Stone-Kleene Relation Algebras

Walter Guttmann

March 17, 2025

Abstract

We develop Stone-Kleene relation algebras, which expand Stone relation algebras with a Kleene star operation to describe reachability in weighted graphs. Many properties of the Kleene star arise as a special case of a more general theory of iteration based on Conway semirings extended by simulation axioms. This includes several theorems representing complex program transformations. We formally prove the correctness of Conway's automata-based construction of the Kleene star of a matrix. We prove numerous results useful for reasoning about weighted graphs.

Contents

1	Syn	opsis and Motivation	2	
2	Iterings			
	$2.1 \\ 2.2$	Iterings	$\frac{3}{10}$	
3	Kle	ene Algebras	17	
4	Kle	ene Relation Algebras	25	
	4.1	Prim's Algorithm	30	
		4.1.1 Preservation of Invariant	30	
		4.1.2 Exchange gives Spanning Trees	32	
		4.1.3 Exchange gives Minimum Spanning Trees	35	
		4.1.4 Invariant implies Postcondition	38	
	4.2	Kruskal's Algorithm	38	
		4.2.1 Preservation of Invariant	39	
		4.2.2 Exchange gives Spanning Trees	39	
		4.2.3 Exchange gives Minimum Spanning Trees	41	
	4.3	Related Structures	42	
5	Sub	algebras of Kleene Relation Algebras	44	

6	3 Matrix Kleene Algebras		
	6.1	Matrix Restrictions	45
	6.2	Matrices form a Kleene Algebra	50
	6.3	Matrices form a Stone-Kleene Relation Algebra	50

1 Synopsis and Motivation

This document describes the following five theory files:

- * Iterings describes a general iteration operation that works for many different computation models. We first consider equational axioms based on variants of Conway semirings. We expand these structures by generalised simulation axioms, which hold in total and general correctness models, not just in partial correctness models like the induction axioms. Simulation axioms are still powerful enough to prove separation theorems and Back's atomicity refinement theorem [4].
- * Kleene Algebras form a particular instance of iterings in which the iteration is implemented as a least fixpoint. We implement them based on Kozen's axioms [13], but most results are inherited from Conway semirings and iterings.
- * Kleene Relation Algebras introduces Stone-Kleene relation algebras, which combine Stone relation algebras and Kleene algebras. This is similar to relation algebras with transitive closure [16] but allows us to talk about reachability in weighted graphs. Many results in this theory are useful for verifying the correctness of Prim's and Kruskal's minimum spanning tree algorithms.
- * Subalgebras of Kleene Relation Algebras studies the regular elements of a Stone-Kleene relation algebra and shows that they form a Kleene relation subalgebra.
- * Matrix Kleene Algebras lifts the Kleene star to finite square matrices using Conway's automata-based construction. This involves an operation to restrict matrices to specific indices and a calculus for such restrictions. An implementation for the Kleene star of matrices was given in [3] without proof; this is the first formally verified correctness proof.

The development is based on a theory of Stone relation algebras [11, 12]. We apply Stone-Kleene relation algebras to verify Prim's minimum spanning tree algorithm in Isabelle/HOL in [10].

Related libraries for Kleene algebras, regular algebras and relation algebras in the Archive of Formal Proofs are [1, 2, 8]. Kleene algebras are covered in the theory Kleene_Algebra/Kleene_Algebra.thy, but unlike the present development it is not based on general algebras using simulation axioms, which are useful to describe various computation models. The theory Regular_Algebras/Regular_Algebras.thy compares different axiomatisations of regular algebras. The theory Kleene_Algebra/Matrix.thy covers matrices over dioids, but does not implement the Kleene star of matrices. The theory Relation_Algebra/Relation_Algebra_RTC.thy combines Kleene algebras and relation algebras, but is very limited in scope and not applicable as we need the weaker axioms of Stone relation algebras.

2 Iterings

This theory introduces algebraic structures with an operation that describes iteration in various relational computation models. An iteration describes the repeated sequential execution of a computation. This is typically modelled by fixpoints, but different computation models use different fixpoints in the refinement order. We therefore look at equational and simulation axioms rather than induction axioms. Our development is based on [9] and the proposed algebras generalise Kleene algebras.

We first consider a variant of Conway semirings [5] based on idempotent left semirings. Conway semirings expand semirings by an iteration operation satisfying Conway's sumstar and productstar axioms [7]. Many properties of iteration follow already from these equational axioms.

Next we introduce iterings, which use generalised versions of simulation axioms in addition to sumstar and productstar. Unlike the induction axioms of the Kleene star, which hold only in partial-correctness models, the simulation axioms are also valid in total and general correctness models. They are still powerful enough to prove the correctness of complex results such as separation theorems of [6] and Back's atomicity refinement theorem [4, 17].

theory Iterings

imports Stone-Relation-Algebras. Semirings

begin

2.1 Conway Semirings

In this section, we consider equational axioms for iteration. The algebraic structures are based on idempotent left semirings, which are expanded by a unary iteration operation. We start with an unfold property, one inequality of the sliding rule and distributivity over joins, which is similar to Conway's sumstar.

class circ = fixes circ :: $a \Rightarrow a (\langle -^{\circ} \rangle [100] \ 100)$ class left-conway-semiring = idempotent-left-semiring + circ + assumes circ-left-unfold: $1 \sqcup x * x^{\circ} = x^{\circ}$ assumes circ-left-slide: $(x * y)^{\circ} * x \leq x * (y * x)^{\circ}$ assumes circ-sup-1: $(x \sqcup y)^{\circ} = x^{\circ} * (y * x^{\circ})^{\circ}$ begin

We obtain one inequality of Conway's productstar, as well as of the other unfold rule.

lemma circ-mult-sub: $1 \sqcup x * (y * x)^{\circ} * y \le (x * y)^{\circ}$ $\langle proof \rangle$

 ${\bf lemma} \ circ{-right-unfold-sub:}$

 $\begin{array}{l} 1 \mathrel{\sqcup} x^\circ \, \ast \, x \leq x^\circ \\ \langle proof \rangle \end{array}$

lemma *circ-zero*: $bot^{\circ} = 1$ $\langle proof \rangle$

lemma circ-increasing:

 $\begin{array}{l} x \leq x^{\circ} \\ \langle proof \rangle \end{array}$

 $\begin{array}{ll} \textbf{lemma circ-reflexive:} \\ 1 \leq x^{\circ} \\ \langle proof \rangle \end{array}$

 $\begin{array}{ll} \textbf{lemma circ-mult-increasing:} \\ x \leq x * x^{\circ} \\ \langle proof \rangle \end{array}$

lemma *circ-mult-increasing-2*: $x \le x^{\circ} * x$

 $\langle proof \rangle$

lemma circ-transitive-equal: $x^{\circ} * x^{\circ} = x^{\circ}$ $\langle proof \rangle$

While iteration is not idempotent, a fixpoint is reached after applying this operation twice. Iteration is idempotent for the unit.

lemma circ-circ-circ: $x^{\circ\circ\circ} = x^{\circ\circ}$ $\langle proof \rangle$ lemma circ-one:

 $\begin{array}{l} 1^{\,\circ} = 1^{\,\circ\,\circ} \\ \langle proof \rangle \end{array}$

lemma circ-sup-sub: $(x^{\circ} * y)^{\circ} * x^{\circ} \leq (x \sqcup y)^{\circ}$ $\langle proof \rangle$

lemma circ-plus-one: $x^{\circ} = 1 \sqcup x^{\circ}$ $\langle proof \rangle$

Iteration satisfies a characteristic property of reflexive transitive closures.

lemma circ-rtc-2: $1 \sqcup x \sqcup x^{\circ} * x^{\circ} = x^{\circ}$ $\langle proof \rangle$

lemma mult-zero-circ: $(x * bot)^{\circ} = 1 \sqcup x * bot$ $\langle proof \rangle$

lemma mult-zero-sup-circ: $(x \sqcup y * bot)^{\circ} = x^{\circ} * (y * bot)^{\circ}$ $\langle proof \rangle$

lemma circ-plus-sub: $x^{\circ} * x \leq x * x^{\circ}$ $\langle proof \rangle$

lemma circ-loop-fixpoint: $y * (y^{\circ} * z) \sqcup z = y^{\circ} * z$ $\langle proof \rangle$

lemma *left-plus-below-circ*: $x * x^{\circ} \leq x^{\circ}$ $\langle proof \rangle$

lemma right-plus-below-circ: $x^{\circ} * x \leq x^{\circ}$ $\langle proof \rangle$

lemma circ-sup-upper-bound: $x \leq z^{\circ} \Longrightarrow y \leq z^{\circ} \Longrightarrow x \sqcup y \leq z^{\circ}$ $\langle proof \rangle$

 $\begin{array}{ll} \textbf{lemma circ-mult-upper-bound:} \\ x \leq z^{\circ} \Longrightarrow y \leq z^{\circ} \Longrightarrow x * y \leq z^{\circ} \\ \langle proof \rangle \end{array}$

lemma *circ-sub-dist-1*: $x \leq (x \sqcup y)^{\circ}$ $\langle proof \rangle$ lemma circ-sub-dist-2: $x * y \le (x \sqcup y)^{\circ}$ $\langle proof \rangle$ **lemma** *circ-sub-dist-3*: $x^{\circ} * y^{\circ} \le (x \sqcup y)^{\circ}$ $\langle proof \rangle$ lemma circ-isotone: $x \leq y \Longrightarrow x^{\circ} \leq y^{\circ}$ $\langle proof \rangle$ lemma circ-sup-2: $(x \sqcup y)^{\circ} \le (x^{\circ} * y^{\circ})^{\circ}$ $\langle proof \rangle$ lemma circ-sup-one-left-unfold: $1 \leq x \Longrightarrow x \ast x^{\circ} = x^{\circ}$ $\langle proof \rangle$ **lemma** *circ-sup-one-right-unfold*: $1 \le x \Longrightarrow x^{\circ} * x = x^{\circ}$ $\langle proof \rangle$ **lemma** *circ-decompose-4*: $(x^\circ\,\ast\,y^\circ)^\circ\,=\,x^\circ\,\ast\,(y^\circ\,\ast\,x^\circ)^\circ$ $\langle proof \rangle$ **lemma** circ-decompose-5: $(x^{\circ} \ast y^{\circ})^{\circ} = (y^{\circ} \ast x^{\circ})^{\circ}$ $\langle proof \rangle$ **lemma** *circ-decompose-6*: $x^{\circ} * (y * x^{\circ})^{\circ} = y^{\circ} * (x * y^{\circ})^{\circ}$ $\langle proof \rangle$ **lemma** *circ-decompose-7*: $(x \sqcup y)^{\circ} = x^{\circ} * y^{\circ} * (x \sqcup y)^{\circ}$ $\langle proof \rangle$ **lemma** *circ-decompose-8*: $(x \mathrel{\sqcup} y)^\circ = (x \mathrel{\sqcup} y)^\circ \, \ast \, x^\circ \, \ast \, y^\circ$ $\langle proof \rangle$

lemma circ-decompose-9: $(x^{\circ} * y^{\circ})^{\circ} = x^{\circ} * y^{\circ} * (x^{\circ} * y^{\circ})^{\circ}$ $\langle proof \rangle$

lemma circ-back-loop-prefixpoint: $(z * y^{\circ}) * y \sqcup z \leq z * y^{\circ}$ $\langle proof \rangle$

We obtain the fixpoint and prefixpoint properties of iteration, but not least or greatest fixpoint properties.

lemma *circ-loop-is-fixpoint*: is-fixpoint $(\lambda x \cdot y * x \sqcup z) (y^{\circ} * z)$ $\langle proof \rangle$ **lemma** *circ-back-loop-is-prefixpoint*: is-prefixpoint $(\lambda x \cdot x * y \sqcup z) (z * y^{\circ})$ $\langle proof \rangle$ lemma *circ-circ-sup*: $(1 \sqcup x)^{\circ} = x^{\circ \circ}$ $\langle proof \rangle$ lemma circ-circ-mult-sub: $x^{\circ} * 1^{\circ} \leq x^{\circ \circ}$ $\langle proof \rangle$ **lemma** *left-plus-circ*: $(x * x^{\circ})^{\circ} = x^{\circ}$ $\langle proof \rangle$ **lemma** *right-plus-circ*: $(x^{\circ} * x)^{\circ} = x^{\circ}$ $\langle proof \rangle$ lemma circ-square: $(x * x)^{\circ} \leq x^{\circ}$ $\langle proof \rangle$ lemma circ-mult-sub-sup: $(x * y)^{\circ} \le (x \sqcup y)^{\circ}$ $\langle proof \rangle$ **lemma** *circ-sup-mult-zero*: $x^{\circ} * y = (x \sqcup y * bot)^{\circ} * y$ $\langle proof \rangle$

lemma troeger-1: $(x \sqcup y)^{\circ} = x^{\circ} * (1 \sqcup y * (x \sqcup y)^{\circ})$ $\langle proof \rangle$ **lemma** troeger-2: $(x \sqcup y)^{\circ} * z = x^{\circ} * (y * (x \sqcup y)^{\circ} * z \sqcup z)$ $\langle proof \rangle$ **lemma** troeger-3: $(x \sqcup y * bot)^{\circ} = x^{\circ} * (1 \sqcup y * bot)$ $\langle proof \rangle$ lemma circ-sup-sub-sup-one-1: $x \sqcup y \le x^{\circ} * (1 \sqcup y)$ $\langle proof \rangle$ **lemma** *circ-sup-sub-sup-one-2*: $x^{\circ} * (x \sqcup y) \le x^{\circ} * (1 \sqcup y)$ $\langle proof \rangle$ **lemma** *circ-sup-sub-sup-one*: $x * x^{\circ} * (x \sqcup y) \le x * x^{\circ} * (1 \sqcup y)$ $\langle proof \rangle$ lemma circ-square-2: $(x * x)^{\circ} * (x \sqcup 1) \le x^{\circ}$ $\langle proof \rangle$ lemma circ-extra-circ: $(y\,\ast\,x^\circ)^\circ\,=\,(y\,\ast\,y^\circ\,\ast\,x^\circ)^\circ$ $\langle proof \rangle$ lemma circ-circ-sub-mult: $1^{\circ} * x^{\circ} \leq x^{\circ \circ}$ $\langle proof \rangle$ **lemma** *circ-decompose-11*: $(x^{\circ} * y^{\circ})^{\circ} = (x^{\circ} * y^{\circ})^{\circ} * x^{\circ}$ $\langle proof \rangle$ **lemma** *circ-mult-below-circ-circ*: $(x\,\ast\,y)^\circ\,\leq\,(x^\circ\,\ast\,y)^\circ\,\ast\,x^\circ$ $\langle proof \rangle$ **lemma** *power-below-circ*:

 $power \ x \ i \le x^{\circ}$ $\langle proof \rangle$

 \mathbf{end}

The next class considers the interaction of iteration with a greatest element.

 $\label{eq:class} \begin{array}{l} \textit{class bounded-left-conway-semiring} = \textit{bounded-idempotent-left-semiring} + \textit{left-conway-semiring} \\ \textit{begin} \end{array}$

 $\begin{array}{l} \textbf{lemma } circ\text{-right-top:} \\ x^{\circ} \, * \, top \, = \, top \\ \langle proof \rangle \end{array}$

lemma *circ-left-top*: $top * x^{\circ} = top$ $\langle proof \rangle$

lemma mult-top-circ: $(x * top)^{\circ} = 1 \sqcup x * top$ $\langle proof \rangle$

end

class *left-zero-conway-semiring* = *idempotent-left-zero-semiring* + *left-conway-semiring* **begin**

lemma mult-zero-sup-circ-2: $(x \sqcup y * bot)^{\circ} = x^{\circ} \sqcup x^{\circ} * y * bot$ $\langle proof \rangle$

lemma circ-unfold-sum: $(x \sqcup y)^{\circ} = x^{\circ} \sqcup x^{\circ} * y * (x \sqcup y)^{\circ}$ $\langle proof \rangle$

 \mathbf{end}

The next class assumes the full sliding equation.

class left-conway-semiring-1 = left-conway-semiring + assumes circ-right-slide: $x * (y * x)^{\circ} \le (x * y)^{\circ} * x$ begin

lemma circ-slide-1: $x * (y * x)^{\circ} = (x * y)^{\circ} * x$ $\langle proof \rangle$

This implies the full unfold rules and Conway's productstar.

```
lemma circ-right-unfold-1:
  1 \sqcup x^{\circ} * x = x^{\circ}
  \langle proof \rangle
lemma circ-mult-1:
  (x * y)^{\circ} = 1 \sqcup x * (y * x)^{\circ} * y
  \langle proof \rangle
lemma circ-sup-9:
  (x \sqcup y)^{\circ} = (x^{\circ} * y)^{\circ} * x^{\circ}
  \langle proof \rangle
lemma circ-plus-same:
  x^{\circ} * x = x * x^{\circ}
  \langle proof \rangle
lemma circ-decompose-12:
  x^{\circ} * y^{\circ} \le (x^{\circ} * y)^{\circ} * x^{\circ}
  \langle proof \rangle
\mathbf{end}
class left-zero-conway-semiring-1 = left-zero-conway-semiring +
left-conway-semiring-1
begin
lemma circ-back-loop-fixpoint:
  (z * y^{\circ}) * y \sqcup z = z * y^{\circ}
  \langle proof \rangle
lemma circ-back-loop-is-fixpoint:
  is-fixpoint (\lambda x \cdot x * y \sqcup z) (z * y^{\circ})
  \langle proof \rangle
lemma circ-elimination:
  x * y = bot \Longrightarrow x * y^{\circ} \le x
  \langle proof \rangle
```

 \mathbf{end}

2.2 Iterings

This section adds simulation axioms to Conway semirings. We consider several classes with increasingly general simulation axioms.

class itering-1 = left-conway-semiring-1 + assumes circ-simulate: $z * x \le y * z \longrightarrow z * x^{\circ} \le y^{\circ} * z$

begin

lemma sub-mult-one-circ: $x * 1^{\circ} \le 1^{\circ} * x$

 $\begin{array}{c} x \ast 1 \\ \langle proof \rangle \end{array} > 1$

The left simulation axioms is enough to prove a basic import property of tests.

\mathbf{end}

Including generalisations of both simulation axioms allows us to prove separation rules.

class itering-2 = left-conway-semiring-1 + assumes circ-simulate-right: $z * x \le y * z \sqcup w \longrightarrow z * x^{\circ} \le y^{\circ} * (z \sqcup w * x^{\circ})$ assumes circ-simulate-left: $x * z \le z * y \sqcup w \longrightarrow x^{\circ} * z \le (z \sqcup x^{\circ} * w) * y^{\circ}$ begin

```
\begin{array}{c} \mathbf{subclass} \ itering\text{-}1 \\ \langle proof \rangle \end{array}
```

lemma *circ-simulate-left-1*:

 $\begin{array}{l} x*z \leq z*y \Longrightarrow x^{\circ}*z \leq z*y^{\circ} \sqcup x^{\circ}*bot \\ \langle proof \rangle \end{array}$

lemma circ-separate-1: assumes $y * x \le x * y$ shows $(x \sqcup y)^{\circ} = x^{\circ} * y^{\circ}$ $\langle proof \rangle$

```
lemma circ-circ-mult-1:

x^{\circ} * 1^{\circ} = x^{\circ \circ}

\langle proof \rangle
```

 \mathbf{end}

With distributivity, we also get Back's atomicity refinement theorem.

class *itering-3* = *itering-2* + *left-zero-conway-semiring-1* **begin**

lemma circ-simulate-1: assumes $y * x \le x * y$ shows $y^{\circ} * x^{\circ} \le x^{\circ} * y^{\circ}$ $\langle proof \rangle$

lemma atomicity-refinement:

```
assumes s = s * q
and x = q * x
and q * b = bot
and r * b \le b * r
and r * l \le l * r
and r * l \le l * x
and b * l \le l * x
and b * l \le l * b
and q * l \le l * q
and r^{\circ} * q \le q * r^{\circ}
and q \le 1
shows s * (x \sqcup b \sqcup r \sqcup l)^{\circ} * q \le s * (x * b^{\circ} * q \sqcup r \sqcup l)^{\circ}
\langle proof \rangle
```

\mathbf{end}

The following class contains the most general simulation axioms we consider. They allow us to prove further separation properties.

```
class itering = idempotent-left-zero-semiring + circ +
  assumes circ-sup: (x \sqcup y)^{\circ} = (x^{\circ} * y)^{\circ} * x^{\circ}
  assumes circ-mult: (x * y)^{\circ} = 1 \sqcup x * (y * x)^{\circ} * y
  assumes circ-simulate-right-plus: z * x \leq y * y^{\circ} * z \sqcup w \longrightarrow z * x^{\circ} \leq y^{\circ} * (z = y^{\circ})
\sqcup w * x^{\circ})
  assumes circ-simulate-left-plus: x * z \le z * y^{\circ} \sqcup w \longrightarrow x^{\circ} * z \le (z \sqcup x^{\circ} * w)
* y^{\circ}
begin
lemma circ-right-unfold:
  1 \sqcup x^{\circ} * x = x^{\circ}
  \langle proof \rangle
lemma circ-slide:
  x * (y * x)^{\circ} = (x * y)^{\circ} * x
\langle proof \rangle
subclass itering-3
  \langle proof \rangle
lemma circ-simulate-right-plus-1:
  z * x \leq y * y^{\circ} * z \Longrightarrow z * x^{\circ} \leq y^{\circ} * z
  \langle proof \rangle
```

lemma *circ-simulate-left-plus-1*:

 $x * z \leq z * y^{\circ} \Longrightarrow x^{\circ} * z \leq z * y^{\circ} \sqcup x^{\circ} * bot$ $\langle proof \rangle$ **lemma** *circ-simulate-2*: $y * x^{\circ} \leq x^{\circ} * y^{\circ} \longleftrightarrow y^{\circ} * x^{\circ} \leq x^{\circ} * y^{\circ}$ $\langle proof \rangle$ **lemma** *circ-simulate-absorb*: $y * x \leq x \Longrightarrow y^{\circ} * x \leq x \sqcup y^{\circ} * bot$ $\langle proof \rangle$ **lemma** *circ-simulate-3*: $y \, * \, x^{\circ} \, \leq \, x^{\circ} \, \Longrightarrow \, y^{\circ} \, * \, x^{\circ} \, \leq \, x^{\circ} \, * \, y^{\circ}$ $\langle proof \rangle$ **lemma** *circ-separate-mult-1*: $y \ast x \leq x \ast y \Longrightarrow (x \ast y)^{\circ} \leq x^{\circ} \ast y^{\circ}$ $\langle proof \rangle$ **lemma** *circ-separate-unfold*: $(y \, \ast \, x^{\circ})^{\circ} \, = \, y^{\circ} \, \sqcup \, y^{\circ} \, \ast \, y \, \ast \, x \, \ast \, x^{\circ} \, \ast \, (y \, \ast \, x^{\circ})^{\circ}$ $\langle proof \rangle$ **lemma** separation: assumes $y * x \le x * y^{\circ}$ shows $(x \sqcup y)^{\circ} = x^{\circ} * y^{\circ}$ $\langle proof \rangle$ **lemma** *simulation*: $y * x \leq x * y^{\circ} \Longrightarrow y^{\circ} * x^{\circ} \leq x^{\circ} * y^{\circ}$ $\langle proof \rangle$ **lemma** *circ-simulate-4*: assumes $y * x \le x * x^{\circ} * (1 \sqcup y)$ shows $y^{\circ} * x^{\circ} \leq x^{\circ} * y^{\circ}$ $\langle proof \rangle$ **lemma** *circ-simulate-5*: $y \, \ast \, x \, \leq \, x \, \ast \, x^{\circ} \, \ast \, (x \, \sqcup \, y) \Longrightarrow \, y^{\circ} \, \ast \, x^{\circ} \, \leq \, x^{\circ} \, \ast \, y^{\circ}$ $\langle proof \rangle$ **lemma** *circ-simulate-6*: $y * x \leq x * (x \sqcup y) \Longrightarrow y^{\circ} * x^{\circ} \leq x^{\circ} * y^{\circ}$ $\langle proof \rangle$ **lemma** *circ-separate-4*: assumes $y * x \le x * x^{\circ} * (1 \sqcup y)$ shows $(x \sqcup y)^{\circ} = x^{\circ} * y^{\circ}$ $\langle proof \rangle$

lemma circ-separate-5: $y * x \le x * x^{\circ} * (x \sqcup y) \Longrightarrow (x \sqcup y)^{\circ} = x^{\circ} * y^{\circ}$ $\langle proof \rangle$

lemma circ-separate-6:

 $\begin{array}{l} y \ast x \leq x \ast (x \sqcup y) \Longrightarrow (x \sqcup y)^{\circ} = x^{\circ} \ast y^{\circ} \\ \langle proof \rangle \end{array}$

 \mathbf{end}

classbounded-itering = bounded-idempotent-left-zero-semiring + itering**begin**

subclass bounded-left-conway-semiring $\langle proof \rangle$

\mathbf{end}

We finally expand Conway semirings and iterings by an element that corresponds to the endless loop.

class L =fixes L :: 'a

class left-conway-semiring-L = left-conway-semiring + L + assumes one-circ-mult-split: $1^{\circ} * x = L \sqcup x$ assumes L-split-sup: $x * (y \sqcup L) \le x * y \sqcup L$ begin

lemma *L*-def: $L = 1^{\circ} * bot$ $\langle proof \rangle$

lemma one-circ-split: $1^{\circ} = L \sqcup 1$ $\langle proof \rangle$

lemma one-circ-circ-split: $1^{\circ\circ} = L \sqcup 1$ $\langle proof \rangle$

lemma sub-mult-one-circ: $x * 1^{\circ} \le 1^{\circ} * x$ $\langle proof \rangle$

lemma one-circ-mult-split-2: $1^{\circ} * x = x * 1^{\circ} \sqcup L$ $\langle proof \rangle$ **lemma** *sub-mult-one-circ-split*: $x * 1^{\circ} \le x \sqcup L$ $\langle proof \rangle$ lemma sub-mult-one-circ-split-2: $\begin{array}{l} x * 1^{\circ} \leq x \sqcup 1^{\circ} \\ \langle proof \rangle \end{array}$ lemma L-split: $x * L \leq x * \textit{bot} \sqcup L$ $\langle proof \rangle$ lemma L-left-zero: L * x = L $\langle proof \rangle$ lemma one-circ-L: $1^{\circ} * L = L$ $\langle proof \rangle$ **lemma** *mult-L-circ*: $(x\,\ast\,L)^\circ\,=\,1\,\sqcup\,x\,\ast\,L$ $\langle proof \rangle$ **lemma** *mult-L-circ-mult*: $(x\,\ast\,L)^\circ\,\ast\,y\,=\,y\,\sqcup\,x\,\ast\,L$ $\langle proof \rangle$ lemma circ-L: $L^\circ = L \sqcup 1$ $\langle proof \rangle$ **lemma** *L-below-one-circ*: $L \leq 1^{\circ}$ $\langle proof \rangle$ **lemma** *circ-circ-mult-1*: $x^{\circ} * 1^{\circ} = x^{\circ \circ}$ $\langle proof \rangle$ **lemma** *circ-circ-mult*: $1^{\circ} \, \ast \, x^{\circ} \, = \, x^{\circ \circ}$ $\langle proof \rangle$ lemma circ-circ-split: $x^{\circ \circ} = L \sqcup x^{\circ}$ $\langle proof \rangle$

lemma circ-sup-6: $L \sqcup (x \sqcup y)^{\circ} = (x^{\circ} * y^{\circ})^{\circ}$ $\langle proof \rangle$

\mathbf{end}

class itering-L = itering + L +assumes L-def: $L = 1^{\circ} * bot$ begin

lemma one-circ-split: $1^{\circ} = L \sqcup 1$ $\langle proof \rangle$

lemma one-circ-mult-split: $1^{\circ} * x = L \sqcup x$ $\langle proof \rangle$

lemma sub-mult-one-circ-split: $x * 1^{\circ} \leq x \sqcup L$ $\langle proof \rangle$

lemma sub-mult-one-circ-split-2: $x * 1^{\circ} \leq x \sqcup 1^{\circ}$ $\langle proof \rangle$

```
 \begin{array}{ll} \textbf{lemma } L\text{-split:} \\ x*L \leq x* \textit{ bot } \sqcup L \\ \langle \textit{proof} \rangle \end{array}
```

```
subclass left-conway-semiring-L \langle proof \rangle
```

 \mathbf{end}

 \mathbf{end}

3 Kleene Algebras

Kleene algebras have been axiomatised by Kozen to describe the equational theory of regular languages [13]. Binary relations are another important model. This theory implements variants of Kleene algebras based on idempotent left semirings [15]. The weakening of some semiring axioms allows the treatment of further computation models. The presented algebras are special cases of iterings, so many results can be inherited.

theory Kleene-Algebras

imports Iterings

begin

We start with left Kleene algebras, which use the left unfold and left induction axioms of Kleene algebras.

class star =fixes $star :: 'a \Rightarrow 'a (\langle -^* \rangle [100] 100)$

```
class left-kleene-algebra = idempotent-left-semiring + star + assumes star-left-unfold : 1 \sqcup y * y^* \leq y^* assumes star-left-induct : z \sqcup y * x \leq x \longrightarrow y^* * z \leq x begin
```

unbundle no trancl-syntax

abbreviation tc ($\langle -^+ \rangle$ [100] 100) where tc $x \equiv x * x^*$

lemma *star-left-unfold-equal*:

 $1 \sqcup x * x^{\star} = x^{\star}$ \langle proof \rangle

This means that for some properties of Kleene algebras, only one inequality can be derived, as exemplified by the following sliding rule.

lemma *star-left-slide*:

 $(x * y)^* * x \le x * (y * x)^*$ $\langle proof \rangle$ **lemma** star-isotone: $x \le y \Longrightarrow x^* \le y^*$ $\langle proof \rangle$ **lemma** star-sup-1: $(x \sqcup y)^* = x^* * (y * x^*)^*$ $\langle proof \rangle$

lemma plus-transitive: $x^+ * x^+ \le x^+$ $\langle proof \rangle$

 \mathbf{end}

We now show that left Kleene algebras form iterings. A sublocale is used instead of a subclass, because iterings use a different iteration operation.

sublocale left-kleene-algebra < star: left-conway-semiring **where** circ = star $\langle proof \rangle$

context left-kleene-algebra begin

A number of lemmas in this class are taken from Georg Struth's Kleene algebra theory [2].

lemma star-sub-one:

 $\begin{array}{l} x \leq 1 \Longrightarrow x^{\star} = 1 \\ \langle proof \rangle \end{array}$

lemma star-one: $1^* = 1$ $\langle proof \rangle$

lemma star-left-induct-mult: $x * y \leq y \Longrightarrow x^* * y \leq y$ $\langle proof \rangle$

lemma star-left-induct-mult-iff: $x * y \leq y \longleftrightarrow x^* * y \leq y$ $\langle proof \rangle$

lemma star-involutive: $x^* = x^{**}$ $\langle proof \rangle$

lemma star-sup-one: $(1 \sqcup x)^* = x^*$ $\langle proof \rangle$

lemma star-plus-loops: $x^* \sqcup 1 = x^+ \sqcup 1$ $\langle proof \rangle$

lemma star-left-induct-equal: $z \sqcup x * y = y \Longrightarrow x^* * z \le y$ $\langle proof \rangle$

lemma star-left-induct-mult-equal: $x * y = y \Longrightarrow x^* * y \le y$ $\langle proof \rangle$

lemma *star-star-upper-bound*: $x^\star \le z^\star \Longrightarrow x^{\star\star} \le z^\star$ $\langle proof \rangle$ **lemma** *star-simulation-left*: assumes $x * z \leq z * y$ shows $x^* * z \le z * y^*$ $\langle proof \rangle$ **lemma** quasicomm-1: $y * x \leq x * (x \sqcup y)^{\star} \longleftrightarrow y^{\star} * x \leq x * (x \sqcup y)^{\star}$ $\langle proof \rangle$ **lemma** *star-rtc-3*: $1 \sqcup x \sqcup y * y = y \Longrightarrow x^* \le y$ $\langle proof \rangle$ **lemma** *star-decompose-1*: $(x \sqcup y)^{\star} = (x^{\star} * y^{\star})^{\star}$ $\langle proof \rangle$ **lemma** *star-sum*: $(x \sqcup y)^{\star} = (x^{\star} \sqcup y^{\star})^{\star}$ $\langle proof \rangle$ **lemma** *star-decompose-3*: $(x^{\star} * y^{\star})^{\star} = x^{\star} * (y * x^{\star})^{\star}$ $\langle proof \rangle$ In contrast to iterings, we now obtain that the iteration operation results in least fixpoints. **lemma** *star-loop-least-fixpoint*: $y * x \sqcup z = x \Longrightarrow y^{\star} * z \le x$ $\langle proof \rangle$ **lemma** *star-loop-is-least-fixpoint*: is-least-fixpoint $(\lambda x \cdot y * x \sqcup z) (y^* * z)$

is-least-fixpoint $(\lambda x . y * x \sqcup z) (y^* * \langle proof \rangle$

lemma star-loop-mu: $\mu \ (\lambda x \ . \ y * x \sqcup z) = y^{\star} * z$ $\langle proof \rangle$

lemma affine-has-least-fixpoint: has-least-fixpoint $(\lambda x \ . \ y \ * \ x \sqcup z)$ $\langle proof \rangle$

lemma star-outer-increasing:

 $\begin{array}{l} x \leq y^{\star} \, * \, x \, * \, y^{\star} \\ \langle proof \rangle \end{array}$

 \mathbf{end}

We next add the right induction rule, which allows us to strengthen many inequalities of left Kleene algebras to equalities.

class strong-left-kleene-algebra = left-kleene-algebra + assumes star-right-induct: $z \sqcup x * y \le x \longrightarrow z * y^* \le x$ begin

```
lemma star-plus:
y^* * y = y * y^*
\langle proof \rangle
```

lemma *star-slide*:

 $\begin{array}{l} (x*y)^{\star}*x = x*(y*x)^{\star}\\ \langle proof \rangle \end{array}$

```
lemma star-simulation-right:
```

assumes $z * x \leq y * z$ shows $z * x^* \leq y^* * z$ $\langle proof \rangle$

\mathbf{end}

Again we inherit results from the itering hierarchy.

sublocale strong-left-kleene-algebra < star: itering-1 where circ = star $\langle proof \rangle$

 $\begin{array}{l} \textbf{context} \ strong-left-kleene-algebra} \\ \textbf{begin} \end{array}$

lemma star-right-induct-mult: $y * x \le y \Longrightarrow y * x^* \le y$ $\langle proof \rangle$

lemma star-right-induct-mult-iff: $y * x \leq y \longleftrightarrow y * x^* \leq y$ $\langle proof \rangle$

lemma star-simulation-right-equal: $z * x = y * z \Longrightarrow z * x^* = y^* * z$ $\langle proof \rangle$

lemma star-simulation-star: $x * y \le y * x \Longrightarrow x^* * y^* \le y^* * x^*$ $\langle proof \rangle$

lemma star-right-induct-equal: $z \sqcup y * x = y \Longrightarrow z * x^* \le y$ $\langle proof \rangle$

lemma star-right-induct-mult-equal: $y * x = y \Longrightarrow y * x^* \le y$ $\langle proof \rangle$

lemma star-back-loop-least-fixpoint: $x * y \sqcup z = x \Longrightarrow z * y^* \le x$ $\langle proof \rangle$

lemma star-back-loop-is-least-fixpoint: is-least-fixpoint $(\lambda x . x * y \sqcup z) (z * y^*)$ $\langle proof \rangle$

lemma star-back-loop-mu: $\mu \ (\lambda x \ . \ x * y \sqcup z) = z * y^{\star}$ $\langle proof \rangle$

lemma star-square: $x^* = (1 \sqcup x) * (x * x)^*$ $\langle proof \rangle$

lemma star-square-2: $x^* = (x * x)^* * (x \sqcup 1)$ $\langle proof \rangle$

lemma star-circ-simulate-right-plus: assumes $z * x \le y * y^* * z \sqcup w$ shows $z * x^* \le y^* * (z \sqcup w * x^*)$ $\langle proof \rangle$

lemma transitive-star: $x * x \leq x \Longrightarrow x^* = 1 \sqcup x$ $\langle proof \rangle$

lemma star-sup-2: assumes $x * x \le x$ and $x * y \le x$ shows $(x \sqcup y)^* = y^* * (x \sqcup 1)$ $\langle proof \rangle$

\mathbf{end}

The following class contains a generalisation of Kleene algebras, which

lacks the right zero axiom.

 $\label{eq:class} \ left\ zero\ kleene\ algebra\ =\ idempotent\ left\ zero\ semiring\ +\ strong\ left\ kleene\ algebra\ begin$

lemma star-star-absorb: $y^* * (y^* * x)^* * y^* = (y^* * x)^* * y^*$ $\langle proof \rangle$

 ${\bf lemma} \ star-circ-simulate-left-plus:$

assumes $x * z \le z * y^* \sqcup w$ shows $x^* * z \le (z \sqcup x^* * w) * y^*$ $\langle proof \rangle$

```
lemma star-one-sup-below:
```

 $\begin{array}{l} x * y^{\star} * (1 \sqcup z) \leq x * (y \sqcup z)^{\star} \\ \langle proof \rangle \end{array}$

The following theorem is similar to the puzzle where persons insert themselves always in the middle between two groups of people in a line. Here, however, items in the middle annihilate each other, leaving just one group of items behind.

```
lemma cancel-separate:
```

```
assumes x * y \leq 1
shows x^* * y^* \leq x^* \sqcup y^*
\langle proof \rangle
```

```
lemma star-separate:

assumes x * y = bot

and y * y = bot

shows (x \sqcup y)^* = x^* \sqcup y * x^*

\langle proof \rangle
```

end

We can now inherit from the strongest variant of iterings.

sublocale *left-zero-kleene-algebra* < *star*: *itering* **where** *circ* = *star* $\langle proof \rangle$

context left-zero-kleene-algebra begin

```
lemma star-absorb:

x * y = bot \Longrightarrow x * y^{\star} = x

\langle proof \rangle
```

lemma star-separate-2: assumes $x * z^+ * y = bot$ and $y * z^+ * y = bot$

and z * x = botshows $(x^{\star} \sqcup y * x^{\star}) * (z * (1 \sqcup y * x^{\star}))^{\star} = z^{\star} * (x^{\star} \sqcup y * x^{\star}) * z^{\star}$ $\langle proof \rangle$ **lemma** cancel-separate-eq: $x * y \le 1 \Longrightarrow x^{\star} * y^{\star} = x^{\star} \sqcup y^{\star}$ $\langle proof \rangle$ **lemma** cancel-separate-1: assumes $x * y \le 1$ shows $(x \sqcup y)^{\star} = y^{\star} * x^{\star}$ $\langle proof \rangle$ lemma *plus-sup*: $(x \sqcup y)^+ = (x^* * y)^* * x^+ \sqcup (x^* * y)^+$ $\langle proof \rangle$ **lemma** *plus-half-bot*: $x * y * x = bot \Longrightarrow (x * y)^+ = x * y$ $\langle proof \rangle$ **lemma** cancel-separate-1-sup: assumes $x * y \leq 1$ and $y * x \leq 1$ shows $(x \sqcup y)^{\star} = x^{\star} \sqcup y^{\star}$ $\langle proof \rangle$

Lemma star-separate-3 was contributed by Nicolas Robinson-O'Brien.

lemma star-separate-3: assumes $y * x^* * y \le y$ shows $(x \sqcup y)^* = x^* \sqcup x^* * y * x^*$ $\langle proof \rangle$

end

A Kleene algebra is obtained by requiring an idempotent semiring.

 ${\bf class}\ kleene-algebra = {\it left-zero-kleene-algebra} + {\it idempotent-semiring}$

The following classes are variants of Kleene algebras expanded by an additional iteration operation. This is useful to study the Kleene star in computation models that do not use least fixpoints in the refinement order as the semantics of recursion.

 ${\bf class} \ left\ end{tabular} left\ end{tabular} eleft\ eleft\ end{tabular} eleft\ end{tabular} eleft\ end{tabular} eleft\$

lemma star-below-circ: $x^* \leq x^\circ$ $\langle proof \rangle$ **lemma** *star-zero-below-circ-mult*: $x^{\star} * bot \leq x^{\circ} * y$ $\langle proof \rangle$ **lemma** *star-mult-circ*: $x^{\star} * x^{\circ} = x^{\circ}$ $\langle proof \rangle$ **lemma** *circ-mult-star*: $x^\circ \, \ast \, x^\star \, = \, x^\circ$ $\langle proof \rangle$ lemma circ-star: $x^{\circ \star} = x^{\circ}$ $\langle proof \rangle$ lemma *star-circ*: $x^{\star \circ} = x^{\circ \circ}$ $\langle proof \rangle$ **lemma** *circ-sup-3*: $(x^{\circ} * y^{\circ})^{\star} \le (x \sqcup y)^{\circ}$ $\langle proof \rangle$

\mathbf{end}

 ${\bf class} \ left\ -zero\ -kleene\ -conway\ -semiring\ =\ left\ -zero\ -kleene\ -algebra\ +\ itering\ {\bf begin}$

subclass left-kleene-conway-semiring $\langle proof \rangle$

lemma *circ-isolate*: $x^{\circ} = x^{\circ} * bot \sqcup x^{\star}$ $\langle proof \rangle$

lemma circ-isolate-mult: $x^{\circ} * y = x^{\circ} * bot \sqcup x^{\star} * y$ $\langle proof \rangle$

lemma circ-isolate-mult-sub: $x^{\circ} * y \leq x^{\circ} \sqcup x^{\star} * y$ $\langle proof \rangle$

lemma circ-sub-decompose: $(x^{\circ} * y)^{\circ} \leq (x^{\star} * y)^{\circ} * x^{\circ}$ $\langle proof \rangle$

lemma circ-sup-4: $(x \sqcup y)^{\circ} = (x^{\star} * y)^{\circ} * x^{\circ}$ $\langle proof \rangle$

```
lemma circ-sup-5:

(x^{\circ} * y)^{\circ} * x^{\circ} = (x^{\star} * y)^{\circ} * x^{\circ}

\langle proof \rangle

lemma plus-circ:

(x^{\star} * x)^{\circ} = x^{\circ}

\langle proof \rangle
```

end

The following classes add a greatest element.

 ${\bf class}\ bounded{-}left{-}kleene{-}algebra = bounded{-}idempotent{-}left{-}semiring + left{-}kleene{-}algebra$

sublocale bounded-left-kleene-algebra < star: bounded-left-conway-semiring where circ = star $\langle proof \rangle$

 ${\bf class}\ bounded\ left\ zero\ kleene\ algebra\ =\ bounded\ idempotent\ left\ semiring\ +\ left\ zero\ kleene\ algebra\$

sublocale bounded-left-zero-kleene-algebra < star: bounded-itering where circ = star $\langle proof \rangle$

 ${\bf class}\ bounded {\it -kleene-algebra} = bounded {\it -idempotent-semiring} + kleene-algebra$

sublocale bounded-kleene-algebra < star: bounded-itering where $circ = star \langle proof \rangle$

We conclude with an alternative axiomatisation of Kleene algebras.

```
class kleene-algebra-var = idempotent-semiring + star +
assumes star-left-unfold-var : 1 \sqcup y * y^* \leq y^*
assumes star-left-induct-var : y * x \leq x \longrightarrow y^* * x \leq x
assumes star-right-induct-var : x * y \leq x \longrightarrow x * y^* \leq x
begin
```

subclass kleene-algebra $\langle proof \rangle$

end

end

4 Kleene Relation Algebras

This theory combines Kleene algebras with Stone relation algebras. Relation algebras with transitive closure have been studied by [16]. The weakening to Stone relation algebras allows us to talk about reachability in weighted graphs, for example.

Many results in this theory are used in the correctness proof of Prim's minimum spanning tree algorithm. In particular, they are concerned with the exchange property, preservation of parts of the invariant and with establishing parts of the postcondition.

theory Kleene-Relation-Algebras

imports Stone-Relation-Algebras. Relation-Algebras Kleene-Algebras

begin

We first note that bounded distributive lattices can be expanded to Kleene algebras by reusing some of the operations.

sublocale bounded-distrib-lattice < comp-inf: bounded-kleene-algebra where star = λx . top and one = top and times = inf $\langle proof \rangle$

We add the Kleene star operation to each of bounded distributive allegories, pseudocomplemented distributive allegories and Stone relation algebras. We start with single-object bounded distributive allegories.

 ${\bf class}\ bounded\ distrib\ kleene\ allegory\ =\ bounded\ distrib\ allegory\ +\ kleene\ algebra\ {\bf begin}$

subclass bounded-kleene-algebra $\langle proof \rangle$

lemma conv-star-conv: $x^* \leq x^{T*T}$ $\langle proof \rangle$

It follows that star and converse commute.

lemma conv-star-commute: $x^{\star T} = x^{T \star}$ $\langle proof \rangle$

lemma conv-plus-commute: $x^{+T} = x^{T+}$ $\langle proof \rangle$

Lemma reflexive-inf-star was contributed by Nicolas Robinson-O'Brien.

```
lemma reflexive-inf-star:

assumes reflexive y

shows y \sqcap x^* = 1 \sqcup (y \sqcap x^+)

\langle proof \rangle
```

The following results are variants of a separation lemma of Kleene algebras.

```
lemma cancel-separate-2:
  assumes x * y \le 1
    shows ((w \sqcap x) \sqcup (z \sqcap y))^{\star} = (z \sqcap y)^{\star} * (w \sqcap x)^{\star}
\langle proof \rangle
lemma cancel-separate-3:
  assumes x * y \le 1
    shows (w \sqcap x)^{\star} * (z \sqcap y)^{\star} = (w \sqcap x)^{\star} \sqcup (z \sqcap y)^{\star}
\langle proof \rangle
lemma cancel-separate-4:
  assumes z * y \leq 1
      and w \leq y \sqcup z
      and x \leq y \sqcup z
    shows w^* * x^* = (w \sqcap y)^* * ((w \sqcap z)^* \sqcup (x \sqcap y)^*) * (x \sqcap z)^*
\langle proof \rangle
lemma cancel-separate-5:
  assumes w * z^T \leq 1
    shows w \sqcap x * (y \sqcap z) \le y
\langle proof \rangle
lemma cancel-separate-6:
  assumes z * y \leq 1
      and w \leq y \sqcup z
      and x \leq y \sqcup z
      and v * z^T \leq 1
      and v \sqcap y^* = bot
    shows v \sqcap w^{\star} * x^{\star} \leq x \sqcup w
\langle proof \rangle
```

We show several results about the interaction of vectors and the Kleene star.

lemma vector-star-1: assumes vector xshows $x^T * (x * x^T)^* \le x^T$ $\langle proof \rangle$

lemma vector-star-2: vector $x \Longrightarrow x^T * (x * x^T)^* \le x^T * bot^*$ $\langle proof \rangle$

 ${\bf lemma} \ equivalence {-} star{-} closed:$

 $\begin{array}{l} equivalence \ x \Longrightarrow \ equivalence \ (x^{\star}) \\ \langle proof \rangle \end{array}$

```
lemma equivalence-plus-closed:
equivalence x \Longrightarrow equivalence (x^+)
\langle proof \rangle
```

The following equivalence relation characterises the component trees of a forest. This is a special case of undirected reachability in a directed graph.

```
abbreviation forest-components f \equiv f^{T\star} * f^{\star}
```

```
lemma forest-components-equivalence:
injective x \implies equivalence (forest-components x)
\langle proof \rangle
```

```
lemma forest-components-increasing:
x \leq \text{forest-components } x \\ \langle \text{proof} \rangle
```

lemma reachable-restrict:

```
lemma forest-components-isotone:

x \leq y \Longrightarrow forest-components x \leq forest-components y \langle proof \rangle
```

```
lemma forest-components-idempotent:
injective x \Longrightarrow forest-components (forest-components x) = forest-components x \pmod{proof}
```

```
lemma forest-components-star:
injective x \Longrightarrow (\text{forest-components } x)^* = \text{forest-components } x \land \text{proof} \rangle
```

The following lemma shows that the nodes reachable in the graph can be reached by only using edges between reachable nodes.

```
assumes vector r

shows r^{T} * g^{*} = r^{T} * ((r^{T} * g^{*})^{T} * (r^{T} * g^{*}) \sqcap g)^{*}

\langle proof \rangle

lemma kruskal-acyclic-inv-1:

assumes injective f

and e * forest-components f * e = bot

shows (f \sqcap top * e * f^{T*})^{T} * f^{*} * e = bot

\langle proof \rangle

lemma kruskal-forest-components-inf-1:

assumes f \leq w \sqcup w^{T}

and injective w

and f \leq forest-components g
```

```
(forest-components g \sqcap w)

\langle proof \rangle

lemma kruskal-forest-components-inf:

assumes f \le w \sqcup w^T

and injective w

shows forest-components f \le forest-components (forest-components f \sqcap w)

\langle proof \rangle
```

```
\mathbf{end}
```

We next add the Kleene star to single-object pseudocomplemented distributive allegories.

```
class pd-kleene-allegory = pd-allegory + bounded-distrib-kleene-allegory begin
```

The following definitions and results concern acyclic graphs and forests. **abbreviation** acyclic :: 'a \Rightarrow bool where acyclic $x \equiv x^+ \leq -1$

abbreviation forest :: 'a \Rightarrow bool where forest $x \equiv$ injective $x \land$ acyclic x

lemma forest-bot: forest bot $\langle proof \rangle$

lemma acyclic-down-closed: $x \leq y \Longrightarrow$ acyclic $y \Longrightarrow$ acyclic x $\langle proof \rangle$

lemma forest-down-closed: $x \leq y \Longrightarrow$ forest $y \Longrightarrow$ forest $x \langle proof \rangle$

lemma acyclic-star-below-complement: acyclic $w \leftrightarrow w^{T\star} \leq -w$ $\langle proof \rangle$

lemma acyclic-star-below-complement-1: acyclic $w \leftrightarrow w^* \sqcap w^T = bot$ $\langle proof \rangle$

lemma acyclic-star-inf-conv: assumes acyclic w shows $w^* \sqcap w^{T*} = 1$ $\langle proof \rangle$

lemma acyclic-asymmetric: acyclic $w \Longrightarrow$ asymmetric w $\langle proof \rangle$ lemma forest-separate: assumes forest x shows $x^* * x^{T*} \sqcap x^T * x \leq 1$ $\langle proof \rangle$

The following definition captures the components of undirected weighted graphs.

abbreviation components $g \equiv (--g)^{\star}$

lemma components-increasing: $x \leq components \ x$ $\langle proof \rangle$

```
lemma components-isotone:

x \le y \Longrightarrow components x \le components y

\langle proof \rangle
```

```
\begin{array}{l} \textbf{lemma cut-reachable:}\\ \textbf{assumes } v^T = r^T \, \ast \, t^{\star}\\ \textbf{and } t \leq g\\ \textbf{shows } v \, \ast \, -v^T \, \sqcap \, g \leq (r^T \, \ast \, g^{\star})^T \, \ast \, (r^T \, \ast \, g^{\star})\\ \langle proof \rangle \end{array}
```

The following lemma shows that the predecessors of visited nodes in the minimum spanning tree extending the current tree have all been visited.

lemma predecessors-reachable:

assumes vector r and injective r and $v^T = r^T * t^*$ and forest w and $t \le w$ and $w \le (r^T * g^*)^T * (r^T * g^*) \sqcap g$ and $r^T * g^* \le r^T * w^*$ shows $w * v \le v$ $\langle proof \rangle$

4.1 Prim's Algorithm

The following results are used for proving the correctness of Prim's minimum spanning tree algorithm.

4.1.1 Preservation of Invariant

We first treat the preservation of the invariant. The following lemma shows that the while-loop preserves that v represents the nodes of the constructed tree. The remaining lemmas in this section show that t is a spanning tree. The exchange property is treated in the following two sections.

lemma reachable-inv:

assumes vector v and $e \leq v * -v^T$ and e * t = botand $v^T = r^T * t^*$ shows $(v \sqcup e^T * top)^T = r^T * (t \sqcup e)^*$ $\langle proof \rangle$

The next result is used to show that the while-loop preserves acyclicity of the constructed tree.

The following lemma shows that the extended tree is in the component reachable from the root.

```
 \begin{array}{l} \text{lemma } mst-subgraph-inv-2: \\ \text{assumes } regular \; (v \, \ast \, v^T) \\ \text{ and } t \leq v \, \ast \, v^T \sqcap --g \\ \text{ and } v^T = r^T \, \ast \, t^* \\ \text{ and } e \leq v \, \ast \, -v^T \sqcap --g \\ \text{ and } vector \; v \\ \text{ and } regular \; ((v \sqcup e^T \, \ast \, top) \, \ast \, (v \sqcup e^T \, \ast \, top)^T) \\ \text{ shows } t \sqcup e \leq (r^T \, \ast \, (--((v \sqcup e^T \, \ast \, top) \, \ast \, (v \sqcup e^T \, \ast \, top)^T \sqcap g))^*)^T \, \ast \, (r^T \, \ast \, (--((v \sqcup e^T \, \ast \, top) \, \ast \, (v \sqcup e^T \, \ast \, top)^T \sqcap g))^*) \\ \langle proof \rangle \end{array}
```

```
 \begin{array}{l} \textbf{lemma span-inv:} \\ \textbf{assumes } e \leq v * - v^T \\ \textbf{and } vector \ v \\ \textbf{and } arc \ e \\ \textbf{and } t \leq (v * v^T) \sqcap g \\ \textbf{and } g^T = g \\ \textbf{and } v^T = r^T * t^* \\ \textbf{and } injective \ r \\ \textbf{and } r^T \leq v^T \\ \textbf{and } r^T * ((v * v^T) \sqcap g)^* \leq r^T * t^* \\ \textbf{shows } r^T * (((v \sqcup e^T * top) * (v \sqcup e^T * top)^T) \sqcap g)^* \leq r^T * (t \sqcup e)^* \\ \langle proof \rangle \end{array}
```

4.1.2 Exchange gives Spanning Trees

The following abbreviations are used in the spanning tree application using Prim's algorithm to construct the new tree for the exchange property. It is obtained by replacing an edge with one that has minimal weight and reversing the path connecting these edges. Here, w represents a weighted graph, v represents a set of nodes and e represents an edge.

abbreviation $prim-E :: 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a$ where $prim-E w \ v \ e \equiv w \ \sqcap --v \ast -v^T \ \sqcap \ top \ast \ e \ast \ w^{T \star}$ abbreviation $prim-P :: 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a$ where $prim-P \ w \ v \ e \equiv w \ \sqcap -v \ast -v^T \ \sqcap \ top \ast \ e \ast \ w^{T \star}$ abbreviation $prim-EP :: 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a$ where $prim-EP \ w \ v \ e \equiv w \ \sqcap -v^T \ \sqcap \ top \ast \ e \ast \ w^{T \star}$ abbreviation $prim-EP :: 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a$ where $prim-EP \ w \ v \ e \equiv w \ \sqcap -v^T \ \sqcap \ top \ast \ e \ast \ w^{T \star}$ abbreviation $prim-EP :: 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a$ where $prim-EP \ w \ v \ e \equiv w \ \sqcap -v^T \ \sqcap \ top \ast \ e \ast \ w^T \star$ abbreviation $prim-W :: 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a$ where $prim-W \ w \ v \ e \equiv (w \ \sqcap -(prim-EP \ w \ v \ e)) \ \sqcup \ (prim-P \ w \ v \ e)^T \ \sqcup \ e$

The lemmas in this section are used to show that the relation after exchange represents a spanning tree. The results in the next section are used to show that it is a minimum spanning tree.

```
lemma exchange-injective-6:

assumes arc e

and forest w

shows (prim-P \ w \ v \ e)^T \ * \ e^T = bot

\langle proof \rangle
```

The graph after exchanging is injective.

```
lemma pv:

assumes vector v

shows (prim-P \ w \ v \ e)^T \ * \ v = bot

\langle proof \rangle
```

```
lemma vector-pred-inv:
assumes arc e
and e \leq v * - v^T
```

```
and forest w
and vector v
and w * v \le v
shows (prim-W w v e) * (v \sqcup e^T * top) \le v \sqcup e^T * top
\langle proof \rangle
```

The graph after exchanging is acyclic.

The following lemma shows that an edge across the cut between visited nodes and unvisited nodes does not leave the component of visited nodes.

The following lemmas show that the tree after exchanging contains the currently constructed and tree and its extension by the chosen edge.

lemma *mst-extends-old-tree*:

assumes $t \leq w$ and $t \leq v * v^T$ and vector vshows $t \leq prim-W w v e$ $\langle proof \rangle$

 ${\bf lemma} \ mst-extends-new-tree:$

 $\begin{array}{l} t \leq w \Longrightarrow t \leq v \ast v^T \Longrightarrow \textit{vector } v \Longrightarrow t \sqcup e \leq \textit{prim-W} \ w \ v \ e \\ \langle\textit{proof} \rangle \end{array}$

Lemmas forests-bot-1, forests-bot-2, forests-bot-3 and fc-comp-eq-fc were contributed by Nicolas Robinson-O'Brien.

lemma forests-bot-1: **assumes** equivalence e **and** forest f **shows** $(-e \sqcap f) * (e \sqcap f)^T = bot$ $\langle proof \rangle$

lemma forests-bot-2: **assumes** equivalence e **and** forest f **shows** $(-e \sqcap f^T) * x \sqcap (e \sqcap f^T) * y = bot$

$\langle proof \rangle$

```
lemma forests-bot-3:

assumes equivalence e

and forest f

shows x * (-e \sqcap f) \sqcap y * (e \sqcap f) = bot

\langle proof \rangle

lemma acyclic-plus:

acyclic \ x \Longrightarrow acyclic \ (x^+)

\langle proof \rangle
```

\mathbf{end}

We finally add the Kleene star to Stone relation algebras. Kleene star and the relational operations are reasonably independent. The only additional axiom we need in the generalisation to Stone-Kleene relation algebras is that star distributes over double complement.

class stone-kleene-relation-algebra = stone-relation-algebra + pd-kleene-allegory + assumes pp-dist-star: $--(x^*) = (--x)^*$ begin

lemma reachable-without-loops: $x^* = (x \sqcap -1)^*$ $\langle proof \rangle$

lemma plus-reachable-without-loops: $x^+ = (x \sqcap -1)^+ \sqcup (x \sqcap 1)$ $\langle proof \rangle$

lemma star-plus-without-loops: $x^* \sqcap -1 = x^+ \sqcap -1$ $\langle proof \rangle$

lemma regular-closed-star: regular $x \Longrightarrow$ regular (x^*) $\langle proof \rangle$

lemma components-idempotent: components (components x) = components $x \langle proof \rangle$

```
lemma fc-comp-eq-fc:

-forest-components (--f) = -forest-components f

\langle proof \rangle
```

The following lemma shows that the nodes reachable in the tree after exchange contain the nodes reachable in the tree before exchange.

 ${\bf lemma} \ mst-reachable-inv:$

```
assumes regular (prim-EP w v e)

and vector r

and e \leq v * - v^T

and vector v

and v^T = r^T * t^*

and t \leq w

and t \leq v * v^T

and w * v \leq v

shows r^T * w^* \leq r^T * (prim-W w v e)^*

\langle proof \rangle
```

Some of the following lemmas already hold in pseudocomplemented distributive Kleene allegories.

4.1.3 Exchange gives Minimum Spanning Trees

The lemmas in this section are used to show that the after exchange we obtain a minimum spanning tree. The following lemmas show various interactions between the three constituents of the tree after exchange.

```
lemma epm-1:
 vector v \Longrightarrow prim-E w v e \sqcup prim-P w v e = prim-EP w v e
 \langle proof \rangle
lemma epm-2:
 assumes regular (prim-EP w v e)
     and vector v
   shows (w \sqcap -(prim - EP \ w \ v \ e)) \sqcup prim - P \ w \ v \ e \sqcup prim - E \ w \ v \ e = w
\langle proof \rangle
lemma epm-4:
 assumes e < w
     and injective w
     and w * v \leq v
     and e \leq v * - v^T
   shows top * e * w^{T+} \leq top * v^T
\langle proof \rangle
lemma epm-5:
 assumes e \leq w
     and injective w
     and w * v \leq v
     and e \leq v * - v^T
     and vector v
   shows prim-P w v e = bot
\langle proof \rangle
lemma epm-6:
 assumes e \leq w
     and injective w
```

```
and w * v \leq v
      and e \leq v * - v^T
      and vector v
    shows prim-E w v e = e
\langle proof \rangle
lemma epm-7:
  \textit{regular (prim-EP w v e)} \implies e \leq w \implies \textit{injective } w \implies w * v \leq v \implies e \leq v *
-v^{T} \Longrightarrow vector v \Longrightarrow prim-W w v e = w
 \langle proof \rangle
lemma epm-8:
  assumes acyclic w
   shows (w \sqcap -(prim-EP \ w \ v \ e)) \sqcap (prim-P \ w \ v \ e)^T = bot
\langle proof \rangle
lemma epm-9:
 assumes e \leq v * - v^T
     and vector v
    shows (w \sqcap -(prim - EP \ w \ v \ e)) \sqcap e = bot
\langle proof \rangle
lemma epm-10:
 assumes e \leq v * - v^T
      and vector v
    shows (prim P w v e)^T \sqcap e = bot
\langle proof \rangle
lemma epm-11:
 assumes vector v
    shows (w \sqcap -(prim-EP \ w \ v \ e)) \sqcap prim-P \ w \ v \ e = bot
\langle proof \rangle
lemma epm-12:
 assumes vector v
    shows (w \sqcap -(prim - EP \ w \ v \ e)) \sqcap prim - E \ w \ v \ e = bot
\langle proof \rangle
lemma epm-13:
  assumes vector v
    shows prim-P w v e \sqcap prim-E w v e = bot
\langle proof \rangle
```

The following lemmas show that the relation characterising the edge across the cut is an arc.

```
lemma arc-edge-1:

assumes e \leq v * - v^T \sqcap g

and vector v

and v^T = r^T * t^*
```

```
and t \leq g
and r^T * g^* \leq r_-^T * w^*
     shows top * e \leq v^T * w^*
\langle proof \rangle
lemma arc-edge-2:
  assumes e \leq v * - v^T \sqcap g
       and vector v
and v^T = r^T * t^*
       and t \leq g
and r^T * g^* \leq r^T * w^*
and w * v \leq v
       \mathbf{and} \ \textit{injective} \ w
    shows top * e * w^{T*} \leq v^T * w^*
\langle proof \rangle
lemma arc-edge-3:
  assumes e \leq v * - v^T \sqcap g
       and vector v
and v^T = r^T * t^*
       and t \leq g
and r^T * g^* \leq r^T * w^*
and w * v \leq v
       and injective w
       and prim-E w v e = bot
     shows e = bot
\langle proof \rangle
 \begin{array}{ll} \textbf{lemma} \ arc\text{-}edge\text{-}4\text{:} \\ \textbf{assumes} \ e \leq v \, \ast \, -v^T \ \sqcap \ g \end{array} 
       and vector v
and v^T = r^T * t^*
       and t \leq g
and r^T * g^* \leq r^T * w^*
       and arc e
     shows top * prim - E w v e * top = top
\langle proof \rangle
lemma arc-edge-5:
  assumes vector v
       and w * v \leq v
       and injective w
       and arc e
     shows (prim - E w v e)^T * top * prim - E w v e \leq 1
\langle proof \rangle
lemma arc-edge-6:
  assumes vector v
```

```
and w * v \leq v
```

```
and injective w
and arc e
shows prim-E w v e * top * (prim-E w v e)^T \le 1
\langle proof \rangle
lemma arc-edge:
assumes e \le v * -v^T \sqcap g
and vector v
and v^T = r^T * t^*
and t \le g
and r^T * g^* \le r^T * w^*
and w * v \le v
and injective w
and arc e
shows arc (prim-E w v e)
\langle proof \rangle
```

4.1.4 Invariant implies Postcondition

The lemmas in this section are used to show that the invariant implies the postcondition at the end of the algorithm. The following lemma shows that the nodes reachable in the graph are the same as those reachable in the constructed tree.

```
lemma span-post:

assumes regular v

and vector v

and v^T = r^T * t^*

and v * -v^T \sqcap g = bot

and t \le v * v^T \sqcap g

and r^T * (v * v^T \sqcap g)^* \le r^T * t^*

shows v^T = r^T * g^*
```

 $\langle proof \rangle$

The following lemma shows that the minimum spanning tree extending a tree is the same as the tree at the end of the algorithm.

lemma *mst-post*:

```
assumes vector r
and injective r
and v^T = r^T * t^*
and forest w
and t \leq w
and w \leq v * v^T
shows w = t
\langle proof \rangle
```

4.2 Kruskal's Algorithm

The following results are used for proving the correctness of Kruskal's minimum spanning tree algorithm.

4.2.1 Preservation of Invariant

We first treat the preservation of the invariant. The following lemmas show conditions necessary for preserving that f is a forest.

```
lemma kruskal-injective-inv-2:
  assumes arc e
      and acyclic f
    shows to p * e * f^{T \star} * f^T \leq -e
\langle proof \rangle
lemma kruskal-injective-inv-3:
  assumes arc e
      and forest f
    shows (top * e * f^{T*})^T * (top * e * f^{T*}) \sqcap f^T * f \leq 1
\langle proof \rangle
lemma kruskal-acyclic-inv:
  assumes acyclic f
      and covector q
      and (f \sqcap q)^T * f^* * e = bot
      and e^* * f^* * e^= bot
and f^{T*} * f^* \leq -e
    shows acyclic ((f \sqcap -q) \sqcup (f \sqcap q)^T \sqcup e)
\langle proof \rangle
lemma kruskal-exchange-acyclic-inv-1:
  assumes acyclic f
      and covector q
    shows acyclic ((f \sqcap -q) \sqcup (f \sqcap q)^T)
  \langle proof \rangle
lemma kruskal-exchange-acyclic-inv-2:
  assumes acyclic w
      and injective w
      and d \leq w
      and bijective (d^T * top)
      and bijective (e * top)
and d \le top * e^T * w^{T*}
and w * e^T * top = bot
    shows acyclic ((w \sqcap -d) \sqcup e)
\langle proof \rangle
```

4.2.2 Exchange gives Spanning Trees

The lemmas in this section are used to show that the relation after exchange represents a spanning tree.

```
lemma inf-star-import:
assumes x \le z
and univalent z
```

```
and reflexive y
      and regular z
    shows x^* * y \sqcap z^* \leq x^* * (y \sqcap z^*)
\langle proof \rangle
lemma kruskal-exchange-forest-components-inv:
  assumes injective ((w \sqcap -d) \sqcup e)
      and regular d
      and e * top * e = e
     and d \leq top * e^T * w^{T*}
and w * e^T * top = bot
      and injective w
      and d \leq w
      and d \leq (w \sqcap -d)^{T\star} * e^{T} * top
    shows forest-components w \leq forest-components ((w \sqcap -d) \sqcup e)
\langle proof \rangle
lemma kruskal-spanning-inv:
 assumes injective ((f \sqcap -q) \sqcup (f \sqcap q)^T \sqcup e)
      and regular q
      and regular e
      and (-h \sqcap --g)^* \leq \text{forest-components } f
    shows components (-(h \sqcap -e \sqcap -e^T) \sqcap g) \leq \text{forest-components} ((f \sqcap -q) \sqcup
(f \sqcap q)^T \sqcup e)
\langle proof \rangle
lemma kruskal-exchange-spanning-inv-1:
  assumes injective ((w \sqcap -q) \sqcup (w \sqcap q)^T)
      and regular (w \sqcap q)
      and components g \leq \text{forest-components } w
    shows components q \leq forest-components ((w \sqcap -q) \sqcup (w \sqcap q)^T)
\langle proof \rangle
lemma kruskal-exchange-spanning-inv-2:
 assumes injective w
      and w^{\star} * e^T = e^T
      and f \sqcup f^T \leq (w \sqcap -d \sqcap -d^T) \sqcup (w^T \sqcap -d \sqcap -d^T)
      and d \leq forest-components f * e^T * top
    shows d \leq (w \sqcap -d)^{T\star} * e^{T\star} * top
\langle proof \rangle
lemma kruskal-spanning-inv-1:
 assumes e \leq F
      and regular e
      and components (-h \sqcap g) \leq F
      and equivalence F
   shows components (-(h \sqcap -e \sqcap -e^T) \sqcap g) \leq F
\langle proof \rangle
```

lemma kruskal-reroot-edge: assumes injective $(e^T * top)$ and acyclic w shows $((w \sqcap -(top * e * w^{T*})) \sqcup (w \sqcap top * e * w^{T*})^T) * e^T = bot$ $\langle proof \rangle$

4.2.3 Exchange gives Minimum Spanning Trees

The lemmas in this section are used to show that the after exchange we obtain a minimum spanning tree. The following lemmas show that the relation characterising the edge across the cut is an arc.

```
lemma kruskal-edge-arc:
  assumes equivalence F
     and forest w
     and arc \ e
     and regular F
     and F \leq forest-components (F \sqcap w)
     and regular w
     and w * e^T = bot
and e * F * e = bot
and e^T \le w^*
   shows arc (w \sqcap top * e^T * w^{T*} \sqcap F * e^T * top \sqcap top * e * -F)
\langle proof \rangle
lemma kruskal-edge-arc-1:
  assumes e \leq -h
     and h \leq g
     and symmetric q
     and components g \leq forest-components w
     and w * e^T = bot
   shows e^T < w^*
\langle proof \rangle
lemma kruskal-edge-between-components-1:
 assumes equivalence F
     and mapping (top * e)
   shows F \leq -(w \sqcap top * e^T * w^{T\star} \sqcap F * e^T * top \sqcap top * e * -F)
\langle proof \rangle
lemma kruskal-edge-between-components-2:
  assumes forest-components f \leq -d
     and injective f
   and f \sqcup f^T \leq w \sqcup w^T
shows f \sqcup f^T \leq (w \sqcap -d \sqcap -d^T) \sqcup (w^T \sqcap -d \sqcap -d^T)
```

 \mathbf{end}

 $\langle proof \rangle$

4.3 Related Structures

Stone algebras can be expanded to Stone-Kleene relation algebras by reusing some operations.

sublocale stone-algebra < comp-inf: stone-kleene-relation-algebra where $star = \lambda x$. top and one = top and times = inf and conv = id $\langle proof \rangle$

Every bounded linear order can be expanded to a Stone algebra, which can be expanded to a Stone relation algebra, which can be expanded to a Stone-Kleene relation algebra.

```
class linorder-stone-kleene-relation-algebra-expansion =
linorder-stone-relation-algebra-expansion + star +
assumes star-def [simp]: x^* = top
begin
```

```
\begin{array}{l} \textbf{subclass} \ kleene-algebra\\ \langle proof \rangle \end{array}
```

subclass stone-kleene-relation-algebra $\langle proof \rangle$

end

A Kleene relation algebra is based on a relation algebra.

 ${\bf class}\ kleene-relation-algebra=relation-algebra+stone-kleene-relation-algebra}\\ {\bf begin}$

```
See https://arxiv.org/abs/2310.08946 for the following results scc-1-scc-4.
```

```
\begin{array}{l} \text{lemma scc-1:} \\ \text{assumes } 1 \sqcap y \leq z \\ \text{and } x^T * y \leq y \\ \text{and } y * z^T \leq y \\ \text{and } (x \sqcap y) * z \leq z \\ \text{shows } x^* \sqcap y \leq z \\ \langle proof \rangle \end{array}\begin{array}{l} \text{lemma scc-2:} \\ \text{assumes } x^T * y \leq y \\ \text{and } y * (x \sqcap y)^{*T} \leq y \\ \text{shows } x^* \sqcap y \leq (x \sqcap y)^* \\ \langle proof \rangle \end{array}\begin{array}{l} \text{lemma scc-3:} \\ x^* \sqcap x^{T*} \leq (x \sqcap x^{T*})^* \\ \langle proof \rangle \end{array}
```

lemma scc-4:

 $\begin{array}{l} x^{\star} \sqcap x^{T \star} = (x \sqcap x^{T \star})^{\star} \\ \langle proof \rangle \end{array}$

end

```
{\bf class}\ stone-kleene-relation-algebra-tarski=stone-kleene-relation-algebra+stone-relation-algebra-tarski
```

 $\label{eq:class} \ kleene-relation-algebra-tarski = kleene-relation-algebra + stone-kleene-relation-algebra-tarski \\ \ begin$

subclass relation-algebra-tarski $\langle proof \rangle$

end

 $\label{eq:class} class\ stone-kleene-relation-algebra-consistent = stone-kleene-relation-algebra + stone-relation-algebra-consistent \\ begin$

```
lemma acyclic-reachable-different:

assumes acyclic p bijective y \ x \le p^+ * y

shows x \ne y

\langle proof \rangle
```

end

```
\label{eq:lass-kleene-relation-algebra-consistent} \begin{aligned} & \text{class-kleene-relation-algebra-consistent} \\ & \text{stone-kleene-relation-algebra-consistent} \\ & \text{begin} \end{aligned}
```

subclass relation-algebra-consistent $\langle proof \rangle$

 \mathbf{end}

```
\label{eq:class} {\mbox{ stone-kleene-relation-algebra-tarski-consistent} = $$$ stone-kleene-relation-algebra + stone-relation-algebra-tarski-consistent $$ begin $$
```

subclass stone-kleene-relation-algebra-tarski $\langle proof \rangle$

subclass stone-kleene-relation-algebra-consistent $\langle proof \rangle$

 \mathbf{end}

```
\label{eq:class} class\ kleene-relation-algebra-tarski-consistent = kleene-relation-algebra + stone-kleene-relation-algebra-tarski-consistent \\ \mbox{begin}
```

subclass relation-algebra-tarski-consistent $\langle proof \rangle$

end

 $\label{eq:class} linorder-stone-kleene-relation-algebra-tarski-consistent-expansion = linorder-stone-kleene-relation-algebra-expansion + non-trivial-bounded-order \\ \end{begin}$

subclass stone-kleene-relation-algebra-tarski-consistent $\langle proof \rangle$

end

end

5 Subalgebras of Kleene Relation Algebras

In this theory we show that the regular elements of a Stone-Kleene relation algebra form a Kleene relation subalgebra.

 ${\bf theory} \ {\it Kleene-Relation-Subalgebras}$

imports Stone-Relation-Algebras. Relation-Subalgebras Kleene-Relation-Algebras

begin

instantiation regular :: (stone-kleene-relation-algebra) kleene-relation-algebra begin

lift-definition star-regular :: 'a regular \Rightarrow 'a regular is star $\langle proof \rangle$

instance $\langle proof \rangle$

 \mathbf{end}

end

6 Matrix Kleene Algebras

This theory gives a matrix model of Stone-Kleene relation algebras. The main result is that matrices over Kleene algebras form Kleene algebras. The automata-based construction is due to Conway [7]. An implementation of the construction in Isabelle/HOL that extends [2] was given in [3] without a correctness proof.

For specifying the size of matrices, Isabelle/HOL's type system requires the use of types, not sets. This creates two issues when trying to implement Conway's recursive construction directly. First, the matrix size changes for recursive calls, which requires dependent types. Second, some submatrices used in the construction are not square, which requires typed Kleene algebras [14], that is, categories of Kleene algebras.

Because these instruments are not available in Isabelle/HOL, we use square matrices with a constant size given by the argument of the Kleene star operation. Smaller, possibly rectangular submatrices are identified by two lists of indices: one for the rows to include and one for the columns to include. Lists are used to make recursive calls deterministic; otherwise sets would be sufficient.

theory Matrix-Kleene-Algebras

imports Stone-Relation-Algebras.Matrix-Relation-Algebras Kleene-Relation-Algebras

begin

6.1 Matrix Restrictions

In this section we develop a calculus of matrix restrictions. The restriction of a matrix to specific row and column indices is implemented by the following function, which keeps the size of the matrix and sets all unused entries to *bot*.

definition restrict-matrix :: 'a list \Rightarrow ('a,'b::bot) square \Rightarrow 'a list \Rightarrow ('a,'b) square (<- <-> [90,41,90] 91)

where restrict-matrix as f bs = $(\lambda(i,j) \cdot if$ List.member as $i \wedge List.member$ bs j then f(i,j) else bot)

The following function captures Conway's automata-based construction of the Kleene star of a matrix. An index k is chosen and s contains all other indices. The matrix is split into four submatrices a, b, c, d including/not including row/column k. Four matrices are computed containing the entries given by Conway's construction. These four matrices are added to obtain the result. All matrices involved in the function have the same size, but matrix restriction is used to set irrelevant entries to *bot*.

primrec star-matrix' :: 'a list \Rightarrow ('a,'b::{star,times,bounded-semilattice-sup-bot}) square \Rightarrow ('a,'b) square **where** star-matrix' Nil g = mbot |star-matrix' (k#s) g = (let r = [k] in let $a = r\langle g \rangle r$ in

let $u = r\langle g \rangle r$ in let $b = r\langle g \rangle s$ in let $c = s\langle g \rangle r$ in let $d = s\langle g \rangle s$ in let $as = r\langle star \ o \ a \rangle r$ in let $ds = star-matrix' \ s \ d$ in

```
let \ e = a \oplus b \odot ds \odot c \ inlet \ es = r \langle star \ o \ e \rangle r \ inlet \ f = d \oplus c \odot as \odot b \ inlet \ fs = star-matrix' \ s \ f \ ines \oplus as \odot b \odot fs \oplus ds \odot c \odot es \oplus fs)
```

The Kleene star of the whole matrix is obtained by taking as indices all elements of the underlying type 'a. This is conveniently supplied by the *enum* class.

fun star-matrix :: ('a::enum,'b::{star,times,bounded-semilattice-sup-bot}) square \Rightarrow ('a,'b) square ($\langle -\odot \rangle$ [100] 100) **where** star-matrix f = star-matrix' (enum-class.enum::'a list) f

The following lemmas deconstruct matrices with non-empty restrictions.

lemma restrict-empty-left: $[]\langle f \rangle ls = mbot$ $\langle proof \rangle$

```
lemma restrict-empty-right:

ks\langle f\rangle[] = mbot

\langle proof \rangle
```

```
lemma restrict-nonempty-left:

fixes f :: ('a, 'b::bounded-semilattice-sup-bot) square

shows (k\#ks)\langle f\rangle ls = [k]\langle f\rangle ls \oplus ks\langle f\rangle ls

\langle proof \rangle
```

```
lemma restrict-nonempty-right:

fixes f :: ('a, 'b::bounded-semilattice-sup-bot) square

shows ks\langle f \rangle (l \# ls) = ks\langle f \rangle [l] \oplus ks\langle f \rangle ls

\langle proof \rangle
```

```
lemma restrict-nonempty:

fixes f :: ('a, 'b::bounded-semilattice-sup-bot) square

shows (k\#ks)\langle f\rangle(l\#ls) = [k]\langle f\rangle[l] \oplus [k]\langle f\rangle ls \oplus ks\langle f\rangle[l] \oplus ks\langle f\rangle ls

\langle proof \rangle
```

The following predicate captures that two index sets are disjoint. This has consequences for composition and the unit matrix.

abbreviation disjoint ks $ls \equiv \neg(\exists x \, . \, List.member \, ks \, x \land List.member \, ls \, x)$

lemma times-disjoint: **fixes** f g :: ('a, 'b::idempotent-semiring) square **assumes** disjoint ls ms **shows** $ks\langle f \rangle ls \odot ms\langle g \rangle ns = mbot$ $\langle proof \rangle$

lemma one-disjoint:

assumes disjoint ks ls **shows** $ks \langle (mone::('a, 'b::idempotent-semiring) \ square) \rangle ls = mbot$ $\langle proof \rangle$

The following predicate captures that an index set is a subset of another index set. This has consequences for repeated restrictions.

abbreviation is-sublist ks $ls \equiv \forall x$. List.member ks $x \longrightarrow$ List.member ls x

lemma restrict-sublist: assumes is-sublist ls ks and is-sublist ms ns shows $ls\langle ks\langle f\rangle ns\rangle ms = ls\langle f\rangle ms$ $\langle proof \rangle$

```
lemma restrict-superlist:
  assumes is-sublist ls ks
       and is-sublist ms ns
    shows ks\langle ls\langle f\rangle ms\rangle ns = ls\langle f\rangle ms
\langle proof \rangle
```

The following lemmas give the sizes of the results of some matrix operations.

lemma restrict-sup: fixes fg :: ('a, 'b::bounded-semilattice-sup-bot) square shows $ks\langle f \oplus g \rangle ls = ks\langle f \rangle ls \oplus ks\langle g \rangle ls$ $\langle proof \rangle$

```
lemma restrict-times:
```

```
fixes f g :: ('a, 'b::idempotent-semiring) square
  shows ks\langle ks\langle f\rangle ls \odot ls\langle g\rangle ms\rangle ms = ks\langle f\rangle ls \odot ls\langle g\rangle ms
\langle proof \rangle
```

```
lemma restrict-star:
  fixes g :: ('a, 'b::kleene-algebra) square
 shows t\langle star-matrix' t g \rangle t = star-matrix' t g
\langle proof \rangle
```

lemma restrict-one: **assumes** \neg *List.member ks k* **shows** $(k \# ks) \langle (mone::('a, 'b::idempotent-semiring) \ square) \rangle (k \# ks) =$ $[k]\langle mone \rangle [k] \oplus ks \langle mone \rangle ks$ $\langle proof \rangle$

```
lemma restrict-one-left-unit:
```

 $ks \langle (mone::('a::finite, 'b::idempotent-semiring) \ square) \rangle ks \odot \ ks \langle f \rangle ls = ks \langle f \rangle ls$ $\langle proof \rangle$

The following lemmas consider restrictions to singleton index sets.

lemma restrict-singleton:

 $\begin{array}{l} ([k]\langle f\rangle[l]) \ (i,j) = (if \ i = k \land j = l \ then \ f \ (i,j) \ else \ bot) \\ \langle proof \rangle \end{array}$

lemma restrict-singleton-list:

 $([k]\langle f \rangle ls) (i,j) = (if \ i = k \land List.member \ ls \ j \ then \ f \ (i,j) \ else \ bot) \langle proof \rangle$

lemma restrict-list-singleton:

 $(ks\langle f\rangle[l])$ $(i,j) = (if List.member ks i \land j = l then f (i,j) else bot)$ $\langle proof \rangle$

lemma restrict-singleton-product:

fixes f g ::: ('a::finite, 'b::kleene-algebra) square **shows** $([k]\langle f \rangle [l] \odot [m]\langle g \rangle [n])$ $(i,j) = (if \ i = k \land l = m \land j = n \ then \ f \ (i,l) * g$ $(m,j) \ else \ bot)$ $\langle proof \rangle$

The Kleene star unfold law holds for matrices with a single entry on the diagonal.

lemma restrict-star-unfold:

 $[l]\langle (mone::('a::finite,'b::kleene-algebra) \ square)\rangle[l] \oplus [l]\langle f\rangle[l] \odot [l]\langle star \ o \ f\rangle[l] = [l]\langle star \ o \ f\rangle[l] \langle proof \rangle$

lemma restrict-all:

 $enum-class.enum\langle f\rangle enum-class.enum = f$ $\langle proof \rangle$

The following shows the various components of a matrix product. It is essentially a recursive implementation of the product.

lemma restrict-nonempty-product:

 $\begin{aligned} & \mathbf{fxes} \ f \ g :: ('a::finite,'b::idempotent-semiring) \ square \\ & \mathbf{assumes} \neg \ List.member \ ls \ l \\ & \mathbf{shows} \ (k\#ks)\langle f \rangle(l\#ls) \odot (l\#ls)\langle g \rangle(m\#ms) = ([k]\langle f \rangle[l] \odot [l]\langle g \rangle[m] \oplus [k]\langle f \rangle ls \\ & \odot \ ls\langle g \rangle[m]) \oplus ([k]\langle f \rangle[l] \odot [l]\langle g \rangle ms \oplus [k]\langle f \rangle ls \odot ls\langle g \rangle ms) \oplus (ks\langle f \rangle[l] \odot [l]\langle g \rangle[m] \oplus \\ & ks\langle f \rangle ls \odot \ ls\langle g \rangle[m]) \oplus (ks\langle f \rangle[l] \odot [l]\langle g \rangle ms \oplus ks\langle f \rangle ls \odot \ ls\langle g \rangle ms) \end{aligned}$

 $\langle proof \rangle$

Equality of matrices is componentwise.

lemma restrict-nonempty-eq:

 $\begin{array}{l} (k\#ks)\langle f\rangle(l\#ls) = (k\#ks)\langle g\rangle(l\#ls) \longleftrightarrow [k]\langle f\rangle[l] = [k]\langle g\rangle[l] \land [k]\langle f\rangle ls = [k]\langle g\rangle ls \\ \land ks\langle f\rangle[l] = ks\langle g\rangle[l] \land ks\langle f\rangle ls = ks\langle g\rangle ls \\ \langle proof \rangle \end{array}$

Inequality of matrices is componentwise.

lemma restrict-nonempty-less-eq:

fixes fg ::: ('a, 'b::idempotent-semiring) square **shows** $(k\#ks)\langle f\rangle(l\#ls) \leq (k\#ks)\langle g\rangle(l\#ls) \longleftrightarrow [k]\langle f\rangle[l] \leq [k]\langle g\rangle[l] \land [k]\langle f\rangle ls \leq [k]\langle g\rangle ls \land ks\langle f\rangle[l] \leq ks\langle g\rangle[l] \land ks\langle f\rangle ls \leq ks\langle g\rangle ls$ $\langle proof \rangle$

The following lemmas treat repeated restrictions to disjoint index sets.

lemma restrict-disjoint-left: assumes disjoint ks ms shows $ms\langle ks\langle f\rangle ls\rangle ns = mbot$ $\langle proof \rangle$

lemma restrict-disjoint-right: assumes disjoint ls ns shows $ms\langle ks\langle f\rangle ls\rangle ns = mbot$ $\langle proof \rangle$

The following lemma expresses the equality of a matrix and a product of two matrices componentwise.

lemma restrict-nonempty-product-eq:

```
fixes f g h :: ('a::finite, 'b::idempotent-semiring) square

assumes \neg List.member ks k

and \neg List.member ls l

and \neg List.member ms m

shows (k\#ks)\langle f \rangle(l\#ls) \odot (l\#ls)\langle g \rangle(m\#ms) = (k\#ks)\langle h \rangle(m\#ms) \longleftrightarrow

[k]\langle f \rangle[l] \odot [l]\langle g \rangle[m] \oplus [k]\langle f \rangle ls \odot ls \langle g \rangle[m] = [k]\langle h \rangle[m] \land [k]\langle f \rangle[l] \odot [l]\langle g \rangle ms \oplus

[k]\langle f \rangle ls \odot ls \langle g \rangle ms = [k]\langle h \rangle ms \land ks \langle f \rangle[l] \odot [l]\langle g \rangle[m] \oplus ks \langle f \rangle ls \odot ls \langle g \rangle[m] =

ks \langle h \rangle[m] \land ks \langle f \rangle[l] \odot [l]\langle g \rangle ms \oplus ks \langle f \rangle ls \odot ls \langle g \rangle ms = ks \langle h \rangle ms

\langle proof \rangle
```

The following lemma gives a componentwise characterisation of the inequality of a matrix and a product of two matrices.

lemma restrict-nonempty-product-less-eq:

```
fixes f g h :: ('a::finite, 'b::idempotent-semiring) square

assumes \neg List.member ks k

and \neg List.member ls l

and \neg List.member ms m

shows (k\#ks)\langle f \rangle(l\#ls) \odot (l\#ls)\langle g \rangle(m\#ms) \preceq (k\#ks)\langle h \rangle(m\#ms) \leftrightarrow is

[k]\langle f \rangle[l] \odot [l]\langle g \rangle[m] \oplus [k]\langle f \rangle ls \odot ls \langle g \rangle[m] \preceq [k]\langle h \rangle[m] \land [k]\langle f \rangle[l] \odot [l]\langle g \rangle ms \oplus is \langle f \rangle ls \odot ls \langle g \rangle ms \preceq [k]\langle h \rangle ms \land ks \langle f \rangle[l] \odot [l]\langle g \rangle ms \oplus ks \langle f \rangle ls \odot ls \langle g \rangle ms \preceq [k]\langle h \rangle ms \land ks \langle f \rangle [l] \odot [l]\langle g \rangle ms \oplus ks \langle f \rangle ls \odot ls \langle g \rangle ms \preceq ks \langle h \rangle ms

\langle proof \rangle
```

The Kleene star induction laws hold for matrices with a single entry on the diagonal. The matrix g can actually contain a whole row/colum at the appropriate index.

lemma restrict-star-left-induct: **fixes** f g :: ('a::finite, 'b::kleene-algebra) square **shows** distinct $ms \Longrightarrow [l]\langle f \rangle [l] \odot [l] \langle g \rangle ms \preceq [l] \langle g \rangle ms \Longrightarrow [l] \langle star \ o \ f \rangle [l] \odot$ $[l]\langle g \rangle ms \preceq [l] \langle g \rangle ms$ $\langle proof \rangle$

lemma restrict-star-right-induct:

fixes f g :: ('a::finite,'b::kleene-algebra) square **shows** distinct $ms \Longrightarrow ms\langle g \rangle [l] \odot [l] \langle f \rangle [l] \preceq ms\langle g \rangle [l] \Longrightarrow ms\langle g \rangle [l] \odot [l] \langle star \ o f \rangle [l] \preceq ms\langle g \rangle [l]$ $\langle proof \rangle$

lemma restrict-pp: **fixes** f :: ('a, 'b::p-algebra) square **shows** $ks \langle \ominus \ominus f \rangle ls = \ominus \ominus (ks \langle f \rangle ls)$

 $\langle proof \rangle$

lemma pp-star-commute: **fixes** f :: ('a, 'b::stone-kleene-relation-algebra) square **shows** $\ominus \ominus (star \ o \ f) = star \ o \ \ominus \ominus f$ $\langle proof \rangle$

6.2 Matrices form a Kleene Algebra

Matrices over Kleene algebras form a Kleene algebra using Conway's construction. It remains to prove one unfold and two induction axioms of the Kleene star. Each proof is by induction over the size of the matrix represented by an index list.

interpretation matrix-kleene-algebra: kleene-algebra-var where sup = sup-matrix and less-eq = less-eq-matrix and less = less-matrix and bot = bot-matrix::('a::enum,'b::kleene-algebra) square and one = one-matrix and times = times-matrix and star = star-matrix $\langle proof \rangle$

6.3 Matrices form a Stone-Kleene Relation Algebra

Matrices over Stone-Kleene relation algebras form a Stone-Kleene relation algebra. It remains to prove the axiom about the interaction of Kleene star and double complement.

interpretation matrix-stone-kleene-relation-algebra: stone-kleene-relation-algebra where sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =

bot-matrix::('a::enum,'b::stone-kleene-relation-algebra) square and top = top-matrix and uminus = uminus-matrix and one = one-matrix and times = times-matrix and conv = conv-matrix and star = star-matrix $\langle proof \rangle$

interpretation matrix-stone-kleene-relation-algebra-consistent: stone-kleene-relation-algebra-consistent where sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot = bot-matrix :: ('a::enum,'b::stone-kleene-relation-algebra-consistent) square and top = top-matrix and uminus = uminus-matrix and one = one-matrix and times = times-matrix and conv = conv-matrix and star = star-matrix $\langle proof \rangle$ interpretation matrix-stone-kleene-relation-algebra-tarski: stone-kleene-relation-algebra-tarski where sup = sup-matrix and inf =inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot = bot-matrix :: ('a::enum,'b::stone-kleene-relation-algebra-tarski) square and top = top-matrix and uminus = uminus-matrix and one = one-matrix and times = times-matrix and conv = conv-matrix and star = star-matrix $\langle proof \rangle$

interpretation matrix-stone-kleene-relation-algebra-tarski-consistent: stone-kleene-relation-algebra-tarski-consistent where sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot = bot-matrix :: ('a::enum,'b::stone-kleene-relation-algebra-tarski-consistent) square and top = top-matrix and uminus = uminus-matrix and one = one-matrix and times = times-matrix and conv = conv-matrix and star = star-matrix $\langle proof \rangle$

 \mathbf{end}

References

- [1] A. Armstrong, S. Foster, G. Struth, and T. Weber. Relation algebra. Archive of Formal Proofs, 2016, first version 2014.
- [2] A. Armstrong, V. B. F. Gomes, G. Struth, and T. Weber. Kleene algebra. Archive of Formal Proofs, 2016, first version 2013.
- [3] T. Asplund. Formalizing the Kleene star for square matrices. Bachelor Thesis IT 14 002, Uppsala Universitet, Department of Information Technology, 2014.
- [4] R. J. R. Back and J. von Wright. Reasoning algebraically about loops. Acta Inf., 36(4):295–334, 1999.
- [5] S. L. Bloom and Z. Ésik. Iteration Theories: The Equational Logic of Iterative Processes. Springer, 1993.
- [6] E. Cohen. Separation and reduction. In R. Backhouse and J. N. Oliveira, editors, *Mathematics of Program Construction*, volume 1837 of *Lecture Notes in Computer Science*, pages 45–59. Springer, 2000.
- [7] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
- [8] S. Foster and G. Struth. Regular algebras. Archive of Formal Proofs, 2016, first version 2014.
- [9] W. Guttmann. Algebras for iteration and infinite computations. Acta Inf., 49(5):343–359, 2012.

- [10] W. Guttmann. Relation-algebraic verification of Prim's minimum spanning tree algorithm. In A. Sampaio and F. Wang, editors, *Theoretical Aspects of Computing – ICTAC 2016*, volume 9965 of *Lecture Notes in Computer Science*, pages 51–68. Springer, 2016.
- [11] W. Guttmann. Stone relation algebras. Archive of Formal Proofs, 2017.
- [12] W. Guttmann. Stone relation algebras. In P. Höfner, D. Pous, and G. Struth, editors, *Relational and Algebraic Methods in Computer Science*, volume 10226 of *Lecture Notes in Computer Science*, pages 127–143. Springer, 2017.
- [13] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. *Information and Computation*, 110(2):366–390, 1994.
- [14] D. Kozen. Typed Kleene algebra. Technical Report TR98-1669, Cornell University, 1998.
- [15] B. Möller. Kleene getting lazy. Sci. Comput. Programming, 65(2):195–214, 2007.
- [16] K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis, University of California, Berkeley, 1984.
- [17] J. von Wright. Towards a refinement algebra. Sci. Comput. Programming, 51(1-2):23-45, 2004.