma lstar-below-rstar :
assumes has-least-prefixpoint (Lf y)

and has-least-prefixpoint (Rf y)
shows lstar y ≤ rstar y

proof −
have y ∗ (rstar y / y) ∗ y ≤ y ∗ rstar y

using lres-galois mult-lres-sub-assoc by auto
also have ... ≤ rstar y

using assms(2) le-supE pmu-unfold by blast
finally have y ∗ (rstar y / y) ≤ rstar y / y

by (simp add: lres-galois)
hence Rf y (rstar y / y) ≤ rstar y / y

using assms(2) lres-galois rstar-increasing by fastforce
hence rstar y ≤ rstar y / y

using assms(2) is-least-prefixpoint-def least-prefixpoint by auto
hence Lf y (rstar y) ≤ rstar y

using assms(2) lres-galois pmu-unfold by fastforce
thus ?thesis

using assms(1) is-least-prefixpoint-def least-prefixpoint by auto
qed

Moreover, right recursion gives the same result as symmetric recursion.
The next proof follows an argument of [5, Satz 10.1.5].
lemma rstar-sstar :

assumes has-least-prefixpoint (Rf y)
and has-least-prefixpoint (Sf y)

shows rstar y = sstar y
proof −

have Rf y (rstar y / rstar y) ∗ rstar y ≤ rstar y t y ∗ ((rstar y / rstar y) ∗
rstar y)

using mult-right-dist-sup mult-semi-associative sup-right-isotone by auto
also have ... ≤ rstar y t y ∗ rstar y

using mult-right-isotone sup-right-isotone lres-inverse by blast
also have ... ≤ rstar y

using assms(1) pmu-unfold by fastforce
finally have Rf y (rstar y / rstar y) ≤ rstar y / rstar y

by (simp add: lres-galois)
hence rstar y ∗ rstar y ≤ rstar y

using assms(1) is-least-prefixpoint-def least-prefixpoint lres-galois by auto
hence y t rstar y ∗ rstar y ≤ rstar y

by (simp add: assms(1) rstar-increasing)
hence Sf y (rstar y) ≤ rstar y

using assms(1) pmu-unfold by force
hence sstar y ≤ rstar y

using assms(2) is-least-prefixpoint-def least-prefixpoint by auto
thus ?thesis

by (simp add: assms order .antisym rstar-below-sstar)
qed

24

end

context monoid-mult
begin

lemma monoid-power-closed:
assumes P 1 P x

∧
y z . P y =⇒ P z =⇒ P (y ∗ z)

shows P (x ^ n)
proof (induct n)

case 0
thus ?case

by (simp add: assms(1))
next

case (Suc n)
thus ?case

by (simp add: assms(2 ,3))
qed

end

In the next structure we add full associativity of multiplication, as well
as a right unit. Still, multiplication does not need to have a right zero and
does not need to distribute over addition from the left.
class idempotent-left-semiring = non-associative-left-semiring + monoid-mult
begin

subclass pre-left-semiring
by unfold-locales (simp add: mult-assoc)

lemma zero-right-mult-decreasing:
x ∗ bot ≤ x
by (metis bot-least mult-1-right mult-right-isotone)

The following result shows that for dense coreflexives there are two equiv-
alent ways to express that a property is preserved. In the setting of Kleene
algebras, this is well known for tests, which form a Boolean subalgebra. The
point here is that only very few properties of tests are needed to show the
equivalence.
lemma test-preserves-equation:

assumes dense-rel p
and coreflexive p

shows p ∗ x ≤ x ∗ p ←→ p ∗ x = p ∗ x ∗ p
proof

assume 1 : p ∗ x ≤ x ∗ p
have p ∗ x ≤ p ∗ p ∗ x

by (simp add: assms(1) mult-left-isotone)
also have ... ≤ p ∗ x ∗ p

using 1 by (simp add: mult-right-isotone mult-assoc)
finally show p ∗ x = p ∗ x ∗ p

25

using assms(2) order .antisym mult-right-isotone by fastforce
next

assume p ∗ x = p ∗ x ∗ p
thus p ∗ x ≤ x ∗ p

by (metis assms(2) mult-left-isotone mult-left-one)
qed

end

The next structure has both distributivity properties of multiplication.
Only a right zero is missing from full semirings. This is important as many
computation models do not have a right zero of sequential composition.
class idempotent-left-zero-semiring = idempotent-left-semiring +

assumes mult-left-dist-sup: x ∗ (y t z) = x ∗ y t x ∗ z
begin

lemma case-split-right:
assumes 1 ≤ w t z

and x ∗ w ≤ y
and x ∗ z ≤ y

shows x ≤ y
proof −

have x ∗ (w t z) ≤ y
by (simp add: assms(2−3) mult-left-dist-sup)

thus ?thesis
by (metis assms(1) dual-order .trans mult-1-right mult-right-isotone)

qed

lemma case-split-right-equal:
w t z = 1 =⇒ x ∗ w = y ∗ w =⇒ x ∗ z = y ∗ z =⇒ x = y
by (metis mult-1-right mult-left-dist-sup)

This is the first structure we can connect to the semirings provided by
Isabelle/HOL.
sublocale semiring: ordered-semiring sup bot less-eq less times

apply unfold-locales
using sup-right-isotone apply blast
apply (simp add: mult-right-dist-sup)
apply (simp add: mult-left-dist-sup)
apply (simp add: mult-right-isotone)
by (simp add: mult-left-isotone)

sublocale semiring: semiring-numeral 1 times sup ..

end

Completing this part of the hierarchy, we obtain idempotent semirings
by adding a right zero of multiplication.
class idempotent-semiring = idempotent-left-zero-semiring +

26

assumes mult-right-zero [simp]: x ∗ bot = bot
begin

sublocale semiring: semiring-0 sup bot times
by unfold-locales simp-all

end

3.2 Bounded Idempotent Semirings
All of the following semirings have a greatest element in the underlying semi-
lattice order. With this element, we can express further standard properties
of relations. We extend each class in the above hierarchy in turn.
class times-top = times + top
begin

abbreviation vector :: ′a ⇒ bool where vector x ≡ x ∗ top = x
abbreviation covector :: ′a ⇒ bool where covector x ≡ top ∗ x = x
abbreviation total :: ′a ⇒ bool where total x ≡ x ∗ top = top
abbreviation surjective :: ′a ⇒ bool where surjective x ≡ top ∗ x = top

abbreviation vectors ≡ { x . vector x }
abbreviation covectors ≡ { x . covector x }

end

class bounded-non-associative-left-semiring = non-associative-left-semiring + top
+

assumes sup-right-top [simp]: x t top = top
begin

subclass times-top .

We first give basic properties of the greatest element.
lemma sup-left-top [simp]:

top t x = top
using sup-right-top sup.commute by fastforce

lemma top-greatest [simp]:
x ≤ top
by (simp add: le-iff-sup)

lemma top-left-mult-increasing:
x ≤ top ∗ x
by (metis mult-left-isotone mult-left-one top-greatest)

lemma top-right-mult-increasing:
x ≤ x ∗ top
using mult-right-isotone mult-sub-right-one order-trans top-greatest by blast

27

lemma top-mult-top [simp]:
top ∗ top = top
by (simp add: order .antisym top-left-mult-increasing)

Closure of the above properties under the semiring operations is consid-
ered next.
lemma vector-bot-closed:

vector bot
by simp

lemma vector-top-closed:
vector top
by simp

lemma vector-sup-closed:
vector x =⇒ vector y =⇒ vector (x t y)
by (simp add: mult-right-dist-sup)

lemma covector-top-closed:
covector top
by simp

lemma total-one-closed:
total 1
by simp

lemma total-top-closed:
total top
by simp

lemma total-sup-closed:
total x =⇒ total (x t y)
by (simp add: mult-right-dist-sup)

lemma surjective-one-closed:
surjective 1
by (simp add: order .antisym mult-sub-right-one)

lemma surjective-top-closed:
surjective top
by simp

lemma surjective-sup-closed:
surjective x =⇒ surjective (x t y)
by (metis le-iff-sup mult-left-sub-dist-sup-left sup-left-top)

lemma reflexive-top-closed:
reflexive top

28

by simp

lemma transitive-top-closed:
transitive top
by simp

lemma dense-top-closed:
dense-rel top
by simp

lemma idempotent-top-closed:
idempotent top
by simp

lemma preorder-top-closed:
preorder top
by simp

end

Some closure properties require at least half of associativity.
class bounded-pre-left-semiring = pre-left-semiring +
bounded-non-associative-left-semiring
begin

lemma vector-mult-closed:
vector y =⇒ vector (x ∗ y)
by (metis order .antisym mult-semi-associative top-right-mult-increasing)

lemma surjective-mult-closed:
surjective x =⇒ surjective y =⇒ surjective (x ∗ y)
by (metis order .antisym mult-semi-associative top-greatest)

end

We next consider residuals with the greatest element.
class bounded-residuated-pre-left-semiring = residuated-pre-left-semiring +
bounded-pre-left-semiring
begin

lemma lres-top-decreasing:
x / top ≤ x
using lres-inverse order .trans top-right-mult-increasing by blast

lemma top-lres-absorb [simp]:
top / x = top
using order .antisym lres-galois top-greatest by blast

lemma covector-lres-closed:

29

covector x =⇒ covector (x / y)
by (metis order .antisym mult-lres-sub-assoc top-left-mult-increasing)

end

Some closure properties require full associativity.
class bounded-idempotent-left-semiring = bounded-pre-left-semiring +
idempotent-left-semiring
begin

lemma covector-mult-closed:
covector x =⇒ covector (x ∗ y)
by (metis mult-assoc)

lemma total-mult-closed:
total x =⇒ total y =⇒ total (x ∗ y)
by (simp add: mult-assoc)

lemma total-power-closed:
total x =⇒ total (x ^ n)
apply (rule monoid-power-closed)
using total-mult-closed by auto

lemma surjective-power-closed:
surjective x =⇒ surjective (x ^ n)
apply (rule monoid-power-closed)
using surjective-mult-closed by auto

end

Some closure properties require distributivity from the left.
class bounded-idempotent-left-zero-semiring = bounded-idempotent-left-semiring
+ idempotent-left-zero-semiring
begin

lemma covector-sup-closed:
covector x =⇒ covector y =⇒ covector (x t y)
by (simp add: mult-left-dist-sup)

end

Our final structure is an idempotent semiring with a greatest element.
class bounded-idempotent-semiring = bounded-idempotent-left-zero-semiring +
idempotent-semiring
begin

lemma covector-bot-closed:
covector bot
by simp

30

end

end

4 Relation Algebras
The main structures introduced in this theory are Stone relation algebras.
They generalise Tarski’s relation algebras [28] by weakening the Boolean
algebra lattice structure to a Stone algebra. Our motivation is to gener-
alise relation-algebraic methods from unweighted graphs to weighted graphs.
Unlike unweighted graphs, weighted graphs do not form a Boolean algebra
because there is no complement operation on the edge weights. However,
edge weights form a Stone algebra, and matrices over edge weights (that is,
weighted graphs) form a Stone relation algebra.

The development in this theory is described in our papers [14, 16]. Our
main application there is the verification of Prim’s minimum spanning tree
algorithm. Related work about fuzzy relations [12, 29], Dedekind categories
[18] and rough relations [9, 24] is also discussed in these papers. In particular,
Stone relation algebras do not assume that the underlying lattice is complete
or a Heyting algebra, and they do not assume that composition has residuals.

We proceed in two steps. First, we study the positive fragment in the
form of single-object bounded distributive allegories [11]. Second, we extend
these structures by a pseudocomplement operation with additional axioms
to obtain Stone relation algebras.

Tarski’s relation algebras are then obtained by a simple extension that
imposes a Boolean algebra. See, for example, [7, 17, 20, 21, 26, 27] for
further details about relations and relation algebras, and [2, 8] for algebras
of relations with a smaller signature.
theory Relation-Algebras

imports Stone-Algebras.P-Algebras Semirings

begin

4.1 Single-Object Bounded Distributive Allegories
We start with developing bounded distributive allegories. The following
definitions concern properties of relations that require converse in addition
to lattice and semiring operations.
class conv =

fixes conv :: ′a ⇒ ′a (‹-T › [100] 100)

class bounded-distrib-allegory-signature = inf + sup + times + conv + bot + top
+ one + ord

31

begin

subclass times-one-ord .
subclass times-top .

abbreviation total-var :: ′a ⇒ bool where total-var x ≡ 1 ≤ x ∗ xT

abbreviation surjective-var :: ′a ⇒ bool where surjective-var x ≡ 1 ≤ xT ∗ x
abbreviation univalent :: ′a ⇒ bool where univalent x ≡ xT ∗ x ≤ 1
abbreviation injective :: ′a ⇒ bool where injective x ≡ x ∗ xT ≤ 1

abbreviation mapping :: ′a ⇒ bool where mapping x ≡ univalent x
∧ total x
abbreviation bijective :: ′a ⇒ bool where bijective x ≡ injective x ∧
surjective x

abbreviation point :: ′a ⇒ bool where point x ≡ vector x ∧
bijective x
abbreviation arc :: ′a ⇒ bool where arc x ≡ bijective (x ∗ top)
∧ bijective (xT ∗ top)

abbreviation symmetric :: ′a ⇒ bool where symmetric x ≡ xT = x
abbreviation antisymmetric :: ′a ⇒ bool where antisymmetric x ≡ x u xT ≤ 1
abbreviation asymmetric :: ′a ⇒ bool where asymmetric x ≡ x u xT =
bot
abbreviation linear :: ′a ⇒ bool where linear x ≡ x t xT = top

abbreviation equivalence :: ′a ⇒ bool where equivalence x ≡ preorder x ∧
symmetric x
abbreviation order :: ′a ⇒ bool where order x ≡ preorder x ∧
antisymmetric x
abbreviation linear-order :: ′a ⇒ bool where linear-order x ≡ order x ∧
linear x

end

We reuse the relation algebra axioms given in [20] except for one – see
lemma conv-complement-sub below – which we replace with the Dedekind
rule (or modular law) dedekind-1. The Dedekind rule or variants of it are
known from [7, 11, 19, 27]. We add comp-left-zero, which follows in relation
algebras but not in the present setting. The main change is that only a
bounded distributive lattice is required, not a Boolean algebra.
class bounded-distrib-allegory = bounded-distrib-lattice + times + one + conv +

assumes comp-associative : (x ∗ y) ∗ z = x ∗ (y ∗ z)
assumes comp-right-dist-sup : (x t y) ∗ z = (x ∗ z) t (y ∗ z)
assumes comp-left-zero [simp]: bot ∗ x = bot
assumes comp-left-one [simp]: 1 ∗ x = x
assumes conv-involutive [simp]: xT T = x
assumes conv-dist-sup : (x t y)T = xT t yT

assumes conv-dist-comp : (x ∗ y)T = yT ∗ xT

32

assumes dedekind-1 : x ∗ y u z ≤ x ∗ (y u (xT ∗ z))
begin

subclass bounded-distrib-allegory-signature .

Many properties of relation algebras already follow in bounded distribu-
tive allegories.
lemma conv-isotone:

x ≤ y =⇒ xT ≤ yT

by (metis conv-dist-sup le-iff-sup)

lemma conv-order :
x ≤ y ←→ xT ≤ yT

using conv-isotone by fastforce

lemma conv-bot [simp]:
botT = bot
using conv-order bot-unique by force

lemma conv-top [simp]:
topT = top
by (metis conv-involutive conv-order order .eq-iff top-greatest)

lemma conv-dist-inf :
(x u y)T = xT u yT

apply (rule order .antisym)
using conv-order apply simp
by (metis conv-order conv-involutive inf .boundedI inf .cobounded1

inf .cobounded2)

lemma conv-inf-bot-iff :
bot = xT u y ←→ bot = x u yT

using conv-dist-inf conv-bot by fastforce

lemma conv-one [simp]:
1T = 1
by (metis comp-left-one conv-dist-comp conv-involutive)

lemma comp-left-dist-sup:
(x ∗ y) t (x ∗ z) = x ∗ (y t z)
by (metis comp-right-dist-sup conv-involutive conv-dist-sup conv-dist-comp)

lemma comp-right-isotone:
x ≤ y =⇒ z ∗ x ≤ z ∗ y
by (simp add: comp-left-dist-sup sup.absorb-iff1)

lemma comp-left-isotone:
x ≤ y =⇒ x ∗ z ≤ y ∗ z
by (metis comp-right-dist-sup le-iff-sup)

33

lemma comp-isotone:
x ≤ y =⇒ w ≤ z =⇒ x ∗ w ≤ y ∗ z
using comp-left-isotone comp-right-isotone order .trans by blast

lemma comp-left-subdist-inf :
(x u y) ∗ z ≤ x ∗ z u y ∗ z
by (simp add: comp-left-isotone)

lemma comp-left-increasing-sup:
x ∗ y ≤ (x t z) ∗ y
by (simp add: comp-left-isotone)

lemma comp-right-subdist-inf :
x ∗ (y u z) ≤ x ∗ y u x ∗ z
by (simp add: comp-right-isotone)

lemma comp-right-increasing-sup:
x ∗ y ≤ x ∗ (y t z)
by (simp add: comp-right-isotone)

lemma comp-right-zero [simp]:
x ∗ bot = bot
by (metis comp-left-zero conv-dist-comp conv-involutive)

lemma comp-right-one [simp]:
x ∗ 1 = x
by (metis comp-left-one conv-dist-comp conv-involutive)

lemma comp-left-conjugate:
conjugate (λy . x ∗ y) (λy . xT ∗ y)
apply (unfold conjugate-def , intro allI)
by (metis comp-right-zero bot.extremum-unique conv-involutive dedekind-1

inf .commute)

lemma comp-right-conjugate:
conjugate (λy . y ∗ x) (λy . y ∗ xT)
apply (unfold conjugate-def , intro allI)
by (metis comp-left-conjugate[unfolded conjugate-def] conv-inf-bot-iff

conv-dist-comp conv-involutive)

We still obtain a semiring structure.
subclass bounded-idempotent-semiring

by (unfold-locales)
(auto simp: comp-right-isotone comp-right-dist-sup comp-associative

comp-left-dist-sup)

sublocale inf : semiring-0 sup bot inf
by (unfold-locales, auto simp: inf-sup-distrib2 inf-sup-distrib1 inf-assoc)

34

lemma schroeder-1 :
x ∗ y u z = bot ←→ xT ∗ z u y = bot
using abel-semigroup.commute comp-left-conjugate conjugate-def

inf .abel-semigroup-axioms by fastforce

lemma schroeder-2 :
x ∗ y u z = bot ←→ z ∗ yT u x = bot
by (metis comp-right-conjugate conjugate-def inf-commute)

lemma comp-additive:
additive (λy . x ∗ y) ∧ additive (λy . xT ∗ y) ∧ additive (λy . y ∗ x) ∧ additive

(λy . y ∗ xT)
by (simp add: comp-left-dist-sup additive-def comp-right-dist-sup)

lemma dedekind-2 :
y ∗ x u z ≤ (y u (z ∗ xT)) ∗ x
by (metis conv-dist-inf conv-order conv-dist-comp dedekind-1)

The intersection with a vector can still be exported from the first argu-
ment of a composition, and many other properties of vectors and covectors
continue to hold.
lemma vector-inf-comp:

vector x =⇒ (x u y) ∗ z = x u (y ∗ z)
apply (rule order .antisym)
apply (metis comp-left-subdist-inf comp-right-isotone inf .sup-left-isotone

order-lesseq-imp top-greatest)
by (metis comp-left-isotone comp-right-isotone dedekind-2 inf-commute

inf-mono order-refl order-trans top-greatest)

lemma vector-inf-closed:
vector x =⇒ vector y =⇒ vector (x u y)
by (simp add: vector-inf-comp)

lemma vector-inf-one-comp:
vector x =⇒ (x u 1) ∗ y = x u y
by (simp add: vector-inf-comp)

lemma covector-inf-comp-1 :
assumes vector x

shows (y u xT) ∗ z = (y u xT) ∗ (x u z)
proof −

have (y u xT) ∗ z ≤ (y u xT) ∗ (z u ((yT u x) ∗ top))
by (metis inf-top-right dedekind-1 conv-dist-inf conv-involutive)

also have ... ≤ (y u xT) ∗ (x u z)
by (metis assms comp-left-isotone comp-right-isotone inf-le2 inf-mono

order-refl inf-commute)
finally show ?thesis

by (simp add: comp-right-isotone order .antisym)

35

qed

lemma covector-inf-comp-2 :
assumes vector x

shows y ∗ (x u z) = (y u xT) ∗ (x u z)
proof −

have y ∗ (x u z) ≤ (y u (top ∗ (x u z)T)) ∗ (x u z)
by (metis dedekind-2 inf-top-right)

also have ... ≤ (y u xT) ∗ (x u z)
by (metis assms comp-left-isotone conv-dist-comp conv-order conv-top eq-refl

inf-le1 inf-mono)
finally show ?thesis

using comp-left-subdist-inf order .antisym by auto
qed

lemma covector-inf-comp-3 :
vector x =⇒ (y u xT) ∗ z = y ∗ (x u z)
by (metis covector-inf-comp-1 covector-inf-comp-2)

lemma covector-inf-closed:
covector x =⇒ covector y =⇒ covector (x u y)
by (metis comp-right-subdist-inf order .antisym top-left-mult-increasing)

lemma vector-conv-covector :
vector v ←→ covector (vT)
by (metis conv-dist-comp conv-involutive conv-top)

lemma covector-conv-vector :
covector v ←→ vector (vT)
by (simp add: vector-conv-covector)

lemma covector-comp-inf :
covector z =⇒ x ∗ (y u z) = x ∗ y u z
apply (rule order .antisym)
apply (metis comp-isotone comp-right-subdist-inf inf .boundedE inf .boundedI

inf .cobounded2 top.extremum)
by (metis comp-left-isotone comp-right-isotone dedekind-1 inf-commute

inf-mono order-refl order-trans top-greatest)

lemma vector-restrict-comp-conv:
vector x =⇒ x u y ≤ xT ∗ y
by (metis covector-inf-comp-3 eq-refl inf .sup-monoid.add-commute inf-top-right

le-supE sup.orderE top-left-mult-increasing)

lemma covector-restrict-comp-conv:
covector x =⇒ y u x ≤ y ∗ xT

by (metis conv-dist-comp conv-dist-inf conv-order conv-top
inf .sup-monoid.add-commute vector-restrict-comp-conv)

36

lemma covector-comp-inf-1 :
covector x =⇒ (y u x) ∗ z = y ∗ (xT u z)
using covector-conv-vector covector-inf-comp-3 by fastforce

We still have two ways to represent surjectivity and totality.
lemma surjective-var :

surjective x ←→ surjective-var x
proof

assume surjective x
thus surjective-var x

by (metis dedekind-2 comp-left-one inf-absorb2 top-greatest)
next

assume surjective-var x
hence xT ∗ (x ∗ top) = top

by (metis comp-left-isotone comp-associative comp-left-one top-le)
thus surjective x

by (metis comp-right-isotone conv-top conv-dist-comp conv-involutive
top-greatest top-le)
qed

lemma total-var :
total x ←→ total-var x
by (metis conv-top conv-dist-comp conv-involutive surjective-var)

lemma surjective-conv-total:
surjective x ←→ total (xT)
by (metis conv-top conv-dist-comp conv-involutive)

lemma total-conv-surjective:
total x ←→ surjective (xT)
by (simp add: surjective-conv-total)

lemma injective-conv-univalent:
injective x ←→ univalent (xT)
by simp

lemma univalent-conv-injective:
univalent x ←→ injective (xT)
by simp

We continue with studying further closure properties.
lemma univalent-bot-closed:

univalent bot
by simp

lemma univalent-one-closed:
univalent 1
by simp

37

lemma univalent-inf-closed:
univalent x =⇒ univalent (x u y)
by (metis comp-left-subdist-inf comp-right-subdist-inf conv-dist-inf

inf .cobounded1 order-lesseq-imp)

lemma univalent-mult-closed:
assumes univalent x

and univalent y
shows univalent (x ∗ y)

proof −
have (x ∗ y)T ∗ x ≤ yT

by (metis assms(1) comp-left-isotone comp-right-one conv-one conv-order
comp-associative conv-dist-comp conv-involutive)

thus ?thesis
by (metis assms(2) comp-left-isotone comp-associative dual-order .trans)

qed

lemma injective-bot-closed:
injective bot
by simp

lemma injective-one-closed:
injective 1
by simp

lemma injective-inf-closed:
injective x =⇒ injective (x u y)
by (metis conv-dist-inf injective-conv-univalent univalent-inf-closed)

lemma injective-mult-closed:
injective x =⇒ injective y =⇒ injective (x ∗ y)
by (metis injective-conv-univalent conv-dist-comp univalent-mult-closed)

lemma mapping-one-closed:
mapping 1
by simp

lemma mapping-mult-closed:
mapping x =⇒ mapping y =⇒ mapping (x ∗ y)
by (simp add: comp-associative univalent-mult-closed)

lemma bijective-one-closed:
bijective 1
by simp

lemma bijective-mult-closed:
bijective x =⇒ bijective y =⇒ bijective (x ∗ y)
by (metis injective-mult-closed comp-associative)

38

lemma bijective-conv-mapping:
bijective x ←→ mapping (xT)
by (simp add: surjective-conv-total)

lemma mapping-conv-bijective:
mapping x ←→ bijective (xT)
by (simp add: total-conv-surjective)

lemma reflexive-inf-closed:
reflexive x =⇒ reflexive y =⇒ reflexive (x u y)
by simp

lemma reflexive-conv-closed:
reflexive x =⇒ reflexive (xT)
using conv-isotone by force

lemma coreflexive-inf-closed:
coreflexive x =⇒ coreflexive (x u y)
by (simp add: le-infI1)

lemma coreflexive-conv-closed:
coreflexive x =⇒ coreflexive (xT)
using conv-order by force

lemma coreflexive-symmetric:
coreflexive x =⇒ symmetric x
by (metis comp-right-one comp-right-subdist-inf conv-dist-inf conv-dist-comp

conv-involutive dedekind-1 inf .absorb1 inf-absorb2)

lemma transitive-inf-closed:
transitive x =⇒ transitive y =⇒ transitive (x u y)
by (meson comp-left-subdist-inf inf .cobounded1 inf .sup-mono inf-le2

mult-right-isotone order .trans)

lemma transitive-conv-closed:
transitive x =⇒ transitive (xT)
using conv-order conv-dist-comp by fastforce

lemma dense-conv-closed:
dense-rel x =⇒ dense-rel (xT)
using conv-order conv-dist-comp by fastforce

lemma idempotent-conv-closed:
idempotent x =⇒ idempotent (xT)
by (metis conv-dist-comp)

lemma preorder-inf-closed:
preorder x =⇒ preorder y =⇒ preorder (x u y)
using transitive-inf-closed by auto

39

lemma preorder-conv-closed:
preorder x =⇒ preorder (xT)
by (simp add: reflexive-conv-closed transitive-conv-closed)

lemma symmetric-bot-closed:
symmetric bot
by simp

lemma symmetric-one-closed:
symmetric 1
by simp

lemma symmetric-top-closed:
symmetric top
by simp

lemma symmetric-inf-closed:
symmetric x =⇒ symmetric y =⇒ symmetric (x u y)
by (simp add: conv-dist-inf)

lemma symmetric-sup-closed:
symmetric x =⇒ symmetric y =⇒ symmetric (x t y)
by (simp add: conv-dist-sup)

lemma symmetric-conv-closed:
symmetric x =⇒ symmetric (xT)
by simp

lemma one-inf-conv:
1 u x = 1 u xT

by (metis conv-dist-inf coreflexive-symmetric inf .cobounded1
symmetric-one-closed)

lemma antisymmetric-bot-closed:
antisymmetric bot
by simp

lemma antisymmetric-one-closed:
antisymmetric 1
by simp

lemma antisymmetric-inf-closed:
antisymmetric x =⇒ antisymmetric (x u y)
by (rule order-trans[where y=x u xT]) (simp-all add: conv-isotone

inf .coboundedI2 inf .sup-assoc)

lemma antisymmetric-conv-closed:
antisymmetric x =⇒ antisymmetric (xT)

40

by (simp add: inf-commute)

lemma asymmetric-bot-closed:
asymmetric bot
by simp

lemma asymmetric-inf-closed:
asymmetric x =⇒ asymmetric (x u y)
by (metis conv-dist-inf inf .mult-zero-left inf .left-commute inf-assoc)

lemma asymmetric-conv-closed:
asymmetric x =⇒ asymmetric (xT)
by (simp add: inf-commute)

lemma linear-top-closed:
linear top
by simp

lemma linear-sup-closed:
linear x =⇒ linear (x t y)
by (metis conv-dist-sup sup-assoc sup-commute sup-top-right)

lemma linear-reflexive:
linear x =⇒ reflexive x
by (metis one-inf-conv inf .distrib-left inf .cobounded2 inf .orderE

reflexive-top-closed sup.idem)

lemma linear-conv-closed:
linear x =⇒ linear (xT)
by (simp add: sup-commute)

lemma linear-comp-closed:
assumes linear x

and linear y
shows linear (x ∗ y)

proof −
have reflexive y

by (simp add: assms(2) linear-reflexive)
hence x t xT ≤ x ∗ y t yT ∗ xT

by (metis case-split-left case-split-right le-supI sup.cobounded1 sup.cobounded2
sup.idem reflexive-conv-closed)

thus ?thesis
by (simp add: assms(1) conv-dist-comp top-le)

qed

lemma equivalence-one-closed:
equivalence 1
by simp

41

lemma equivalence-top-closed:
equivalence top
by simp

lemma equivalence-inf-closed:
equivalence x =⇒ equivalence y =⇒ equivalence (x u y)
using conv-dist-inf preorder-inf-closed by auto

lemma equivalence-conv-closed:
equivalence x =⇒ equivalence (xT)
by simp

lemma order-one-closed:
order 1
by simp

lemma order-inf-closed:
order x =⇒ order y =⇒ order (x u y)
using antisymmetric-inf-closed transitive-inf-closed by auto

lemma order-conv-closed:
order x =⇒ order (xT)
by (simp add: inf-commute reflexive-conv-closed transitive-conv-closed)

lemma linear-order-conv-closed:
linear-order x =⇒ linear-order (xT)
using equivalence-top-closed conv-dist-sup inf-commute reflexive-conv-closed

transitive-conv-closed by force

We show a fact about equivalences.
lemma equivalence-comp-dist-inf :

equivalence x =⇒ x ∗ y u x ∗ z = x ∗ (y u x ∗ z)
by (metis order .antisym comp-right-subdist-inf dedekind-1 order .eq-iff

inf .absorb1 inf .absorb2 mult-1-right mult-assoc)

The following result generalises the fact that composition with a test
amounts to intersection with the corresponding vector. Both tests and vec-
tors can be used to represent sets as relations.
lemma coreflexive-comp-top-inf :

coreflexive x =⇒ x ∗ top u y = x ∗ y
apply (rule order .antisym)
apply (metis comp-left-isotone comp-left-one coreflexive-symmetric dedekind-1

inf-top-left order-trans)
using comp-left-isotone comp-right-isotone by fastforce

lemma coreflexive-comp-top-inf-one:
coreflexive x =⇒ x ∗ top u 1 = x
by (simp add: coreflexive-comp-top-inf)

42

lemma coreflexive-comp-inf :
coreflexive x =⇒ coreflexive y =⇒ x ∗ y = x u y
by (metis (full-types) coreflexive-comp-top-inf coreflexive-comp-top-inf-one

inf .mult-assoc inf .absorb2)

lemma coreflexive-comp-inf-comp:
assumes coreflexive x

and coreflexive y
shows (x ∗ z) u (y ∗ z) = (x u y) ∗ z

proof −
have (x ∗ z) u (y ∗ z) = x ∗ top u z u y ∗ top u z

using assms coreflexive-comp-top-inf inf-assoc by auto
also have ... = x ∗ top u y ∗ top u z

by (simp add: inf .commute inf .left-commute)
also have ... = (x u y) ∗ top u z

by (metis assms coreflexive-comp-inf coreflexive-comp-top-inf mult-assoc)
also have ... = (x u y) ∗ z

by (simp add: assms(1) coreflexive-comp-top-inf coreflexive-inf-closed)
finally show ?thesis

.
qed

lemma test-comp-test-inf :
(x u 1) ∗ y ∗ (z u 1) = (x u 1) ∗ y u y ∗ (z u 1)
by (smt comp-right-one comp-right-subdist-inf coreflexive-comp-top-inf

inf .left-commute inf .orderE inf-le2 mult-assoc)

lemma test-comp-test-top:
y u (x u 1) ∗ top ∗ (z u 1) = (x u 1) ∗ y ∗ (z u 1)

proof −
have ∀ u v . (v u uT)T = vT u u

using conv-dist-inf by auto
thus ?thesis

by (smt conv-dist-comp conv-involutive coreflexive-comp-top-inf
inf .cobounded2 inf .left-commute inf .sup-monoid.add-commute
symmetric-one-closed mult-assoc symmetric-top-closed)
qed

lemma coreflexive-idempotent:
coreflexive x =⇒ idempotent x
by (simp add: coreflexive-comp-inf)

lemma coreflexive-univalent:
coreflexive x =⇒ univalent x
by (simp add: coreflexive-idempotent coreflexive-symmetric)

lemma coreflexive-injective:
coreflexive x =⇒ injective x
by (simp add: coreflexive-idempotent coreflexive-symmetric)

43

lemma coreflexive-commutative:
coreflexive x =⇒ coreflexive y =⇒ x ∗ y = y ∗ x
by (simp add: coreflexive-comp-inf inf .commute)

lemma coreflexive-dedekind:
coreflexive x =⇒ coreflexive y =⇒ coreflexive z =⇒ x ∗ y u z ≤ x ∗ (y u x ∗ z)
by (simp add: coreflexive-comp-inf inf .coboundedI1 inf .left-commute)

Also the equational version of the Dedekind rule continues to hold.
lemma dedekind-eq:

x ∗ y u z = (x u (z ∗ yT)) ∗ (y u (xT ∗ z)) u z
proof (rule order .antisym)

have x ∗ y u z ≤ x ∗ (y u (xT ∗ z)) u z
by (simp add: dedekind-1)

also have ... ≤ (x u (z ∗ (y u (xT ∗ z))T)) ∗ (y u (xT ∗ z)) u z
by (simp add: dedekind-2)

also have ... ≤ (x u (z ∗ yT)) ∗ (y u (xT ∗ z)) u z
by (metis comp-left-isotone comp-right-isotone inf-mono conv-order

inf .cobounded1 order-refl)
finally show x ∗ y u z ≤ (x u (z ∗ yT)) ∗ (y u (xT ∗ z)) u z

.
next

show (x u (z ∗ yT)) ∗ (y u (xT ∗ z)) u z ≤ x ∗ y u z
using comp-isotone inf .sup-left-isotone by auto

qed

lemma dedekind:
x ∗ y u z ≤ (x u (z ∗ yT)) ∗ (y u (xT ∗ z))
by (metis dedekind-eq inf .cobounded1)

lemma vector-export-comp:
(x ∗ top u y) ∗ z = x ∗ top u y ∗ z

proof −
have vector (x ∗ top)

by (simp add: comp-associative)
thus ?thesis

by (simp add: vector-inf-comp)
qed

lemma vector-export-comp-unit:
(x ∗ top u 1) ∗ y = x ∗ top u y
by (simp add: vector-export-comp)

We solve a few exercises from [27].
lemma ex231a [simp]:
(1 u x ∗ xT) ∗ x = x
by (metis inf .cobounded1 inf .idem inf-right-idem comp-left-one conv-one

coreflexive-comp-top-inf dedekind-eq)

44

lemma ex231b [simp]:
x ∗ (1 u xT ∗ x) = x
by (metis conv-dist-comp conv-dist-inf conv-involutive conv-one ex231a)

lemma ex231c:
x ≤ x ∗ xT ∗ x
by (metis comp-left-isotone ex231a inf-le2)

lemma ex231d:
x ≤ x ∗ top ∗ x
by (metis comp-left-isotone comp-right-isotone top-greatest order-trans ex231c)

lemma ex231e [simp]:
x ∗ top ∗ x ∗ top = x ∗ top
by (metis ex231d order .antisym comp-associative mult-right-isotone

top.extremum)

lemma arc-injective:
arc x =⇒ injective x
by (metis conv-dist-inf conv-involutive inf .absorb2 top-right-mult-increasing

univalent-inf-closed)

lemma arc-conv-closed:
arc x =⇒ arc (xT)
by simp

lemma arc-univalent:
arc x =⇒ univalent x
using arc-conv-closed arc-injective univalent-conv-injective by blast

lemma injective-codomain:
assumes injective x
shows x ∗ (x u 1) = x u 1

proof (rule order .antisym)
show x ∗ (x u 1) ≤ x u 1

by (metis assms comp-right-one dual-order .trans inf .boundedI inf .cobounded1
inf .sup-monoid.add-commute mult-right-isotone one-inf-conv)
next

show x u 1 ≤ x ∗ (x u 1)
by (metis coreflexive-idempotent inf .cobounded1 inf .cobounded2

mult-left-isotone)
qed

The following result generalises [22, Exercise 2]. It is used to show that
the while-loop preserves injectivity of the constructed tree.
lemma injective-sup:

assumes injective t
and e ∗ tT ≤ 1

45

and injective e
shows injective (t t e)

proof −
have (t t e) ∗ (t t e)T = t ∗ tT t t ∗ eT t e ∗ tT t e ∗ eT

by (simp add: comp-left-dist-sup conv-dist-sup semiring.distrib-right sup.assoc)
thus ?thesis

using assms coreflexive-symmetric conv-dist-comp by fastforce
qed

lemma injective-inv:
injective t =⇒ e ∗ tT = bot =⇒ arc e =⇒ injective (t t e)
using arc-injective injective-sup bot-least by blast

lemma univalent-sup:
univalent t =⇒ eT ∗ t ≤ 1 =⇒ univalent e =⇒ univalent (t t e)
by (metis injective-sup conv-dist-sup conv-involutive)

lemma point-injective:
arc x =⇒ xT ∗ top ∗ x ≤ 1
by (metis conv-top comp-associative conv-dist-comp conv-involutive

vector-top-closed)

lemma vv-transitive:
vector v =⇒ (v ∗ vT) ∗ (v ∗ vT) ≤ v ∗ vT

by (metis comp-associative comp-left-isotone comp-right-isotone top-greatest)

lemma epm-3 :
assumes e ≤ w

and injective w
shows e = w u top ∗ e

proof −
have w u top ∗ e ≤ w ∗ eT ∗ e

by (metis (no-types, lifting) inf .absorb2 top.extremum dedekind-2
inf .commute)

also have ... ≤ w ∗ wT ∗ e
by (simp add: assms(1) conv-isotone mult-left-isotone mult-right-isotone)

also have ... ≤ e
using assms(2) coreflexive-comp-top-inf inf .sup-right-divisibility by blast

finally show ?thesis
by (simp add: assms(1) top-left-mult-increasing order .antisym)

qed

lemma comp-inf-vector :
x ∗ (y u z ∗ top) = (x u top ∗ zT) ∗ y
by (metis conv-top covector-inf-comp-3 comp-associative conv-dist-comp

inf .commute vector-top-closed)

lemma inf-vector-comp:
(x u y ∗ top) ∗ z = y ∗ top u x ∗ z

46

using inf .commute vector-export-comp by auto

lemma comp-inf-covector :
x ∗ (y u top ∗ z) = x ∗ y u top ∗ z
by (simp add: covector-comp-inf covector-mult-closed)

Well-known distributivity properties of univalent and injective relations
over meet continue to hold.
lemma univalent-comp-left-dist-inf :

assumes univalent x
shows x ∗ (y u z) = x ∗ y u x ∗ z

proof (rule order .antisym)
show x ∗ (y u z) ≤ x ∗ y u x ∗ z

by (simp add: comp-right-isotone)
next

have x ∗ y u x ∗ z ≤ (x u x ∗ z ∗ yT) ∗ (y u xT ∗ x ∗ z)
by (metis comp-associative dedekind)

also have ... ≤ x ∗ (y u xT ∗ x ∗ z)
by (simp add: comp-left-isotone)

also have ... ≤ x ∗ (y u 1 ∗ z)
using assms comp-left-isotone comp-right-isotone inf .sup-right-isotone by

blast
finally show x ∗ y u x ∗ z ≤ x ∗ (y u z)

by simp
qed

lemma injective-comp-right-dist-inf :
injective z =⇒ (x u y) ∗ z = x ∗ z u y ∗ z
by (metis univalent-comp-left-dist-inf conv-dist-comp conv-involutive

conv-dist-inf)

lemma vector-covector :
vector v =⇒ vector w =⇒ v u wT = v ∗ wT

by (metis covector-comp-inf inf-top-left vector-conv-covector)

lemma comp-inf-vector-1 :
(x u top ∗ y) ∗ z = x ∗ (z u (top ∗ y)T)
by (simp add: comp-inf-vector conv-dist-comp)

The shunting properties for bijective relations and mappings continue to
hold.
lemma shunt-bijective:

assumes bijective z
shows x ≤ y ∗ z ←→ x ∗ zT ≤ y

proof
assume x ≤ y ∗ z
hence x ∗ zT ≤ y ∗ z ∗ zT

by (simp add: mult-left-isotone)
also have ... ≤ y

47

using assms comp-associative mult-right-isotone by fastforce
finally show x ∗ zT ≤ y

.
next

assume 1 : x ∗ zT ≤ y
have x = x u top ∗ z

by (simp add: assms)
also have ... ≤ x ∗ zT ∗ z

by (metis dedekind-2 inf-commute inf-top.right-neutral)
also have ... ≤ y ∗ z

using 1 by (simp add: mult-left-isotone)
finally show x ≤ y ∗ z

.
qed

lemma shunt-mapping:
mapping z =⇒ x ≤ z ∗ y ←→ zT ∗ x ≤ y
by (metis shunt-bijective mapping-conv-bijective conv-order conv-dist-comp

conv-involutive)

lemma bijective-reverse:
assumes bijective p

and bijective q
shows p ≤ r ∗ q ←→ q ≤ rT ∗ p

proof −
have p ≤ r ∗ q ←→ p ∗ qT ≤ r

by (simp add: assms(2) shunt-bijective)
also have ... ←→ qT ≤ pT ∗ r

by (metis assms(1) conv-dist-comp conv-involutive conv-order shunt-bijective)
also have ... ←→ q ≤ rT ∗ p

using conv-dist-comp conv-isotone by fastforce
finally show ?thesis

by simp
qed

lemma arc-expanded:
arc x ←→ x ∗ top ∗ xT ≤ 1 ∧ xT ∗ top ∗ x ≤ 1 ∧ top ∗ x ∗ top = top
by (metis conv-top comp-associative conv-dist-comp conv-involutive

vector-top-closed)

lemma arc-top-arc:
assumes arc x

shows x ∗ top ∗ x = x
by (metis assms epm-3 top-right-mult-increasing vector-inf-comp

vector-mult-closed vector-top-closed)

lemma arc-top-edge:
assumes arc x

shows xT ∗ top ∗ x = xT ∗ x

48

proof −
have xT = xT ∗ top u top ∗ xT

using assms epm-3 top-right-mult-increasing by simp
thus ?thesis

by (metis comp-inf-vector-1 conv-dist-comp conv-involutive conv-top
inf .absorb1 top-right-mult-increasing)
qed

Lemmas arc-eq-1 and arc-eq-2 were contributed by Nicolas Robinson-
O’Brien.
lemma arc-eq-1 :

assumes arc x
shows x = x ∗ xT ∗ x

proof −
have x ∗ xT ∗ x ≤ x ∗ top ∗ x

by (simp add: mult-left-isotone mult-right-isotone)
also have ... ≤ x

by (simp add: assms arc-top-arc)
finally have x ∗ xT ∗ x ≤ x

by simp
thus ?thesis

by (simp add: order .antisym ex231c)
qed

lemma arc-eq-2 :
assumes arc x

shows xT = xT ∗ x ∗ xT

using arc-eq-1 assms conv-involutive by fastforce

lemma points-arc:
point x =⇒ point y =⇒ arc (x ∗ yT)
by (metis comp-associative conv-dist-comp conv-involutive

equivalence-top-closed)

lemma point-arc:
point x =⇒ arc (x ∗ xT)
by (simp add: points-arc)

lemma arc-expanded-1 :
arc e =⇒ e ∗ x ∗ eT ≤ 1
by (meson arc-expanded order-trans top-greatest mult-left-isotone

mult-right-isotone)

lemma arc-expanded-2 :
arc e =⇒ eT ∗ x ∗ e ≤ 1
by (meson arc-expanded order-trans top-greatest mult-left-isotone

mult-right-isotone)

lemma point-conv-comp:

49

point x =⇒ xT ∗ x = top
using order-eq-iff shunt-bijective top-greatest vector-conv-covector by blast

lemma point-antisymmetric:
point x =⇒ antisymmetric x
by (simp add: vector-covector)

lemma mapping-inf-point-arc:
assumes mapping x

and point y
shows arc (x u y)

proof (unfold arc-expanded, intro conjI)
show (x u y) ∗ top ∗ (x u y)T ≤ 1

by (metis assms conv-dist-comp covector-conv-vector inf .orderE
inf .sup-monoid.add-commute surjective-conv-total top.extremum
top-right-mult-increasing vector-export-comp)

have (x u y)T ∗ top ∗ (x u y) = xT ∗ y ∗ (x u y)
by (simp add: assms(2) conv-dist-inf covector-inf-comp-3)

also have ... = xT ∗ (y u yT) ∗ x
by (simp add: assms(2) comp-associative covector-inf-comp-3

inf .sup-monoid.add-commute)
also have ... ≤ xT ∗ x

by (metis assms(2) comp-right-one mult-left-isotone mult-right-isotone
vector-covector)

also have ... ≤ 1
by (simp add: assms(1))

finally show (x u y)T ∗ top ∗ (x u y) ≤ 1
.

show top ∗ (x u y) ∗ top = top
by (metis assms inf-top-right inf-vector-comp mult-assoc)

qed

lemma univalent-power-closed:
univalent x =⇒ univalent (x ^ n)
apply (rule monoid-power-closed)
using univalent-mult-closed by auto

lemma injective-power-closed:
injective x =⇒ injective (x ^ n)
apply (rule monoid-power-closed)
using injective-mult-closed by auto

lemma mapping-power-closed:
mapping x =⇒ mapping (x ^ n)
apply (rule monoid-power-closed)
using mapping-mult-closed by auto

lemma bijective-power-closed:
bijective x =⇒ bijective (x ^ n)

50

apply (rule monoid-power-closed)
using bijective-mult-closed by auto

lemma power-conv-commute:
xT ^ n = (x ^ n)T

proof (induct n)
case 0
thus ?case

by simp
next

case (Suc n)
thus ?case

using conv-dist-comp power-Suc2 by force
qed

A relation is a permutation if and only if it has a left inverse and a right
inverse.
lemma invertible-total:

assumes ∃ z . 1 ≤ x ∗ z
shows total x

proof −
from assms obtain z where 1 ≤ x ∗ z

by auto
hence top ≤ x ∗ z ∗ top

using mult-isotone by fastforce
also have ... ≤ x ∗ top

by (simp add: mult-right-isotone mult-assoc)
finally show ?thesis

using top-le by auto
qed

lemma invertible-surjective:
assumes ∃ y . 1 ≤ y ∗ x
shows surjective x

proof −
from assms obtain y where 1 ≤ y ∗ x

by auto
hence top ≤ top ∗ y ∗ x

using mult-right-isotone mult-assoc by fastforce
also have ... ≤ top ∗ x

by (simp add: mult-left-isotone)
finally show ?thesis

by (simp add: top-le)
qed

lemma invertible-univalent:
assumes ∃ y . y ∗ x = 1

and ∃ z . x ∗ z = 1
shows univalent x

51

proof −
from assms obtain y where 1 : y ∗ x = 1

by auto
from assms obtain z where 2 : x ∗ z = 1

by auto
have y = y ∗ x ∗ z

using 2 comp-associative comp-right-one by force
also have ... = z

using 1 by auto
finally have 3 : y = z

.
hence total z

using 1 invertible-total by blast
hence x ≤ x ∗ z ∗ zT

using mult-right-isotone total-var mult-assoc by fastforce
also have ... = zT

using 2 by auto
finally have 4 : x ≤ zT

.
have total x

using 2 invertible-total by blast
hence z ≤ z ∗ x ∗ xT

using comp-associative mult-right-isotone total-var by fastforce
also have ... = xT

using 1 3 by auto
finally have z ≤ xT

.
hence z = xT

using 4 conv-order by force
thus ?thesis

using 1 3 by blast

qed

lemma invertible-injective:
assumes ∃ y . y ∗ x = 1

and ∃ z . x ∗ z = 1
shows injective x

by (metis assms invertible-univalent conv-dist-comp conv-involutive
mult-left-one)

lemma invertible-mapping:
assumes ∃ y . y ∗ x = 1

and ∃ z . x ∗ z = 1
shows mapping x

using assms invertible-total invertible-univalent dual-order .eq-iff by auto

lemma invertible-bijective:
assumes ∃ y . y ∗ x = 1

52

and ∃ z . x ∗ z = 1
shows bijective x

using assms invertible-injective invertible-surjective by blast

We define domain explicitly and show a few properties.
abbreviation domain :: ′a ⇒ ′a

where domain x ≡ x ∗ top u 1

lemma domain-var :
domain x = x ∗ xT u 1
by (smt (verit, del-insts) dedekind-eq inf .sup-monoid.add-commute inf-top-right

mult.monoid-axioms symmetric-top-closed total-one-closed monoid.right-neutral)

lemma domain-comp:
domain x ∗ x = x
using domain-var inf .sup-monoid.add-commute by auto

lemma domain-mult-inf :
domain x ∗ domain y = domain x u domain y
using coreflexive-comp-inf by force

lemma domain-mult-commutative:
domain x ∗ domain y = domain y ∗ domain x
using coreflexive-commutative by force

lemma domain-mult-idempotent:
domain x ∗ domain x = domain x
by (simp add: coreflexive-idempotent)

lemma domain-export:
domain (domain x ∗ y) = domain x ∗ domain y
by (simp add: inf-commute inf-left-commute inf-vector-comp)

lemma domain-local:
domain (x ∗ domain y) = domain (x ∗ y)
by (simp add: comp-associative vector-export-comp)

lemma domain-dist-sup:
domain (x t y) = domain x t domain y
by (simp add: inf-sup-distrib2 mult-right-dist-sup)

lemma domain-idempotent:
domain (domain x) = domain x
by (simp add: vector-export-comp)

lemma domain-bot:
domain bot = bot
by simp

53

lemma domain-one:
domain 1 = 1
by simp

lemma domain-top:
domain top = 1
by simp

end

4.2 Single-Object Pseudocomplemented Distributive
Allegories

We extend single-object bounded distributive allegories by a pseudocomple-
ment operation. The following definitions concern properties of relations
that require a pseudocomplement.
class relation-algebra-signature = bounded-distrib-allegory-signature + uminus
begin

abbreviation irreflexive :: ′a ⇒ bool where irreflexive x ≡ x ≤ −1
abbreviation strict-linear :: ′a ⇒ bool where strict-linear x ≡ x t xT

= −1

abbreviation strict-order :: ′a ⇒ bool where strict-order x ≡
irreflexive x ∧ transitive x
abbreviation linear-strict-order :: ′a ⇒ bool where linear-strict-order x ≡
strict-order x ∧ strict-linear x

The following variants are useful for the graph model.
abbreviation pp-mapping :: ′a ⇒ bool where pp-mapping x ≡
univalent x ∧ total (−−x)
abbreviation pp-bijective :: ′a ⇒ bool where pp-bijective x ≡
injective x ∧ surjective (−−x)

abbreviation pp-point :: ′a ⇒ bool where pp-point x ≡ vector
x ∧ pp-bijective x
abbreviation pp-arc :: ′a ⇒ bool where pp-arc x ≡
pp-bijective (x ∗ top) ∧ pp-bijective (xT ∗ top)

end

class pd-allegory = bounded-distrib-allegory + p-algebra
begin

subclass relation-algebra-signature .

subclass pd-algebra ..

lemma conv-complement-1 :

54

−(xT) t (−x)T = (−x)T
by (metis conv-dist-inf conv-order bot-least conv-involutive pseudo-complement

sup.absorb2 sup.cobounded2)

lemma conv-complement:
(−x)T = −(xT)
by (metis conv-complement-1 conv-dist-sup conv-involutive sup-commute)

lemma conv-complement-sub-inf [simp]:
xT ∗ −(x ∗ y) u y = bot
by (metis comp-left-zero conv-dist-comp conv-involutive dedekind-1 inf-import-p

inf-p inf-right-idem ppp pseudo-complement regular-closed-bot)

lemma conv-complement-sub-leq:
xT ∗ −(x ∗ y) ≤ −y
using pseudo-complement conv-complement-sub-inf by blast

lemma conv-complement-sub [simp]:
xT ∗ −(x ∗ y) t −y = −y
by (simp add: conv-complement-sub-leq sup.absorb2)

lemma complement-conv-sub:
−(y ∗ x) ∗ xT ≤ −y
by (metis conv-complement conv-complement-sub-leq conv-order conv-dist-comp)

The following so-called Schröder equivalences, or De Morgan’s Theorem
K, hold only with a pseudocomplemented element on both right-hand sides.
lemma schroeder-3-p:

x ∗ y ≤ −z ←→ xT ∗ z ≤ −y
using pseudo-complement schroeder-1 by auto

lemma schroeder-4-p:
x ∗ y ≤ −z ←→ z ∗ yT ≤ −x
using pseudo-complement schroeder-2 by auto

lemma comp-pp-semi-commute:
x ∗ −−y ≤ −−(x ∗ y)
using conv-complement-sub-leq schroeder-3-p by fastforce

The following result looks similar to a property of (anti)domain.
lemma p-comp-pp [simp]:
−(x ∗ −−y) = −(x ∗ y)
using comp-pp-semi-commute comp-right-isotone order .eq-iff p-antitone

pp-increasing by fastforce

lemma pp-comp-semi-commute:
−−x ∗ y ≤ −−(x ∗ y)
using complement-conv-sub schroeder-4-p by fastforce

55

lemma p-pp-comp [simp]:
−(−−x ∗ y) = −(x ∗ y)
using pp-comp-semi-commute comp-left-isotone order .eq-iff p-antitone

pp-increasing by fastforce

lemma pp-comp-subdist:
−−x ∗ −−y ≤ −−(x ∗ y)
by (simp add: p-antitone-iff)

lemma theorem24xxiii:
x ∗ y u −(x ∗ z) = x ∗ (y u −z) u −(x ∗ z)

proof −
have x ∗ y u −(x ∗ z) ≤ x ∗ (y u (xT ∗ −(x ∗ z)))

by (simp add: dedekind-1)
also have ... ≤ x ∗ (y u −z)

using comp-right-isotone conv-complement-sub-leq inf .sup-right-isotone by
auto

finally show ?thesis
using comp-right-subdist-inf order .antisym inf .coboundedI2 inf .commute by

auto
qed

Even in Stone relation algebras, we do not obtain the backward impli-
cation in the following result.
lemma vector-complement-closed:

vector x =⇒ vector (−x)
by (metis complement-conv-sub conv-top order .eq-iff top-right-mult-increasing)

lemma covector-complement-closed:
covector x =⇒ covector (−x)
by (metis conv-complement-sub-leq conv-top order .eq-iff top-left-mult-increasing)

lemma covector-vector-comp:
vector v =⇒ −vT ∗ v = bot
by (metis conv-bot conv-complement conv-complement-sub-inf conv-dist-comp

conv-involutive inf-top.right-neutral)

lemma irreflexive-bot-closed:
irreflexive bot
by simp

lemma irreflexive-inf-closed:
irreflexive x =⇒ irreflexive (x u y)
by (simp add: le-infI1)

lemma irreflexive-sup-closed:
irreflexive x =⇒ irreflexive y =⇒ irreflexive (x t y)
by simp

56

lemma irreflexive-conv-closed:
irreflexive x =⇒ irreflexive (xT)
using conv-complement conv-isotone by fastforce

lemma reflexive-complement-irreflexive:
reflexive x =⇒ irreflexive (−x)
by (simp add: p-antitone)

lemma irreflexive-complement-reflexive:
irreflexive x ←→ reflexive (−x)
by (simp add: p-antitone-iff)

lemma symmetric-complement-closed:
symmetric x =⇒ symmetric (−x)
by (simp add: conv-complement)

lemma asymmetric-irreflexive:
asymmetric x =⇒ irreflexive x
by (metis inf .mult-not-zero inf .left-commute inf .right-idem

inf .sup-monoid.add-commute pseudo-complement one-inf-conv)

lemma linear-asymmetric:
linear x =⇒ asymmetric (−x)
using conv-complement p-top by force

lemma strict-linear-sup-closed:
strict-linear x =⇒ strict-linear y =⇒ strict-linear (x t y)
by (metis (mono-tags, opaque-lifting) conv-dist-sup sup.right-idem sup-assoc

sup-commute)

lemma strict-linear-irreflexive:
strict-linear x =⇒ irreflexive x
using sup-left-divisibility by blast

lemma strict-linear-conv-closed:
strict-linear x =⇒ strict-linear (xT)
by (simp add: sup-commute)

lemma strict-order-var :
strict-order x ←→ asymmetric x ∧ transitive x
by (metis asymmetric-irreflexive comp-right-one irreflexive-conv-closed

conv-dist-comp dual-order .trans pseudo-complement schroeder-3-p)

lemma strict-order-bot-closed:
strict-order bot
by simp

lemma strict-order-inf-closed:
strict-order x =⇒ strict-order y =⇒ strict-order (x u y)

57

using inf .coboundedI1 transitive-inf-closed by auto

lemma strict-order-conv-closed:
strict-order x =⇒ strict-order (xT)
using irreflexive-conv-closed transitive-conv-closed by blast

lemma order-strict-order :
assumes order x
shows strict-order (x u −1)

proof (rule conjI)
show 1 : irreflexive (x u −1)

by simp
have antisymmetric (x u −1)

using antisymmetric-inf-closed assms by blast
hence (x u −1) ∗ (x u −1) u 1 ≤ (x u −1 u (x u −1)T) ∗ (x u −1 u (x u
−1)T)

using 1 by (metis (no-types) coreflexive-symmetric irreflexive-inf-closed
coreflexive-transitive dedekind-1 inf-idem mult-1-right semiring.mult-not-zero
strict-order-var)

also have ... = (x u xT u −1) ∗ (x u xT u −1)
by (simp add: conv-complement conv-dist-inf inf .absorb2

inf .sup-monoid.add-assoc)
also have ... = bot

using assms order .antisym reflexive-conv-closed by fastforce
finally have (x u −1) ∗ (x u −1) ≤ −1

using le-bot pseudo-complement by blast
thus transitive (x u −1)

by (meson assms comp-isotone inf .boundedI inf .cobounded1
inf .order-lesseq-imp)
qed

lemma strict-order-order :
strict-order x =⇒ order (x t 1)
apply (unfold strict-order-var , intro conjI)
apply simp
apply (simp add: mult-left-dist-sup mult-right-dist-sup sup.absorb2)
using conv-dist-sup coreflexive-bot-closed sup.absorb2 sup-inf-distrib2 by

fastforce

lemma linear-strict-order-conv-closed:
linear-strict-order x =⇒ linear-strict-order (xT)
by (simp add: irreflexive-conv-closed sup-monoid.add-commute

transitive-conv-closed)

lemma linear-order-strict-order :
linear-order x =⇒ linear-strict-order (x u −1)
apply (rule conjI)
using order-strict-order apply simp
by (metis conv-complement conv-dist-inf coreflexive-symmetric order .eq-iff

58

inf .absorb2 inf .distrib-left inf .sup-monoid.add-commute top.extremum)

lemma regular-conv-closed:
regular x =⇒ regular (xT)
by (metis conv-complement)

We show a number of facts about equivalences.
lemma equivalence-comp-left-complement:

equivalence x =⇒ x ∗ −x = −x
apply (rule order .antisym)
apply (metis conv-complement-sub-leq preorder-idempotent)
using mult-left-isotone by fastforce

lemma equivalence-comp-right-complement:
equivalence x =⇒ −x ∗ x = −x
by (metis equivalence-comp-left-complement conv-complement conv-dist-comp)

The pseudocomplement of tests is given by the following operation.
abbreviation coreflexive-complement :: ′a ⇒ ′a (‹- ′′› [80] 80)

where x ′ ≡ −x u 1

lemma coreflexive-comp-top-coreflexive-complement:
coreflexive x =⇒ (x ∗ top) ′ = x ′

by (metis coreflexive-comp-top-inf-one inf .commute inf-import-p)

lemma coreflexive-comp-inf-complement:
coreflexive x =⇒ (x ∗ y) u −z = (x ∗ y) u −(x ∗ z)
by (metis coreflexive-comp-top-inf inf .sup-relative-same-increasing inf-import-p

inf-le1)

lemma double-coreflexive-complement:
x ′′ = (−x) ′
using inf .sup-monoid.add-commute inf-import-p by auto

lemma coreflexive-pp-dist-comp:
assumes coreflexive x

and coreflexive y
shows (x ∗ y) ′′ = x ′′ ∗ y ′′

proof −
have (x ∗ y) ′′ = −−(x ∗ y) u 1

by (simp add: double-coreflexive-complement)
also have ... = −−x u −−y u 1

by (simp add: assms coreflexive-comp-inf)
also have ... = (−−x u 1) ∗ (−−y u 1)

by (simp add: coreflexive-comp-inf inf .left-commute inf .sup-monoid.add-assoc)
also have ... = x ′′ ∗ y ′′

by (simp add: double-coreflexive-complement)
finally show ?thesis

.

59

qed

lemma coreflexive-pseudo-complement:
coreflexive x =⇒ x u y = bot ←→ x ≤ y ′

by (simp add: pseudo-complement)

lemma pp-bijective-conv-mapping:
pp-bijective x ←→ pp-mapping (xT)
by (simp add: conv-complement surjective-conv-total)

lemma pp-arc-expanded:
pp-arc x ←→ x ∗ top ∗ xT ≤ 1 ∧ xT ∗ top ∗ x ≤ 1 ∧ top ∗ −−x ∗ top = top

proof
assume 1 : pp-arc x
have 2 : x ∗ top ∗ xT ≤ 1

using 1 by (metis comp-associative conv-dist-comp equivalence-top-closed
vector-top-closed)

have 3 : xT ∗ top ∗ x ≤ 1
using 1 by (metis conv-dist-comp conv-involutive equivalence-top-closed

vector-top-closed mult-assoc)
have 4 : xT ≤ xT ∗ x ∗ xT

by (metis conv-involutive ex231c)
have top = −−(top ∗ x) ∗ top

using 1 by (metis conv-complement conv-dist-comp conv-involutive
equivalence-top-closed)

also have ... ≤ −−(top ∗ xT ∗ top ∗ x) ∗ top
using 1 by (metis eq-refl mult-assoc p-comp-pp p-pp-comp)

also have ... = (top ∗ −−(x ∗ top) u −−(top ∗ xT ∗ top ∗ x)) ∗ top
using 1 by simp

also have ... = top ∗ (−−(x ∗ top) u −−(top ∗ xT ∗ top ∗ x)) ∗ top
by (simp add: covector-complement-closed covector-comp-inf

covector-mult-closed)
also have ... = top ∗ −−(x ∗ top u top ∗ xT ∗ top ∗ x) ∗ top

by simp
also have ... = top ∗ −−(x ∗ top ∗ xT ∗ top ∗ x) ∗ top

by (metis comp-associative comp-inf-covector inf-top.left-neutral)
also have ... ≤ top ∗ −−(x ∗ top ∗ xT ∗ x ∗ xT ∗ top ∗ x) ∗ top

using 4 by (metis comp-associative comp-left-isotone comp-right-isotone
pp-isotone)

also have ... ≤ top ∗ −−(x ∗ xT ∗ top ∗ x) ∗ top
using 2 by (metis comp-associative comp-left-isotone comp-right-isotone

pp-isotone comp-left-one)
also have ... ≤ top ∗ −−x ∗ top

using 3 by (metis comp-associative comp-left-isotone comp-right-isotone
pp-isotone comp-right-one)

finally show x ∗ top ∗ xT ≤ 1 ∧ xT ∗ top ∗ x ≤ 1 ∧ top ∗ −−x ∗ top = top
using 2 3 top-le by blast

next
assume x ∗ top ∗ xT ≤ 1 ∧ xT ∗ top ∗ x ≤ 1 ∧ top ∗ −−x ∗ top = top

60

thus pp-arc x
apply (intro conjI)
apply (metis comp-associative conv-dist-comp equivalence-top-closed

vector-top-closed)
apply (metis comp-associative mult-right-isotone top-le

pp-comp-semi-commute)
apply (metis conv-dist-comp coreflexive-symmetric vector-conv-covector

vector-top-closed mult-assoc)
by (metis conv-complement conv-dist-comp equivalence-top-closed inf .orderE

inf-top.left-neutral mult-right-isotone pp-comp-semi-commute)
qed

The following operation represents states with infinite executions of non-
strict computations.
abbreviation N :: ′a ⇒ ′a

where N x ≡ −(−x ∗ top) u 1

lemma N-comp:
N x ∗ y = −(−x ∗ top) u y
by (simp add: vector-mult-closed vector-complement-closed vector-inf-one-comp)

lemma N-comp-top [simp]:
N x ∗ top = −(−x ∗ top)
by (simp add: N-comp)

lemma vector-N-pp:
vector x =⇒ N x = −−x u 1
by (simp add: vector-complement-closed)

lemma N-vector-pp [simp]:
N (x ∗ top) = −−(x ∗ top) u 1
by (simp add: comp-associative vector-complement-closed)

lemma N-vector-top-pp [simp]:
N (x ∗ top) ∗ top = −−(x ∗ top)
by (metis N-comp-top comp-associative vector-top-closed

vector-complement-closed)

lemma N-below-inf-one-pp:
N x ≤ −−x u 1
using inf .sup-left-isotone p-antitone top-right-mult-increasing by auto

lemma N-below-pp:
N x ≤ −−x
using N-below-inf-one-pp by auto

lemma N-comp-N :
N x ∗ N y = −(−x ∗ top) u −(−y ∗ top) u 1
by (simp add: N-comp inf .mult-assoc)

61

lemma N-bot [simp]:
N bot = bot
by simp

lemma N-top [simp]:
N top = 1
by simp

lemma n-split-omega-mult-pp:
xs ∗ −−xo = xo =⇒ vector xo =⇒ N top ∗ xo = xs ∗ N xo ∗ top
by (metis N-top N-vector-top-pp comp-associative comp-left-one)

Many of the following results have been derived for verifying Prim’s
minimum spanning tree algorithm.
lemma ee:

assumes vector v
and e ≤ v ∗ −vT

shows e ∗ e = bot
proof −

have e ∗ v ≤ bot
by (metis assms covector-vector-comp comp-associative mult-left-isotone

mult-right-zero)
thus ?thesis

by (metis assms(2) bot-unique comp-associative mult-right-isotone
semiring.mult-not-zero)
qed

lemma et:
assumes vector v

and e ≤ v ∗ −vT

and t ≤ v ∗ vT

shows e ∗ t = bot
and e ∗ tT = bot

proof −
have e ∗ t ≤ v ∗ −vT ∗ v ∗ vT

using assms(2−3) comp-isotone mult-assoc by fastforce
thus e ∗ t = bot

by (simp add: assms(1) covector-vector-comp le-bot mult-assoc)
next

have tT ≤ v ∗ vT

using assms(3) conv-order conv-dist-comp by fastforce
hence e ∗ tT ≤ v ∗ −vT ∗ v ∗ vT

by (metis assms(2) comp-associative comp-isotone)
thus e ∗ tT = bot

by (simp add: assms(1) covector-vector-comp le-bot mult-assoc)
qed

lemma ve-dist:

62

assumes e ≤ v ∗ −vT

and vector v
and arc e

shows (v t eT ∗ top) ∗ (v t eT ∗ top)T = v ∗ vT t v ∗ vT ∗ e t eT ∗ v ∗ vT

t eT ∗ e
proof −

have e ≤ v ∗ top
using assms(1) comp-right-isotone dual-order .trans top-greatest by blast

hence v ∗ top ∗ e = v ∗ top ∗ (v ∗ top u e)
by (simp add: inf .absorb2)

also have ... = (v ∗ top u top ∗ vT) ∗ e
using assms(2) covector-inf-comp-3 vector-conv-covector by force

also have ... = v ∗ top ∗ vT ∗ e
by (metis assms(2) inf-top-right vector-inf-comp)

also have ... = v ∗ vT ∗ e
by (simp add: assms(2))

finally have 1 : v ∗ top ∗ e = v ∗ vT ∗ e
.

have eT ∗ top ∗ e ≤ eT ∗ top ∗ e ∗ eT ∗ e
using ex231c comp-associative mult-right-isotone by auto

also have ... ≤ eT ∗ e
by (metis assms(3) coreflexive-comp-top-inf le-infE mult-semi-associative

point-injective)
finally have 2 : eT ∗ top ∗ e = eT ∗ e

by (simp add: order .antisym mult-left-isotone top-right-mult-increasing)
have (v t eT ∗ top) ∗ (v t eT ∗ top)T = (v t eT ∗ top) ∗ (vT t top ∗ e)

by (simp add: conv-dist-comp conv-dist-sup)
also have ... = v ∗ vT t v ∗ top ∗ e t eT ∗ top ∗ vT t eT ∗ top ∗ top ∗ e

by (metis semiring.distrib-left semiring.distrib-right sup-assoc mult-assoc)
also have ... = v ∗ vT t v ∗ top ∗ e t (v ∗ top ∗ e)T t eT ∗ top ∗ e

by (simp add: comp-associative conv-dist-comp)
also have ... = v ∗ vT t v ∗ vT ∗ e t (v ∗ vT ∗ e)T t eT ∗ e

using 1 2 by simp
finally show ?thesis

by (simp add: comp-associative conv-dist-comp)
qed

lemma ev:
vector v =⇒ e ≤ v ∗ −vT =⇒ e ∗ v = bot
by (metis covector-vector-comp order .antisym bot-least comp-associative

mult-left-isotone mult-right-zero)

lemma vTeT :
vector v =⇒ e ≤ v ∗ −vT =⇒ vT ∗ eT = bot
using conv-bot ev conv-dist-comp by fastforce

The following result is used to show that the while-loop of Prim’s algo-
rithm preserves that the constructed tree is a subgraph of g.
lemma prim-subgraph-inv:

63

assumes e ≤ v ∗ −vT u g
and t ≤ v ∗ vT u g

shows t t e ≤ ((v t eT ∗ top) ∗ (v t eT ∗ top)T) u g
proof (rule sup-least)

have t ≤ ((v t eT ∗ top) ∗ vT) u g
using assms(2) le-supI1 mult-right-dist-sup by auto

also have ... ≤ ((v t eT ∗ top) ∗ (v t eT ∗ top)T) u g
using comp-right-isotone conv-dist-sup inf .sup-left-isotone by auto

finally show t ≤ ((v t eT ∗ top) ∗ (v t eT ∗ top)T) u g
.

next
have e ≤ v ∗ top

by (meson assms(1) inf .boundedE mult-right-isotone order .trans
top.extremum)

hence e ≤ v ∗ top u top ∗ e
by (simp add: top-left-mult-increasing)

also have ... = v ∗ top ∗ e
by (metis inf-top-right vector-export-comp)

finally have e ≤ v ∗ top ∗ e u g
using assms(1) by auto

also have ... = v ∗ (eT ∗ top)T u g
by (simp add: comp-associative conv-dist-comp)

also have ... ≤ v ∗ (v t eT ∗ top)T u g
by (simp add: conv-dist-sup mult-left-dist-sup sup.assoc sup.orderI)

also have ... ≤ (v t eT ∗ top) ∗ (v t eT ∗ top)T u g
using inf .sup-left-isotone mult-right-sub-dist-sup-left by auto

finally show e ≤ ((v t eT ∗ top) ∗ (v t eT ∗ top)T) u g
.

qed

The following result shows how to apply the Schröder equivalence to the
middle factor in a composition of three relations. Again the elements on the
right-hand side need to be pseudocomplemented.
lemma triple-schroeder-p:

x ∗ y ∗ z ≤ −w ←→ xT ∗ w ∗ zT ≤ −y
using mult-assoc p-antitone-iff schroeder-3-p schroeder-4-p by auto

The rotation versions of the Schröder equivalences continue to hold,
again with pseudocomplemented elements on the right-hand side.
lemma schroeder-5-p:

x ∗ y ≤ −z ←→ y ∗ zT ≤ −xT

using schroeder-3-p schroeder-4-p by auto

lemma schroeder-6-p:
x ∗ y ≤ −z ←→ zT ∗ x ≤ −yT

using schroeder-3-p schroeder-4-p by auto

lemma vector-conv-compl:
vector v =⇒ top ∗ −vT = −vT

64

by (simp add: covector-complement-closed vector-conv-covector)

Composition commutes, relative to the diversity relation.
lemma comp-commute-below-diversity:

x ∗ y ≤ −1 ←→ y ∗ x ≤ −1
by (metis comp-right-one conv-dist-comp conv-one schroeder-3-p schroeder-4-p)

lemma comp-injective-below-complement:
injective y =⇒ −x ∗ y ≤ −(x ∗ y)
by (metis p-antitone-iff comp-associative comp-right-isotone comp-right-one

schroeder-4-p)

lemma comp-univalent-below-complement:
univalent x =⇒ x ∗ −y ≤ −(x ∗ y)
by (metis p-inf pseudo-complement semiring.mult-zero-right

univalent-comp-left-dist-inf)

Bijective relations and mappings can be exported from a pseudocomple-
ment.
lemma comp-bijective-complement:

bijective y =⇒ −x ∗ y = −(x ∗ y)
using comp-injective-below-complement complement-conv-sub order .antisym

shunt-bijective by blast

lemma comp-mapping-complement:
mapping x =⇒ x ∗ −y = −(x ∗ y)
by (metis (full-types) comp-bijective-complement conv-complement

conv-dist-comp conv-involutive total-conv-surjective)

The following facts are used in the correctness proof of Kruskal’s mini-
mum spanning tree algorithm.
lemma kruskal-injective-inv:

assumes injective f
and covector q
and q ∗ f T ≤ q
and e ≤ q
and q ∗ f T ≤ −e
and injective e
and qT ∗ q u f T ∗ f ≤ 1

shows injective ((f u −q) t (f u q)T t e)
proof −

have 1 : (f u −q) ∗ (f u −q)T ≤ 1
by (simp add: assms(1) injective-inf-closed)

have 2 : (f u −q) ∗ (f u q) ≤ 1
proof −

have 21 : bot = q ∗ f T u − q
by (metis assms(3) inf .sup-monoid.add-assoc inf .sup-right-divisibility

inf-import-p inf-p)
have (f u −q) ∗ (f u q) ≤ −q ∗ f u q

65

by (metis assms(2) comp-inf-covector comp-isotone inf .cobounded2
inf .left-idem)

also have ... = bot
using 21 schroeder-2 by auto

finally show ?thesis
by (simp add: bot-unique)

qed
have 3 : (f u −q) ∗ eT ≤ 1
proof −

have (f u −q) ∗ eT ≤ −q ∗ eT
by (simp add: mult-left-isotone)

also have ... = bot
by (metis assms(2 ,4) bot-unique conv-bot conv-complement

covector-complement-closed p-antitone p-bot regular-closed-bot schroeder-5-p)
finally show ?thesis

by (simp add: bot-unique)
qed
have 4 : (f u q)T ∗ (f u −q)T ≤ 1

using 2 conv-dist-comp conv-isotone by force
have 5 : (f u q)T ∗ (f u q) ≤ 1
proof −

have (f u q)T ∗ (f u q) ≤ qT ∗ q u f T ∗ f
by (simp add: conv-isotone mult-isotone)

also have ... ≤ 1
by (simp add: assms(7))

finally show ?thesis
by simp

qed
have 6 : (f u q)T ∗ eT ≤ 1
proof −

have f T ∗ eT ≤ −qT

using assms(5) schroeder-5-p by simp
hence (f u q)T ∗ eT = bot

by (metis assms(2 ,5) conv-bot conv-dist-comp covector-comp-inf inf .absorb1
inf .cobounded2 inf .sup-monoid.add-commute inf-left-commute inf-p schroeder-4-p)

thus ?thesis
by (simp add: bot-unique)

qed
have 7 : e ∗ (f u −q)T ≤ 1

using 3 conv-dist-comp coreflexive-symmetric by fastforce
have 8 : e ∗ (f u q) ≤ 1

using 6 conv-dist-comp coreflexive-symmetric by fastforce
have 9 : e ∗ eT ≤ 1

by (simp add: assms(6))
have ((f u −q) t (f u q)T t e) ∗ ((f u −q) t (f u q)T t e)T = (f u −q) ∗ (f
u −q)T t (f u −q) ∗ (f u q) t (f u −q) ∗ eT t (f u q)T ∗ (f u −q)T t (f u
q)T ∗ (f u q) t (f u q)T ∗ eT t e ∗ (f u −q)T t e ∗ (f u q) t e ∗ eT

using comp-left-dist-sup comp-right-dist-sup conv-dist-sup sup.assoc by simp
also have ... ≤ 1

66

using 1 2 3 4 5 6 7 8 9 by simp
finally show ?thesis

by simp
qed

lemma kruskal-exchange-injective-inv-1 :
assumes injective f

and covector q
and q ∗ f T ≤ q
and qT ∗ q u f T ∗ f ≤ 1

shows injective ((f u −q) t (f u q)T)
using kruskal-injective-inv[where e=bot] by (simp add: assms)

lemma kruskal-exchange-acyclic-inv-3 :
assumes injective w

and d ≤ w
shows (w u −d) ∗ dT ∗ top = bot

proof −
have (w u −d) ∗ dT ∗ top = (w u −d u (dT ∗ top)T) ∗ top

by (simp add: comp-associative comp-inf-vector-1 conv-dist-comp)
also have ... = (w u top ∗ d u −d) ∗ top

by (simp add: conv-dist-comp inf-commute inf-left-commute)
finally show ?thesis

using assms epm-3 by simp
qed

lemma kruskal-subgraph-inv:
assumes f ≤ −−(−h u g)

and e ≤ −−g
and symmetric h
and symmetric g

shows (f u −q) t (f u q)T t e ≤ −−(−(h u −e u −eT) u g)
proof −

let ?f = (f u −q) t (f u q)T t e
let ?h = h u −e u −eT
have 1 : f u −q ≤ −h u −−g

using assms(1) inf .coboundedI1 by simp
have (f u q)T ≤ (−h u −−g)T

using assms(1) inf .coboundedI1 conv-isotone by simp
also have ... = −h u −−g

using assms(3 ,4) conv-complement conv-dist-inf by simp
finally have ?f ≤ (−h u −−g) t (e u −−g)

using 1 assms(2) inf .absorb1 semiring.add-right-mono by simp
also have ... ≤ (−h t −−e) u −−g

by (simp add: inf .coboundedI1 le-supI2 pp-increasing)
also have ... ≤ −?h u −−g

using inf .sup-left-isotone order-trans p-antitone-inf p-supdist-inf by blast
finally show ?f ≤ −−(−?h u g)

using inf-pp-semi-commute order-lesseq-imp by blast

67

qed

lemma antisymmetric-inf-diversity:
antisymmetric x =⇒ x u −1 = x u −xT

by (smt (verit, del-insts) inf .orderE inf .sup-monoid.add-assoc
inf .sup-monoid.add-commute inf-import-p one-inf-conv)

end

4.3 Stone Relation Algebras
We add pp-dist-comp and pp-one, which follow in relation algebras but not
in the present setting. The main change is that only a Stone algebra is
required, not a Boolean algebra.
class stone-relation-algebra = pd-allegory + stone-algebra +

assumes pp-dist-comp : −−(x ∗ y) = −−x ∗ −−y
assumes pp-one [simp]: −−1 = 1

begin

The following property is a simple consequence of the Stone axiom. We
cannot hope to remove the double complement in it.
lemma conv-complement-0-p [simp]:
(−x)T t (−−x)T = top
by (metis conv-top conv-dist-sup stone)

lemma theorem24xxiv-pp:
−(x ∗ y) t −−(x ∗ z) = −(x ∗ (y u −z)) t −−(x ∗ z)
by (metis p-dist-inf theorem24xxiii)

lemma asymmetric-linear :
asymmetric x ←→ linear (−x)
by (metis conv-complement inf .distrib-left inf-p maddux-3-11-pp p-bot

p-dist-inf)

lemma strict-linear-asymmetric:
strict-linear x =⇒ antisymmetric (−x)
by (metis conv-complement eq-refl p-dist-sup pp-one)

lemma regular-complement-top:
regular x =⇒ x t −x = top
by (metis stone)

lemma regular-mult-closed:
regular x =⇒ regular y =⇒ regular (x ∗ y)
by (simp add: pp-dist-comp)

lemma regular-one-closed:
regular 1
by simp

68

The following variants of total and surjective are useful for graphs.
lemma pp-total:

total (−−x) ←→ −(x∗top) = bot
by (simp add: dense-pp pp-dist-comp)

lemma pp-surjective:
surjective (−−x) ←→ −(top∗x) = bot
by (metis p-bot p-comp-pp p-top pp-dist-comp)

Bijective elements and mappings are necessarily regular, that is, invariant
under double-complement. This implies that points are regular. Moreover,
also arcs are regular.
lemma bijective-regular :

bijective x =⇒ regular x
by (metis comp-bijective-complement mult-left-one regular-one-closed)

lemma mapping-regular :
mapping x =⇒ regular x
by (metis bijective-regular conv-complement conv-involutive

total-conv-surjective)

lemma arc-regular :
assumes arc x

shows regular x
proof −

have −−x ≤ −−(x ∗ top u top ∗ x)
by (simp add: pp-isotone top-left-mult-increasing top-right-mult-increasing)

also have ... = −−(x ∗ top) u −−(top ∗ x)
by simp

also have ... = x ∗ top u top ∗ x
by (metis assms bijective-regular conv-top conv-dist-comp conv-involutive

mapping-regular)
also have ... ≤ x ∗ xT ∗ top ∗ x

by (metis comp-associative dedekind-1 inf .commute inf-top.right-neutral)
also have ... ≤ x

by (metis assms comp-right-one conv-top comp-associative conv-dist-comp
conv-involutive mult-right-isotone vector-top-closed)

finally show ?thesis
by (simp add: order .antisym pp-increasing)

qed

lemma regular-power-closed:
regular x =⇒ regular (x ^ n)
apply (rule monoid-power-closed)
using regular-mult-closed by auto

end

69

Every Stone algebra can be expanded to a Stone relation algebra by iden-
tifying the semiring and lattice structures and taking identity as converse.
sublocale stone-algebra < comp-inf : stone-relation-algebra where one = top
and times = inf and conv = id
proof (unfold-locales, goal-cases)

case 7
show ?case by (simp add: inf-commute)

qed (auto simp: inf .assoc inf-sup-distrib2 inf-left-commute)

Every bounded linear order can be expanded to a Stone algebra, which
can be expanded to a Stone relation algebra by reusing some of the opera-
tions. In particular, composition is meet, its identity is top and converse is
the identity function.
class linorder-stone-relation-algebra-expansion = linorder-stone-algebra-expansion
+ times + conv + one +

assumes times-def [simp]: x ∗ y = min x y
assumes conv-def [simp]: xT = x
assumes one-def [simp]: 1 = top

begin

lemma times-inf [simp]:
x ∗ y = x u y
by simp

subclass stone-relation-algebra
apply unfold-locales
using comp-inf .mult-right-dist-sup inf-commute inf-assoc inf-left-commute

pp-dist-inf min-def by simp-all

lemma times-dense:
x 6= bot =⇒ y 6= bot =⇒ x ∗ y 6= bot
using inf-dense min-inf times-def by presburger

end

4.4 Relation Algebras
For a relation algebra, we only require that the underlying lattice is a
Boolean algebra. In fact, the only missing axiom is that double-complement
is the identity.
class relation-algebra = boolean-algebra + stone-relation-algebra
begin

lemma conv-complement-0 [simp]:
xT t (−x)T = top
by (simp add: conv-complement)

We now obtain the original formulations of the Schröder equivalences.

70

lemma schroeder-3 :
x ∗ y ≤ z ←→ xT ∗ −z ≤ −y
by (simp add: schroeder-3-p)

lemma schroeder-4 :
x ∗ y ≤ z ←→ −z ∗ yT ≤ −x
by (simp add: schroeder-4-p)

lemma theorem24xxiv:
−(x ∗ y) t (x ∗ z) = −(x ∗ (y u −z)) t (x ∗ z)
using theorem24xxiv-pp by auto

lemma vector-N :
vector x =⇒ N (x) = x u 1
by (simp add: vector-N-pp)

lemma N-vector [simp]:
N (x ∗ top) = x ∗ top u 1
by simp

lemma N-vector-top [simp]:
N (x ∗ top) ∗ top = x ∗ top
using N-vector-top-pp by simp

lemma N-below-inf-one:
N (x) ≤ x u 1
using N-below-inf-one-pp by simp

lemma N-below:
N (x) ≤ x
using N-below-pp by simp

lemma n-split-omega-mult:
xs ∗ xo = xo =⇒ xo ∗ top = xo =⇒ N (top) ∗ xo = xs ∗ N (xo) ∗ top
using n-split-omega-mult-pp by simp

lemma complement-vector :
vector v ←→ vector (−v)
using vector-complement-closed by fastforce

lemma complement-covector :
covector v ←→ covector (−v)
using covector-complement-closed by force

lemma triple-schroeder :
x ∗ y ∗ z ≤ w ←→ xT ∗ −w ∗ zT ≤ −y
by (simp add: triple-schroeder-p)

lemma schroeder-5 :

71

x ∗ y ≤ z ←→ y ∗ −zT ≤ −xT

by (simp add: conv-complement schroeder-5-p)

lemma schroeder-6 :
x ∗ y ≤ z ←→ −zT ∗ x ≤ −yT

by (simp add: conv-complement schroeder-5-p)

We define and study the univalent part and the multivalent part of a
relation.
abbreviation univalent-part :: ′a ⇒ ′a (‹up›)

where up x ≡ x u −(x ∗ −1)

abbreviation multivalent-part :: ′a ⇒ ′a (‹mp›)
where mp x ≡ x u x ∗ −1

lemma up-mp-disjoint:
up x u mp x = bot
using comp-inf .univalent-comp-left-dist-inf by auto

lemma up-mp-partition:
up x t mp x = x
by simp

lemma mp-conv-up-bot:
(mp x)T ∗ up x = bot

proof −
have (mp x)T ∗ up x ≤ xT ∗ −(x ∗ −1)

by (simp add: conv-dist-inf mult-isotone)
also have ... ≤ 1

by (metis conv-complement-sub-leq pp-one)
finally have 1 : (mp x)T ∗ up x ≤ 1

.
have (mp x)T ∗ up x ≤ (x ∗ −1)T ∗ −(x ∗ −1)

by (simp add: conv-isotone mult-isotone)
also have ... ≤ −1

by (simp add: schroeder-3)
finally have (mp x)T ∗ up x ≤ −1

.
thus ?thesis

using 1 by (metis le-iff-inf pseudo-complement)
qed

lemma up-conv-up:
xT ∗ up x = (up x)T ∗ up x

proof −
have xT ∗ up x = (up x)T ∗ up x t (mp x)T ∗ up x

by (metis conv-dist-sup mult-right-dist-sup up-mp-partition)
thus ?thesis

by (simp add: mp-conv-up-bot)

72

qed

lemma up-univalent:
univalent (up x)
by (metis inf-compl-bot-right schroeder-1 shunting-1 up-conv-up)

lemma up-mp-bot:
up (mp x) = bot
by (metis dedekind-2 equivalence-one-closed inf .sup-monoid.add-commute

shunting-1 symmetric-complement-closed)

lemma mp-up-bot:
mp (up x) = bot
by (metis comp-right-one comp-univalent-below-complement double-compl

shunting-1 up-univalent)

lemma up-idempotent:
up (up x) = up x
by (metis comp-right-one comp-univalent-below-complement inf .absorb1

regular-one-closed up-univalent)

lemma mp-idempotent:
mp (mp x) = mp x
using inf .absorb1 shunting-1 up-mp-bot by blast

lemma mp-conv-mp:
xT ∗ mp x = (mp x)T ∗ mp x
by (smt (verit, ccfv-threshold) conv-dist-comp conv-dist-sup conv-involutive

inf .absorb1 mult-right-dist-sup shunting-1 mp-conv-up-bot up-mp-bot
up-mp-partition)

lemma up-mp-top:
−(x ∗ top) t up x ∗ top t mp x ∗ top = top
using semiring.combine-common-factor sup-monoid.add-commute by auto

lemma domain-mp:
domain (mp x) = x ∗ −1 ∗ xT u 1
by (smt (verit, del-insts) comp-right-one conv-dist-comp conv-dist-inf

conv-involutive dedekind-eq equivalence-one-closed inf .sup-monoid.add-commute
inf-top.left-neutral)

lemma domain-mp-bot:
domain (mp x) ∗ x u −(x ∗ −1) = bot
by (metis conv-complement-sub-inf conv-involutive inf .sup-monoid.add-assoc

p-bot vector-export-comp-unit mp-conv-up-bot)

lemma domain-mp-mp:
domain (mp x) ∗ x = mp x
by (smt (verit, ccfv-threshold) conv-complement-sub-inf conv-involutive

73

inf .absorb1 inf .absorb-iff2 inf-sup-distrib1 p-bot shunting-1
top-right-mult-increasing vector-export-comp-unit mp-conv-up-bot up-mp-bot
up-mp-partition)

lemma mp-var :
mp x = x u (x ∗ −1 ∗ xT u 1) ∗ top
by (metis domain-mp domain-mp-mp inf .sup-monoid.add-commute inf-top-right

vector-export-comp-unit)

end

We briefly look at the so-called Tarski rule. In some models of Stone
relation algebras it only holds for regular elements, so we add this as an
assumption.
class stone-relation-algebra-tarski = stone-relation-algebra +

assumes tarski: regular x =⇒ x 6= bot =⇒ top ∗ x ∗ top = top
begin

We can then show, for example, that every arc is contained in a pseudo-
complemented relation or its pseudocomplement.
lemma arc-in-partition:

assumes arc x
shows x ≤ −y ∨ x ≤ −−y

proof −
have 1 : x ∗ top ∗ xT ≤ 1 ∧ xT ∗ top ∗ x ≤ 1

using assms arc-expanded by auto
have ¬ x ≤ −−y −→ x ≤ −y
proof

assume ¬ x ≤ −−y
hence x u −y 6= bot

using pseudo-complement by simp
hence top ∗ (x u −y) ∗ top = top

using assms arc-regular tarski by auto
hence x = x u top ∗ (x u −y) ∗ top

by simp
also have ... ≤ x u x ∗ ((x u −y) ∗ top)T ∗ (x u −y) ∗ top

by (metis dedekind-2 inf .cobounded1 inf .boundedI inf-commute mult-assoc
inf .absorb2 top.extremum)

also have ... = x u x ∗ top ∗ (xT u −yT) ∗ (x u −y) ∗ top
by (simp add: comp-associative conv-complement conv-dist-comp

conv-dist-inf)
also have ... ≤ x u x ∗ top ∗ xT ∗ (x u −y) ∗ top

using inf .sup-right-isotone mult-left-isotone mult-right-isotone by auto
also have ... ≤ x u 1 ∗ (x u −y) ∗ top

using 1 by (metis comp-associative comp-isotone inf .sup-right-isotone
mult-1-left mult-semi-associative)

also have ... = x u (x u −y) ∗ top
by simp

also have ... ≤ (x u −y) ∗ ((x u −y)T ∗ x)

74

by (metis dedekind-1 inf-commute inf-top-right)
also have ... ≤ (x u −y) ∗ (xT ∗ x)

by (simp add: conv-dist-inf mult-left-isotone mult-right-isotone)
also have ... ≤ (x u −y) ∗ (xT ∗ top ∗ x)

by (simp add: mult-assoc mult-right-isotone top-left-mult-increasing)
also have ... ≤ x u −y

using 1 by (metis mult-right-isotone mult-1-right)
finally show x ≤ −y

by simp
qed
thus ?thesis

by auto
qed

lemma non-bot-arc-in-partition-xor :
assumes arc x

and x 6= bot
shows (x ≤ −y ∧ ¬ x ≤ −−y) ∨ (¬ x ≤ −y ∧ x ≤ −−y)

proof −
have x ≤ −y ∧ x ≤ −−y −→ False

by (simp add: assms(2) inf-absorb1 shunting-1-pp)
thus ?thesis

using assms(1) arc-in-partition by auto
qed

lemma point-in-vector-or-pseudo-complement:
assumes point p

and vector v
shows p ≤ −−v ∨ p ≤ −v

proof (rule disjCI)
assume ¬(p ≤ −v)
hence top ∗ (p u −−v) = top

by (smt assms bijective-regular regular-closed-inf regular-closed-p shunting-1-pp
tarski vector-complement-closed vector-inf-closed vector-mult-closed)

thus p ≤ −−v
by (metis assms(1) epm-3 inf .absorb-iff1 inf .cobounded1 inf-top.right-neutral)

qed

lemma distinct-points:
assumes point x

and point y
and x 6= y

shows x u y = bot
by (metis assms order .antisym comp-bijective-complement

inf .sup-monoid.add-commute mult-left-one pseudo-complement regular-one-closed
point-in-vector-or-pseudo-complement)

lemma point-in-vector-or-complement:
assumes point p

75

and vector v
and regular v

shows p ≤ v ∨ p ≤ −v
using assms point-in-vector-or-pseudo-complement by fastforce

lemma point-in-vector-sup:
assumes point p

and vector v
and regular v
and p ≤ v t w

shows p ≤ v ∨ p ≤ w
by (metis assms inf .absorb1 shunting-var-p sup-commute

point-in-vector-or-complement)

lemma point-atomic-vector :
assumes point x

and vector y
and regular y
and y ≤ x

shows y = x ∨ y = bot
proof (cases x ≤ −y)

case True
thus ?thesis

using assms(4) inf .absorb2 pseudo-complement by force
next

case False
thus ?thesis

using assms point-in-vector-or-pseudo-complement by fastforce
qed

lemma point-in-vector-or-complement-2 :
assumes point x

and vector y
and regular y
and ¬ y ≤ −x

shows x ≤ y
using assms point-in-vector-or-pseudo-complement p-antitone-iff by fastforce

The next three lemmas arc-in-arc-or-complement, arc-in-sup-arc and dif-
ferent-arc-in-sup-arc were contributed by Nicolas Robinson-O’Brien.
lemma arc-in-arc-or-complement:

assumes arc x
and arc y
and ¬ x ≤ y

shows x ≤ −y
using assms arc-in-partition arc-regular by force

lemma arc-in-sup-arc:
assumes arc x

76

and arc y
and x ≤ z t y

shows x ≤ z ∨ x ≤ y
proof (cases x ≤ y)

case True
thus ?thesis

by simp
next

case False
hence x ≤ −y

using assms(1 ,2) arc-in-arc-or-complement by blast
hence x ≤ −y u (z t y)

using assms(3) by simp
hence x ≤ z

by (metis inf .boundedE inf .sup-monoid.add-commute maddux-3-13
sup-commute)

thus ?thesis
by simp

qed

lemma different-arc-in-sup-arc:
assumes arc x

and arc y
and x ≤ z t y
and x 6= y

shows x ≤ z
proof −

have x ≤ −y
using arc-in-arc-or-complement assms(1 ,2 ,4) order .eq-iff p-antitone-iff by

blast
hence x ≤ −y u (z t y)

using assms arc-in-sup-arc by simp
thus ?thesis

by (metis order-lesseq-imp p-inf-sup-below sup-commute)
qed

end

class relation-algebra-tarski = relation-algebra + stone-relation-algebra-tarski

Finally, the above axioms of relation algebras do not imply that they
contain at least two elements. This is necessary, for example, to show that
arcs are not empty.
class stone-relation-algebra-consistent = stone-relation-algebra +

assumes consistent: bot 6= top
begin

lemma arc-not-bot:
arc x =⇒ x 6= bot

77

using consistent mult-right-zero by auto

lemma point-not-bot:
point p =⇒ p 6= bot
using consistent by force

end

class relation-algebra-consistent = relation-algebra +
stone-relation-algebra-consistent

class stone-relation-algebra-tarski-consistent = stone-relation-algebra-tarski +
stone-relation-algebra-consistent
begin

lemma arc-in-partition-xor :
arc x =⇒ (x ≤ −y ∧ ¬ x ≤ −−y) ∨ (¬ x ≤ −y ∧ x ≤ −−y)
by (simp add: non-bot-arc-in-partition-xor arc-not-bot)

lemma regular-injective-vector-point-xor-bot:
assumes regular x

and vector x
and injective x

shows point x ←→ x 6= bot
using assms comp-associative consistent tarski by fastforce

end

class relation-algebra-tarski-consistent = relation-algebra +
stone-relation-algebra-tarski-consistent

end

5 Subalgebras of Relation Algebras
In this theory we consider the algebraic structure of regular elements, core-
flexives, vectors and covectors in Stone relation algebras. These elements
form important subalgebras and substructures of relation algebras.
theory Relation-Subalgebras

imports Stone-Algebras.Stone-Construction Relation-Algebras

begin

The regular elements of a Stone relation algebra form a relation subal-
gebra.
instantiation regular :: (stone-relation-algebra) relation-algebra
begin

78

lift-definition times-regular :: ′a regular ⇒ ′a regular ⇒ ′a regular is times
using regular-mult-closed regular-closed-p by blast

lift-definition conv-regular :: ′a regular ⇒ ′a regular is conv
using conv-complement by blast

lift-definition one-regular :: ′a regular is 1
using regular-one-closed by blast

instance
apply intro-classes
apply (metis (mono-tags, lifting) times-regular .rep-eq Rep-regular-inject

comp-associative)
apply (metis (mono-tags, lifting) times-regular .rep-eq Rep-regular-inject

mult-right-dist-sup sup-regular .rep-eq)
apply (metis (mono-tags, lifting) times-regular .rep-eq Rep-regular-inject

bot-regular .rep-eq semiring.mult-zero-left)
apply (simp add: one-regular .rep-eq times-regular .rep-eq

Rep-regular-inject[THEN sym])
using Rep-regular-inject conv-regular .rep-eq apply force
apply (metis (mono-tags, lifting) Rep-regular-inject conv-dist-sup

conv-regular .rep-eq sup-regular .rep-eq)
apply (metis (mono-tags, lifting) conv-regular .rep-eq times-regular .rep-eq

Rep-regular-inject conv-dist-comp)
by (auto simp add: conv-regular .rep-eq dedekind-1 inf-regular .rep-eq

less-eq-regular .rep-eq times-regular .rep-eq)

end

The coreflexives (tests) in an idempotent semiring form a bounded idem-
potent subsemiring.
typedef (overloaded) ′a coreflexive =
coreflexives:: ′a::non-associative-left-semiring set

by auto

lemma simp-coreflexive [simp]:
∃ y . Rep-coreflexive x ≤ 1
using Rep-coreflexive by simp

setup-lifting type-definition-coreflexive

instantiation coreflexive :: (idempotent-semiring) bounded-idempotent-semiring
begin

lift-definition sup-coreflexive :: ′a coreflexive ⇒ ′a coreflexive ⇒ ′a coreflexive is
sup

by simp

79

lift-definition times-coreflexive :: ′a coreflexive ⇒ ′a coreflexive ⇒ ′a coreflexive
is times

by (simp add: coreflexive-mult-closed)

lift-definition bot-coreflexive :: ′a coreflexive is bot
by simp

lift-definition one-coreflexive :: ′a coreflexive is 1
by simp

lift-definition top-coreflexive :: ′a coreflexive is 1
by simp

lift-definition less-eq-coreflexive :: ′a coreflexive ⇒ ′a coreflexive ⇒ bool is
less-eq .

lift-definition less-coreflexive :: ′a coreflexive ⇒ ′a coreflexive ⇒ bool is less .

instance
apply intro-classes
apply (simp-all add: less-coreflexive.rep-eq less-eq-coreflexive.rep-eq

less-le-not-le)[2]
apply (meson less-eq-coreflexive.rep-eq order-trans)
apply (simp-all add: Rep-coreflexive-inject bot-coreflexive.rep-eq

less-eq-coreflexive.rep-eq sup-coreflexive.rep-eq)[5]
apply (simp add: semiring.distrib-left less-eq-coreflexive.rep-eq

sup-coreflexive.rep-eq times-coreflexive.rep-eq)
apply (metis (mono-tags, lifting) sup-coreflexive.rep-eq times-coreflexive.rep-eq

Rep-coreflexive-inject mult-right-dist-sup)
apply (simp add: times-coreflexive.rep-eq bot-coreflexive.rep-eq

Rep-coreflexive-inject[THEN sym])
apply (simp add: one-coreflexive.rep-eq times-coreflexive.rep-eq

Rep-coreflexive-inject[THEN sym])
apply (simp add: one-coreflexive.rep-eq less-eq-coreflexive.rep-eq

times-coreflexive.rep-eq)
apply (simp only: sup-coreflexive.rep-eq top-coreflexive.rep-eq

Rep-coreflexive-inject[THEN sym], metis Abs-coreflexive-cases
Abs-coreflexive-inverse mem-Collect-eq sup.absorb2)

apply (simp add: less-eq-coreflexive.rep-eq mult.assoc times-coreflexive.rep-eq)
apply (metis (mono-tags, lifting) times-coreflexive.rep-eq Rep-coreflexive-inject

mult.assoc)
using Rep-coreflexive-inject one-coreflexive.rep-eq times-coreflexive.rep-eq

apply fastforce
apply (metis (mono-tags, lifting) sup-coreflexive.rep-eq times-coreflexive.rep-eq

Rep-coreflexive-inject mult-left-dist-sup)
by (simp add: times-coreflexive.rep-eq bot-coreflexive.rep-eq

Rep-coreflexive-inject[THEN sym])

end

80

The coreflexives (tests) in a Stone relation algebra form a Stone relation
algebra where the pseudocomplement is taken relative to the identity rela-
tion and converse is the identity function.
instantiation coreflexive :: (stone-relation-algebra) stone-relation-algebra
begin

lift-definition inf-coreflexive :: ′a coreflexive ⇒ ′a coreflexive ⇒ ′a coreflexive is
inf

by (simp add: le-infI1)

lift-definition minus-coreflexive :: ′a coreflexive ⇒ ′a coreflexive ⇒ ′a coreflexive
is λx y . x u −y

by (simp add: le-infI1)

lift-definition uminus-coreflexive :: ′a coreflexive ⇒ ′a coreflexive is λx . −x u 1
by simp

lift-definition conv-coreflexive :: ′a coreflexive ⇒ ′a coreflexive is id
by simp

instance
apply intro-classes
apply (auto simp: inf-coreflexive.rep-eq less-eq-coreflexive.rep-eq)[3]
apply simp
apply (metis (mono-tags, lifting) Rep-coreflexive-inject inf-coreflexive.rep-eq

sup-coreflexive.rep-eq sup-inf-distrib1)
apply (metis (mono-tags, lifting) Rep-coreflexive-inject bot-coreflexive.rep-eq

top-greatest coreflexive-pseudo-complement inf-coreflexive.rep-eq
less-eq-coreflexive.rep-eq one-coreflexive.rep-eq one-coreflexive-def
top-coreflexive-def uminus-coreflexive.rep-eq)

apply (metis (mono-tags, lifting) Rep-coreflexive-inject maddux-3-21-pp
one-coreflexive.rep-eq one-coreflexive-def pp-dist-inf pp-one regular-closed-p
sup-coreflexive.rep-eq sup-right-top top-coreflexive-def uminus-coreflexive.rep-eq)

apply (auto simp: mult.assoc mult-right-dist-sup)[4]
using Rep-coreflexive-inject conv-coreflexive.rep-eq apply fastforce
apply (metis (mono-tags) Rep-coreflexive-inject conv-coreflexive.rep-eq)
apply (metis (mono-tags, lifting) Rep-coreflexive-inject top-greatest

conv-coreflexive.rep-eq coreflexive-commutative less-eq-coreflexive.rep-eq
one-coreflexive.rep-eq one-coreflexive-def times-coreflexive.rep-eq
top-coreflexive-def)

apply (simp only: conv-coreflexive.rep-eq less-eq-coreflexive.rep-eq
one-coreflexive.rep-eq times-coreflexive.rep-eq inf-coreflexive.rep-eq
Rep-coreflexive-inject[THEN sym], metis coreflexive-dedekind Rep-coreflexive
mem-Collect-eq)

apply (metis (mono-tags, lifting) Rep-coreflexive Rep-coreflexive-inject
coreflexive-pp-dist-comp mem-Collect-eq times-coreflexive.rep-eq
uminus-coreflexive.rep-eq)

by (metis (mono-tags, opaque-lifting) Rep-coreflexive-inverse inf .commute
inf .idem inf-import-p one-coreflexive.rep-eq pp-one uminus-coreflexive.rep-eq)

81

end

Vectors in a Stone relation algebra form a Stone subalgebra.
typedef (overloaded) ′a vector = vectors:: ′a::bounded-pre-left-semiring set

using surjective-top-closed by blast

lemma simp-vector [simp]:
∃ y . Rep-vector x ∗ top = Rep-vector x
using Rep-vector by simp

setup-lifting type-definition-vector

instantiation vector :: (stone-relation-algebra) stone-algebra
begin

lift-definition sup-vector :: ′a vector ⇒ ′a vector ⇒ ′a vector is sup
by (simp add: vector-sup-closed)

lift-definition inf-vector :: ′a vector ⇒ ′a vector ⇒ ′a vector is inf
by (simp add: vector-inf-closed)

lift-definition uminus-vector :: ′a vector ⇒ ′a vector is uminus
by (simp add: vector-complement-closed)

lift-definition bot-vector :: ′a vector is bot
by simp

lift-definition top-vector :: ′a vector is top
by simp

lift-definition less-eq-vector :: ′a vector ⇒ ′a vector ⇒ bool is less-eq .

lift-definition less-vector :: ′a vector ⇒ ′a vector ⇒ bool is less .

instance
apply intro-classes
apply (auto simp: Rep-vector-inject top-vector .rep-eq bot-vector .rep-eq

less-le-not-le inf-vector .rep-eq sup-vector .rep-eq less-eq-vector .rep-eq
less-vector .rep-eq)[12]

apply (metis (mono-tags, lifting) Rep-vector-inject inf-vector .rep-eq
sup-inf-distrib1 sup-vector .rep-eq)

apply (metis (mono-tags, lifting) Rep-vector-inject bot-vector-def
bot-vector .rep-eq pseudo-complement inf-vector .rep-eq less-eq-vector .rep-eq
uminus-vector .rep-eq)

by (metis (mono-tags, lifting) sup-vector .rep-eq uminus-vector .rep-eq
Rep-vector-inverse stone top-vector .abs-eq)

end

82

Covectors in a Stone relation algebra form a Stone subalgebra.
typedef (overloaded) ′a covector = covectors:: ′a::bounded-pre-left-semiring set

using surjective-top-closed by blast

lemma simp-covector [simp]:
∃ y . top ∗ Rep-covector x = Rep-covector x
using Rep-covector by simp

setup-lifting type-definition-covector

instantiation covector :: (stone-relation-algebra) stone-algebra
begin

lift-definition sup-covector :: ′a covector ⇒ ′a covector ⇒ ′a covector is sup
by (simp add: covector-sup-closed)

lift-definition inf-covector :: ′a covector ⇒ ′a covector ⇒ ′a covector is inf
by (simp add: covector-inf-closed)

lift-definition uminus-covector :: ′a covector ⇒ ′a covector is uminus
by (simp add: covector-complement-closed)

lift-definition bot-covector :: ′a covector is bot
by simp

lift-definition top-covector :: ′a covector is top
by simp

lift-definition less-eq-covector :: ′a covector ⇒ ′a covector ⇒ bool is less-eq .

lift-definition less-covector :: ′a covector ⇒ ′a covector ⇒ bool is less .

instance
apply intro-classes
apply (auto simp: Rep-covector-inject less-eq-covector .rep-eq inf-covector .rep-eq

bot-covector .rep-eq top-covector .rep-eq sup-covector .rep-eq less-le-not-le
less-covector .rep-eq)[12]

apply (metis (mono-tags, lifting) Rep-covector-inject inf-covector .rep-eq
sup-inf-distrib1 sup-covector .rep-eq)

apply (metis (mono-tags, lifting) Rep-covector-inject bot-covector-def
bot-covector .rep-eq pseudo-complement inf-covector .rep-eq less-eq-covector .rep-eq
uminus-covector .rep-eq)

by (metis (mono-tags, lifting) sup-covector .rep-eq uminus-covector .rep-eq
Rep-covector-inverse stone top-covector .abs-eq)

end

end

83

6 Matrix Relation Algebras
This theory gives matrix models of Stone relation algebras and more general
structures. We consider only square matrices. The main result is that
matrices over Stone relation algebras form a Stone relation algebra.

We use the monoid structure underlying semilattices to provide finite
sums, which are necessary for defining the composition of two matrices. See
[3, 4] for similar liftings to matrices for semirings and relation algebras.
A technical difference is that those theories are mostly based on semirings
whereas our hierarchy is mostly based on lattices (and our semirings directly
inherit from semilattices).

Relation algebras have both a semiring and a lattice structure such that
semiring addition and lattice join coincide. In particular, finite sums and
finite suprema coincide. Isabelle/HOL has separate theories for semirings
and lattices, based on separate addition and join operations and different
operations for finite sums and finite suprema. Reusing results from both
theories is beneficial for relation algebras, but not always easy to realise.
theory Matrix-Relation-Algebras

imports Relation-Algebras

begin

6.1 Finite Suprema
We consider finite suprema in idempotent semirings and Stone relation al-
gebras. We mostly use the first of the following notations, which denotes
the supremum of expressions t(x) over all x from the type of x. For finite
types, this is implemented in Isabelle/HOL as the repeated application of
binary suprema.
syntax

-sum-sup-monoid :: idt ⇒ ′a::bounded-semilattice-sup-bot ⇒ ′a (‹(
⊔

- -)› [0 ,10]
10)

-sum-sup-monoid-bounded :: idt ⇒ ′b set ⇒ ′a::bounded-semilattice-sup-bot ⇒
′a (‹(

⊔
-∈- -)› [0 ,51 ,10] 10)

syntax-consts
-sum-sup-monoid -sum-sup-monoid-bounded
 sup-monoid.sum

translations⊔
x t => XCONST sup-monoid.sum (λx . t) { x . CONST True }⊔
x∈X t => XCONST sup-monoid.sum (λx . t) X

context idempotent-semiring
begin

The following induction principles are useful for comparing two suprema.
The first principle works because types are not empty.

84

lemma one-sup-induct [case-names one sup]:
fixes f g :: ′b::finite ⇒ ′a
assumes one:

∧
i . P (f i) (g i)

and sup:
∧

j I . j /∈ I =⇒ P (
⊔

i∈I f i) (
⊔

i∈I g i) =⇒ P (f j t (
⊔

i∈I f i))
(g j t (

⊔
i∈I g i))

shows P (
⊔

k f k) (
⊔

k g k)
proof −

let ?X = { k:: ′b . True }
have finite ?X and ?X 6= {}

by auto
thus ?thesis
proof (induct rule: finite-ne-induct)

case (singleton i) thus ?case
using one by simp

next
case (insert j I) thus ?case

using sup by simp
qed

qed

lemma bot-sup-induct [case-names bot sup]:
fixes f g :: ′b::finite ⇒ ′a
assumes bot: P bot bot

and sup:
∧

j I . j /∈ I =⇒ P (
⊔

i∈I f i) (
⊔

i∈I g i) =⇒ P (f j t (
⊔

i∈I f i))
(g j t (

⊔
i∈I g i))

shows P (
⊔

k f k) (
⊔

k g k)
apply (induct rule: one-sup-induct)
using bot sup apply fastforce
using sup by blast

Now many properties of finite suprema follow by simple applications of
the above induction rules. In particular, we show distributivity of composi-
tion, isotonicity and the upper-bound property.
lemma comp-right-dist-sum:

fixes f :: ′b::finite ⇒ ′a
shows (

⊔
k f k ∗ x) = (

⊔
k f k) ∗ x

proof (induct rule: one-sup-induct)
case one show ?case

by simp
next

case (sup j I) thus ?case
using mult-right-dist-sup by auto

qed

lemma comp-left-dist-sum:
fixes f :: ′b::finite ⇒ ′a
shows (

⊔
k x ∗ f k) = x ∗ (

⊔
k f k)

proof (induct rule: one-sup-induct)
case one show ?case

85

by simp
next

case (sup j I) thus ?case
by (simp add: mult-left-dist-sup)

qed

lemma leq-sum:
fixes f g :: ′b::finite ⇒ ′a
shows (∀ k . f k ≤ g k) =⇒ (

⊔
k f k) ≤ (

⊔
k g k)

proof (induct rule: one-sup-induct)
case one thus ?case

by simp
next

case (sup j I) thus ?case
using sup-mono by blast

qed

lemma ub-sum:
fixes f :: ′b::finite ⇒ ′a
shows f i ≤ (

⊔
k f k)

proof −
have i ∈ { k . True }

by simp
thus f i ≤ (

⊔
k f (k:: ′b))

by (metis finite-code sup-monoid.sum.insert sup-ge1 mk-disjoint-insert)
qed

lemma lub-sum:
fixes f :: ′b::finite ⇒ ′a
assumes ∀ k . f k ≤ x

shows (
⊔

k f k) ≤ x
proof (induct rule: one-sup-induct)

case one show ?case
by (simp add: assms)

next
case (sup j I) thus ?case

using assms le-supI by blast
qed

lemma lub-sum-iff :
fixes f :: ′b::finite ⇒ ′a
shows (∀ k . f k ≤ x) ←→ (

⊔
k f k) ≤ x

using order .trans ub-sum lub-sum by blast

lemma sum-const:
(
⊔

k::
′b::finite f) = f

by (metis lub-sum sup.cobounded1 sup-monoid.add-0-right sup-same-context
ub-sum)

86

end

context stone-relation-algebra
begin

In Stone relation algebras, we can also show that converse, double com-
plement and meet distribute over finite suprema.
lemma conv-dist-sum:

fixes f :: ′b::finite ⇒ ′a
shows (

⊔
k (f k)T) = (

⊔
k f k)T

proof (induct rule: one-sup-induct)
case one show ?case

by simp
next

case (sup j I) thus ?case
by (simp add: conv-dist-sup)

qed

lemma pp-dist-sum:
fixes f :: ′b::finite ⇒ ′a
shows (

⊔
k −−f k) = −−(

⊔
k f k)

proof (induct rule: one-sup-induct)
case one show ?case

by simp
next

case (sup j I) thus ?case
by simp

qed

lemma inf-right-dist-sum:
fixes f :: ′b::finite ⇒ ′a
shows (

⊔
k f k u x) = (

⊔
k f k) u x

by (rule comp-inf .comp-right-dist-sum)

end

6.2 Square Matrices
Because our semiring and relation algebra type classes only work for homo-
geneous relations, we only look at square matrices.
type-synonym (′a, ′b) square = ′a × ′a ⇒ ′b

We use standard matrix operations. The Stone algebra structure is lifted
componentwise. Composition is matrix multiplication using given compo-
sition and supremum operations. Its unit lifts given zero and one elements
into an identity matrix. Converse is matrix transpose with an additional
componentwise transpose.

87

definition less-eq-matrix :: (′a, ′b::ord) square ⇒ (′a, ′b) square ⇒ bool
(infix ‹�› 50) where f � g = (∀ e . f e ≤ g e)
definition less-matrix :: (′a, ′b::ord) square ⇒ (′a, ′b) square ⇒ bool
(infix ‹≺› 50) where f ≺ g = (f � g ∧ ¬ g � f)
definition sup-matrix :: (′a, ′b::sup) square ⇒ (′a, ′b) square ⇒ (′a, ′b) square
(infixl ‹⊕› 65) where f ⊕ g = (λe . f e t g e)
definition inf-matrix :: (′a, ′b::inf) square ⇒ (′a, ′b) square ⇒ (′a, ′b) square
(infixl ‹⊗› 67) where f ⊗ g = (λe . f e u g e)
definition minus-matrix :: (′a, ′b::{uminus,inf }) square ⇒ (′a, ′b) square ⇒
(′a, ′b) square (infixl ‹	› 65) where f 	 g = (λe . f e u −g e)
definition implies-matrix :: (′a, ′b::implies) square ⇒ (′a, ′b) square ⇒ (′a, ′b)
square (infixl ‹�› 65) where f � g = (λe . f e g e)
definition times-matrix :: (′a, ′b::{times,bounded-semilattice-sup-bot}) square ⇒
(′a, ′b) square ⇒ (′a, ′b) square (infixl ‹�› 70) where f � g = (λ(i,j) .

⊔
k f

(i,k) ∗ g (k,j))
definition uminus-matrix :: (′a, ′b::uminus) square ⇒ (′a, ′b) square
(‹	 -› [80] 80) where 	f = (λe . −f e)
definition conv-matrix :: (′a, ′b::conv) square ⇒ (′a, ′b) square
(‹-t› [100] 100) where f t = (λ(i,j) . (f (j,i))T)
definition bot-matrix :: (′a, ′b::bot) square
(‹mbot›) where mbot = (λe . bot)
definition top-matrix :: (′a, ′b::top) square
(‹mtop›) where mtop = (λe . top)
definition one-matrix :: (′a, ′b::{one,bot}) square
(‹mone›) where mone = (λ(i,j) . if i = j then 1 else bot)

6.3 Stone Algebras
We first lift the Stone algebra structure. Because all operations are compo-
nentwise, this also works for infinite matrices.
interpretation matrix-order : order where less-eq = less-eq-matrix and less =
less-matrix :: (′a, ′b::order) square ⇒ (′a, ′b) square ⇒ bool

apply unfold-locales
apply (simp add: less-matrix-def)
apply (simp add: less-eq-matrix-def)
apply (meson less-eq-matrix-def order-trans)
by (meson less-eq-matrix-def antisym ext)

interpretation matrix-semilattice-sup: semilattice-sup where sup = sup-matrix
and less-eq = less-eq-matrix and less = less-matrix :: (′a, ′b::semilattice-sup)
square ⇒ (′a, ′b) square ⇒ bool

apply unfold-locales
apply (simp add: sup-matrix-def less-eq-matrix-def)
apply (simp add: sup-matrix-def less-eq-matrix-def)
by (simp add: sup-matrix-def less-eq-matrix-def)

interpretation matrix-semilattice-inf : semilattice-inf where inf = inf-matrix
and less-eq = less-eq-matrix and less = less-matrix :: (′a, ′b::semilattice-inf)
square ⇒ (′a, ′b) square ⇒ bool

88

apply unfold-locales
apply (simp add: inf-matrix-def less-eq-matrix-def)
apply (simp add: inf-matrix-def less-eq-matrix-def)
by (simp add: inf-matrix-def less-eq-matrix-def)

interpretation matrix-bounded-semilattice-sup-bot: bounded-semilattice-sup-bot
where sup = sup-matrix and less-eq = less-eq-matrix and less = less-matrix
and bot = bot-matrix :: (′a, ′b::bounded-semilattice-sup-bot) square

apply unfold-locales
by (simp add: bot-matrix-def less-eq-matrix-def)

interpretation matrix-bounded-semilattice-inf-top: bounded-semilattice-inf-top
where inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix
and top = top-matrix :: (′a, ′b::bounded-semilattice-inf-top) square

apply unfold-locales
by (simp add: less-eq-matrix-def top-matrix-def)

interpretation matrix-lattice: lattice where sup = sup-matrix and inf =
inf-matrix and less-eq = less-eq-matrix and less = less-matrix :: (′a, ′b::lattice)
square ⇒ (′a, ′b) square ⇒ bool ..

interpretation matrix-distrib-lattice: distrib-lattice where sup = sup-matrix
and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix ::
(′a, ′b::distrib-lattice) square ⇒ (′a, ′b) square ⇒ bool

apply unfold-locales
by (simp add: sup-inf-distrib1 sup-matrix-def inf-matrix-def)

interpretation matrix-bounded-lattice: bounded-lattice where sup = sup-matrix
and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and
bot = bot-matrix :: (′a, ′b::bounded-lattice) square and top = top-matrix ..

interpretation matrix-bounded-distrib-lattice: bounded-distrib-lattice where sup
= sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less =
less-matrix and bot = bot-matrix :: (′a, ′b::bounded-distrib-lattice) square and top
= top-matrix ..

interpretation matrix-p-algebra: p-algebra where sup = sup-matrix and inf =
inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix :: (′a, ′b::p-algebra) square and top = top-matrix and uminus =
uminus-matrix

apply unfold-locales
apply (unfold inf-matrix-def bot-matrix-def less-eq-matrix-def

uminus-matrix-def)
by (meson pseudo-complement)

interpretation matrix-pd-algebra: pd-algebra where sup = sup-matrix and inf
= inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix :: (′a, ′b::pd-algebra) square and top = top-matrix and uminus =
uminus-matrix ..

89

In particular, matrices over Stone algebras form a Stone algebra.
interpretation matrix-stone-algebra: stone-algebra where sup = sup-matrix
and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and
bot = bot-matrix :: (′a, ′b::stone-algebra) square and top = top-matrix and
uminus = uminus-matrix

by unfold-locales (simp add: sup-matrix-def uminus-matrix-def top-matrix-def)

interpretation matrix-heyting-stone-algebra: heyting-stone-algebra where sup =
sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less =
less-matrix and bot = bot-matrix :: (′a, ′b::heyting-stone-algebra) square and top
= top-matrix and uminus = uminus-matrix and implies = implies-matrix

apply unfold-locales
apply (unfold inf-matrix-def sup-matrix-def bot-matrix-def top-matrix-def

less-eq-matrix-def uminus-matrix-def implies-matrix-def)
apply (simp add: implies-galois)
apply (simp add: uminus-eq)
by simp

interpretation matrix-boolean-algebra: boolean-algebra where sup = sup-matrix
and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and
bot = bot-matrix :: (′a, ′b::boolean-algebra) square and top = top-matrix and
uminus = uminus-matrix and minus = minus-matrix

apply unfold-locales
apply simp
apply (simp add: sup-matrix-def uminus-matrix-def top-matrix-def)
by (simp add: inf-matrix-def uminus-matrix-def minus-matrix-def)

6.4 Semirings
Next, we lift the semiring structure. Because of composition, this requires
a restriction to finite matrices.
interpretation matrix-monoid: monoid-mult where times = times-matrix and
one = one-matrix :: (′a::finite, ′b::idempotent-semiring) square
proof

fix f g h :: (′a, ′b) square
show (f � g) � h = f � (g � h)
proof (rule ext, rule prod-cases)

fix i j
have ((f � g) � h) (i,j) = (

⊔
l (f � g) (i,l) ∗ h (l,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
l (

⊔
k f (i,k) ∗ g (k,l)) ∗ h (l,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
l

⊔
k (f (i,k) ∗ g (k,l)) ∗ h (l,j))

by (metis (no-types) comp-right-dist-sum)
also have ... = (

⊔
l

⊔
k f (i,k) ∗ (g (k,l) ∗ h (l,j)))

by (simp add: mult.assoc)
also have ... = (

⊔
k

⊔
l f (i,k) ∗ (g (k,l) ∗ h (l,j)))

using sup-monoid.sum.swap by auto

90

also have ... = (
⊔

k f (i,k) ∗ (
⊔

l g (k,l) ∗ h (l,j)))
by (metis (no-types) comp-left-dist-sum)

also have ... = (
⊔

k f (i,k) ∗ (g � h) (k,j))
by (simp add: times-matrix-def)

also have ... = (f � (g � h)) (i,j)
by (simp add: times-matrix-def)

finally show ((f � g) � h) (i,j) = (f � (g � h)) (i,j)
.

qed
next

fix f :: (′a, ′b) square
show mone � f = f
proof (rule ext, rule prod-cases)

fix i j
have (mone � f) (i,j) = (

⊔
k mone (i,k) ∗ f (k,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
k (if i = k then 1 else bot) ∗ f (k,j))

by (simp add: one-matrix-def)
also have ... = (

⊔
k if i = k then 1 ∗ f (k,j) else bot ∗ f (k,j))

by (metis (full-types, opaque-lifting))
also have ... = (

⊔
k if i = k then f (k,j) else bot)

by (meson mult-left-one mult-left-zero)
also have ... = f (i,j)

by simp
finally show (mone � f) (i,j) = f (i,j)

.
qed

next
fix f :: (′a, ′b) square
show f � mone = f
proof (rule ext, rule prod-cases)

fix i j
have (f � mone) (i,j) = (

⊔
k f (i,k) ∗ mone (k,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
k f (i,k) ∗ (if k = j then 1 else bot))

by (simp add: one-matrix-def)
also have ... = (

⊔
k if k = j then f (i,k) ∗ 1 else f (i,k) ∗ bot)

by (metis (full-types, opaque-lifting))
also have ... = (

⊔
k if k = j then f (i,k) else bot)

by (meson mult.right-neutral semiring.mult-zero-right)
also have ... = f (i,j)

by simp
finally show (f � mone) (i,j) = f (i,j)

.
qed

qed

interpretation matrix-idempotent-semiring: idempotent-semiring where sup =
sup-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =

91

bot-matrix :: (′a::finite, ′b::idempotent-semiring) square and one = one-matrix
and times = times-matrix
proof

fix f g h :: (′a, ′b) square
show f � g ⊕ f � h � f � (g ⊕ h)
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j
have (f � g ⊕ f � h) (i,j) = (f � g) (i,j) t (f � h) (i,j)

by (simp add: sup-matrix-def)
also have ... = (

⊔
k f (i,k) ∗ g (k,j)) t (

⊔
k f (i,k) ∗ h (k,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
k f (i,k) ∗ g (k,j) t f (i,k) ∗ h (k,j))

by (simp add: sup-monoid.sum.distrib)
also have ... = (

⊔
k f (i,k) ∗ (g (k,j) t h (k,j)))

by (simp add: mult-left-dist-sup)
also have ... = (

⊔
k f (i,k) ∗ (g ⊕ h) (k,j))

by (simp add: sup-matrix-def)
also have ... = (f � (g ⊕ h)) (i,j)

by (simp add: times-matrix-def)
finally show (f � g ⊕ f � h) (i,j) ≤ (f � (g ⊕ h)) (i,j)

by simp
qed

next
fix f g h :: (′a, ′b) square
show (f ⊕ g) � h = f � h ⊕ g � h
proof (rule ext, rule prod-cases)

fix i j
have ((f ⊕ g) � h) (i,j) = (

⊔
k (f ⊕ g) (i,k) ∗ h (k,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
k (f (i,k) t g (i,k)) ∗ h (k,j))

by (simp add: sup-matrix-def)
also have ... = (

⊔
k f (i,k) ∗ h (k,j) t g (i,k) ∗ h (k,j))

by (meson mult-right-dist-sup)
also have ... = (

⊔
k f (i,k) ∗ h (k,j)) t (

⊔
k g (i,k) ∗ h (k,j))

by (simp add: sup-monoid.sum.distrib)
also have ... = (f � h) (i,j) t (g � h) (i,j)

by (simp add: times-matrix-def)
also have ... = (f � h ⊕ g � h) (i,j)

by (simp add: sup-matrix-def)
finally show ((f ⊕ g) � h) (i,j) = (f � h ⊕ g � h) (i,j)

.
qed

next
fix f :: (′a, ′b) square
show mbot � f = mbot
proof (rule ext, rule prod-cases)

fix i j
have (mbot � f) (i,j) = (

⊔
k mbot (i,k) ∗ f (k,j))

by (simp add: times-matrix-def)

92

also have ... = (
⊔

k bot ∗ f (k,j))
by (simp add: bot-matrix-def)

also have ... = bot
by simp

also have ... = mbot (i,j)
by (simp add: bot-matrix-def)

finally show (mbot � f) (i,j) = mbot (i,j)
.

qed
next

fix f :: (′a, ′b) square
show mone � f = f

by simp
next

fix f :: (′a, ′b) square
show f � f � mone

by simp
next

fix f g h :: (′a, ′b) square
show f � (g ⊕ h) = f � g ⊕ f � h
proof (rule ext, rule prod-cases)

fix i j
have (f � (g ⊕ h)) (i,j) = (

⊔
k f (i,k) ∗ (g ⊕ h) (k,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
k f (i,k) ∗ (g (k,j) t h (k,j)))

by (simp add: sup-matrix-def)
also have ... = (

⊔
k f (i,k) ∗ g (k,j) t f (i,k) ∗ h (k,j))

by (meson mult-left-dist-sup)
also have ... = (

⊔
k f (i,k) ∗ g (k,j)) t (

⊔
k f (i,k) ∗ h (k,j))

by (simp add: sup-monoid.sum.distrib)
also have ... = (f � g) (i,j) t (f � h) (i,j)

by (simp add: times-matrix-def)
also have ... = (f � g ⊕ f � h) (i,j)

by (simp add: sup-matrix-def)
finally show (f � (g ⊕ h)) (i,j) = (f � g ⊕ f � h) (i,j)

.
qed

next
fix f :: (′a, ′b) square
show f � mbot = mbot
proof (rule ext, rule prod-cases)

fix i j
have (f � mbot) (i,j) = (

⊔
k f (i,k) ∗ mbot (k,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
k f (i,k) ∗ bot)

by (simp add: bot-matrix-def)
also have ... = bot

by simp
also have ... = mbot (i,j)

93

by (simp add: bot-matrix-def)
finally show (f � mbot) (i,j) = mbot (i,j)

.
qed

qed

interpretation matrix-bounded-idempotent-semiring:
bounded-idempotent-semiring where sup = sup-matrix and less-eq =
less-eq-matrix and less = less-matrix and bot = bot-matrix ::
(′a::finite, ′b::bounded-idempotent-semiring) square and top = top-matrix and one
= one-matrix and times = times-matrix
proof

fix f :: (′a, ′b) square
show f ⊕ mtop = mtop
proof

fix e
have (f ⊕ mtop) e = f e t mtop e

by (simp add: sup-matrix-def)
also have ... = f e t top

by (simp add: top-matrix-def)
also have ... = top

by simp
also have ... = mtop e

by (simp add: top-matrix-def)
finally show (f ⊕ mtop) e = mtop e

.
qed

qed

6.5 Stone Relation Algebras
Finally, we show that matrices over Stone relation algebras form a Stone
relation algebra.
interpretation matrix-stone-relation-algebra: stone-relation-algebra where sup
= sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less =
less-matrix and bot = bot-matrix :: (′a::finite, ′b::stone-relation-algebra) square
and top = top-matrix and uminus = uminus-matrix and one = one-matrix and
times = times-matrix and conv = conv-matrix
proof

fix f g h :: (′a, ′b) square
show (f � g) � h = f � (g � h)

by (simp add: matrix-monoid.mult-assoc)
next

fix f g h :: (′a, ′b) square
show (f ⊕ g) � h = f � h ⊕ g � h

by (simp add: matrix-idempotent-semiring.mult-right-dist-sup)
next

fix f :: (′a, ′b) square
show mbot � f = mbot

94

by simp
next

fix f :: (′a, ′b) square
show mone � f = f

by simp
next

fix f :: (′a, ′b) square
show f tt = f
proof (rule ext, rule prod-cases)

fix i j
have (f tt) (i,j) = ((f t) (j,i))T

by (simp add: conv-matrix-def)
also have ... = f (i,j)

by (simp add: conv-matrix-def)
finally show (f tt) (i,j) = f (i,j)

.
qed

next
fix f g :: (′a, ′b) square
show (f ⊕ g)t = f t ⊕ gt

proof (rule ext, rule prod-cases)
fix i j
have ((f ⊕ g)t) (i,j) = ((f ⊕ g) (j,i))T

by (simp add: conv-matrix-def)
also have ... = (f (j,i) t g (j,i))T

by (simp add: sup-matrix-def)
also have ... = (f t) (i,j) t (gt) (i,j)

by (simp add: conv-matrix-def conv-dist-sup)
also have ... = (f t ⊕ gt) (i,j)

by (simp add: sup-matrix-def)
finally show ((f ⊕ g)t) (i,j) = (f t ⊕ gt) (i,j)

.
qed

next
fix f g :: (′a, ′b) square
show (f � g)t = gt � f t
proof (rule ext, rule prod-cases)

fix i j
have ((f � g)t) (i,j) = ((f � g) (j,i))T

by (simp add: conv-matrix-def)
also have ... = (

⊔
k f (j,k) ∗ g (k,i))T

by (simp add: times-matrix-def)
also have ... = (

⊔
k (f (j,k) ∗ g (k,i))T)

by (metis (no-types) conv-dist-sum)
also have ... = (

⊔
k (g (k,i))T ∗ (f (j,k))T)

by (simp add: conv-dist-comp)
also have ... = (

⊔
k (gt) (i,k) ∗ (f t) (k,j))

by (simp add: conv-matrix-def)
also have ... = (gt � f t) (i,j)

95

by (simp add: times-matrix-def)
finally show ((f � g)t) (i,j) = (gt � f t) (i,j)

.
qed

next
fix f g h :: (′a, ′b) square
show (f � g) ⊗ h � f � (g ⊗ (f t � h))
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j
have ((f � g) ⊗ h) (i,j) = (f � g) (i,j) u h (i,j)

by (simp add: inf-matrix-def)
also have ... = (

⊔
k f (i,k) ∗ g (k,j)) u h (i,j)

by (simp add: times-matrix-def)
also have ... = (

⊔
k f (i,k) ∗ g (k,j) u h (i,j))

by (metis (no-types) inf-right-dist-sum)
also have ... ≤ (

⊔
k f (i,k) ∗ (g (k,j) u (f (i,k))T ∗ h (i,j)))

by (rule leq-sum, meson dedekind-1)
also have ... = (

⊔
k f (i,k) ∗ (g (k,j) u (f t) (k,i) ∗ h (i,j)))

by (simp add: conv-matrix-def)
also have ... ≤ (

⊔
k f (i,k) ∗ (g (k,j) u (

⊔
l (f t) (k,l) ∗ h (l,j))))

by (rule leq-sum, rule allI , rule comp-right-isotone, rule
inf .sup-right-isotone, rule ub-sum)

also have ... = (
⊔

k f (i,k) ∗ (g (k,j) u (f t � h) (k,j)))
by (simp add: times-matrix-def)

also have ... = (
⊔

k f (i,k) ∗ (g ⊗ (f t � h)) (k,j))
by (simp add: inf-matrix-def)

also have ... = (f � (g ⊗ (f t � h))) (i,j)
by (simp add: times-matrix-def)

finally show ((f � g) ⊗ h) (i,j) ≤ (f � (g ⊗ (f t � h))) (i,j)
.

qed
next

fix f g :: (′a, ′b) square
show 		(f � g) = 		f � 		g
proof (rule ext, rule prod-cases)

fix i j
have ((f � g)) (i,j) = −−((f � g) (i,j))

by (simp add: uminus-matrix-def)
also have ... = −−(

⊔
k f (i,k) ∗ g (k,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
k −−(f (i,k) ∗ g (k,j)))

by (metis (no-types) pp-dist-sum)
also have ... = (

⊔
k −−(f (i,k)) ∗ −−(g (k,j)))

by (meson pp-dist-comp)
also have ... = (

⊔
k (f) (i,k) ∗ (g) (k,j))

by (simp add: uminus-matrix-def)
also have ... = (f � 		g) (i,j)

by (simp add: times-matrix-def)
finally show ((f � g)) (i,j) = (f � 		g) (i,j)

96

.
qed

next
let ?o = mone :: (′a, ′b) square
show 		?o = ?o
proof (rule ext, rule prod-cases)

fix i j
have (?o) (i,j) = −−(?o (i,j))

by (simp add: uminus-matrix-def)
also have ... = −−(if i = j then 1 else bot)

by (simp add: one-matrix-def)
also have ... = (if i = j then −−1 else −−bot)

by simp
also have ... = (if i = j then 1 else bot)

by auto
also have ... = ?o (i,j)

by (simp add: one-matrix-def)
finally show (?o) (i,j) = ?o (i,j)

.
qed

qed

interpretation matrix-stone-relation-algebra-consistent:
stone-relation-algebra-consistent where sup = sup-matrix and inf = inf-matrix
and less-eq = less-eq-matrix and less = less-matrix and bot = bot-matrix ::
(′a::finite, ′b::stone-relation-algebra-consistent) square and top = top-matrix and
uminus = uminus-matrix and one = one-matrix and times = times-matrix and
conv = conv-matrix
proof

show (mbot::(′a, ′b) square) 6= mtop
by (metis consistent bot-matrix-def top-matrix-def)

qed

interpretation matrix-stone-relation-algebra-tarski: stone-relation-algebra-tarski
where sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and
less = less-matrix and bot = bot-matrix ::
(′a::finite, ′b::stone-relation-algebra-tarski) square and top = top-matrix and
uminus = uminus-matrix and one = one-matrix and times = times-matrix and
conv = conv-matrix
proof

fix x :: (′a, ′b) square
assume 1 : matrix-p-algebra.regular x
assume x 6= mbot
from this obtain i j where x (i,j) 6= bot

by (metis bot-matrix-def ext surj-pair)
hence 2 : top ∗ x (i,j) ∗ top = top

using 1 by (metis tarski uminus-matrix-def)
show matrix-bounded-idempotent-semiring.total (mtop � x)
proof (rule ext, rule prod-cases)

97

fix k l
have top ∗ x (i,j) ∗ top ≤ (

⊔
m top ∗ x (m,j)) ∗ top

using comp-inf .ub-sum comp-isotone by fastforce
also have ... = (mtop � x) (k,j) ∗ top

by (simp add: times-matrix-def top-matrix-def)
also have ... ≤ (

⊔
m (mtop � x) (k,m) ∗ top)

using comp-inf .ub-sum by force
also have ... = (mtop � x � mtop) (k,l)

by (simp add: times-matrix-def top-matrix-def)
finally show (mtop � x � mtop) (k,l) = mtop (k,l)

using 2 by (simp add: top-matrix-def inf .bot-unique)
qed

qed

interpretation matrix-stone-relation-algebra-tarski-consistent:
stone-relation-algebra-tarski-consistent where sup = sup-matrix and inf =
inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix :: (′a::finite, ′b::stone-relation-algebra-tarski-consistent) square and top
= top-matrix and uminus = uminus-matrix and one = one-matrix and times =
times-matrix and conv = conv-matrix

..

end

7 Matrices over Bounded Linear Orders
In this theory we characterise relation-algebraic properties of matrices over
bounded linear orders (for example, extended real numbers) in terms of the
entries in the matrices. We consider, in particular, the following proper-
ties: univalent, injective, total, surjective, mapping, bijective, vector, covec-
tor, point, arc, reflexive, coreflexive, irreflexive, symmetric, antisymmetric,
asymmetric. We also consider the effect of composition with the matrix of
greatest elements and with coreflexives (tests).
theory Linear-Order-Matrices

imports Matrix-Relation-Algebras

begin

class non-trivial-linorder-stone-relation-algebra-expansion =
linorder-stone-relation-algebra-expansion + non-trivial
begin

subclass non-trivial-bounded-order ..

end

Before we look at matrices, we generalise selectivity to finite suprema.

98

lemma linorder-finite-sup-selective:
fixes f :: ′a::finite ⇒ ′b::linorder-stone-algebra-expansion
shows ∃ i . (

⊔
k f k) = f i

apply (induct rule: comp-inf .one-sup-induct)
apply blast
using sup-selective by fastforce

lemma linorder-top-finite-sup:
fixes f :: ′a::finite ⇒ ′b::linorder-stone-algebra-expansion
assumes ∀ k . f k 6= top

shows (
⊔

k f k) 6= top
by (metis assms linorder-finite-sup-selective)

The following results show the effect of composition with the top matrix
from the left and from the right.
lemma comp-top-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows (f � mtop) (i,j) = (

⊔
k f (i,k))

apply (unfold times-matrix-def top-matrix-def)
by (metis (no-types, lifting) case-prod-conv comp-right-one one-def

sup-monoid.sum.cong)

lemma top-comp-linorder-matrix:
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows (mtop � f) (i,j) = (

⊔
k f (k,j))

apply (unfold times-matrix-def top-matrix-def)
by (metis (no-types, lifting) case-prod-conv comp-left-one one-def

sup-monoid.sum.cong)

We characterise univalent matrices: in each row, at most one entry may
be different from bot.
lemma univalent-linorder-matrix-1 :

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-stone-relation-algebra.univalent f

and f (i,j) 6= bot
and f (i,k) 6= bot

shows j = k
proof −

have (f t � f) (j,k) = (
⊔

l (f t) (j,l) ∗ f (l,k))
by (simp add: times-matrix-def)

also have ... = (
⊔

l (f (l,j))T ∗ f (l,k))
by (simp add: conv-matrix-def)

also have ... = (
⊔

l f (l,j) ∗ f (l,k))
by simp

also have ... ≥ f (i,j) ∗ f (i,k)
using comp-inf .ub-sum by fastforce

finally have (f t � f) (j,k) 6= bot
using assms(2 ,3) bot.extremum-uniqueI times-dense by fastforce

hence mone (j,k) 6= (bot:: ′b)

99

by (metis assms(1) bot.extremum-uniqueI less-eq-matrix-def)
thus ?thesis

by (metis (mono-tags, lifting) case-prod-conv one-matrix-def)
qed

lemma univalent-linorder-matrix-2 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes ∀ i j k . f (i,j) 6= bot ∧ f (i,k) 6= bot −→ j = k

shows matrix-stone-relation-algebra.univalent f
proof −

show f t � f � mone
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix j k
show (f t � f) (j,k) ≤ mone (j,k)
proof (cases j = k)

assume j = k
thus ?thesis

by (simp add: one-matrix-def)
next

assume j 6= k
hence (

⊔
i f (i,j) ∗ f (i,k)) = bot

by (metis (no-types, lifting) assms semiring.mult-not-zero
sup-monoid.sum.neutral)

thus ?thesis
by (simp add: times-matrix-def conv-matrix-def)

qed
qed

qed

lemma univalent-linorder-matrix:
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-stone-relation-algebra.univalent f ←→ (∀ i j k . f (i,j) 6= bot ∧ f

(i,k) 6= bot −→ j = k)
using univalent-linorder-matrix-1 univalent-linorder-matrix-2 by auto

Injective matrices can then be characterised by applying converse: in
each column, at most one entry may be different from bot.
lemma injective-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-stone-relation-algebra.injective f ←→ (∀ i j k . f (j,i) 6= bot ∧ f

(k,i) 6= bot −→ j = k)
by (unfold matrix-stone-relation-algebra.injective-conv-univalent

univalent-linorder-matrix) (simp add: conv-matrix-def)

Next come total matrices: each row has a top entry.
lemma total-linorder-matrix-1 :

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-stone-relation-algebra.total-var f

shows ∃ j . f (i,j) = top

100

proof −
have mone (i,i) ≤ (f � f t) (i,i)

using assms less-eq-matrix-def by blast
hence top = (f � f t) (i,i)

by (simp add: one-matrix-def top.extremum-unique)
also have ... = (

⊔
j f (i,j) ∗ (f t) (j,i))

by (simp add: times-matrix-def)
also have ... = (

⊔
j f (i,j) ∗ f (i,j))

by (simp add: conv-matrix-def)
also have ... = (

⊔
j f (i,j))

by simp
finally show ?thesis

by (metis linorder-top-finite-sup)
qed

lemma total-linorder-matrix-2 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes ∀ i . ∃ j . f (i,j) = top

shows matrix-stone-relation-algebra.total-var f
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix j k
show mone (j,k) ≤ (f � f t) (j,k)
proof (cases j = k)

assume j = k
hence (

⊔
i f (j,i) ∗ (f t) (i,k)) = (

⊔
i f (j,i))

by (simp add: conv-matrix-def)
also have ... = top

by (metis (no-types) assms comp-inf .ub-sum sup.absorb2 sup-top-left)
finally show ?thesis

by (simp add: times-matrix-def)
next

assume j 6= k
thus ?thesis

by (simp add: one-matrix-def)
qed

qed

lemma total-linorder-matrix:
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-bounded-idempotent-semiring.total f ←→ (∀ i . ∃ j . f (i,j) = top)
using total-linorder-matrix-1 total-linorder-matrix-2

matrix-stone-relation-algebra.total-var by auto

Surjective matrices are again characterised by applying converse: each
column has a top entry.
lemma surjective-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-bounded-idempotent-semiring.surjective f ←→ (∀ j . ∃ i . f (i,j) =

top)

101

by (unfold matrix-stone-relation-algebra.surjective-conv-total
total-linorder-matrix) (simp add: conv-matrix-def)

A mapping therefore means that each row has exactly one top entry and
all others are bot.
lemma mapping-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-stone-relation-algebra.mapping f ←→ (∀ i . ∃ j . f (i,j) = top ∧

(∀ k . j 6= k −→ f (i,k) = bot))
by (unfold total-linorder-matrix univalent-linorder-matrix) (metis (mono-tags,

opaque-lifting) comp-inf .mult-1-right comp-inf .mult-right-zero)

lemma mapping-linorder-matrix-unique:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.mapping f ←→ (∀ i . ∃ !j . f (i,j) = top ∧

(∀ k . j 6= k −→ f (i,k) = bot))
apply (unfold mapping-linorder-matrix)
using bot-not-top by auto

Conversely, bijective means that each column has exactly one top entry
and all others are bot.
lemma bijective-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-stone-relation-algebra.bijective f ←→ (∀ j . ∃ i . f (i,j) = top ∧

(∀ k . i 6= k −→ f (k,j) = bot))
by (unfold matrix-stone-relation-algebra.bijective-conv-mapping

mapping-linorder-matrix) (simp add: conv-matrix-def)

lemma bijective-linorder-matrix-unique:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.bijective f ←→ (∀ j . ∃ !i . f (i,j) = top ∧

(∀ k . i 6= k −→ f (k,j) = bot))
by (unfold matrix-stone-relation-algebra.bijective-conv-mapping

mapping-linorder-matrix-unique) (simp add: conv-matrix-def)

We derive algebraic characterisations of matrices in which each row has
an entry that is different from bot.
lemma pp-total-linorder-matrix-1 :

fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)
square

assumes 	(f � mtop) = mbot
shows ∃ j . f (i,j) 6= bot

proof −
have ¬(∃ j . f (i,j) 6= bot) =⇒ 	(f � mtop) 6= mbot
proof −

assume ¬(∃ j . f (i,j) 6= bot)
hence top = −(f � mtop) (i,i)

102

by (simp add: comp-top-linorder-matrix linorder-finite-sup-selective)
also have ... = ((f � mtop)) (i,i)

by (simp add: uminus-matrix-def)
finally show 	(f � mtop) 6= mbot

by (metis bot-matrix-def bot-not-top)
qed
thus ?thesis

using assms by blast
qed

lemma pp-total-linorder-matrix-2 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes ∀ i . ∃ j . f (i,j) 6= bot

shows 	(f � mtop) = mbot
proof (rule ext, rule prod-cases)

fix i j
have ((f � mtop)) (i,j) = −(

⊔
k f (i,k))

by (simp add: comp-top-linorder-matrix uminus-matrix-def)
also have ... = bot

by (metis antisym assms bot.extremum comp-inf .ub-sum uminus-def)
finally show ((f � mtop)) (i,j) = mbot (i,j)

by (simp add: bot-matrix-def)
qed

lemma pp-total-linorder-matrix-3 :
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows 	(f � mtop) = mbot ←→ (∀ i . ∃ j . f (i,j) 6= bot)
using pp-total-linorder-matrix-1 pp-total-linorder-matrix-2 by auto

lemma pp-total-linorder-matrix:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-bounded-idempotent-semiring.total (f) ←→ (∀ i . ∃ j . f (i,j)
6= bot)

using matrix-stone-relation-algebra.pp-total pp-total-linorder-matrix-1
pp-total-linorder-matrix-2 by auto

lemma pp-mapping-linorder-matrix:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.pp-mapping f ←→ (∀ i . ∃ j . f (i,j) 6= bot
∧ (∀ k . j 6= k −→ f (i,k) = bot))

by (metis (mono-tags, opaque-lifting) pp-total-linorder-matrix
univalent-linorder-matrix-1 univalent-linorder-matrix-2)

lemma pp-mapping-linorder-matrix-unique:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square

103

shows matrix-stone-relation-algebra.pp-mapping f ←→ (∀ i . ∃ !j . f (i,j) 6= bot
∧ (∀ k . j 6= k −→ f (i,k) = bot))

apply (rule iffI)
using pp-mapping-linorder-matrix apply blast
by (metis pp-total-linorder-matrix univalent-linorder-matrix)

Next follow matrices in which each column has an entry that is different
from bot.
lemma pp-surjective-linorder-matrix-1 :

fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)
square

shows 	(mtop � f) = mbot ←→ (∀ j . ∃ i . f (i,j) 6= bot)
proof −

have 	(mtop � f) = mbot ←→ ((mtop � f))t = mbott
by (metis matrix-stone-relation-algebra.conv-involutive)

also have ... ←→ 	(f t � mtop) = mbot
by (simp add: matrix-stone-relation-algebra.conv-complement

matrix-stone-relation-algebra.conv-dist-comp)
also have ... ←→ (∀ i . ∃ j . (f t) (i,j) 6= bot)

using pp-total-linorder-matrix-3 by auto
also have ... ←→ (∀ j . ∃ i . f (i,j) 6= bot)

by (simp add: conv-matrix-def)
finally show ?thesis

.
qed

lemma pp-surjective-linorder-matrix:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-bounded-idempotent-semiring.surjective (f) ←→ (∀ j . ∃ i . f

(i,j) 6= bot)
using matrix-stone-relation-algebra.pp-surjective pp-surjective-linorder-matrix-1

by auto

lemma pp-bijective-linorder-matrix:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.pp-bijective f ←→ (∀ j . ∃ i . f (i,j) 6= bot ∧

(∀ k . i 6= k −→ f (k,j) = bot))
by (unfold matrix-stone-relation-algebra.pp-bijective-conv-mapping

pp-mapping-linorder-matrix) (simp add: conv-matrix-def)

lemma pp-bijective-linorder-matrix-unique:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.pp-bijective f ←→ (∀ j . ∃ !i . f (i,j) 6= bot
∧ (∀ k . i 6= k −→ f (k,j) = bot))

by (unfold matrix-stone-relation-algebra.pp-bijective-conv-mapping
pp-mapping-linorder-matrix-unique) (simp add: conv-matrix-def)

104

The regular matrices are those which contain only bot or top entries.
lemma regular-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-p-algebra.regular f ←→ (∀ e . f e = bot ∨ f e = top)

proof −
have matrix-p-algebra.regular f ←→ (f = f)

by auto
also have ... ←→ (∀ e . −−f e = f e)

by (metis uminus-matrix-def ext)
also have ... ←→ (∀ e . f e = bot ∨ f e = top)

by force
finally show ?thesis

.
qed

Vectors are precisely the row-constant matrices.
lemma vector-linorder-matrix-0 :

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-bounded-idempotent-semiring.vector f

shows f (i,j) = (
⊔

k f (i,k))
by (metis assms comp-top-linorder-matrix)

lemma vector-linorder-matrix-1 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-bounded-idempotent-semiring.vector f

shows f (i,j) = f (i,k)
by (metis assms vector-linorder-matrix-0)

lemma vector-linorder-matrix-2 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes ∀ i j k . f (i,j) = f (i,k)

shows matrix-bounded-idempotent-semiring.vector f
proof (rule ext, rule prod-cases)

fix i j
have (f � mtop) (i,j) = (

⊔
k f (i,k))

by (simp add: comp-top-linorder-matrix)
also have ... = f (i,j)

by (metis assms linorder-finite-sup-selective)
finally show (f � mtop) (i,j) = f (i,j)

.
qed

lemma vector-linorder-matrix:
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-bounded-idempotent-semiring.vector f ←→ (∀ i j k . f (i,j) = f

(i,k))
using vector-linorder-matrix-1 vector-linorder-matrix-2 by auto

Hence covectors are precisely the column-constant matrices.

105

lemma covector-linorder-matrix-0 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-bounded-idempotent-semiring.covector f

shows f (i,j) = (
⊔

k f (k,j))
by (metis assms top-comp-linorder-matrix)

lemma covector-linorder-matrix:
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-bounded-idempotent-semiring.covector f ←→ (∀ i j k . f (i,j) = f

(k,j))
by (unfold matrix-stone-relation-algebra.covector-conv-vector

vector-linorder-matrix) (metis (no-types, lifting) case-prod-conv conv-matrix-def
conv-def)

A point is a matrix that has exactly one row, which is constant top, and
all other rows are constant bot.
lemma point-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-stone-relation-algebra.point f ←→ (∃ i . ∀ j . f (i,j) = top ∧ (∀ k .

i 6= k −→ f (k,j) = bot))
apply (unfold vector-linorder-matrix bijective-linorder-matrix)
apply (rule iffI)
apply metis
by metis

lemma point-linorder-matrix-unique:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.point f ←→ (∃ !i . ∀ j . f (i,j) = top ∧ (∀ k

. i 6= k −→ f (k,j) = bot))
apply (unfold vector-linorder-matrix bijective-linorder-matrix)
apply (rule iffI)
apply (metis bot-not-top)
by metis

lemma pp-point-linorder-matrix:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.pp-point f ←→ (∃ i . ∀ j . f (i,j) 6= bot ∧

(∀ k . f (i,j) = f (i,k)) ∧ (∀ k . i 6= k −→ f (k,j) = bot))
apply (unfold vector-linorder-matrix pp-bijective-linorder-matrix)
apply (rule iffI)
apply metis
by metis

lemma pp-point-linorder-matrix-unique:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.pp-point f ←→ (∃ !i . ∀ j . f (i,j) 6= bot ∧

106

(∀ k . f (i,j) = f (i,k)) ∧ (∀ k . i 6= k −→ f (k,j) = bot))
apply (unfold vector-linorder-matrix pp-bijective-linorder-matrix)
apply (rule iffI)
apply metis
by metis

An arc is a matrix that has exactly one top entry and all other entries
are bot.
lemma arc-linorder-matrix-1 :

fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)
square

assumes matrix-stone-relation-algebra.arc f
shows ∃ e . f e = top ∧ (∀ d . e 6= d −→ f d = bot)

proof −
have matrix-stone-relation-algebra.point (f � mtop)

by (simp add: assms matrix-bounded-idempotent-semiring.vector-mult-closed)
from this obtain i where 1 : ∀ j . (f � mtop) (i,j) = top ∧ (∀ k . i 6= k −→ (f
� mtop) (k,j) = bot)

using point-linorder-matrix by blast
have matrix-stone-relation-algebra.point (f t � mtop)

by (simp add: assms matrix-bounded-idempotent-semiring.vector-mult-closed)
from this obtain j where ∀ i . (f t � mtop) (j,i) = top ∧ (∀ k . j 6= k −→ (f t
� mtop) (k,i) = bot)

using point-linorder-matrix by blast
hence 2 : ∀ i . (mtop � f) (i,j) = top ∧ (∀ k . j 6= k −→ (mtop � f) (i,k) = bot)

by (metis (no-types) old.prod.case conv-matrix-def conv-def
matrix-stone-relation-algebra.conv-dist-comp
matrix-stone-relation-algebra.conv-top)

have 3 : ∀ i k . j 6= k −→ f (i,k) = bot
proof (intro allI , rule impI)

fix i k
assume j 6= k
hence (

⊔
l f (l,k)) = bot

using 2 by (simp add: top-comp-linorder-matrix)
thus f (i,k) = bot

by (metis bot.extremum-uniqueI comp-inf .ub-sum)
qed
have (

⊔
k f (i,k)) = top

using 1 by (simp add: comp-top-linorder-matrix)
hence 4 : f (i,j) = top

using 3 by (metis bot-not-top linorder-finite-sup-selective)
have ∀ k l . k 6= i ∨ l 6= j −→ f (k,l) = bot
proof (intro allI , unfold imp-disjL, rule conjI)

fix k l
show k 6= i −→ f (k,l) = bot
proof

assume k 6= i
hence (

⊔
m f (k,m)) = bot

using 1 by (simp add: comp-top-linorder-matrix)

107

thus f (k,l) = bot
by (metis bot.extremum-uniqueI comp-inf .ub-sum)

qed
show l 6= j −→ f (k,l) = bot

using 3 by simp
qed
thus ?thesis using 4

by (metis old.prod.exhaust)
qed

lemma pp-arc-linorder-matrix-2 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes ∃ e . f e 6= bot ∧ (∀ d . e 6= d −→ f d = bot)

shows matrix-stone-relation-algebra.pp-arc f
proof (unfold matrix-stone-relation-algebra.pp-arc-expanded, intro conjI)

show f � mtop � f t � mone
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j
show (f � mtop � f t) (i,j) ≤ mone (i,j)
proof (cases i = j)

assume i = j
thus ?thesis

by (simp add: one-matrix-def)
next

assume i 6= j
hence 1 : ∀ k l . f (i,k) ∗ f (j,l) = bot

by (metis assms Pair-inject semiring.mult-not-zero)
have (f � mtop � f t) (i,j) = (

⊔
l (f � mtop) (i,l) ∗ (f t) (l,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
l (f � mtop) (i,l) ∗ f (j,l))

by (simp add: conv-matrix-def)
also have ... = (

⊔
l (

⊔
k f (i,k)) ∗ f (j,l))

by (simp add: comp-top-linorder-matrix)
also have ... = (

⊔
l

⊔
k f (i,k) ∗ f (j,l))

by (metis comp-right-dist-sum)
also have ... = bot

using 1 linorder-finite-sup-selective by simp
finally show ?thesis

by simp
qed

qed
next

show f t � mtop � f � mone
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j
show (f t � mtop � f) (i,j) ≤ mone (i,j)
proof (cases i = j)

assume i = j
thus ?thesis

108

by (simp add: one-matrix-def)
next

assume i 6= j
hence 2 : ∀ k l . f (k,i) ∗ f (l,j) = bot

by (metis assms Pair-inject semiring.mult-not-zero)
have (f t � mtop � f) (i,j) = (

⊔
l (f t � mtop) (i,l) ∗ f (l,j))

by (simp add: times-matrix-def)
also have ... = (

⊔
l (

⊔
k (f t) (i,k)) ∗ f (l,j))

by (simp add: comp-top-linorder-matrix)
also have ... = (

⊔
l (

⊔
k f (k,i)) ∗ f (l,j))

by (simp add: conv-matrix-def)
also have ... = (

⊔
l

⊔
k f (k,i) ∗ f (l,j))

by (metis comp-right-dist-sum)
also have ... = bot

using 2 linorder-finite-sup-selective by simp
finally show ?thesis

by simp
qed

qed
next

show mtop � 		f � mtop = mtop
proof (rule ext, rule prod-cases)

fix i j
from assms obtain k l where f (k,l) 6= bot

using prod.collapse by auto
hence top = −−f (k,l)

by simp
also have ... ≤ (

⊔
k −−f (k,l))

using comp-inf .ub-sum by metis
also have ... ≤ (

⊔
l

⊔
k −−f (k,l))

using comp-inf .ub-sum by simp
finally have 3 : top ≤ (

⊔
l

⊔
k −−f (k,l))

by simp
have (mtop � 		f � mtop) (i,j) = (

⊔
l (

⊔
k top ∗ −−f (k,l)) ∗ top)

by (simp add: times-matrix-def top-matrix-def uminus-matrix-def)
also have ... = (

⊔
l

⊔
k −−f (k,l))

by (metis (no-types, lifting) sup-monoid.sum.cong comp-inf .mult-1-left
times-inf comp-inf .mult-1-right)

also have ... = top
using 3 top.extremum-unique by blast

finally show (mtop � 		f � mtop) (i,j) = mtop (i,j)
by (simp add: top-matrix-def)

qed
qed

lemma arc-linorder-matrix-2 :
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
assumes ∃ e . f e = top ∧ (∀ d . e 6= d −→ f d = bot)

109

shows matrix-stone-relation-algebra.arc f
proof (unfold matrix-stone-relation-algebra.arc-expanded, intro conjI)

show f � mtop � f t � mone
by (metis (no-types, lifting) assms bot-not-top

matrix-stone-relation-algebra.pp-arc-expanded pp-arc-linorder-matrix-2)
next

show f t � mtop � f � mone
by (metis (no-types, lifting) assms bot-not-top

matrix-stone-relation-algebra.pp-arc-expanded pp-arc-linorder-matrix-2)
next

show mtop � f � mtop = mtop
proof (rule ext, rule prod-cases)

fix i j
from assms obtain k l where f (k,l) = top

using prod.collapse by auto
hence (

⊔
k f (k,l)) = top

by (metis (mono-tags) comp-inf .ub-sum top-unique)
hence 3 : top ≤ (

⊔
l

⊔
k f (k,l))

by (metis (no-types) comp-inf .ub-sum)
have (mtop � f � mtop) (i,j) = (

⊔
l (

⊔
k top ∗ f (k,l)) ∗ top)

by (simp add: times-matrix-def top-matrix-def)
also have ... = (

⊔
l

⊔
k f (k,l))

by (metis (no-types, lifting) sup-monoid.sum.cong comp-inf .mult-1-left
times-inf comp-inf .mult-1-right)

also have ... = top
using 3 top.extremum-unique by blast

finally show (mtop � f � mtop) (i,j) = mtop (i,j)
by (simp add: top-matrix-def)

qed
qed

lemma arc-linorder-matrix:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.arc f ←→ (∃ e . f e = top ∧ (∀ d . e 6= d
−→ f d = bot))

using arc-linorder-matrix-1 arc-linorder-matrix-2 by blast

lemma arc-linorder-matrix-unique:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.arc f ←→ (∃ !e . f e = top ∧ (∀ d . e 6= d
−→ f d = bot))

apply (rule iffI)
apply (metis (no-types, opaque-lifting) arc-linorder-matrix bot-not-top)
using arc-linorder-matrix by blast

lemma pp-arc-linorder-matrix-1 :
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

110

square
assumes matrix-stone-relation-algebra.pp-arc f

shows ∃ e . f e 6= bot ∧ (∀ d . e 6= d −→ f d = bot)
proof −

have matrix-stone-relation-algebra.pp-point (f � mtop)
by (simp add: assms matrix-bounded-idempotent-semiring.vector-mult-closed)

from this obtain i where 1 : ∀ j . (f � mtop) (i,j) 6= bot ∧ (∀ k . (f � mtop)
(i,j) = (f � mtop) (i,k)) ∧ (∀ k . i 6= k −→ (f � mtop) (k,j) = bot)

by (metis pp-point-linorder-matrix)
have matrix-stone-relation-algebra.pp-point (f t � mtop)

by (simp add: assms matrix-bounded-idempotent-semiring.vector-mult-closed)
from this obtain j where ∀ i . (f t � mtop) (j,i) 6= bot ∧ (∀ k . (f t � mtop)

(j,i) = (f t � mtop) (j,k)) ∧ (∀ k . j 6= k −→ (f t � mtop) (k,i) = bot)
by (metis pp-point-linorder-matrix)

hence 2 : ∀ i . (mtop � f) (i,j) 6= bot ∧ (∀ k . (mtop � f) (i,j) = (mtop � f)
(k,j)) ∧ (∀ k . j 6= k −→ (mtop � f) (i,k) = bot)

by (metis (no-types) old.prod.case conv-matrix-def conv-def
matrix-stone-relation-algebra.conv-dist-comp
matrix-stone-relation-algebra.conv-top)

have 3 : ∀ i k . j 6= k −→ f (i,k) = bot
proof (intro allI , rule impI)

fix i k
assume j 6= k
hence (

⊔
l f (l,k)) = bot

using 2 by (simp add: top-comp-linorder-matrix)
thus f (i,k) = bot

by (metis bot.extremum-uniqueI comp-inf .ub-sum)
qed
have (

⊔
k f (i,k)) 6= bot

using 1 by (simp add: comp-top-linorder-matrix)
hence 4 : f (i,j) 6= bot

using 3 by (metis linorder-finite-sup-selective)
have ∀ k l . k 6= i ∨ l 6= j −→ f (k,l) = bot
proof (intro allI , unfold imp-disjL, rule conjI)

fix k l
show k 6= i −→ f (k,l) = bot
proof

assume k 6= i
hence (

⊔
m f (k,m)) = bot

using 1 by (simp add: comp-top-linorder-matrix)
thus f (k,l) = bot

by (metis bot.extremum-uniqueI comp-inf .ub-sum)
qed
show l 6= j −→ f (k,l) = bot

using 3 by simp
qed
thus ?thesis using 4

by (metis old.prod.exhaust)
qed

111

lemma pp-arc-linorder-matrix:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.pp-arc f ←→ (∃ e . f e 6= bot ∧ (∀ d . e 6= d
−→ f d = bot))

using pp-arc-linorder-matrix-1 pp-arc-linorder-matrix-2 by blast

lemma pp-arc-linorder-matrix-unique:
fixes f :: (′a::finite, ′b::non-trivial-linorder-stone-relation-algebra-expansion)

square
shows matrix-stone-relation-algebra.pp-arc f ←→ (∃ !e . f e 6= bot ∧ (∀ d . e 6=

d −→ f d = bot))
apply (rule iffI)
apply (metis (no-types, opaque-lifting) pp-arc-linorder-matrix)
using pp-arc-linorder-matrix by blast

Reflexive matrices are those with a constant top diagonal.
lemma reflexive-linorder-matrix-1 :

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-idempotent-semiring.reflexive f

shows f (i,i) = top
proof −

have (top:: ′b) = mone (i,i)
by (simp add: one-matrix-def)

also have ... ≤ f (i,i)
using assms less-eq-matrix-def by blast

finally show ?thesis
by (simp add: top.extremum-unique)

qed

lemma reflexive-linorder-matrix-2 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes ∀ i . f (i,i) = top

shows matrix-idempotent-semiring.reflexive f
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j
show mone (i,j) ≤ f (i,j)
proof (cases i = j)

assume i = j
thus ?thesis

by (simp add: assms)
next

assume i 6= j
hence (bot:: ′b) = mone (i,j)

by (simp add: one-matrix-def)
thus ?thesis

by simp
qed

112

qed

lemma reflexive-linorder-matrix:
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-idempotent-semiring.reflexive f ←→ (∀ i . f (i,i) = top)
using reflexive-linorder-matrix-1 reflexive-linorder-matrix-2 by auto

Coreflexive matrices are those in which all non-diagonal entries are bot.
lemma coreflexive-linorder-matrix-1 :

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-idempotent-semiring.coreflexive f

and i 6= j
shows f (i,j) = bot

proof −
have f (i,j) ≤ mone (i,j)

using assms less-eq-matrix-def by blast
also have ... = bot

by (simp add: assms one-matrix-def)
finally show ?thesis

by (simp add: bot.extremum-unique)
qed

lemma coreflexive-linorder-matrix-2 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes ∀ i j . i 6= j −→ f (i,j) = bot

shows matrix-idempotent-semiring.coreflexive f
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j
show f (i,j) ≤ mone (i,j)
proof (cases i = j)

assume i = j
hence (top:: ′b) = mone (i,j)

by (simp add: one-matrix-def)
thus ?thesis

by simp
next

assume i 6= j
thus ?thesis

by (simp add: assms)
qed

qed

lemma coreflexive-linorder-matrix:
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-idempotent-semiring.coreflexive f ←→ (∀ i j . i 6= j −→ f (i,j) =

bot)
using coreflexive-linorder-matrix-1 coreflexive-linorder-matrix-2 by auto

Irreflexive matrices are those with a constant bot diagonal.

113

lemma irreflexive-linorder-matrix-1 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-stone-relation-algebra.irreflexive f

shows f (i,i) = bot
proof −

have (top:: ′b) = mone (i,i)
by (simp add: one-matrix-def)

hence (bot:: ′b) = (mone) (i,i)
by (simp add: uminus-matrix-def)

hence f (i,i) ≤ bot
by (metis assms less-eq-matrix-def)

thus ?thesis
by (simp add: bot.extremum-unique)

qed

lemma irreflexive-linorder-matrix-2 :
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes ∀ i . f (i,i) = bot

shows matrix-stone-relation-algebra.irreflexive f
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j
show f (i,j) ≤ (mone) (i,j)
proof (cases i = j)

assume i = j
thus ?thesis

by (simp add: assms)
next

assume i 6= j
hence (bot:: ′b) = mone (i,j)

by (simp add: one-matrix-def)
hence (top:: ′b) = (mone) (i,j)

by (simp add: uminus-matrix-def)
thus ?thesis

by simp
qed

qed

lemma irreflexive-linorder-matrix:
fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-stone-relation-algebra.irreflexive f ←→ (∀ i . f (i,i) = bot)
using irreflexive-linorder-matrix-1 irreflexive-linorder-matrix-2 by auto

As usual, symmetric matrices are those which do not change under trans-
position.
lemma symmetric-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-stone-relation-algebra.symmetric f ←→ (∀ i j . f (i,j) = f (j,i))
by (metis (mono-tags, lifting) case-prod-conv cond-case-prod-eta conv-matrix-def

conv-def)

114

Antisymmetric matrices are characterised as follows: each entry not on
the diagonal or its mirror entry across the diagonal must be bot.
lemma antisymmetric-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-stone-relation-algebra.antisymmetric f ←→ (∀ i j . i 6= j −→ f

(i,j) = bot ∨ f (j,i) = bot)
proof −

have matrix-stone-relation-algebra.antisymmetric f ←→ (∀ i j . i 6= j −→ f (i,j)
u f (j,i) ≤ bot)

by (simp add: conv-matrix-def inf-matrix-def less-eq-matrix-def
one-matrix-def)

thus ?thesis
by (metis (no-types, opaque-lifting) inf .absorb-iff1 inf .cobounded1 inf-bot-right

inf-dense)
qed

For asymmetric matrices the diagonal is included: each entry or its mirror
entry across the diagonal must be bot.
lemma asymmetric-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-stone-relation-algebra.asymmetric f ←→ (∀ i j . f (i,j) = bot ∨ f

(j,i) = bot)
proof −

have matrix-stone-relation-algebra.asymmetric f ←→ (∀ i j . f (i,j) u f (j,i) ≤
bot)

apply (unfold conv-matrix-def inf-matrix-def conv-def id-def bot-matrix-def)
by (metis (mono-tags, lifting) bot.extremum bot.extremum-uniqueI

case-prod-conv old.prod.exhaust)
thus ?thesis

by (metis (no-types, opaque-lifting) inf .absorb-iff1 inf .cobounded1 inf-bot-right
inf-dense)
qed

In a transitive matrix, the weight of one of the edges on an indirect route
must be below the weight of the direct edge.
lemma transitive-linorder-matrix:

fixes f :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
shows matrix-idempotent-semiring.transitive f ←→ (∀ i j k . f (i,k) ≤ f (i,j) ∨

f (k,j) ≤ f (i,j))
proof −

have matrix-idempotent-semiring.transitive f ←→ (∀ i j . (
⊔

k f (i,k) ∗ f (k,j))
≤ f (i,j))

by (simp add: times-matrix-def less-eq-matrix-def)
also have ... ←→ (∀ i j k . f (i,k) ∗ f (k,j) ≤ f (i,j))

by (simp add: lub-sum-iff)
also have ... ←→ (∀ i j k . f (i,k) ≤ f (i,j) ∨ f (k,j) ≤ f (i,j))

using inf-less-eq by fastforce
finally show ?thesis

.

115

qed

We finally show the effect of composing with a coreflexive (test) from the
left and from the right. This amounts to a restriction of each row or column
to the entry on the diagonal of the coreflexive. In this case, restrictions are
formed by meets.
lemma coreflexive-comp-linorder-matrix:

fixes f g :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-idempotent-semiring.coreflexive f

shows (f � g) (i,j) = f (i,i) u g (i,j)
proof −

have 1 : ∀ k . i 6= k −→ f (i,k) = bot
using assms coreflexive-linorder-matrix by auto

have (
⊔

k f (i,k)) = f (i,i) t (
⊔

k∈UNIV−{i} f (i,k))
by (metis (no-types) UNIV-def brouwer .inf-bot-right finite-UNIV insert-def

sup-monoid.sum.insert-remove)
hence 2 : (

⊔
k f (i,k)) = f (i,i)

using 1 by (metis (no-types) linorder-finite-sup-selective sup-not-bot)
have (f � g) (i,j) = (f � mtop ⊗ g) (i,j)

by (metis assms matrix-stone-relation-algebra.coreflexive-comp-top-inf)
also have ... = (

⊔
k f (i,k)) u g (i,j)

by (metis inf-matrix-def comp-top-linorder-matrix)
finally show ?thesis

using 2 by simp
qed

lemma comp-coreflexive-linorder-matrix:
fixes f g :: (′a::finite, ′b::linorder-stone-relation-algebra-expansion) square
assumes matrix-idempotent-semiring.coreflexive g

shows (f � g) (i,j) = f (i,j) u g (j,j)
proof −

have (f � g) (i,j) = ((f � g)t) (j,i)
by (simp add: conv-matrix-def)

also have ... = (g � f t) (j,i)
by (simp add: assms matrix-stone-relation-algebra.conv-dist-comp

matrix-stone-relation-algebra.coreflexive-symmetric)
also have ... = g (j,j) u (f t) (j,i)

by (simp add: assms coreflexive-comp-linorder-matrix)
also have ... = f (i,j) u g (j,j)

by (metis (no-types, lifting) conv-def old.prod.case conv-matrix-def
inf-commute)

finally show ?thesis
.

qed

end

116

8 An Operation to Select Components
In this theory we axiomatise an operation to select components of a graph.
This is joint work with Nicolas Robinson-O’Brien.
theory Choose-Component

imports
Relation-Algebras

begin

context stone-relation-algebra
begin

A vector-classes corresponds to one or more equivalence classes and a
unique-vector-class corresponds to a single equivalence class.
definition vector-classes :: ′a ⇒ ′a ⇒ bool where vector-classes x v ≡
regular x ∧ regular v ∧ equivalence x ∧ vector v ∧ x ∗ v ≤ v ∧ v 6= bot
definition unique-vector-class :: ′a ⇒ ′a ⇒ bool where unique-vector-class x v
≡ vector-classes x v ∧ v ∗ vT ≤ x

end

We introduce the operation choose-component.

∗ Axiom component-in-v expresses that the result of choose-component
is contained in the set of vertices, v, we are selecting from, ignoring
the weights.

∗ Axiom component-is-vector states that the result of choose-component
is a vector.

∗ Axiom component-is-regular states that the result of choose-component
is regular.

∗ Axiom component-is-connected states that any two vertices from the
result of choose-component are connected in e.

∗ Axiom component-single states that the result of choose-component is
closed under being connected in e.

∗ Finally, axiom component-not-bot-when-v-bot-bot expresses that the
operation choose-component returns a non-empty component if the
input satisfies the given criteria.

class choose-component =
fixes choose-component :: ′a ⇒ ′a ⇒ ′a

class choose-component-algebra = choose-component + stone-relation-algebra +

117

assumes component-is-vector : vector (choose-component e v)
assumes component-is-regular : regular (choose-component e v)
assumes component-in-v: choose-component e v ≤ −−v
assumes component-is-connected: choose-component e v ∗

(choose-component e v)T ≤ e
assumes component-single: e ∗ choose-component e v ≤

choose-component e v
assumes component-not-bot-when-v-bot-bot: vector-classes e v −→

choose-component e v 6= bot
begin

lemma component-single-eq:
assumes equivalence x
shows choose-component x v = x ∗ choose-component x v

proof −
have choose-component x v ≤ x ∗ choose-component x v

by (meson component-is-connected ex231c mult-isotone order-lesseq-imp)
thus ?thesis

by (simp add: component-single order .antisym)
qed

end

class choose-component-algebra-tarski = choose-component-algebra +
stone-relation-algebra-tarski
begin

definition choose-component-point x ≡ choose-component 1 (−−x)

lemma choose-component-point-point:
assumes vector x

and x 6= bot
shows point (choose-component-point x)

proof (intro conjI)
show 1 : vector (choose-component-point x)

by (simp add: choose-component-point-def component-is-vector)
show injective (choose-component-point x)

by (simp add: choose-component-point-def component-is-connected)
have vector-classes 1 (−−x)

by (metis assms comp-inf .semiring.mult-zero-left coreflexive-symmetric
inf .eq-refl mult-1-left pp-one regular-closed-p selection-closed-id vector-classes-def
vector-complement-closed)

hence choose-component-point x 6= bot
by (simp add: choose-component-point-def component-not-bot-when-v-bot-bot)

thus surjective (choose-component-point x)
using 1 choose-component-point-def component-is-regular tarski

vector-mult-closed by fastforce
qed

118

lemma choose-component-point-decreasing:
choose-component-point x ≤ −−x
by (metis choose-component-point-def component-in-v regular-closed-p)

end

end

References
[1] C. J. Aarts, R. C. Backhouse, E. A. Boiten, H. Doornbos, N. van

Gasteren, R. van Geldrop, P. F. Hoogendijk, E. Voermans, and
J. van der Woude. Fixed-point calculus. Inf. Process. Lett.,
53(3):131–136, 1995.

[2] H. Andréka and S. Mikulás. Axiomatizability of positive algebras of
binary relations. Algebra Universalis, 66(1–2):7–34, 2011.

[3] A. Armstrong, S. Foster, G. Struth, and T. Weber. Relation algebra.
Archive of Formal Proofs, 2016, first version 2014.

[4] A. Armstrong, V. B. F. Gomes, G. Struth, and T. Weber. Kleene
algebra. Archive of Formal Proofs, 2016, first version 2013.

[5] R. Berghammer. Ordnungen, Verbände und Relationen mit Anwendun-
gen. Springer, second edition, 2012.

[6] R. Berghammer and W. Guttmann. Closure, properties and closure
properties of multirelations. In W. Kahl, M. Winter, and J. N. Oliveira,
editors, Relational and Algebraic Methods in Computer Science, vol-
ume 9348 of Lecture Notes in Computer Science, pages 67–83. Springer,
2015.

[7] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

[8] D. A. Bredihin and B. M. Schein. Representations of ordered semi-
groups and lattices by binary relations. Colloquium Mathematicum,
39(1):1–12, 1978.

[9] S. D. Comer. On connections between information systems, rough sets
and algebraic logic. In C. Rauszer, editor, Algebraic Methods in Logic
and in Computer Science, volume 28 of Banach Center Publications,
pages 117–124. Institute of Mathematics, Polish Academy of Sciences,
1993.

[10] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, second edition, 2002.

119

[11] P. J. Freyd and A. Ščedrov. Categories, Allegories, volume 39 of North-
Holland Mathematical Library. Elsevier Science Publishers, 1990.

[12] J. A. Goguen. L-fuzzy sets. Journal of Mathematical Analysis and
Applications, 18(1):145–174, 1967.

[13] W. Guttmann. Algebras for iteration and infinite computations. Acta
Inf., 49(5):343–359, 2012.

[14] W. Guttmann. Relation-algebraic verification of Prim’s minimum span-
ning tree algorithm. In A. Sampaio and F. Wang, editors, Theoretical
Aspects of Computing – ICTAC 2016, volume 9965 of Lecture Notes in
Computer Science, pages 51–68. Springer, 2016.

[15] W. Guttmann. Stone algebras. Archive of Formal Proofs, 2016.

[16] W. Guttmann. Stone relation algebras. In P. Höfner, D. Pous, and
G. Struth, editors, Relational and Algebraic Methods in Computer
Science, volume 10226 of Lecture Notes in Computer Science, pages
127–143. Springer, 2017.

[17] R. Hirsch and I. Hodkinson. Relation Algebras by Games. Elsevier
Science B.V., 2002.

[18] Y. Kawahara and H. Furusawa. Crispness in Dedekind categories. Bul-
letin of Informatics and Cybernetics, 33(1–2):1–18, 2001.

[19] Y. Kawahara, H. Furusawa, and M. Mori. Categorical representation
theorems of fuzzy relations. Information Sciences, 119(3–4):235–251,
1999.

[20] R. D. Maddux. Relation-algebraic semantics. Theoretical Comput. Sci.,
160(1–2):1–85, 1996.

[21] R. D. Maddux. Relation Algebras. Elsevier B.V., 2006.

[22] J. N. Oliveira. Extended static checking by calculation using the point-
free transform. In A. Bove, L. S. Barbosa, A. Pardo, and J. S. Pinto,
editors, Language Engineering and Rigorous Software Development,
volume 5520 of Lecture Notes in Computer Science, pages 195–251.
Springer, 2009.

[23] R. Parikh. Propositional logics of programs: new directions. In
M. Karpinski, editor, Foundations of Computation Theory, volume 158
of Lecture Notes in Computer Science, pages 347–359. Springer, 1983.

[24] Z. Pawlak. Rough sets, rough relations and rough functions. Funda-
menta Informaticae, 27(2–3):103–108, 1996.

120

[25] D. Peleg. Concurrent dynamic logic. J. ACM, 34(2):450–479, 1987.

[26] G. Schmidt. Relational Mathematics. Cambridge University Press,
2011.

[27] G. Schmidt and T. Ströhlein. Relations and Graphs. Springer, 1993.

[28] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic,
6(3):73–89, 1941.

[29] M. Winter. A new algebraic approach to L-fuzzy relations convenient
to study crispness. Information Sciences, 139(3–4):233–252, 2001.

121

	Synopsis and Motivation
	Fixpoints
	Semirings
	Idempotent Semirings
	Bounded Idempotent Semirings

	Relation Algebras
	Single-Object Bounded Distributive Allegories
	Single-Object Pseudocomplemented Distributive Allegories
	Stone Relation Algebras
	Relation Algebras

	Subalgebras of Relation Algebras
	Matrix Relation Algebras
	Finite Suprema
	Square Matrices
	Stone Algebras
	Semirings
	Stone Relation Algebras

	Matrices over Bounded Linear Orders
	An Operation to Select Components

