Stone Relation Algebras

Walter Guttmann

March 17, 2025

Abstract

We develop Stone relation algebras, which generalise relation algebras by replacing the underlying Boolean algebra structure with a Stone algebra. We show that finite matrices over bounded linear orders form an instance. As a consequence, relation-algebraic concepts and methods can be used for reasoning about weighted graphs. We also develop a fixpoint calculus and apply it to compare different definitions of reflexive-transitive closures in semirings.

Contents

1	Syn	opsis and Motivation	2
2	Fixpoints		3
3	Semirings		17
	3.1	Idempotent Semirings	18
	3.2	Bounded Idempotent Semirings	27
4	Relation Algebras		31
	4.1	Single-Object Bounded Distributive Allegories	31
	4.2	Single-Object Pseudocomplemented Distributive Allegories .	54
	4.3	Stone Relation Algebras	68
	4.4	Relation Algebras	70
5	Sub	palgebras of Relation Algebras	7 8
6	Matrix Relation Algebras		84
	6.1	Finite Suprema	84
	6.2	Square Matrices	87
	6.3	Stone Algebras	88
	6.4	Semirings	90
	6.5	Stone Relation Algebras	94
7	Ma	trices over Bounded Linear Orders	98

1 Synopsis and Motivation

This document describes the following six theory files:

- * Fixpoints develops a fixpoint calculus based on partial orders. We also consider least (pre)fixpoints and greatest (post)fixpoints. The derived rules include unfold, square, rolling, fusion, exchange and diagonal rules studied in [1]. Our results are based on the existence of fixpoints instead of completeness of the underlying structure.
- * Semirings contains a hierarchy of structures generalising idempotent semirings. In particular, several of these algebras do not assume that multiplication is associative in order to capture models such as multirelations. Even in such a weak setting we can derive several results comparing different definitions of reflexive-transitive closures based on fixpoints.
- * Relation Algebras introduces Stone relation algebras, which weaken the Boolean algebra structure of relation algebras to Stone algebras. This is motivated by the wish to represent weighted graphs (matrices over numbers) in addition to unweighted graphs (Boolean matrices) that form relations. Many results of relation algebras can be derived from the weaker axioms and therefore also apply to weighted graphs. Some results hold in Stone relation algebras after small modifications. This allows us to apply relational concepts and methods also to weighted graphs. In particular, we prove a number of properties that have been used to verify graph algorithms. Tarski's relation algebras [28] arise as a special case by imposing further axioms.
- * Subalgebras of Relation Algebras studies the structures of subsets of elements characterised by a given property. In particular we look at regular elements (which correspond to unweighted graphs), coreflexives (tests), vectors and covectors (which can be used to represent sets). The subsets are turned into Isabelle/HOL types, which are shown to form instances of various algebras.
- * Matrix Relation Algebras lifts the Stone algebra hierarchy, the semiring structure and, finally, Stone relation algebras to finite square matrices. These are mostly standard constructions similar to those in [3, 4] implemented so that they work for many algebraic structures. In particular, they can be instantiated to weighted graphs (see below) and extended to Kleene algebras (not part of this development).

* Matrices over Bounded Linear Orders studies relational properties. In particular, we characterise univalent, injective, total, surjective, mapping, bijective, vector, covector, point, atom, reflexive, coreflexive, irreflexive, symmetric, antisymmetric and asymmetric matrices. Definitions of these properties are taken from relation algebras and their meaning for matrices over bounded linear orders (weighted graphs) is explained by logical formulas in terms of matrix entries.

Following a refactoring, the selection of components of a graph in Stone relation algebras, which was originally part of Nicolas Robinson-O'Brien's theory Relational_Minimum_Spanning_Trees/Boruvka.thy, has been moved into a new theory in this entry.

The development is based on a theory of Stone algebras [15] and forms the basis for an extension to Kleene algebras to capture further properties of graphs. We apply Stone relation algebras to verify Prim's minimum spanning tree algorithm in Isabelle/HOL in [14].

Related libraries for semirings and relation algebras in the Archive of Formal Proofs are [3, 4]. The theory Kleene_Algebra/Dioid.thy introduces a number of structures that generalise idempotent semirings, but does not cover most of the semiring structures in the present development. The theory Relation_Algebra/Relation_Algebra.thy covers Tarski's relation algebras and hence cannot be reused for the present development as most properties need to be derived from the weaker axioms of Stone relation algebras. The matrix constructions in theories Kleene_Algebra/Inf_Matrix.thy and Relation_Algebra/Relation_Algebra_Models.thy are similar, but have strong restrictions on the matrix entry types not appropriate for many algebraic structures in the present development. We also deviate from these hierarchies by basing idempotent semirings directly on the Isabelle/HOL semilattice structures instead of a separate structure; this results in a somewhat smoother integration with the lattice structure of relation algebras.

2 Fixpoints

This theory develops a fixpoint calculus based on partial orders. Besides fixpoints we consider least prefixpoints and greatest postfixpoints of functions on a partial order. We do not assume that the underlying structure is complete or that all functions are continuous or isotone. Assumptions about the existence of fixpoints and necessary properties of the involved functions will be stated explicitly in each theorem. This way, the results can be instantiated by various structures, such as complete lattices and Kleene algebras, which impose different kinds of restriction. See, for example, [1, 10] for fixpoint calculi in complete lattices. Our fixpoint calculus contains similar rules, in particular:

* unfold rule,

- * fixpoint operators preserve isotonicity,
- * square rule,
- * rolling rule,
- * various fusion rules,
- * exchange rule and
- * diagonal rule.

All of our rules are based on existence rather than completeness of the underlying structure. We have applied results from this theory in [13] and subsequent papers for unifying and reasoning about the semantics of recursion in various relational and matrix-based computation models.

theory Fixpoints

imports Stone-Algebras. Lattice-Basics

begin

The whole calculus is based on partial orders only.

```
\begin{array}{c} \mathbf{context} \ \mathit{order} \\ \mathbf{begin} \end{array}
```

We first define when an element x is a least/greatest (pre/post)fixpoint of a given function f.

```
:: ('a \Rightarrow 'a) \Rightarrow 'a \Rightarrow bool \text{ where } is\text{-fixpoint}
definition is-fixpoint
f x \equiv f x = x
                                                      :: ('a \Rightarrow 'a) \Rightarrow 'a \Rightarrow bool \text{ where } is\text{-prefixpoint}
definition is-prefixpoint
f x \equiv f x \le x
                                                      (a \Rightarrow a) \Rightarrow a \Rightarrow bool \text{ where } is\text{-postfixpoint}
definition is-postfixpoint
f x \equiv f x \ge x
                                                    :: ('a \Rightarrow 'a) \Rightarrow 'a \Rightarrow bool \text{ where } is\text{-}least\text{-}fixpoint
definition is-least-fixpoint
f x \equiv f x = x \land (\forall y . f y = y \longrightarrow x \le y)
definition is-greatest-fixpoint :: ('a \Rightarrow 'a) \Rightarrow 'a \Rightarrow bool where
                               f x \equiv f x = x \land (\forall y . f y = y \longrightarrow x \ge y)
is-greatest-fixpoint
definition is-least-prefixpoint
                                                      :: ('a \Rightarrow 'a) \Rightarrow 'a \Rightarrow bool  where
\textit{is-least-prefixpoint} \qquad \textit{f} \ x \equiv \textit{f} \ x \leq x \ \land \ (\forall \ y \ . \ \textit{f} \ y \leq y \longrightarrow x \leq y)
definition is-greatest-postfixpoint :: ('a \Rightarrow 'a) \Rightarrow 'a \Rightarrow bool where
is-greatest-postfixpoint f x \equiv f x \geq x \land (\forall y . f y \geq y \longrightarrow x \geq y)
```

Next follows the existence of the corresponding fixpoints for a given function f.

```
definition has-fixpoint (a \Rightarrow a) \Rightarrow bool where has-fixpoint f \equiv \exists x \text{ . } is\text{-fixpoint } f x f \equiv \exists x \text{ . } is\text{-prefixpoint } f x f \equiv \exists x \text{ . } is\text{-prefixpoint } f x
```

```
definition has-postfixpoint
                                             (a \Rightarrow a) \Rightarrow bool \text{ where } has\text{-postfixpoint}
f \equiv \exists x . is-postfixpoint f x
                                            :: ('a \Rightarrow 'a) \Rightarrow bool  where has-least-fixpoint
{\bf definition}\ \mathit{has\text{-}least\text{-}fixpoint}
f \equiv \exists x . is-least-fixpoint f x
definition has-greatest-fixpoint
                                            :: ('a \Rightarrow 'a) \Rightarrow bool \text{ where}
has-greatest-fixpoint
                             f \equiv \exists x . is-greatest-fixpoint f x
                                            :: ('a \Rightarrow 'a) \Rightarrow bool \text{ where}
definition has-least-prefixpoint
has-least-prefixpoint
                             f \equiv \exists x . is-least-prefixpoint f x
definition has-greatest-postfixpoint :: ('a \Rightarrow 'a) \Rightarrow bool where
has\text{-}greatest\text{-}post fixpoint \ f \equiv \exists \ x \ . \ is\text{-}greatest\text{-}post fixpoint \ f \ x
     The actual least/greatest (pre/post)fixpoints of a given function f are
extracted by the following operators.
                                           :: ('a \Rightarrow 'a) \Rightarrow 'a (\langle \mu \rangle [201] 200) where \mu f
definition the-least-fixpoint
= (THE \ x \ . \ is-least-fixpoint \ f \ x)
                                            :: ('a \Rightarrow 'a) \Rightarrow 'a (\langle \nu \rightarrow [201] \ 200) where \nu
definition the-greatest-fixpoint
f = (THE \ x \ . \ is-greatest-fixpoint \ f \ x)
                                            :: ('a \Rightarrow 'a) \Rightarrow 'a \ (\langle p\mu \rangle [201] \ 200) where p\mu
definition the-least-prefixpoint
f = (THE \ x \ . \ is-least-prefixpoint \ f \ x)
definition the-greatest-postfixpoint :: ('a \Rightarrow 'a) \Rightarrow 'a \ (\langle p\nu \rightarrow [201] \ 200) where
p\nu f = (THE x . is-greatest-postfixpoint f x)
     We start with basic consequences of the above definitions.
lemma least-fixpoint-unique:
  has-least-fixpoint f \Longrightarrow \exists !x . is-least-fixpoint f x
  using has-least-fixpoint-def is-least-fixpoint-def order.antisym by auto
lemma greatest-fixpoint-unique:
  has-greatest-fixpoint f \Longrightarrow \exists !x . is-greatest-fixpoint f x
  using has-greatest-fixpoint-def is-greatest-fixpoint-def order.antisym by auto
lemma least-prefixpoint-unique:
  has\text{-}least\text{-}prefixpoint \ f \Longrightarrow \exists !x \ . \ is\text{-}least\text{-}prefixpoint \ f \ x
  using has-least-prefixpoint-def is-least-prefixpoint-def order.antisym by auto
lemma greatest-postfixpoint-unique:
  has-greatest-postfixpoint f \Longrightarrow \exists !x . is-greatest-postfixpoint f x
  using has-greatest-postfixpoint-def is-greatest-postfixpoint-def order.antisym by
auto
lemma least-fixpoint:
  has-least-fixpoint f \Longrightarrow is-least-fixpoint f (\mu f)
  by (simp add: least-fixpoint-unique the I' the-least-fixpoint-def)
lemma greatest-fixpoint:
  has-greatest-fixpoint f \Longrightarrow is-greatest-fixpoint f(\nu f)
  by (simp add: greatest-fixpoint-unique the I' the-greatest-fixpoint-def)
lemma least-prefixpoint:
```

```
has-least-prefixpoint f \implies is-least-prefixpoint f (p\mu f)
 by (simp add: least-prefixpoint-unique the I' the-least-prefixpoint-def)
lemma greatest-postfixpoint:
  has-greatest-postfixpoint f \Longrightarrow is-greatest-postfixpoint f(p\nu f)
 by (simp add: greatest-postfixpoint-unique the I' the-greatest-postfixpoint-def)
lemma least-fixpoint-same:
  is-least-fixpoint f x \Longrightarrow x = \mu f
  by (simp add: is-least-fixpoint-def order.antisym the-equality
the-least-fixpoint-def)
lemma greatest-fixpoint-same:
  is-greatest-fixpoint f x \Longrightarrow x = \nu f
 using greatest-fixpoint greatest-fixpoint-unique has-greatest-fixpoint-def by auto
lemma least-prefixpoint-same:
  is-least-prefixpoint f x \Longrightarrow x = p\mu f
 using has-least-prefixpoint-def least-prefixpoint least-prefixpoint-unique by blast
lemma greatest-postfixpoint-same:
  is-greatest-postfixpoint f x \Longrightarrow x = p\nu f
  using greatest-postfixpoint greatest-postfixpoint-unique
has-greatest-postfixpoint-def by auto
lemma least-fixpoint-char:
  is-least-fixpoint f x \longleftrightarrow has-least-fixpoint f \land x = \mu f
 using has-least-fixpoint-def least-fixpoint-same by auto
lemma least-prefixpoint-char:
  is-least-prefixpoint f \times \longleftrightarrow has-least-prefixpoint f \wedge x = p\mu f
  using has-least-prefixpoint-def least-prefixpoint-same by auto
lemma greatest-fixpoint-char:
  is-greatest-fixpoint f \times \longleftrightarrow has-greatest-fixpoint f \wedge x = \nu f
 using greatest-fixpoint-same has-greatest-fixpoint-def by auto
lemma greatest-postfixpoint-char:
  is-greatest-postfixpoint f \times \longleftrightarrow has-greatest-postfixpoint f \wedge x = p\nu f
  using greatest-postfixpoint-same has-greatest-postfixpoint-def by auto
    Next come the unfold rules for least/greatest (pre/post)fixpoints.
lemma mu-unfold:
  has\text{-}least\text{-}fixpoint\ f \Longrightarrow f\ (\mu\ f) = \mu\ f
 using is-least-fixpoint-def least-fixpoint by auto
lemma pmu-unfold:
  has-least-prefixpoint f \Longrightarrow f(p\mu f) \leq p\mu f
  using is-least-prefixpoint-def least-prefixpoint by blast
```

```
lemma nu-unfold:
  has-greatest-fixpoint f \Longrightarrow \nu f = f (\nu f)
  by (metis is-greatest-fixpoint-def greatest-fixpoint)
lemma pnu-unfold:
  has-greatest-postfixpoint f \Longrightarrow p\nu \ f \le f \ (p\nu \ f)
  using greatest-postfixpoint is-greatest-postfixpoint-def by auto
     Pre-/postfixpoints of isotone functions are fixpoints.
lemma least-prefixpoint-fixpoint:
  has-least-prefixpoint f \Longrightarrow isotone f \Longrightarrow is-least-fixpoint f (p\mu f)
 {\bf using} \ \textit{is-least-fixpoint-def is-least-prefixpoint-def least-prefixpoint order.} antisym
isotone-def by auto
lemma pmu-mu:
  has-least-prefixpoint f \Longrightarrow isotone \ f \Longrightarrow p\mu \ f = \mu \ f
  by (simp add: least-fixpoint-same least-prefixpoint-fixpoint)
lemma greatest-postfixpoint-fixpoint:
  has-greatest-postfixpoint f \Longrightarrow isotone \ f \Longrightarrow is-greatest-fixpoint \ f \ (p\nu \ f)
  using greatest-postfixpoint is-greatest-fixpoint-def is-greatest-postfixpoint-def
order.antisym isotone-def by auto
lemma pnu-nu:
  has-greatest-postfixpoint f \Longrightarrow isotone \ f \Longrightarrow p\nu \ f = \nu \ f
  by (simp add: greatest-fixpoint-same greatest-postfixpoint-fixpoint)
     The fixpoint operators preserve isotonicity.
lemma pmu-isotone:
  has-least-prefixpoint f \Longrightarrow has-least-prefixpoint g \Longrightarrow f \leq \leq g \Longrightarrow p\mu \ f \leq p\mu \ g
  by (metis is-least-prefixpoint-def least-prefixpoint order-trans lifted-less-eq-def)
lemma mu-isotone:
  has-least-prefixpoint f \Longrightarrow has-least-prefixpoint g \Longrightarrow isotone \ f \Longrightarrow isotone \ g
\implies f \leq \leq g \implies \mu f \leq \mu g
  using pmu-isotone pmu-mu by fastforce
lemma pnu-isotone:
  has-greatest-postfixpoint f \Longrightarrow has-greatest-postfixpoint g \Longrightarrow f \leq \leq g \Longrightarrow p\nu f
 \mathbf{by}\ (\mathit{metis}\ \mathit{greatest-postfixpoint}\ \mathit{is-greatest-postfixpoint-def}\ \mathit{order-trans}
lifted-less-eq-def)
lemma nu-isotone:
  has-greatest-postfixpoint f \Longrightarrow has-greatest-postfixpoint g \Longrightarrow isotone f \Longrightarrow
isotone \ g \Longrightarrow f \leq \leq g \Longrightarrow \nu \ f \leq \nu \ g
  using pnu-isotone pnu-nu by fastforce
```

The square rule for fixpoints of a function applied twice.

```
lemma mu-square:
  isotone f \Longrightarrow has-least-fixpoint f \Longrightarrow has-least-fixpoint (f \circ f) \Longrightarrow \mu f = \mu (f \circ f)
 by (metis (no-types, opaque-lifting) order.antisym is-least-fixpoint-def
isotone-def least-fixpoint-char least-fixpoint-unique o-apply)
lemma nu-square:
  isotone f \Longrightarrow has-greatest-fixpoint f \Longrightarrow has-greatest-fixpoint (f \circ f) \Longrightarrow \nu f =
\nu (f \circ f)
  by (metis (no-types, opaque-lifting) order.antisym is-greatest-fixpoint-def
isotone-def greatest-fixpoint-char greatest-fixpoint-unique o-apply)
    The rolling rule for fixpoints of the composition of two functions.
lemma mu-roll:
  assumes isotone q
     and has-least-fixpoint (f \circ g)
     and has-least-fixpoint (g \circ f)
   shows \mu (g \circ f) = g (\mu (f \circ g))
proof (rule order.antisym)
  show \mu (g \circ f) \leq g (\mu (f \circ g))
   by (metis\ assms(2-3)\ comp-apply\ is-least-fixpoint-def\ least-fixpoint)
next
  have is-least-fixpoint (g \circ f) (\mu (g \circ f))
   by (simp add: assms(3) least-fixpoint)
  thus g(\mu(f \circ g)) \leq \mu(g \circ f)
   by (metis\ (no\text{-}types)\ assms(1-2)\ comp\text{-}def\ is\text{-}least\text{-}fixpoint\text{-}def\ least\text{-}fixpoint}
isotone-def)
qed
lemma nu-roll:
 assumes isotone g
     and has-greatest-fixpoint (f \circ g)
     and has-greatest-fixpoint (g \circ f)
   shows \nu (g \circ f) = g (\nu (f \circ g))
proof (rule order.antisym)
  have 1: is-greatest-fixpoint (f \circ g) (\nu (f \circ g))
   by (simp\ add:\ assms(2)\ greatest-fixpoint)
  have is-greatest-fixpoint (g \circ f) (\nu (g \circ f))
   by (simp\ add:\ assms(3)\ greatest-fixpoint)
  thus \nu (g \circ f) \leq g (\nu (f \circ g))
   using 1 by (metis (no-types) assms(1) comp-def is-greatest-fixpoint-def
isotone-def)
\mathbf{next}
  show g (\nu (f \circ g)) \leq \nu (g \circ f)
   by (metis\ assms(2-3)\ comp-apply\ greatest-fixpoint\ is-greatest-fixpoint-def)
qed
    Least (pre)fixpoints are below greatest (post)fixpoints.
```

lemma mu-below-nu:

```
has-least-fixpoint f \Longrightarrow has-greatest-fixpoint f \Longrightarrow \mu f < \nu f
    using greatest-fixpoint is-greatest-fixpoint-def mu-unfold by auto
lemma pmu-below-pnu-fix:
    has-fixpoint f \Longrightarrow has-least-prefixpoint f \Longrightarrow has-greatest-postfixpoint f \Longrightarrow p\mu f
\leq p\nu f
    by (metis greatest-postfixpoint has-fixpoint-def is-fixpoint-def
is-greatest-postfixpoint-def is-least-prefixpoint-def least-prefixpoint order-refl
order-trans)
lemma pmu-below-pnu-iso:
    isotone f \Longrightarrow has-least-prefixpoint f \Longrightarrow has-greatest-postfixpoint f \Longrightarrow p\mu f \le
p\nu f
   using greatest-postfixpoint-fixpoint is-greatest-fixpoint-def is-least-fixpoint-def
least-prefixpoint-fixpoint by auto
         Several variants of the fusion rule for fixpoints follow.
lemma mu-fusion-1:
    assumes galois l u
            and isotone h
            and has-least-prefixpoint g
            and has-least-fixpoint h
           and l(g(u(\mu h))) \leq h(l(u(\mu h)))
        shows l(p\mu g) \leq \mu h
proof -
    have l (g (u (\mu h))) \leq \mu h
       \mathbf{by}\ (\mathit{metis}\ \mathit{assms}(1,2,4,5)\ \mathit{galois-char}\ \mathit{isotone-def}\ \mathit{order-lesseq-imp}\ \mathit{mu-unfold})
    thus l (p\mu g) \leq \mu h
    using assms(1,3) is-least-prefixpoint-def least-prefixpoint galois-def by auto
qed
lemma mu-fusion-2:
   galois l \ u \Longrightarrow isotone \ h \Longrightarrow has-least-prefixpoint g \Longrightarrow has-least-fixpoint h \Longrightarrow l
\circ g \leq \leq h \circ l \Longrightarrow l (p\mu g) \leq \mu h
   by (simp add: mu-fusion-1 lifted-less-eq-def)
lemma mu-fusion-equal-1:
    \textit{galois } l \; u \Longrightarrow \textit{isotone } g \Longrightarrow \textit{isotone } h \Longrightarrow \textit{has-least-prefixpoint } q \Longrightarrow
has\text{-}least\text{-}fixpoint \ h \Longrightarrow l \ (g \ (u \ (\mu \ h))) \le h(l(u(\mu \ h))) \Longrightarrow l \ (g \ (p\mu \ g)) = h \ (l \ (p\mu \ g)
(g) \Longrightarrow \mu \ h = l \ (p\mu \ g) \land \mu \ h = l \ (\mu \ g)
   by (metis order.antisym least-fixpoint least-prefixpoint-fixpoint
is-least-fixpoint-def mu-fusion-1 pmu-mu)
lemma mu-fusion-equal-2:
    galois l \ u \Longrightarrow isotone \ h \Longrightarrow has-least-prefixpoint \ g \Longrightarrow has-least-prefixpoint \ h
\implies l \ (g \ (u \ (\mu \ h))) \le h \ (l \ (u \ (\mu \ h))) \land l \ (g \ (p\mu \ g)) = h \ (l \ (p\mu \ g)) \longrightarrow p\mu \ h = l
(p\mu \ g) \wedge \mu \ h = l \ (p\mu \ g)
    by (metis is-least-prefixpoint-def least-fixpoint-char least-prefixpoint
```

least-prefixpoint-fixpoint order.antisym galois-char isotone-def mu-fusion-1)

```
lemma mu-fusion-equal-3:
 assumes galois l u
     and isotone g
     and isotone h
     and has-least-prefixpoint g
     and has-least-fixpoint h
     and l \circ g = h \circ l
   shows \mu h = l (p\mu g)
     and \mu h = l (\mu g)
proof -
 have \forall x . l (g x) = h (l x)
   using assms(6) comp-eq-elim by blast
 thus \mu h = l (p\mu g)
   using assms(1-5) mu-fusion-equal-1 by auto
 thus \mu h = l (\mu q)
   by (simp\ add:\ assms(2,4)\ pmu-mu)
\mathbf{qed}
lemma mu-fusion-equal-4:
 assumes galois l u
     and isotone h
     and has-least-prefixpoint g
     and has-least-prefixpoint h
     and l \circ g = h \circ l
   shows p\mu h = l (p\mu g)
     and \mu h = l (p\mu g)
proof -
 have \forall x . l (g x) = h (l x)
   using assms(5) comp-eq-elim by blast
 thus p\mu h = l (p\mu g)
   using assms(1-4) mu-fusion-equal-2 by auto
 thus \mu h = l (p\mu g)
   by (simp \ add: \ assms(2,4) \ pmu-mu)
qed
lemma nu-fusion-1:
 assumes galois l u
     and isotone h
     and has-greatest-postfixpoint g
     and has-greatest-fixpoint h
     and h(u(l(\nu h))) \leq u(g(l(\nu h)))
   shows \nu \ h \leq u \ (p\nu \ g)
proof -
 have \nu h \leq u (g (l (\nu h)))
   by (metis\ assms(1,2,4,5)\ order-trans\ galois-char\ isotone-def\ nu-unfold)
 thus \nu h \leq u (p\nu g)
   by (metis\ assms(1,3)\ greatest-postfix point\ is-greatest-postfix point-def
ord.galois-def)
```

qed

```
lemma nu-fusion-2:
  galois l \ u \Longrightarrow isotone \ h \Longrightarrow has-greatest-postfixpoint \ g \Longrightarrow has-greatest-fixpoint
h \Longrightarrow h \circ u \leq \leq u \circ g \Longrightarrow \nu \ h \leq u \ (p\nu \ g)
 by (simp add: nu-fusion-1 lifted-less-eq-def)
lemma nu-fusion-equal-1:
  \textit{galois } l \text{ } u \Longrightarrow \textit{isotone } g \Longrightarrow \textit{isotone } h \Longrightarrow \textit{has-greatest-postfixpoint } g \Longrightarrow
\textit{has-greatest-fixpoint $h \Longrightarrow h$ } (u \ (l \ (\nu \ h))) \le u \ (g \ (l \ (\nu \ h))) \Longrightarrow h \ (u \ (p\nu \ g)) = u
(g (p\nu g)) \Longrightarrow \nu h = u (p\nu g) \wedge \nu h = u (\nu g)
  by (metis greatest-fixpoint-char greatest-postfixpoint-fixpoint
is-greatest-fixpoint-def order.antisym nu-fusion-1)
lemma nu-fusion-equal-2:
  qalois\ l\ u \Longrightarrow isotone\ h \Longrightarrow has-greatest-postfixpoint\ q \Longrightarrow
has-greatest-postfixpoint h \Longrightarrow h (u (l (\nu h))) \le u (g (l (\nu h))) \land h (u (p\nu g)) =
u(g(p\nu g)) \Longrightarrow p\nu h = u(p\nu g) \wedge \nu h = u(p\nu g)
 by (metis greatest-fixpoint-char greatest-postfixpoint greatest-postfixpoint-fixpoint
is-greatest-postfixpoint-def order.antisym galois-char nu-fusion-1 isotone-def)
lemma nu-fusion-equal-3:
  assumes galois l u
      and isotone g
      and isotone h
      and has-greatest-postfixpoint g
      and has-greatest-fixpoint h
      and h \circ u = u \circ g
    shows \nu h = u (p\nu g)
      and \nu h = u (\nu g)
proof -
  have \forall x . u (g x) = h (u x)
    using assms(6) comp-eq-dest by fastforce
  thus \nu h = u (p\nu g)
    using assms(1-5) nu-fusion-equal-1 by auto
  thus \nu h = u (\nu q)
    by (simp\ add:\ assms(2-4)\ pnu-nu)
qed
lemma nu-fusion-equal-4:
  assumes galois l u
      and isotone h
      and has-greatest-postfixpoint g
      and has-greatest-postfixpoint h
      and h \circ u = u \circ g
    shows p\nu h = u (p\nu g)
      and \nu h = u (p\nu g)
proof -
 have \forall x . u (g x) = h (u x)
```

```
thus p\nu h = u (p\nu g)
   using assms(1-4) nu-fusion-equal-2 by auto
  thus \nu h = u (p \nu q)
   by (simp\ add:\ assms(2,4)\ pnu-nu)
qed
    Next come the exchange rules for replacing the first/second function in
a composition.
lemma mu-exchange-1:
 assumes galois l u
     and isotone q
     and isotone h
     and has-least-prefixpoint (l \circ h)
     and has-least-prefixpoint (h \circ g)
     and has-least-fixpoint (g \circ h)
     and l \circ h \circ g \leq g \circ h \circ l
   shows \mu (l \circ h) \leq \mu (g \circ h)
proof -
 have 1: l \circ (h \circ g) \leq \leq (g \circ h) \circ l
   by (simp add: assms(7) rewriteL-comp-comp)
 have (l \circ h) (\mu (g \circ h)) = l (\mu (h \circ g))
   by (metis\ assms(2,3,5,6)\ comp-apply\ least-fixpoint-char
least-prefixpoint-fixpoint isotone-def mu-roll)
 also have \dots \leq \mu \ (g \circ h)
   using 1 by (metis assms(1-3,5,6) comp-apply least-fixpoint-char
least-prefixpoint-fixpoint isotone-def mu-fusion-2)
  finally have p\mu (l \circ h) \leq \mu (g \circ h)
   using assms(4) is-least-prefixpoint-def least-prefixpoint by blast
  thus \mu (l \circ h) \leq \mu (g \circ h)
   by (metis\ assms(1,3,4)\ galois-char\ isotone-def\ least-fixpoint-char
least-prefixpoint-fixpoint o-apply)
\mathbf{qed}
lemma mu-exchange-2:
 assumes galois l u
     and isotone g
     and isotone h
     and has-least-prefixpoint (l \circ h)
     and has-least-prefixpoint (h \circ l)
     and has-least-prefixpoint (h \circ g)
     and has-least-fixpoint (g \circ h)
     and has-least-fixpoint (h \circ g)
     and l \circ h \circ g \leq \leq g \circ h \circ l
   shows \mu (h \circ l) \leq \mu (h \circ g)
proof -
 have \mu (h \circ l) = h (\mu (l \circ h))
   by (metis (no-types, lifting) assms(1,3-5) galois-char isotone-def
least-fixpoint-char least-prefixpoint-fixpoint mu-roll o-apply)
```

using assms(5) comp-eq-dest by fastforce

```
also have \dots \leq h \ (\mu \ (g \circ h))
   using assms(1-4,6,7,9) isotone-def mu-exchange-1 by blast
 also have ... = \mu (h \circ g)
   by (simp add: assms(3,7,8) mu-roll)
 finally show ?thesis
\mathbf{qed}
lemma mu-exchange-equal:
 assumes galois l u
     and galois k t
     and isotone h
     and has-least-prefixpoint (l \circ h)
     and has-least-prefixpoint (h \circ l)
     and has-least-prefixpoint (k \circ h)
     and has-least-prefixpoint (h \circ k)
     and l \circ h \circ k = k \circ h \circ l
   shows \mu (l \circ h) = \mu (k \circ h)
     and \mu (h \circ l) = \mu (h \circ k)
proof -
 have 1: has-least-fixpoint (k \circ h)
   using assms(2,3,6) least-fixpoint-char least-prefixpoint-fixpoint galois-char
isotone-def by auto
 have 2: has-least-fixpoint (h \circ k)
   using assms(2,3,7) least-fixpoint-char least-prefixpoint-fixpoint galois-char
isotone-def by auto
 have 3: has-least-fixpoint (l \circ h)
   \mathbf{using}\ assms(1,3,4)\ least\mbox{-}fixpoint\mbox{-}char\ least\mbox{-}prefixpoint\mbox{-}fixpoint\ galois\mbox{-}char
isotone-def by auto
 have 4: has-least-fixpoint (h \circ l)
   using assms(1,3,5) least-fixpoint-char least-prefixpoint-fixpoint galois-char
isotone-def by auto
 show \mu (h \circ l) = \mu (h \circ k)
   using 1 2 3 4 assms order.antisym galois-char lifted-reflexive mu-exchange-2
by auto
 show \mu (l \circ h) = \mu (k \circ h)
   using 1 2 3 4 assms order.antisym galois-char lifted-reflexive mu-exchange-1
by auto
qed
lemma nu-exchange-1:
 assumes galois l u
     and isotone g
     and isotone h
     and has-greatest-postfixpoint (u \circ h)
     and has-greatest-postfixpoint (h \circ g)
     and has-greatest-fixpoint (g \circ h)
     and g \circ h \circ u \leq \leq u \circ h \circ g
   shows \nu (g \circ h) \leq \nu (u \circ h)
```

```
proof -
  have (g \circ h) \circ u \leq u \circ (h \circ g)
   by (simp add: assms(7) o-assoc)
  hence \nu (g \circ h) \leq u (\nu (h \circ g))
   by (metis\ assms(1-3,5,6)\ greatest-fixpoint-char greatest-postfixpoint-fixpoint
isotone-def nu-fusion-2 o-apply)
  also have ... = (u \circ h) (\nu (g \circ h))
   by (metis\ assms(2,3,5,6)\ greatest-fixpoint-char greatest-postfixpoint-fixpoint
isotone-def nu-roll o-apply)
  finally have \nu (g \circ h) \leq p\nu (u \circ h)
   using assms(4) greatest-postfixpoint is-greatest-postfixpoint-def by blast
  thus \nu (g \circ h) \leq \nu (u \circ h)
   using assms(1,3,4) galois-char greatest-fixpoint-char
greatest-postfixpoint-fixpoint isotone-def by auto
qed
lemma nu-exchange-2:
 assumes galois l u
     and isotone g
     and isotone h
     and has-greatest-postfixpoint (u \circ h)
     and has-greatest-postfixpoint (h \circ u)
     and has-greatest-postfixpoint (h \circ g)
     and has-greatest-fixpoint (g \circ h)
     and has-greatest-fixpoint (h \circ g)
     and g \circ h \circ u \leq \leq u \circ h \circ g
   shows \nu (h \circ g) \leq \nu (h \circ u)
proof -
  have \nu (h \circ g) = h (\nu (g \circ h))
   by (simp\ add:\ assms(3,7,8)\ nu-roll)
  also have ... \leq h \ (\nu \ (u \circ h))
   using assms(1-4,6,7,9) isotone-def nu-exchange-1 by blast
  also have ... = \nu (h \circ u)
   \mathbf{by}\ (\textit{metis}\ (\textit{no-types},\ \textit{lifting})\ \textit{assms}(1,3-5)\ \textit{galois-char}\ \textit{greatest-fixpoint-char}
greatest-postfixpoint-fixpoint isotone-def nu-roll o-apply)
  finally show \nu (h \circ q) < \nu (h \circ u)
qed
lemma nu-exchange-equal:
  assumes galois l u
     and galois \ k \ t
     and isotone h
     and has-greatest-postfixpoint (u \circ h)
     and has-greatest-postfixpoint (h \circ u)
     and has-greatest-postfixpoint (t \circ h)
     and has-greatest-postfixpoint (h \circ t)
     and u \circ h \circ t = t \circ h \circ u
   shows \nu (u \circ h) = \nu (t \circ h)
```

```
and \nu (h \circ u) = \nu (h \circ t)
proof -
        have 1: has-greatest-fixpoint (u \circ h)
                using assms(1,3,4) greatest-fixpoint-char greatest-postfixpoint-fixpoint
galois-char isotone-def by auto
        have 2: has-greatest-fixpoint (h \circ u)
                 using assms(1,3,5) greatest-fixpoint-char greatest-postfixpoint-fixpoint
galois-char isotone-def by auto
         have 3: has-greatest-fixpoint (t \circ h)
                using assms(2,3,6) greatest-fixpoint-char greatest-postfixpoint-fixpoint
galois-char isotone-def by auto
        have 4: has-greatest-fixpoint (h \circ t)
                using assms(2,3,7) greatest-fixpoint-char greatest-postfixpoint-fixpoint
galois-char isotone-def by auto
        show \nu (u \circ h) = \nu (t \circ h)
                using 1 2 3 4 assms order.antisym qalois-char lifted-reflexive nu-exchange-1
by auto
       show \nu (h \circ u) = \nu (h \circ t)
                using 1 2 3 4 assms order.antisym galois-char lifted-reflexive nu-exchange-2
by auto
qed
                    The following results generalise parts of [10, Exercise 8.27] from contin-
uous functions on complete partial orders to the present setting.
lemma mu-commute-fixpoint-1:
         isotone f \Longrightarrow has-least-fixpoint (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (\mu (f \circ g)) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ g \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g = g \circ g \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g \Longrightarrow f \circ g \Longrightarrow is-fixpoint f (f \circ g) \Longrightarrow f \circ g \Longrightarrow f \circ g \Longrightarrow f \circ g \Longrightarrow
       by (metis is-fixpoint-def mu-roll)
lemma mu-commute-fixpoint-2:
         isotone g \Longrightarrow has-least-fixpoint (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (\mu (f \circ g)) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ g \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ g \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ g \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g = g \circ g \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow f \circ g \Longrightarrow is-fixpoint g (f \circ g) \Longrightarrow is-fixpoint 
       by (simp add: mu-commute-fixpoint-1)
lemma mu-commute-least-fixpoint:
         isotone \ f \Longrightarrow isotone \ g \Longrightarrow has-least-fixpoint \ f \Longrightarrow has-least-fixpoint \ g \Longrightarrow
\textit{has-least-fixpoint} \ (f \mathrel{\circ} g) \Longrightarrow f \mathrel{\circ} g = g \mathrel{\circ} f \Longrightarrow \mu \ (f \mathrel{\circ} g) = \mu \ f \Longrightarrow \mu \ g \leq \mu \ f
       by (metis is-least-fixpoint-def least-fixpoint mu-roll)
                    The converse of the preceding result is claimed for continuous f, g on a
complete partial order; it is unknown whether it holds without these addi-
tional assumptions.
lemma nu-commute-fixpoint-1:
         isotone \ f \Longrightarrow has\text{-}greatest\text{-}fixpoint \ (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is\text{-}fixpoint \ f
(\nu(f \circ g))
        by (metis is-fixpoint-def nu-roll)
lemma nu-commute-fixpoint-2:
         isotone \ g \Longrightarrow has\text{-}greatest\text{-}fixpoint \ (f \circ g) \Longrightarrow f \circ g = g \circ f \Longrightarrow is\text{-}fixpoint \ g
```

```
(\nu(f \circ g))
     by (simp add: nu-commute-fixpoint-1)
lemma nu-commute-greatest-fixpoint:
      isotone \ f \Longrightarrow isotone \ g \Longrightarrow has-greatest-fixpoint \ f \Longrightarrow has-greatest-fixpoint \ g
\implies has-greatest-fixpoint (f \circ q) \implies f \circ q = q \circ f \implies \nu \ (f \circ q) = \nu \ f \implies \nu \ f \le q = q \circ f \implies \rho \ f 
\nu g
     by (metis greatest-fixpoint is-greatest-fixpoint-def nu-roll)
               Finally, we show a number of versions of the diagonal rule for functions
with two arguments.
lemma mu-diagonal-1:
     assumes isotone (\lambda x \cdot \mu \ (\lambda y \cdot f \ x \ y))
                  and \forall x . has\text{-least-fixpoint } (\lambda y . f x y)
                   and has-least-prefixpoint (\lambda x \cdot \mu \ (\lambda y \cdot f \ x \ y))
            shows \mu (\lambda x \cdot f x x) = \mu (\lambda x \cdot \mu (\lambda y \cdot f x y))
proof -
      let ?g = \lambda x \cdot \mu \ (\lambda y \cdot f x \ y)
      have 1: is-least-prefixpoint ?g (\mu ?g)
             using assms(1,3) least-prefixpoint pmu-mu by fastforce
     have f(\mu ?g)(\mu ?g) = \mu ?g
            by (metis (no-types, lifting) assms is-least-fixpoint-def least-fixpoint-char
least-prefixpoint-fixpoint)
      hence is-least-fixpoint (\lambda x \cdot f \cdot x \cdot x) (\mu \cdot ?q)
            using 1 assms(2) is-least-fixpoint-def is-least-prefixpoint-def least-fixpoint by
auto
       thus ?thesis
            using least-fixpoint-same by simp
qed
lemma mu-diagonal-2:
     \forall x . isotone (\lambda y . f x y) \land isotone (\lambda y . f y x) \land has-least-prefixpoint (\lambda y . f x)
y) \Longrightarrow has\text{-}least\text{-}prefixpoint} (\lambda x \cdot \mu (\lambda y \cdot f x y)) \Longrightarrow \mu (\lambda x \cdot f x x) = \mu (\lambda x \cdot \mu x)
(\lambda y \cdot f x y)
      apply (rule mu-diagonal-1)
      using isotone-def lifted-less-eq-def mu-isotone apply simp
      using has-least-fixpoint-def least-prefixpoint-fixpoint apply blast
     by simp
lemma nu-diagonal-1:
       assumes isotone (\lambda x \cdot \nu \ (\lambda y \cdot f x \ y))
                   and \forall x . has-greatest-fixpoint (\lambda y . f x y)
                   and has-greatest-postfixpoint (\lambda x \cdot \nu \ (\lambda y \cdot f \ x \ y))
            shows \nu (\lambda x \cdot f x x) = \nu (\lambda x \cdot \nu (\lambda y \cdot f x y))
proof -
      let ?q = \lambda x \cdot \nu (\lambda y \cdot f x y)
      have 1: is-greatest-postfixpoint ?g(\nu ?g)
             using assms(1,3) greatest-postfixpoint pnu-nu by fastforce
      have f(\nu ?g)(\nu ?g) = \nu ?g
```

```
by (metis (no-types, lifting) assms is-greatest-fixpoint-def greatest-fixpoint-char
greatest-postfixpoint-fixpoint)
  hence is-greatest-fixpoint (\lambda x \cdot f \cdot x \cdot x) (\nu \cdot ?g)
    using 1 assms(2) is-greatest-fixpoint-def is-greatest-postfixpoint-def
greatest-fixpoint by auto
  thus ?thesis
    using greatest-fixpoint-same by simp
qed
lemma nu-diagonal-2:
 \forall x . isotone (\lambda y . f x y) \land isotone (\lambda y . f y x) \land has-greatest-postfixpoint (\lambda y . f
(x,y) \Longrightarrow has\text{-}greatest\text{-}postfixpoint} (\lambda x \cdot \nu (\lambda y \cdot f x y)) \Longrightarrow \nu (\lambda x \cdot f x x) = \nu (\lambda x \cdot f x x)
\nu (\lambda y \cdot f x y)
 apply (rule nu-diagonal-1)
 using isotone-def lifted-less-eq-def nu-isotone apply simp
  using has-greatest-fixpoint-def greatest-postfixpoint-fixpoint apply blast
 by simp
end
end
```

3 Semirings

This theory develops a hierarchy of idempotent semirings. All kinds of semiring considered here are bounded semilattices, but many lack additional properties typically assumed for semirings. In particular, we consider the variants of semirings, in which

- * multiplication is not required to be associative;
- * a right zero and unit of multiplication need not exist;
- * multiplication has a left residual;
- * multiplication from the left is not required to distribute over addition;
- * the semilattice order has a greatest element.

We have applied results from this theory a number of papers for unifying computation models. For example, see [13] for various relational and matrix-based computation models and [6] for multirelational models.

The main results in this theory relate different ways of defining reflexivetransitive closures as discussed in [6].

```
theory Semirings
imports Fixpoints
begin
```

3.1 Idempotent Semirings

The following definitions are standard for relations. Putting them into a general class that depends only on the signature facilitates reuse. Coreflexives are sometimes called partial identities, subidentities, monotypes or tests.

```
\mathbf{class}\ \mathit{times-one-ord} = \mathit{times} + \mathit{one} + \mathit{ord}
begin
abbreviation reflexive :: 'a \Rightarrow bool where reflexive x \equiv 1 \leq x
abbreviation coreflexive :: 'a \Rightarrow bool where coreflexive x \equiv x \leq 1
abbreviation transitive :: 'a \Rightarrow bool where transitive x \equiv x * x \leq x
abbreviation dense-rel :: 'a \Rightarrow bool where dense-rel x \equiv x \leq x * x
abbreviation idempotent :: 'a \Rightarrow bool where idempotent x \equiv x * x = x
abbreviation preorder :: 'a \Rightarrow bool where preorder x \equiv reflexive x \land
transitive x
abbreviation coreflexives \equiv \{ x : coreflexive x \}
end
    The first algebra is a very weak idempotent semiring, in which multipli-
cation is not necessarily associative.
{f class}\ non-associative-left-semiring = bounded-semilattice-sup-bot + times + one
 assumes mult-left-sub-dist-sup: x * y \sqcup x * z \le x * (y \sqcup z)
 assumes mult-right-dist-sup: (x \sqcup y) * z = x * z \sqcup y * z
 assumes mult-left-zero [simp]: bot * x = bot
 assumes mult-left-one [simp]: 1 * x = x
 assumes mult-sub-right-one: x \le x * 1
begin
subclass times-one-ord.
    We first show basic isotonicity and subdistributivity properties of mul-
tiplication.
lemma mult-left-isotone:
 x \le y \Longrightarrow x * z \le y * z
 using mult-right-dist-sup sup-right-divisibility by auto
lemma mult-right-isotone:
 x \le y \Longrightarrow z * x \le z * y
 using mult-left-sub-dist-sup sup.bounded-iff sup-right-divisibility by auto
lemma mult-isotone:
  w \le y \Longrightarrow x \le z \Longrightarrow w * x \le y * z
 using order-trans mult-left-isotone mult-right-isotone by blast
```

```
\mathbf{lemma} affine-isotone:
  isotone (\lambda x . y * x \sqcup z)
  using isotone-def mult-right-isotone sup-left-isotone by auto
\mathbf{lemma} mult-left-sub-dist-sup-left:
  x * y \le x * (y \sqcup z)
 by (simp add: mult-right-isotone)
\mathbf{lemma}\ \mathit{mult-left-sub-dist-sup-right}\colon
  x * z \le x * (y \sqcup z)
 by (simp add: mult-right-isotone)
\mathbf{lemma}\ \mathit{mult-right-sub-dist-sup-left}\colon
  x * z \le (x \sqcup y) * z
 by (simp add: mult-left-isotone)
\mathbf{lemma}\ \mathit{mult-right-sub-dist-sup-right}\colon
  y * z \le (x \sqcup y) * z
 by (simp add: mult-left-isotone)
lemma case-split-left:
  assumes 1 \leq w \sqcup z
     and w * x \leq y
     and z * x \leq y
   shows x \leq y
proof -
  have (w \sqcup z) * x \leq y
   by (simp\ add:\ assms(2-3)\ mult-right-dist-sup)
 thus ?thesis
   by (metis assms(1) dual-order.trans mult-left-one mult-left-isotone)
\mathbf{qed}
lemma case-split-left-equal:
  w \sqcup z = 1 \Longrightarrow w * x = w * y \Longrightarrow z * x = z * y \Longrightarrow x = y
 by (metis mult-left-one mult-right-dist-sup)
    Next we consider under which semiring operations the above properties
are closed.
lemma reflexive-one-closed:
  reflexive 1
 by simp
lemma reflexive-sup-closed:
  reflexive x \Longrightarrow reflexive (x \sqcup y)
 by (simp add: le-supI1)
\mathbf{lemma}\ \textit{reflexive-mult-closed}\colon
  reflexive x \Longrightarrow reflexive y \Longrightarrow reflexive (x * y)
```

```
using mult-isotone by fastforce
{\bf lemma}\ coreflexive\text{-}bot\text{-}closed:
  coreflexive bot
  by simp
{\bf lemma}\ coreflexive-one-closed:
  coreflexive 1
  \mathbf{by} \ simp
\mathbf{lemma}\ \mathit{coreflexive-sup-closed} \colon
  coreflexive \ x \Longrightarrow coreflexive \ y \Longrightarrow coreflexive \ (x \sqcup y)
  by simp
\mathbf{lemma}\ \mathit{coreflexive-mult-closed}\colon
  coreflexive \ x \Longrightarrow coreflexive \ y \Longrightarrow coreflexive \ (x * y)
  using mult-isotone by fastforce
{\bf lemma}\ transitive\text{-}bot\text{-}closed:
  transitive\ bot
  by simp
lemma transitive-one-closed:
  transitive\ 1
  by simp
lemma dense-bot-closed:
  dense-rel bot
  by simp
lemma dense-one-closed:
  dense-rel 1
  \mathbf{by} \ simp
\mathbf{lemma}\ dense\text{-}sup\text{-}closed:
  dense\text{-rel }x \Longrightarrow dense\text{-rel }y \Longrightarrow dense\text{-rel }(x \sqcup y)
  by (metis mult-right-dist-sup order-lesseq-imp sup.mono
mult-left-sub-dist-sup-left mult-left-sub-dist-sup-right)
\mathbf{lemma}\ idempotent\text{-}bot\text{-}closed:
  idempotent\ bot
  \mathbf{by} \ simp
{f lemma}\ idempotent-one-closed:
  idempotent 1
  by simp
\mathbf{lemma}\ preorder\text{-}one\text{-}closed:
  preorder 1
```

```
by simp
```

```
{\bf lemma}\ \it coreflexive-transitive:
  coreflexive x \Longrightarrow transitive x
  using mult-left-isotone by fastforce
lemma preorder-idempotent:
  preorder x \Longrightarrow idempotent x
  using order.antisym mult-isotone by fastforce
    We study the following three ways of defining reflexive-transitive clo-
sures. Each of them is given as a least prefixpoint, but the underlying
functions are different. They implement left recursion, right recursion and
symmetric recursion, respectively.
abbreviation Lf :: 'a \Rightarrow ('a \Rightarrow 'a) where Lf y \equiv (\lambda x \cdot 1 \sqcup x * y)
abbreviation Rf :: 'a \Rightarrow ('a \Rightarrow 'a) where Rf y \equiv (\lambda x \cdot 1 \sqcup y * x)
abbreviation Sf :: 'a \Rightarrow ('a \Rightarrow 'a) where Sf y \equiv (\lambda x \cdot 1 \sqcup y \sqcup x * x)
abbreviation lstar :: 'a \Rightarrow 'a \text{ where } lstar y \equiv p\mu \ (Lf \ y)
abbreviation rstar :: 'a \Rightarrow 'a \text{ where } rstar y \equiv p\mu \ (Rf y)
abbreviation sstar :: 'a \Rightarrow 'a where sstar y \equiv p\mu (Sf y)
    All functions are isotone and, therefore, if the prefixpoints exist they are
also fixpoints.
lemma lstar-rec-isotone:
  isotone (Lf y)
  \mathbf{using}\ isotone\text{-}def\ sup\text{-}right\text{-}divisibility\ sup\text{-}right\text{-}isotone
mult-right-sub-dist-sup-right by auto
lemma rstar-rec-isotone:
  isotone (Rf y)
 using isotone-def sup-right-divisibility sup-right-isotone
mult-left-sub-dist-sup-right by auto
lemma sstar-rec-isotone:
  isotone (Sf y)
  using isotone-def sup-right-isotone mult-isotone by auto
lemma lstar-fixpoint:
  has-least-prefixpoint (Lf y) \Longrightarrow lstar y = \mu (Lf y)
  by (simp add: pmu-mu lstar-rec-isotone)
lemma rstar-fixpoint:
  has\text{-}least\text{-}prefixpoint (Rf y) \Longrightarrow rstar y = \mu (Rf y)
  by (simp add: pmu-mu rstar-rec-isotone)
lemma sstar-fixpoint:
  has-least-prefixpoint (Sf y) \Longrightarrow sstar y = \mu (Sf y)
  by (simp add: pmu-mu sstar-rec-isotone)
```

```
lemma sstar-increasing:
 has\text{-}least\text{-}prefixpoint (Sf y) \Longrightarrow y \leq sstar y
 using order-trans pmu-unfold sup-ge1 sup-ge2 by blast
    The fixpoint given by right recursion is always below the one given by
symmetric recursion.
lemma rstar-below-sstar:
 assumes has-least-prefixpoint (Rf y)
    and has-least-prefixpoint (Sf y)
   shows rstar y \leq sstar y
proof -
 have y \leq sstar y
   using assms(2) pmu-unfold by force
 hence Rf \ y \ (sstar \ y) \le Sf \ y \ (sstar \ y)
   by (meson sup.cobounded1 sup.mono mult-left-isotone)
 also have ... \leq sstar y
   using assms(2) pmu-unfold by blast
 finally show ?thesis
   using assms(1) is-least-prefixpoint-def least-prefixpoint by auto
qed
end
    Our next structure adds one half of the associativity property. This
inequality holds, for example, for multirelations under the compositions de-
fined by Parikh and Peleg [23, 25]. The converse inequality requires up-
closed multirelations for Parikh's composition.
{f class}\ pre\mbox{-}left\mbox{-}semiring = non\mbox{-}associative\mbox{-}left\mbox{-}semiring +
 assumes mult-semi-associative: (x * y) * z \le x * (y * z)
begin
lemma mult-one-associative [simp]:
 x * 1 * y = x * y
 by (metis dual-order.antisym mult-left-isotone mult-left-one
mult-semi-associative mult-sub-right-one)
lemma mult-sup-associative-one:
 (x * (y * 1)) * z \le x * (y * z)
 by (metis mult-semi-associative mult-one-associative)
lemma rstar-increasing:
 assumes has-least-prefixpoint (Rf y)
   shows y \leq rstar y
proof -
 have Rf y (rstar y) \leq rstar y
   using assms pmu-unfold by blast
 thus ?thesis
   by (metis le-supE mult-right-isotone mult-sub-right-one sup.absorb-iff2)
```

qed

end

For the next structure we add a left residual operation. Such a residual is available, for example, for multirelations.

The operator notation for binary division is introduced in a class that requires a unary inverse. This is appropriate for fields, but too strong in the present context of semirings. We therefore reintroduce it without requiring a unary inverse.

```
no-notation
inverse-divide (infixl <'/> '/> 70)

notation
divide (infixl <'/> '/> 70)
```

class residuated-pre-left-semiring = pre-left-semiring + divide + assumes lres-galois: $x*y \le z \longleftrightarrow x \le z \ / \ y$ begin

We first derive basic properties of left residuals from the Galois connection.

```
lemma lres-left-isotone:
```

```
x \le y \Longrightarrow x \ / \ z \le y \ / \ z using dual-order.trans lres-galois by blast
```

lemma *lres-right-antitone*:

```
x \le y \Longrightarrow z / y \le z / x
```

using dual-order.trans lres-galois mult-right-isotone by blast

lemma lres-inverse:

```
(x / y) * y \le x
by (simp \ add: lres-galois)
```

lemma lres-one:

$$x / 1 \leq x$$

using mult-sub-right-one order-trans lres-inverse by blast

 $\mathbf{lemma}\ \mathit{lres-mult-sub-lres-lres}:$

$$x / (z * y) \le (x / y) / z$$

using lres-galois mult-semi-associative order.trans by blast

lemma *mult-lres-sub-assoc*:

```
x * (y / z) \le (x * y) / z
```

 $\mathbf{by} \ (meson \ dual\text{-}order.trans \ lres\text{-}galois \ mult\text{-}right\text{-}isotone \ lres\text{-}inverse \\ lres\text{-}mult\text{-}sub\text{-}lres\text{-}lres)$

With the help of a left residual, it follows that left recursion is below right recursion.

```
lemma lstar-below-rstar:
 assumes has-least-prefixpoint (Lf y)
     and has-least-prefixpoint (Rf y)
   shows lstar y \leq rstar y
proof -
 have y * (rstar y / y) * y \le y * rstar y
   \mathbf{using}\ \mathit{lres-galois}\ \mathit{mult-lres-sub-assoc}\ \mathbf{by}\ \mathit{auto}
 also have ... \leq rstar y
   using assms(2) le-supE pmu-unfold by blast
  finally have y * (rstar \ y \ / \ y) \le rstar \ y \ / \ y
   by (simp add: lres-galois)
 hence Rf y (rstar y / y) \leq rstar y / y
   using assms(2) lres-galois rstar-increasing by fastforce
 hence rstar \ y \le rstar \ y \ / \ y
   using assms(2) is-least-prefixpoint-def least-prefixpoint by auto
 hence Lf y (rstar\ y) < rstar\ y
   using assms(2) lres-galois pmu-unfold by fastforce
  thus ?thesis
   using assms(1) is-least-prefixpoint-def least-prefixpoint by auto
qed
    Moreover, right recursion gives the same result as symmetric recursion.
The next proof follows an argument of [5, Satz 10.1.5].
lemma rstar-sstar:
 assumes has-least-prefixpoint (Rf y)
     and has-least-prefixpoint (Sf y)
   shows rstar y = sstar y
proof -
 have Rf \ y \ (rstar \ y \ / \ rstar \ y) * rstar \ y \le rstar \ y \sqcup y * ((rstar \ y \ / \ rstar \ y) *
rstar y
   using mult-right-dist-sup mult-semi-associative sup-right-isotone by auto
 also have ... \leq rstar \ y \sqcup y * rstar \ y
   using mult-right-isotone sup-right-isotone lres-inverse by blast
 also have ... \leq rstar y
   using assms(1) pmu-unfold by fastforce
 finally have Rf y (rstar y / rstar y) \leq rstar y / rstar y
   by (simp add: lres-galois)
 hence rstar\ y * rstar\ y \le rstar\ y
   using assms(1) is-least-prefixpoint-def least-prefixpoint lres-galois by auto
 hence y \sqcup rstar \ y * rstar \ y \leq rstar \ y
   by (simp\ add:\ assms(1)\ rstar-increasing)
 hence Sf y (rstar y) \leq rstar y
   using assms(1) pmu-unfold by force
 hence sstar y \leq rstar y
   using assms(2) is-least-prefixpoint-def least-prefixpoint by auto
  thus ?thesis
   by (simp add: assms order.antisym rstar-below-sstar)
qed
```

```
end
```

```
context monoid-mult
begin

lemma monoid-power-closed:

assumes P \ 1 \ P \ x \ \ y \ z \ . \ P \ y \Longrightarrow P \ z \Longrightarrow P \ (y * z)
shows P \ (x \ \ n)
proof (induct \ n)
case 0
thus ?case
by (simp \ add: \ assms(1))
next
case (Suc \ n)
thus ?case
by (simp \ add: \ assms(2,3))
qed
end
```

In the next structure we add full associativity of multiplication, as well as a right unit. Still, multiplication does not need to have a right zero and does not need to distribute over addition from the left.

 ${\bf class}\ idempotent\text{-}left\text{-}semiring = non\text{-}associative\text{-}left\text{-}semiring + monoid\text{-}mult\\ {\bf begin}$

```
subclass pre-left-semiring
by unfold-locales (simp add: mult-assoc)

lemma zero-right-mult-decreasing:
x * bot \le x
by (metis bot-least mult-1-right mult-right-isotone)
```

The following result shows that for dense coreflexives there are two equivalent ways to express that a property is preserved. In the setting of Kleene algebras, this is well known for tests, which form a Boolean subalgebra. The point here is that only very few properties of tests are needed to show the equivalence.

```
lemma test-preserves-equation:

assumes dense-rel p

and coreflexive p

shows p * x \le x * p \longleftrightarrow p * x = p * x * p

proof

assume 1: p * x \le x * p

have p * x \le p * p * x

by (simp\ add:\ assms(1)\ mult-left-isotone)

also have ... \le p * x * p

using 1 by (simp\ add:\ mult-right-isotone\ mult-assoc)

finally show p * x = p * x * p
```

```
using assms(2) order.antisym mult-right-isotone by fastforce
\mathbf{next}
 assume p * x = p * x * p
 thus p * x \leq x * p
   by (metis assms(2) mult-left-isotone mult-left-one)
qed
end
    The next structure has both distributivity properties of multiplication.
Only a right zero is missing from full semirings. This is important as many
computation models do not have a right zero of sequential composition.
class\ idempotent-left-zero-semiring = idempotent-left-semiring +
 assumes mult-left-dist-sup: x * (y \sqcup z) = x * y \sqcup x * z
begin
lemma case-split-right:
 assumes 1 \leq w \sqcup z
    and x * w \leq y
    and x * z \leq y
   shows x \leq y
proof -
 have x * (w \sqcup z) < y
   by (simp\ add: assms(2-3)\ mult-left-dist-sup)
 thus ?thesis
   by (metis assms(1) dual-order.trans mult-1-right mult-right-isotone)
qed
lemma case-split-right-equal:
 w \sqcup z = 1 \Longrightarrow x * w = y * w \Longrightarrow x * z = y * z \Longrightarrow x = y
 by (metis mult-1-right mult-left-dist-sup)
    This is the first structure we can connect to the semirings provided by
Isabelle/HOL.
sublocale semiring: ordered-semiring sup bot less-eq less times
 apply unfold-locales
 using sup-right-isotone apply blast
 apply (simp add: mult-right-dist-sup)
 apply (simp add: mult-left-dist-sup)
 apply (simp add: mult-right-isotone)
 by (simp add: mult-left-isotone)
sublocale semiring: semiring-numeral 1 times sup ..
end
    Completing this part of the hierarchy, we obtain idempotent semirings
by adding a right zero of multiplication.
{f class}\ idempotent\mbox{-}semiring = idempotent\mbox{-}left\mbox{-}zero\mbox{-}semiring +
```

```
assumes mult-right-zero [simp]: x * bot = bot begin sublocale semiring: semiring-0 sup bot times by unfold-locales simp-all
```

end

3.2 Bounded Idempotent Semirings

All of the following semirings have a greatest element in the underlying semilattice order. With this element, we can express further standard properties of relations. We extend each class in the above hierarchy in turn.

```
class times-top = times + top
begin
abbreviation vector x : 'a \Rightarrow bool where vector x \equiv x * top = x
abbreviation covector :: 'a \Rightarrow bool where covector x \equiv top * x = x
abbreviation total :: 'a \Rightarrow bool where total x \equiv x * top = top
abbreviation surjective :: 'a \Rightarrow bool where surjective x \equiv top * x = top
\textbf{abbreviation} \ \textit{vectors} \ \equiv \{ \ \textit{x} \ . \ \textit{vector} \ \textit{x} \ \}
abbreviation covectors \equiv \{ x : covector x \}
end
{f class}\ bounded{\it -non-associative-left-semiring}\ =\ non{\it -associative-left-semiring}\ +\ top
 assumes sup-right-top [simp]: x \sqcup top = top
begin
subclass times-top.
    We first give basic properties of the greatest element.
lemma sup-left-top [simp]:
  top \sqcup x = top
 using sup-right-top sup.commute by fastforce
lemma top-greatest [simp]:
 x < top
 by (simp add: le-iff-sup)
lemma top-left-mult-increasing:
 x < top * x
 by (metis mult-left-isotone mult-left-one top-greatest)
lemma top-right-mult-increasing:
 x \le x * top
 using mult-right-isotone mult-sub-right-one order-trans top-greatest by blast
```

```
\mathbf{lemma}\ top\text{-}mult\text{-}top\ [simp]:
  top * top = top
 by (simp add: order.antisym top-left-mult-increasing)
     Closure of the above properties under the semiring operations is consid-
ered next.
lemma vector-bot-closed:
  vector\ bot
 \mathbf{by} \ simp
lemma vector-top-closed:
  vector top
 \mathbf{by} \ simp
lemma vector-sup-closed:
  vector \ x \Longrightarrow vector \ y \Longrightarrow vector \ (x \mathrel{\sqcup} y)
 by (simp add: mult-right-dist-sup)
lemma covector-top-closed:
  covector\ top
 by simp
lemma total-one-closed:
  total 1
 \mathbf{by} \ simp
lemma total-top-closed:
  total\ top
 by simp
\mathbf{lemma}\ total\text{-}sup\text{-}closed:
  total \ x \Longrightarrow total \ (x \sqcup y)
 by (simp add: mult-right-dist-sup)
lemma surjective-one-closed:
  surjective 1
 by (simp add: order.antisym mult-sub-right-one)
\mathbf{lemma} \ \mathit{surjective-top-closed} \colon
  surjective\ top
  \mathbf{by} \ simp
{\bf lemma}\ surjective\text{-}sup\text{-}closed:
  surjective \ x \Longrightarrow surjective \ (x \sqcup y)
 by (metis le-iff-sup mult-left-sub-dist-sup-left sup-left-top)
\mathbf{lemma}\ \textit{reflexive-top-closed}\colon
  reflexive top
```

```
by simp
{\bf lemma}\ transitive-top\text{-}closed:
  transitive top
 by simp
lemma dense-top-closed:
  dense-rel top
  by simp
lemma idempotent-top-closed:
  idempotent top
 \mathbf{by} \ simp
lemma preorder-top-closed:
  preorder top
 \mathbf{by} \ simp
end
    Some closure properties require at least half of associativity.
{f class}\ bounded\mbox{-}pre\mbox{-}left\mbox{-}semiring = pre\mbox{-}left\mbox{-}semiring +
bounded\hbox{-}non\hbox{-}associative\hbox{-}left\hbox{-}semiring
begin
lemma vector-mult-closed:
  vector y \Longrightarrow vector (x * y)
 by (metis order.antisym mult-semi-associative top-right-mult-increasing)
lemma surjective-mult-closed:
  surjective \ x \Longrightarrow surjective \ y \Longrightarrow surjective \ (x * y)
  by (metis order.antisym mult-semi-associative top-greatest)
end
    We next consider residuals with the greatest element.
{\bf class}\ bounded\text{-}residuated\text{-}pre\text{-}left\text{-}semiring\ =\ residuated\text{-}pre\text{-}left\text{-}semiring\ +\ }
bounded-pre-left-semiring
begin
{\bf lemma}\ \mathit{lres-top-decreasing}\colon
 x / top \leq x
 using lres-inverse order.trans top-right-mult-increasing by blast
lemma top-lres-absorb [simp]:
  top / x = top
  using order.antisym lres-galois top-greatest by blast
lemma covector-lres-closed:
```

```
covector x \Longrightarrow covector (x / y)
 by (metis order.antisym mult-lres-sub-assoc top-left-mult-increasing)
end
    Some closure properties require full associativity.
class\ bounded-idempotent-left-semiring = bounded-pre-left-semiring +
idempotent\mbox{-}left\mbox{-}semiring
begin
lemma covector-mult-closed:
  covector \ x \Longrightarrow covector \ (x * y)
 by (metis mult-assoc)
{f lemma}\ total	ext{-}mult	ext{-}closed:
  total \ x \Longrightarrow total \ y \Longrightarrow total \ (x * y)
 by (simp add: mult-assoc)
lemma total-power-closed:
  total \ x \Longrightarrow total \ (x \cap n)
 apply (rule monoid-power-closed)
 using total-mult-closed by auto
lemma surjective-power-closed:
  surjective \ x \Longrightarrow surjective \ (x \cap n)
 apply (rule monoid-power-closed)
 using surjective-mult-closed by auto
end
    Some closure properties require distributivity from the left.
{\bf class}\ bounded\ -idempotent\ -left\ -zero\ -semiring\ =\ bounded\ -idempotent\ -left\ -semiring
+ idempotent-left-zero-semiring
begin
lemma covector-sup-closed:
  covector \ x \Longrightarrow covector \ y \Longrightarrow covector \ (x \sqcup y)
 by (simp add: mult-left-dist-sup)
end
    Our final structure is an idempotent semiring with a greatest element.
{\bf class}\ bounded\ -idempotent\ -semiring\ =\ bounded\ -idempotent\ -left\ -zero\ -semiring\ +
idempotent-semiring
begin
lemma covector-bot-closed:
  covector bot
 by simp
```

end

end

4 Relation Algebras

The main structures introduced in this theory are Stone relation algebras. They generalise Tarski's relation algebras [28] by weakening the Boolean algebra lattice structure to a Stone algebra. Our motivation is to generalise relation-algebraic methods from unweighted graphs to weighted graphs. Unlike unweighted graphs, weighted graphs do not form a Boolean algebra because there is no complement operation on the edge weights. However, edge weights form a Stone algebra, and matrices over edge weights (that is, weighted graphs) form a Stone relation algebra.

The development in this theory is described in our papers [14, 16]. Our main application there is the verification of Prim's minimum spanning tree algorithm. Related work about fuzzy relations [12, 29], Dedekind categories [18] and rough relations [9, 24] is also discussed in these papers. In particular, Stone relation algebras do not assume that the underlying lattice is complete or a Heyting algebra, and they do not assume that composition has residuals.

We proceed in two steps. First, we study the positive fragment in the form of single-object bounded distributive allegories [11]. Second, we extend these structures by a pseudocomplement operation with additional axioms to obtain Stone relation algebras.

Tarski's relation algebras are then obtained by a simple extension that imposes a Boolean algebra. See, for example, [7, 17, 20, 21, 26, 27] for further details about relations and relation algebras, and [2, 8] for algebras of relations with a smaller signature.

theory Relation-Algebras

imports Stone-Algebras. P-Algebras Semirings

begin

4.1 Single-Object Bounded Distributive Allegories

We start with developing bounded distributive allegories. The following definitions concern properties of relations that require converse in addition to lattice and semiring operations.

```
class conv = fixes conv :: 'a \Rightarrow 'a \ ( \cdot \cdot^T \cdot [100] \ 100 ) class bounded-distrib-allegory-signature = inf + sup + times + conv + bot + top + one + ord
```

begin

```
subclass times-one-ord.
subclass times-top.
                                 :: 'a \Rightarrow bool  where total-var x
                                                                           \equiv 1 \leq x * x^T
abbreviation total-var
abbreviation surjective-var :: 'a \Rightarrow bool where surjective-var x \equiv 1 \leq x^T * x
                                 :: 'a \Rightarrow bool where univalent x \equiv x^T * x \leq 1
abbreviation univalent
                                                                           \equiv x * x^T < 1
abbreviation injective
                                 :: 'a \Rightarrow bool  where injective  x
                                                                               \equiv univalent x
abbreviation mapping
                                  :: 'a \Rightarrow bool \text{ where } mapping x
\wedge total x
abbreviation bijective
                                 :: 'a \Rightarrow bool  where bijective  x
                                                                          \equiv injective \ x \land
surjective x
                                 :: 'a \Rightarrow bool  where point x
abbreviation point
                                                                           \equiv vector x \land
bijective x
abbreviation arc
                                :: 'a \Rightarrow bool  where arc x
                                                                         \equiv bijective (x * top)
\land bijective (x^T * top)
abbreviation symmetric
                                 :: 'a \Rightarrow bool  where symmetric  x
abbreviation antisymmetric :: 'a \Rightarrow bool where antisymmetric x \equiv x \cap x^T \leq 1
                                                                                \equiv x \sqcap x^T =
abbreviation asymmetric :: 'a \Rightarrow bool where asymmetric x
bot
                                :: 'a \Rightarrow bool  where linear x
                                                                           \equiv x \sqcup x^T = top
abbreviation linear
abbreviation equivalence
                                :: 'a \Rightarrow bool \text{ where } equivalence \ x \equiv preorder \ x \land
symmetric x
abbreviation order
                                 :: 'a \Rightarrow bool  where order x
                                                                           \equiv preorder x \land
antisymmetric\ x
abbreviation linear-order :: 'a \Rightarrow bool where linear-order x \equiv order x \land
linear x
```

\mathbf{end}

We reuse the relation algebra axioms given in [20] except for one – see lemma *conv-complement-sub* below – which we replace with the Dedekind rule (or modular law) *dedekind-1*. The Dedekind rule or variants of it are known from [7, 11, 19, 27]. We add *comp-left-zero*, which follows in relation algebras but not in the present setting. The main change is that only a bounded distributive lattice is required, not a Boolean algebra.

```
class bounded-distrib-allegory = bounded-distrib-lattice + times + one + conv + assumes comp-associative : (x*y)*z = x*(y*z) assumes comp-right-dist-sup : (x \sqcup y)*z = (x*z) \sqcup (y*z) assumes comp-left-zero [simp]: bot * x = bot assumes comp-left-one [simp]: 1*x = x assumes conv-involutive [simp]: x^{TT} = x assumes conv-dist-sup : (x \sqcup y)^T = x^T \sqcup y^T assumes conv-dist-comp : (x*y)^T = y^T*x^T
```

```
: x * y \sqcap z \leq x * (y \sqcap (x^T * z))
 assumes dedekind-1
begin
subclass bounded-distrib-allegory-signature.
    Many properties of relation algebras already follow in bounded distribu-
tive allegories.
lemma conv-isotone:
 x \le y \Longrightarrow x^T \le y^T
 by (metis conv-dist-sup le-iff-sup)
lemma conv-order:
 x \leq y \longleftrightarrow x^T \leq y^T
 using conv-isotone by fastforce
lemma conv-bot [simp]:
  bot^T = bot
 using conv-order bot-unique by force
lemma conv-top [simp]:
  top^T = top
 by (metis conv-involutive conv-order order.eq-iff top-greatest)
lemma conv-dist-inf:
  (x \sqcap y)^T = x^T \sqcap y^T
 apply (rule order.antisym)
  using conv-order apply simp
  by (metis conv-order conv-involutive inf.boundedI inf.cobounded1
inf.cobounded2)
lemma conv-inf-bot-iff:
  bot = x^T \sqcap y \longleftrightarrow bot = x \sqcap y^T
  using conv-dist-inf conv-bot by fastforce
lemma conv-one [simp]:
 by (metis comp-left-one conv-dist-comp conv-involutive)
lemma comp-left-dist-sup:
  (x * y) \sqcup (x * z) = x * (y \sqcup z)
  by (metis comp-right-dist-sup conv-involutive conv-dist-sup conv-dist-comp)
{f lemma}\ comp{-right-isotone}:
 x \le y \Longrightarrow z * x \le z * y
 \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{comp\text{-}left\text{-}}\mathit{dist\text{-}sup}\ \mathit{sup.absorb\text{-}}\mathit{iff1})
lemma comp-left-isotone:
  x \le y \Longrightarrow x * z \le y * z
 by (metis comp-right-dist-sup le-iff-sup)
```

```
lemma comp-isotone:
 x \le y \Longrightarrow w \le z \Longrightarrow x * w \le y * z
 using comp-left-isotone comp-right-isotone order.trans by blast
lemma comp-left-subdist-inf:
  (x \sqcap y) * z \le x * z \sqcap y * z
 by (simp add: comp-left-isotone)
\mathbf{lemma}\ \mathit{comp-left-increasing-sup};
 x * y \le (x \sqcup z) * y
 by (simp add: comp-left-isotone)
lemma comp-right-subdist-inf:
 x * (y \sqcap z) \le x * y \sqcap x * z
 by (simp add: comp-right-isotone)
lemma comp-right-increasing-sup:
 x * y \le x * (y \sqcup z)
 by (simp add: comp-right-isotone)
lemma comp-right-zero [simp]:
 x * bot = bot
 by (metis comp-left-zero conv-dist-comp conv-involutive)
lemma comp-right-one [simp]:
 x * 1 = x
 by (metis comp-left-one conv-dist-comp conv-involutive)
lemma comp-left-conjugate:
  conjugate (\lambda y \cdot x * y) (\lambda y \cdot x^T * y)
 apply (unfold conjugate-def, intro allI)
 by (metis comp-right-zero bot.extremum-unique conv-involutive dedekind-1
inf.commute)
{f lemma}\ comp{-right-conjugate}:
  conjugate (\lambda y \cdot y * x) (\lambda y \cdot y * x^T)
 apply (unfold conjugate-def, intro allI)
 \mathbf{by}\ (\mathit{metis}\ \mathit{comp-left-conjugate}[\mathit{unfolded}\ \mathit{conjugate-def}]\ \mathit{conv-inf-bot-iff}
conv-dist-comp conv-involutive)
    We still obtain a semiring structure.
{f subclass}\ bounded\mbox{-}idempotent\mbox{-}semiring
 by (unfold-locales)
  (auto simp: comp-right-isotone comp-right-dist-sup comp-associative
comp-left-dist-sup)
sublocale inf: semiring-0 sup bot inf
 by (unfold-locales, auto simp: inf-sup-distrib2 inf-sup-distrib1 inf-assoc)
```

```
lemma schroeder-1:
  x * y \sqcap z = bot \longleftrightarrow x^T * z \sqcap y = bot
  using abel-semigroup.commute comp-left-conjugate conjugate-def
inf.abel-semigroup-axioms by fastforce
lemma schroeder-2:
 x * y \sqcap z = bot \longleftrightarrow z * y^T \sqcap x = bot
 by (metis comp-right-conjugate conjugate-def inf-commute)
lemma comp-additive:
  additive (\lambda y \cdot x * y) \wedge additive (\lambda y \cdot x^T * y) \wedge additive (\lambda y \cdot y * x) \wedge additive
(\lambda y \cdot y * x^T)
  by (simp add: comp-left-dist-sup additive-def comp-right-dist-sup)
lemma dedekind-2:
  y * x \sqcap z \le (y \sqcap (z * x^T)) * x
 by (metis conv-dist-inf conv-order conv-dist-comp dedekind-1)
    The intersection with a vector can still be exported from the first argu-
ment of a composition, and many other properties of vectors and covectors
continue to hold.
lemma vector-inf-comp:
  vector x \Longrightarrow (x \sqcap y) * z = x \sqcap (y * z)
  apply (rule order.antisym)
  {\bf apply} \ (\textit{metis comp-left-subdist-inf comp-right-isotone inf.sup-left-isotone}
order-lesseq-imp top-greatest)
  by (metis comp-left-isotone comp-right-isotone dedekind-2 inf-commute
inf-mono order-refl order-trans top-greatest)
lemma vector-inf-closed:
  vector x \Longrightarrow vector y \Longrightarrow vector (x \sqcap y)
  by (simp add: vector-inf-comp)
lemma vector-inf-one-comp:
  vector \ x \Longrightarrow (x \sqcap 1) * y = x \sqcap y
  by (simp add: vector-inf-comp)
lemma covector-inf-comp-1:
  assumes vector x
   shows (y \sqcap x^T) * z = (y \sqcap x^T) * (x \sqcap z)
proof -
  have (y \sqcap x^T) * z \le (y \sqcap x^T) * (z \sqcap ((y^T \sqcap x) * top))
   by (metis inf-top-right dedekind-1 conv-dist-inf conv-involutive)
  also have ... \leq (y \sqcap x^T) * (x \sqcap z)
   \mathbf{by}\ (\mathit{metis}\ \mathit{assms}\ \mathit{comp-left-isotone}\ \mathit{comp-right-isotone}\ \mathit{inf-le2}\ \mathit{inf-mono}
order-refl inf-commute)
  finally show ?thesis
   by (simp add: comp-right-isotone order.antisym)
```

```
qed
```

```
\mathbf{lemma}\ \mathit{covector}\text{-}\mathit{inf}\text{-}\mathit{comp-2}\text{:}
 assumes vector x
   shows y * (x \sqcap z) = (y \sqcap x^T) * (x \sqcap z)
proof -
  have y * (x \sqcap z) \le (y \sqcap (top * (x \sqcap z)^T)) * (x \sqcap z)
   by (metis dedekind-2 inf-top-right)
 also have ... \leq (y \sqcap x^T) * (x \sqcap z)
   by (metis assms comp-left-isotone conv-dist-comp conv-order conv-top eq-reft
inf-le1 inf-mono)
  finally show ?thesis
   using comp-left-subdist-inf order.antisym by auto
qed
lemma covector-inf-comp-3:
  vector \ x \Longrightarrow (y \sqcap x^T) * z = y * (x \sqcap z)
  by (metis covector-inf-comp-1 covector-inf-comp-2)
lemma covector-inf-closed:
  covector \ x \Longrightarrow covector \ y \Longrightarrow covector \ (x \sqcap y)
 by (metis comp-right-subdist-inf order.antisym top-left-mult-increasing)
lemma vector-conv-covector:
  vector \ v \longleftrightarrow covector \ (v^T)
  by (metis conv-dist-comp conv-involutive conv-top)
lemma covector-conv-vector:
  covector\ v \longleftrightarrow vector\ (v^T)
  by (simp add: vector-conv-covector)
lemma covector-comp-inf:
  covector z \Longrightarrow x * (y \sqcap z) = x * y \sqcap z
  apply (rule order.antisym)
  apply (metis comp-isotone comp-right-subdist-inf inf.boundedE inf.boundedI
inf.cobounded2 top.extremum)
  by (metis comp-left-isotone comp-right-isotone dedekind-1 inf-commute
inf-mono order-refl order-trans top-greatest)
{f lemma}\ vector	ext{-}restrict	ext{-}comp	ext{-}conv:
  vector \ x \Longrightarrow x \sqcap y \le x^T * y
  by (metis covector-inf-comp-3 eq-refl inf.sup-monoid.add-commute inf-top-right
le-supE sup.orderE top-left-mult-increasing)
\mathbf{lemma}\ covector\text{-}restrict\text{-}comp\text{-}conv:
  covector \ x \Longrightarrow y \sqcap x \le y * x^T
  by (metis conv-dist-comp conv-dist-inf conv-order conv-top
inf.sup-monoid.add-commute vector-restrict-comp-conv)
```

```
lemma covector-comp-inf-1:
  covector \: x \Longrightarrow (y \sqcap x) * z = y * (x^T \sqcap z)
  using covector-conv-vector covector-inf-comp-3 by fastforce
    We still have two ways to represent surjectivity and totality.
lemma surjective-var:
  surjective \ x \longleftrightarrow surjective \ var \ x
proof
 assume surjective x
  thus surjective-var x
   by (metis dedekind-2 comp-left-one inf-absorb2 top-greatest)
\mathbf{next}
  \mathbf{assume}\ \mathit{surjective-var}\ x
  hence x^T * (x * top) = top
   by (metis comp-left-isotone comp-associative comp-left-one top-le)
 thus surjective x
   by (metis comp-right-isotone conv-top conv-dist-comp conv-involutive
top-greatest top-le)
qed
\mathbf{lemma}\ \mathit{total}\text{-}\mathit{var}\text{:}
  total \ x \longleftrightarrow total\text{-}var \ x
 by (metis conv-top conv-dist-comp conv-involutive surjective-var)
{f lemma} surjective\text{-}conv\text{-}total:
  surjective x \longleftrightarrow total(x^T)
 by (metis conv-top conv-dist-comp conv-involutive)
lemma total-conv-surjective:
  total \ x \longleftrightarrow surjective \ (x^T)
  by (simp add: surjective-conv-total)
lemma injective-conv-univalent:
  injective x \longleftrightarrow univalent(x^T)
 by simp
lemma univalent-conv-injective:
  univalent x \longleftrightarrow injective(x^T)
  by simp
    We continue with studying further closure properties.
lemma univalent-bot-closed:
  univalent bot
  by simp
lemma univalent-one-closed:
  univalent 1
 by simp
```

```
lemma univalent-inf-closed:
  univalent \ x \Longrightarrow univalent \ (x \sqcap y)
 by (metis comp-left-subdist-inf comp-right-subdist-inf conv-dist-inf
inf.cobounded1 order-lesseq-imp)
\mathbf{lemma}\ univalent\text{-}mult\text{-}closed:
 assumes univalent x
     and univalent y
   shows univalent (x * y)
proof -
 have (x * y)^T * x \le y^T
   by (metis assms(1) comp-left-isotone comp-right-one conv-one conv-order
comp-associative conv-dist-comp conv-involutive)
 thus ?thesis
   by (metis assms(2) comp-left-isotone comp-associative dual-order.trans)
qed
lemma injective-bot-closed:
  injective bot
 by simp
lemma injective-one-closed:
  injective 1
 by simp
lemma injective-inf-closed:
  injective \ x \Longrightarrow injective \ (x \sqcap y)
 by (metis conv-dist-inf injective-conv-univalent univalent-inf-closed)
lemma injective-mult-closed:
  injective \ x \Longrightarrow injective \ y \Longrightarrow injective \ (x * y)
 by (metis injective-conv-univalent conv-dist-comp univalent-mult-closed)
lemma mapping-one-closed:
 mapping 1
 \mathbf{by} \ simp
lemma mapping-mult-closed:
  mapping x \Longrightarrow mapping y \Longrightarrow mapping (x * y)
 by (simp add: comp-associative univalent-mult-closed)
lemma bijective-one-closed:
  bijective 1
 by simp
{\bf lemma}\ \textit{bijective-mult-closed}:
  bijective \ x \Longrightarrow bijective \ y \Longrightarrow bijective \ (x * y)
 by (metis injective-mult-closed comp-associative)
```

```
lemma bijective-conv-mapping:
  bijective x \longleftrightarrow mapping(x^T)
  by (simp add: surjective-conv-total)
lemma mapping-conv-bijective:
  mapping x \longleftrightarrow bijective(x^T)
 by (simp add: total-conv-surjective)
lemma reflexive-inf-closed:
  reflexive \ x \Longrightarrow reflexive \ y \Longrightarrow reflexive \ (x \sqcap y)
  by simp
{f lemma} reflexive-conv-closed:
  reflexive x \Longrightarrow reflexive (x^T)
  using conv-isotone by force
lemma coreflexive-inf-closed:
  coreflexive \ x \Longrightarrow coreflexive \ (x \sqcap y)
  by (simp add: le-infI1)
lemma coreflexive-conv-closed:
  coreflexive \ x \Longrightarrow coreflexive \ (x^T)
  using conv-order by force
lemma coreflexive-symmetric:
  coreflexive x \Longrightarrow symmetric x
  by (metis comp-right-one comp-right-subdist-inf conv-dist-inf conv-dist-comp
conv-involutive dedekind-1 inf.absorb1 inf-absorb2)
lemma transitive-inf-closed:
  transitive \ x \Longrightarrow transitive \ y \Longrightarrow transitive \ (x \sqcap y)
  by (meson comp-left-subdist-inf inf.cobounded1 inf.sup-mono inf-le2
mult-right-isotone order.trans)
lemma transitive-conv-closed:
  transitive x \Longrightarrow transitive (x^T)
 using conv-order conv-dist-comp by fastforce
\mathbf{lemma}\ \mathit{dense-conv-closed} \colon
  dense\text{-}rel \ x \Longrightarrow dense\text{-}rel \ (x^T)
  using conv-order conv-dist-comp by fastforce
lemma idempotent-conv-closed:
  idempotent \ x \Longrightarrow idempotent \ (x^T)
  by (metis conv-dist-comp)
lemma preorder-inf-closed:
  preorder \ x \Longrightarrow preorder \ y \Longrightarrow preorder \ (x \sqcap y)
  using transitive-inf-closed by auto
```

```
lemma preorder-conv-closed:
  preorder x \Longrightarrow preorder (x^T)
 by (simp add: reflexive-conv-closed transitive-conv-closed)
lemma symmetric-bot-closed:
  symmetric bot
 by simp
{\bf lemma}\ symmetric \hbox{-} one\hbox{-} closed:
  symmetric 1
  by simp
\mathbf{lemma}\ symmetric\text{-}top\text{-}closed:
  symmetric top
  by simp
lemma symmetric-inf-closed:
  symmetric \ x \Longrightarrow symmetric \ y \Longrightarrow symmetric \ (x \sqcap y)
 by (simp add: conv-dist-inf)
lemma symmetric-sup-closed:
  symmetric \ x \Longrightarrow symmetric \ y \Longrightarrow symmetric \ (x \sqcup y)
 by (simp add: conv-dist-sup)
{\bf lemma}\ symmetric\text{-}conv\text{-}closed:
  symmetric \ x \Longrightarrow symmetric \ (x^T)
 by simp
{f lemma} one-inf-conv:
  1 \sqcap x = 1 \sqcap x^T
 by (metis conv-dist-inf coreflexive-symmetric inf.cobounded1
symmetric-one-closed)
{f lemma} antisymmetric-bot-closed:
  antisymmetric bot
 \mathbf{by} \ simp
lemma antisymmetric-one-closed:
  antisymmetric 1
  by simp
lemma antisymmetric-inf-closed:
  antisymmetric \ x \Longrightarrow antisymmetric \ (x \sqcap y)
 by (rule order-trans[where y=x \sqcap x^T]) (simp-all add: conv-isotone
inf.coboundedI2 inf.sup-assoc)
\mathbf{lemma}\ antisymmetric\text{-}conv\text{-}closed:
  antisymmetric x \Longrightarrow antisymmetric (x^T)
```

```
by (simp add: inf-commute)
\mathbf{lemma}\ a symmetric\text{-}bot\text{-}closed:
  asymmetric bot
  by simp
{\bf lemma}\ a symmetric\text{-}inf\text{-}closed:
  asymmetric \ x \Longrightarrow asymmetric \ (x \sqcap y)
  by (metis conv-dist-inf inf.mult-zero-left inf.left-commute inf-assoc)
lemma asymmetric-conv-closed:
  asymmetric x \Longrightarrow asymmetric (x^T)
  by (simp add: inf-commute)
{\bf lemma}\ linear-top\text{-}closed:
  linear top
 \mathbf{by} \ simp
lemma linear-sup-closed:
  linear x \Longrightarrow linear (x \sqcup y)
 by (metis conv-dist-sup sup-assoc sup-commute sup-top-right)
lemma linear-reflexive:
  linear x \Longrightarrow reflexive x
  by (metis one-inf-conv inf.distrib-left inf.cobounded2 inf.orderE
reflexive-top-closed\ sup.idem)
lemma linear-conv-closed:
  linear x \Longrightarrow linear (x^T)
 by (simp add: sup-commute)
lemma linear-comp-closed:
  assumes linear x
     and linear y
   shows linear(x * y)
proof -
  have reflexive y
   by (simp add: assms(2) linear-reflexive)
  hence x \sqcup x^T \leq x * y \sqcup y^T * x^T
   \mathbf{by}\ (\textit{metis case-split-left case-split-right le-sup} I\ \textit{sup.cobounded} 1\ \textit{sup.cobounded} 2
sup.idem reflexive-conv-closed)
  thus ?thesis
   by (simp add: assms(1) conv-dist-comp top-le)
qed
\mathbf{lemma}\ equivalence \hbox{-} one \hbox{-} closed :
  equivalence 1
  by simp
```

```
lemma equivalence-top-closed:
  equivalence top
 by simp
lemma equivalence-inf-closed:
  equivalence x \Longrightarrow equivalence \ y \Longrightarrow equivalence \ (x \sqcap y)
 using conv-dist-inf preorder-inf-closed by auto
lemma equivalence-conv-closed:
  equivalence x \Longrightarrow equivalence (x^T)
 by simp
lemma order-one-closed:
  order 1
 by simp
lemma order-inf-closed:
  order x \Longrightarrow order y \Longrightarrow order (x \sqcap y)
 using antisymmetric-inf-closed transitive-inf-closed by auto
\mathbf{lemma} \ \mathit{order-conv-closed} \colon
  order x \Longrightarrow order (x^T)
 by (simp add: inf-commute reflexive-conv-closed transitive-conv-closed)
lemma linear-order-conv-closed:
  linear-order x \Longrightarrow linear-order (x^T)
  using equivalence-top-closed conv-dist-sup inf-commute reflexive-conv-closed
transitive-conv-closed by force
    We show a fact about equivalences.
lemma equivalence-comp-dist-inf:
  equivalence \; x \Longrightarrow x * y \sqcap x * z = x * (y \sqcap x * z)
  by (metis order.antisym comp-right-subdist-inf dedekind-1 order.eq-iff
inf.absorb1 inf.absorb2 mult-1-right mult-assoc)
    The following result generalises the fact that composition with a test
amounts to intersection with the corresponding vector. Both tests and vec-
tors can be used to represent sets as relations.
lemma coreflexive-comp-top-inf:
  coreflexive \ x \Longrightarrow x * top \sqcap y = x * y
 apply (rule order.antisym)
 apply (metis comp-left-isotone comp-left-one coreflexive-symmetric dedekind-1
inf-top-left order-trans)
 using comp-left-isotone comp-right-isotone by fastforce
lemma coreflexive-comp-top-inf-one:
  coreflexive \ x \Longrightarrow x * top \sqcap 1 = x
 by (simp add: coreflexive-comp-top-inf)
```

```
lemma coreflexive-comp-inf:
  \textit{coreflexive } x \Longrightarrow \textit{coreflexive } y \Longrightarrow x * y = x \sqcap y
 by (metis (full-types) coreflexive-comp-top-inf coreflexive-comp-top-inf-one
inf.mult-assoc inf.absorb2)
lemma coreflexive-comp-inf-comp:
 assumes coreflexive x
     and coreflexive y
   shows (x*z) \sqcap (y*z) = (x \sqcap y)*z
proof -
 have (x*z) \sqcap (y*z) = x*top \sqcap z \sqcap y*top \sqcap z
   using assms coreflexive-comp-top-inf inf-assoc by auto
 also have \dots = x * top \sqcap y * top \sqcap z
   by (simp add: inf.commute inf.left-commute)
 also have \dots = (x \sqcap y) * top \sqcap z
   by (metis assms coreflexive-comp-inf coreflexive-comp-top-inf mult-assoc)
 also have \dots = (x \sqcap y) * z
   by (simp add: assms(1) coreflexive-comp-top-inf coreflexive-inf-closed)
 finally show ?thesis
qed
lemma test-comp-test-inf:
  (x \sqcap 1) * y * (z \sqcap 1) = (x \sqcap 1) * y \sqcap y * (z \sqcap 1)
 by (smt comp-right-one comp-right-subdist-inf coreflexive-comp-top-inf
inf.left-commute inf.orderE inf-le2 mult-assoc)
lemma test-comp-test-top:
 y \sqcap (x \sqcap 1) * top * (z \sqcap 1) = (x \sqcap 1) * y * (z \sqcap 1)
proof -
 have \forall\, u\ v . (v\,\sqcap\, u^T)^T\,=\, v^T\,\sqcap\, u
   using conv-dist-inf by auto
 thus ?thesis
   by (smt conv-dist-comp conv-involutive coreflexive-comp-top-inf
inf.cobounded2\ inf.left-commute\ inf.sup-monoid.add-commute
symmetric-one-closed mult-assoc symmetric-top-closed)
qed
lemma coreflexive-idempotent:
  coreflexive x \Longrightarrow idempotent x
 by (simp add: coreflexive-comp-inf)
lemma coreflexive-univalent:
  coreflexive x \Longrightarrow univalent x
 by (simp add: coreflexive-idempotent coreflexive-symmetric)
lemma coreflexive-injective:
  coreflexive x \Longrightarrow injective x
  by (simp add: coreflexive-idempotent coreflexive-symmetric)
```

```
lemma coreflexive-commutative:
  coreflexive \ x \Longrightarrow coreflexive \ y \Longrightarrow x * y = y * x
 by (simp add: coreflexive-comp-inf inf.commute)
lemma coreflexive-dedekind:
  coreflexive \ x \Longrightarrow coreflexive \ y \Longrightarrow coreflexive \ z \Longrightarrow x * y \sqcap z \le x * (y \sqcap x * z)
  by (simp add: coreflexive-comp-inf inf.coboundedI1 inf.left-commute)
    Also the equational version of the Dedekind rule continues to hold.
lemma dedekind-eq:
 x * y \sqcap z = (x \sqcap (z * y^T)) * (y \sqcap (x^T * z)) \sqcap z
proof (rule order.antisym)
 have x * y \sqcap z \leq x * (y \sqcap (x^T * z)) \sqcap z
   by (simp add: dedekind-1)
 also have ... \leq (x \sqcap (z * (y \sqcap (x^T * z))^T)) * (y \sqcap (x^T * z)) \sqcap z
   by (simp add: dedekind-2)
 also have ... \leq (x \sqcap (z * y^T)) * (y \sqcap (x^T * z)) \sqcap z
   by (metis comp-left-isotone comp-right-isotone inf-mono conv-order
inf.cobounded1 order-refl)
 finally show x * y \sqcap z \leq (x \sqcap (z * y^T)) * (y \sqcap (x^T * z)) \sqcap z
next
 show (x \sqcap (z * y^T)) * (y \sqcap (x^T * z)) \sqcap z \leq x * y \sqcap z
   using comp-isotone inf.sup-left-isotone by auto
ged
lemma dedekind:
 x * y \sqcap z \le (x \sqcap (z * y^T)) * (y \sqcap (x^T * z))
 by (metis dedekind-eq inf.cobounded1)
lemma vector-export-comp:
 (x * top \sqcap y) * z = x * top \sqcap y * z
proof -
 have vector(x * top)
   by (simp add: comp-associative)
  thus ?thesis
   by (simp add: vector-inf-comp)
\mathbf{qed}
lemma vector-export-comp-unit:
 (x * top \sqcap 1) * y = x * top \sqcap y
 by (simp add: vector-export-comp)
    We solve a few exercises from [27].
lemma ex231a [simp]:
  (1 \sqcap x * x^T) * x = x
 by (metis inf.cobounded1 inf.idem inf-right-idem comp-left-one conv-one
coreflexive-comp-top-inf dedekind-eq)
```

```
lemma ex231b [simp]:
 x * (1 \sqcap x^T * x) = x
 by (metis conv-dist-comp conv-dist-inf conv-involutive conv-one ex231a)
lemma ex231c:
 x \leq x * x^T * x
 by (metis comp-left-isotone ex231a inf-le2)
lemma ex231d:
 x \le x * top * x
 by (metis comp-left-isotone comp-right-isotone top-greatest order-trans ex231c)
lemma ex231e [simp]:
  x * top * x * top = x * top
 by (metis ex231d order.antisym comp-associative mult-right-isotone
top.extremum)
lemma arc-injective:
  arc \ x \Longrightarrow injective \ x
 by (metis conv-dist-inf conv-involutive inf.absorb2 top-right-mult-increasing
univalent-inf-closed)
lemma arc-conv-closed:
  arc \ x \Longrightarrow arc \ (x^T)
 by simp
lemma arc-univalent:
  arc \ x \Longrightarrow univalent \ x
 using arc-conv-closed arc-injective univalent-conv-injective by blast
lemma injective-codomain:
 assumes injective x
 shows x * (x \sqcap 1) = x \sqcap 1
proof (rule order.antisym)
 show x * (x \sqcap 1) < x \sqcap 1
   by (metis assms comp-right-one dual-order.trans inf.boundedI inf.cobounded1
inf.sup-monoid.add-commute mult-right-isotone one-inf-conv)
next
 \mathbf{show}\ x\sqcap 1\leq x*(x\sqcap 1)
   \mathbf{by}\ (\mathit{metis}\ \mathit{coreflexive-idempotent}\ \mathit{inf.cobounded1}\ \mathit{inf.cobounded2}
mult-left-isotone)
qed
    The following result generalises [22, Exercise 2]. It is used to show that
the while-loop preserves injectivity of the constructed tree.
lemma injective-sup:
 assumes injective t
     and e * t^T \leq 1
```

```
and injective e
   shows injective (t \sqcup e)
proof -
  have (t \sqcup e) * (t \sqcup e)^T = t * t^T \sqcup t * e^T \sqcup e * t^T \sqcup e * e^T
   by (simp add: comp-left-dist-sup conv-dist-sup semiring.distrib-right sup.assoc)
  thus ?thesis
   using assms coreflexive-symmetric conv-dist-comp by fastforce
qed
\mathbf{lemma} \ injective\text{-}inv:
  injective t \Longrightarrow e * t^T = bot \Longrightarrow arc \ e \Longrightarrow injective \ (t \sqcup e)
  using arc-injective injective-sup bot-least by blast
lemma univalent-sup:
  univalent t \Longrightarrow e^T * t < 1 \Longrightarrow univalent e \Longrightarrow univalent (t \sqcup e)
  by (metis injective-sup conv-dist-sup conv-involutive)
lemma point-injective:
  arc \ x \Longrightarrow x^T * top * x \le 1
  by (metis conv-top comp-associative conv-dist-comp conv-involutive
vector-top-closed)
lemma vv-transitive:
  vector \ v \Longrightarrow (v * v^T) * (v * v^T) \le v * v^T
 by (metis comp-associative comp-left-isotone comp-right-isotone top-greatest)
lemma epm-3:
  assumes e \leq w
     and injective w
   shows e = w \sqcap top * e
proof -
  \mathbf{have}\ w \sqcap top * e \leq w * e^T * e
   \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{inf.absorb2}\ \mathit{top.extremum}\ \mathit{dedekind-2}
inf.commute)
  also have ... \leq w * w^T * e
   by (simp add: assms(1) conv-isotone mult-left-isotone mult-right-isotone)
 also have \dots \leq e
   using assms(2) coreflexive-comp-top-inf inf.sup-right-divisibility by blast
  finally show ?thesis
   by (simp add: assms(1) top-left-mult-increasing order.antisym)
\mathbf{qed}
lemma comp-inf-vector:
  x * (y \sqcap z * top) = (x \sqcap top * z^T) * y
 by (metis conv-top covector-inf-comp-3 comp-associative conv-dist-comp
inf.commute vector-top-closed)
lemma inf-vector-comp:
  (x \sqcap y * top) * z = y * top \sqcap x * z
```

```
using inf.commute vector-export-comp by auto
```

```
lemma comp-inf-covector:
 x * (y \sqcap top * z) = x * y \sqcap top * z
 by (simp add: covector-comp-inf covector-mult-closed)
    Well-known distributivity properties of univalent and injective relations
over meet continue to hold.
lemma univalent-comp-left-dist-inf:
 assumes univalent x
   shows x * (y \sqcap z) = x * y \sqcap x * z
proof (rule order.antisym)
 \mathbf{show}\ x*(y\sqcap z)\leq x*y\sqcap x*z
   by (simp add: comp-right-isotone)
 have x * y \sqcap x * z \le (x \sqcap x * z * y^T) * (y \sqcap x^T * x * z)
   by (metis comp-associative dedekind)
 also have ... \leq x * (y \sqcap x^T * x * z)
   by (simp add: comp-left-isotone)
 also have \dots \leq x * (y \sqcap 1 * z)
   {\bf using} \ assms \ comp\text{-}left\text{-}isotone \ comp\text{-}right\text{-}isotone \ inf.} sup\text{-}right\text{-}isotone \ {\bf by}
blast
 finally show x * y \sqcap x * z \le x * (y \sqcap z)
   by simp
qed
lemma injective-comp-right-dist-inf:
  injective z \Longrightarrow (x \sqcap y) * z = x * z \sqcap y * z
 by (metis univalent-comp-left-dist-inf conv-dist-comp conv-involutive
conv-dist-inf)
lemma vector-covector:
  vector \ v \Longrightarrow vector \ w \Longrightarrow v \ \sqcap \ w^T = v * w^T
 by (metis covector-comp-inf inf-top-left vector-conv-covector)
lemma comp-inf-vector-1:
  (x \sqcap top * y) * z = x * (z \sqcap (top * y)^T)
 by (simp add: comp-inf-vector conv-dist-comp)
    The shunting properties for bijective relations and mappings continue to
hold.
lemma shunt-bijective:
 assumes bijective z
   shows x \leq y * z \longleftrightarrow x * z^T \leq y
proof
 \mathbf{by}\ (simp\ add:\ mult-left-isotone)
 also have \dots \leq y
```

```
using assms comp-associative mult-right-isotone by fastforce
 finally show x * z^T \leq y
next
 assume 1: x * z^T \leq y
 have x = x \sqcap top * z
   by (simp add: assms)
 also have ... \leq x * z^{T} * z
   by (metis dedekind-2 inf-commute inf-top.right-neutral)
 also have \dots \leq y * z
   using 1 by (simp add: mult-left-isotone)
 finally show x \leq y * z
qed
lemma shunt-mapping:
  mapping \ z \Longrightarrow x \le z * y \longleftrightarrow z^T * x \le y
 by (metis shunt-bijective mapping-conv-bijective conv-order conv-dist-comp
conv-involutive)
lemma bijective-reverse:
 assumes bijective p
     and bijective q
   \mathbf{shows}\ p \leq r * q \longleftrightarrow q \leq r^T * p
proof -
 have p \leq r * q \longleftrightarrow p * q^T \leq r
   \mathbf{by}\ (simp\ add:\ assms(2)\ shunt-bijective)
 also have ... \longleftrightarrow q^T \leq p^T * r
   by (metis assms(1) conv-dist-comp conv-involutive conv-order shunt-bijective)
 also have ... \longleftrightarrow q \le r^T * p
   using conv-dist-comp conv-isotone by fastforce
 finally show ?thesis
   by simp
qed
lemma arc-expanded:
 arc \ x \longleftrightarrow x * top * x^T \le 1 \land x^T * top * x \le 1 \land top * x * top = top
 by (metis conv-top comp-associative conv-dist-comp conv-involutive
vector-top-closed)
lemma arc-top-arc:
 assumes arc x
   shows x * top * x = x
 by (metis assms epm-3 top-right-mult-increasing vector-inf-comp
vector-mult-closed vector-top-closed)
lemma arc-top-edge:
 assumes arc x
   shows x^T * top * x = x^T * x
```

```
have x^T = x^T * top \sqcap top * x^T
    using assms epm-3 top-right-mult-increasing by simp
  thus ?thesis
    by (metis comp-inf-vector-1 conv-dist-comp conv-involutive conv-top
inf.absorb1 top-right-mult-increasing)
qed
    Lemmas arc-eq-1 and arc-eq-2 were contributed by Nicolas Robinson-
O'Brien.
lemma arc-eq-1:
  assumes arc x
    shows x = x * x^T * x
proof -
  have x * x^T * x \le x * top * x
    by (simp add: mult-left-isotone mult-right-isotone)
  also have \dots \leq x
    by (simp add: assms arc-top-arc)
  finally have x * x^T * x \le x
    by simp
  thus ?thesis
    by (simp add: order.antisym ex231c)
qed
lemma arc-eq-2:
 assumes arc x
    shows x^T = x^T * x * x^T
  using arc-eq-1 assms conv-involutive by fastforce
lemma points-arc:
  point \ x \Longrightarrow point \ y \Longrightarrow arc \ (x * y^T)
  \mathbf{by}\ (\mathit{metis}\ \mathit{comp-associative}\ \mathit{conv-dist-comp}\ \mathit{conv-involutive}
equivalence-top-closed)
lemma point-arc:
  point \ x \Longrightarrow \ arc \ (x * x^T)
 by (simp add: points-arc)
lemma arc-expanded-1:
  arc \ e \Longrightarrow e * x * e^T \le 1
 \mathbf{by}\ (\mathit{meson}\ \mathit{arc}\text{-}\mathit{expanded}\ \mathit{order}\text{-}\mathit{trans}\ \mathit{top}\text{-}\mathit{greatest}\ \mathit{mult}\text{-}\mathit{left}\text{-}\mathit{isotone}
mult-right-isotone)
\mathbf{lemma} \ \mathit{arc\text{-}expanded\text{-}2\text{:}}
  arc \ e \Longrightarrow e^T * x * e \le 1
  by (meson arc-expanded order-trans top-greatest mult-left-isotone
mult-right-isotone)
```

lemma point-conv-comp:

```
point \ x \Longrightarrow x^T * x = top
  using order-eq-iff shunt-bijective top-greatest vector-conv-covector by blast
lemma point-antisymmetric:
  point x \Longrightarrow antisymmetric x
 by (simp add: vector-covector)
lemma mapping-inf-point-arc:
  assumes mapping x
     and point y
   shows arc (x \sqcap y)
proof (unfold arc-expanded, intro conjI)
 show (x \sqcap y) * top * (x \sqcap y)^T \le 1
   by (metis assms conv-dist-comp covector-conv-vector inf.orderE
inf.sup-monoid.add-commute surjective-conv-total top.extremum
top-right-mult-increasing vector-export-comp)
 have (x \sqcap y)^T * top * (x \sqcap y) = x^T * y * (x \sqcap y)
   by (simp add: assms(2) conv-dist-inf covector-inf-comp-3)
 also have \dots = x^T * (y \sqcap y^T) * x
   by (simp add: assms(2) comp-associative covector-inf-comp-3
inf.sup-monoid.add-commute)
 also have \dots \leq x^T * x
   \mathbf{by} \ (\textit{metis assms}(2) \ \textit{comp-right-one mult-left-isotone mult-right-isotone}
vector-covector)
  also have \dots \leq 1
   by (simp\ add:\ assms(1))
 finally show (x \sqcap y)^T * top * (x \sqcap y) \leq 1
 show top * (x \sqcap y) * top = top
   by (metis assms inf-top-right inf-vector-comp mult-assoc)
qed
lemma univalent-power-closed:
  univalent \ x \Longrightarrow univalent \ (x \cap n)
 apply (rule monoid-power-closed)
 using univalent-mult-closed by auto
lemma injective-power-closed:
  injective \ x \Longrightarrow injective \ (x \cap n)
 apply (rule monoid-power-closed)
 using injective-mult-closed by auto
lemma mapping-power-closed:
  mapping x \Longrightarrow mapping (x \hat{\ } n)
 apply (rule monoid-power-closed)
 using mapping-mult-closed by auto
lemma bijective-power-closed:
  bijective \ x \Longrightarrow bijective \ (x \cap n)
```

```
using bijective-mult-closed by auto
lemma power-conv-commute:
 x^T \cap n = (x \cap n)^T
proof (induct n)
 case \theta
 thus ?case
   by simp
\mathbf{next}
 case (Suc \ n)
 thus ?case
   using conv-dist-comp power-Suc2 by force
qed
    A relation is a permutation if and only if it has a left inverse and a right
inverse.
lemma invertible-total:
 assumes \exists z . 1 \leq x * z
 shows total x
proof -
 from assms obtain z where 1 \le x * z
   by auto
 hence top \le x * z * top
   using mult-isotone by fastforce
 also have ... \le x * top
   by (simp add: mult-right-isotone mult-assoc)
 finally show ?thesis
   using top-le by auto
qed
{\bf lemma}\ invertible\hbox{-}surjective\hbox{:}
 assumes \exists y : 1 \leq y * x
 shows surjective x
proof -
 from assms obtain y where 1 \le y * x
   by auto
 hence top \leq top * y * x
   using mult-right-isotone mult-assoc by fastforce
 also have \dots \leq top * x
   by (simp add: mult-left-isotone)
 finally show ?thesis
   by (simp add: top-le)
\mathbf{qed}
lemma invertible-univalent:
 assumes \exists y : y * x = 1
     and \exists z . x * z = 1
 shows univalent x
```

apply (rule monoid-power-closed)

```
proof -
 from assms obtain y where 1: y * x = 1
   by auto
 from assms obtain z where 2: x * z = 1
   by auto
 have y = y * x * z
   using 2 comp-associative comp-right-one by force
 also have \dots = z
   using 1 by auto
 finally have 3: y = z
 hence total z
   using 1 invertible-total by blast
 hence x \leq x * z * z^T
   \mathbf{using}\ \mathit{mult-right-isotone}\ \mathit{total-var}\ \mathit{mult-assoc}\ \mathbf{by}\ \mathit{fastforce}
 also have \dots = z^T
   using 2 by auto
 finally have 4: x \leq z^T
 have total x
   using 2 invertible-total by blast
 hence z \leq z * x * x^T
   using comp-associative mult-right-isotone total-var by fastforce
 also have \dots = x^T
   using 1 3 by auto
 finally have z \leq x^T
 hence z = x^T
   using 4 conv-order by force
 thus ?thesis
   using 1 3 by blast
qed
lemma invertible-injective:
 assumes \exists y : y * x = 1
     and \exists z . x * z = 1
   shows injective x
 by (metis assms invertible-univalent conv-dist-comp conv-involutive
mult-left-one)
lemma invertible-mapping:
 assumes \exists y : y * x = 1
     and \exists z . x * z = 1
   shows mapping x
  using assms invertible-total invertible-univalent dual-order.eq-iff by auto
lemma invertible-bijective:
 assumes \exists y : y * x = 1
```

```
and \exists z . x * z = 1
   shows bijective x
 using assms invertible-injective invertible-surjective by blast
    We define domain explicitly and show a few properties.
abbreviation domain :: 'a \Rightarrow 'a
 where domain x \equiv x * top \sqcap 1
lemma domain-var:
 domain \ x = x * x^T \sqcap 1
 by (smt (verit, del-insts) dedekind-eq inf.sup-monoid.add-commute inf-top-right
mult.monoid-axioms\ symmetric-top-closed\ total-one-closed\ monoid.right-neutral)
lemma domain-comp:
 domain \ x * x = x
 using domain-var inf.sup-monoid.add-commute by auto
lemma domain-mult-inf:
 domain \ x * domain \ y = domain \ x \sqcap domain \ y
 using coreflexive-comp-inf by force
\mathbf{lemma}\ \textit{domain-mult-commutative} :
 domain \ x * domain \ y = domain \ y * domain \ x
 using coreflexive-commutative by force
\mathbf{lemma}\ \textit{domain-mult-idempotent}\colon
 domain \ x * domain \ x = domain \ x
 by (simp add: coreflexive-idempotent)
lemma domain-export:
 domain (domain x * y) = domain x * domain y
 by (simp add: inf-commute inf-left-commute inf-vector-comp)
lemma domain-local:
 domain (x * domain y) = domain (x * y)
 by (simp add: comp-associative vector-export-comp)
lemma domain-dist-sup:
 domain\ (x\ \sqcup\ y) = \ domain\ x\ \sqcup\ domain\ y
 by (simp add: inf-sup-distrib2 mult-right-dist-sup)
lemma domain-idempotent:
 domain (domain x) = domain x
 by (simp add: vector-export-comp)
lemma domain-bot:
 domain \ bot = bot
 by simp
```

```
lemma domain-one:
    domain 1 = 1
    by simp

lemma domain-top:
    domain top = 1
    by simp
```

end

4.2 Single-Object Pseudocomplemented Distributive Allegories

We extend single-object bounded distributive allegories by a pseudocomplement operation. The following definitions concern properties of relations that require a pseudocomplement.

 ${\bf class}\ relation-algebra-signature = bounded-distrib-allegory-signature + uminus \\ {\bf begin}$

```
abbreviation irreflexive :: 'a \Rightarrow bool where irreflexive x \equiv x \leq -1 abbreviation strict-linear :: 'a \Rightarrow bool where strict-linear x \equiv x \sqcup x^T = -1 abbreviation strict-order :: 'a \Rightarrow bool where strict-order x \equiv irreflexive \ x \wedge transitive \ x abbreviation linear-strict-order :: 'a \Rightarrow bool where linear-strict-order x \equiv strict-order \ x \wedge strict-linear \ x
```

The following variants are useful for the graph model.

```
\begin{array}{lll} \textbf{abbreviation} & pp\text{-}mapping & :: 'a \Rightarrow bool \ \textbf{where} & pp\text{-}mapping \ x \\ univalent \ x \wedge total \ (--x) \\ \textbf{abbreviation} & pp\text{-}bijective & :: 'a \Rightarrow bool \ \textbf{where} & pp\text{-}bijective \ x \\ injective \ x \wedge surjective \ (--x) & :: 'a \Rightarrow bool \ \textbf{where} & pp\text{-}point \ x \\ \textbf{x} \wedge pp\text{-}bijective \ x \\ \textbf{abbreviation} & pp\text{-}arc \\ \textbf{x} \wedge pp\text{-}bijective \ (x * top) \wedge pp\text{-}bijective \ (x^T * top) \\ \end{array}
```

 ${f class}\ pd ext{-}allegory = bounded ext{-}distrib ext{-}allegory + p ext{-}algebra \ {f begin}$

 ${\bf subclass}\ \textit{relation-algebra-signature}\ \boldsymbol{.}$

subclass pd-algebra ..

end

lemma *conv-complement-1*:

$$-(x^T) \sqcup (-x)^T = (-x)^T$$

by (metis conv-dist-inf conv-order bot-least conv-involutive pseudo-complement sup.absorb2 sup.cobounded2)

lemma conv-complement:

$$(-x)^T = -(x^T)$$

by (metis conv-complement-1 conv-dist-sup conv-involutive sup-commute)

 $\mathbf{lemma}\ conv\text{-}complement\text{-}sub\text{-}inf\ [simp]:$

$$x^T * -(x * y) \sqcap y = bot$$

by (metis comp-left-zero conv-dist-comp conv-involutive dedekind-1 inf-import-p inf-p inf-right-idem ppp pseudo-complement regular-closed-bot)

 ${\bf lemma}\ conv\text{-}complement\text{-}sub\text{-}leq:$

$$x^T * -(x * y) \le -y$$

using pseudo-complement conv-complement-sub-inf by blast

lemma conv-complement-sub [simp]:

$$x^T * -(x * y) \sqcup -y = -y$$

by (simp add: conv-complement-sub-leq sup.absorb2)

 $\mathbf{lemma}\ complement\text{-}conv\text{-}sub\text{:}$

$$-(y*x)*x^T \le -y$$

by (metis conv-complement conv-complement-sub-leg conv-order conv-dist-comp)

The following so-called Schröder equivalences, or De Morgan's Theorem K, hold only with a pseudocomplemented element on both right-hand sides.

lemma *schroeder-3-p*:

$$x * y \le -z \longleftrightarrow x^T * z \le -y$$

using pseudo-complement schroeder-1 by auto

lemma *schroeder-4-p*:

$$x * y \le -z \longleftrightarrow z * y^T \le -x$$

using pseudo-complement schroeder-2 by auto

lemma comp-pp-semi-commute:

$$x * --y \le --(x * y)$$

using conv-complement-sub-leq schroeder-3-p by fastforce

The following result looks similar to a property of (anti)domain.

lemma p-comp-pp [simp]:

$$-(x * --y) = -(x * y)$$

using comp-pp-semi-commute comp-right-isotone order.eq-iff p-antitone pp-increasing **by** fastforce

 ${f lemma}\ pp\text{-}comp\text{-}semi\text{-}commute:$

$$--x * y \le --(x * y)$$

using complement-conv-sub schroeder-4-p by fastforce

```
lemma p-pp-comp [simp]:
  -(--x * y) = -(x * y)
 \mathbf{using}\ pp\text{-}comp\text{-}semi\text{-}commute\ comp\text{-}left\text{-}isotone\ order.eq\text{-}iff\ p\text{-}antitone
pp-increasing by fastforce
{f lemma}\ pp\text{-}comp\text{-}subdist:
  --x * --y \le --(x * y)
 by (simp add: p-antitone-iff)
lemma theorem24xxiii:
 x * y \sqcap -(x * z) = x * (y \sqcap -z) \sqcap -(x * z)
proof -
 have x * y \sqcap -(x * z) \le x * (y \sqcap (x^T * -(x * z)))
   by (simp add: dedekind-1)
 also have \dots \leq x * (y \sqcap -z)
   using comp-right-isotone conv-complement-sub-leq inf.sup-right-isotone by
auto
 finally show ?thesis
   using comp-right-subdist-inf order.antisym inf.coboundedI2 inf.commute by
auto
qed
    Even in Stone relation algebras, we do not obtain the backward impli-
cation in the following result.
lemma vector-complement-closed:
  vector x \Longrightarrow vector (-x)
 by (metis complement-conv-sub conv-top order.eq-iff top-right-mult-increasing)
lemma covector-complement-closed:
  covector x \Longrightarrow covector (-x)
 by (metis conv-complement-sub-leq conv-top order.eq-iff top-left-mult-increasing)
lemma covector-vector-comp:
  vector \ v \Longrightarrow -v^T * v = bot
 by (metis conv-bot conv-complement conv-complement-sub-inf conv-dist-comp
conv-involutive inf-top.right-neutral)
lemma irreflexive-bot-closed:
  irreflexive bot
 \mathbf{by} \ simp
lemma irreflexive-inf-closed:
  irreflexive \ x \Longrightarrow irreflexive \ (x \sqcap y)
 by (simp add: le-infI1)
lemma irreflexive-sup-closed:
  irreflexive \ x \Longrightarrow irreflexive \ y \Longrightarrow irreflexive \ (x \sqcup y)
 by simp
```

```
lemma irreflexive-conv-closed:
  irreflexive \ x \Longrightarrow irreflexive \ (x^T)
  using conv-complement conv-isotone by fastforce
lemma reflexive-complement-irreflexive:
  reflexive x \Longrightarrow irreflexive (-x)
 by (simp add: p-antitone)
{f lemma}\ irreflexive-complement-reflexive:
  irreflexive x \longleftrightarrow reflexive (-x)
  by (simp add: p-antitone-iff)
\mathbf{lemma}\ symmetric\text{-}complement\text{-}closed:
  symmetric x \Longrightarrow symmetric (-x)
  by (simp add: conv-complement)
lemma asymmetric-irreflexive:
  asymmetric x \Longrightarrow irreflexive x
  by (metis inf.mult-not-zero inf.left-commute inf.right-idem
inf.sup-monoid.add-commute pseudo-complement one-inf-conv)
lemma linear-asymmetric:
  linear x \implies asymmetric (-x)
  using conv-complement p-top by force
\mathbf{lemma}\ strict\text{-}linear\text{-}sup\text{-}closed:
  strict-linear x \Longrightarrow strict-linear y \Longrightarrow strict-linear (x \sqcup y)
  by (metis (mono-tags, opaque-lifting) conv-dist-sup sup.right-idem sup-assoc
sup\text{-}commute)
lemma strict-linear-irreflexive:
  strict-linear x \Longrightarrow irreflexive x
  using sup-left-divisibility by blast
\mathbf{lemma}\ strict\text{-}linear\text{-}conv\text{-}closed:
  strict-linear x \Longrightarrow strict-linear (x^T)
 by (simp add: sup-commute)
lemma strict-order-var:
  strict-order x \longleftrightarrow asymmetric \ x \land transitive \ x
  by (metis asymmetric-irreflexive comp-right-one irreflexive-conv-closed
conv-dist-comp dual-order.trans pseudo-complement schroeder-3-p)
lemma strict-order-bot-closed:
  strict-order bot
  by simp
lemma strict-order-inf-closed:
  strict-order x \Longrightarrow strict-order y \Longrightarrow strict-order (x \sqcap y)
```

```
using inf.coboundedI1 transitive-inf-closed by auto
```

```
\mathbf{lemma}\ strict\text{-}order\text{-}conv\text{-}closed:
  strict-order x \Longrightarrow strict-order (x^T)
  using irreflexive-conv-closed transitive-conv-closed by blast
\mathbf{lemma} \ \mathit{order}\text{-}\mathit{strict}\text{-}\mathit{order}\text{:}
  assumes order x
  shows strict-order (x \sqcap -1)
proof (rule conjI)
  show 1: irreflexive (x \sqcap -1)
   by simp
 have antisymmetric (x \sqcap -1)
   using antisymmetric-inf-closed assms by blast
 \mathbf{hence}\ (x\ \sqcap\ -1)\ *\ (x\ \sqcap\ -1)\ \sqcap\ 1\ \le\ (x\ \sqcap\ -1\ \sqcap\ (x\ \sqcap\ -1)^T)\ *\ (x\ \sqcap\ -1\ \sqcap\ (x\ \sqcap\ -1)^T)\ 
-1)^{T}
   using 1 by (metis (no-types) coreflexive-symmetric irreflexive-inf-closed
coreflexive-transitive dedekind-1 inf-idem mult-1-right semiring.mult-not-zero
strict-order-var)
  also have ... = (x \sqcap x^T \sqcap -1) * (x \sqcap x^T \sqcap -1)
   by (simp add: conv-complement conv-dist-inf inf.absorb2
inf.sup-monoid.add-assoc)
  also have \dots = bot
    using assms order.antisym reflexive-conv-closed by fastforce
  finally have (x \sqcap -1) * (x \sqcap -1) \leq -1
   using le-bot pseudo-complement by blast
  thus transitive (x \sqcap -1)
   by (meson assms comp-isotone inf.boundedI inf.cobounded1
inf.order-lesseq-imp)
\mathbf{qed}
lemma strict-order-order:
  strict-order x \Longrightarrow order (x \sqcup 1)
  apply (unfold strict-order-var, intro conjI)
 apply simp
 apply (simp add: mult-left-dist-sup mult-right-dist-sup sup.absorb2)
  using conv-dist-sup coreflexive-bot-closed sup.absorb2 sup-inf-distrib2 by
fast force
\mathbf{lemma}\ \mathit{linear-strict-order-conv-closed}\colon
  linear-strict-order x \Longrightarrow linear-strict-order (x^T)
  by (simp add: irreflexive-conv-closed sup-monoid.add-commute
transitive-conv-closed)
\mathbf{lemma}\ \mathit{linear-order-strict-order}:
  linear-order x \Longrightarrow linear-strict-order (x \sqcap -1)
 apply (rule conjI)
  using order-strict-order apply simp
  by (metis conv-complement conv-dist-inf coreflexive-symmetric order.eq-iff
```

```
inf.absorb2 inf.distrib-left inf.sup-monoid.add-commute top.extremum)
lemma regular-conv-closed:
  regular x \Longrightarrow regular (x^T)
 by (metis conv-complement)
    We show a number of facts about equivalences.
\mathbf{lemma}\ equivalence\text{-}comp\text{-}left\text{-}complement:
  equivalence \ x \Longrightarrow x * -x = -x
 apply (rule order.antisym)
 apply (metis conv-complement-sub-leq preorder-idempotent)
 using mult-left-isotone by fastforce
lemma equivalence-comp-right-complement:
  equivalence \ x \Longrightarrow -x * x = -x
 by (metis equivalence-comp-left-complement conv-complement conv-dist-comp)
    The pseudocomplement of tests is given by the following operation.
abbreviation coreflexive-complement :: 'a \Rightarrow 'a \ (\leftarrow " \rightarrow [80] \ 80)
  where x' \equiv -x \sqcap 1
{\bf lemma}\ coreflexive-comp-top-coreflexive-complement:
  coreflexive \ x \Longrightarrow (x * top)' = x'
 by (metis coreflexive-comp-top-inf-one inf.commute inf-import-p)
lemma coreflexive-comp-inf-complement:
  coreflexive x \Longrightarrow (x * y) \sqcap -z = (x * y) \sqcap -(x * z)
 by (metis coreflexive-comp-top-inf inf.sup-relative-same-increasing inf-import-p
inf-le1)
lemma double-coreflexive-complement:
 x'' = (-x)'
 using inf.sup-monoid.add-commute inf-import-p by auto
lemma coreflexive-pp-dist-comp:
  assumes coreflexive x
     and coreflexive y
   shows (x * y)'' = x'' * y''
proof -
 have (x * y)'' = --(x * y) \sqcap 1
   by (simp add: double-coreflexive-complement)
 also have \dots = --x \sqcap --y \sqcap 1
   by (simp add: assms coreflexive-comp-inf)
 also have ... = (--x \sqcap 1) * (--y \sqcap 1)
   by (simp add: coreflexive-comp-inf inf.left-commute inf.sup-monoid.add-assoc)
 also have \dots = x^{\prime\prime} * y^{\prime\prime}
   by (simp add: double-coreflexive-complement)
  finally show ?thesis
```

```
qed
```

```
{\bf lemma}\ coreflexive-pseudo-complement:
  coreflexive \ x \Longrightarrow x \cap y = bot \longleftrightarrow x \le y'
 by (simp add: pseudo-complement)
lemma pp-bijective-conv-mapping:
  pp\text{-}bijective \ x \longleftrightarrow pp\text{-}mapping \ (x^T)
 by (simp add: conv-complement surjective-conv-total)
lemma pp-arc-expanded:
 pp\text{-}arc \ x \longleftrightarrow x * top * x^T \le 1 \land x^T * top * x \le 1 \land top * --x * top = top
proof
 assume 1: pp-arc x
 have 2: x * top * x^T \le 1
   using 1 by (metis comp-associative conv-dist-comp equivalence-top-closed
vector-top-closed)
 have \beta: x^T * top * x \leq 1
   using 1 by (metis conv-dist-comp conv-involutive equivalence-top-closed
vector-top-closed mult-assoc)
 have 4: x^T \le x^T * x * x^T
   by (metis conv-involutive ex231c)
 have top = --(top * x) * top
   using 1 by (metis conv-complement conv-dist-comp conv-involutive
equivalence-top-closed)
  also have ... \leq --(top * x^T * top * x) * top
   using 1 by (metis eq-reft mult-assoc p-comp-pp p-pp-comp)
 also have ... = (top * --(x * top) \sqcap --(top * x^T * top * x)) * top
   using 1 by simp
 also have ... = top * (--(x * top) \sqcap --(top * x^T * top * x)) * top
   by (simp add: covector-complement-closed covector-comp-inf
covector-mult-closed)
 also have ... = top * --(x * top \sqcap top * x^T * top * x) * top
   by simp
  also have ... = top * --(x * top * x^T * top * x) * top
   by (metis comp-associative comp-inf-covector inf-top.left-neutral)
 also have ... \leq top * --(x * top * x^{T} * x * x^{T} * top * x) * top
   \mathbf{using} \ 4 \ \mathbf{by} \ (\mathit{metis\ comp\text{-}associative\ comp\text{-}left\text{-}isotone\ comp\text{-}right\text{-}isotone}
pp-isotone)
 also have ... \leq top * --(x * x^{T} * top * x) * top
   using 2 by (metis comp-associative comp-left-isotone comp-right-isotone
pp-isotone comp-left-one)
 also have ... \leq top * --x * top
   using 3 by (metis comp-associative comp-left-isotone comp-right-isotone
pp-isotone comp-right-one)
 finally show x*top*x^T \leq 1 \wedge x^T*top*x \leq 1 \wedge top*--x*top = top
   using 2 3 top-le by blast
next
 assume x*top*x^T \leq 1 \wedge x^T*top*x \leq 1 \wedge top*--x*top = top
```

```
thus pp-arc x
   apply (intro conjI)
   apply (metis comp-associative conv-dist-comp equivalence-top-closed
vector-top-closed)
   apply (metis comp-associative mult-right-isotone top-le
pp-comp-semi-commute)
   apply (metis conv-dist-comp coreflexive-symmetric vector-conv-covector
vector-top-closed mult-assoc)
   by (metis conv-complement conv-dist-comp equivalence-top-closed inf.orderE
inf-top.left-neutral mult-right-isotone pp-comp-semi-commute)
qed
    The following operation represents states with infinite executions of non-
strict computations.
abbreviation N :: 'a \Rightarrow 'a
 where N x \equiv -(-x * top) \sqcap 1
lemma N-comp:
 N x * y = -(-x * top) \sqcap y
 by (simp add: vector-mult-closed vector-complement-closed vector-inf-one-comp)
lemma N-comp-top [simp]:
 N x * top = -(-x * top)
 by (simp add: N-comp)
lemma vector-N-pp:
 vector \ x \Longrightarrow N \ x = --x \ \sqcap \ 1
 by (simp add: vector-complement-closed)
lemma N-vector-pp [simp]:
 N(x * top) = --(x * top) \sqcap 1
 by (simp add: comp-associative vector-complement-closed)
lemma N-vector-top-pp [simp]:
 N(x * top) * top = --(x * top)
 \mathbf{by}\ (\mathit{metis}\ \mathit{N-comp-top}\ \mathit{comp-associative}\ \mathit{vector-top-closed}
vector-complement-closed)
lemma N-below-inf-one-pp:
 N x \leq --x \sqcap 1
 \mathbf{using} \ inf. sup-left-isotone \ p-antitone \ top-right-mult-increasing \ \mathbf{by} \ auto
lemma N-below-pp:
 N x \leq --x
 using N-below-inf-one-pp by auto
lemma N-comp-N:
 N x * N y = -(-x * top) \sqcap -(-y * top) \sqcap 1
 by (simp add: N-comp inf.mult-assoc)
```

```
lemma N-bot [simp]:
 N \ bot = bot
 by simp
lemma N-top [simp]:
 N top = 1
 by simp
lemma n-split-omega-mult-pp:
 xs * --xo = xo \Longrightarrow vector xo \Longrightarrow N top * xo = xs * N xo * top
 by (metis N-top N-vector-top-pp comp-associative comp-left-one)
    Many of the following results have been derived for verifying Prim's
minimum spanning tree algorithm.
lemma ee:
 assumes vector v
    and e \leq v * -v^T
   shows e * e = bot
proof -
 have e * v \leq bot
   by (metis assms covector-vector-comp comp-associative mult-left-isotone
mult-right-zero)
 thus ?thesis
   by (metis\ assms(2)\ bot\text{-}unique\ comp\text{-}associative\ mult\text{-}right\text{-}isotone
semiring.mult-not-zero)
qed
lemma et:
 \mathbf{assumes}\ vector\ v
    and e \leq v * -v^T
    and t \leq v * v^T
   \mathbf{shows}\ e*t=bot
    and e * t^T = bot
proof -
 have e * t \leq v * -v^T * v * v^T
   using assms(2-3) comp-isotone mult-assoc by fastforce
 thus e * t = bot
   by (simp add: assms(1) covector-vector-comp le-bot mult-assoc)
next
 have t^T \leq v * v^T
   using assms(3) conv-order conv-dist-comp by fastforce
 hence e * t^T \le v * -v^T * v * v^T
   by (metis assms(2) comp-associative comp-isotone)
 thus e * t^T = bot
   by (simp add: assms(1) covector-vector-comp le-bot mult-assoc)
qed
lemma ve-dist:
```

```
assumes e \leq v * -v^T
     and vector v
     and arc e
   shows (v \sqcup e^T * top) * (v \sqcup e^T * top)^T = v * v^T \sqcup v * v^T * e \sqcup e^T * v * v^T
\sqcup e^T * e
proof -
 have e \leq v * top
   using assms(1) comp-right-isotone dual-order.trans top-greatest by blast
  hence v * top * e = v * top * (v * top \sqcap e)
   by (simp add: inf.absorb2)
 also have \dots = (v * top \sqcap top * v^T) * e
   using assms(2) covector-inf-comp-3 vector-conv-covector by force
 also have ... = v * top * v^T * e
   by (metis assms(2) inf-top-right vector-inf-comp)
 also have ... = v * v^T * e
   by (simp\ add:\ assms(2))
 finally have 1: v * top * e = v * v^T * e
 have e^T * top * e \le e^T * top * e * e^T * e
   using ex231c comp-associative mult-right-isotone by auto
 also have ... \leq e^T * e
   by (metis\ assms(3)\ coreflexive-comp-top-inf\ le-infE\ mult-semi-associative
point-injective)
  finally have 2: e^T * top * e = e^T * e
   \mathbf{by}\ (simp\ add:\ order.antisym\ mult-left-isotone\ top-right-mult-increasing)
  have (v \sqcup e^T * top) * (v \sqcup e^T * top)^T = (v \sqcup e^T * top) * (v^T \sqcup top * e)
   by (simp add: conv-dist-comp conv-dist-sup)
  also have ... = v * v^T \sqcup v * top * e \sqcup e^T * top * v^T \sqcup e^T * top * top * e
   \mathbf{by}\ (metis\ semiring.distrib-left\ semiring.distrib-right\ sup-assoc\ mult-assoc)
 also have ... = v * v^T \sqcup v * top * e \sqcup (v * top * e)^T \sqcup e^T * top * e
   by (simp add: comp-associative conv-dist-comp)
 also have ... = v * v^T \sqcup v * v^T * e \sqcup (v * v^T * e)^T \sqcup e^T * e
   using 1 2 by simp
 finally show ?thesis
   by (simp add: comp-associative conv-dist-comp)
qed
lemma ev:
  vector \ v \Longrightarrow e \le v * -v^T \Longrightarrow e * v = bot
  by (metis covector-vector-comp order.antisym bot-least comp-associative
mult-left-isotone mult-right-zero)
lemma vTeT:
  vector \ v \Longrightarrow e \le v * -v^T \Longrightarrow v^T * e^T = bot
 using conv-bot ev conv-dist-comp by fastforce
```

The following result is used to show that the while-loop of Prim's algorithm preserves that the constructed tree is a subgraph of g.

 $\mathbf{lemma} \ \mathit{prim-subgraph-inv} :$

```
assumes e \leq v * -v^T \sqcap g
     and t \leq v * v^T \sqcap g
   shows t \sqcup e \leq ((v \sqcup e^T * top) * (v \sqcup e^T * top)^T) \sqcap g
proof (rule sup-least)
  have t \leq ((v \sqcup e^T * top) * v^T) \sqcap g
    using assms(2) le-supI1 mult-right-dist-sup by auto
  also have ... \leq ((v \sqcup e^T * top) * (v \sqcup e^T * top)^T) \sqcap g
   {\bf using} \ comp\text{-}right\text{-}isotone \ conv\text{-}dist\text{-}sup \ inf.} sup\text{-}left\text{-}isotone \ {\bf by} \ auto
  finally show t \leq ((v \sqcup e^T * top) * (v \sqcup e^T * top)^T) \sqcap g
next
  have e \leq v * top
   by (meson assms(1) inf.boundedE mult-right-isotone order.trans
top.extremum)
  hence e < v * top \sqcap top * e
   by (simp add: top-left-mult-increasing)
  also have \dots = v * top * e
   by (metis inf-top-right vector-export-comp)
  finally have e \leq v * top * e \sqcap g
   using assms(1) by auto
  also have ... = v * (e^T * top)^T \sqcap g
   by (simp add: comp-associative conv-dist-comp)
  also have ... \leq v * (v \sqcup e^T * top)^T \sqcap g
   by (simp add: conv-dist-sup mult-left-dist-sup sup.assoc sup.orderI)
  also have ... \leq (v \sqcup e^T * top) * (v \sqcup e^T * top)^T \sqcap g
   using inf.sup-left-isotone mult-right-sub-dist-sup-left by auto
  finally show e \leq ((v \sqcup e^T * top) * (v \sqcup e^T * top)^T) \sqcap g
qed
```

The following result shows how to apply the Schröder equivalence to the middle factor in a composition of three relations. Again the elements on the right-hand side need to be pseudocomplemented.

```
 \begin{array}{l} \textbf{lemma} \ triple\text{-}schroeder\text{-}p: \\ x*y*z \leq -w \longleftrightarrow x^T*w*z^T \leq -y \\ \textbf{using} \ mult\text{-}assoc \ p\text{-}antitone\text{-}iff \ schroeder\text{-}3\text{-}p \ schroeder\text{-}4\text{-}p \ \textbf{by} \ auto \\ \end{array}
```

The rotation versions of the Schröder equivalences continue to hold, again with pseudocomplemented elements on the right-hand side.

```
\begin{array}{l} \textbf{lemma} \ schroeder\text{-}5\text{-}p\text{:} \\ x*y \leq -z \longleftrightarrow y*z^T \leq -x^T \\ \textbf{using} \ schroeder\text{-}3\text{-}p \ schroeder\text{-}4\text{-}p \ \textbf{by} \ auto \\ \\ \textbf{lemma} \ schroeder\text{-}6\text{-}p\text{:} \\ x*y \leq -z \longleftrightarrow z^T*x \ x \leq -y^T \\ \textbf{using} \ schroeder\text{-}3\text{-}p \ schroeder\text{-}4\text{-}p \ \textbf{by} \ auto \\ \\ \textbf{lemma} \ vector\text{-}conv\text{-}compl\text{:} \\ vector\ v \implies top\ *-v^T = -v^T \end{array}
```

by (simp add: covector-complement-closed vector-conv-covector)

Composition commutes, relative to the diversity relation.

```
lemma comp-commute-below-diversity:
```

```
x * y \le -1 \longleftrightarrow y * x \le -1
```

by (metis comp-right-one conv-dist-comp conv-one schroeder-3-p schroeder-4-p)

lemma comp-injective-below-complement:

```
injective y \Longrightarrow -x * y \le -(x * y)
```

by (metis p-antitone-iff comp-associative comp-right-isotone comp-right-one schroeder-4-p)

 $\mathbf{lemma}\ comp\text{-}univalent\text{-}below\text{-}complement:$

```
univalent x \Longrightarrow x * -y \le -(x * y)
```

by (metis p-inf pseudo-complement semiring.mult-zero-right univalent-comp-left-dist-inf)

Bijective relations and mappings can be exported from a pseudocomplement.

 ${\bf lemma}\ comp\mbox{-}bijective\mbox{-}complement:$

```
bijective y \Longrightarrow -x * y = -(x * y)
```

 $\begin{array}{c} \textbf{using} \ comp-injective-below-complement} \ complement-conv-sub \ order. antisym \\ shunt-bijective \ \textbf{by} \ blast \end{array}$

lemma comp-mapping-complement:

```
mapping \ x \Longrightarrow x * -y = -(x * y)
```

by (metis (full-types) comp-bijective-complement conv-complement conv-dist-comp conv-involutive total-conv-surjective)

The following facts are used in the correctness proof of Kruskal's minimum spanning tree algorithm.

 $\mathbf{lemma}\ kruskal$ -injective-inv:

```
assumes injective f and covector q and q*f^T \leq q and e \leq q and q*f^T \leq -e and injective e and q^T*q \sqcap f^T*f \leq 1 shows injective ((f\sqcap -q)\sqcup (f\sqcap q)^T\sqcup e) proof - have 1:(f\sqcap -q)*(f\sqcap -q)^T \leq 1 by (simp\ add:\ assms(1)\ injective-inf-closed) have 2:(f\sqcap -q)*(f\sqcap q) \leq 1 proof - have 21:\ bot=q*f^T\sqcap -q by (metis\ assms(3)\ inf.sup-monoid.add-assoc\ inf.sup-right-divisibility\ inf-import-p\ inf-p) have (f\sqcap -q)*(f\sqcap q) \leq -q*f\sqcap q
```

```
by (metis assms(2) comp-inf-covector comp-isotone inf.cobounded2
inf.left-idem)
   \mathbf{also} \ \mathbf{have} \ ... = \mathit{bot}
     using 21 schroeder-2 by auto
   finally show ?thesis
     by (simp add: bot-unique)
  \mathbf{qed}
  have \beta: (f \sqcap -q) * e^T \leq 1
  proof -
   have (f \sqcap -q) * e^T \leq -q * e^T
     by (simp add: mult-left-isotone)
   also have \dots = bot
     by (metis\ assms(2,4)\ bot-unique\ conv-bot\ conv-complement
covector-complement-closed p-antitone p-bot regular-closed-bot schroeder-5-p)
   finally show ?thesis
     by (simp add: bot-unique)
  qed
  have 4: (f \sqcap q)^T * (f \sqcap -q)^T \le 1
   using 2 conv-dist-comp conv-isotone by force
  have 5: (f \sqcap q)^T * (f \sqcap q) \leq 1
   have (f \sqcap q)^T * (f \sqcap q) \leq q^T * q \sqcap f^T * f
     by (simp add: conv-isotone mult-isotone)
   also have \dots \leq 1
     by (simp\ add:\ assms(7))
   finally show ?thesis
     \mathbf{by} \ simp
  ged
  have 6: (f \sqcap q)^T * e^T \le 1
  proof -
   have f^T * e^T < -q^T
   using assms(5) schroeder-5-p by simp hence (f \sqcap q)^T * e^T = bot
     by (metis\ assms(2,5)\ conv-bot\ conv-dist-comp\ covector-comp-inf\ inf.absorb1
inf.cobounded2 inf.sup-monoid.add-commute inf-left-commute inf-p schroeder-4-p)
   thus ?thesis
     by (simp add: bot-unique)
  have 7: e * (f \sqcap -q)^T \leq 1
    using 3 conv-dist-comp coreflexive-symmetric by fastforce
  have 8: e * (f \sqcap q) \le 1
   using 6 conv-dist-comp coreflexive-symmetric by fastforce
  have 9: e * e^T \leq 1
   by (simp\ add:\ assms(6))
 have ((f \sqcap -q) \sqcup (f \sqcap q)^T \sqcup e) * ((f \sqcap -q) \sqcup (f \sqcap q)^T \sqcup e)^T = (f \sqcap -q) * (f \sqcap q)^T \sqcup e)^T
using comp-left-dist-sup comp-right-dist-sup conv-dist-sup sup.assoc by simp
  also have \dots \leq 1
```

```
using 1 2 3 4 5 6 7 8 9 by simp
 finally show ?thesis
   \mathbf{by} \ simp
qed
lemma kruskal-exchange-injective-inv-1:
 assumes injective f
     and covector q
     and q * f^T \leq q
and q^T * q \sqcap f^T * f \leq 1
   shows injective ((f \sqcap -q) \sqcup (f \sqcap q)^T)
 using kruskal-injective-inv[where e=bot] by (simp \ add: \ assms)
lemma kruskal-exchange-acyclic-inv-3:
  assumes injective w
     and d \leq w
   shows (w \sqcap -d) * d^T * top = bot
proof -
 have (w \sqcap -d) * d^T * top = (w \sqcap -d \sqcap (d^T * top)^T) * top
   by (simp add: comp-associative comp-inf-vector-1 conv-dist-comp)
 also have ... = (w \sqcap top * d \sqcap -d) * top
   by (simp add: conv-dist-comp inf-commute inf-left-commute)
  finally show ?thesis
   using assms epm-3 by simp
qed
lemma kruskal-subgraph-inv:
 assumes f \leq --(-h \sqcap g)
     and e \leq --g
     and symmetric h
     and symmetric g
   shows (f \sqcap -q) \sqcup (f \sqcap q)^T \sqcup e \leq --(-(h \sqcap -e \sqcap -e^T) \sqcap q)
proof -
 let ?f = (f \sqcap -q) \sqcup (f \sqcap q)^T \sqcup e
 let ?h = h \sqcap -e \sqcap -e^T
 have 1: f \sqcap -q \leq -h \sqcap --g
   using assms(1) inf.coboundedI1 by simp
 have (f \sqcap q)^T \leq (-h \sqcap --g)^T
   using assms(1) inf.coboundedI1 conv-isotone by simp
 also have \dots = -h \sqcap --g
   using assms(3,4) conv-complement conv-dist-inf by simp
  finally have ?f \leq (-h \sqcap --g) \sqcup (e \sqcap --g)
   using 1 assms(2) inf.absorb1 semiring.add-right-mono by simp
 also have \dots \leq (-h \sqcup --e) \sqcap --g
   by (simp add: inf.coboundedI1 le-supI2 pp-increasing)
  also have \dots \leq -?h \sqcap --g
   using inf.sup-left-isotone order-trans p-antitone-inf p-supdist-inf by blast
  finally show ?f \leq --(-?h \sqcap g)
   using inf-pp-semi-commute order-lesseq-imp by blast
```

```
qed
```

```
lemma antisymmetric-inf-diversity:

antisymmetric x \Longrightarrow x \sqcap -1 = x \sqcap -x^T

by (smt (verit, del-insts) inf.orderE inf.sup-monoid.add-assoc

inf.sup-monoid.add-commute inf-import-p one-inf-conv)
```

end

4.3 Stone Relation Algebras

We add *pp-dist-comp* and *pp-one*, which follow in relation algebras but not in the present setting. The main change is that only a Stone algebra is required, not a Boolean algebra.

```
class stone-relation-algebra = pd-allegory + stone-algebra + assumes pp-dist-comp : --(x*y) = --x*--y assumes pp-one [simp]: --1 = 1 begin
```

The following property is a simple consequence of the Stone axiom. We cannot hope to remove the double complement in it.

```
cannot hope to remove the double complement in it.
lemma conv-complement-\theta-p [simp]:
 (-x)^T \sqcup (--x)^T = top
 by (metis conv-top conv-dist-sup stone)
lemma theorem24xxiv-pp:
  -(x * y) \sqcup --(x * z) = -(x * (y \sqcap -z)) \sqcup --(x * z)
 by (metis p-dist-inf theorem24xxiii)
lemma asymmetric-linear:
  asymmetric \ x \longleftrightarrow linear \ (-x)
 by (metis conv-complement inf.distrib-left inf-p maddux-3-11-pp p-bot
p-dist-inf)
lemma strict-linear-asymmetric:
 strict-linear x \Longrightarrow antisymmetric (-x)
 by (metis conv-complement eq-refl p-dist-sup pp-one)
lemma regular-complement-top:
  regular x \Longrightarrow x \sqcup -x = top
 by (metis stone)
lemma regular-mult-closed:
  regular x \Longrightarrow regular y \Longrightarrow regular (x * y)
 by (simp add: pp-dist-comp)
lemma regular-one-closed:
  regular 1
 by simp
```

The following variants of total and surjective are useful for graphs.

```
lemma pp-total:
 total(--x) \longleftrightarrow -(x*top) = bot
 by (simp add: dense-pp pp-dist-comp)
lemma pp-surjective:
 surjective (--x) \longleftrightarrow -(top*x) = bot
 by (metis p-bot p-comp-pp p-top pp-dist-comp)
    Bijective elements and mappings are necessarily regular, that is, invariant
under double-complement. This implies that points are regular. Moreover,
also arcs are regular.
lemma bijective-regular:
 bijective x \Longrightarrow regular x
 by (metis comp-bijective-complement mult-left-one regular-one-closed)
lemma mapping-regular:
 mapping x \Longrightarrow regular x
 by (metis bijective-regular conv-complement conv-involutive
total-conv-surjective)
lemma arc-regular:
 assumes arc x
   shows regular x
proof -
 have --x \leq --(x * top \sqcap top * x)
   by (simp add: pp-isotone top-left-mult-increasing top-right-mult-increasing)
 also have ... = --(x * top) \sqcap --(top * x)
   by simp
 also have \dots = x * top \sqcap top * x
   by (metis assms bijective-regular conv-top conv-dist-comp conv-involutive
mapping-regular)
 also have \dots \leq x * x^T * top * x
   by (metis comp-associative dedekind-1 inf.commute inf-top.right-neutral)
 also have \dots \leq x
   by (metis assms comp-right-one conv-top comp-associative conv-dist-comp
conv-involutive mult-right-isotone vector-top-closed)
 finally show ?thesis
   by (simp add: order.antisym pp-increasing)
qed
lemma regular-power-closed:
 regular x \Longrightarrow regular (x \hat{n})
 apply (rule monoid-power-closed)
 using regular-mult-closed by auto
```

end

Every Stone algebra can be expanded to a Stone relation algebra by identifying the semiring and lattice structures and taking identity as converse.

```
sublocale stone-algebra < comp-inf: stone-relation-algebra where one = top
and times = inf and conv = id
proof (unfold-locales, goal-cases)
   case 7
   show ?case by (simp add: inf-commute)
qed (auto simp: inf.assoc inf-sup-distrib2 inf-left-commute)</pre>
```

Every bounded linear order can be expanded to a Stone algebra, which can be expanded to a Stone relation algebra by reusing some of the operations. In particular, composition is meet, its identity is *top* and converse is the identity function.

```
{\bf class}\ linorder\mbox{-}stone\mbox{-}relation\mbox{-}algebra\mbox{-}expansion = linorder\mbox{-}stone\mbox{-}algebra\mbox{-}expansion
+ times + conv + one +
 assumes times-def [simp]: x * y = min x y
 assumes conv-def [simp]: x^T = x
 assumes one-def [simp]: 1 = top
begin
lemma times-inf [simp]:
 x * y = x \sqcap y
 by simp
subclass stone-relation-algebra
  apply unfold-locales
 using comp-inf.mult-right-dist-sup inf-commute inf-assoc inf-left-commute
pp-dist-inf min-def by simp-all
{\bf lemma}\ times\text{-}dense:
 x \neq bot \Longrightarrow y \neq bot \Longrightarrow x * y \neq bot
 using inf-dense min-inf times-def by presburger
```

end

4.4 Relation Algebras

For a relation algebra, we only require that the underlying lattice is a Boolean algebra. In fact, the only missing axiom is that double-complement is the identity.

```
{\bf class}\ relation\hbox{-}algebra=boolean\hbox{-}algebra+stone\hbox{-}relation\hbox{-}algebra\\ {\bf begin}
```

```
lemma conv-complement-0 [simp]: x^T \sqcup (-x)^T = top by (simp add: conv-complement)
```

We now obtain the original formulations of the Schröder equivalences.

```
lemma schroeder-3:
 x*y \leq z \longleftrightarrow x^T*-z \leq -y
 by (simp add: schroeder-3-p)
lemma schroeder-4:
 x * y \le z \longleftrightarrow -z * y^T \le -x
 by (simp add: schroeder-4-p)
lemma theorem24xxiv:
  -(x * y) \sqcup (x * z) = -(x * (y \sqcap -z)) \sqcup (x * z)
  using theorem24xxiv-pp by auto
lemma vector-N:
  vector x \Longrightarrow N(x) = x \sqcap 1
 by (simp add: vector-N-pp)
lemma N-vector [simp]:
  N(x * top) = x * top \sqcap 1
 by simp
lemma N-vector-top [simp]:
  N(x * top) * top = x * top
  using N-vector-top-pp by simp
\mathbf{lemma}\ N\text{-}below\text{-}inf\text{-}one:
  N(x) \le x \sqcap 1
  using N-below-inf-one-pp by simp
lemma N-below:
  N(x) \leq x
  using N-below-pp by simp
lemma n-split-omega-mult:
  xs * xo = xo \Longrightarrow xo * top = xo \Longrightarrow N(top) * xo = xs * N(xo) * top
 using n-split-omega-mult-pp by simp
\mathbf{lemma}\ complement\text{-}vector:
  vector\ v \longleftrightarrow vector\ (-v)
  using vector-complement-closed by fastforce
\mathbf{lemma}\ complement\text{-}covector:
  covector\ v \longleftrightarrow covector\ (-v)
  using covector-complement-closed by force
\mathbf{lemma} \ \mathit{triple-schroeder} \colon
 x * y * z \leq w \longleftrightarrow x^T * -w * z^T \leq -y
 by (simp add: triple-schroeder-p)
```

lemma schroeder-5:

```
x*y \leq z \longleftrightarrow y*-z^T \leq -x^T
 by (simp add: conv-complement schroeder-5-p)
lemma schroeder-6:
 x * y \le z \longleftrightarrow -z^T * x \le -y^T
 by (simp add: conv-complement schroeder-5-p)
    We define and study the univalent part and the multivalent part of a
relation.
abbreviation univalent-part :: 'a \Rightarrow 'a (\langle up \rangle)
 where up \ x \equiv x \sqcap -(x * -1)
abbreviation multivalent-part :: 'a \Rightarrow 'a (\langle mp \rangle)
 where mp \ x \equiv x \sqcap x * -1
lemma up-mp-disjoint:
up \ x \sqcap mp \ x = bot
 using comp-inf.univalent-comp-left-dist-inf by auto
lemma up-mp-partition:
  up \ x \sqcup mp \ x = x
 by simp
\mathbf{lemma}\ \mathit{mp\text{-}conv\text{-}up\text{-}bot} \colon
 (mp\ x)^T * up\ x = bot
proof -
 have (mp \ x)^T * up \ x \le x^T * -(x * -1)
   by (simp add: conv-dist-inf mult-isotone)
 also have \dots \leq 1
   by (metis conv-complement-sub-leq pp-one)
 finally have 1: (mp \ x)^T * up \ x \leq 1
 have (mp\ x)^T*up\ x \le (x*-1)^T*-(x*-1)
   by (simp add: conv-isotone mult-isotone)
 also have \dots \leq -1
   by (simp add: schroeder-3)
 finally have (mp\ x)^T*up\ x\leq -1
 thus ?thesis
   using 1 by (metis le-iff-inf pseudo-complement)
lemma up-conv-up:
 x^T * up x = (up x)^T * up x
proof -
 have x^T * up \ x = (up \ x)^T * up \ x \sqcup (mp \ x)^T * up \ x
   by (metis conv-dist-sup mult-right-dist-sup up-mp-partition)
  thus ?thesis
   by (simp add: mp-conv-up-bot)
```

qed

lemma up-univalent:

univalent (up x)

by (metis inf-compl-bot-right schroeder-1 shunting-1 up-conv-up)

lemma up-mp-bot:

$$up (mp x) = bot$$

by (metis dedekind-2 equivalence-one-closed inf.sup-monoid.add-commute shunting-1 symmetric-complement-closed)

lemma mp-up-bot:

$$mp (up x) = bot$$

by (metis comp-right-one comp-univalent-below-complement double-compl shunting-1 up-univalent)

lemma up-idempotent:

$$up (up x) = up x$$

by (metis comp-right-one comp-univalent-below-complement inf.absorb1 regular-one-closed up-univalent)

${f lemma}$ $mp ext{-}idempotent:$

$$mp \ (mp \ x) = mp \ x$$

using inf.absorb1 shunting-1 up-mp-bot by blast

lemma mp-conv-mp:

$$x^T * mp \ x = (mp \ x)^T * mp \ x$$

by (smt (verit, ccfv-threshold) conv-dist-comp conv-dist-sup conv-involutive inf.absorb1 mult-right-dist-sup shunting-1 mp-conv-up-bot up-mp-bot up-mp-partition)

$\mathbf{lemma}\ up\text{-}mp\text{-}top\text{:}$

```
-(x*top) \sqcup up \ x*top \sqcup mp \ x*top = top
```

using semiring.combine-common-factor sup-monoid.add-commute by auto

lemma domain-mp:

$$domain (mp x) = x * -1 * x^T \sqcap 1$$

by (smt (verit, del-insts) comp-right-one conv-dist-comp conv-dist-inf conv-involutive dedekind-eq equivalence-one-closed inf.sup-monoid.add-commute inf-top.left-neutral)

$\mathbf{lemma}\ domain\text{-}mp\text{-}bot:$

$$domain (mp x) * x \sqcap -(x * -1) = bot$$

by (metis conv-complement-sub-inf conv-involutive inf.sup-monoid.add-assoc p-bot vector-export-comp-unit mp-conv-up-bot)

lemma domain-mp-mp:

```
domain (mp x) * x = mp x
```

by (smt (verit, ccfv-threshold) conv-complement-sub-inf conv-involutive

```
inf.absorb1\ inf.absorb-iff2\ inf-sup-distrib1\ p-bot\ shunting-1\\ top-right-mult-increasing\ vector-export-comp-unit\ mp-conv-up-bot\ up-mp-bot\ up-mp-partition)
```

lemma *mp-var*:

```
mp \ x = x \sqcap (x * -1 * x^T \sqcap 1) * top
```

by (metis domain-mp domain-mp-mp inf.sup-monoid.add-commute inf-top-right vector-export-comp-unit)

end

We briefly look at the so-called Tarski rule. In some models of Stone relation algebras it only holds for regular elements, so we add this as an assumption.

```
class stone-relation-algebra-tarski = stone-relation-algebra + assumes tarski: regular \ x \Longrightarrow x \neq bot \Longrightarrow top * x * top = top begin
```

We can then show, for example, that every arc is contained in a pseudocomplemented relation or its pseudocomplement.

```
lemma arc-in-partition:
 assumes arc x
   shows x \le -y \lor x \le --y
 have 1: x * top * x^T \le 1 \land x^T * top * x \le 1
   using assms arc-expanded by auto
 have \neg x \leq --y \longrightarrow x \leq -y
 proof
   assume \neg x \leq --y
   hence x \sqcap -y \neq bot
     using pseudo-complement by simp
   hence top * (x \sqcap -y) * top = top
     using assms arc-regular tarski by auto
   hence x = x \sqcap top * (x \sqcap -y) * top
     by simp
   also have ... \leq x \sqcap x * ((x \sqcap -y) * top)^T * (x \sqcap -y) * top
     by (metis dedekind-2 inf.cobounded1 inf.boundedI inf-commute mult-assoc
inf.absorb2 top.extremum)
   also have ... = x \sqcap x * top * (x^T \sqcap -y^T) * (x \sqcap -y) * top
     by (simp add: comp-associative conv-complement conv-dist-comp
conv-dist-inf)
   also have ... \leq x \sqcap x * top * x^T * (x \sqcap -y) * top
     using inf.sup-right-isotone mult-left-isotone mult-right-isotone by auto
   also have ... \le x \sqcap 1 * (x \sqcap -y) * top
     using 1 by (metis comp-associative comp-isotone inf.sup-right-isotone
mult-1-left mult-semi-associative)
   also have \dots = x \sqcap (x \sqcap -y) * top
     by simp
   also have \dots \leq (x \sqcap -y) * ((x \sqcap -y)^T * x)
```

```
by (metis dedekind-1 inf-commute inf-top-right)
   also have ... \leq (x \sqcap -y) * (x^T * x)
     \mathbf{by}\ (\mathit{simp}\ \mathit{add:}\ \mathit{conv-dist-inf}\ \mathit{mult-left-isotone}\ \mathit{mult-right-isotone})
   also have ... \leq (x \sqcap -y) * (x^T * top * x)
     by (simp add: mult-assoc mult-right-isotone top-left-mult-increasing)
   also have \dots \leq x \sqcap -y
     using 1 by (metis mult-right-isotone mult-1-right)
   finally show x \leq -y
     by simp
 \mathbf{qed}
 thus ?thesis
   by auto
\mathbf{qed}
lemma non-bot-arc-in-partition-xor:
 assumes arc x
     and x \neq bot
   shows (x \le -y \land \neg x \le --y) \lor (\neg x \le -y \land x \le --y)
 have x \leq -y \land x \leq --y \longrightarrow \mathit{False}
   by (simp add: assms(2) inf-absorb1 shunting-1-pp)
 thus ?thesis
   using assms(1) arc-in-partition by auto
qed
{f lemma}\ point-in-vector-or-pseudo-complement:
 assumes point p
     and vector v
   shows p \leq --v \lor p \leq -v
proof (rule disjCI)
 assume \neg (p \le -v)
 hence top * (p \sqcap --v) = top
   by (smt assms bijective-regular regular-closed-inf regular-closed-p shunting-1-pp
tarski vector-complement-closed vector-inf-closed vector-mult-closed)
 thus p \leq --v
   by (metis assms(1) epm-3 inf.absorb-iff1 inf.cobounded1 inf-top.right-neutral)
qed
lemma distinct-points:
 assumes point x
   and point y
   and x \neq y
 shows x \sqcap y = bot
 by (metis assms order.antisym comp-bijective-complement
inf.sup-monoid.add-commute mult-left-one pseudo-complement regular-one-closed
point-in-vector-or-pseudo-complement)
lemma point-in-vector-or-complement:
 assumes point p
```

```
and vector v
    and regular v
   \mathbf{shows}\ p \leq v \,\vee\, p \leq -v
 using assms point-in-vector-or-pseudo-complement by fastforce
lemma point-in-vector-sup:
 assumes point p
    and vector v
    and regular v
    and p \leq v \sqcup w
   shows p \leq v \lor p \leq w
 by (metis assms inf.absorb1 shunting-var-p sup-commute
point-in-vector-or-complement)
lemma point-atomic-vector:
 assumes point x
   and vector y
   and regular y
   and y \leq x
 shows y = x \lor y = bot
proof (cases x \leq -y)
 {f case}\ True
 thus ?thesis
   using assms(4) inf.absorb2 pseudo-complement by force
\mathbf{next}
 case False
 thus ?thesis
   using assms point-in-vector-or-pseudo-complement by fastforce
\mathbf{qed}
lemma point-in-vector-or-complement-2:
 assumes point x
   and vector y
   and regular y
   and \neg y \leq -x
 shows x < y
 using assms point-in-vector-or-pseudo-complement p-antitone-iff by fastforce
   The next three lemmas arc-in-arc-or-complement, arc-in-sup-arc and dif-
ferent-arc-in-sup-arc were contributed by Nicolas Robinson-O'Brien.
lemma arc-in-arc-or-complement:
 assumes arc x
    and arc y
    and \neg x \leq y
   shows x \leq -y
 using assms arc-in-partition arc-regular by force
lemma arc-in-sup-arc:
 assumes arc x
```

```
and arc y
    and x \leq z \sqcup y
   shows x \leq z \lor x \leq y
proof (cases \ x \leq y)
 case True
 thus ?thesis
   by simp
\mathbf{next}
 case False
 hence x \leq -y
   using assms(1,2) arc-in-arc-or-complement by blast
 hence x \leq -y \sqcap (z \sqcup y)
   using assms(3) by simp
 hence x \leq z
   by (metis\ inf.boundedE\ inf.sup-monoid.add-commute\ maddux-3-13
sup-commute)
 thus ?thesis
   by simp
qed
lemma different-arc-in-sup-arc:
 assumes arc x
    and arc y
    and x \leq z \sqcup y
    and x \neq y
   shows x \leq z
proof -
 have x \leq -y
   using arc-in-arc-or-complement assms(1,2,4) order eq-iff p-antitone-iff by
blast
 hence x \leq -y \sqcap (z \sqcup y)
   using assms arc-in-sup-arc by simp
 thus ?thesis
   by (metis order-lesseq-imp p-inf-sup-below sup-commute)
qed
end
{f class}\ relation-algebra-tarski=relation-algebra+stone-relation-algebra-tarski
   Finally, the above axioms of relation algebras do not imply that they
contain at least two elements. This is necessary, for example, to show that
arcs are not empty.
{\bf class}\ stone-relation-algebra-consistent = stone-relation-algebra +
 assumes consistent: bot \neq top
begin
lemma arc-not-bot:
 arc \ x \Longrightarrow x \neq bot
```

```
using consistent mult-right-zero by auto
\mathbf{lemma}\ point\text{-}not\text{-}bot:
  point p \Longrightarrow p \neq bot
  using consistent by force
end
{f class}\ relation-algebra-consistent=relation-algebra+
stone\text{-}relation\text{-}algebra\text{-}consistent
{\bf class}\ stone-relation-algebra-tarski-consistent = stone-relation-algebra-tarski +
stone\text{-}relation\text{-}algebra\text{-}consistent
begin
lemma arc-in-partition-xor:
  arc \ x \Longrightarrow (x \le -y \land \neg \ x \le --y) \lor (\neg \ x \le -y \land x \le --y)
  by (simp add: non-bot-arc-in-partition-xor arc-not-bot)
lemma regular-injective-vector-point-xor-bot:
  assumes regular x
     and vector x
     and injective x
    shows point x \longleftrightarrow x \neq bot
  using assms comp-associative consistent tarski by fastforce
end
{\bf class}\ relation-algebra-tarski-consistent = relation-algebra\ +
stone	ext{-}relation	ext{-}algebra	ext{-}tarski	ext{-}consistent
end
```

5 Subalgebras of Relation Algebras

In this theory we consider the algebraic structure of regular elements, coreflexives, vectors and covectors in Stone relation algebras. These elements form important subalgebras and substructures of relation algebras.

theory Relation-Subalgebras

 ${\bf imports}\ Stone-Algebras. Stone-Construction\ Relation-Algebras$

begin

The regular elements of a Stone relation algebra form a relation subalgebra.

 $\begin{tabular}{ll} \textbf{instantiation} & regular :: (stone-relation-algebra) & relation-algebra \\ \textbf{begin} \\ \end{tabular}$

```
lift-definition times-regular :: 'a regular \Rightarrow 'a regular \Rightarrow 'a regular is times
 using regular-mult-closed regular-closed-p by blast
lift-definition conv-regular :: 'a regular \Rightarrow 'a regular is conv
 using conv-complement by blast
lift-definition one-regular :: 'a regular is 1
  using regular-one-closed by blast
instance
 apply intro-classes
 apply (metis (mono-tags, lifting) times-regular.rep-eq Rep-regular-inject
comp-associative)
 apply (metis (mono-tags, lifting) times-regular.rep-eq Rep-regular-inject
mult-right-dist-sup sup-regular.rep-eq)
 apply (metis (mono-tags, lifting) times-regular.rep-eq Rep-regular-inject
bot-regular.rep-eq semiring.mult-zero-left)
 apply (simp add: one-regular.rep-eq times-regular.rep-eq
Rep-regular-inject[THEN sym])
 {\bf using} \ \textit{Rep-regular-inject conv-regular.rep-eq } {\bf apply} \ \textit{force}
 apply (metis (mono-tags, lifting) Rep-regular-inject conv-dist-sup
conv-regular.rep-eq sup-regular.rep-eq)
  apply (metis (mono-tags, lifting) conv-regular.rep-eq times-regular.rep-eq
Rep-regular-inject conv-dist-comp)
 by (auto simp add: conv-regular.rep-eq dedekind-1 inf-regular.rep-eq
less-eq-regular.rep-eq times-regular.rep-eq)
end
    The coreflexives (tests) in an idempotent semiring form a bounded idem-
potent subsemiring.
typedef (overloaded) 'a coreflexive =
coreflexives::'a::non-associative-left-semiring set
 by auto
lemma simp-coreflexive [simp]:
  \exists y \ . \ Rep\text{-}coreflexive \ x \leq 1
 using Rep-coreflexive by simp
setup-lifting type-definition-coreflexive
instantiation coreflexive :: (idempotent-semiring) bounded-idempotent-semiring
begin
lift-definition sup-coreflexive :: 'a coreflexive \Rightarrow 'a coreflexive \Rightarrow 'a coreflexive is
sun
 by simp
```

```
lift-definition times-coreflexive :: 'a coreflexive \Rightarrow 'a coreflexive \Rightarrow 'a coreflexive
is times
 by (simp add: coreflexive-mult-closed)
lift-definition bot-coreflexive :: 'a coreflexive is bot
 by simp
lift-definition one-coreflexive :: 'a coreflexive is 1
 by simp
lift-definition top-coreflexive :: 'a coreflexive is 1
 by simp
lift-definition less-eq-coreflexive :: 'a coreflexive \Rightarrow 'a coreflexive \Rightarrow bool is
less-eq.
lift-definition less-coreflexive :: 'a coreflexive \Rightarrow 'a coreflexive \Rightarrow bool is less.
instance
 apply intro-classes
 apply (simp-all add: less-coreflexive.rep-eq less-eq-coreflexive.rep-eq
less-le-not-le)[2]
  apply (meson less-eq-coreflexive.rep-eq order-trans)
  apply (simp-all add: Rep-coreflexive-inject bot-coreflexive.rep-eq
less-eq-coreflexive.rep-eq sup-coreflexive.rep-eq)[5]
 apply (simp add: semiring.distrib-left less-eq-coreflexive.rep-eq
sup-coreflexive.rep-eq times-coreflexive.rep-eq)
 apply (metis (mono-tags, lifting) sup-coreflexive.rep-eq times-coreflexive.rep-eq
Rep-coreflexive-inject mult-right-dist-sup)
 apply (simp add: times-coreflexive.rep-eq bot-coreflexive.rep-eq
Rep-coreflexive-inject[THEN sym])
 apply (simp add: one-coreflexive.rep-eq times-coreflexive.rep-eq
Rep-coreflexive-inject[THEN sym])
 apply (simp add: one-coreflexive.rep-eq less-eq-coreflexive.rep-eq
times-coreflexive.rep-eq)
 apply (simp only: sup-coreflexive.rep-eq top-coreflexive.rep-eq
Rep-coreflexive-inject[THEN sym], metis Abs-coreflexive-cases
Abs-coreflexive-inverse mem-Collect-eq sup.absorb2)
 apply (simp add: less-eq-coreflexive.rep-eq mult.assoc times-coreflexive.rep-eq)
 apply (metis (mono-tags, lifting) times-coreflexive.rep-eq Rep-coreflexive-inject
mult.assoc)
  using Rep-coreflexive-inject one-coreflexive.rep-eq times-coreflexive.rep-eq
apply fastforce
 apply (metis (mono-tags, lifting) sup-coreflexive.rep-eq times-coreflexive.rep-eq
Rep-coreflexive-inject mult-left-dist-sup)
 by (simp add: times-coreflexive.rep-eq bot-coreflexive.rep-eq
Rep-coreflexive-inject[THEN sym])
```

end

The coreflexives (tests) in a Stone relation algebra form a Stone relation algebra where the pseudocomplement is taken relative to the identity relation and converse is the identity function.

 ${\bf instantiation}\ \ coreflexive:: (stone-relation-algebra)\ \ stone-relation-algebra$ ${\bf begin}$

lift-definition inf-coreflexive :: 'a coreflexive \Rightarrow 'a coreflexive \Rightarrow 'a coreflexive is inf

by (simp add: le-infI1)

lift-definition minus-coreflexive :: 'a coreflexive \Rightarrow 'a coreflexive \Rightarrow 'a coreflexive is $\lambda x \ y \ . \ x \ \Box \ -y$

by (simp add: le-infI1)

lift-definition uminus-coreflexive :: 'a coreflexive \Rightarrow 'a coreflexive **is** $\lambda x \cdot -x \cap 1$ **by** simp

lift-definition conv-coreflexive :: 'a coreflexive \Rightarrow 'a coreflexive is id by simp

instance

apply intro-classes

 $\textbf{apply} \ (\textit{auto simp: inf-coreflexive.rep-eq less-eq-coreflexive.rep-eq}) [3]$

apply simp

apply (metis (mono-tags, lifting) Rep-coreflexive-inject inf-coreflexive.rep-eq sup-coreflexive.rep-eq sup-inf-distrib1)

apply (metis (mono-tags, lifting) Rep-coreflexive-inject bot-coreflexive.rep-eq top-greatest coreflexive-pseudo-complement inf-coreflexive.rep-eq less-eq-coreflexive.rep-eq one-coreflexive.rep-eq one-coreflexive-def top-coreflexive-def uminus-coreflexive.rep-eq)

apply (metis (mono-tags, lifting) Rep-coreflexive-inject maddux-3-21-pp one-coreflexive.rep-eq one-coreflexive-def pp-dist-inf pp-one regular-closed-p sup-coreflexive.rep-eq sup-right-top top-coreflexive-def uminus-coreflexive.rep-eq)

apply (auto simp: mult.assoc mult-right-dist-sup)[4]

using Rep-coreflexive-inject conv-coreflexive.rep-eq apply fastforce

apply (metis (mono-tags) Rep-coreflexive-inject conv-coreflexive.rep-eq)

apply (metis (mono-tags, lifting) Rep-coreflexive-inject top-greatest conv-coreflexive.rep-eq coreflexive-commutative less-eq-coreflexive.rep-eq one-coreflexive.rep-eq top-coreflexive-def)

apply (simp only: conv-coreflexive.rep-eq less-eq-coreflexive.rep-eq one-coreflexive.rep-eq times-coreflexive.rep-eq inf-coreflexive.rep-eq Rep-coreflexive-inject[THEN sym], metis coreflexive-dedekind Rep-coreflexive mem-Collect-eq)

apply (metis (mono-tags, lifting) Rep-coreflexive Rep-coreflexive-inject coreflexive-pp-dist-comp mem-Collect-eq times-coreflexive.rep-eq uminus-coreflexive.rep-eq)

 $\textbf{by} \ (\textit{metis} \ (\textit{mono-tags}, \ \textit{opaque-lifting}) \ \textit{Rep-coreflexive-inverse} \ \textit{inf.commute} \\ \textit{inf.idem} \ \textit{inf-import-p} \ \textit{one-coreflexive.rep-eq} \ \textit{pp-one} \ \textit{uminus-coreflexive.rep-eq})$

end

Vectors in a Stone relation algebra form a Stone subalgebra.

```
typedef (overloaded) 'a vector = vectors:: 'a::bounded-pre-left-semiring set using surjective-top-closed by blast
```

```
lemma simp\text{-}vector\ [simp]:

\exists\ y\ .\ Rep\text{-}vector\ x*top = Rep\text{-}vector\ x

using Rep\text{-}vector\ \mathbf{by}\ simp
```

 $\mathbf{setup\text{-}lifting}\ type\text{-}definition\text{-}vector$

 $\begin{array}{ll} \textbf{instantiation} \ \ vector :: (stone-relation-algebra) \ \ stone-algebra \\ \textbf{begin} \end{array}$

lift-definition $sup\text{-}vector :: 'a \ vector \Rightarrow 'a \ vector \Rightarrow 'a \ vector \ \mathbf{is} \ sup$ **by** $(simp \ add: \ vector\text{-}sup\text{-}closed)$

lift-definition inf-vector :: 'a vector \Rightarrow 'a vector \Rightarrow 'a vector is inf **by** (simp add: vector-inf-closed)

lift-definition uminus-vector :: 'a vector \Rightarrow 'a vector **is** uminus **by** (simp add: vector-complement-closed)

lift-definition bot-vector :: 'a vector **is** bot **by** simp

lift-definition top-vector :: 'a vector is top by simp

lift-definition less-eq-vector :: 'a vector \Rightarrow 'a vector \Rightarrow bool is less-eq.

lift-definition less-vector :: 'a vector \Rightarrow 'a vector \Rightarrow bool is less.

instance

apply intro-classes

 $\label{eq:apply} \textbf{apply} \ (auto\ simp:\ Rep-vector-inject\ top-vector.rep-eq\ bot-vector.rep-eq\ less-le-not-le\ inf-vector.rep-eq\ sup-vector.rep-eq\ less-eq-vector.rep-eq\ less-vector.rep-eq) [12]$

 $\begin{array}{ll} \textbf{apply} \; (\textit{metis} \; (\textit{mono-tags}, \; \textit{lifting}) \; \textit{Rep-vector-inject inf-vector.rep-eq} \\ \textit{sup-inf-distrib1} \; \textit{sup-vector.rep-eq}) \end{array}$

 $\begin{array}{ll} \textbf{apply} \; (metis \; (mono\text{-}tags, \; lifting) \; Rep\text{-}vector\text{-}inject \; bot\text{-}vector\text{-}def} \\ bot\text{-}vector.rep\text{-}eq \; pseudo\text{-}complement \; inf\text{-}vector.rep\text{-}eq \; less\text{-}eq\text{-}vector.rep\text{-}eq} \\ uminus\text{-}vector.rep\text{-}eq) \end{array}$

by (metis (mono-tags, lifting) sup-vector.rep-eq uminus-vector.rep-eq Rep-vector-inverse stone top-vector.abs-eq)

end

Covectors in a Stone relation algebra form a Stone subalgebra.

```
\mathbf{typedef}\ (\mathbf{overloaded})\ 'a\ covector =\ covectors::'a::bounded-pre-left-semiring\ set
  using surjective-top-closed by blast
lemma simp-covector [simp]:
 \exists y . top * Rep-covector x = Rep-covector x
 using Rep-covector by simp
setup-lifting type-definition-covector
instantiation covector :: (stone-relation-algebra) stone-algebra
begin
lift-definition sup-covector :: 'a covector \Rightarrow 'a covector \Rightarrow 'a covector is sup
 by (simp add: covector-sup-closed)
lift-definition inf-covector :: 'a covector \Rightarrow 'a covector \Rightarrow 'a covector is inf
 by (simp add: covector-inf-closed)
lift-definition uminus-covector :: 'a covector \Rightarrow 'a covector is uminus
 by (simp add: covector-complement-closed)
lift-definition bot-covector :: 'a covector is bot
 by simp
lift-definition top-covector :: 'a covector is top
 by simp
lift-definition less-eq-covector :: 'a covector \Rightarrow 'a covector \Rightarrow bool is less-eq.
lift-definition less-covector :: 'a covector \Rightarrow 'a covector \Rightarrow bool is less.
instance
 apply intro-classes
 apply (auto simp: Rep-covector-inject less-eq-covector.rep-eq inf-covector.rep-eq
bot\text{-}covector.rep\text{-}eq\ top\text{-}covector.rep\text{-}eq\ sup\text{-}covector.rep\text{-}eq\ less\text{-}le\text{-}not\text{-}le
less-covector.rep-eq)[12]
 apply (metis (mono-tags, lifting) Rep-covector-inject inf-covector.rep-eq
sup-inf-distrib1 sup-covector.rep-eq)
 apply (metis (mono-tags, lifting) Rep-covector-inject bot-covector-def
bot-covector.rep-eq pseudo-complement inf-covector.rep-eq less-eq-covector.rep-eq
uminus-covector.rep-eq)
 by (metis (mono-tags, lifting) sup-covector.rep-eq uminus-covector.rep-eq
Rep-covector-inverse stone top-covector.abs-eq)
end
```

end

6 Matrix Relation Algebras

This theory gives matrix models of Stone relation algebras and more general structures. We consider only square matrices. The main result is that matrices over Stone relation algebras form a Stone relation algebra.

We use the monoid structure underlying semilattices to provide finite sums, which are necessary for defining the composition of two matrices. See [3, 4] for similar liftings to matrices for semirings and relation algebras. A technical difference is that those theories are mostly based on semirings whereas our hierarchy is mostly based on lattices (and our semirings directly inherit from semilattices).

Relation algebras have both a semiring and a lattice structure such that semiring addition and lattice join coincide. In particular, finite sums and finite suprema coincide. Isabelle/HOL has separate theories for semirings and lattices, based on separate addition and join operations and different operations for finite sums and finite suprema. Reusing results from both theories is beneficial for relation algebras, but not always easy to realise.

theory Matrix-Relation-Algebras

imports Relation-Algebras

begin

begin

6.1 Finite Suprema

We consider finite suprema in idempotent semirings and Stone relation algebras. We mostly use the first of the following notations, which denotes the supremum of expressions t(x) over all x from the type of x. For finite types, this is implemented in Isabelle/HOL as the repeated application of binary suprema.

The following induction principles are useful for comparing two suprema. The first principle works because types are not empty.

```
lemma one-sup-induct [case-names one sup]:
  \mathbf{fixes}\ f\ g\ ::\ 'b :: \mathit{finite}\ \Rightarrow\ 'a
  assumes one: \bigwedge i . P(fi)(gi)
      and sup: \bigwedge j \ I \ . \ j \notin I \Longrightarrow P \ (\bigsqcup_{i \in I} f \ i) \ (\bigsqcup_{i \in I} g \ i) \Longrightarrow P \ (f \ j \sqcup (\bigsqcup_{i \in I} f \ i))
(g j \sqcup (\bigsqcup_{i \in I} g i))
    shows P(\bigsqcup_k f k) (\bigsqcup_k g k)
proof -
  let ?X = \{ k::'b . True \}
  have finite ?X and ?X \neq {}
    by auto
  thus ?thesis
  proof (induct rule: finite-ne-induct)
    case (singleton i) thus ?case
      using one by simp
  next
    case (insert j I) thus ?case
      using sup by simp
  qed
qed
lemma bot-sup-induct [case-names bot sup]:
  fixes fg :: 'b::finite \Rightarrow 'a
 assumes bot: P bot bot
      and sup: \bigwedge j I : j \notin I \Longrightarrow P (\bigsqcup_{i \in I} f i) (\bigsqcup_{i \in I} g i) \Longrightarrow P (f j \sqcup (\bigsqcup_{i \in I} f i))
(g j \sqcup (\bigsqcup_{i \in I} g i))
    shows P(\bigsqcup_k f k)(\bigsqcup_k g k)
  apply (induct rule: one-sup-induct)
  \mathbf{using}\ bot\ sup\ \mathbf{apply}\ fastforce
  using sup by blast
     Now many properties of finite suprema follow by simple applications of
the above induction rules. In particular, we show distributivity of composi-
tion, isotonicity and the upper-bound property.
lemma comp-right-dist-sum:
  fixes f :: 'b::finite \Rightarrow 'a
 shows (\bigsqcup_k f k * x) = (\bigsqcup_k f k) * x
proof (induct rule: one-sup-induct)
  case one show ?case
    by simp
  case (sup j I) thus ?case
    using mult-right-dist-sup by auto
lemma comp-left-dist-sum:
  fixes f :: 'b::finite \Rightarrow 'a
```

shows $(\bigsqcup_k x * f k) = x * (\bigsqcup_k f k)$ proof (induct rule: one-sup-induct)

case one show ?case

```
by simp
\mathbf{next}
  case (sup j I) thus ?case
   by (simp add: mult-left-dist-sup)
qed
lemma leq-sum:
  fixes fg :: 'b::finite \Rightarrow 'a
  shows (\forall k . f k \leq g k) \Longrightarrow (\bigsqcup_{k} f k) \leq (\bigsqcup_{k} g k)
proof (induct rule: one-sup-induct)
  case one thus ?case
   by simp
\mathbf{next}
  case (sup j I) thus ?case
   using sup-mono by blast
qed
lemma ub-sum:
 fixes f :: 'b::finite \Rightarrow 'a
  shows f i \leq (\bigsqcup_k f k)
proof -
 have i \in \{k : True\}
   by simp
  thus f i \leq (\bigsqcup_k f(k::'b))
   \mathbf{by}\ (\textit{metis finite-code sup-monoid.sum.insert sup-ge1 mk-disjoint-insert})
qed
lemma lub-sum:
 fixes f :: 'b::finite \Rightarrow 'a
 assumes \forall k . f k \leq x
   shows (\bigsqcup_k f k) \leq x
proof (induct rule: one-sup-induct)
  case one show ?case
   by (simp add: assms)
  case (sup j I) thus ?case
   using assms le-supI by blast
qed
lemma lub-sum-iff:
  fixes f :: 'b::finite \Rightarrow 'a
 shows (\forall k . f k \leq x) \longleftrightarrow (\bigsqcup_k f k) \leq x
 using order.trans ub-sum lub-sum by blast
\mathbf{lemma}\ \mathit{sum-const} \colon
  (\bigsqcup_{k}::'b::finite\ f) = f
  by (metis lub-sum sup.cobounded1 sup-monoid.add-0-right sup-same-context
ub-sum)
```

end

```
\begin{array}{l} \textbf{context} \ \ stone\text{-}relation\text{-}algebra \\ \textbf{begin} \end{array}
```

In Stone relation algebras, we can also show that converse, double complement and meet distribute over finite suprema.

```
lemma conv-dist-sum:
  fixes f :: 'b::finite \Rightarrow 'a
 shows (\bigsqcup_k (f k)^T) = (\bigsqcup_k f k)^T
proof (induct rule: one-sup-induct)
  case one show ?case
   by simp
\mathbf{next}
  case (sup \ j \ I) thus ?case
   by (simp add: conv-dist-sup)
qed
lemma pp-dist-sum:
  fixes f :: 'b::finite \Rightarrow 'a
 shows (\bigsqcup_k --f k) = --(\bigsqcup_k f k)
proof (induct rule: one-sup-induct)
  case one show ?case
   by simp
\mathbf{next}
  case (sup \ j \ I) thus ?case
   by simp
\mathbf{qed}
lemma inf-right-dist-sum:
 fixes f :: 'b::finite \Rightarrow 'a
  shows (\bigsqcup_k f k \sqcap x) = (\bigsqcup_k f k) \sqcap x
 by (rule comp-inf.comp-right-dist-sum)
```

 \mathbf{end}

6.2 Square Matrices

Because our semiring and relation algebra type classes only work for homogeneous relations, we only look at square matrices.

```
type-synonym ('a,'b) square = 'a \times 'a \Rightarrow 'b
```

We use standard matrix operations. The Stone algebra structure is lifted componentwise. Composition is matrix multiplication using given composition and supremum operations. Its unit lifts given zero and one elements into an identity matrix. Converse is matrix transpose with an additional componentwise transpose.

```
definition less-eq-matrix :: ('a,'b::ord) square \Rightarrow ('a,'b) square \Rightarrow bool
(infix \langle \preceq \rangle 50) where f \preceq g = (\forall e . f e \leq g e)
definition less-matrix :: ('a,'b::ord) square \Rightarrow ('a,'b) square \Rightarrow bool
(infix \langle \prec \rangle 50) where f \prec g = (f \leq g \land \neg g \leq f)
definition sup-matrix
                                  :: ('a, 'b::sup) \ square \Rightarrow ('a, 'b) \ square \Rightarrow ('a, 'b) \ square
(infixl \longleftrightarrow 65) where f \oplus g = (\lambda e \cdot f \cdot e \sqcup g \cdot e)
definition inf-matrix
                                 :: ('a, 'b::inf) \ square \Rightarrow ('a, 'b) \ square \Rightarrow ('a, 'b) \ square
(infix1 \langle \otimes \rangle 67) where f \otimes g = (\lambda e \cdot f e \sqcap g \cdot e)
definition minus-matrix :: ('a,'b::\{uminus,inf\}) square \Rightarrow ('a,'b) square \Rightarrow
('a,'b) square
                                            (infixl \iff 65) where f \ominus g = (\lambda e \cdot f \cdot e \sqcap -g \cdot e)
definition implies-matrix :: ('a,'b::implies) square \Rightarrow ('a,'b) square \Rightarrow ('a,'b)
                                         (infix) \langle O \rangle 65) where f \oslash g = (\lambda e \cdot f e \leadsto g \cdot e)
definition times-matrix :: ('a,'b::\{times,bounded-semilattice-sup-bot\}) square \Rightarrow
('a,'b) square \Rightarrow ('a,'b) square (infix) \langle \odot \rangle 70) where f \odot g = (\lambda(i,j) \cdot | \cdot |_k f
(i,k) * q(k,j)
definition uminus-matrix :: ('a,'b::uminus) \ square \Rightarrow ('a,'b) \ square
(\leftarrow \rightarrow [80] \ 80) \ \mathbf{where} \ominus f = (\lambda e \cdot -f e)
definition conv-matrix :: ('a, 'b::conv) square \Rightarrow ('a, 'b) square
(\leftarrow^t [100] \ 100) where f^t
                                         = (\lambda(i,j) \cdot (f(j,i))^T)
                                  :: ('a, 'b::bot) square
definition bot-matrix
(\langle mbot \rangle)
                      where mbot = (\lambda e \cdot bot)
definition top-matrix
                                  :: ('a, 'b::top) \ square
(\langle mtop \rangle)
                      where mtop = (\lambda e \cdot top)
                                  :: ('a, 'b::\{one, bot\}) square
definition one-matrix
(\langle mone \rangle)
                      where mone = (\lambda(i,j) . if i = j then 1 else bot)
```

6.3 Stone Algebras

We first lift the Stone algebra structure. Because all operations are componentwise, this also works for infinite matrices.

```
interpretation matrix-order: order where less-eq = less-eq-matrix and less = less-matrix :: ('a,'b::order) square \Rightarrow ('a,'b) square \Rightarrow bool apply unfold-locales apply (simp add: less-matrix-def) apply (simp add: less-eq-matrix-def) apply (meson less-eq-matrix-def order-trans) by (meson less-eq-matrix-def antisym ext) interpretation matrix-semilattice-sup: semilattice-sup where sup = sup-matrix and less-eq = less-eq-matrix and less = less-matrix :: ('a,'b::semilattice-sup) square \Rightarrow ('a,'b) square \Rightarrow bool apply unfold-locales
```

interpretation matrix-semilattice-inf: semilattice-inf where inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix :: ('a,'b)::semilattice-inf) square $\Rightarrow ('a,'b)$ square \Rightarrow bool

apply (simp add: sup-matrix-def less-eq-matrix-def) apply (simp add: sup-matrix-def less-eq-matrix-def) by (simp add: sup-matrix-def less-eq-matrix-def)

```
apply unfold-locales
 apply (simp add: inf-matrix-def less-eq-matrix-def)
 apply (simp add: inf-matrix-def less-eq-matrix-def)
 by (simp add: inf-matrix-def less-eq-matrix-def)
interpretation matrix-bounded-semilattice-sup-bot: bounded-semilattice-sup-bot
where sup = sup-matrix and less-eq = less-eq-matrix and less = less-matrix
and bot = bot\text{-}matrix :: ('a, 'b::bounded-semilattice-sup-bot) square
 apply unfold-locales
 by (simp add: bot-matrix-def less-eq-matrix-def)
interpretation matrix-bounded-semilattice-inf-top: bounded-semilattice-inf-top
where inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix
and top = top\text{-}matrix :: ('a, 'b::bounded\text{-}semilattice\text{-}inf\text{-}top) square
 apply unfold-locales
 by (simp add: less-eq-matrix-def top-matrix-def)
interpretation matrix-lattice: lattice where sup = sup-matrix and inf =
inf-matrix and less-eq = less-eq-matrix and less = less-matrix :: ('a,'b::lattice)
square \Rightarrow ('a,'b) \ square \Rightarrow bool ...
interpretation matrix-distrib-lattice: distrib-lattice where sup = sup-matrix
and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix ::
('a,'b::distrib-lattice) square \Rightarrow ('a,'b) square \Rightarrow bool
 apply unfold-locales
 by (simp add: sup-inf-distrib1 sup-matrix-def inf-matrix-def)
interpretation matrix-bounded-lattice: bounded-lattice where sup = sup-matrix
and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and
bot = bot\text{-}matrix :: ('a,'b::bounded\text{-}lattice) square and top = top\text{-}matrix ...
interpretation matrix-bounded-distrib-lattice: bounded-distrib-lattice where sup
= sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less =
less-matrix and bot = bot-matrix :: ('a,'b::bounded-distrib-lattice) square and top
= top\text{-}matrix ..
interpretation matrix-p-algebra: p-algebra where sup = sup-matrix and inf =
inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix :: ('a,'b::p-algebra) square and top = top-matrix and uminus =
uminus-matrix
 apply unfold-locales
 apply (unfold inf-matrix-def bot-matrix-def less-eq-matrix-def
uminus-matrix-def)
 by (meson pseudo-complement)
```

interpretation matrix-pd-algebra: pd-algebra where sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot = bot-matrix:: ('a,'b::pd-algebra) square and top = top-matrix and uminus = uminus-matrix..

In particular, matrices over Stone algebras form a Stone algebra.

```
interpretation matrix-stone-algebra: stone-algebra where sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot = bot-matrix :: ('a,'b::stone-algebra) square and top = top-matrix and uminus = uminus-matrix
```

by unfold-locales (simp add: sup-matrix-def uminus-matrix-def top-matrix-def)

```
interpretation matrix-heyting-stone-algebra: heyting-stone-algebra where sup =
sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less =
less-matrix and bot = bot-matrix :: ('a,'b::heyting-stone-algebra) square and top
= top-matrix and uminus = uminus-matrix and implies = implies-matrix
apply unfold-locales
apply (unfold inf-matrix-def sup-matrix-def bot-matrix-def top-matrix-def
less-eq-matrix-def uminus-matrix-def implies-matrix-def)
apply (simp add: implies-galois)
apply (simp add: uminus-eq)
by simp
```

interpretation matrix-boolean-algebra: boolean-algebra where sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot = bot-matrix :: ('a,'b::boolean-algebra) square and top = top-matrix and uminus = uminus-matrix and minus = minus-matrix apply unfold-locales apply simn

apply simp apply (simp add: sup-matrix-def uminus-matrix-def top-matrix-def) by (simp add: inf-matrix-def uminus-matrix-def minus-matrix-def)

6.4 Semirings

Next, we lift the semiring structure. Because of composition, this requires a restriction to finite matrices.

interpretation matrix-monoid: monoid-mult where times = times-matrix and one = one-matrix :: ('a::finite,'b::idempotent-semiring) square proof

```
fix f g h :: ('a,'b) square

show (f \odot g) \odot h = f \odot (g \odot h)

proof (rule\ ext,\ rule\ prod\text{-}cases)

fix i\ j

have ((f \odot g) \odot h)\ (i,j) = (\bigsqcup_l\ (f \odot g)\ (i,l)*h\ (l,j))

by (simp\ add:\ times\text{-}matrix\text{-}def)

also have ... = (\bigsqcup_l\ (\bigsqcup_k\ f\ (i,k)*g\ (k,l))*h\ (l,j))

by (simp\ add:\ times\text{-}matrix\text{-}def)

also have ... = (\bigsqcup_l\ \bigsqcup_k\ (f\ (i,k)*g\ (k,l))*h\ (l,j))

by (metis\ (no\text{-}types)\ comp\text{-}right\text{-}dist\text{-}sum)

also have ... = (\bigsqcup_l\ \bigsqcup_k\ f\ (i,k)*(g\ (k,l)*h\ (l,j)))

by (simp\ add:\ mult.assoc)

also have ... = (\bigsqcup_k\ \bigsqcup_l\ f\ (i,k)*(g\ (k,l)*h\ (l,j)))

using sup\text{-}monoid.sum.swap by auto
```

```
also have ... = (\bigsqcup_k f(i,k) * (\bigsqcup_l g(k,l) * h(l,j)))
     by (metis (no-types) comp-left-dist-sum)
   also have ... = (\bigsqcup_k f(i,k) * (g \odot h)(k,j))
     by (simp add: times-matrix-def)
   also have ... = (f \odot (g \odot h)) (i,j)
     by (simp add: times-matrix-def)
   finally show ((f \odot g) \odot h) (i,j) = (f \odot (g \odot h)) (i,j)
 qed
\mathbf{next}
 \mathbf{fix}\ f :: ('a,'b)\ square
 show mone \odot f = f
 proof (rule ext, rule prod-cases)
   fix i j
   have (mone \odot f) (i,j) = (| |_k mone (i,k) * f (k,j))
     by (simp add: times-matrix-def)
   also have ... = (\bigsqcup_k (if \ i = k \ then \ 1 \ else \ bot) * f \ (k,j))
     by (simp add: one-matrix-def)
   also have ... = (| \cdot |_k \text{ if } i = k \text{ then } 1 * f (k,j) \text{ else bot } * f (k,j))
     by (metis (full-types, opaque-lifting))
   also have ... = (\bigsqcup_{k} if i = k then f(k,j) else bot)
     by (meson mult-left-one mult-left-zero)
   also have \dots = f(i,j)
     by simp
   finally show (mone \odot f) (i,j) = f (i,j)
 qed
next
 fix f :: ('a, 'b) square
 show f \odot mone = f
 proof (rule ext, rule prod-cases)
   fix i j
   have (f \odot mone) (i,j) = (\bigsqcup_k f (i,k) * mone (k,j))
     by (simp add: times-matrix-def)
   also have ... = (\bigsqcup_k f(i,k) * (if k = j then 1 else bot))
     by (simp add: one-matrix-def)
   also have ... = (\bigsqcup_k if k = j then f(i,k) * 1 else f(i,k) * bot)
     by (metis (full-types, opaque-lifting))
   also have ... = (\bigsqcup_k if k = j then f (i,k) else bot)
     by (meson mult.right-neutral semiring.mult-zero-right)
   also have \dots = f(i,j)
     by simp
   finally show (f \odot mone) (i,j) = f (i,j)
 qed
qed
```

interpretation matrix-idempotent-semiring: idempotent-semiring where sup = sup-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =

```
bot-matrix :: ('a::finite,'b::idempotent-semiring) square and one = one-matrix
and times = times-matrix
proof
  fix f g h :: ('a, 'b) square
  show f \odot g \oplus f \odot h \preceq f \odot (g \oplus h)
  proof (unfold less-eq-matrix-def, rule allI, rule prod-cases)
   fix i j
   have (f \odot g \oplus f \odot h) (i,j) = (f \odot g) (i,j) \sqcup (f \odot h) (i,j)
     by (simp add: sup-matrix-def)
   also have ... = (\bigsqcup_k f(i,k) * g(k,j)) \sqcup (\bigsqcup_k f(i,k) * h(k,j))
     by (simp add: times-matrix-def)
   also have ... = (\bigsqcup_k f(i,k) * g(k,j) \sqcup f(i,k) * h(k,j))
     by (simp add: sup-monoid.sum.distrib)
   also have ... = (\bigsqcup_k f(i,k) * (g(k,j) \sqcup h(k,j)))
     by (simp add: mult-left-dist-sup)
   also have ... = (| \ |_k f(i,k) * (g \oplus h)(k,j))
     by (simp add: sup-matrix-def)
   also have ... = (f \odot (g \oplus h)) (i,j)
     by (simp add: times-matrix-def)
   finally show (f \odot g \oplus f \odot h) (i,j) \leq (f \odot (g \oplus h)) (i,j)
     by simp
  qed
next
  fix f g h :: ('a, 'b) square
  show (f \oplus g) \odot h = f \odot h \oplus g \odot h
  proof (rule ext, rule prod-cases)
   fix i j
   have ((f \oplus g) \odot h) (i,j) = (\bigsqcup_k (f \oplus g) (i,k) * h (k,j))
     by (simp add: times-matrix-def)
   also have ... = (\bigsqcup_k (f(i,k) \sqcup g(i,k)) * h(k,j))
     by (simp add: sup-matrix-def)
   also have ... = (\bigsqcup_k f(i,k) * h(k,j) \sqcup g(i,k) * h(k,j))
     by (meson mult-right-dist-sup)
   also have ... = (\bigsqcup_k f(i,k) * h(k,j)) \sqcup (\bigsqcup_k g(i,k) * h(k,j))
     by (simp add: sup-monoid.sum.distrib)
   also have ... = (f \odot h) (i,j) \sqcup (g \odot h) (i,j)
     by (simp add: times-matrix-def)
   also have ... = (f \odot h \oplus g \odot h) (i,j)
     by (simp add: sup-matrix-def)
   finally show ((f \oplus g) \odot h) (i,j) = (f \odot h \oplus g \odot h) (i,j)
  qed
\mathbf{next}
  \mathbf{fix}\ f :: ('a, 'b)\ square
  show mbot \odot f = mbot
  proof (rule ext, rule prod-cases)
   fix i j
   have (mbot \odot f) (i,j) = (\bigsqcup_k mbot (i,k) * f (k,j))
     by (simp add: times-matrix-def)
```

```
also have ... = (\bigsqcup_k bot * f(k,j))
     by (simp add: bot-matrix-def)
   also have \dots = bot
     by simp
   also have \dots = mbot(i,j)
     by (simp add: bot-matrix-def)
   finally show (mbot \odot f) (i,j) = mbot (i,j)
  qed
\mathbf{next}
  fix f :: ('a, 'b) square
  show mone \odot f = f
   by simp
\mathbf{next}
  \mathbf{fix}\ f::('a,'b)\ square
  show f \leq f \odot mone
   by simp
next
  fix f g h :: ('a, 'b) square
  show f \odot (g \oplus h) = f \odot g \oplus f \odot h
  proof (rule ext, rule prod-cases)
   fix i j
   have (f \odot (g \oplus h)) (i,j) = (\bigsqcup_k f (i,k) * (g \oplus h) (k,j))
     by (simp add: times-matrix-def)
   also have ... = (\bigsqcup_k f(i,k) * (g(k,j) \sqcup h(k,j)))
     by (simp add: sup-matrix-def)
   also have ... = (\bigsqcup_k f(i,k) * g(k,j) \sqcup f(i,k) * h(k,j))
     by (meson mult-left-dist-sup)
   also have ... = (\bigsqcup_k f(i,k) * g(k,j)) \sqcup (\bigsqcup_k f(i,k) * h(k,j))
     \mathbf{by}\ (simp\ add:\ sup\text{-}monoid.sum.distrib)
   also have ... = (f \odot g) (i,j) \sqcup (f \odot h) (i,j)
     by (simp add: times-matrix-def)
   also have ... = (f \odot g \oplus f \odot h) (i,j)
     by (simp add: sup-matrix-def)
   finally show (f \odot (g \oplus h)) (i,j) = (f \odot g \oplus f \odot h) (i,j)
  \mathbf{qed}
next
  \mathbf{fix} \ f :: ('a, 'b) \ square
  show f \odot mbot = mbot
  proof (rule ext, rule prod-cases)
   fix i j
   have (f \odot mbot) (i,j) = (\bigsqcup_{k} f(i,k) * mbot(k,j))
     by (simp add: times-matrix-def)
   also have ... = (\bigsqcup_k f(i,k) * bot)
     by (simp add: bot-matrix-def)
   also have \dots = bot
     by simp
   also have ... = mbot(i,j)
```

```
by (simp add: bot-matrix-def)
   finally show (f \odot mbot) (i,j) = mbot (i,j)
 qed
qed
interpretation matrix-bounded-idempotent-semiring:
bounded-idempotent-semiring where sup = sup-matrix and less-eq =
less-eq-matrix and less=less-matrix and bot=bot-matrix ::
('a::finite,'b::bounded-idempotent-semiring) square and top = top-matrix and one
= one\text{-}matrix  and times = times\text{-}matrix
proof
 fix f :: ('a, 'b) square
 show f \oplus mtop = mtop
 proof
   \mathbf{fix} \ e
   have (f \oplus mtop) \ e = f \ e \sqcup mtop \ e
     by (simp add: sup-matrix-def)
   also have \dots = f e \sqcup top
     by (simp add: top-matrix-def)
   also have \dots = top
     by simp
   also have \dots = mtop e
     by (simp add: top-matrix-def)
   finally show (f \oplus mtop) e = mtop e
 qed
qed
```

6.5 Stone Relation Algebras

Finally, we show that matrices over Stone relation algebras form a Stone relation algebra.

```
interpretation matrix-stone-relation-algebra: stone-relation-algebra where sup
= sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less =
less-matrix and bot = bot-matrix :: ('a::finite,'b::stone-relation-algebra) square
and top = top\text{-}matrix and uminus = uminus\text{-}matrix and one = one\text{-}matrix and
times = times-matrix and conv = conv-matrix
proof
 fix f q h :: ('a, 'b) square
 show (f \odot g) \odot h = f \odot (g \odot h)
   by (simp add: matrix-monoid.mult-assoc)
next
 fix f g h :: ('a, 'b) square
 show (f \oplus g) \odot h = f \odot h \oplus g \odot h
   by (simp add: matrix-idempotent-semiring.mult-right-dist-sup)
next
 fix f :: ('a, 'b) square
 show mbot \odot f = mbot
```

```
by simp
\mathbf{next}
  fix f :: ('a, 'b) square
  show mone \odot f = f
   by simp
\mathbf{next}
  fix f :: ('a, 'b) square
 \mathbf{show}\ f^{tt} = f
  proof (rule ext, rule prod-cases)
   fix i j
   have (f^{tt}) (i,j) = ((f^t) (j,i))^T
     by (simp add: conv-matrix-def)
   also have \dots = f(i,j)
     by (simp add: conv-matrix-def)
   finally show (f^{tt}) (i,j) = f(i,j)
  qed
next
  fix f g :: ('a, 'b) square
  show (f \oplus g)^t = f^t \oplus g^t
  proof (rule ext, rule prod-cases)
   fix i j
   have ((f \oplus g)^t) (i,j) = ((f \oplus g) (j,i))^T
      by (simp add: conv-matrix-def)
   also have ... = (f(j,i) \sqcup g(j,i))^T
     by (simp add: sup-matrix-def)
   also have ... = (f^t) (i,j) \sqcup (g^t) (i,j)
     by (simp add: conv-matrix-def conv-dist-sup)
   also have ... = (f^t \oplus g^t) (i,j)
     \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{sup\text{-}matrix\text{-}def})
   finally show ((f\oplus g)^t) (i,j)=(f^t\oplus g^t) (i,j)
  qed
\mathbf{next}
  fix f g :: ('a, 'b) square
  show (f \odot g)^t = g^t \odot f^t
  proof (rule ext, rule prod-cases)
   have ((f \odot g)^t) (i,j) = ((f \odot g) (j,i))^T
      by (simp add: conv-matrix-def)
   also have ... = (\bigsqcup_k f(j,k) * g(k,i))^T
     by (simp add: times-matrix-def)
   also have ... = (\bigsqcup_k (f(j,k) * g(k,i))^T)
     \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types})\ \mathit{conv-dist-sum})
   also have ... = (\bigsqcup_k (g(k,i))^T * (f(j,k))^T)
     by (simp add: conv-dist-comp)
   also have ... = (\bigsqcup_k (g^t) (i,k) * (f^t) (k,j))
     by (simp add: conv-matrix-def)
   also have ... = (g^t \odot f^t) (i,j)
```

```
by (simp add: times-matrix-def)
    finally show ((f\odot g)^t) (i,j)=(g^t\odot f^t) (i,j)
  qed
next
  \mathbf{fix} \ f \ g \ h :: ('a,'b) \ square
  show (f \odot g) \otimes h \preceq f \odot (g \otimes (f^t \odot h))
  proof (unfold less-eq-matrix-def, rule allI, rule prod-cases)
    fix i j
    have ((f \odot g) \otimes h) (i,j) = (f \odot g) (i,j) \sqcap h (i,j)
      by (simp add: inf-matrix-def)
    also have ... = (| \ |_k f(i,k) * g(k,j)) \sqcap h(i,j)
      by (simp add: times-matrix-def)
    also have ... = (| \cdot |_k f(i,k) * g(k,j) \sqcap h(i,j))
      by (metis (no-types) inf-right-dist-sum)
    also have ... \leq (\bigsqcup_{k} f(i,k) * (g(k,j) \sqcap (f(i,k))^{T} * h(i,j)))
      by (rule leq-sum, meson dedekind-1)
    also have ... = (\bigsqcup_k f\ (i,k)*(g\ (k,j)\ \sqcap\ (f^t)\ (k,i)*h\ (i,j)))
      by (simp add: conv-matrix-def)
    also have ... \leq (| \cdot |_k f(i,k) * (g(k,j) \sqcap (| \cdot |_l (f^t) (k,l) * h(l,j))))
      \mathbf{by}\ (\mathit{rule}\ \mathit{leq\text{-}sum},\ \mathit{rule}\ \mathit{allI},\ \mathit{rule}\ \mathit{comp\text{-}right\text{-}isotone},\ \mathit{rule}
inf.sup-right-isotone, rule ub-sum)
    also have ... = (\bigsqcup_k f(i,k) * (g(k,j) \sqcap (f^t \odot h)(k,j)))
      by (simp add: times-matrix-def)
    also have ... = (\bigsqcup_k f(i,k) * (g \otimes (f^t \odot h)) (k,j))
      \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{inf-matrix-def})
    also have ... = (f \odot (g \otimes (f^t \odot h))) (i,j)
      by (simp add: times-matrix-def)
    finally show ((f \odot g) \otimes h) \ (i,j) \leq (f \odot (g \otimes (f^t \odot h))) \ (i,j)
  qed
next
  fix f g :: ('a, 'b) square
  \mathbf{show} \ominus \ominus (f \odot g) = \ominus \ominus f \odot \ominus \ominus g
  proof (rule ext, rule prod-cases)
    have (\ominus \ominus (f \odot g)) (i,j) = --((f \odot g) (i,j))
      by (simp add: uminus-matrix-def)
    also have ... = --(| |_k f(i,k) * g(k,j))
      by (simp add: times-matrix-def)
    also have ... = (\bigsqcup_k --(f(i,k) * g(k,j)))
      by (metis (no-types) pp-dist-sum)
    also have ... = (\bigsqcup_{k} --(f(i,k)) * --(g(k,j)))
      by (meson pp-dist-comp)
    also have ... = (\bigsqcup_k (\ominus \ominus f) (i,k) * (\ominus \ominus g) (k,j))
      by (simp add: uminus-matrix-def)
    also have ... = (\ominus \ominus f \odot \ominus \ominus g) (i,j)
      by (simp add: times-matrix-def)
    finally show (\ominus \ominus (f \odot g)) (i,j) = (\ominus \ominus f \odot \ominus \ominus g) (i,j)
```

```
qed
\mathbf{next}
 let ?o = mone :: ('a, 'b) square
 \mathbf{show} \ominus \ominus ?o = ?o
 proof (rule ext, rule prod-cases)
   fix i j
   have (\ominus\ominus?o) (i,j) = --(?o(i,j))
     by (simp add: uminus-matrix-def)
   also have ... = --(if \ i = j \ then \ 1 \ else \ bot)
     by (simp add: one-matrix-def)
   also have ... = (if \ i = j \ then \ --1 \ else \ --bot)
    by simp
   also have \dots = (if \ i = j \ then \ 1 \ else \ bot)
     by auto
   also have ... = ?o(i,j)
    by (simp add: one-matrix-def)
   finally show (\ominus\ominus?o) (i,j) = ?o (i,j)
 qed
qed
interpretation matrix-stone-relation-algebra-consistent:
stone-relation-algebra-consistent where sup = sup-matrix and inf = inf-matrix
and less-eq = less-eq-matrix and less = less-matrix and bot = bot-matrix ::
('a::finite,'b::stone-relation-algebra-consistent) square and top = top-matrix and
uminus = uminus-matrix and one = one-matrix and times = times-matrix and
conv = conv-matrix
proof
 show (mbot::('a,'b) \ square) \neq mtop
   by (metis consistent bot-matrix-def top-matrix-def)
qed
{\bf interpretation}\ \ matrix-stone-relation-algebra-tarski:\ stone-relation-algebra-tarski
where sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and
less = less-matrix and bot = bot-matrix ::
('a::finite,'b::stone-relation-algebra-tarski) square and top = top-matrix and
uminus = uminus-matrix and one = one-matrix and times = times-matrix and
conv = conv-matrix
proof
 fix x :: ('a, 'b) square
 assume 1: matrix-p-algebra.regular x
 assume x \neq mbot
 from this obtain i j where x(i,j) \neq bot
   by (metis bot-matrix-def ext surj-pair)
 hence 2: top * x (i,j) * top = top
   using 1 by (metis tarski uminus-matrix-def)
 show matrix-bounded-idempotent-semiring.total (mtop \odot x)
 proof (rule ext, rule prod-cases)
```

```
fix k l
            have top * x (i,j) * top \le (\bigsqcup_{m} top * x (m,j)) * top
                  using comp-inf.ub-sum comp-isotone by fastforce
            also have ... = (mtop \odot x) (k,j) * top
                  by (simp add: times-matrix-def top-matrix-def)
            also have ... \leq (\bigsqcup_{m} (mtop \odot x) (k,m) * top)
                  using comp-inf.ub-sum by force
            also have ... = (mtop \odot x \odot mtop) (k,l)
                  by (simp add: times-matrix-def top-matrix-def)
            finally show (mtop \odot x \odot mtop) (k,l) = mtop (k,l)
                  using 2 by (simp add: top-matrix-def inf.bot-unique)
qed
interpretation matrix-stone-relation-algebra-tarski-consistent:
stone-relation-algebra-tarski-consistent where sup = sup-matrix and inf = sup-matrix
inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix :: ('a::finite,'b::stone-relation-algebra-tarski-consistent) square and top
= top\text{-}matrix \text{ and } uminus = uminus\text{-}matrix \text{ and } one = one\text{-}matrix \text{ and } times = top\text{-}matrix \text{ and } ti
times-matrix and conv = conv-matrix
end
```

7 Matrices over Bounded Linear Orders

In this theory we characterise relation-algebraic properties of matrices over bounded linear orders (for example, extended real numbers) in terms of the entries in the matrices. We consider, in particular, the following properties: univalent, injective, total, surjective, mapping, bijective, vector, covector, point, arc, reflexive, coreflexive, irreflexive, symmetric, antisymmetric, asymmetric. We also consider the effect of composition with the matrix of greatest elements and with coreflexives (tests).

```
theory Linear-Order-Matrices
imports Matrix-Relation-Algebras
begin
class non-trivial-linorder-stone-relation-algebra-expansion = linorder-stone-relation-algebra-expansion + non-trivial begin
subclass non-trivial-bounded-order ..
```

end

Before we look at matrices, we generalise selectivity to finite suprema.

```
lemma linorder-finite-sup-selective:
  fixes f :: 'a::finite \Rightarrow 'b::linorder-stone-algebra-expansion
 shows \exists i . (\bigsqcup_k f k) = f i
 apply (induct rule: comp-inf.one-sup-induct)
 apply blast
 using sup-selective by fastforce
lemma linorder-top-finite-sup:
  fixes f :: 'a::finite \Rightarrow 'b::linorder-stone-algebra-expansion
 assumes \forall k . f k \neq top
   shows (\bigsqcup_k f k) \neq top
  by (metis assms linorder-finite-sup-selective)
    The following results show the effect of composition with the top matrix
from the left and from the right.
lemma comp-top-linorder-matrix:
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 shows (f \odot mtop) (i,j) = (\bigsqcup_k f (i,k))
 apply (unfold times-matrix-def top-matrix-def)
 by (metis (no-types, lifting) case-prod-conv comp-right-one one-def
sup\text{-}monoid.sum.cong)
lemma top-comp-linorder-matrix:
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 shows (mtop \odot f) (i,j) = (| |_k f (k,j))
 apply (unfold times-matrix-def top-matrix-def)
 by (metis (no-types, lifting) case-prod-conv comp-left-one one-def
sup-monoid.sum.cong)
    We characterise univalent matrices: in each row, at most one entry may
be different from bot.
\mathbf{lemma} \ univalent\text{-}linorder\text{-}matrix\text{-}1:
  fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes matrix-stone-relation-algebra.univalent f
     and f(i,j) \neq bot
     and f(i,k) \neq bot
   shows j = k
proof -
 have (f^t \odot f) (j,k) = (\bigsqcup_l (f^t) (j,l) * f (l,k))
   by (simp add: times-matrix-def)
 also have ... = (| |_{l} (f(l,j))^{T} * f(l,k))
   by (simp add: conv-matrix-def)
 also have ... = (\bigsqcup_{l} f(l,j) * f(l,k))
   by simp
  also have ... \ge f(i,j) * f(i,k)
   using comp-inf.ub-sum by fastforce
  finally have (f^t \odot f) (j,k) \neq bot
   using assms(2,3) bot.extremum-uniqueI times-dense by fastforce
  hence mone (j,k) \neq (bot::'b)
```

```
by (metis assms(1) bot.extremum-uniqueI less-eq-matrix-def)
  thus ?thesis
   by (metis (mono-tags, lifting) case-prod-conv one-matrix-def)
qed
\mathbf{lemma} \ univalent\text{-}linorder\text{-}matrix\text{-}2\colon
  fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes \forall i \ j \ k \ . \ f \ (i,j) \neq bot \land f \ (i,k) \neq bot \longrightarrow j = k
   shows matrix-stone-relation-algebra.univalent f
proof -
 show f^t \odot f \leq mone
 proof (unfold less-eq-matrix-def, rule allI, rule prod-cases)
   show (f^t \odot f) (j,k) \leq mone (j,k)
   proof (cases j = k)
     assume j = k
     thus ?thesis
       by (simp add: one-matrix-def)
     assume j \neq k
     hence (\bigsqcup_i f(i,j) * f(i,k)) = bot
       by (metis (no-types, lifting) assms semiring.mult-not-zero
sup-monoid.sum.neutral)
     thus ?thesis
       by (simp add: times-matrix-def conv-matrix-def)
 qed
qed
lemma univalent-linorder-matrix:
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 shows matrix-stone-relation-algebra univalent f \longleftrightarrow (\forall i \ j \ k \ . \ f \ (i,j) \neq bot \land f
(i,k) \neq bot \longrightarrow j = k
 using univalent-linorder-matrix-1 univalent-linorder-matrix-2 by auto
    Injective matrices can then be characterised by applying converse: in
each column, at most one entry may be different from bot.
lemma injective-linorder-matrix:
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 shows matrix-stone-relation-algebra injective f \longleftrightarrow (\forall i \ j \ k \ . \ f \ (j,i) \neq bot \land f
(k,i) \neq bot \longrightarrow j = k
 by (unfold matrix-stone-relation-algebra.injective-conv-univalent
univalent-linorder-matrix) (simp add: conv-matrix-def)
    Next come total matrices: each row has a top entry.
\mathbf{lemma}\ total	ext{-}linorder	ext{-}matrix	ext{-}1:
  \mathbf{fixes}\ f::('a::finite,'b::linorder-stone-relation-algebra-expansion)\ square
 assumes matrix-stone-relation-algebra.total-var f
   shows \exists j : f(i,j) = top
```

```
proof -
 have mone (i,i) \leq (f \odot f^t) (i,i)
   using assms less-eq-matrix-def by blast
 hence top = (f \odot f^t) (i,i)
   by (simp add: one-matrix-def top.extremum-unique)
 also have ... = (\coprod_j f(i,j) * (f^t)(j,i))
   by (simp add: times-matrix-def)
 also have ... = (\bigsqcup_j f(i,j) * f(i,j))
   by (simp add: conv-matrix-def)
 also have \dots = (\bigsqcup_{j} f(i,j))
   by simp
 finally show ?thesis
   by (metis linorder-top-finite-sup)
qed
lemma total-linorder-matrix-2:
 \mathbf{fixes}\ f::\ ('a::finite,'b::linorder-stone-relation-algebra-expansion)\ square
 assumes \forall i . \exists j . f(i,j) = top
   shows matrix-stone-relation-algebra.total-var f
proof (unfold less-eq-matrix-def, rule allI, rule prod-cases)
  \mathbf{fix} \ j \ k
 show mone (j,k) \leq (f \odot f^t) (j,k)
 proof (cases j = k)
   assume j = k
   hence (\bigsqcup_i f(j,i) * (f^t)(i,k)) = (\bigsqcup_i f(j,i))
     by (simp add: conv-matrix-def)
   also have \dots = top
     by (metis (no-types) assms comp-inf.ub-sum sup.absorb2 sup-top-left)
   finally show ?thesis
     by (simp add: times-matrix-def)
 next
   assume j \neq k
   thus ?thesis
     by (simp add: one-matrix-def)
 qed
qed
lemma total-linorder-matrix:
  \mathbf{fixes}\ f::('a::finite,'b::linorder-stone-relation-algebra-expansion)\ square
 shows matrix-bounded-idempotent-semiring.total f \longleftrightarrow (\forall i : \exists j : f(i,j) = top)
  using total-linorder-matrix-1 total-linorder-matrix-2
matrix-stone-relation-algebra.total-var by auto
    Surjective matrices are again characterised by applying converse: each
column has a top entry.
lemma surjective-linorder-matrix:
 fixes f :: ('a::finite, 'b::linorder-stone-relation-algebra-expansion) square
 shows matrix-bounded-idempotent-semiring.surjective f \longleftrightarrow (\forall j : \exists i : f(i,j) =
top)
```

```
by (unfold matrix-stone-relation-algebra.surjective-conv-total
total-linorder-matrix) (simp add: conv-matrix-def)
```

A mapping therefore means that each row has exactly one top entry and

```
all others are bot.
lemma mapping-linorder-matrix:
     \mathbf{fixes}\ f::('a::finite,'b::linorder-stone-relation-algebra-expansion)\ square
    shows matrix-stone-relation-algebra mapping f \longleftrightarrow (\forall i . \exists j . f(i,j) = top \land i)
(\forall k : j \neq k \longrightarrow f(i,k) = bot)
    by (unfold total-linorder-matrix univalent-linorder-matrix) (metis (mono-tags,
opaque-lifting) comp-inf.mult-1-right comp-inf.mult-right-zero)
lemma mapping-linorder-matrix-unique:
    \mathbf{fixes}\ f::\ ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
    shows matrix-stone-relation-algebra mapping f \longleftrightarrow (\forall i . \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = top \land \exists ! j . f (i,j) = t
(\forall k : j \neq k \longrightarrow f(i,k) = bot))
    apply (unfold mapping-linorder-matrix)
     using bot-not-top by auto
          Conversely, bijective means that each column has exactly one top entry
and all others are bot.
lemma bijective-linorder-matrix:
     fixes f::('a::finite,'b::linorder-stone-relation-algebra-expansion) square
    shows matrix-stone-relation-algebra bijective f \longleftrightarrow (\forall j : \exists i : f(i,j) = top \land i)
(\forall k : i \neq k \longrightarrow f(k,j) = bot))
    by (unfold matrix-stone-relation-algebra.bijective-conv-mapping
mapping-linorder-matrix) (simp add: conv-matrix-def)
lemma bijective-linorder-matrix-unique:
    fixes f:(a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
    shows matrix-stone-relation-algebra bijective f \longleftrightarrow (\forall j : \exists ! i : f(i,j) = top \land i)
(\forall k : i \neq k \longrightarrow f(k,j) = bot))
    by (unfold matrix-stone-relation-algebra.bijective-conv-mapping
mapping-linorder-matrix-unique) (simp add: conv-matrix-def)
          We derive algebraic characterisations of matrices in which each row has
an entry that is different from bot.
lemma pp-total-linorder-matrix-1:
     fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
    assumes \ominus(f \odot mtop) = mbot
        shows \exists j . f(i,j) \neq bot
proof -
    have \neg(\exists j : f(i,j) \neq bot) \Longrightarrow \ominus(f \odot mtop) \neq mbot
    proof -
        assume \neg(\exists j . f(i,j) \neq bot)
```

hence $top = -(f \odot mtop) (i,i)$

```
by (simp add: comp-top-linorder-matrix linorder-finite-sup-selective)
   also have \dots = (\ominus(f \odot mtop)) (i,i)
     by (simp add: uminus-matrix-def)
   finally show \ominus(f \odot mtop) \neq mbot
     by (metis bot-matrix-def bot-not-top)
 qed
  thus ?thesis
   using assms by blast
\mathbf{qed}
lemma pp-total-linorder-matrix-2:
 fixes f:('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes \forall i . \exists j . f(i,j) \neq bot
   \mathbf{shows} \ominus (f \odot mtop) = mbot
proof (rule ext, rule prod-cases)
 have (\ominus(f \odot mtop)) (i,j) = -(\bigsqcup_k f (i,k))
   by (simp add: comp-top-linorder-matrix uminus-matrix-def)
 also have \dots = bot
   by (metis antisym assms bot.extremum comp-inf.ub-sum uminus-def)
 finally show (\ominus(f \odot mtop)) (i,j) = mbot (i,j)
   by (simp add: bot-matrix-def)
qed
\mathbf{lemma} \ pp\text{-}total\text{-}linorder\text{-}matrix\text{-}3:
  fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
 shows \ominus(f \odot mtop) = mbot \longleftrightarrow (\forall i . \exists j . f (i,j) \neq bot)
 using pp-total-linorder-matrix-1 pp-total-linorder-matrix-2 by auto
lemma pp-total-linorder-matrix:
 fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
 shows matrix-bounded-idempotent-semiring.total (\ominus \ominus f) \longleftrightarrow (\forall i . \exists j . f (i,j))
 using matrix-stone-relation-algebra.pp-total pp-total-linorder-matrix-1
pp-total-linorder-matrix-2 by auto
lemma pp-mapping-linorder-matrix:
  fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
 shows matrix-stone-relation-algebra.pp-mapping f \longleftrightarrow (\forall i . \exists j . f (i,j) \neq bot)
\land (\forall k : j \neq k \longrightarrow f(i,k) = bot))
 by (metis (mono-tags, opaque-lifting) pp-total-linorder-matrix
univalent-linorder-matrix-1 univalent-linorder-matrix-2)
lemma pp-mapping-linorder-matrix-unique:
 fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
```

```
shows matrix-stone-relation-algebra.pp-mapping f \longleftrightarrow (\forall i . \exists ! j . f (i,j) \neq bot
\land (\forall k . j \neq k \longrightarrow f(i,k) = bot))
 apply (rule iffI)
  using pp-mapping-linorder-matrix apply blast
  by (metis pp-total-linorder-matrix univalent-linorder-matrix)
    Next follow matrices in which each column has an entry that is different
from bot.
lemma pp-surjective-linorder-matrix-1:
  fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
 shows \ominus(mtop \odot f) = mbot \longleftrightarrow (\forall j . \exists i . f (i,j) \neq bot)
proof -
  have \ominus(mtop \odot f) = mbot \longleftrightarrow (\ominus(mtop \odot f))^t = mbot^t
   by (metis matrix-stone-relation-algebra.conv-involutive)
  also have ... \longleftrightarrow \ominus(f^t \odot mtop) = mbot
   by (simp add: matrix-stone-relation-algebra.conv-complement
matrix-stone-relation-algebra.conv-dist-comp)
  also have ... \longleftrightarrow (\forall i . \exists j . (f^t) (i,j) \neq bot)
    using pp-total-linorder-matrix-3 by auto
  also have ... \longleftrightarrow (\forall j . \exists i . f (i,j) \neq bot)
   by (simp add: conv-matrix-def)
  finally show ?thesis
qed
lemma pp-surjective-linorder-matrix:
 fixes f :: ('a::finite, 'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
  shows matrix-bounded-idempotent-semiring.surjective (\ominus \ominus f) \longleftrightarrow (\forall j . \exists i . f)
(i,j) \neq bot
  using matrix-stone-relation-algebra.pp-surjective pp-surjective-linorder-matrix-1
by auto
lemma pp-bijective-linorder-matrix:
  fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
 shows matrix-stone-relation-algebra.pp-bijective f \longleftrightarrow (\forall j : \exists i : f(i,j) \neq bot \land
(\forall k : i \neq k \longrightarrow f(k,j) = bot))
  by (unfold matrix-stone-relation-algebra.pp-bijective-conv-mapping
pp-mapping-linorder-matrix) (simp add: conv-matrix-def)
lemma pp-bijective-linorder-matrix-unique:
  fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
 shows matrix-stone-relation-algebra.pp-bijective f \longleftrightarrow (\forall j . \exists ! i . f (i,j) \neq bot
\land (\forall k : i \neq k \longrightarrow f(k,j) = bot)
 by (unfold matrix-stone-relation-algebra.pp-bijective-conv-mapping
pp-mapping-linorder-matrix-unique) (simp add: conv-matrix-def)
```

The regular matrices are those which contain only bot or top entries.

```
lemma regular-linorder-matrix:
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 shows matrix-p-algebra.regular f \longleftrightarrow (\forall e \ . f \ e = bot \lor f \ e = top)
 have matrix-p-algebra.regular <math>f \longleftrightarrow (\ominus \ominus f = f)
   by auto
 also have ... \longleftrightarrow (\forall e . --f e = f e)
   by (metis uminus-matrix-def ext)
 also have ... \longleftrightarrow (\forall e . f e = bot \lor f e = top)
   by force
 finally show ?thesis
\mathbf{qed}
    Vectors are precisely the row-constant matrices.
lemma vector-linorder-matrix-0:
  fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes matrix-bounded-idempotent-semiring.vector f
   shows f(i,j) = (|\cdot|_k f(i,k))
 by (metis assms comp-top-linorder-matrix)
lemma vector-linorder-matrix-1:
  fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 {\bf assumes}\ matrix-bounded\text{-}idempotent\text{-}semiring.vector\ f
   shows f(i,j) = f(i,k)
 by (metis assms vector-linorder-matrix-0)
\mathbf{lemma}\ \textit{vector-linorder-matrix-2}\colon
  fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes \forall i \ j \ k . f(i,j) = f(i,k)
   shows matrix-bounded-idempotent-semiring.vector f
proof (rule ext, rule prod-cases)
 fix i j
 have (f \odot mtop) (i,j) = (| |_k f (i,k))
   by (simp add: comp-top-linorder-matrix)
 also have ... = f(i,j)
   by (metis assms linorder-finite-sup-selective)
 finally show (f \odot mtop) (i,j) = f (i,j)
\mathbf{qed}
lemma vector-linorder-matrix:
 fixes f :: ('a::finite, 'b::linorder-stone-relation-algebra-expansion) square
 shows matrix-bounded-idempotent-semiring.vector f \longleftrightarrow (\forall i \ j \ k \ . \ f \ (i,j) = f
(i,k)
  using vector-linorder-matrix-1 vector-linorder-matrix-2 by auto
```

Hence covectors are precisely the column-constant matrices.

```
lemma covector-linorder-matrix-0:
        fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
       {\bf assumes}\ matrix-bounded\text{-}idempotent\text{-}semiring.covector\ f
              shows f(i,j) = (| |_k f(k,j) )
      by (metis assms top-comp-linorder-matrix)
lemma covector-linorder-matrix:
        \mathbf{fixes}\ f::('a::finite,'b::linorder-stone-relation-algebra-expansion)\ square
       shows matrix-bounded-idempotent-semiring.covector f \longleftrightarrow (\forall i \ j \ k \ . \ f \ (i,j) = f
       by (unfold matrix-stone-relation-algebra.covector-conv-vector
vector-linorder-matrix) (metis (no-types, lifting) case-prod-conv conv-matrix-def
conv-def)
                  A point is a matrix that has exactly one row, which is constant top, and
all other rows are constant bot.
lemma point-linorder-matrix:
       fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
      shows matrix-stone-relation-algebra point f \longleftrightarrow (\exists i . \forall j . f(i,j) = top \land (\forall k .
i \neq k \longrightarrow f(k,j) = bot)
       apply (unfold vector-linorder-matrix bijective-linorder-matrix)
       apply (rule iffI)
      apply metis
      by metis
lemma point-linorder-matrix-unique:
        fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
      shows matrix-stone-relation-algebra.point f \longleftrightarrow (\exists !i . \forall j . f (i,j) = top \land (\forall k))
i \neq k \longrightarrow f(k,j) = bot)
       apply (unfold vector-linorder-matrix bijective-linorder-matrix)
      apply (rule iffI)
      apply (metis bot-not-top)
      by metis
lemma pp-point-linorder-matrix:
       fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
      shows matrix-stone-relation-algebra.pp-point f \longleftrightarrow (\exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i . \forall j . f (i,j) \neq bot \land \exists i 
(\forall k . f (i,j) = f (i,k)) \land (\forall k . i \neq k \longrightarrow f (k,j) = bot))
       apply (unfold vector-linorder-matrix pp-bijective-linorder-matrix)
      apply (rule iffI)
      apply metis
      by metis
lemma pp-point-linorder-matrix-unique:
        fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
        shows matrix-stone-relation-algebra.pp-point f \longleftrightarrow (\exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . \forall j . f (i,j) \neq bot \land \exists !i . f (i,j) \neq bot
```

```
(\forall k . f(i,j) = f(i,k)) \land (\forall k . i \neq k \longrightarrow f(k,j) = bot))
  apply (unfold vector-linorder-matrix pp-bijective-linorder-matrix)
 apply (rule iffI)
 apply metis
 by metis
    An arc is a matrix that has exactly one top entry and all other entries
are bot.
lemma arc-linorder-matrix-1:
  fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
  assumes matrix-stone-relation-algebra.arc f
   shows \exists e : f e = top \land (\forall d : e \neq d \longrightarrow f d = bot)
proof -
  have matrix-stone-relation-algebra.point (f \odot mtop)
   by (simp add: assms matrix-bounded-idempotent-semiring.vector-mult-closed)
  from this obtain i where 1: \forall j. (f \odot mtop) (i,j) = top \land (\forall k . i \neq k \longrightarrow (f \circ mtop))
\odot mtop) (k,j) = bot)
   using point-linorder-matrix by blast
  have matrix-stone-relation-algebra.point (f^t \odot mtop)
   by (simp add: assms matrix-bounded-idempotent-semiring.vector-mult-closed)
 from this obtain j where \forall i . (f^t \odot mtop) (j,i) = top \land (\forall k . j \neq k \longrightarrow (f^t))
\odot mtop) (k,i) = bot)
   using point-linorder-matrix by blast
 hence 2: \forall i : (mtop \odot f) \ (i,j) = top \land (\forall k : j \neq k \longrightarrow (mtop \odot f) \ (i,k) = bot)
   by (metis (no-types) old.prod.case conv-matrix-def conv-def
matrix-stone-relation-algebra.conv-dist-comp
matrix-stone-relation-algebra.conv-top)
  have 3: \forall i \ k . j \neq k \longrightarrow f(i,k) = bot
  proof (intro allI, rule impI)
   \mathbf{fix}\ i\ k
   assume j \neq k
   hence (| |_l f(l,k)) = bot
     using 2 by (simp add: top-comp-linorder-matrix)
   thus f(i,k) = bot
     by (metis bot.extremum-uniqueI comp-inf.ub-sum)
  qed
  have (|\cdot|_k f(i,k)) = top
   using 1 by (simp add: comp-top-linorder-matrix)
  hence 4: f(i,j) = top
   using 3 by (metis bot-not-top linorder-finite-sup-selective)
  have \forall k \ l \ . \ k \neq i \lor l \neq j \longrightarrow f(k,l) = bot
  proof (intro allI, unfold imp-disjL, rule conjI)
   \mathbf{fix} \ k \ l
   show k \neq i \longrightarrow f(k,l) = bot
   proof
     assume k \neq i
     hence (\bigsqcup_m f(k,m)) = bot
       \mathbf{using}\ 1\ \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{comp-top-linorder-matrix})
```

```
thus f(k,l) = bot
       by (metis bot.extremum-uniqueI comp-inf.ub-sum)
   show l \neq j \longrightarrow f(k,l) = bot
     using 3 by simp
 \mathbf{qed}
 thus ?thesis using 4
   by (metis old.prod.exhaust)
qed
lemma pp-arc-linorder-matrix-2:
 fixes f:('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes \exists e : f e \neq bot \land (\forall d : e \neq d \longrightarrow f d = bot)
   {f shows}\ matrix{-stone-relation-algebra.pp-arc}\ f
proof (unfold matrix-stone-relation-algebra.pp-arc-expanded, intro conjI)
 show f \odot mtop \odot f^t \preceq mone
 proof (unfold less-eq-matrix-def, rule allI, rule prod-cases)
   fix i j
   show (f \odot mtop \odot f^t) (i,j) \leq mone (i,j)
   proof (cases i = j)
     assume i = j
     \mathbf{thus}~? the sis
       by (simp add: one-matrix-def)
   \mathbf{next}
     assume i \neq j
     hence 1: \forall k \ l \ . \ f \ (i,k) * f \ (j,l) = bot
       by (metis assms Pair-inject semiring.mult-not-zero)
     have (f \odot mtop \odot f^t) (i,j) = (\bigsqcup_{l} (f \odot mtop) (i,l) * (f^t) (l,j))
       by (simp add: times-matrix-def)
     also have ... = (\bigsqcup_{l} (f \odot mtop) (i,l) * f (j,l))
       by (simp add: conv-matrix-def)
     also have ... = (\bigsqcup_{l} (\bigsqcup_{k} f(i,k)) * f(j,l))
       by (simp add: comp-top-linorder-matrix)
     also have ... = (\bigsqcup_l \bigsqcup_k f(i,k) * f(j,l))
       by (metis comp-right-dist-sum)
     also have \dots = bot
       using 1 linorder-finite-sup-selective by simp
     finally show ?thesis
       by simp
   qed
 qed
 show f^t \odot mtop \odot f \leq mone
 proof (unfold less-eq-matrix-def, rule allI, rule prod-cases)
   fix i j
   show (f^t \odot mtop \odot f) (i,j) \leq mone (i,j)
   proof (cases i = j)
     assume i = j
     thus ?thesis
```

```
by (simp add: one-matrix-def)
   next
     assume i \neq j
     hence 2: \forall k \ l \ . \ f \ (k,i) * f \ (l,j) = bot
       by (metis assms Pair-inject semiring.mult-not-zero)
     have (f^t \odot mtop \odot f) (i,j) = (\bigsqcup_l (f^t \odot mtop) (i,l) * f (l,j))
       by (simp add: times-matrix-def)
     also have ... = (\bigsqcup_{l} (\bigsqcup_{k} (f^{t}) (i,k)) * f (l,j))
       by (simp add: comp-top-linorder-matrix)
     also have ... = (\bigsqcup_{l} (\bigsqcup_{k} f(k,i)) * f(l,j))
       by (simp add: conv-matrix-def)
     also have ... = (\bigsqcup_{l} \bigsqcup_{k} f(k,i) * f(l,j))
       by (metis comp-right-dist-sum)
     also have \dots = bot
       using 2 linorder-finite-sup-selective by simp
     finally show ?thesis
       by simp
   qed
  qed
next
  show mtop \odot \ominus \ominus f \odot mtop = mtop
  proof (rule ext, rule prod-cases)
   from assms obtain k l where f(k,l) \neq bot
     using prod.collapse by auto
   hence top = --f(k,l)
     by simp
   also have \dots \leq (\bigsqcup_k --f(k,l))
     using comp-inf.ub-sum by metis
   also have \dots \leq (\bigsqcup_{l} \bigsqcup_{k} --f(k,l))
     using comp-inf.ub-sum by simp
   finally have \beta: top \leq (\bigsqcup_{l} \bigsqcup_{k} --f(k,l))
     by simp
   have (mtop \odot \ominus \ominus f \odot mtop) (i,j) = (\bigsqcup_{l} (\bigsqcup_{k} top * --f (k,l)) * top)
     by (simp add: times-matrix-def top-matrix-def uminus-matrix-def)
   also have ... = (| \ |_{l} \ | \ |_{k} \ --f(k,l))
     by (metis (no-types, lifting) sup-monoid.sum.cong comp-inf.mult-1-left
times-inf comp-inf.mult-1-right)
   also have \dots = top
     using 3 top.extremum-unique by blast
   finally show (mtop \odot \ominus \ominus f \odot mtop) (i,j) = mtop (i,j)
     by (simp add: top-matrix-def)
 qed
qed
\mathbf{lemma} arc-linorder-matrix-2:
  fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
 assumes \exists e . f e = top \land (\forall d . e \neq d \longrightarrow f d = bot)
```

```
shows matrix-stone-relation-algebra.arc f
\mathbf{proof} (unfold matrix-stone-relation-algebra.arc-expanded, intro conjI)
 show f \odot mtop \odot f^t \preceq mone
   by (metis (no-types, lifting) assms bot-not-top
matrix-stone-relation-algebra.pp-arc-expanded pp-arc-linorder-matrix-2)
 show f^t \odot mtop \odot f \preceq mone
   by (metis (no-types, lifting) assms bot-not-top
matrix-stone-relation-algebra.pp-arc-expanded pp-arc-linorder-matrix-2)
 \mathbf{show}\ mtop\ \odot\ f\ \odot\ mtop=\ mtop
 proof (rule ext, rule prod-cases)
   fix i j
   from assms obtain k l where f(k,l) = top
     using prod.collapse by auto
   hence (| \cdot |_k f(k,l)) = top
     by (metis (mono-tags) comp-inf.ub-sum top-unique)
   hence \beta: top \leq (\bigsqcup_{l} \bigsqcup_{k} f(k,l))
     by (metis (no-types) comp-inf.ub-sum)
   have (mtop \odot f \odot mtop) (i,j) = (| |_l (| |_k top * f (k,l)) * top)
     by (simp add: times-matrix-def top-matrix-def)
   also have ... = (\bigsqcup_l \bigsqcup_k f(k,l))
     by (metis (no-types, lifting) sup-monoid.sum.cong comp-inf.mult-1-left
times-inf\ comp-inf.mult-1-right)
   also have \dots = top
     using 3 top.extremum-unique by blast
   finally show (mtop \odot f \odot mtop) (i,j) = mtop (i,j)
     by (simp add: top-matrix-def)
 qed
qed
lemma arc-linorder-matrix:
 fixes f :: ('a::finite, 'b::non-trivial-linorder-stone-relation-algebra-expansion)
 shows matrix-stone-relation-algebra arc f \longleftrightarrow (\exists e \ . \ f \ e = top \land (\forall d \ . \ e \neq d))
\longrightarrow f d = bot)
 using arc-linorder-matrix-1 arc-linorder-matrix-2 by blast
lemma arc-linorder-matrix-unique:
  fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
 shows matrix-stone-relation-algebra arc f \longleftrightarrow (\exists ! e \cdot f \cdot e = top \land (\forall d \cdot e \neq d))
\longrightarrow f d = bot)
 apply (rule iffI)
 apply (metis (no-types, opaque-lifting) arc-linorder-matrix bot-not-top)
 using arc-linorder-matrix by blast
lemma pp-arc-linorder-matrix-1:
 fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
```

```
square
  assumes matrix-stone-relation-algebra.pp-arc f
   shows \exists e . f e \neq bot \land (\forall d . e \neq d \longrightarrow f d = bot)
  have matrix-stone-relation-algebra.pp-point (f \odot mtop)
   by (simp add: assms matrix-bounded-idempotent-semiring.vector-mult-closed)
  from this obtain i where 1: \forall j . (f \odot mtop) (i,j) \neq bot \land (\forall k . (f \odot mtop)
(i,j) = (f \odot mtop) (i,k) \land (\forall k . i \neq k \longrightarrow (f \odot mtop) (k,j) = bot)
    by (metis pp-point-linorder-matrix)
  have matrix-stone-relation-algebra.pp-point (f^t \odot mtop)
   by (simp add: assms matrix-bounded-idempotent-semiring.vector-mult-closed)
 from this obtain j where \forall i. (f^t \odot mtop) (j,i) \neq bot \land (\forall k . (f^t \odot mtop))
(j,i) = (f^t \odot mtop) (j,k) \land (\forall k . j \neq k \longrightarrow (f^t \odot mtop) (k,i) = bot)
   by (metis pp-point-linorder-matrix)
 hence 2: \forall i : (mtop \odot f) \ (i,j) \neq bot \land (\forall k : (mtop \odot f) \ (i,j) = (mtop \odot f)
(k,j)) \land (\forall k : j \neq k \longrightarrow (mtop \odot f) (i,k) = bot)
   by (metis (no-types) old.prod.case conv-matrix-def conv-def
matrix	ext{-}stone	ext{-}relation	ext{-}algebra.conv	ext{-}dist	ext{-}comp
matrix-stone-relation-algebra.conv-top)
 have 3: \forall i \ k . j \neq k \longrightarrow f(i,k) = bot
  proof (intro allI, rule impI)
   \mathbf{fix} \ i \ k
   assume j \neq k
   hence (\bigsqcup_{l} f(l,k)) = bot
     using 2 by (simp add: top-comp-linorder-matrix)
   thus f(i,k) = bot
     by (metis bot.extremum-uniqueI comp-inf.ub-sum)
  qed
  have (\bigsqcup_k f(i,k)) \neq bot
   using 1 by (simp add: comp-top-linorder-matrix)
  hence 4: f(i,j) \neq bot
   using 3 by (metis linorder-finite-sup-selective)
  have \forall k \ l \ . \ k \neq i \lor l \neq j \longrightarrow f \ (k,l) = bot
  proof (intro allI, unfold imp-disjL, rule conjI)
   fix k l
   show k \neq i \longrightarrow f(k,l) = bot
   proof
     assume k \neq i
     hence (\bigsqcup_m f(k,m)) = bot
        using 1 by (simp add: comp-top-linorder-matrix)
     thus f(k,l) = bot
       by (metis bot.extremum-uniqueI comp-inf.ub-sum)
   show l \neq j \longrightarrow f(k,l) = bot
     using \beta by simp
  qed
  thus ?thesis using 4
   by (metis old.prod.exhaust)
\mathbf{qed}
```

```
lemma pp-arc-linorder-matrix:
 fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
 shows matrix-stone-relation-algebra.pp-arc f \longleftrightarrow (\exists e \ . \ f \ e \neq bot \land (\forall d \ . \ e \neq d))
\longrightarrow f d = bot)
 using pp-arc-linorder-matrix-1 pp-arc-linorder-matrix-2 by blast
lemma pp-arc-linorder-matrix-unique:
  fixes f :: ('a::finite,'b::non-trivial-linorder-stone-relation-algebra-expansion)
square
 shows matrix-stone-relation-algebra.pp-arc f \longleftrightarrow (\exists !e . f e \neq bot \land (\forall d . e \neq b))
d \longrightarrow f d = bot)
 apply (rule iffI)
 apply (metis (no-types, opaque-lifting) pp-arc-linorder-matrix)
 using pp-arc-linorder-matrix by blast
    Reflexive matrices are those with a constant top diagonal.
lemma reflexive-linorder-matrix-1:
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes matrix-idempotent-semiring.reflexive f
   shows f(i,i) = top
proof -
 have (top::'b) = mone(i,i)
   by (simp add: one-matrix-def)
 also have \dots \leq f(i,i)
   using assms less-eq-matrix-def by blast
 finally show ?thesis
   by (simp add: top.extremum-unique)
\mathbf{qed}
lemma reflexive-linorder-matrix-2:
 fixes f::('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes \forall i . f(i,i) = top
   {\bf shows}\ matrix-idempotent\text{-}semiring.reflexive\ f
proof (unfold less-eq-matrix-def, rule allI, rule prod-cases)
 fix i j
 show mone (i,j) \leq f(i,j)
 proof (cases \ i = j)
   assume i = j
   thus ?thesis
     by (simp add: assms)
  next
   assume i \neq j
   hence (bot::'b) = mone(i,j)
     by (simp add: one-matrix-def)
   thus ?thesis
     by simp
 qed
```

```
qed
```

```
\mathbf{lemma}\ \textit{reflexive-linorder-matrix}:
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 shows matrix-idempotent-semiring.reflexive f \longleftrightarrow (\forall i . f (i,i) = top)
 using reflexive-linorder-matrix-1 reflexive-linorder-matrix-2 by auto
    Coreflexive matrices are those in which all non-diagonal entries are bot.
lemma coreflexive-linorder-matrix-1:
  \mathbf{fixes}\ f::('a::finite,'b::linorder-stone-relation-algebra-expansion)\ square
 assumes matrix-idempotent-semiring.coreflexive f
     and i \neq j
   shows f(i,j) = bot
proof -
 have f(i,j) \leq mone(i,j)
   using assms less-eq-matrix-def by blast
 also have \dots = bot
   by (simp add: assms one-matrix-def)
 finally show ?thesis
   by (simp add: bot.extremum-unique)
qed
\mathbf{lemma}\ \mathit{coreflexive-linorder-matrix-2}\colon
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes \forall i \ j \ . \ i \neq j \longrightarrow f \ (i,j) = bot
   {f shows}\ matrix\mbox{-}idempotent\mbox{-}semiring.coreflexive\ f
proof (unfold less-eq-matrix-def, rule allI, rule prod-cases)
 fix i j
 show f(i,j) \leq mone(i,j)
 \mathbf{proof}\ (\mathit{cases}\ i=j)
   assume i = j
   hence (top::'b) = mone(i,j)
     by (simp add: one-matrix-def)
   thus ?thesis
     by simp
  next
   assume i \neq j
   thus ?thesis
     by (simp add: assms)
 qed
qed
\mathbf{lemma}\ \mathit{coreflexive-linorder-matrix} :
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 shows matrix-idempotent-semiring coreflexive f \longleftrightarrow (\forall i \ j \ . \ i \neq j \longrightarrow f \ (i,j) =
bot)
  using coreflexive-linorder-matrix-1 coreflexive-linorder-matrix-2 by auto
    Irreflexive matrices are those with a constant bot diagonal.
```

```
lemma irreflexive-linorder-matrix-1:
  fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 {\bf assumes}\ matrix-stone-relation-algebra. irreflexive\ f
   shows f(i,i) = bot
proof -
 have (top::'b) = mone(i,i)
   by (simp add: one-matrix-def)
 hence (bot::'b) = (\ominus mone) (i,i)
   by (simp add: uminus-matrix-def)
 hence f(i,i) \leq bot
   by (metis assms less-eq-matrix-def)
 thus ?thesis
   by (simp add: bot.extremum-unique)
qed
lemma irreflexive-linorder-matrix-2:
 fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes \forall i . f(i,i) = bot
   shows matrix-stone-relation-algebra.irreflexive f
proof (unfold less-eq-matrix-def, rule allI, rule prod-cases)
  fix i j
 show f(i,j) \leq (\ominus mone)(i,j)
 proof (cases i = j)
   assume i = j
   thus ?thesis
     by (simp add: assms)
  next
   assume i \neq j
   \mathbf{hence}\ (\mathit{bot} :: 'b) = \mathit{mone}\ (\mathit{i,j})
     by (simp add: one-matrix-def)
   hence (top::'b) = (\ominus mone) (i,j)
     by (simp add: uminus-matrix-def)
   thus ?thesis
     by simp
 qed
qed
lemma irreflexive-linorder-matrix:
  fixes f::('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 shows matrix-stone-relation-algebra.irreflexive f \longleftrightarrow (\forall i . f (i,i) = bot)
 using irreflexive-linorder-matrix-1 irreflexive-linorder-matrix-2 by auto
    As usual, symmetric matrices are those which do not change under trans-
position.
{f lemma}\ symmetric\mbox{-}linorder\mbox{-}matrix:
 fixes f::('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 shows matrix-stone-relation-algebra.symmetric f \longleftrightarrow (\forall i \ j \ . \ f \ (i,j) = f \ (j,i))
 by (metis (mono-tags, lifting) case-prod-conv cond-case-prod-eta conv-matrix-def
conv-def)
```

Antisymmetric matrices are characterised as follows: each entry not on the diagonal or its mirror entry across the diagonal must be bot.

```
lemma antisymmetric-linorder-matrix:
  fixes f::('a::finite,'b::linorder-stone-relation-algebra-expansion) square
  shows matrix-stone-relation-algebra antisymmetric f \longleftrightarrow (\forall i \ j \ . \ i \neq j \longrightarrow f
(i,j) = bot \lor f(j,i) = bot)
proof -
 have matrix-stone-relation-algebra antisymmetric f \longleftrightarrow (\forall i \ j \ . \ i \neq j \longrightarrow f \ (i,j)
\sqcap f(j,i) \leq bot
   by (simp add: conv-matrix-def inf-matrix-def less-eq-matrix-def
one-matrix-def)
  thus ?thesis
   by (metis (no-types, opaque-lifting) inf.absorb-iff1 inf.cobounded1 inf-bot-right
inf-dense)
qed
    For asymmetric matrices the diagonal is included: each entry or its mirror
entry across the diagonal must be bot.
\mathbf{lemma}\ a symmetric\text{-}lin order\text{-}matrix:
  fixes f::('a::finite,'b::linorder-stone-relation-algebra-expansion) square
  shows matrix-stone-relation-algebra.asymmetric f \longleftrightarrow (\forall i \ j \ . \ f \ (i,j) = bot \lor f
(j,i) = bot
proof -
 have matrix-stone-relation-algebra.asymmetric f \longleftrightarrow (\forall i \ j \ . \ f \ (i,j) \sqcap f \ (j,i) \le
   apply (unfold conv-matrix-def inf-matrix-def conv-def id-def bot-matrix-def)
   by (metis (mono-tags, lifting) bot.extremum bot.extremum-uniqueI
case-prod-conv old.prod.exhaust)
  thus ?thesis
   by (metis (no-types, opaque-lifting) inf.absorb-iff1 inf.cobounded1 inf-bot-right
inf-dense)
qed
    In a transitive matrix, the weight of one of the edges on an indirect route
must be below the weight of the direct edge.
{f lemma}\ transitive\mbox{-}linorder\mbox{-}matrix:
  fixes f :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
  shows matrix-idempotent-semiring transitive f \longleftrightarrow (\forall i \ j \ k \ . \ f \ (i,k) \le f \ (i,j) \lor
f(k,j) \leq f(i,j)
proof -
  have matrix-idempotent-semiring transitive f \longleftrightarrow (\forall i \ j \ . \ (\bigsqcup_k f \ (i,k) * f \ (k,j))
    by (simp add: times-matrix-def less-eq-matrix-def)
  also have ... \longleftrightarrow (\forall i j k . f(i,k) * f(k,j) \le f(i,j))
   by (simp add: lub-sum-iff)
  also have ... \longleftrightarrow (\forall i j k . f(i,k) \le f(i,j) \lor f(k,j) \le f(i,j))
   using inf-less-eq by fastforce
  finally show ?thesis
```

qed

We finally show the effect of composing with a coreflexive (test) from the left and from the right. This amounts to a restriction of each row or column to the entry on the diagonal of the coreflexive. In this case, restrictions are formed by meets.

```
\mathbf{lemma}\ coreflexive\text{-}comp\text{-}linorder\text{-}matrix:
 fixes fg::('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes matrix-idempotent-semiring.coreflexive f
   shows (f \odot g) (i,j) = f (i,i) \sqcap g (i,j)
  have 1: \forall k . i \neq k \longrightarrow f(i,k) = bot
   using assms coreflexive-linorder-matrix by auto
  have (\bigsqcup_{k} f(i,k)) = f(i,i) \sqcup (\bigsqcup_{k \in UNIV - \{i\}} f(i,k))
   by (metis (no-types) UNIV-def brouwer.inf-bot-right finite-UNIV insert-def
sup-monoid.sum.insert-remove)
 hence 2: (| |_k f(i,k)) = f(i,i)
   using 1 by (metis (no-types) linorder-finite-sup-selective sup-not-bot)
 have (f \odot g) (i,j) = (f \odot mtop \otimes g) (i,j)
   by (metis assms matrix-stone-relation-algebra.coreflexive-comp-top-inf)
  also have ... = (\bigsqcup_k f(i,k)) \sqcap g(i,j)
   by (metis inf-matrix-def comp-top-linorder-matrix)
  finally show ?thesis
   using 2 by simp
\mathbf{qed}
lemma comp-coreflexive-linorder-matrix:
  fixes f g :: ('a::finite,'b::linorder-stone-relation-algebra-expansion) square
 assumes matrix-idempotent-semiring.coreflexive g
   shows (f \odot g) (i,j) = f(i,j) \sqcap g(j,j)
proof
 have (f \odot g) (i,j) = ((f \odot g)^t) (j,i)
   by (simp add: conv-matrix-def)
 also have ... = (g \odot f^t) (j,i)
   by (simp add: assms matrix-stone-relation-algebra.conv-dist-comp
matrix-stone-relation-algebra.coreflexive-symmetric)
 also have ... = g(j,j) \sqcap (f^t)(j,i)
   by (simp add: assms coreflexive-comp-linorder-matrix)
 also have ... = f(i,j) \sqcap q(j,j)
   by (metis (no-types, lifting) conv-def old.prod.case conv-matrix-def
inf-commute)
 finally show ?thesis
qed
end
```

8 An Operation to Select Components

In this theory we axiomatise an operation to select components of a graph. This is joint work with Nicolas Robinson-O'Brien.

theory Choose-Component

imports

 $Relation ext{-}Algebras$

begin

 $\begin{array}{l} \textbf{context} \ \ stone\text{-}relation\text{-}algebra \\ \textbf{begin} \end{array}$

A *vector-classes* corresponds to one or more equivalence classes and a *unique-vector-class* corresponds to a single equivalence class.

```
definition vector-classes :: 'a \Rightarrow 'a \Rightarrow bool where vector-classes x \ v \equiv regular \ x \land regular \ v \land equivalence \ x \land vector \ v \land x * v \leq v \land v \neq bot definition unique-vector-class :: 'a \Rightarrow 'a \Rightarrow bool where unique-vector-class x \ v \equiv vector-classes \ x \ v \land v * v^T \leq x
```

end

We introduce the operation *choose-component*.

- * Axiom component-in-v expresses that the result of choose-component is contained in the set of vertices, v, we are selecting from, ignoring the weights.
- * Axiom *component-is-vector* states that the result of *choose-component* is a vector.
- * Axiom component-is-regular states that the result of choose-component is regular.
- * Axiom component-is-connected states that any two vertices from the result of choose-component are connected in e.
- * Axiom component-single states that the result of choose-component is closed under being connected in e.
- * Finally, axiom *component-not-bot-when-v-bot-bot* expresses that the operation *choose-component* returns a non-empty component if the input satisfies the given criteria.

```
class choose-component = fixes choose-component :: 'a \Rightarrow 'a \Rightarrow 'a

class choose-component-algebra = choose-component + stone-relation-algebra +
```

```
vector (choose-component e v)
 assumes component-is-vector:
 {\bf assumes}\ component\hbox{-} is\hbox{-} regular:
                                               regular (choose-component \ e \ v)
                                               choose\text{-}component\ e\ v \leq --v
 {\bf assumes} \ \textit{component-in-v}:
 assumes component-is-connected:
                                                choose-component \ e \ v \ *
(choose\text{-}component\ e\ v)^T \leq e
 assumes component-single:
                                              e * choose\text{-}component e v \leq
choose-component e v
  assumes component-not-bot-when-v-bot-bot: vector-classes e \ v \longrightarrow
choose\text{-}component\ e\ v \neq bot
begin
lemma component-single-eq:
 assumes equivalence x
 shows choose-component x \ v = x * choose-component x \ v
proof -
  have choose-component x \ v \le x * choose-component x \ v
   by (meson component-is-connected ex231c mult-isotone order-lesseg-imp)
 thus ?thesis
   by (simp add: component-single order.antisym)
qed
\mathbf{end}
{\bf class}\ choose\mbox{-}component\mbox{-}algebra\mbox{-}tarski = choose\mbox{-}component\mbox{-}algebra\mbox{+}
stone	ext{-}relation	ext{-}algebra	ext{-}tarski
begin
definition choose-component-point x \equiv choose-component 1 (--x)
lemma choose-component-point:
 assumes vector x
     and x \neq bot
   shows point (choose\text{-}component\text{-}point x)
proof (intro conjI)
 show 1: vector (choose-component-point x)
   by (simp add: choose-component-point-def component-is-vector)
 show injective (choose\text{-}component\text{-}point x)
   by (simp add: choose-component-point-def component-is-connected)
 have vector-classes 1 (--x)
   by (metis assms comp-inf.semiring.mult-zero-left coreflexive-symmetric
inf.eq-refl\ mult-1-left\ pp-one\ regular-closed-p\ selection-closed-id\ vector-classes-def
vector-complement-closed)
 hence choose-component-point x \neq bot
   by (simp add: choose-component-point-def component-not-bot-when-v-bot-bot)
 thus surjective\ (choose-component-point\ x)
   using 1 choose-component-point-def component-is-regular tarski
vector-mult-closed by fastforce
qed
```

lemma *choose-component-point-decreasing*:

 $choose\text{-}component\text{-}point\ x \leq --x$

by (metis choose-component-point-def component-in-v regular-closed-p)

end

end

References

- [1] C. J. Aarts, R. C. Backhouse, E. A. Boiten, H. Doornbos, N. van Gasteren, R. van Geldrop, P. F. Hoogendijk, E. Voermans, and J. van der Woude. Fixed-point calculus. *Inf. Process. Lett.*, 53(3):131–136, 1995.
- [2] H. Andréka and S. Mikulás. Axiomatizability of positive algebras of binary relations. *Algebra Universalis*, 66(1–2):7–34, 2011.
- [3] A. Armstrong, S. Foster, G. Struth, and T. Weber. Relation algebra. *Archive of Formal Proofs*, 2016, first version 2014.
- [4] A. Armstrong, V. B. F. Gomes, G. Struth, and T. Weber. Kleene algebra. *Archive of Formal Proofs*, 2016, first version 2013.
- [5] R. Berghammer. Ordnungen, Verbände und Relationen mit Anwendungen. Springer, second edition, 2012.
- [6] R. Berghammer and W. Guttmann. Closure, properties and closure properties of multirelations. In W. Kahl, M. Winter, and J. N. Oliveira, editors, *Relational and Algebraic Methods in Computer Science*, volume 9348 of *Lecture Notes in Computer Science*, pages 67–83. Springer, 2015.
- [7] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.
- [8] D. A. Bredihin and B. M. Schein. Representations of ordered semi-groups and lattices by binary relations. *Colloquium Mathematicum*, 39(1):1–12, 1978.
- [9] S. D. Comer. On connections between information systems, rough sets and algebraic logic. In C. Rauszer, editor, Algebraic Methods in Logic and in Computer Science, volume 28 of Banach Center Publications, pages 117–124. Institute of Mathematics, Polish Academy of Sciences, 1993.
- [10] B. A. Davey and H. A. Priestley. *Introduction to Lattices and Order*. Cambridge University Press, second edition, 2002.

- [11] P. J. Freyd and A. Ščedrov. *Categories, Allegories*, volume 39 of *North-Holland Mathematical Library*. Elsevier Science Publishers, 1990.
- [12] J. A. Goguen. L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18(1):145–174, 1967.
- [13] W. Guttmann. Algebras for iteration and infinite computations. *Acta Inf.*, 49(5):343–359, 2012.
- [14] W. Guttmann. Relation-algebraic verification of Prim's minimum spanning tree algorithm. In A. Sampaio and F. Wang, editors, Theoretical Aspects of Computing ICTAC 2016, volume 9965 of Lecture Notes in Computer Science, pages 51–68. Springer, 2016.
- [15] W. Guttmann. Stone algebras. Archive of Formal Proofs, 2016.
- [16] W. Guttmann. Stone relation algebras. In P. Höfner, D. Pous, and G. Struth, editors, Relational and Algebraic Methods in Computer Science, volume 10226 of Lecture Notes in Computer Science, pages 127–143. Springer, 2017.
- [17] R. Hirsch and I. Hodkinson. *Relation Algebras by Games*. Elsevier Science B.V., 2002.
- [18] Y. Kawahara and H. Furusawa. Crispness in Dedekind categories. *Bulletin of Informatics and Cybernetics*, 33(1–2):1–18, 2001.
- [19] Y. Kawahara, H. Furusawa, and M. Mori. Categorical representation theorems of fuzzy relations. *Information Sciences*, 119(3–4):235–251, 1999.
- [20] R. D. Maddux. Relation-algebraic semantics. *Theoretical Comput. Sci.*, 160(1–2):1–85, 1996.
- [21] R. D. Maddux. Relation Algebras. Elsevier B.V., 2006.
- [22] J. N. Oliveira. Extended static checking by calculation using the point-free transform. In A. Bove, L. S. Barbosa, A. Pardo, and J. S. Pinto, editors, Language Engineering and Rigorous Software Development, volume 5520 of Lecture Notes in Computer Science, pages 195–251. Springer, 2009.
- [23] R. Parikh. Propositional logics of programs: new directions. In M. Karpinski, editor, Foundations of Computation Theory, volume 158 of Lecture Notes in Computer Science, pages 347–359. Springer, 1983.
- [24] Z. Pawlak. Rough sets, rough relations and rough functions. Fundamenta Informaticae, 27(2–3):103–108, 1996.

- $[25]\,$ D. Peleg. Concurrent dynamic logic. J. ACM, 34(2):450–479, 1987.
- [26] G. Schmidt. Relational Mathematics. Cambridge University Press, 2011.
- [27] G. Schmidt and T. Ströhlein. Relations and Graphs. Springer, 1993.
- [28] A. Tarski. On the calculus of relations. *The Journal of Symbolic Logic*, 6(3):73–89, 1941.
- [29] M. Winter. A new algebraic approach to L-fuzzy relations convenient to study crispness. *Information Sciences*, 139(3–4):233–252, 2001.