
Stone-Kleene Relation Algebras

Walter Guttmann

March 17, 2025

Abstract

We develop Stone-Kleene relation algebras, which expand Stone re-
lation algebras with a Kleene star operation to describe reachability in
weighted graphs. Many properties of the Kleene star arise as a special
case of a more general theory of iteration based on Conway semirings
extended by simulation axioms. This includes several theorems repre-
senting complex program transformations. We formally prove the cor-
rectness of Conway’s automata-based construction of the Kleene star
of a matrix. We prove numerous results useful for reasoning about
weighted graphs.

Contents
1 Synopsis and Motivation 2

2 Iterings 3
2.1 Conway Semirings . 3
2.2 Iterings . 10

3 Kleene Algebras 17

4 Kleene Relation Algebras 25
4.1 Prim’s Algorithm . 30

4.1.1 Preservation of Invariant 30
4.1.2 Exchange gives Spanning Trees 32
4.1.3 Exchange gives Minimum Spanning Trees 35
4.1.4 Invariant implies Postcondition 38

4.2 Kruskal’s Algorithm . 38
4.2.1 Preservation of Invariant 39
4.2.2 Exchange gives Spanning Trees 39
4.2.3 Exchange gives Minimum Spanning Trees 41

4.3 Related Structures . 42

5 Subalgebras of Kleene Relation Algebras 44

1

6 Matrix Kleene Algebras 44
6.1 Matrix Restrictions . 45
6.2 Matrices form a Kleene Algebra 50
6.3 Matrices form a Stone-Kleene Relation Algebra 50

1 Synopsis and Motivation
This document describes the following five theory files:

∗ Iterings describes a general iteration operation that works for many dif-
ferent computation models. We first consider equational axioms based
on variants of Conway semirings. We expand these structures by gen-
eralised simulation axioms, which hold in total and general correctness
models, not just in partial correctness models like the induction ax-
ioms. Simulation axioms are still powerful enough to prove separation
theorems and Back’s atomicity refinement theorem [4].

∗ Kleene Algebras form a particular instance of iterings in which the
iteration is implemented as a least fixpoint. We implement them based
on Kozen’s axioms [13], but most results are inherited from Conway
semirings and iterings.

∗ Kleene Relation Algebras introduces Stone-Kleene relation algebras,
which combine Stone relation algebras and Kleene algebras. This is
similar to relation algebras with transitive closure [16] but allows us
to talk about reachability in weighted graphs. Many results in this
theory are useful for verifying the correctness of Prim’s and Kruskal’s
minimum spanning tree algorithms.

∗ Subalgebras of Kleene Relation Algebras studies the regular elements
of a Stone-Kleene relation algebra and shows that they form a Kleene
relation subalgebra.

∗ Matrix Kleene Algebras lifts the Kleene star to finite square matrices
using Conway’s automata-based construction. This involves an oper-
ation to restrict matrices to specific indices and a calculus for such
restrictions. An implementation for the Kleene star of matrices was
given in [3] without proof; this is the first formally verified correctness
proof.

The development is based on a theory of Stone relation algebras [11, 12].
We apply Stone-Kleene relation algebras to verify Prim’s minimum spanning
tree algorithm in Isabelle/HOL in [10].

Related libraries for Kleene algebras, regular algebras and relation al-
gebras in the Archive of Formal Proofs are [1, 2, 8]. Kleene algebras are
covered in the theory Kleene_Algebra/Kleene_Algebra.thy, but unlike

2

the present development it is not based on general algebras using simula-
tion axioms, which are useful to describe various computation models. The
theory Regular_Algebras/Regular_Algebras.thy compares different ax-
iomatisations of regular algebras. The theory Kleene_Algebra/Matrix.thy
covers matrices over dioids, but does not implement the Kleene star of matri-
ces. The theory Relation_Algebra/Relation_Algebra_RTC.thy combines
Kleene algebras and relation algebras, but is very limited in scope and not
applicable as we need the weaker axioms of Stone relation algebras.

2 Iterings
This theory introduces algebraic structures with an operation that describes
iteration in various relational computation models. An iteration describes
the repeated sequential execution of a computation. This is typically mod-
elled by fixpoints, but different computation models use different fixpoints
in the refinement order. We therefore look at equational and simulation
axioms rather than induction axioms. Our development is based on [9] and
the proposed algebras generalise Kleene algebras.

We first consider a variant of Conway semirings [5] based on idempotent
left semirings. Conway semirings expand semirings by an iteration operation
satisfying Conway’s sumstar and productstar axioms [7]. Many properties
of iteration follow already from these equational axioms.

Next we introduce iterings, which use generalised versions of simulation
axioms in addition to sumstar and productstar. Unlike the induction axioms
of the Kleene star, which hold only in partial-correctness models, the simu-
lation axioms are also valid in total and general correctness models. They
are still powerful enough to prove the correctness of complex results such as
separation theorems of [6] and Back’s atomicity refinement theorem [4, 17].
theory Iterings

imports Stone-Relation-Algebras.Semirings

begin

2.1 Conway Semirings
In this section, we consider equational axioms for iteration. The algebraic
structures are based on idempotent left semirings, which are expanded by a
unary iteration operation. We start with an unfold property, one inequality
of the sliding rule and distributivity over joins, which is similar to Conway’s
sumstar.
class circ =

fixes circ :: ′a ⇒ ′a (‹-◦› [100] 100)

3

class left-conway-semiring = idempotent-left-semiring + circ +
assumes circ-left-unfold: 1 t x ∗ x◦ = x◦

assumes circ-left-slide: (x ∗ y)◦ ∗ x ≤ x ∗ (y ∗ x)◦
assumes circ-sup-1 : (x t y)◦ = x◦ ∗ (y ∗ x◦)◦

begin

We obtain one inequality of Conway’s productstar, as well as of the other
unfold rule.
lemma circ-mult-sub:

1 t x ∗ (y ∗ x)◦ ∗ y ≤ (x ∗ y)◦
〈proof 〉

lemma circ-right-unfold-sub:
1 t x◦ ∗ x ≤ x◦

〈proof 〉

lemma circ-zero:
bot◦ = 1
〈proof 〉

lemma circ-increasing:
x ≤ x◦

〈proof 〉

lemma circ-reflexive:
1 ≤ x◦

〈proof 〉

lemma circ-mult-increasing:
x ≤ x ∗ x◦

〈proof 〉

lemma circ-mult-increasing-2 :
x ≤ x◦ ∗ x
〈proof 〉

lemma circ-transitive-equal:
x◦ ∗ x◦ = x◦

〈proof 〉

While iteration is not idempotent, a fixpoint is reached after applying
this operation twice. Iteration is idempotent for the unit.
lemma circ-circ-circ:

x◦◦◦ = x◦◦

〈proof 〉

lemma circ-one:
1 ◦ = 1 ◦◦

〈proof 〉

4

lemma circ-sup-sub:
(x◦ ∗ y)◦ ∗ x◦ ≤ (x t y)◦
〈proof 〉

lemma circ-plus-one:
x◦ = 1 t x◦

〈proof 〉

Iteration satisfies a characteristic property of reflexive transitive closures.
lemma circ-rtc-2 :

1 t x t x◦ ∗ x◦ = x◦

〈proof 〉

lemma mult-zero-circ:
(x ∗ bot)◦ = 1 t x ∗ bot
〈proof 〉

lemma mult-zero-sup-circ:
(x t y ∗ bot)◦ = x◦ ∗ (y ∗ bot)◦
〈proof 〉

lemma circ-plus-sub:
x◦ ∗ x ≤ x ∗ x◦

〈proof 〉

lemma circ-loop-fixpoint:
y ∗ (y◦ ∗ z) t z = y◦ ∗ z
〈proof 〉

lemma left-plus-below-circ:
x ∗ x◦ ≤ x◦

〈proof 〉

lemma right-plus-below-circ:
x◦ ∗ x ≤ x◦

〈proof 〉

lemma circ-sup-upper-bound:
x ≤ z◦ =⇒ y ≤ z◦ =⇒ x t y ≤ z◦
〈proof 〉

lemma circ-mult-upper-bound:
x ≤ z◦ =⇒ y ≤ z◦ =⇒ x ∗ y ≤ z◦
〈proof 〉

lemma circ-sub-dist:
x◦ ≤ (x t y)◦
〈proof 〉

5

lemma circ-sub-dist-1 :
x ≤ (x t y)◦
〈proof 〉

lemma circ-sub-dist-2 :
x ∗ y ≤ (x t y)◦
〈proof 〉

lemma circ-sub-dist-3 :
x◦ ∗ y◦ ≤ (x t y)◦
〈proof 〉

lemma circ-isotone:
x ≤ y =⇒ x◦ ≤ y◦

〈proof 〉

lemma circ-sup-2 :
(x t y)◦ ≤ (x◦ ∗ y◦)◦

〈proof 〉

lemma circ-sup-one-left-unfold:
1 ≤ x =⇒ x ∗ x◦ = x◦

〈proof 〉

lemma circ-sup-one-right-unfold:
1 ≤ x =⇒ x◦ ∗ x = x◦

〈proof 〉

lemma circ-decompose-4 :
(x◦ ∗ y◦)◦ = x◦ ∗ (y◦ ∗ x◦)◦

〈proof 〉

lemma circ-decompose-5 :
(x◦ ∗ y◦)◦ = (y◦ ∗ x◦)◦

〈proof 〉

lemma circ-decompose-6 :
x◦ ∗ (y ∗ x◦)◦ = y◦ ∗ (x ∗ y◦)◦

〈proof 〉

lemma circ-decompose-7 :
(x t y)◦ = x◦ ∗ y◦ ∗ (x t y)◦
〈proof 〉

lemma circ-decompose-8 :
(x t y)◦ = (x t y)◦ ∗ x◦ ∗ y◦

〈proof 〉

6

lemma circ-decompose-9 :
(x◦ ∗ y◦)◦ = x◦ ∗ y◦ ∗ (x◦ ∗ y◦)◦

〈proof 〉

lemma circ-decompose-10 :
(x◦ ∗ y◦)◦ = (x◦ ∗ y◦)◦ ∗ x◦ ∗ y◦

〈proof 〉

lemma circ-back-loop-prefixpoint:
(z ∗ y◦) ∗ y t z ≤ z ∗ y◦

〈proof 〉

We obtain the fixpoint and prefixpoint properties of iteration, but not
least or greatest fixpoint properties.
lemma circ-loop-is-fixpoint:

is-fixpoint (λx . y ∗ x t z) (y◦ ∗ z)
〈proof 〉

lemma circ-back-loop-is-prefixpoint:
is-prefixpoint (λx . x ∗ y t z) (z ∗ y◦)
〈proof 〉

lemma circ-circ-sup:
(1 t x)◦ = x◦◦

〈proof 〉

lemma circ-circ-mult-sub:
x◦ ∗ 1 ◦ ≤ x◦◦

〈proof 〉

lemma left-plus-circ:
(x ∗ x◦)◦ = x◦

〈proof 〉

lemma right-plus-circ:
(x◦ ∗ x)◦ = x◦

〈proof 〉

lemma circ-square:
(x ∗ x)◦ ≤ x◦

〈proof 〉

lemma circ-mult-sub-sup:
(x ∗ y)◦ ≤ (x t y)◦
〈proof 〉

lemma circ-sup-mult-zero:
x◦ ∗ y = (x t y ∗ bot)◦ ∗ y
〈proof 〉

7

lemma troeger-1 :
(x t y)◦ = x◦ ∗ (1 t y ∗ (x t y)◦)
〈proof 〉

lemma troeger-2 :
(x t y)◦ ∗ z = x◦ ∗ (y ∗ (x t y)◦ ∗ z t z)
〈proof 〉

lemma troeger-3 :
(x t y ∗ bot)◦ = x◦ ∗ (1 t y ∗ bot)
〈proof 〉

lemma circ-sup-sub-sup-one-1 :
x t y ≤ x◦ ∗ (1 t y)
〈proof 〉

lemma circ-sup-sub-sup-one-2 :
x◦ ∗ (x t y) ≤ x◦ ∗ (1 t y)
〈proof 〉

lemma circ-sup-sub-sup-one:
x ∗ x◦ ∗ (x t y) ≤ x ∗ x◦ ∗ (1 t y)
〈proof 〉

lemma circ-square-2 :
(x ∗ x)◦ ∗ (x t 1) ≤ x◦

〈proof 〉

lemma circ-extra-circ:
(y ∗ x◦)◦ = (y ∗ y◦ ∗ x◦)◦

〈proof 〉

lemma circ-circ-sub-mult:
1 ◦ ∗ x◦ ≤ x◦◦

〈proof 〉

lemma circ-decompose-11 :
(x◦ ∗ y◦)◦ = (x◦ ∗ y◦)◦ ∗ x◦

〈proof 〉

lemma circ-mult-below-circ-circ:
(x ∗ y)◦ ≤ (x◦ ∗ y)◦ ∗ x◦

〈proof 〉

lemma power-below-circ:
power x i ≤ x◦

〈proof 〉

8

end

The next class considers the interaction of iteration with a greatest ele-
ment.
class bounded-left-conway-semiring = bounded-idempotent-left-semiring +
left-conway-semiring
begin

lemma circ-top:
top◦ = top
〈proof 〉

lemma circ-right-top:
x◦ ∗ top = top
〈proof 〉

lemma circ-left-top:
top ∗ x◦ = top
〈proof 〉

lemma mult-top-circ:
(x ∗ top)◦ = 1 t x ∗ top
〈proof 〉

end

class left-zero-conway-semiring = idempotent-left-zero-semiring +
left-conway-semiring
begin

lemma mult-zero-sup-circ-2 :
(x t y ∗ bot)◦ = x◦ t x◦ ∗ y ∗ bot
〈proof 〉

lemma circ-unfold-sum:
(x t y)◦ = x◦ t x◦ ∗ y ∗ (x t y)◦
〈proof 〉

end

The next class assumes the full sliding equation.
class left-conway-semiring-1 = left-conway-semiring +

assumes circ-right-slide: x ∗ (y ∗ x)◦ ≤ (x ∗ y)◦ ∗ x
begin

lemma circ-slide-1 :
x ∗ (y ∗ x)◦ = (x ∗ y)◦ ∗ x

9

〈proof 〉

This implies the full unfold rules and Conway’s productstar.
lemma circ-right-unfold-1 :

1 t x◦ ∗ x = x◦

〈proof 〉

lemma circ-mult-1 :
(x ∗ y)◦ = 1 t x ∗ (y ∗ x)◦ ∗ y
〈proof 〉

lemma circ-sup-9 :
(x t y)◦ = (x◦ ∗ y)◦ ∗ x◦

〈proof 〉

lemma circ-plus-same:
x◦ ∗ x = x ∗ x◦

〈proof 〉

lemma circ-decompose-12 :
x◦ ∗ y◦ ≤ (x◦ ∗ y)◦ ∗ x◦

〈proof 〉

end

class left-zero-conway-semiring-1 = left-zero-conway-semiring +
left-conway-semiring-1
begin

lemma circ-back-loop-fixpoint:
(z ∗ y◦) ∗ y t z = z ∗ y◦

〈proof 〉

lemma circ-back-loop-is-fixpoint:
is-fixpoint (λx . x ∗ y t z) (z ∗ y◦)
〈proof 〉

lemma circ-elimination:
x ∗ y = bot =⇒ x ∗ y◦ ≤ x
〈proof 〉

end

2.2 Iterings
This section adds simulation axioms to Conway semirings. We consider
several classes with increasingly general simulation axioms.
class itering-1 = left-conway-semiring-1 +

assumes circ-simulate: z ∗ x ≤ y ∗ z −→ z ∗ x◦ ≤ y◦ ∗ z

10

begin

lemma circ-circ-mult:
1 ◦ ∗ x◦ = x◦◦

〈proof 〉

lemma sub-mult-one-circ:
x ∗ 1 ◦ ≤ 1 ◦ ∗ x
〈proof 〉

The left simulation axioms is enough to prove a basic import property
of tests.
lemma circ-import:

assumes p ≤ p ∗ p
and p ≤ 1
and p ∗ x ≤ x ∗ p

shows p ∗ x◦ = p ∗ (p ∗ x)◦
〈proof 〉

end

Including generalisations of both simulation axioms allows us to prove
separation rules.
class itering-2 = left-conway-semiring-1 +

assumes circ-simulate-right: z ∗ x ≤ y ∗ z t w −→ z ∗ x◦ ≤ y◦ ∗ (z t w ∗ x◦)
assumes circ-simulate-left: x ∗ z ≤ z ∗ y t w −→ x◦ ∗ z ≤ (z t x◦ ∗ w) ∗ y◦

begin

subclass itering-1
〈proof 〉

lemma circ-simulate-left-1 :
x ∗ z ≤ z ∗ y =⇒ x◦ ∗ z ≤ z ∗ y◦ t x◦ ∗ bot
〈proof 〉

lemma circ-separate-1 :
assumes y ∗ x ≤ x ∗ y

shows (x t y)◦ = x◦ ∗ y◦

〈proof 〉

lemma circ-circ-mult-1 :
x◦ ∗ 1 ◦ = x◦◦

〈proof 〉

end

With distributivity, we also get Back’s atomicity refinement theorem.
class itering-3 = itering-2 + left-zero-conway-semiring-1
begin

11

lemma circ-simulate-1 :
assumes y ∗ x ≤ x ∗ y

shows y◦ ∗ x◦ ≤ x◦ ∗ y◦

〈proof 〉

lemma atomicity-refinement:
assumes s = s ∗ q

and x = q ∗ x
and q ∗ b = bot
and r ∗ b ≤ b ∗ r
and r ∗ l ≤ l ∗ r
and x ∗ l ≤ l ∗ x
and b ∗ l ≤ l ∗ b
and q ∗ l ≤ l ∗ q
and r◦ ∗ q ≤ q ∗ r◦

and q ≤ 1
shows s ∗ (x t b t r t l)◦ ∗ q ≤ s ∗ (x ∗ b◦ ∗ q t r t l)◦

〈proof 〉

end

The following class contains the most general simulation axioms we con-
sider. They allow us to prove further separation properties.
class itering = idempotent-left-zero-semiring + circ +

assumes circ-sup: (x t y)◦ = (x◦ ∗ y)◦ ∗ x◦

assumes circ-mult: (x ∗ y)◦ = 1 t x ∗ (y ∗ x)◦ ∗ y
assumes circ-simulate-right-plus: z ∗ x ≤ y ∗ y◦ ∗ z t w −→ z ∗ x◦ ≤ y◦ ∗ (z
t w ∗ x◦)

assumes circ-simulate-left-plus: x ∗ z ≤ z ∗ y◦ t w −→ x◦ ∗ z ≤ (z t x◦ ∗ w)
∗ y◦

begin

lemma circ-right-unfold:
1 t x◦ ∗ x = x◦

〈proof 〉

lemma circ-slide:
x ∗ (y ∗ x)◦ = (x ∗ y)◦ ∗ x
〈proof 〉

subclass itering-3
〈proof 〉

lemma circ-simulate-right-plus-1 :
z ∗ x ≤ y ∗ y◦ ∗ z =⇒ z ∗ x◦ ≤ y◦ ∗ z
〈proof 〉

lemma circ-simulate-left-plus-1 :

12

x ∗ z ≤ z ∗ y◦ =⇒ x◦ ∗ z ≤ z ∗ y◦ t x◦ ∗ bot
〈proof 〉

lemma circ-simulate-2 :
y ∗ x◦ ≤ x◦ ∗ y◦ ←→ y◦ ∗ x◦ ≤ x◦ ∗ y◦

〈proof 〉

lemma circ-simulate-absorb:
y ∗ x ≤ x =⇒ y◦ ∗ x ≤ x t y◦ ∗ bot
〈proof 〉

lemma circ-simulate-3 :
y ∗ x◦ ≤ x◦ =⇒ y◦ ∗ x◦ ≤ x◦ ∗ y◦

〈proof 〉

lemma circ-separate-mult-1 :
y ∗ x ≤ x ∗ y =⇒ (x ∗ y)◦ ≤ x◦ ∗ y◦

〈proof 〉

lemma circ-separate-unfold:
(y ∗ x◦)◦ = y◦ t y◦ ∗ y ∗ x ∗ x◦ ∗ (y ∗ x◦)◦

〈proof 〉

lemma separation:
assumes y ∗ x ≤ x ∗ y◦

shows (x t y)◦ = x◦ ∗ y◦

〈proof 〉

lemma simulation:
y ∗ x ≤ x ∗ y◦ =⇒ y◦ ∗ x◦ ≤ x◦ ∗ y◦

〈proof 〉

lemma circ-simulate-4 :
assumes y ∗ x ≤ x ∗ x◦ ∗ (1 t y)

shows y◦ ∗ x◦ ≤ x◦ ∗ y◦

〈proof 〉

lemma circ-simulate-5 :
y ∗ x ≤ x ∗ x◦ ∗ (x t y) =⇒ y◦ ∗ x◦ ≤ x◦ ∗ y◦

〈proof 〉

lemma circ-simulate-6 :
y ∗ x ≤ x ∗ (x t y) =⇒ y◦ ∗ x◦ ≤ x◦ ∗ y◦

〈proof 〉

lemma circ-separate-4 :
assumes y ∗ x ≤ x ∗ x◦ ∗ (1 t y)

shows (x t y)◦ = x◦ ∗ y◦

〈proof 〉

13

lemma circ-separate-5 :
y ∗ x ≤ x ∗ x◦ ∗ (x t y) =⇒ (x t y)◦ = x◦ ∗ y◦

〈proof 〉

lemma circ-separate-6 :
y ∗ x ≤ x ∗ (x t y) =⇒ (x t y)◦ = x◦ ∗ y◦

〈proof 〉

end

class bounded-itering = bounded-idempotent-left-zero-semiring + itering
begin

subclass bounded-left-conway-semiring 〈proof 〉

end

We finally expand Conway semirings and iterings by an element that
corresponds to the endless loop.
class L =

fixes L :: ′a

class left-conway-semiring-L = left-conway-semiring + L +
assumes one-circ-mult-split: 1 ◦ ∗ x = L t x
assumes L-split-sup: x ∗ (y t L) ≤ x ∗ y t L

begin

lemma L-def :
L = 1 ◦ ∗ bot
〈proof 〉

lemma one-circ-split:
1 ◦ = L t 1
〈proof 〉

lemma one-circ-circ-split:
1 ◦◦ = L t 1
〈proof 〉

lemma sub-mult-one-circ:
x ∗ 1 ◦ ≤ 1 ◦ ∗ x
〈proof 〉

lemma one-circ-mult-split-2 :
1 ◦ ∗ x = x ∗ 1 ◦ t L
〈proof 〉

14

lemma sub-mult-one-circ-split:
x ∗ 1 ◦ ≤ x t L
〈proof 〉

lemma sub-mult-one-circ-split-2 :
x ∗ 1 ◦ ≤ x t 1 ◦

〈proof 〉

lemma L-split:
x ∗ L ≤ x ∗ bot t L
〈proof 〉

lemma L-left-zero:
L ∗ x = L
〈proof 〉

lemma one-circ-L:
1 ◦ ∗ L = L
〈proof 〉

lemma mult-L-circ:
(x ∗ L)◦ = 1 t x ∗ L
〈proof 〉

lemma mult-L-circ-mult:
(x ∗ L)◦ ∗ y = y t x ∗ L
〈proof 〉

lemma circ-L:
L◦ = L t 1
〈proof 〉

lemma L-below-one-circ:
L ≤ 1 ◦

〈proof 〉

lemma circ-circ-mult-1 :
x◦ ∗ 1 ◦ = x◦◦

〈proof 〉

lemma circ-circ-mult:
1 ◦ ∗ x◦ = x◦◦

〈proof 〉

lemma circ-circ-split:
x◦◦ = L t x◦

〈proof 〉

15

lemma circ-sup-6 :
L t (x t y)◦ = (x◦ ∗ y◦)◦

〈proof 〉

end

class itering-L = itering + L +
assumes L-def : L = 1 ◦ ∗ bot

begin

lemma one-circ-split:
1 ◦ = L t 1
〈proof 〉

lemma one-circ-mult-split:
1 ◦ ∗ x = L t x
〈proof 〉

lemma sub-mult-one-circ-split:
x ∗ 1 ◦ ≤ x t L
〈proof 〉

lemma sub-mult-one-circ-split-2 :
x ∗ 1 ◦ ≤ x t 1 ◦

〈proof 〉

lemma L-split:
x ∗ L ≤ x ∗ bot t L
〈proof 〉

subclass left-conway-semiring-L
〈proof 〉

lemma circ-left-induct-mult-L:
L ≤ x =⇒ x ∗ y ≤ x =⇒ x ∗ y◦ ≤ x
〈proof 〉

lemma circ-left-induct-mult-iff-L:
L ≤ x =⇒ x ∗ y ≤ x ←→ x ∗ y◦ ≤ x
〈proof 〉

lemma circ-left-induct-L:
L ≤ x =⇒ x ∗ y t z ≤ x =⇒ z ∗ y◦ ≤ x
〈proof 〉

end

end

16

3 Kleene Algebras
Kleene algebras have been axiomatised by Kozen to describe the equational
theory of regular languages [13]. Binary relations are another important
model. This theory implements variants of Kleene algebras based on idem-
potent left semirings [15]. The weakening of some semiring axioms allows
the treatment of further computation models. The presented algebras are
special cases of iterings, so many results can be inherited.
theory Kleene-Algebras

imports Iterings

begin

We start with left Kleene algebras, which use the left unfold and left
induction axioms of Kleene algebras.
class star =

fixes star :: ′a ⇒ ′a (‹-?› [100] 100)

class left-kleene-algebra = idempotent-left-semiring + star +
assumes star-left-unfold : 1 t y ∗ y? ≤ y?

assumes star-left-induct : z t y ∗ x ≤ x −→ y? ∗ z ≤ x
begin

unbundle no trancl-syntax

abbreviation tc (‹-+› [100] 100) where tc x ≡ x ∗ x?

lemma star-left-unfold-equal:
1 t x ∗ x? = x?

〈proof 〉

This means that for some properties of Kleene algebras, only one in-
equality can be derived, as exemplified by the following sliding rule.
lemma star-left-slide:
(x ∗ y)? ∗ x ≤ x ∗ (y ∗ x)?
〈proof 〉

lemma star-isotone:
x ≤ y =⇒ x? ≤ y?

〈proof 〉

lemma star-sup-1 :
(x t y)? = x? ∗ (y ∗ x?)?

〈proof 〉

lemma plus-transitive:
x+ ∗ x+ ≤ x+

17

〈proof 〉

end

We now show that left Kleene algebras form iterings. A sublocale is used
instead of a subclass, because iterings use a different iteration operation.
sublocale left-kleene-algebra < star : left-conway-semiring where circ = star
〈proof 〉

context left-kleene-algebra
begin

A number of lemmas in this class are taken from Georg Struth’s Kleene
algebra theory [2].
lemma star-sub-one:

x ≤ 1 =⇒ x? = 1
〈proof 〉

lemma star-one:
1 ? = 1
〈proof 〉

lemma star-left-induct-mult:
x ∗ y ≤ y =⇒ x? ∗ y ≤ y
〈proof 〉

lemma star-left-induct-mult-iff :
x ∗ y ≤ y ←→ x? ∗ y ≤ y
〈proof 〉

lemma star-involutive:
x? = x??

〈proof 〉

lemma star-sup-one:
(1 t x)? = x?

〈proof 〉

lemma star-plus-loops:
x? t 1 = x+ t 1
〈proof 〉

lemma star-left-induct-equal:
z t x ∗ y = y =⇒ x? ∗ z ≤ y
〈proof 〉

lemma star-left-induct-mult-equal:
x ∗ y = y =⇒ x? ∗ y ≤ y
〈proof 〉

18

lemma star-star-upper-bound:
x? ≤ z? =⇒ x?? ≤ z?
〈proof 〉

lemma star-simulation-left:
assumes x ∗ z ≤ z ∗ y

shows x? ∗ z ≤ z ∗ y?

〈proof 〉

lemma quasicomm-1 :
y ∗ x ≤ x ∗ (x t y)? ←→ y? ∗ x ≤ x ∗ (x t y)?
〈proof 〉

lemma star-rtc-3 :
1 t x t y ∗ y = y =⇒ x? ≤ y
〈proof 〉

lemma star-decompose-1 :
(x t y)? = (x? ∗ y?)?

〈proof 〉

lemma star-sum:
(x t y)? = (x? t y?)?

〈proof 〉

lemma star-decompose-3 :
(x? ∗ y?)? = x? ∗ (y ∗ x?)?

〈proof 〉

In contrast to iterings, we now obtain that the iteration operation results
in least fixpoints.
lemma star-loop-least-fixpoint:

y ∗ x t z = x =⇒ y? ∗ z ≤ x
〈proof 〉

lemma star-loop-is-least-fixpoint:
is-least-fixpoint (λx . y ∗ x t z) (y? ∗ z)
〈proof 〉

lemma star-loop-mu:
µ (λx . y ∗ x t z) = y? ∗ z
〈proof 〉

lemma affine-has-least-fixpoint:
has-least-fixpoint (λx . y ∗ x t z)
〈proof 〉

lemma star-outer-increasing:

19

x ≤ y? ∗ x ∗ y?

〈proof 〉

end

We next add the right induction rule, which allows us to strengthen many
inequalities of left Kleene algebras to equalities.
class strong-left-kleene-algebra = left-kleene-algebra +

assumes star-right-induct: z t x ∗ y ≤ x −→ z ∗ y? ≤ x
begin

lemma star-plus:
y? ∗ y = y ∗ y?

〈proof 〉

lemma star-slide:
(x ∗ y)? ∗ x = x ∗ (y ∗ x)?
〈proof 〉

lemma star-simulation-right:
assumes z ∗ x ≤ y ∗ z

shows z ∗ x? ≤ y? ∗ z
〈proof 〉

end

Again we inherit results from the itering hierarchy.
sublocale strong-left-kleene-algebra < star : itering-1 where circ = star
〈proof 〉

context strong-left-kleene-algebra
begin

lemma star-right-induct-mult:
y ∗ x ≤ y =⇒ y ∗ x? ≤ y
〈proof 〉

lemma star-right-induct-mult-iff :
y ∗ x ≤ y ←→ y ∗ x? ≤ y
〈proof 〉

lemma star-simulation-right-equal:
z ∗ x = y ∗ z =⇒ z ∗ x? = y? ∗ z
〈proof 〉

lemma star-simulation-star :
x ∗ y ≤ y ∗ x =⇒ x? ∗ y? ≤ y? ∗ x?

20

〈proof 〉

lemma star-right-induct-equal:
z t y ∗ x = y =⇒ z ∗ x? ≤ y
〈proof 〉

lemma star-right-induct-mult-equal:
y ∗ x = y =⇒ y ∗ x? ≤ y
〈proof 〉

lemma star-back-loop-least-fixpoint:
x ∗ y t z = x =⇒ z ∗ y? ≤ x
〈proof 〉

lemma star-back-loop-is-least-fixpoint:
is-least-fixpoint (λx . x ∗ y t z) (z ∗ y?)
〈proof 〉

lemma star-back-loop-mu:
µ (λx . x ∗ y t z) = z ∗ y?

〈proof 〉

lemma star-square:
x? = (1 t x) ∗ (x ∗ x)?
〈proof 〉

lemma star-square-2 :
x? = (x ∗ x)? ∗ (x t 1)
〈proof 〉

lemma star-circ-simulate-right-plus:
assumes z ∗ x ≤ y ∗ y? ∗ z t w

shows z ∗ x? ≤ y? ∗ (z t w ∗ x?)
〈proof 〉

lemma transitive-star :
x ∗ x ≤ x =⇒ x? = 1 t x
〈proof 〉

lemma star-sup-2 :
assumes x ∗ x ≤ x

and x ∗ y ≤ x
shows (x t y)? = y? ∗ (x t 1)
〈proof 〉

end

The following class contains a generalisation of Kleene algebras, which

21

lacks the right zero axiom.
class left-zero-kleene-algebra = idempotent-left-zero-semiring +
strong-left-kleene-algebra
begin

lemma star-star-absorb:
y? ∗ (y? ∗ x)? ∗ y? = (y? ∗ x)? ∗ y?

〈proof 〉

lemma star-circ-simulate-left-plus:
assumes x ∗ z ≤ z ∗ y? t w

shows x? ∗ z ≤ (z t x? ∗ w) ∗ y?

〈proof 〉

lemma star-one-sup-below:
x ∗ y? ∗ (1 t z) ≤ x ∗ (y t z)?
〈proof 〉

The following theorem is similar to the puzzle where persons insert them-
selves always in the middle between two groups of people in a line. Here,
however, items in the middle annihilate each other, leaving just one group
of items behind.
lemma cancel-separate:

assumes x ∗ y ≤ 1
shows x? ∗ y? ≤ x? t y?

〈proof 〉

lemma star-separate:
assumes x ∗ y = bot

and y ∗ y = bot
shows (x t y)? = x? t y ∗ x?

〈proof 〉

end

We can now inherit from the strongest variant of iterings.
sublocale left-zero-kleene-algebra < star : itering where circ = star
〈proof 〉

context left-zero-kleene-algebra
begin

lemma star-absorb:
x ∗ y = bot =⇒ x ∗ y? = x
〈proof 〉

lemma star-separate-2 :
assumes x ∗ z+ ∗ y = bot

and y ∗ z+ ∗ y = bot

22

and z ∗ x = bot
shows (x? t y ∗ x?) ∗ (z ∗ (1 t y ∗ x?))? = z? ∗ (x? t y ∗ x?) ∗ z?

〈proof 〉

lemma cancel-separate-eq:
x ∗ y ≤ 1 =⇒ x? ∗ y? = x? t y?

〈proof 〉

lemma cancel-separate-1 :
assumes x ∗ y ≤ 1

shows (x t y)? = y? ∗ x?

〈proof 〉

lemma plus-sup:
(x t y)+ = (x? ∗ y)? ∗ x+ t (x? ∗ y)+
〈proof 〉

lemma plus-half-bot:
x ∗ y ∗ x = bot =⇒ (x ∗ y)+ = x ∗ y
〈proof 〉

lemma cancel-separate-1-sup:
assumes x ∗ y ≤ 1

and y ∗ x ≤ 1
shows (x t y)? = x? t y?

〈proof 〉

Lemma star-separate-3 was contributed by Nicolas Robinson-O’Brien.
lemma star-separate-3 :

assumes y ∗ x? ∗ y ≤ y
shows (x t y)? = x? t x? ∗ y ∗ x?

〈proof 〉

end

A Kleene algebra is obtained by requiring an idempotent semiring.
class kleene-algebra = left-zero-kleene-algebra + idempotent-semiring

The following classes are variants of Kleene algebras expanded by an
additional iteration operation. This is useful to study the Kleene star in
computation models that do not use least fixpoints in the refinement order
as the semantics of recursion.
class left-kleene-conway-semiring = left-kleene-algebra + left-conway-semiring
begin

lemma star-below-circ:
x? ≤ x◦

〈proof 〉

23

lemma star-zero-below-circ-mult:
x? ∗ bot ≤ x◦ ∗ y
〈proof 〉

lemma star-mult-circ:
x? ∗ x◦ = x◦

〈proof 〉

lemma circ-mult-star :
x◦ ∗ x? = x◦

〈proof 〉

lemma circ-star :
x◦? = x◦

〈proof 〉

lemma star-circ:
x?◦ = x◦◦

〈proof 〉

lemma circ-sup-3 :
(x◦ ∗ y◦)? ≤ (x t y)◦
〈proof 〉

end

class left-zero-kleene-conway-semiring = left-zero-kleene-algebra + itering
begin

subclass left-kleene-conway-semiring 〈proof 〉

lemma circ-isolate:
x◦ = x◦ ∗ bot t x?

〈proof 〉

lemma circ-isolate-mult:
x◦ ∗ y = x◦ ∗ bot t x? ∗ y
〈proof 〉

lemma circ-isolate-mult-sub:
x◦ ∗ y ≤ x◦ t x? ∗ y
〈proof 〉

lemma circ-sub-decompose:
(x◦ ∗ y)◦ ≤ (x? ∗ y)◦ ∗ x◦

〈proof 〉

lemma circ-sup-4 :
(x t y)◦ = (x? ∗ y)◦ ∗ x◦

24

〈proof 〉

lemma circ-sup-5 :
(x◦ ∗ y)◦ ∗ x◦ = (x? ∗ y)◦ ∗ x◦

〈proof 〉

lemma plus-circ:
(x? ∗ x)◦ = x◦

〈proof 〉

end

The following classes add a greatest element.
class bounded-left-kleene-algebra = bounded-idempotent-left-semiring +
left-kleene-algebra

sublocale bounded-left-kleene-algebra < star : bounded-left-conway-semiring
where circ = star 〈proof 〉

class bounded-left-zero-kleene-algebra = bounded-idempotent-left-semiring +
left-zero-kleene-algebra

sublocale bounded-left-zero-kleene-algebra < star : bounded-itering where circ =
star 〈proof 〉

class bounded-kleene-algebra = bounded-idempotent-semiring + kleene-algebra

sublocale bounded-kleene-algebra < star : bounded-itering where circ = star
〈proof 〉

We conclude with an alternative axiomatisation of Kleene algebras.
class kleene-algebra-var = idempotent-semiring + star +

assumes star-left-unfold-var : 1 t y ∗ y? ≤ y?

assumes star-left-induct-var : y ∗ x ≤ x −→ y? ∗ x ≤ x
assumes star-right-induct-var : x ∗ y ≤ x −→ x ∗ y? ≤ x

begin

subclass kleene-algebra
〈proof 〉

end

end

4 Kleene Relation Algebras

25

This theory combines Kleene algebras with Stone relation algebras. Relation
algebras with transitive closure have been studied by [16]. The weakening
to Stone relation algebras allows us to talk about reachability in weighted
graphs, for example.

Many results in this theory are used in the correctness proof of Prim’s
minimum spanning tree algorithm. In particular, they are concerned with
the exchange property, preservation of parts of the invariant and with es-
tablishing parts of the postcondition.
theory Kleene-Relation-Algebras

imports Stone-Relation-Algebras.Relation-Algebras Kleene-Algebras

begin

We first note that bounded distributive lattices can be expanded to
Kleene algebras by reusing some of the operations.
sublocale bounded-distrib-lattice < comp-inf : bounded-kleene-algebra where star
= λx . top and one = top and times = inf
〈proof 〉

We add the Kleene star operation to each of bounded distributive alle-
gories, pseudocomplemented distributive allegories and Stone relation alge-
bras. We start with single-object bounded distributive allegories.
class bounded-distrib-kleene-allegory = bounded-distrib-allegory + kleene-algebra
begin

subclass bounded-kleene-algebra 〈proof 〉

lemma conv-star-conv:
x? ≤ xT ?T

〈proof 〉

It follows that star and converse commute.
lemma conv-star-commute:

x?T = xT ?

〈proof 〉

lemma conv-plus-commute:
x+T = xT+

〈proof 〉

Lemma reflexive-inf-star was contributed by Nicolas Robinson-O’Brien.
lemma reflexive-inf-star :

assumes reflexive y
shows y u x? = 1 t (y u x+)
〈proof 〉

26

The following results are variants of a separation lemma of Kleene alge-
bras.
lemma cancel-separate-2 :

assumes x ∗ y ≤ 1
shows ((w u x) t (z u y))? = (z u y)? ∗ (w u x)?

〈proof 〉

lemma cancel-separate-3 :
assumes x ∗ y ≤ 1

shows (w u x)? ∗ (z u y)? = (w u x)? t (z u y)?
〈proof 〉

lemma cancel-separate-4 :
assumes z ∗ y ≤ 1

and w ≤ y t z
and x ≤ y t z

shows w? ∗ x? = (w u y)? ∗ ((w u z)? t (x u y)?) ∗ (x u z)?
〈proof 〉

lemma cancel-separate-5 :
assumes w ∗ zT ≤ 1

shows w u x ∗ (y u z) ≤ y
〈proof 〉

lemma cancel-separate-6 :
assumes z ∗ y ≤ 1

and w ≤ y t z
and x ≤ y t z
and v ∗ zT ≤ 1
and v u y? = bot

shows v u w? ∗ x? ≤ x t w
〈proof 〉

We show several results about the interaction of vectors and the Kleene
star.
lemma vector-star-1 :

assumes vector x
shows xT ∗ (x ∗ xT)? ≤ xT

〈proof 〉

lemma vector-star-2 :
vector x =⇒ xT ∗ (x ∗ xT)? ≤ xT ∗ bot?
〈proof 〉

lemma vector-vector-star :
vector v =⇒ (v ∗ vT)? = 1 t v ∗ vT

〈proof 〉

lemma equivalence-star-closed:

27

equivalence x =⇒ equivalence (x?)
〈proof 〉

lemma equivalence-plus-closed:
equivalence x =⇒ equivalence (x+)
〈proof 〉

The following equivalence relation characterises the component trees of
a forest. This is a special case of undirected reachability in a directed graph.
abbreviation forest-components f ≡ f T ? ∗ f ?

lemma forest-components-equivalence:
injective x =⇒ equivalence (forest-components x)
〈proof 〉

lemma forest-components-increasing:
x ≤ forest-components x
〈proof 〉

lemma forest-components-isotone:
x ≤ y =⇒ forest-components x ≤ forest-components y
〈proof 〉

lemma forest-components-idempotent:
injective x =⇒ forest-components (forest-components x) = forest-components x
〈proof 〉

lemma forest-components-star :
injective x =⇒ (forest-components x)? = forest-components x
〈proof 〉

The following lemma shows that the nodes reachable in the graph can
be reached by only using edges between reachable nodes.
lemma reachable-restrict:

assumes vector r
shows rT ∗ g? = rT ∗ ((rT ∗ g?)T ∗ (rT ∗ g?) u g)?

〈proof 〉

lemma kruskal-acyclic-inv-1 :
assumes injective f

and e ∗ forest-components f ∗ e = bot
shows (f u top ∗ e ∗ f T ?)T ∗ f ? ∗ e = bot

〈proof 〉

lemma kruskal-forest-components-inf-1 :
assumes f ≤ w t wT

and injective w
and f ≤ forest-components g

shows f ∗ forest-components (forest-components g u w) ≤ forest-components

28

(forest-components g u w)
〈proof 〉

lemma kruskal-forest-components-inf :
assumes f ≤ w t wT

and injective w
shows forest-components f ≤ forest-components (forest-components f u w)

〈proof 〉

end

We next add the Kleene star to single-object pseudocomplemented dis-
tributive allegories.
class pd-kleene-allegory = pd-allegory + bounded-distrib-kleene-allegory
begin

The following definitions and results concern acyclic graphs and forests.
abbreviation acyclic :: ′a ⇒ bool where acyclic x ≡ x+ ≤ −1

abbreviation forest :: ′a ⇒ bool where forest x ≡ injective x ∧ acyclic x

lemma forest-bot:
forest bot
〈proof 〉

lemma acyclic-down-closed:
x ≤ y =⇒ acyclic y =⇒ acyclic x
〈proof 〉

lemma forest-down-closed:
x ≤ y =⇒ forest y =⇒ forest x
〈proof 〉

lemma acyclic-star-below-complement:
acyclic w ←→ wT ? ≤ −w
〈proof 〉

lemma acyclic-star-below-complement-1 :
acyclic w ←→ w? u wT = bot
〈proof 〉

lemma acyclic-star-inf-conv:
assumes acyclic w
shows w? u wT ? = 1
〈proof 〉

lemma acyclic-asymmetric:
acyclic w =⇒ asymmetric w
〈proof 〉

29

lemma forest-separate:
assumes forest x

shows x? ∗ xT ? u xT ∗ x ≤ 1
〈proof 〉

The following definition captures the components of undirected weighted
graphs.
abbreviation components g ≡ (−−g)?

lemma components-equivalence:
symmetric x =⇒ equivalence (components x)
〈proof 〉

lemma components-increasing:
x ≤ components x
〈proof 〉

lemma components-isotone:
x ≤ y =⇒ components x ≤ components y
〈proof 〉

lemma cut-reachable:
assumes vT = rT ∗ t?

and t ≤ g
shows v ∗ −vT u g ≤ (rT ∗ g?)T ∗ (rT ∗ g?)

〈proof 〉

The following lemma shows that the predecessors of visited nodes in the
minimum spanning tree extending the current tree have all been visited.
lemma predecessors-reachable:

assumes vector r
and injective r
and vT = rT ∗ t?
and forest w
and t ≤ w
and w ≤ (rT ∗ g?)T ∗ (rT ∗ g?) u g
and rT ∗ g? ≤ rT ∗ w?

shows w ∗ v ≤ v
〈proof 〉

4.1 Prim’s Algorithm
The following results are used for proving the correctness of Prim’s minimum
spanning tree algorithm.

4.1.1 Preservation of Invariant

30

We first treat the preservation of the invariant. The following lemma shows
that the while-loop preserves that v represents the nodes of the constructed
tree. The remaining lemmas in this section show that t is a spanning tree.
The exchange property is treated in the following two sections.
lemma reachable-inv:

assumes vector v
and e ≤ v ∗ −vT

and e ∗ t = bot
and vT = rT ∗ t?

shows (v t eT ∗ top)T = rT ∗ (t t e)?
〈proof 〉

The next result is used to show that the while-loop preserves acyclicity
of the constructed tree.
lemma acyclic-inv:

assumes acyclic t
and vector v
and e ≤ v ∗ −vT

and t ≤ v ∗ vT

shows acyclic (t t e)
〈proof 〉

The following lemma shows that the extended tree is in the component
reachable from the root.
lemma mst-subgraph-inv-2 :

assumes regular (v ∗ vT)
and t ≤ v ∗ vT u −−g
and vT = rT ∗ t?
and e ≤ v ∗ −vT u −−g
and vector v
and regular ((v t eT ∗ top) ∗ (v t eT ∗ top)T)

shows t t e ≤ (rT ∗ (−−((v t eT ∗ top) ∗ (v t eT ∗ top)T u g))?)T ∗ (rT ∗
(−−((v t eT ∗ top) ∗ (v t eT ∗ top)T u g))?)
〈proof 〉

lemma span-inv:
assumes e ≤ v ∗ −vT

and vector v
and arc e
and t ≤ (v ∗ vT) u g
and gT = g
and vT = rT ∗ t?
and injective r
and rT ≤ vT

and rT ∗ ((v ∗ vT) u g)? ≤ rT ∗ t?
shows rT ∗ (((v t eT ∗ top) ∗ (v t eT ∗ top)T) u g)? ≤ rT ∗ (t t e)?

〈proof 〉

31

4.1.2 Exchange gives Spanning Trees

The following abbreviations are used in the spanning tree application using
Prim’s algorithm to construct the new tree for the exchange property. It
is obtained by replacing an edge with one that has minimal weight and
reversing the path connecting these edges. Here, w represents a weighted
graph, v represents a set of nodes and e represents an edge.
abbreviation prim-E :: ′a ⇒ ′a ⇒ ′a ⇒ ′a where prim-E w v e ≡ w u −−v ∗
−vT u top ∗ e ∗ wT ?

abbreviation prim-P :: ′a ⇒ ′a ⇒ ′a ⇒ ′a where prim-P w v e ≡ w u −v ∗
−vT u top ∗ e ∗ wT ?

abbreviation prim-EP :: ′a ⇒ ′a ⇒ ′a ⇒ ′a where prim-EP w v e ≡ w u −vT

u top ∗ e ∗ wT ?

abbreviation prim-W :: ′a ⇒ ′a ⇒ ′a ⇒ ′a where prim-W w v e ≡ (w u
−(prim-EP w v e)) t (prim-P w v e)T t e

The lemmas in this section are used to show that the relation after
exchange represents a spanning tree. The results in the next section are
used to show that it is a minimum spanning tree.
lemma exchange-injective-3 :

assumes e ≤ v ∗ −vT

and vector v
shows (w u −(prim-EP w v e)) ∗ eT = bot

〈proof 〉

lemma exchange-injective-6 :
assumes arc e

and forest w
shows (prim-P w v e)T ∗ eT = bot

〈proof 〉

The graph after exchanging is injective.
lemma exchange-injective:

assumes arc e
and e ≤ v ∗ −vT

and forest w
and vector v

shows injective (prim-W w v e)
〈proof 〉

lemma pv:
assumes vector v

shows (prim-P w v e)T ∗ v = bot
〈proof 〉

lemma vector-pred-inv:
assumes arc e

and e ≤ v ∗ −vT

32

and forest w
and vector v
and w ∗ v ≤ v

shows (prim-W w v e) ∗ (v t eT ∗ top) ≤ v t eT ∗ top
〈proof 〉

The graph after exchanging is acyclic.
lemma exchange-acyclic:

assumes vector v
and e ≤ v ∗ −vT

and w ∗ v ≤ v
and acyclic w

shows acyclic (prim-W w v e)
〈proof 〉

The following lemma shows that an edge across the cut between visited
nodes and unvisited nodes does not leave the component of visited nodes.
lemma mst-subgraph-inv:

assumes e ≤ v ∗ −vT u g
and t ≤ g
and vT = rT ∗ t?

shows e ≤ (rT ∗ g?)T ∗ (rT ∗ g?) u g
〈proof 〉

The following lemmas show that the tree after exchanging contains the
currently constructed and tree and its extension by the chosen edge.
lemma mst-extends-old-tree:

assumes t ≤ w
and t ≤ v ∗ vT

and vector v
shows t ≤ prim-W w v e

〈proof 〉

lemma mst-extends-new-tree:
t ≤ w =⇒ t ≤ v ∗ vT =⇒ vector v =⇒ t t e ≤ prim-W w v e
〈proof 〉

Lemmas forests-bot-1, forests-bot-2, forests-bot-3 and fc-comp-eq-fc were
contributed by Nicolas Robinson-O’Brien.
lemma forests-bot-1 :

assumes equivalence e
and forest f

shows (−e u f) ∗ (e u f)T = bot
〈proof 〉

lemma forests-bot-2 :
assumes equivalence e

and forest f
shows (−e u f T) ∗ x u (e u f T) ∗ y = bot

33

〈proof 〉

lemma forests-bot-3 :
assumes equivalence e

and forest f
shows x ∗ (−e u f) u y ∗ (e u f) = bot

〈proof 〉

lemma acyclic-plus:
acyclic x =⇒ acyclic (x+)
〈proof 〉

end

We finally add the Kleene star to Stone relation algebras. Kleene star and
the relational operations are reasonably independent. The only additional
axiom we need in the generalisation to Stone-Kleene relation algebras is that
star distributes over double complement.
class stone-kleene-relation-algebra = stone-relation-algebra + pd-kleene-allegory +

assumes pp-dist-star : −−(x?) = (−−x)?
begin

lemma reachable-without-loops:
x? = (x u −1)?
〈proof 〉

lemma plus-reachable-without-loops:
x+ = (x u −1)+ t (x u 1)
〈proof 〉

lemma star-plus-without-loops:
x? u −1 = x+ u −1
〈proof 〉

lemma regular-closed-star :
regular x =⇒ regular (x?)
〈proof 〉

lemma components-idempotent:
components (components x) = components x
〈proof 〉

lemma fc-comp-eq-fc:
−forest-components (−−f) = −forest-components f
〈proof 〉

The following lemma shows that the nodes reachable in the tree after
exchange contain the nodes reachable in the tree before exchange.
lemma mst-reachable-inv:

34

assumes regular (prim-EP w v e)
and vector r
and e ≤ v ∗ −vT

and vector v
and vT = rT ∗ t?
and t ≤ w
and t ≤ v ∗ vT

and w ∗ v ≤ v
shows rT ∗ w? ≤ rT ∗ (prim-W w v e)?

〈proof 〉

Some of the following lemmas already hold in pseudocomplemented dis-
tributive Kleene allegories.

4.1.3 Exchange gives Minimum Spanning Trees

The lemmas in this section are used to show that the after exchange we
obtain a minimum spanning tree. The following lemmas show various inter-
actions between the three constituents of the tree after exchange.
lemma epm-1 :

vector v =⇒ prim-E w v e t prim-P w v e = prim-EP w v e
〈proof 〉

lemma epm-2 :
assumes regular (prim-EP w v e)

and vector v
shows (w u −(prim-EP w v e)) t prim-P w v e t prim-E w v e = w

〈proof 〉

lemma epm-4 :
assumes e ≤ w

and injective w
and w ∗ v ≤ v
and e ≤ v ∗ −vT

shows top ∗ e ∗ wT+ ≤ top ∗ vT

〈proof 〉

lemma epm-5 :
assumes e ≤ w

and injective w
and w ∗ v ≤ v
and e ≤ v ∗ −vT

and vector v
shows prim-P w v e = bot

〈proof 〉

lemma epm-6 :
assumes e ≤ w

and injective w

35

and w ∗ v ≤ v
and e ≤ v ∗ −vT

and vector v
shows prim-E w v e = e

〈proof 〉

lemma epm-7 :
regular (prim-EP w v e) =⇒ e ≤ w =⇒ injective w =⇒ w ∗ v ≤ v =⇒ e ≤ v ∗
−vT =⇒ vector v =⇒ prim-W w v e = w
〈proof 〉

lemma epm-8 :
assumes acyclic w

shows (w u −(prim-EP w v e)) u (prim-P w v e)T = bot
〈proof 〉

lemma epm-9 :
assumes e ≤ v ∗ −vT

and vector v
shows (w u −(prim-EP w v e)) u e = bot

〈proof 〉

lemma epm-10 :
assumes e ≤ v ∗ −vT

and vector v
shows (prim-P w v e)T u e = bot

〈proof 〉

lemma epm-11 :
assumes vector v

shows (w u −(prim-EP w v e)) u prim-P w v e = bot
〈proof 〉

lemma epm-12 :
assumes vector v

shows (w u −(prim-EP w v e)) u prim-E w v e = bot
〈proof 〉

lemma epm-13 :
assumes vector v

shows prim-P w v e u prim-E w v e = bot
〈proof 〉

The following lemmas show that the relation characterising the edge
across the cut is an arc.
lemma arc-edge-1 :

assumes e ≤ v ∗ −vT u g
and vector v
and vT = rT ∗ t?

36

and t ≤ g
and rT ∗ g? ≤ rT ∗ w?

shows top ∗ e ≤ vT ∗ w?

〈proof 〉

lemma arc-edge-2 :
assumes e ≤ v ∗ −vT u g

and vector v
and vT = rT ∗ t?
and t ≤ g
and rT ∗ g? ≤ rT ∗ w?

and w ∗ v ≤ v
and injective w

shows top ∗ e ∗ wT ? ≤ vT ∗ w?

〈proof 〉

lemma arc-edge-3 :
assumes e ≤ v ∗ −vT u g

and vector v
and vT = rT ∗ t?
and t ≤ g
and rT ∗ g? ≤ rT ∗ w?

and w ∗ v ≤ v
and injective w
and prim-E w v e = bot

shows e = bot
〈proof 〉

lemma arc-edge-4 :
assumes e ≤ v ∗ −vT u g

and vector v
and vT = rT ∗ t?
and t ≤ g
and rT ∗ g? ≤ rT ∗ w?

and arc e
shows top ∗ prim-E w v e ∗ top = top

〈proof 〉

lemma arc-edge-5 :
assumes vector v

and w ∗ v ≤ v
and injective w
and arc e

shows (prim-E w v e)T ∗ top ∗ prim-E w v e ≤ 1
〈proof 〉

lemma arc-edge-6 :
assumes vector v

and w ∗ v ≤ v

37

and injective w
and arc e

shows prim-E w v e ∗ top ∗ (prim-E w v e)T ≤ 1
〈proof 〉

lemma arc-edge:
assumes e ≤ v ∗ −vT u g

and vector v
and vT = rT ∗ t?
and t ≤ g
and rT ∗ g? ≤ rT ∗ w?

and w ∗ v ≤ v
and injective w
and arc e

shows arc (prim-E w v e)
〈proof 〉

4.1.4 Invariant implies Postcondition

The lemmas in this section are used to show that the invariant implies the
postcondition at the end of the algorithm. The following lemma shows that
the nodes reachable in the graph are the same as those reachable in the
constructed tree.
lemma span-post:

assumes regular v
and vector v
and vT = rT ∗ t?
and v ∗ −vT u g = bot
and t ≤ v ∗ vT u g
and rT ∗ (v ∗ vT u g)? ≤ rT ∗ t?

shows vT = rT ∗ g?

〈proof 〉

The following lemma shows that the minimum spanning tree extending
a tree is the same as the tree at the end of the algorithm.
lemma mst-post:

assumes vector r
and injective r
and vT = rT ∗ t?
and forest w
and t ≤ w
and w ≤ v ∗ vT

shows w = t
〈proof 〉

4.2 Kruskal’s Algorithm
The following results are used for proving the correctness of Kruskal’s min-
imum spanning tree algorithm.

38

4.2.1 Preservation of Invariant

We first treat the preservation of the invariant. The following lemmas show
conditions necessary for preserving that f is a forest.
lemma kruskal-injective-inv-2 :

assumes arc e
and acyclic f

shows top ∗ e ∗ f T ? ∗ f T ≤ −e
〈proof 〉

lemma kruskal-injective-inv-3 :
assumes arc e

and forest f
shows (top ∗ e ∗ f T ?)T ∗ (top ∗ e ∗ f T ?) u f T ∗ f ≤ 1

〈proof 〉

lemma kruskal-acyclic-inv:
assumes acyclic f

and covector q
and (f u q)T ∗ f ? ∗ e = bot
and e ∗ f ? ∗ e = bot
and f T ? ∗ f ? ≤ −e

shows acyclic ((f u −q) t (f u q)T t e)
〈proof 〉

lemma kruskal-exchange-acyclic-inv-1 :
assumes acyclic f

and covector q
shows acyclic ((f u −q) t (f u q)T)
〈proof 〉

lemma kruskal-exchange-acyclic-inv-2 :
assumes acyclic w

and injective w
and d ≤ w
and bijective (dT ∗ top)
and bijective (e ∗ top)
and d ≤ top ∗ eT ∗ wT ?

and w ∗ eT ∗ top = bot
shows acyclic ((w u −d) t e)

〈proof 〉

4.2.2 Exchange gives Spanning Trees

The lemmas in this section are used to show that the relation after exchange
represents a spanning tree.
lemma inf-star-import:

assumes x ≤ z
and univalent z

39

and reflexive y
and regular z

shows x? ∗ y u z? ≤ x? ∗ (y u z?)
〈proof 〉

lemma kruskal-exchange-forest-components-inv:
assumes injective ((w u −d) t e)

and regular d
and e ∗ top ∗ e = e
and d ≤ top ∗ eT ∗ wT ?

and w ∗ eT ∗ top = bot
and injective w
and d ≤ w
and d ≤ (w u −d)T ? ∗ eT ∗ top

shows forest-components w ≤ forest-components ((w u −d) t e)
〈proof 〉

lemma kruskal-spanning-inv:
assumes injective ((f u −q) t (f u q)T t e)

and regular q
and regular e
and (−h u −−g)? ≤ forest-components f

shows components (−(h u −e u −eT) u g) ≤ forest-components ((f u −q) t
(f u q)T t e)
〈proof 〉

lemma kruskal-exchange-spanning-inv-1 :
assumes injective ((w u −q) t (w u q)T)

and regular (w u q)
and components g ≤ forest-components w

shows components g ≤ forest-components ((w u −q) t (w u q)T)
〈proof 〉

lemma kruskal-exchange-spanning-inv-2 :
assumes injective w

and w? ∗ eT = eT
and f t f T ≤ (w u −d u −dT) t (wT u −d u −dT)
and d ≤ forest-components f ∗ eT ∗ top

shows d ≤ (w u −d)T ? ∗ eT ∗ top
〈proof 〉

lemma kruskal-spanning-inv-1 :
assumes e ≤ F

and regular e
and components (−h u g) ≤ F
and equivalence F

shows components (−(h u −e u −eT) u g) ≤ F
〈proof 〉

40

lemma kruskal-reroot-edge:
assumes injective (eT ∗ top)

and acyclic w
shows ((w u −(top ∗ e ∗ wT ?)) t (w u top ∗ e ∗ wT ?)T) ∗ eT = bot

〈proof 〉

4.2.3 Exchange gives Minimum Spanning Trees

The lemmas in this section are used to show that the after exchange we
obtain a minimum spanning tree. The following lemmas show that the
relation characterising the edge across the cut is an arc.
lemma kruskal-edge-arc:

assumes equivalence F
and forest w
and arc e
and regular F
and F ≤ forest-components (F u w)
and regular w
and w ∗ eT = bot
and e ∗ F ∗ e = bot
and eT ≤ w?

shows arc (w u top ∗ eT ∗ wT ? u F ∗ eT ∗ top u top ∗ e ∗ −F)
〈proof 〉

lemma kruskal-edge-arc-1 :
assumes e ≤ −−h

and h ≤ g
and symmetric g
and components g ≤ forest-components w
and w ∗ eT = bot

shows eT ≤ w?

〈proof 〉

lemma kruskal-edge-between-components-1 :
assumes equivalence F

and mapping (top ∗ e)
shows F ≤ −(w u top ∗ eT ∗ wT ? u F ∗ eT ∗ top u top ∗ e ∗ −F)

〈proof 〉

lemma kruskal-edge-between-components-2 :
assumes forest-components f ≤ −d

and injective f
and f t f T ≤ w t wT

shows f t f T ≤ (w u −d u −dT) t (wT u −d u −dT)
〈proof 〉

end

41

4.3 Related Structures
Stone algebras can be expanded to Stone-Kleene relation algebras by reusing
some operations.
sublocale stone-algebra < comp-inf : stone-kleene-relation-algebra where star =
λx . top and one = top and times = inf and conv = id
〈proof 〉

Every bounded linear order can be expanded to a Stone algebra, which
can be expanded to a Stone relation algebra, which can be expanded to a
Stone-Kleene relation algebra.
class linorder-stone-kleene-relation-algebra-expansion =
linorder-stone-relation-algebra-expansion + star +

assumes star-def [simp]: x? = top
begin

subclass kleene-algebra
〈proof 〉

subclass stone-kleene-relation-algebra
〈proof 〉

end

A Kleene relation algebra is based on a relation algebra.
class kleene-relation-algebra = relation-algebra + stone-kleene-relation-algebra
begin

See https://arxiv.org/abs/2310.08946 for the following results scc-1 -
scc-4.
lemma scc-1 :

assumes 1 u y ≤ z
and xT ∗ y ≤ y
and y ∗ zT ≤ y
and (x u y) ∗ z ≤ z

shows x? u y ≤ z
〈proof 〉

lemma scc-2 :
assumes xT ∗ y ≤ y

and y ∗ (x u y)?T ≤ y
shows x? u y ≤ (x u y)?

〈proof 〉

lemma scc-3 :
x? u xT ? ≤ (x u xT ?)?

〈proof 〉

lemma scc-4 :

42

https://arxiv.org/abs/2310.08946

x? u xT ? = (x u xT ?)?

〈proof 〉

end

class stone-kleene-relation-algebra-tarski = stone-kleene-relation-algebra +
stone-relation-algebra-tarski

class kleene-relation-algebra-tarski = kleene-relation-algebra +
stone-kleene-relation-algebra-tarski
begin

subclass relation-algebra-tarski 〈proof 〉

end

class stone-kleene-relation-algebra-consistent = stone-kleene-relation-algebra +
stone-relation-algebra-consistent
begin

lemma acyclic-reachable-different:
assumes acyclic p bijective y x ≤ p+ ∗ y
shows x 6= y
〈proof 〉

end

class kleene-relation-algebra-consistent = kleene-relation-algebra +
stone-kleene-relation-algebra-consistent
begin

subclass relation-algebra-consistent 〈proof 〉

end

class stone-kleene-relation-algebra-tarski-consistent =
stone-kleene-relation-algebra + stone-relation-algebra-tarski-consistent
begin

subclass stone-kleene-relation-algebra-tarski 〈proof 〉

subclass stone-kleene-relation-algebra-consistent 〈proof 〉

end

class kleene-relation-algebra-tarski-consistent = kleene-relation-algebra +
stone-kleene-relation-algebra-tarski-consistent
begin

43

subclass relation-algebra-tarski-consistent 〈proof 〉

end

class linorder-stone-kleene-relation-algebra-tarski-consistent-expansion =
linorder-stone-kleene-relation-algebra-expansion + non-trivial-bounded-order
begin

subclass stone-kleene-relation-algebra-tarski-consistent
〈proof 〉

end

end

5 Subalgebras of Kleene Relation Algebras
In this theory we show that the regular elements of a Stone-Kleene relation
algebra form a Kleene relation subalgebra.
theory Kleene-Relation-Subalgebras

imports Stone-Relation-Algebras.Relation-Subalgebras Kleene-Relation-Algebras

begin

instantiation regular :: (stone-kleene-relation-algebra) kleene-relation-algebra
begin

lift-definition star-regular :: ′a regular ⇒ ′a regular is star
〈proof 〉

instance
〈proof 〉

end

end

6 Matrix Kleene Algebras
This theory gives a matrix model of Stone-Kleene relation algebras. The
main result is that matrices over Kleene algebras form Kleene algebras. The
automata-based construction is due to Conway [7]. An implementation of
the construction in Isabelle/HOL that extends [2] was given in [3] without
a correctness proof.

For specifying the size of matrices, Isabelle/HOL’s type system requires
the use of types, not sets. This creates two issues when trying to implement

44

Conway’s recursive construction directly. First, the matrix size changes for
recursive calls, which requires dependent types. Second, some submatrices
used in the construction are not square, which requires typed Kleene algebras
[14], that is, categories of Kleene algebras.

Because these instruments are not available in Isabelle/HOL, we use
square matrices with a constant size given by the argument of the Kleene
star operation. Smaller, possibly rectangular submatrices are identified by
two lists of indices: one for the rows to include and one for the columns to
include. Lists are used to make recursive calls deterministic; otherwise sets
would be sufficient.
theory Matrix-Kleene-Algebras

imports Stone-Relation-Algebras.Matrix-Relation-Algebras
Kleene-Relation-Algebras

begin

6.1 Matrix Restrictions
In this section we develop a calculus of matrix restrictions. The restriction of
a matrix to specific row and column indices is implemented by the following
function, which keeps the size of the matrix and sets all unused entries to
bot.
definition restrict-matrix :: ′a list ⇒ (′a, ′b::bot) square ⇒ ′a list ⇒ (′a, ′b)
square (‹- 〈-〉 -› [90 ,41 ,90] 91)

where restrict-matrix as f bs = (λ(i,j) . if List.member as i ∧ List.member bs j
then f (i,j) else bot)

The following function captures Conway’s automata-based construction
of the Kleene star of a matrix. An index k is chosen and s contains all other
indices. The matrix is split into four submatrices a, b, c, d including/not
including row/column k. Four matrices are computed containing the entries
given by Conway’s construction. These four matrices are added to obtain
the result. All matrices involved in the function have the same size, but
matrix restriction is used to set irrelevant entries to bot.
primrec star-matrix ′ :: ′a list ⇒ (′a, ′b::{star ,times,bounded-semilattice-sup-bot})
square ⇒ (′a, ′b) square where
star-matrix ′ Nil g = mbot |
star-matrix ′ (k#s) g = (

let r = [k] in
let a = r〈g〉r in
let b = r〈g〉s in
let c = s〈g〉r in
let d = s〈g〉s in
let as = r〈star o a〉r in
let ds = star-matrix ′ s d in

45

let e = a ⊕ b � ds � c in
let es = r〈star o e〉r in
let f = d ⊕ c � as � b in
let fs = star-matrix ′ s f in
es ⊕ as � b � fs ⊕ ds � c � es ⊕ fs

)

The Kleene star of the whole matrix is obtained by taking as indices
all elements of the underlying type ′a. This is conveniently supplied by the
enum class.
fun star-matrix :: (′a::enum, ′b::{star ,times,bounded-semilattice-sup-bot}) square
⇒ (′a, ′b) square (‹-�› [100] 100) where star-matrix f = star-matrix ′

(enum-class.enum:: ′a list) f

The following lemmas deconstruct matrices with non-empty restrictions.
lemma restrict-empty-left:
[]〈f 〉ls = mbot
〈proof 〉

lemma restrict-empty-right:
ks〈f 〉[] = mbot
〈proof 〉

lemma restrict-nonempty-left:
fixes f :: (′a, ′b::bounded-semilattice-sup-bot) square
shows (k#ks)〈f 〉ls = [k]〈f 〉ls ⊕ ks〈f 〉ls
〈proof 〉

lemma restrict-nonempty-right:
fixes f :: (′a, ′b::bounded-semilattice-sup-bot) square
shows ks〈f 〉(l#ls) = ks〈f 〉[l] ⊕ ks〈f 〉ls
〈proof 〉

lemma restrict-nonempty:
fixes f :: (′a, ′b::bounded-semilattice-sup-bot) square
shows (k#ks)〈f 〉(l#ls) = [k]〈f 〉[l] ⊕ [k]〈f 〉ls ⊕ ks〈f 〉[l] ⊕ ks〈f 〉ls
〈proof 〉

The following predicate captures that two index sets are disjoint. This
has consequences for composition and the unit matrix.
abbreviation disjoint ks ls ≡ ¬(∃ x . List.member ks x ∧ List.member ls x)

lemma times-disjoint:
fixes f g :: (′a, ′b::idempotent-semiring) square
assumes disjoint ls ms

shows ks〈f 〉ls � ms〈g〉ns = mbot
〈proof 〉

lemma one-disjoint:

46

assumes disjoint ks ls
shows ks〈(mone::(′a, ′b::idempotent-semiring) square)〉ls = mbot

〈proof 〉

The following predicate captures that an index set is a subset of another
index set. This has consequences for repeated restrictions.
abbreviation is-sublist ks ls ≡ ∀ x . List.member ks x −→ List.member ls x

lemma restrict-sublist:
assumes is-sublist ls ks

and is-sublist ms ns
shows ls〈ks〈f 〉ns〉ms = ls〈f 〉ms

〈proof 〉

lemma restrict-superlist:
assumes is-sublist ls ks

and is-sublist ms ns
shows ks〈ls〈f 〉ms〉ns = ls〈f 〉ms

〈proof 〉

The following lemmas give the sizes of the results of some matrix oper-
ations.
lemma restrict-sup:

fixes f g :: (′a, ′b::bounded-semilattice-sup-bot) square
shows ks〈f ⊕ g〉ls = ks〈f 〉ls ⊕ ks〈g〉ls
〈proof 〉

lemma restrict-times:
fixes f g :: (′a, ′b::idempotent-semiring) square
shows ks〈ks〈f 〉ls � ls〈g〉ms〉ms = ks〈f 〉ls � ls〈g〉ms
〈proof 〉

lemma restrict-star :
fixes g :: (′a, ′b::kleene-algebra) square
shows t〈star-matrix ′ t g〉t = star-matrix ′ t g
〈proof 〉

lemma restrict-one:
assumes ¬ List.member ks k

shows (k#ks)〈(mone::(′a, ′b::idempotent-semiring) square)〉(k#ks) =
[k]〈mone〉[k] ⊕ ks〈mone〉ks
〈proof 〉

lemma restrict-one-left-unit:
ks〈(mone::(′a::finite, ′b::idempotent-semiring) square)〉ks � ks〈f 〉ls = ks〈f 〉ls
〈proof 〉

The following lemmas consider restrictions to singleton index sets.
lemma restrict-singleton:

47

([k]〈f 〉[l]) (i,j) = (if i = k ∧ j = l then f (i,j) else bot)
〈proof 〉

lemma restrict-singleton-list:
([k]〈f 〉ls) (i,j) = (if i = k ∧ List.member ls j then f (i,j) else bot)
〈proof 〉

lemma restrict-list-singleton:
(ks〈f 〉[l]) (i,j) = (if List.member ks i ∧ j = l then f (i,j) else bot)
〈proof 〉

lemma restrict-singleton-product:
fixes f g :: (′a::finite, ′b::kleene-algebra) square
shows ([k]〈f 〉[l] � [m]〈g〉[n]) (i,j) = (if i = k ∧ l = m ∧ j = n then f (i,l) ∗ g

(m,j) else bot)
〈proof 〉

The Kleene star unfold law holds for matrices with a single entry on the
diagonal.
lemma restrict-star-unfold:
[l]〈(mone::(′a::finite, ′b::kleene-algebra) square)〉[l] ⊕ [l]〈f 〉[l] � [l]〈star o f 〉[l] =

[l]〈star o f 〉[l]
〈proof 〉

lemma restrict-all:
enum-class.enum〈f 〉enum-class.enum = f
〈proof 〉

The following shows the various components of a matrix product. It is
essentially a recursive implementation of the product.
lemma restrict-nonempty-product:

fixes f g :: (′a::finite, ′b::idempotent-semiring) square
assumes ¬ List.member ls l

shows (k#ks)〈f 〉(l#ls) � (l#ls)〈g〉(m#ms) = ([k]〈f 〉[l] � [l]〈g〉[m] ⊕ [k]〈f 〉ls
� ls〈g〉[m]) ⊕ ([k]〈f 〉[l] � [l]〈g〉ms ⊕ [k]〈f 〉ls � ls〈g〉ms) ⊕ (ks〈f 〉[l] � [l]〈g〉[m] ⊕
ks〈f 〉ls � ls〈g〉[m]) ⊕ (ks〈f 〉[l] � [l]〈g〉ms ⊕ ks〈f 〉ls � ls〈g〉ms)
〈proof 〉

Equality of matrices is componentwise.
lemma restrict-nonempty-eq:
(k#ks)〈f 〉(l#ls) = (k#ks)〈g〉(l#ls) ←→ [k]〈f 〉[l] = [k]〈g〉[l] ∧ [k]〈f 〉ls = [k]〈g〉ls
∧ ks〈f 〉[l] = ks〈g〉[l] ∧ ks〈f 〉ls = ks〈g〉ls
〈proof 〉

Inequality of matrices is componentwise.
lemma restrict-nonempty-less-eq:

fixes f g :: (′a, ′b::idempotent-semiring) square
shows (k#ks)〈f 〉(l#ls) � (k#ks)〈g〉(l#ls) ←→ [k]〈f 〉[l] � [k]〈g〉[l] ∧ [k]〈f 〉ls �

[k]〈g〉ls ∧ ks〈f 〉[l] � ks〈g〉[l] ∧ ks〈f 〉ls � ks〈g〉ls

48

〈proof 〉

The following lemmas treat repeated restrictions to disjoint index sets.
lemma restrict-disjoint-left:

assumes disjoint ks ms
shows ms〈ks〈f 〉ls〉ns = mbot

〈proof 〉

lemma restrict-disjoint-right:
assumes disjoint ls ns

shows ms〈ks〈f 〉ls〉ns = mbot
〈proof 〉

The following lemma expresses the equality of a matrix and a product
of two matrices componentwise.
lemma restrict-nonempty-product-eq:

fixes f g h :: (′a::finite, ′b::idempotent-semiring) square
assumes ¬ List.member ks k

and ¬ List.member ls l
and ¬ List.member ms m

shows (k#ks)〈f 〉(l#ls) � (l#ls)〈g〉(m#ms) = (k#ks)〈h〉(m#ms) ←→
[k]〈f 〉[l] � [l]〈g〉[m] ⊕ [k]〈f 〉ls � ls〈g〉[m] = [k]〈h〉[m] ∧ [k]〈f 〉[l] � [l]〈g〉ms ⊕
[k]〈f 〉ls � ls〈g〉ms = [k]〈h〉ms ∧ ks〈f 〉[l] � [l]〈g〉[m] ⊕ ks〈f 〉ls � ls〈g〉[m] =
ks〈h〉[m] ∧ ks〈f 〉[l] � [l]〈g〉ms ⊕ ks〈f 〉ls � ls〈g〉ms = ks〈h〉ms
〈proof 〉

The following lemma gives a componentwise characterisation of the in-
equality of a matrix and a product of two matrices.
lemma restrict-nonempty-product-less-eq:

fixes f g h :: (′a::finite, ′b::idempotent-semiring) square
assumes ¬ List.member ks k

and ¬ List.member ls l
and ¬ List.member ms m

shows (k#ks)〈f 〉(l#ls) � (l#ls)〈g〉(m#ms) � (k#ks)〈h〉(m#ms) ←→
[k]〈f 〉[l] � [l]〈g〉[m] ⊕ [k]〈f 〉ls � ls〈g〉[m] � [k]〈h〉[m] ∧ [k]〈f 〉[l] � [l]〈g〉ms ⊕
[k]〈f 〉ls � ls〈g〉ms � [k]〈h〉ms ∧ ks〈f 〉[l] � [l]〈g〉[m] ⊕ ks〈f 〉ls � ls〈g〉[m] �
ks〈h〉[m] ∧ ks〈f 〉[l] � [l]〈g〉ms ⊕ ks〈f 〉ls � ls〈g〉ms � ks〈h〉ms
〈proof 〉

The Kleene star induction laws hold for matrices with a single entry on
the diagonal. The matrix g can actually contain a whole row/colum at the
appropriate index.
lemma restrict-star-left-induct:

fixes f g :: (′a::finite, ′b::kleene-algebra) square
shows distinct ms =⇒ [l]〈f 〉[l] � [l]〈g〉ms � [l]〈g〉ms =⇒ [l]〈star o f 〉[l] �

[l]〈g〉ms � [l]〈g〉ms
〈proof 〉

lemma restrict-star-right-induct:

49

fixes f g :: (′a::finite, ′b::kleene-algebra) square
shows distinct ms =⇒ ms〈g〉[l] � [l]〈f 〉[l] � ms〈g〉[l] =⇒ ms〈g〉[l] � [l]〈star o

f 〉[l] � ms〈g〉[l]
〈proof 〉

lemma restrict-pp:
fixes f :: (′a, ′b::p-algebra) square
shows ks〈		f 〉ls = 		(ks〈f 〉ls)
〈proof 〉

lemma pp-star-commute:
fixes f :: (′a, ′b::stone-kleene-relation-algebra) square
shows 		(star o f) = star o 		f
〈proof 〉

6.2 Matrices form a Kleene Algebra
Matrices over Kleene algebras form a Kleene algebra using Conway’s con-
struction. It remains to prove one unfold and two induction axioms of the
Kleene star. Each proof is by induction over the size of the matrix repre-
sented by an index list.
interpretation matrix-kleene-algebra: kleene-algebra-var where sup =
sup-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix::(′a::enum, ′b::kleene-algebra) square and one = one-matrix and times
= times-matrix and star = star-matrix
〈proof 〉

6.3 Matrices form a Stone-Kleene Relation Algebra
Matrices over Stone-Kleene relation algebras form a Stone-Kleene relation
algebra. It remains to prove the axiom about the interaction of Kleene star
and double complement.
interpretation matrix-stone-kleene-relation-algebra: stone-kleene-relation-algebra
where sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and
less = less-matrix and bot =
bot-matrix::(′a::enum, ′b::stone-kleene-relation-algebra) square and top =
top-matrix and uminus = uminus-matrix and one = one-matrix and times =
times-matrix and conv = conv-matrix and star = star-matrix
〈proof 〉

interpretation matrix-stone-kleene-relation-algebra-consistent:
stone-kleene-relation-algebra-consistent where sup = sup-matrix and inf =
inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix :: (′a::enum, ′b::stone-kleene-relation-algebra-consistent) square and top
= top-matrix and uminus = uminus-matrix and one = one-matrix and times =
times-matrix and conv = conv-matrix and star = star-matrix
〈proof 〉

50

interpretation matrix-stone-kleene-relation-algebra-tarski:
stone-kleene-relation-algebra-tarski where sup = sup-matrix and inf =
inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix :: (′a::enum, ′b::stone-kleene-relation-algebra-tarski) square and top =
top-matrix and uminus = uminus-matrix and one = one-matrix and times =
times-matrix and conv = conv-matrix and star = star-matrix
〈proof 〉

interpretation matrix-stone-kleene-relation-algebra-tarski-consistent:
stone-kleene-relation-algebra-tarski-consistent where sup = sup-matrix and inf
= inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix :: (′a::enum, ′b::stone-kleene-relation-algebra-tarski-consistent) square
and top = top-matrix and uminus = uminus-matrix and one = one-matrix and
times = times-matrix and conv = conv-matrix and star = star-matrix
〈proof 〉

end

References
[1] A. Armstrong, S. Foster, G. Struth, and T. Weber. Relation algebra.

Archive of Formal Proofs, 2016, first version 2014.

[2] A. Armstrong, V. B. F. Gomes, G. Struth, and T. Weber. Kleene
algebra. Archive of Formal Proofs, 2016, first version 2013.

[3] T. Asplund. Formalizing the Kleene star for square matrices. Bache-
lor Thesis IT 14 002, Uppsala Universitet, Department of Information
Technology, 2014.

[4] R. J. R. Back and J. von Wright. Reasoning algebraically about loops.
Acta Inf., 36(4):295–334, 1999.

[5] S. L. Bloom and Z. Ésik. Iteration Theories: The Equational Logic of
Iterative Processes. Springer, 1993.

[6] E. Cohen. Separation and reduction. In R. Backhouse and J. N.
Oliveira, editors, Mathematics of Program Construction, volume 1837
of Lecture Notes in Computer Science, pages 45–59. Springer, 2000.

[7] J. H. Conway. Regular Algebra and Finite Machines. Chapman and
Hall, 1971.

[8] S. Foster and G. Struth. Regular algebras. Archive of Formal Proofs,
2016, first version 2014.

[9] W. Guttmann. Algebras for iteration and infinite computations. Acta
Inf., 49(5):343–359, 2012.

51

[10] W. Guttmann. Relation-algebraic verification of Prim’s minimum span-
ning tree algorithm. In A. Sampaio and F. Wang, editors, Theoretical
Aspects of Computing – ICTAC 2016, volume 9965 of Lecture Notes in
Computer Science, pages 51–68. Springer, 2016.

[11] W. Guttmann. Stone relation algebras. Archive of Formal Proofs, 2017.

[12] W. Guttmann. Stone relation algebras. In P. Höfner, D. Pous, and
G. Struth, editors, Relational and Algebraic Methods in Computer
Science, volume 10226 of Lecture Notes in Computer Science, pages
127–143. Springer, 2017.

[13] D. Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Information and Computation, 110(2):366–390, 1994.

[14] D. Kozen. Typed Kleene algebra. Technical Report TR98-1669, Cornell
University, 1998.

[15] B. Möller. Kleene getting lazy. Sci. Comput. Programming,
65(2):195–214, 2007.

[16] K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis, Uni-
versity of California, Berkeley, 1984.

[17] J. von Wright. Towards a refinement algebra. Sci. Comput. Program-
ming, 51(1–2):23–45, 2004.

52

	Synopsis and Motivation
	Iterings
	Conway Semirings
	Iterings

	Kleene Algebras
	Kleene Relation Algebras
	Prim's Algorithm
	Preservation of Invariant
	Exchange gives Spanning Trees
	Exchange gives Minimum Spanning Trees
	Invariant implies Postcondition

	Kruskal's Algorithm
	Preservation of Invariant
	Exchange gives Spanning Trees
	Exchange gives Minimum Spanning Trees

	Related Structures

	Subalgebras of Kleene Relation Algebras
	Matrix Kleene Algebras
	Matrix Restrictions
	Matrices form a Kleene Algebra
	Matrices form a Stone-Kleene Relation Algebra

