Stone-Kleene Relation Algebras

Walter Guttmann

March 17, 2025

Abstract

We develop Stone-Kleene relation algebras, which expand Stone re-
lation algebras with a Kleene star operation to describe reachability in
weighted graphs. Many properties of the Kleene star arise as a special
case of a more general theory of iteration based on Conway semirings
extended by simulation axioms. This includes several theorems repre-
senting complex program transformations. We formally prove the cor-
rectness of Conway’s automata-based construction of the Kleene star
of a matrix. We prove numerous results useful for reasoning about
weighted graphs.

Contents
1 Synopsis and Motivation

2 TIterings
2.1 Conway Semirings
2.2 Tterings L

3 Kleene Algebras

4 Kleene Relation Algebras
4.1 Prim’s Algorithm
4.1.1 Preservation of Invariant
4.1.2 Exchange gives Spanning Trees
4.1.3 Exchange gives Minimum Spanning Trees
4.1.4 Invariant implies Postcondition
4.2 Kruskal’s Algorithm 0oL
4.2.1 Preservation of Invariant
4.2.2 Exchange gives Spanning Trees
4.2.3 Exchange gives Minimum Spanning Trees
4.3 Related Structures oo

5 Subalgebras of Kleene Relation Algebras

11

20

35
46
46
53
70
82
85
85
90
97
107

111

6 Matrix Kleene Algebras 112

6.1 Matrix Restrictions L. 112
6.2 Matrices form a Kleene Algebra 127
6.3 Matrices form a Stone-Kleene Relation Algebra 141

1 Synopsis and Motivation

This document describes the following five theory files:

*

Iterings describes a general iteration operation that works for many dif-
ferent computation models. We first consider equational axioms based
on variants of Conway semirings. We expand these structures by gen-
eralised simulation axioms, which hold in total and general correctness
models, not just in partial correctness models like the induction ax-
ioms. Simulation axioms are still powerful enough to prove separation
theorems and Back’s atomicity refinement theorem [4].

Kleene Algebras form a particular instance of iterings in which the
iteration is implemented as a least fixpoint. We implement them based
on Kozen’s axioms [13], but most results are inherited from Conway
semirings and iterings.

Kleene Relation Algebras introduces Stone-Kleene relation algebras,
which combine Stone relation algebras and Kleene algebras. This is
similar to relation algebras with transitive closure [16] but allows us
to talk about reachability in weighted graphs. Many results in this
theory are useful for verifying the correctness of Prim’s and Kruskal’s
minimum spanning tree algorithms.

Subalgebras of Kleene Relation Algebras studies the regular elements
of a Stone-Kleene relation algebra and shows that they form a Kleene
relation subalgebra.

Matrix Kleene Algebras lifts the Kleene star to finite square matrices
using Conway’s automata-based construction. This involves an oper-
ation to restrict matrices to specific indices and a calculus for such
restrictions. An implementation for the Kleene star of matrices was
given in [3] without proof; this is the first formally verified correctness
proof.

The development is based on a theory of Stone relation algebras [11, 12].
We apply Stone-Kleene relation algebras to verify Prim’s minimum spanning
tree algorithm in Isabelle/HOL in [10].

Related libraries for Kleene algebras, regular algebras and relation al-
gebras in the Archive of Formal Proofs are [1, 2, 8]. Kleene algebras are
covered in the theory Kleene_Algebra/Kleene_Algebra.thy, but unlike

the present development it is not based on general algebras using simula-
tion axioms, which are useful to describe various computation models. The
theory Regular_Algebras/Regular_Algebras.thy compares different ax-
iomatisations of regular algebras. The theory Kleene_Algebra/Matrix.thy
covers matrices over dioids, but does not implement the Kleene star of matri-
ces. The theory Relation_Algebra/Relation_Algebra_RTC.thy combines
Kleene algebras and relation algebras, but is very limited in scope and not
applicable as we need the weaker axioms of Stone relation algebras.

2 Iterings

This theory introduces algebraic structures with an operation that describes
iteration in various relational computation models. An iteration describes
the repeated sequential execution of a computation. This is typically mod-
elled by fixpoints, but different computation models use different fixpoints
in the refinement order. We therefore look at equational and simulation
axioms rather than induction axioms. Our development is based on [9] and
the proposed algebras generalise Kleene algebras.

We first consider a variant of Conway semirings [5] based on idempotent
left semirings. Conway semirings expand semirings by an iteration operation
satisfying Conway’s sumstar and productstar axioms [7]. Many properties
of iteration follow already from these equational axioms.

Next we introduce iterings, which use generalised versions of simulation
axioms in addition to sumstar and productstar. Unlike the induction axioms
of the Kleene star, which hold only in partial-correctness models, the simu-
lation axioms are also valid in total and general correctness models. They
are still powerful enough to prove the correctness of complex results such as
separation theorems of [6] and Back’s atomicity refinement theorem [4, 17].

theory Iterings
imports Stone-Relation-Algebras.Semirings

begin

2.1 Conway Semirings

In this section, we consider equational axioms for iteration. The algebraic
structures are based on idempotent left semirings, which are expanded by a
unary iteration operation. We start with an unfold property, one inequality
of the sliding rule and distributivity over joins, which is similar to Conway’s
sumstar.

class circ =
fixes circ :: 'a = 'a (<-°» [100] 100)

class left-conway-semiring = idempotent-left-semiring + circ +
assumes circ-left-unfold: 1 U z * z° = z°
assumes circ-left-slide: (z % y)° * z < z * (y *)°
assumes circ-sup-1: (z U y)° = 2° % (y % z°)°

begin

We obtain one inequality of Conway’s productstar, as well as of the other
unfold rule.

lemma circ-mult-sub:

TUzx (yxz)° *xy < (zxy)°

by (metis sup-right-isotone circ-left-slide circ-left-unfold mult-assoc
mult-right-isotone)

lemma circ-right-unfold-sub:
1 Uz° %z <z°
by (metis circ-mult-sub mult-1-left mult-1-right)

lemma circ-zero:
bot® = 1
by (metis sup-monoid.add-0-right circ-left-unfold mult-left-zero)

lemma circ-increasing:

r < z°

by (metis le-supl2 circ-left-unfold circ-right-unfold-sub mult-1-left
mult-right-sub-dist-sup-left order-trans)

lemma circ-reflexive:
1 <z°
by (metis sup-left-divisibility circ-left-unfold)

lemma circ-mult-increasing:
< zx*z°
by (metis circ-reflexive mult-right-isotone mult-1-right)

lemma circ-mult-increasing-2:
< 2° %z
by (metis circ-reflexive mult-left-isotone mult-1-left)

lemma circ-transitive-equal:
z° x x° = z°
by (metis sup-idem circ-sup-1 circ-left-unfold mult-assoc)

While iteration is not idempotent, a fixpoint is reached after applying
this operation twice. Iteration is idempotent for the unit.

lemma circ-cire-cire:
xOOO — xOO

by (metis sup-idem circ-sup-1 circ-increasing circ-transitive-equal le-iff-sup)

lemma circ-one:

1 o — 1 [eXe}
by (metis circ-circ-circ circ-zero)

lemma circ-sup-sub:
(z° * y)° x 2° < (z U y)°
by (metis circ-sup-1 circ-left-slide)

lemma circ-plus-one:
z°=1Uz2°
by (metis le-iff-sup circ-reflexive)

Iteration satisfies a characteristic property of reflexive transitive closures.

lemma circ-rtc-2:
1 Uz U2 xa°=2°
by (metis sup-assoc circ-increasing circ-plus-one circ-transitive-equal le-iff-sup)

lemma mult-zero-circ:
(z % bot)° = 1 Uz * bot
by (metis circ-left-unfold mult-assoc mult-left-zero)

lemma mult-zero-sup-circe:
(z Uy * bot)® = 2° x (y * bot)°
by (metis circ-sup-1 mult-assoc mult-left-zero)

lemma circ-plus-sub:
°x x < 1z x 2°
by (metis circ-left-slide mult-1-left mult-1-right)

lemma circ-loop-fixpoint:

yx (Y *x2)Uz2=19°x2z2

by (metis sup-commute circ-left-unfold mult-assoc mult-1-left
mult-right-dist-sup)

lemma left-plus-below-circ:
T x 2° < x°
by (metis sup.cobounded? circ-left-unfold)

lemma right-plus-below-cire:
° ok x < x°
using circ-right-unfold-sub by auto

lemma circ-sup-upper-bound:
r<2 =y< 22 =2axUy<2°
by simp

lemma circ-mult-upper-bound:
<2 =y<z22=2zxxy<2°
by (metis mult-isotone circ-transitive-equal)

lemma circ-sub-dist:

2° < (z U y)°

by (metis circ-sup-sub circ-plus-one mult-1-left mult-right-sub-dist-sup-left
order-trans)

lemma circ-sub-dist-1:
z < (zUy)°
using circ-increasing le-supE by blast

lemma circ-sub-dist-2:
zxy < (zUy)°
by (metis sup-commute circ-mult-upper-bound circ-sub-dist-1)

lemma circ-sub-dist-3:
z° *x y° < (z U y)°
by (metis sup-commute circ-mult-upper-bound circ-sub-dist)

lemma circ-isotone:
r<y= 2° < y°
by (metis circ-sub-dist le-iff-sup)

lemma circ-sup-2:

(zUy)° < (2° xy°)°

by (metis sup.bounded-iff circ-increasing circ-isotone circ-reflexive mult-isotone
mult-1-left mult-1-right)

lemma circ-sup-one-left-unfold:

1 <zx= 1zx2°=2°

by (metis order.antisym le-iff-sup mult-1-left mult-right-sub-dist-sup-left
left-plus-below-circ)

lemma circ-sup-one-right-unfold:

1 <z=— 2°*xz=121°

by (metis order.antisym le-iff-sup mult-left-sub-dist-sup-left mult-1-right
right-plus-below-circ)

lemma circ-decompose-4:

(IO * yO)O — IO * (yO * IO)O

by (metis sup-assoc sup-commute circ-sup-1 circ-loop-fixpoint circ-plus-one
cire-rte-2 circ-transitive-equal mult-assoc)

lemma circ-decompose-5:

(IO * yO)O — (yo * .TO)O

by (metis circ-decompose-4 circ-loop-fixpoint order.antisym
mult-right-sub-dist-sup-right mult-assoc)

lemma circ-decompose-6-:
xo * (y * ,TO)O — yo * (m * yO)O
by (metis sup-commute circ-sup-1)

lemma circ-decompose-7:
(z U y)° =2°%y°x (zUy)°
by (metis circ-sup-1 circ-decompose-6 circ-transitive-equal mult-assoc)

lemma circ-decompose-8:

(zUy)° = (zUy)° *a® =y

by (metis order.antisym eg-refl mult-assoc mult-isotone mult-1-right
cire-mult-upper-bound circ-reflexive circ-sub-dist-3)

lemma circ-decompose-9:
(IO * yO)O — IO * yO * (IO * yO)O
by (metis circ-decompose-4 mult-assoc)

lemma circ-decompose-10:

(IO * yO)O — (3,/,0 * yO)O * J/‘O * yO

by (metis sup-ge2 circ-loop-fixpoint circ-reflexive circ-sup-one-right-unfold
mult-assoc order-trans)

lemma circ-back-loop-prefirpoint:

(zxy°)xylUz<zx*qy°

by (metis sup.bounded-iff circ-left-unfold mult-assoc mult-left-sub-dist-sup-left
mult-right-isotone mult-1-right right-plus-below-circ)

We obtain the fixpoint and prefixpoint properties of iteration, but not
least or greatest fixpoint properties.

lemma circ-loop-is-fizpoint:
is-fixpoint (Ax .y * z U 2) (y° * 2)
by (metis circ-loop-fixpoint is-fixpoint-def)

lemma circ-back-loop-is-prefixpoint:
is-prefizpoint (Az . x x y U z) (2 * y°)
by (metis circ-back-loop-prefixpoint is-prefixpoint-def)

lemma circ-circ-sup:
(1 Ux)° =z°°
by (metis sup-commute circ-sup-1 circ-decompose-4 circ-zero mult-1-right)

lemma circ-circ-mult-sub:
z° x 1° < z°°

by (metis circ-increasing circ-isotone circ-mult-upper-bound circ-reflexive)

lemma left-plus-circ:

(z % 2°)° = 2°

by (metis circ-left-unfold circ-sup-1 mult-1-right mult-sub-right-one sup.absorbl
mult-assoc)

lemma right-plus-circ:
(z° * x)° = 2°

by (metis sup-commute circ-isotone circ-loop-fixpoint circ-plus-sub circ-sub-dist
order.eq-iff left-plus-circ)

lemma circ-square:
(z % x)° < z°
by (metis circ-increasing circ-isotone left-plus-circ mult-right-isotone)

lemma circ-mult-sub-sup:
(z % y)° < (zUy)°
by (metis sup-gel sup-ge2 circ-isotone circ-square mult-isotone order-trans)

lemma circ-sup-mult-zero:
z° %y = (xz Uy x bot)® *xy
proof —
have (z U y * bot)® x y = 2° * (I U y x bot) x y
by (metis mult-zero-sup-circ mult-zero-circ)
also have ... = z° * (y U y * bot)
by (metis mult-assoc mult-1-left mult-left-zero mult-right-dist-sup)
also have ... = 2° x y
by (metis sup-commute le-iff-sup zero-right-mult-decreasing)
finally show ?thesis
by simp
qed

lemma troeger-1:
(zUy)° =2°%(1Uy=x*(zUy)°)
by (metis circ-sup-1 circ-left-unfold mult-assoc)

lemma troeger-2:
(zUy)P xz=a"x(yx*(zUy)°*2zU2)
by (metis circ-sup-1 circ-loop-fizpoint mult-assoc)

lemma troeger-3:
(z Uy« bot)® = 2° x (1 Uy * bot)
by (metis mult-zero-sup-circ mult-zero-circ)

lemma circ-sup-sub-sup-one-1:

zUy<z°x(1Uwy)

by (metis circ-increasing circ-left-unfold mult-1-left mult-1-right
mult-left-sub-dist-sup mult-right-sub-dist-sup-left order-trans sup-mono)

lemma circ-sup-sub-sup-one-2:

2 (zUy) <z°x (1 Uy)

by (metis circ-sup-sub-sup-one-1 circ-transitive-equal mult-assoc
mult-right-isotone)

lemma circ-sup-sub-sup-one:
zxa®x (zUy) <z*xz°x(1Uy)
by (metis circ-sup-sub-sup-one-2 mult-assoc mult-right-isotone)

lemma circ-square-2:

(zxz)°x(z U 1) <a®

by (metis sup.bounded-iff circ-increasing circ-mult-upper-bound circ-reflexive
circ-square)

lemma circ-extra-circ:
(y * 2°)° = (y * ¢° * 2°)°
by (metis circ-decompose-6 circ-transitive-equal left-plus-circ mult-assoc)

lemma circ-circ-sub-mult:
1° % z° < g°°

by (metis circ-increasing circ-isotone circ-mult-upper-bound circ-reflexive)

lemma circ-decompose-11:

(IO * yO)O — (3,:0 * yO)O * a,/,O

by (metis circ-decompose-10 circ-decompose-4 circ-decompose-5
cire-decompose-9 left-plus-circ)

lemma circ-mult-below-circ-circ:

(% y)° < (2° % y)° x z°

by (metis circ-increasing circ-isotone circ-reflexive dual-order.trans
mult-left-isotone mult-right-isotone mult-1-right)

lemma power-below-circ:
power x i < x°
apply (induct rule: nat.induct)
apply (simp add: circ-reflexive)
by (simp add: circ-increasing circ-mult-upper-bound)

end

The next class considers the interaction of iteration with a greatest ele-
ment.

class bounded-left-conway-semiring = bounded-idempotent-left-semiring +
left-conway-semiring
begin

lemma circ-top:
top® = top
by (simp add: order.antisym circ-increasing)

lemma circ-right-top:
z° * top = top
by (metis sup-right-top circ-loop-fixpoint)

lemma circ-left-top:

top x z° = top
by (metis circ-right-top circ-top circ-decompose-11)

lemma mult-top-circ:
(z * top)®° = 1 U z x top
by (metis circ-left-top circ-left-unfold mult-assoc)

end

class left-zero-conway-semiring = idempotent-left-zero-semiring +
left-conway-semiring
begin

lemma mult-zero-sup-circ-2:
(x Uy * bot)® = z° U z° % y * bot
by (metis mult-assoc mult-left-dist-sup mult-1-right troeger-3)

lemma circ-unfold-sum:
(zUy)® =2z°Ua®*xyx*(zUy)°
by (metis mult-assoc mult-left-dist-sup mult-1-right troeger-1)

end

The next class assumes the full sliding equation.

class left-conway-semiring-1 = left-conway-semiring +
assumes circ-right-slide: * (y * 2)° < (z % y)° x ¢
begin

lemma circ-slide-1:
zx(yxx)° = (x*xy)° *ax
by (metis order.antisym circ-left-slide circ-right-slide)

This implies the full unfold rules and Conway’s productstar.

lemma circ-right-unfold-1:
1Uz°xz=2°
by (metis circ-left-unfold circ-slide-1 mult-1-left mult-1-right)

lemma circ-mult-1:
(zxy)P =1Ux*x(y*xxz)°*xy
by (metis circ-left-unfold circ-slide-1 mult-assoc)

lemma circ-sup-9:
(z U y)° = (2° % y)° * z°
by (metis circ-sup-1 circ-slide-1)

lemma circ-plus-same:

2% xx =2 % 2°
by (metis circ-slide-1 mult-1-left mult-1-right)

10

lemma circ-decompose-12:
z° % y° < (x° % y)° * 2°
by (metis circ-sup-9 circ-sub-dist-3)

end

class left-zero-conway-semiring-1 = left-zero-conway-semiring +
left-conway-semiring-1
begin

lemma circ-back-loop-fixpoint:

(zxy?)xylz=2x%y°

by (metis sup-commute circ-left-unfold circ-plus-same mult-assoc
mult-left-dist-sup mult-1-right)

lemma circ-back-loop-is-fixrpoint:
is-fizpoint Az . x * y U 2) (2 * y°)
by (metis circ-back-loop-fizpoint is-fixpoint-def)

lemma circ-elimination:

zxy=>bot=2zx*xy’ <z

by (metis sup-monoid.add-0-left circ-back-loop-fixpoint circ-plus-same
mult-assoc mult-left-zero order-refl)

end

2.2 TIterings

This section adds simulation axioms to Conway semirings. We consider
several classes with increasingly general simulation axioms.
class itering-1 = left-conway-semiring-1 +
assumes circ-simulate: z x t < yx z — 2z x 2° < y° % 2
begin

lemma cire-circ-mult:

1° % z° = z°°

by (metis order.antisym circ-circ-sup circ-reflexive circ-simulate circ-sub-dist-3
circ-sup-one-left-unfold circ-transitive-equal mult-1-left order-refl)

lemma sub-mult-one-circ:
zx 1°< 1°x*xzx
by (metis circ-simulate mult-1-left mult-1-right order-refl)

The left simulation axioms is enough to prove a basic import property
of tests.

lemma circ-import:
assumes p < p * p
and p < 1
and pxz <z xp

11

shows p x 2° = p * (p * x)°
proof —
have pxz <px*x(p*xx*p)*xp
by (metis assms coreflexive-transitive order.eq-iff test-preserves-equation
mult-assoc)
hence p x 2° < p x (p *)°
by (metis (no-types) assms circ-simulate circ-slide-1 test-preserves-equation)
thus ?thesis
by (metis assms(2) circ-isotone mult-left-isotone mult-1-left mult-right-isotone
order.antisym,)
qged

end

Including generalisations of both simulation axioms allows us to prove
separation rules.

class itering-2 = left-conway-semiring-1 +
assumes circ-simulate-right: z x ¢ < yx z U w — z % 2° < ¢° x (z U w * 2°)
assumes circ-simulate-left: © x z < zx yU w — 2° % 2 < (2 U 2° x w) * y°
begin

subclass itering-1
apply unfold-locales
by (metis sup-monoid.add-0-right circ-simulate-right mult-left-zero)

lemma circ-simulate-left-1:

rxz<zxy= 2°%2<zxy° Uz * bot

by (metis sup-monoid.add-0-right circ-simulate-left mult-assoc mult-left-zero
mult-right-dist-sup)

lemma circ-separate-1:
assumes y x T < T x Y
shows (z U y)° = z° x ¢°
proof —
have y° x x < z * y° U y° * bot
by (metis assms circ-simulate-left-1)
hence 3° * x % y° < z % y° % y° U y° * bot * y°
by (metis mult-assoc mult-left-isotone mult-right-dist-sup)
also have ... = z * y° U y° x bot
by (metis circ-transitive-equal mult-assoc mult-left-zero)
finally have y° * (z * y°)° < z° % (y° U y° * bot)
using circ-simulate-right mult-assoc by fastforce
also have ... = z° * y°
by (simp add: sup-absorbl zero-right-mult-decreasing)
finally have (z U y)° < z° % ¢°
by (simp add: circ-decompose-6 circ-sup-1)
thus ?thesis
by (simp add: order.antisym circ-sub-dist-3)
qged

12

lemma circ-circ-mult-1:

x° * 1° = 2°°

by (metis sup-commute circ-circ-sup circ-separate-1 mult-1-left mult-1-right
order-refl)

end

With distributivity, we also get Back’s atomicity refinement theorem.

class itering-3 = itering-2 + left-zero-conway-semiring-1
begin

lemma circ-simulate-1:
assumes y *x T < T *x Y
shows y° * 2° < z° % ¢°
proof —
have y * 2° < z° x y
by (metis assms circ-simulate)
hence y° * z° < z° % y° U y° * bot
by (metis circ-simulate-left-1)
thus ?thesis
by (metis sup-assoc sup-monoid.add-0-right circ-loop-fixpoint mult-assoc
mult-left-zero mult-zero-sup-circ-2)
qged

lemma atomicity-refinement:
assumes s = s * ¢
and r = ¢ x x
and ¢ x b = bot
and r * b < bxr
and r+x [<I[xr
andzx [<l[lx*xz
and bx [< [l=xb
and ¢ x| <[x g
and 7° x ¢ < ¢ * r°
and ¢ < 1
shows s (z U bUTrUD° *qg<sx(z*bxqlrll])P°
proof —
have (z UbUr)x I <Ilx(zUbUr)
using assms(5—7) mult-left-dist-sup mult-right-dist-sup semiring.add-mono
by presburger
hence sx (zUbUrUD°xqg=s*x°x(zUbdUT)® *xgq
by (metis sup-commute circ-separate-1 mult-assoc)
also have ... = s % [° % b° % r® % ¢ % (z % 0° x r° % ¢)°
proof —
have (b U r)° = b° % r°
by (simp add: assms(4) circ-separate-1)
hence b° * 1° % (g x (z % b° x r°))° = (z U b U r)°
by (metis (full-types) assms(2) circ-sup-1 sup-assoc sup-commute mult-assoc)

13

thus ?thesis
by (metis circ-slide-1 mult-assoc)
qed
also have ... < 5% [° % b° x 7° % ¢ * (T % b° % q % 1°)°
by (metis assms(9) circ-isotone mult-assoc mult-right-isotone)
also have ... < s % g * 1° % 0° % 1° % (z % b° x q x r°)°
by (metis assms(1,10) mult-left-isotone mult-right-isotone mult-1-right)
also have ... < s % [° % g% b° % 1° % (x % b° x g x r°)°
by (metis assms(1,8) circ-simulate mult-assoc mult-left-isotone
mult-right-isotone)
also have ... < s % [° % 7° % (z % b° % g *x r°)°
by (metis assms(3,10) sup-monoid.add-0-left circ-back-loop-fizpoint
cire-plus-same mult-assoc mult-left-zero mult-left-isotone mult-right-isotone
mult-1-right)
also have ... < sx (z * b° x g U r U I)°
by (metis sup-commute circ-sup-1 circ-sub-dist-3 mult-assoc
mult-right-isotone)
finally show ?thesis

qed

end

The following class contains the most general simulation axioms we con-
sider. They allow us to prove further separation properties.

class itering = idempotent-left-zero-semiring + circ +

assumes circ-sup: (z U y)° = (2° % y)° * z°

assumes circ-mult: (z % y)° =1 Uz * (y*x2)° *xy

assumes circ-simulate-right-plus: z * ¢ < y x y° x z U w — z x 2° < 3° x (2
U w * 2°)

assumes circ-simulate-left-plus: z % 2 < z % y° U w — 2° * 2 < (z U 2° % w)
* y°
begin

(o)

lemma circ-right-unfold:
1Uz2° xz=2°
by (metis circ-mult mult-1-left mult-1-right)

lemma cire-slide:
zx (yxz)° = (zxy) *xzx
proof —
have z x (yxz)° =Rfx (yx 1 Uyx (zx (y*x2)° xy)) xx
by (metis (no-types) circ-mult mult-1-left mult-1-right mult-left-dist-sup
mult-right-dist-sup mult-assoc)
thus ?thesis
by (metis (no-types) circ-mult mult-1-right mult-left-dist-sup mult-assoc)
qed

subclass itering-3

14

apply unfold-locales

apply (metis circ-mult mult-1-left mult-1-right)

apply (metis circ-slide order-refl)

apply (metis circ-sup circ-slide)

apply (metis circ-slide order-refl)

apply (metis sup-left-isotone circ-right-unfold mult-left-isotone
mult-left-sub-dist-sup-left mult-1-right order-trans circ-simulate-right-plus)

by (metis sup-commute sup-gel sup-right-isotone circ-mult mult-right-isotone
mult-1-right order-trans circ-simulate-left-plus)

lemma circ-simulate-right-plus-1:
zx < y*xy kz=— z*xa° <y %z
by (metis sup-monoid.add-0-right circ-simulate-right-plus mult-left-zero)

lemma circ-simulate-left-plus-1:
xxz2<zxy = 2°*x 2 < zx*xy° Ux° x bot
by (metis sup-monoid.add-0-right circ-simulate-left-plus mult-assoc
mult-left-zero mult-right-dist-sup)

lemma circ-simulate-2:
yxx® < 2% %y — y° xx° < 2° % g°
apply (rule iffT)
apply (metis sup-assoc sup-monoid.add-0-right circ-loop-fixpoint
cire-simulate-left-plus-1 mult-assoc mult-left-zero mult-zero-sup-cire-2)
by (metis circ-increasing mult-left-isotone order-trans)

lemma circ-simulate-absorb:
yxzx < zx=—= y°xx < xUy° * bot
by (metis circ-simulate-left-plus-1 circ-zero mult-1-right)

lemma circ-simulate-3:

yx2° < 2% = y° x3° <2 xy°

by (metis sup.bounded-iff circ-reflexive circ-simulate-2 le-iff-sup
mult-right-isotone mult-1-right)

lemma circ-separate-mult-1:
yxrx<zcxy= (zx*xy)° <z°x*y°
by (metis circ-mult-sub-sup circ-separate-1)

lemma circ-separate-unfold:

(y x2°)° =9 U y° xy*zx1°x*(y*a°)°

by (metis circ-back-loop-fizpoint circ-plus-same circ-unfold-sum sup-commute
mult-assoc)

lemma separation:
assumes y x ¢ < x % y°
shows (z U y)° = z° x ¢°
proof —
have y° * z x y° < x * y° Ll y° * bot

15

by (metis assms circ-simulate-left-plus-1 circ-transitive-equal mult-assoc
mult-left-isotone)
thus ?thesis
by (metis sup-commute circ-sup-1 circ-simulate-right circ-sub-dist-8 le-iff-sup
mult-assoc mult-left-zero zero-right-mult-decreasing)
qed

lemma simulation:
yxx <z kY’ = y° x 2° < 2° x y°
by (metis sup-ge2 circ-isotone circ-mult-upper-bound circ-sub-dist separation)

lemma circ-simulate-4 :
assumes y * ¢ < z % 2° x (1 U y)
shows y° x 2° < 2° % ¢°
proof —
have z U (z*x 2° x z x x Uz %) = x * z°
by (metis (no-types) circ-back-loop-fixpoint mult-right-dist-sup sup-commute)
hence z <z *x2° % 1 LUx*xz° %y
by (metis mult-1-right sup-assoc sup-gel)
hence (1 Uy) xz <z *2°x% (I Uy)
using assms mult-left-dist-sup mult-right-dist-sup by force
hence y * 2° < z° x y°
by (metis circ-sup-upper-bound circ-increasing circ-reflexive
circ-simulate-right-plus-1 mult-right-isotone mult-right-sub-dist-sup-right
order-trans)
thus ?thesis
by (metis circ-simulate-2)
qed

lemma circ-simulate-5:
yxrx<zxa®x(zUy = y° xax° < z°xy°
by (metis circ-sup-sub-sup-one circ-simulate-4 order-trans)

lemma circ-simulate-6':
yxr<zx*x(zUy) = y° *x2° <z°xy°
by (metis sup-commute circ-back-loop-fixpoint circ-simulate-5
mult-right-sub-dist-sup-left order-trans)

lemma circ-separate-4:
assumes y x ¢ < z % 2° x (1 U y)
shows (z U y)° = z° x ¢°
proof —
have y * z x 2° <z % 2° * (I U y) x z°
by (simp add: assms mult-left-isotone)
also have ... =z« 2° Uz % 2° x y x 2°
by (simp add: circ-transitive-equal mult-left-dist-sup mult-right-dist-sup
mult-assoc)
also have ... < z % z° U z % 2° % 2° % ¢°
by (metis assms sup-right-isotone circ-simulate-2 circ-simulate-4 mult-assoc

16

mult-right-isotone)
finally have y x x x 2° < z * 2° % ¢°
by (metis circ-reflexive circ-transitive-equal le-iff-sup mult-assoc
mult-right-isotone mult-1-right)
thus ?thesis
by (metis circ-sup-1 left-plus-circ mult-assoc separation)
qed

lemma circ-separate-5:
yxzrx<zxz°x(zUy = (zUy)° =2z°xy°
by (metis circ-sup-sub-sup-one circ-separate-4 order-trans)

lemma circ-separate-6:
yrr<zx(zUy = (zUy)° =2°x*y°
by (metis sup-commute circ-back-loop-fixpoint circ-separate-5
mult-right-sub-dist-sup-left order-trans)

end

class bounded-itering = bounded-idempotent-left-zero-semiring + itering
begin

subclass bounded-left-conway-semiring ..

end

We finally expand Conway semirings and iterings by an element that
corresponds to the endless loop.

class L =
fixes L :: 'a

class left-conway-semiring-L = left-conway-semiring + L +
assumes one-circ-mult-split: 1° « x = L U x
assumes L-split-sup: ¢ x (y U L) <z xy U L

begin

lemma L-def:
L = 1° % bot
by (metis sup-monoid.add-0-right one-circ-mult-split)

lemma one-circ-split:
1°=Lul
by (metis mult-1-right one-circ-mult-split)

lemma one-circ-circ-split:

1°° =L U 1
by (metis circ-one one-circ-split)

17

lemma sub-mult-one-circ:
zx 1°< 1°x*xzx
by (metis L-split-sup sup-commute mult-1-right one-circ-mult-split)

lemma one-circ-mult-split-2:
1°xx=xx 1° UL
proof —
have I: z x 1° < L Uz
using one-circ-mult-split sub-mult-one-circ by presburger
have z Lz x 1° =z % 1°
by (meson circ-back-loop-prefizpoint le-iff-sup sup.boundedFE)
thus ?thesis
using 1 by (simp add: le-iff-sup one-circ-mult-split sup-assoc sup-commute)
qed

lemma sub-mult-one-circ-split:
r*x 1°<zUL
by (metis sup-commute one-circ-mult-split sub-mult-one-circ)

lemma sub-mult-one-circ-split-2:

r*x 1°<zU1°

by (metis L-def sup-right-isotone order-trans sub-mult-one-circ-split
zero-right-mult-decreasing)

lemma L-split:
z* L <xx*bot UL
by (metis L-split-sup sup-monoid.add-0-left)

lemma L-left-zero:
Lxz=1L
by (metis L-def mult-assoc mult-left-zero)

lemma one-circ-L:
1°x L=1
by (metis L-def circ-transitive-equal mult-assoc)

lemma mult-L-circ:
(xxL)°=1Uxzx*xL
by (metis L-left-zero circ-left-unfold mult-assoc)

lemma mult-L-circ-mult:
(zx L) xy=ylUzx*L
by (metis L-left-zero mult-L-circ mult-assoc mult-1-left mult-right-dist-sup)

lemma cire-L:

L°=Lul1
by (metis L-left-zero sup-commute circ-left-unfold)

18

lemma L-below-one-cire:
L<1°
by (metis L-def zero-right-mult-decreasing)

lemma circ-circ-mult-1:

x° x 1° = 2°°

by (metis L-left-zero sup-commute circ-sup-1 circ-circ-sup mult-zero-circ
one-circ-split)

lemma circ-circ-mult:
1° % 2° = 2°°
by (metis order.antisym circ-circ-mult-1 cire-circ-sub-mult sub-mult-one-circ)

lemma circ-circ-split:
z°° = LU z°
by (metis circ-circ-mult one-circ-mult-split)

lemma circ-sup-6:

LU (zUy) =(a°*y°)°

by (metis sup-assoc sup-commute circ-sup-1 circ-circ-sup circ-circ-split
cire-decompose-4)

end

class itering-L = itering + L +
assumes L-def: L = 1° * bot
begin

lemma one-circ-split:

1°=LU 1

by (metis L-def sup-commute order.antisym circ-sup-upper-bound circ-reflexive
cire-simulate-absorb mult-1-right order-refl zero-right-mult-decreasing)

lemma one-circ-mult-split:

1°xz=LUz

by (metis L-def sup-commute circ-loop-fizpoint mult-assoc mult-left-zero
mult-zero-circ one-circ-split)

lemma sub-mult-one-circ-split:
zxx 1°<zUL
by (metis sup-commute one-circ-mult-split sub-mult-one-circ)

lemma sub-mult-one-circ-split-2:

zx 1°< gl 1°

by (metis L-def sup-right-isotone order-trans sub-mult-one-circ-split
zero-right-mult-decreasing)

lemma L-split:
z*x L <xx*bot UL

19

by (metis L-def mult-assoc mult-left-isotone mult-right-dist-sup
sub-mult-one-circ-split-2)

subclass left-conway-semiring-L

apply unfold-locales

apply (metis L-def sup-commute circ-loop-fixpoint mult-assoc mult-left-zero
mult-zero-circ one-circ-split)

by (metis sup-commute mult-assoc mult-left-isotone one-circ-mult-split
sub-mult-one-circ)

lemma circ-left-induct-mult-L:
L<zrzr=zxy<z=—uzx*xy° <z
by (metis circ-one circ-simulate le-iff-sup one-circ-mult-split)

lemma circ-left-induct-mult-iff-L:
L<z=zxy<z+—axxy° <z
by (metis sup.bounded-iff circ-back-loop-fixpoint circ-left-induct-mult-L le-iff-sup)

lemma circ-left-induct-L:
L<r=zxyUz<zrz= 2zx9y° <=z
by (metis sup.bounded-iff circ-left-induct-mult-L le-iff-sup mult-right-dist-sup)

end

end

3 Kleene Algebras

Kleene algebras have been axiomatised by Kozen to describe the equational
theory of regular languages [13]. Binary relations are another important
model. This theory implements variants of Kleene algebras based on idem-
potent left semirings [15]. The weakening of some semiring axioms allows
the treatment of further computation models. The presented algebras are
special cases of iterings, so many results can be inherited.

theory Kleene-Algebras
imports lterings

begin

We start with left Kleene algebras, which use the left unfold and left
induction axioms of Kleene algebras.

class star =
fixes star :: 'a = 'a (<-*» [100] 100)

class left-kleene-algebra = idempotent-left-semiring + star +
assumes star-left-unfold : 1 Uy x y* < y*

20

assumes star-left-induct : z lyxz <z — y**x2z2 <z
begin

unbundle no trancl-syntax
abbreviation tc («-7» [100] 100) where tc z = x * z*

lemma star-left-unfold-equal:

1Uzxz*=2z"

by (metis sup-right-isotone order.antisym mult-right-isotone mult-1-right
star-left-induct star-left-unfold)

This means that for some properties of Kleene algebras, only one in-
equality can be derived, as exemplified by the following sliding rule.

lemma star-left-slide:

(zxy)rxz<zx*(y=*zx)*

by (metis mult-assoc mult-left-sub-dist-sup mult-1-right star-left-induct
star-left-unfold-equal)

lemma star-isotone:

r<y= 2* < y*

by (metis sup-right-isotone mult-left-isotone order-trans star-left-unfold
mult-1-right star-left-induct)

lemma star-sup-1:
(U y) =a"* (y*z%)"
proof (rule order.antisym)
have y * z* * (y * z*)* < (y * z%)*
using sup-right-divisibility star-left-unfold-equal by auto
also have ... < z* * (y x *)*
using mult-left-isotone sup-left-divisibility star-left-unfold-equal by fastforce
finally have (z U y) * (z* x (y x 2%)*) < 2* x (y * *)*
by (metis le-supl mult-right-dist-sup mult-right-sub-dist-sup-right mult-assoc
star-left-unfold-equal)
hence 1 U (z U y) * (z* % (y * 2%)*) < 2* % (y * 2*)*
using reflexive-mult-closed star-left-unfold by auto
thus (z U y)* < 2% * (y * 2*)*
using star-left-induct by force
next
have z* * (y *x 2*)* < 2* x (y x (z U y)*)*
by (simp add: mult-right-isotone star-isotone)
also have ... < 2* x ((z U y) = (z U y)*)*
by (simp add: mult-right-isotone mult-right-sub-dist-sup-right star-isotone)
also have ... < o* x (z U y)**
using mult-right-isotone star-left-unfold star-isotone by auto
also have ... < (z U y)* x (z U y)**
by (simp add: mult-left-isotone star-isotone)
also have ... < (z U y)*
by (metis sup.bounded-iff mult-1-right star-left-induct star-left-unfold)

21

finally show z* * (y * z*)* < (z U y)*
by simp
qed

lemma plus-transitive:

2T xzt < gt

by (metis mult-right-isotone star-left-induct sup-absorb2 sup-ge2 mult-assoc
star-left-unfold-equal)

end

We now show that left Kleene algebras form iterings. A sublocale is used
instead of a subclass, because iterings use a different iteration operation.

sublocale left-kleene-algebra < star: left-conway-semiring where circ = star
apply unfold-locales
apply (rule star-left-unfold-equal)
apply (rule star-left-slide)
by (rule star-sup-1)

context left-kleene-algebra
begin

A number of lemmas in this class are taken from Georg Struth’s Kleene
algebra theory [2].

lemma star-sub-one:

r<1=—2a2"=1

by (metis sup-right-isotone order.eq-iff le-iff-sup mult-1-right star.circ-plus-one
star-left-induct)

lemma star-one:
1 =1
by (simp add: star-sub-one)

lemma star-left-induct-mult:
rxy<y=>a2"xy<y
by (simp add: star-left-induct)

lemma star-left-induct-mult-iff:

rxy<y+—rrxy<y

using mult-left-isotone order-trans star.circ-increasing star-left-induct-mult by
blast

lemma star-involutive:
I* — CE**
using star.circ-circ-sup star-sup-1 star-one by auto

lemma star-sup-one:

(1 Uaz)r =z
using star.circ-circ-sup star-involutive by auto

22

lemma star-plus-loops:
U1 =a"U1
using star.circ-plus-one star-left-unfold-equal sup-commute by auto

lemma star-left-induct-equal:
Uz xy=y=a"x2<y
by (simp add: star-left-induct)

lemma star-left-induct-mult-equal:
rxy=y=a"xy <y
by (simp add: star-left-induct-mult)

lemma star-star-upper-bound:
x*gz*:x**gz*
using star-involutive by auto

lemma star-simulation-left:
assumes T *x 2 < 2 x Y
shows z* *x 2z < z % y*
proof —
have z x z x y* < z % y % y*
by (simp add: assms mult-left-isotone)
also have ... < z x y*
by (simp add: mult-right-isotone star.left-plus-below-circ mult-assoc)
finally have z U z % z x y* < z % y*
using star.circ-back-loop-prefixpoint by auto
thus ?thesis
by (simp add: star-left-induct mult-assoc)
qed

lemma quasicomm-1:

yxzrz<zcx(zUy)*+— y xz<zx*x(zUy*r

by (metis mult-isotone order-refl order-trans star.circ-increasing star-involutive
star-simulation-left)

lemma star-rtc-3:

lUzUyxy=y=—=a"<y

by (metis sup.bounded-iff le-iff-sup mult-left-sub-dist-sup-left mult-1-right
star-left-induct-mult-iff star.circ-sub-dist)

lemma star-decompose-1:
(zUy)* = (z" x y)*
apply (rule order.antisym)
apply (simp add: star.circ-sup-2)
using star.circ-sub-dist-3 star-isotone star-involutive by fastforce

lemma star-sum:
(zUy)* = (2" Uy)*

23

using star-decompose-1 star-involutive by auto

lemma star-decompose-3:
(x* * y*)* — w* * (y * .T*)*
using star-sup-1 star-decompose-1 by auto

In contrast to iterings, we now obtain that the iteration operation results
in least fixpoints.

lemma star-loop-least-fizpoint:
yxrxlz=0= y " *x2z<ux
by (simp add: sup-commute star-left-induct-equal)

lemma star-loop-is-least-fixpoint:
is-least-fizpoint (A\z . y * x U 2) (y* * 2)
by (simp add: is-least-fixpoint-def star.circ-loop-fizpoint star-loop-least-fixpoint)

lemma star-loop-mu:
w Az . yxzlz)=9y"xz
by (metis least-fixpoint-same star-loop-is-least-fixpoint)

lemma affine-has-least-fixpoint:
has-least-fizpoint (Az . y * = U 2)
by (metis has-least-fizpoint-def star-loop-is-least-fixpoint)

lemma star-outer-increasing:
< y*xx ok y*
by (metis star.circ-back-loop-prefizpoint star.circ-loop-fixpoint sup.boundedFE)

end

We next add the right induction rule, which allows us to strengthen many
inequalities of left Kleene algebras to equalities.

class strong-left-kleene-algebra = left-kleene-algebra +
assumes star-right-induct: z Uz xy <z — 2% y* < 2
begin

lemma star-plus:
yrrxy=yxy*
proof (rule order.antisym)
show y* x y < y % y*
by (simp add: star.circ-plus-sub)
next
have y* x yx y < y* x y
by (simp add: mult-left-isotone star.right-plus-below-circ)
hence yUy* xyxy <y xy
by (simp add: star.circ-mult-increasing-2)
thus y x y* < y* x y

24

using star-right-induct by blast
qed

lemma star-slide:
(xxy)**x=xx(y=*ax)*
proof (rule order.antisym)

show (z % y)* * z < z x (y * 2)*
by (rule star-left-slide)
next

have z U (zxy)* *xxxyxz < (zxy)* *x
by (metis (full-types) sup.commute eg-refl star.circ-loop-fizxpoint mult.assoc
star-plus)
thus z x (y x 2)* < (z x y)* *x z
by (simp add: mult-assoc star-right-induct)
qed

lemma star-simulation-right:
assumes 2 * T < Y * 2
shows z x 2% < y* % 2
proof —
have y* x z x ¢ < y* % 2
by (metis assms dual-order.trans mult-isotone mult-left-sub-dist-sup-right
star.circ-loop-fixpoint star.circ-transitive-equal sup.coboundedl mult-assoc)
thus ?thesis
by (metis le-supl star.circ-loop-fixpoint star-right-induct sup.cobounded?2)
qged

end

Again we inherit results from the itering hierarchy.

sublocale strong-left-kleene-algebra < star: itering-1 where circ = star
apply unfold-locales
apply (simp add: star-slide)
by (simp add: star-simulation-right)

context strong-left-kleene-algebra
begin

lemma star-right-induct-mult:
yxr<y=yx*xz* <y
by (simp add: star-right-induct)

lemma star-right-induct-mult-iff:

yrxr < y+—yxazt <y

using mult-right-isotone order-trans star.circ-increasing star-right-induct-mult
by blast

lemma star-simulation-right-equal:
ZxXx=Ykz= 2x " =y %2

25

by (metis order.eq-iff star-simulation-left star-simulation-right)

lemma star-simulation-star:
rxy < yxzr= "%y <y *xg*
by (simp add: star-simulation-left star-simulation-right)

lemma star-right-induct-equal:
zUyxrs=y= zxa* <y
by (simp add: star-right-induct)

lemma star-right-induct-mult-equal:
yxr=y=yxz-<y
by (simp add: star-right-induct-mult)

lemma star-back-loop-least-fixrpoint:
rxylz=2rz=2zxy* <z
by (simp add: sup-commute star-right-induct-equal)

lemma star-back-loop-is-least-fixpoint:
is-least-fizpoint (Az . x x y U 2) (2 * y*)
proof (unfold is-least-fizpoint-def, rule congl)
have (zx y* xyU 2) xy < zxy* *xy U 2
using le-supll mult-left-isotone star.circ-back-loop-prefixpoint by auto
hence z + y* < z*x y* x y U 2
by (simp add: star-right-induct)
thus z x y* x y U 2 = 2 % y*
using order.antisym star.circ-back-loop-prefizpoint by auto
next
showVz. zxylUz=0— zxy" <z
by (simp add: star-back-loop-least-fizpoint)
qed

lemma star-back-loop-mu:
p Az .z xylz)=2z%y*
by (metis least-fizpoint-same star-back-loop-is-least-fizpoint)

lemma star-square:
= (1 Uzx)x (z*z)*
proof —
let 2f = Ay . y*xaxz U I
have 1: isotone ?f
by (metis sup-left-isotone isotone-def mult-left-isotone)
have ?f o 2f = (A\y . yx (z * z) U (I U x))
by (simp add: sup-assoc sup-commute mult-assoc mult-right-dist-sup o-def)
thus ?thesis
using 1 by (metis mu-square mult-left-one star-back-loop-mu
has-least-fizpoint-def star-back-loop-is-least-fixpoint)
qed

26

lemma star-square-2:
zr=(z*xzx)*x(z U 1)
proof —
have (1 Uz)* (zx2)* = (zx2)* x I Uz * (x % x)*
using mult-right-dist-sup by force
thus ?thesis
by (metis (no-types) order.antisym mult-left-sub-dist-sup star.circ-square-2
star-slide sup-commute star-square)
qed

lemma star-circ-simulate-right-plus:
assumes z x x < yx y* x z U w
shows z * z* < y* x (z U w * z*)
proof —
have z U wx*z*) xz < z*xz U w* z*
using mult-right-dist-sup star.circ-back-loop-prefirpoint sup-right-isotone by
auto
also have ... < y* y* * z U w U w * z*
using assms sup-left-isotone by blast
also have ... < y *x y* x 2z U w * z*
using le-supll star.circ-back-loop-prefixpoint sup-commute by auto
also have ... < y* * (z U w * z*)
by (metis sup.bounded-iff mult-isotone mult-left-isotone mult-left-one
mult-left-sub-dist-sup-left star.circ-reflexive star.left-plus-below-circ)
finally have y* * (z U w x 2*) x 2 < y* * (z U w * z*)
by (metis mult-assoc mult-right-isotone star.circ-transitive-equal)
thus ?thesis
by (metis sup.bounded-iff star-right-induct mult-left-sub-dist-sup-left
star.cire-loop-firxpoint)
qed

lemma transitive-star:

rxr<r—ax"*=1Uzx

by (metis order.antisym star.circ-mult-increasing-2 star.circ-plus-same
star-left-induct-mult star-left-unfold-equal)

lemma star-sup-2:
assumes T x T <
and z x y < x
shows (z U y)* = y* * (z U 1)
proof —
have (z U y)* = y* * (z x y*)*
by (simp add: star.circ-decompose-6 star-sup-1)
also have ... = y* *x x*
using assms(2) dual-order.antisym star.circ-back-loop-prefixpoint
star-right-induct-mult by fastforce
also have ... = y* * (z U 1)
by (simp add: assms(1) sup-commute transitive-star)
finally show ?thesis

27

qed

end

The following class contains a generalisation of Kleene algebras, which
lacks the right zero axiom.

class left-zero-kleene-algebra = idempotent-left-zero-semiring +
strong-left-kleene-algebra
begin

lemma star-star-absorb:
yrr (Yt k)t xyt = (Yt ok)t x gt
by (metis star.circ-transitive-equal star-slide mult-assoc)

*

lemma star-circ-simulate-left-plus:
assumes z *x z < z x y* Ll w
shows z* x 2z < (z U 2% x w) x y
proof —
have z * (z* * (w * y*)) < 2* * (w * y*)
by (metis (no-types) mult-right-sub-dist-sup-left star.circ-loop-fizpoint
mult-assoc)
hence z x ((z U z* * w) x y*) <z * z % y* U z* *x wx y*
using mult-left-dist-sup mult-right-dist-sup sup-right-isotone mult-assoc by
presburger
also have ... < (z x y* U w) * y* U 2* % w * y*
using assms mult-isotone semiring.add-right-mono by blast
also have ... = z x y* U w *x y* U 2% *x w x y*
by (simp add: mult-right-dist-sup star.circ-transitive-equal mult-assoc)
also have ... = (z U w U z* * w) * y*
by (simp add: mult-right-dist-sup)
also have ... = (z U z* x w) % y*
by (metis sup-assoc sup-ge2 le-iff-sup star.circ-loop-fixpoint)
finally show ?thesis
by (metis sup.bounded-iff mult-left-sub-dist-sup-left mult-1-right
star.circ-right-unfold-1 star-left-induct)
qged

*

lemma star-one-sup-below:
zxy*x (1 Uz2) <zx*(yU2)*
proof —
have y* * z < (y U 2)*
using sup-ge2 order-trans star.circ-increasing star.circ-mult-upper-bound
star.circ-sub-dist by blast
hence y* U y* * 2 < (y U 2)*
by (simp add: star.circ-sup-upper-bound star.circ-sub-dist)
hence y* * (1 U 2) < (y U 2)*

28

by (simp add: mult-left-dist-sup)
thus ?thesis
by (metis mult-right-isotone mult-assoc)
qed

The following theorem is similar to the puzzle where persons insert them-
selves always in the middle between two groups of people in a line. Here,
however, items in the middle annihilate each other, leaving just one group
of items behind.

lemma cancel-separate:
assumes z * y < I
shows z* * y* < 2* Ll ¢*
proof —
have z x y* =z U z x y x y*
by (metis mult-assoc mult-left-dist-sup mult-1-right star-left-unfold-equal)
also have ... < z Ll y*
by (meson assms dual-order.trans order.refl star.circ-mult-upper-bound
star.circ-reflexive sup-right-isotone)
also have ... < z* U y*
using star.circ-increasing sup-left-isotone by auto
finally have 7: z % y* < 2* U y*

have z % (z* U y*) =z x 2* U z * y*

by (simp add: mult-left-dist-sup)
also have ... < z* U y*

using 1 by (metis sup.bounded-iff sup-gel order-trans star.left-plus-below-circ)
finally have 2: z % (z* U y*) < z* U y*

have y* < z* U y*
by simp
hence y* Uz x (z* U y*) < z* U y*
using 2 sup.bounded-iff by blast
thus ?thesis
by (metis star-left-induct)
qged

lemma star-separate:
assumes z *x y = bot
and y x y = bot
shows (z U y)* = 2* U y * a*
proof —
have 1: y* =1 Uy
using assms(2) by (simp add: transitive-star)
have (z U y)* = y* * (z x y*)*
by (simp add: star.circ-decompose-6 star-sup-1)

also have ... = y* x (z x (I Uy * y*))*
by (simp add: star-left-unfold-equal)
also have ... = (1 U y) * z*

using 1 by (simp add: assms mult-left-dist-sup)

29

also have ... = z* Ll y % z*
by (simp add: mult-right-dist-sup)
finally show ?thesis

qed

end

We can now inherit from the strongest variant of iterings.

sublocale left-zero-kleene-algebra < star: itering where circ = star
apply unfold-locales
apply (metis star.circ-sup-9)
apply (metis star.circ-mult-1)
apply (simp add: star-circ-simulate-right-plus)
by (simp add: star-circ-simulate-left-plus)

context left-zero-kleene-algebra
begin

lemma star-absorb:

rxy=bot = zxy" ==z

by (metis sup.bounded-iff antisym-conv star.circ-back-loop-prefizpoint
star.circ-elimination)

lemma star-separate-2:
assumes 7 * 27 * y = bot
and y * 2zt x y = bot
and z * £ = bot
shows (z* Uy x 2%) * (2% (1 Uy *a*)* = 2% % (z* U y* z*) x 2*
proof —
have I: z* x 2T x y = 27 x y
by (metis assms mult-assoc mult-1-left mult-left-zero star.circ-zero
star-simulation-right-equal)
have 2: 2* x (z* Uy * 2%) * 27 < 2% % (28 U y x 2%) * 2*
by (simp add: mult-right-isotone star.left-plus-below-circ)
have z* * z7 % y * 2* < 2* % y * 2*
by (metis mult-left-isotone star.left-plus-below-circ star.right-plus-circ
star-plus)
also have ... < z* x (z* U y * z*)
by (simp add: mult-assoc mult-left-sub-dist-sup-right)
also have ... < 2* x (2" U y x z*) * 2*
using sup-right-divisibility star.circ-back-loop-fixpoint by blast
finally have 3: 2* * 27 % y x 2* < 2% % (2% U y % 2%) * 2*

have z* * (z* Uy *x 2%) *x 2" x (2 x (1 Uy x2%)) = 2" x (2" Uy * z*) * 2 U
2k (2 Uy x a%) % 20 %y * a*

by (metis mult-1-right semiring.distrib-left star.circ-plus-same mult-assoc)
also have ... = 2% x (z* Uy * 2*) x 27 U 2" x (I U y) * 2% x 2" x y * a*

by (simp add: semiring.distrib-right mult-assoc)

30

also have ... = 2% x (z* Uy * 2%) x 27 U 2" % (I U y) * 27 x y x 2~
using 1 by (simp add: mult-assoc)
alsohave ... = 2% x (2" Uy s 2*) *x 2T U2 x 2T x yx a* U 2" x y x 27 x y x
x*
using mult-left-dist-sup mult-right-dist-sup sup-assoc by auto
also have ... = 2% x (2" Uy * %) % 27 U 2% % 27 % y * 1*
by (metis assms(2) mult-left-dist-sup mult-left-zero sup-commute
sup-monotid.add-0-left mult-assoc)
also have ... < z2* x (" U y * z*) % 2*
using 2 8 by simp
finally have (z* Uy x 2*) U 2" % (2" Uy xa*) x 2" % (2% (I Uy xz*¥)) < 2*
w (2" Uy x z¥) * 2*
by (simp add: star-outer-increasing)
hence 4: (z* Uy * 2*) * (z % (I Uy * 2)* < 28 x (a* Uy * 2¥) % 2*
by (simp add: star-right-induct)
have 5: (z* Uy 2*) x 2" < (e Uy *a*) % (2% (I Uy x*z¥))*
by (metis sup-gel mult-right-isotone mult-1-right star-isotone)
have z x (z* Uy *x2*) = zx a* U z x y % z*
by (simp add: mult-assoc mult-left-dist-sup)

also have ... = z U z x y x z*
by (simp add: assms star-absorb)
also have ... = z * (1 U y * z*)

by (simp add: mult-assoc mult-left-dist-sup)
also have ... < (z % (I Uy * z*))*

by (simp add: star.circ-increasing)
also have ... < (z* Uy * z*) x (z * (1 U y * z*))*

by (metis le-supE mult-right-sub-dist-sup-left star.circ-loop-fixpoint)
finally have z * (2* Uy * 2*) < (2 Uy x z*) * (z % (1 Uy * a*))*

hence z x (z* Uy x2*) x (zx (I Uyxa*)* < (z2*Uyx*xa*)x (2% (1 Uysx
z*))*
by (metis mult-assoc mult-left-isotone star.circ-transitive-equal)
hence z* * (z* Uy x o*) x 2 < (a* U y*x2*) % (2% (1 Uyxa¥)*
using 5 by (metis star-left-induct sup.bounded-iff mult-assoc)
thus ?thesis
using 4 by (simp add: antisym)
qed

lemma cancel-separate-eq:

rxy< 1 = "%y " =z"Uy"

by (metis order.antisym cancel-separate star.circ-plus-one
star. circ-sup-sub-sup-one-1 star-involutive)

lemma cancel-separate-1:
assumes z *x y < 1
shows (z U y)* = y* x z*
proof —
have y* x z* x y =y *x " xx x y U y* *x y
by (metis mult-right-dist-sup star.circ-back-loop-fixpoint)

31

also have ... < y* xz* U y" x y
by (metis assms semiring.add-right-mono mult-right-isotone mult-1-right
mult-assoc)
also have ... < y* * z* U y*
using semiring.add-left-mono star.right-plus-below-circ by simp
also have ... = y* x z*
by (metis star.circ-back-loop-fixpoint sup.left-idem sup-commute)
finally have y* % 2* x y < y* % z*
by simp
hence y* x 2* % (z U y) < y* x 2" x z U y* * 2*
using mult-left-dist-sup order-lesseq-imp by fastforce
also have ... = y* *x x*
by (metis star.circ-back-loop-fixpoint sup.left-idem)
finally have (z U y)* < y* * z*
by (metis star.circ-decompose-7 star-right-induct-mult sup-commaute)
thus ?thesis
using order.antisym star.circ-sub-dist-3 sup-commute by fastforce
qed

lemma plus-sup:
(z Uyt = (2" *) *at U (a"x gyt
by (metis semiring.distrib-left star.circ-sup-9 star-plus mult-assoc)

lemma plus-half-bot:
Txyxz="bot = (zxy)t =zxy
by (metis star-absorb star-slide mult-assoc)

lemma cancel-separate-1-sup:
assumes z *x y < [
and y x z < 1
shows (z U y)* = z* U y*
by (simp add: assms cancel-separate-1 cancel-separate-eq sup-commute)

Lemma star-separate-3 was contributed by Nicolas Robinson-O’Brien.

lemma star-separate-3:
assumes y x ¥ x y < y
shows (z Ul y)* = o* U z* * y * z*
proof (rule order.antisym)
have z* x y *x (z* * y)* *x * < 2% *x y * 2*
by (metis assms mult-left-isotone mult-right-isotone star-right-induct-mult
mult-assoc)
thus (z U y)* < z* U 2* x y % z*
by (metis order.antisym semiring.add-left-mono star.circ-sup-2
star.circ-sup-sub star.circ-unfold-sum star-decompose-3 star-slide mult-assoc)
next
show z* U z* x y x o* < (z U y)*
using mult-isotone star.circ-increasing star.circ-sub-dist star.circ-sup-9 by
auto
qed

32

end

A Kleene algebra is obtained by requiring an idempotent semiring.
class kleene-algebra = left-zero-kleene-algebra + idempotent-semiring

The following classes are variants of Kleene algebras expanded by an
additional iteration operation. This is useful to study the Kleene star in
computation models that do not use least fixpoints in the refinement order
as the semantics of recursion.

class left-kleene-conway-semiring = left-kleene-algebra + left-conway-semiring
begin

lemma star-below-cire:
r* < x°
by (metis circ-left-unfold mult-1-right order-refl star-left-induct)

lemma star-zero-below-circ-mult:
x* % bot < z° * y
by (simp add: mult-isotone star-below-circ)

lemma star-mult-cire:

¥ % x° = zx°

by (metis sup-right-divisibility order.antisym circ-left-unfold
star-left-induct-mult star.circ-loop-fixpoint)

lemma circ-mult-star:

x° * o* = 2°

by (metis sup-assoc sup.bounded-iff circ-left-unfold circ-rtc-2 order.eq-iff
left-plus-cire star.circ-sup-sub star.circ-back-loop-prefirpoint star.circ-increasing
star-below-cire star-mult-circ star-sup-one)

lemma cire-star:
xO* — xO
by (metis order.antisym circ-reflexive circ-transitive-equal star.circ-increasing

star.circ-sup-one-right-unfold star-left-induct-mult-equal)

lemma star-circ:
I*o — xOO
by (metis order.antisym circ-circ-sup circ-sub-dist le-iff-sup star.circ-rtc-2

star-below-circ)
lemma circ-sup-3:
(z° % y°)* < (z U y)°
using circ-star circ-sub-dist-3 star-isotone by fastforce

end

class left-zero-kleene-conway-semiring = left-zero-kleene-algebra + itering

33

begin
subclass left-kleene-conway-semiring ..

lemma circ-isolate:

z° = z° % bot U z*

by (metis sup-commute order.antisym circ-sup-upper-bound circ-mult-star
cire-simulate-absorb star.left-plus-below-cire star-below-cire

zero-right-mult-decreasing)

lemma circ-isolate-mult:
z° % y=2x2° % bot Uzx* %y
by (metis circ-isolate mult-assoc mult-left-zero mult-right-dist-sup)

lemma circ-isolate-mult-sub:
2 xy <z Uz xy
by (metis sup-left-isotone circ-isolate-mult zero-right-mult-decreasing)

lemma circ-sub-decompose:
(2° % y)° < (2% * y)° * 2°
proof —
have 2™ x y U 2° * bot = 2° % y
by (metis sup.commute circ-isolate-mult)
hence (z* * y)° x z° = ((2° * y)° U 2°)*
by (metis circ-star circ-sup-9 circ-sup-mult-zero star-decompose-1)
thus %thesis
by (metis circ-star le-iff-sup star.circ-decompose-7 star.circ-unfold-sum)
qed

lemma circ-sup-4:

(z Uy)° = (a" * y)° * a°

apply (rule order.antisym)

apply (metis circ-sup circ-sub-decompose circ-transitive-equal mult-assoc
mult-left-isotone)

by (metis circ-sup circ-isotone mult-left-isotone star-below-circ)

lemma circ-sup-5:
(2° % y)° x 2° = (2% % y)° * a°
using circ-sup-4 circ-sup-9 by auto
lemma plus-circ:
(z* * x)° = 2°

by (metis sup-idem circ-sup-4 circ-decompose-7 circ-star star.circ-decompose-5
star.right-plus-circ)

end

The following classes add a greatest element.

34

class bounded-left-kleene-algebra = bounded-idempotent-left-semiring +
left-kleene-algebra

sublocale bounded-left-kleene-algebra < star: bounded-left-conway-semiring
where circ = star ..

class bounded-left-zero-kleene-algebra = bounded-idempotent-left-semiring +
left-zero-kleene-algebra

sublocale bounded-left-zero-kleene-algebra < star: bounded-itering where circ =
star ..

class bounded-kleene-algebra = bounded-idempotent-semiring + kleene-algebra

sublocale bounded-kleene-algebra < star: bounded-itering where circ = star ..

We conclude with an alternative axiomatisation of Kleene algebras.

class kleene-algebra-var = idempotent-semiring + star +
assumes star-left-unfold-var : 1 Uy x y* < y*
assumes star-left-induct-var : y x zt <z — y* xx < x
assumes star-right-induct-var : ¢ x y <z — z *x y* <
begin

subclass kleene-algebra
apply unfold-locales
apply (rule star-left-unfold-var)
apply (meson sup.bounded-iff mult-right-isotone order-trans star-left-induct-var)
by (meson sup.bounded-iff mult-left-isotone order-trans star-right-induct-var)

end

end

4 Kleene Relation Algebras

This theory combines Kleene algebras with Stone relation algebras. Relation
algebras with transitive closure have been studied by [16]. The weakening
to Stone relation algebras allows us to talk about reachability in weighted
graphs, for example.

Many results in this theory are used in the correctness proof of Prim’s
minimum spanning tree algorithm. In particular, they are concerned with
the exchange property, preservation of parts of the invariant and with es-
tablishing parts of the postcondition.

theory Kleene-Relation-Algebras

imports Stone-Relation-Algebras. Relation-Algebras Kleene-Algebras

35

begin

We first note that bounded distributive lattices can be expanded to
Kleene algebras by reusing some of the operations.

sublocale bounded-distrib-lattice < comp-inf: bounded-kleene-algebra where star
= Az . top and one = top and times = inf

apply unfold-locales

apply (simp add: inf.assoc)

apply simp

apply simp

apply (simp add: le-infI2)

apply (simp add: inf-sup-distrib2)

apply simp

apply simp

apply simp

apply simp

apply simp

apply (simp add: inf-sup-distrib1)

apply simp

apply simp

by (simp add: inf-assoc)

We add the Kleene star operation to each of bounded distributive alle-
gories, pseudocomplemented distributive allegories and Stone relation alge-
bras. We start with single-object bounded distributive allegories.

class bounded-distrib-kleene-allegory = bounded-distrib-allegory + kleene-algebra
begin

subclass bounded-kleene-algebra ..

lemma conv-star-conv:
o < .ZT*T
proof —
have z7* x T < zT*
by (simp add: star.right-plus-below-circ)
hence 1: z % z7*T < gT*T
using conv-dist-comp conv-isotone by fastforce
have 1 < gT*T
by (simp add: reflexive-conv-closed star.circ-reflexive)
hence 1 U z x z7*T < zT*T
using 1 by simp
thus %thesis
using star-left-induct by fastforce
qed

It follows that star and converse commute.

lemma conv-star-commute:
x*T — ZT*

proof (rule order.antisym)

36

show z*T < gT*
using conv-star-conv conv-isotone by fastforce
next
show z7* < *T
by (metis conv-star-conv conv-involutive)
qed

lemma conv-plus-commute:
T — T+

by (simp add: conv-dist-comp conv-star-commute star-plus)
Lemma reflezive-inf-star was contributed by Nicolas Robinson-O’Brien.

lemma refiexive-inf-star:
assumes reflexive y
shows y Ma* =1 U (ynazh)
by (simp add: assms star-left-unfold-equal sup.absorb2 sup-inf-distrib1)

The following results are variants of a separation lemma of Kleene alge-
bras.

lemma cancel-separate-2:
assumes 7 * y < 1
shows (wMz) U (zMNy))* = (zNy)* * (wna)*
proof —
have (wMz) x (zMNy) < 1
by (meson assms comp-isotone order.trans inf.cobounded2)
thus ?thesis
using cancel-separate-1 sup-commute by simp
qed

lemma cancel-separate-3:
assumes 7 * y < 1
shows (w M z)* x (zMNy)* = (wNz)* U (2N y)*
proof —
have (wNz) *x (zMNy) < 1
by (meson assms comp-isotone order.trans inf.cobounded?)
thus ?thesis
by (simp add: cancel-separate-eq)
qed

lemma cancel-separate-4 :
assumes 2z * y < 1
and w < y U z
and z < y U z
shows w* x z* = (w M y)* * (w N 2)* U (z M y)*) * (z M 2)*
proof —
have w* x 2 = (wMNy) U (wN2)*« (zNy) U (zN2)*
by (metis assms(2,3) inf.orderE inf-sup-distrib1)
also have ... = (w M y)* * (w N 2)* x (x N y)*) x (z N 2)*
by (metis assms(1) cancel-separate-2 sup-commute mult-assoc)

37

finally show ?thesis
by (simp add: assms(1) cancel-separate-3)
qed

lemma cancel-separate-5:
assumes w * z7 < 1
shows w Mz (yMNz) <y
proof —
have w Mz x (yM2) < (zMwx (yn2)T) x(yn2)
by (metis dedekind-2 inf-commute)
also have ... < w* 27 x (y M 2)
by (simp add: conv-dist-inf inf.coboundedI2 mult-left-isotone
mult-right-isotone)
also have ... < y 1M z
by (metis assms mult-1-left mult-left-isotone)
finally show ?thesis
by simp
qed

lemma cancel-separate-6:
assumes 2z * y < 1
and w < y U 2
and z < y U 2
and v * 27 < 1
and v M y* = bot
shows v Muw* * z* <z U w
proof —
have v M (w M y)* * (x M y)* < v N y* * (x M y)*
using comp-inf.mult-right-isotone mult-left-isotone star-isotone by simp
also have ... < v M y*
by (simp add: inf.coboundedI2 star.circ-increasing star.circ-mult-upper-bound
star-right-induct-mult)
finally have 1: v M (w M y)* * (x M y)* = bot
using assms(5) le-bot by simp
have v Mw* x 2* = o N (wNy)* * (wNz2)*U (zMNy)*) * (zN2)*
using assms(1—3) cancel-separate-4 by simp
alsohave ... = (v M (wNy)* * (wN2)*U(zMNy)*) *x(xMN2)**(zNz)U
(v (w M y)** ((wn2)* U (z0y)))
by (metis inf-sup-distribl star.circ-back-loop-fixpoint)
also have ... <z U (v M (wMNy)* *x ((wM2z)*U(zMy*))
using assms(4) cancel-separate-5 semiring.add-right-mono by simp
also have ... =z U (v M (w N y)* * (w M 2)*)
using 1 by (simp add: inf-sup-distribl mult-left-dist-sup
sup-monoid.add-assoc)
alsohave ... =z U (v M (wNy)* * (wNz)**x(wnz) U (v (wny*)
by (metis comp-inf.semiring.distrib-left star.circ-back-loop-fizpoint sup-assoc)
also have ... <z U w U (v N (w N y)*)
using assms(4) cancel-separate-5 sup-left-isotone sup-right-isotone by simp
also have ... < z U w U (v M y*)

38

using comp-inf.mult-right-isotone star-isotone sup-right-isotone by simp
finally show ?thesis
using assms(5) le-bot by simp
qed

We show several results about the interaction of vectors and the Kleene
star.

lemma vector-star-1:
assumes vector
shows 27 x (1 % 27)* < 2T
proof —
have 27 x (z x 27)* = (27 x 2)* * 27
by (simp add: star-slide)
also have ... < top * 2T
by (simp add: mult-left-isotone)
also have ... = 7
using assms vector-conv-covector by auto
finally show ?thesis

qed

lemma vector-star-2:
vector v = 27 * (z * 27)* < 27 % bot*
by (simp add: star-absorb vector-star-1)

lemma vector-vector-star:
vector v = (v * v1)* =1 U v x 0T
by (simp add: transitive-star vo-transitive)

lemma equivalence-star-closed:
equivalence ¥ = equivalence (z*)
by (simp add: conv-star-commute star.circ-reflexive star.circ-transitive-equal)

lemma equivalence-plus-closed:

equivalence * = equivalence (z)

by (simp add: conv-star-commute star.circ-reflexive star.circ-sup-one-left-unfold
star. circ-transitive-equal)

The following equivalence relation characterises the component trees of
a forest. This is a special case of undirected reachability in a directed graph.

abbreviation forest-components f = f7* x f*

lemma forest-components-equivalence:
injective ¥ => equivalence (forest-components x)
apply (intro conjl)
apply (simp add: reflexive-mult-closed star.circ-reflexive)
apply (metis cancel-separate-1 order.eq-iff star.circ-transitive-equal)
by (simp add: conv-dist-comp conv-star-commute)

39

lemma forest-components-increasing:

z < forest-components x

by (metis order.trans mult-left-isotone mult-left-one star.circ-increasing
star. circ-reflexive)

lemma forest-components-isotone:
x < y = forest-components ¢ < forest-components y
by (simp add: comp-isotone conv-isotone star-isotone)

lemma forest-components-idempotent:
injective ¥ => forest-components (forest-components x) = forest-components x
by (metis forest-components-equivalence cancel-separate-1
star.circ-transitive-equal star-involutive)

lemma forest-components-star:
injective ¥ => (forest-components x)* = forest-components x
using forest-components-equivalence forest-components-idempotent
star.circ-transitive-equal by simp

The following lemma shows that the nodes reachable in the graph can
be reached by only using edges between reachable nodes.

lemma reachable-restrict:
assumes vector v
shows 1T % g* = T % ((rT % g")T x (rT % ¢g*) M g)*
proof —
have 1: rT < 7T % ((rT % g*)T * (rT x g*) M g)*
using mult-right-isotone mult-1-right star.circ-reflexive by fastforce
have 2: covector (rT x g*)
using assms covector-mult-closed vector-conv-covector by auto
have T x ((rT + ¢") T« (rT x g") Mg s g< 1T x g* x g
by (simp add: mult-left-isotone mult-right-isotone star-isotone)
also have ... < T x g*
by (simp add: mult-assoc mult-right-isotone star.left-plus-below-circ star-plus)
finally have r7 x (r7 * ¢))T x (rT x g*) N g)* x g = T x ((rT % g*)T * (+T
* g)M g)* x gnrl x g*
by (simp add: le-iff-inf)
also have ... = rT x ((r7 % ¢")T % (+T % g*) M1 g)* * (g M1 rT x g¥)
using assms covector-comp-inf covector-mult-closed vector-conv-covector by
auto

also have ... = (77« (1T * g)T * (rT x g) M g)* T % g*) % (g M rT % g%)
by (simp add: inf.absorb2 inf-commute mult-right-isotone star-isotone)

also have ... = 7T % (1T * ¢)T % (rT x g*) 1 g)* x (g 7T % g* 1 (rT % g0)7T)
using 2 by (metis comp-inf-vector-1)

also have ... = 77« (rT + g))T x (1T % g*) M g)* * ((rT + g))T N 1T % g* M g)
using inf-commute inf-assoc by simp

also have ... = 77 % ((rT % g)T % (rT % g*) M1 g)* * ((rT % g0)T % (rT % g*) M

9)

using 2 by (metis covector-conv-vector inf-top.right-neutral vector-inf-comp)
also have ... < 77 % ((rT % ¢g*)T « (rT % g*) N g)*

40

by (simp add: mult-assoc mult-right-isotone star.left-plus-below-circ star-plus)
finally have r7 x g* < 7 % ((rT x g*)T % (rT % g*) 11 g)*
using 1 star-right-induct by auto
thus ?thesis
by (simp add: order.eq-iff mult-right-isotone star-isotone)
qed

lemma kruskal-acyclic-inv-1:
assumes injective f
and e x forest-components f x e = bot
shows (f M top * e * f1*)T % f* x e = bot
proof —
let 2 = top x e * fT*
let ?F = forest-components f
have (f M 2¢)T « f*x e = 2¢7 M fT x f* x e
by (metis (mono-tags) comp-associative conv-dist-inf covector-conv-vector
inf-vector-comp vector-top-closed)
also have ... < 2¢T M 2F x e
using comp-inf.mult-right-isotone mult-left-isotone star.circ-increasing by
stmp
also have ... = f* x €T x top M 2F x e
by (simp add: conv-dist-comp conv-star-commute mult-assoc)
also have ... < 2F s €T % top M 2F % e
by (metis conv-dist-comp conv-star-commute conv-top inf.sup-left-isotone
star.circ-right-top star-outer-increasing mult-assoc)
also have ... = 2F x (e x top M 2F x ¢)
by (metis assms(1) forest-components-equivalence equivalence-comp-dist-inf
mult-assoc)
also have ... = (?F M top x e) *x ?F x ¢
by (simp add: comp-associative comp-inf-vector-1 conv-dist-comp
inf-vector-comp)
also have ... < top x e x ?F x ¢
by (simp add: mult-left-isotone)
also have ... = bot
using assms(2) mult-assoc by simp
finally show ?thesis
by (simp add: bot-unique)
qged

lemma kruskal-forest-components-inf-1:
assumes f < w U w”
and injective w
and f < forest-components g
shows [x forest-components (forest-components g M w) < forest-components
(forest-components g M w)
proof —
let ?f = forest-components g
let 2w = forest-components (?f M w)
have f * 2w = (f M (w U wT)) * 2w

41

by (simp add: assms(1) inf.absorbl)
also have ... = (f M w) * 2w U (f N w?) * 2w
by (simp add: inf-sup-distribl semiring.distrib-right)
also have ... < (?f M w) * 2w U (f N w?) * 2w
using assms(3) inf.sup-left-isotone mult-left-isotone sup-left-isotone by simp
also have ... < (?f M w) * 2w U (2f M wT) * 2w
using assms(3) inf.sup-left-isotone mult-left-isotone sup-right-isotone by simp
also have ... = (?f M w) * 2w U (2f 1 w)T * ?w
by (simp add: conv-dist-comp conv-dist-inf conv-star-commute)
also have ... < (?f M w) * 2w U %w
by (metis star.circ-loop-fixpoint sup-gel sup-right-isotone)
also have ... = 2w U (2f M w) * (2f M w)* U (2f Mw) * (2f Mw)T* * (2f N
w)*
by (metis comp-associative mult-left-dist-sup star.circ-loop-fixpoint
sup-commaute Sup-assoc)
also have ... < 2w U (2f M w)* U (2f T w) * (2f M w)TF % (2f M w)*
using star.left-plus-below-circ sup-left-isotone sup-right-isotone by auto
also have ... = 2w U (2f M w) * (2f 1T w)T+ * (2f 11 w)*
by (metis star.circ-loop-fizpoint sup.right-idem)
also have ... < 2w U w * w? % 2w
using comp-associative conv-dist-inf mult-isotone sup-right-isotone by simp
also have ... = 2w
by (metis assms(2) coreflexive-comp-top-inf inf.cobounded?2 sup.orderFE)
finally show ?thesis
by simp
qged

lemma kruskal-forest-components-inf:
assumes f < w U w”
and injective w
shows forest-components f < forest-components (forest-components f M w)
proof —
let ¢f = forest-components f
let 2w = forest-components (?f M w)
have 1: 1 < 2w
by (simp add: reflexive-mult-closed star.circ-reflexive)
have f * 2w < ?w
using assms forest-components-increasing kruskal-forest-components-inf-1 by
stmp
hence 2: f* < ?w
using 1 star-left-induct by fastforce
have f7 % 2w < ?w
apply (rule kruskal-forest-components-inf-1)
apply (metis assms(1) conv-dist-sup conv-involutive conv-isotone
sup-commute)
apply (simp add: assms(2))
by (metis le-supI2 star.circ-back-loop-fixpoint star.circ-increasing)
thus ?f < %w
using 2 star-left-induct by simp

42

qed

end

We next add the Kleene star to single-object pseudocomplemented dis-
tributive allegories.

class pd-kleene-allegory = pd-allegory + bounded-distrib-kleene-allegory
begin

The following definitions and results concern acyclic graphs and forests.

abbreviation acyclic :: 'a = bool where acyclic t = 17 < —1
abbreviation forest :: ‘a = bool where forest x = injective x A acyclic x

lemma forest-bot:
forest bot
by simp

lemma acyclic-down-closed:
r < y = acyclic y = acyclic x
using comp-isotone star-isotone by fastforce

lemma forest-down-closed:
x < y = forest y = forest x
using conv-isotone mult-isotone star-isotone by fastforce

lemma acyclic-star-below-complement:
acyclic w +— wT* < —w
by (simp add: conv-star-commute schroeder-4-p)

lemma acyclic-star-below-complement-1:
acyclic w +— w* M w? = bot
using pseudo-complement schroeder-5-p by force

lemma acyclic-star-inf-conv:
assumes acyclic w
shows w* M w!™* = 1
proof —
have wt M w™ < (w M w™) * w*
by (metis conv-star-commute dedekind-2 star.circ-transitive-equal)
also have ... = bot
by (metis assms conv-star-commute p-antitone-iff pseudo-complement
schroeder-4-p semiring.mult-not-zero star.circ-circ-mult star-involutive star-one)
finally have w* M w™* < 1
by (metis order.eq-iff le-bot mult-left-zero star.circ-plus-one star.circ-zero
star-left-unfold-equal sup-inf-distrib1)
thus %thesis
by (simp add: order.antisym star.circ-reflexive)
qed

43

lemma acyclic-asymmetric:

acyclic w = asymmetric w

by (simp add: dual-order.trans pseudo-complement schroeder-5-p
star.circ-increasing)

lemma forest-separate:
assumes forest
shows z* % zT* M zT % ¢ < 1
proof —
have z* x 1 < —z
using assms schroeder-5-p by force
hence 1: z* M 27 = bot
by (simp add: pseudo-complement)
have z* Mal x z = (1 Uz* xz) Nal xx
using star.circ-right-unfold-1 by simp
also have ... = (1 MaT x z) U (z* * 2 N 27 * 1)
by (simp add: inf-sup-distrib2)
also have ... < 1 U (z* * z M a7
using sup-left-isotone by simp
also have ... = 1 U (2* M aT7) x
by (simp add: assms injective-comp-right-dist-inf)
also have ... = 1
using 1 by simp
finally have 2: z* M 27 x ¢ < 1

T

*)

hence 3: z7* M az” x z < 1
by (metis (mono-tags, lifting) conv-star-commute conv-dist-comp conv-dist-inf
conv-involutive coreflexive-symmetric)
have z* * z7* Mzl x 2 < (z* W aT*) N2l x 2
using assms cancel-separate inf.sup-left-isotone by simp
also have ... < I
using 2 3 by (simp add: inf-sup-distrib2)
finally show ?thesis

qed
The following definition captures the components of undirected weighted
graphs.
abbreviation components g = (——g)*
lemma components-equivalence:
symmetric ¥ => equivalence (components x)

by (simp add: conv-star-commute conv-complement star.circ-reflexive
star. circ-transitive-equal)

lemma components-increasing:

z < components T
using order-trans pp-increasing star.circ-increasing by blast

44

lemma components-isotone:
Tz < y = components x < components y
by (simp add: pp-isotone star-isotone)

lemma cut-reachable:

assumes v = rT x t*
and t < g
shows v x —vT Mg < (rT % g5)T % (rT x g*)

proof —
have v x —vT Mg < wv*top Mg
using inf.sup-left-isotone mult-right-isotone top-greatest by blast
also have ... = (r7 x t))T x top N g
by (metis assms(1) conv-involutive)
also have ... < (1T x ¢g")T x top N g
using assms(2) conv-isotone inf.sup-left-isotone mult-left-isotone
mult-right-isotone star-isotone by auto
also have ... < (77 % ¢")T x ((rT x g*) * g)
by (metis conv-involutive dedekind-1 inf-top.left-neutral)
also have ... < (17 % ¢")T x (rT % g*)
by (simp add: mult-assoc mult-right-isotone star.left-plus-below-circ star-plus)
finally show ?thesis

qed

The following lemma shows that the predecessors of visited nodes in the
minimum spanning tree extending the current tree have all been visited.

lemma predecessors-reachable:
assumes vector r
and injective r
and v7 = T x t*
and forest w
and t < w
and w < (r7 « g") T« (rT x g") M g
and 7T % g* < rT % w*
shows w x v < v
proof —
have w * r < (r7 % ¢") T (1T % g*) x r
using assms(6) mult-left-isotone by auto
also have ... < (77 % ¢")T * top
by (simp add: mult-assoc mult-right-isotone)
also have ... = (rT x g©)T
by (simp add: assms(1) comp-associative conv-dist-comp)
also have ... < (rT % w*)T
by (simp add: assms(7) conv-isotone)
also have ... = w™™* x r
by (simp add: conv-dist-comp conv-star-commute)
also have ... < —w x r
using assms(4) by (simp add: mult-left-isotone

45

acyclic-star-below-complement)
also have ... < —(w * r)
by (simp add: assms(2) comp-injective-below-complement)
finally have 1: w x r = bot
by (simp add: le-iff-inf)
have v = t7* x r
by (metis assms(8) conv-dist-comp conv-involutive conv-star-commute)
also have ... = t7 x v U r
by (simp add: calculation star.circ-loop-fixpoint)
also have ... < v x v U r
using assms(5) comp-isotone conv-isotone semiring.add-right-mono by auto
finally have w * v < w * w’ x v U w * r
by (simp add: comp-left-dist-sup mult-assoc mult-right-isotone)
also have ... = w * w’ x v
using 1 by simp
also have ... < v
using assms(4) by (simp add: star-left-induct-mult-iff star-sub-one)
finally show ?thesis

qed

4.1 Prim’s Algorithm

The following results are used for proving the correctness of Prim’s minimum
spanning tree algorithm.

4.1.1 Preservation of Invariant

We first treat the preservation of the invariant. The following lemma shows
that the while-loop preserves that v represents the nodes of the constructed
tree. The remaining lemmas in this section show that ¢ is a spanning tree.
The exchange property is treated in the following two sections.

lemma reachable-inv:
assumes vector v
and e < v *x —v
and e *x t = bot
and vT = T % t*
shows (v U el x top)T = rT % (t U e)*
proof —
have 1: vT < T x (t U e)*
by (simp add: assms(4) mult-right-isotone star.circ-sub-dist)
have 2: (el * top)T = top * e
by (simp add: conv-dist-comp)
also have ... = top * (v * —vT I e)
by (simp add: assms(2) inf-absorb2)
also have ... < top * (v * top M e)
using inf.sup-left-isotone mult-right-isotone top-greatest by blast

also have ... = top * v7 * e

T

46

by (simp add: comp-inf-vector inf.sup-monoid.add-commute)
also have ... = v7 x ¢

using assms(1) vector-conv-covector by auto
also have ... < rT x (tU e)* x e

using 1 by (simp add: mult-left-isotone)
also have ... < 77 x (t U e)* * (t U e)

by (simp add: mult-right-isotone)
also have ... < rT x (t U e)*

by (simp add: comp-associative mult-right-isotone star.right-plus-below-circ)
finally have 3: (v U el * top)T < rl x (t U e)*

using 1 by (simp add: conv-dist-sup)
have T < T % ¢*

using sup.bounded-iff star.circ-back-loop-prefixrpoint by blast
also have ... < (v U el x top)T

by (metis assms(4) conv-isotone sup-gel)
finally have 4: v’ < (v U e x top)”

have (v U el x top)T x (t U e) = (v U el * top)” * t U (v el * top)T % e
by (simp add: mult-left-dist-sup)

also have ... < (v U el x top)T x t LU top * e
using comp-isotone semiring.add-left-mono by auto

also have ... = o7 s« t L top x e x t U top * e
using 2 by (simp add: conv-dist-sup mult-right-dist-sup)
also have ... = o7 % t Ll top * e

by (simp add: assms(3) comp-associative)
also have ... < r7 « t* U top * e
by (metis assms(4) star.circ-back-loop-fixpoint sup-gel sup-left-isotone)
also have ... = o7 U top * e
by (simp add: assms(4))
finally have 5: (v U el * top)” * (t U e) < (v U el * top)T
using 2 by (simp add: conv-dist-sup)
have 7' x (t U e)* < (v U el x top)T * (t U e)*
using 4 by (simp add: mult-left-isotone)
also have ... < (v U e x top)T
using 5 by (simp add: star-right-induct-mult)
finally show ?thesis
using 3 by (simp add: order.eq-iff)
qged

The next result is used to show that the while-loop preserves acyclicity
of the constructed tree.

lemma acyclic-inv:
assumes acyclic t
and vector v
and e < v x —v
and t < v x vT
shows acyclic (t U e)
proof —
have tt x e < tT % v x —v

T

T

47

by (simp add: assms(3) comp-associative mult-right-isotone)
also have ... < v * vT % t* x v %+ —oT
by (simp add: assms(4) mult-left-isotone)
also have ... < v *x top x —T
by (metis mult-assoc mult-left-isotone mult-right-isotone top-greatest)
also have ... = v * —v”
by (simp add: assms(2))
also have ... < —1
by (simp add: pp-increasing schroeder-3-p)
finally have 1: tT x e < —1

have 2: e x t* = ¢
using assms(2—4) et(1) star-absorb by blast
have e* = 1 Uellexexe*
by (metis star.circ-loop-fizpoint star-square-2 sup-commute)
also have ... = 1 U e
using assms(2,3) ee comp-left-zero bot-least sup-absorbl by simp
finally have 3: e* =1 U e
have e < v % —oT
by (simp add: assms(3))
also have ... < —1
by (simp add: pp-increasing schroeder-3-p)
finally have 4: tT x el e < —1
using 1 by simp
have (t U e)t = (t U e) * t* * (e * t*)*
using star-sup-1 mult-assoc by simp

also have ... = (t U e) x t* x (1 U e)
using 2 3 by simp
also have ... =t % (1 Ue) U ex t* x (I Ue)
by (simp add: comp-right-dist-sup)
also have ... = t7 % (1 Ue)Uex (I Ue)
using 2 by simp
also have ... =t % (1 Ue)Ue
using 3 by (metis star-absorb assms(2,3) ee)
also have ... = tT Uttt xele

by (simp add: mult-left-dist-sup)
also have ... < —1

using 4 by (metis assms(1) sup.absorbl sup.orderl sup-assoc)
finally show ?thesis

qged

The following lemma shows that the extended tree is in the component
reachable from the root.
lemma mst-subgraph-inv-2:
assumes regular (v * v71)

and t < v x0T M ——g
and vT = 7T % ¢*

48

and e < v * —0T M ——g
and vector v
and regular ((v U e * top) x (v U el * top)T)
shows t U e < (rT x (——((v U €T * top) * (v U el x top)T M g))*)T x (rT *
(——((v U €T % top) x (v U el x top)T M g))*)
proof —
let 2v = v U €T * top
let G = %20+ 20T Ny
let ?c = rT % (——2G)*
have vT < 7T % (——(v * vT M g))*
using assms(1—23) inf-pp-commute mult-right-isotone star-isotone by auto
also have ... < ?¢
using comp-inf.mult-right-isotone comp-isotone conv-isotone inf.commute
mult-right-isotone pp-isotone star-isotone sup.coboundedl by presburger
finally have 2: v < %2c A v < 2cT
by (metis conv-isotone conv-involutive)
have ¢t < v % vT
using assms(2) by auto
hence 3: t < 2¢T % 2¢
using 2 order-trans mult-isotone by blast
have e < v % top M ——g
by (metis assms(4,5) inf.bounded-iff inf.sup-left-divisibility mult-right-isotone
top.extremum)
hence e < v *x top M top x e 1 ——g
by (simp add: top-left-mult-increasing inf.boundedl)
hence e < v x top x e 1 ——g
by (metis comp-inf-covector inf.absorb2 mult-assoc top.extremum)
hence t Ll e < (v* vT M ——g) U (v * top * e M ——g)
using assms(2) sup-mono by blast
also have ... = v x 2T M ——g
by (simp add: inf-sup-distrib2 mult-assoc mult-left-dist-sup conv-dist-comp
conv-dist-sup)
also have ... < ——?@G
using assms(6) comp-left-increasing-sup inf.sup-left-isotone pp-dist-inf by
auto
finally have 4: t U e < —— %G
have e < e x el % ¢
by (simp add: ex231c)
also have ... < v % —vT x —v x v
by (metis assms(4) mult-left-isotone conv-isotone conv-dist-comp mult-assoc
mult-isotone conv-involutive conv-complement inf.boundedF)
also have ... < v x top * v7 * ¢
by (metis mult-assoc mult-left-isotone mult-right-isotone top.extremum)
also have ... = v * T % t* x ¢
using assms(3,5) by (simp add: mult-assoc)
also have ... < v x rT x (t U e)*
by (simp add: comp-associative mult-right-isotone star.circ-mult-upper-bound
star.circ-sub-dist-1 star-isotone sup-commute)

T x e

49

also have ... < v x 2¢
using 4 by (simp add: mult-assoc mult-right-isotone star-isotone)
also have ... < 2¢T % %¢
using 2 by (simp add: mult-left-isotone)
finally show ?thesis
using 3 by simp
qed

lemma span-inv:
assumes e < v *x —v
and wvector v
and arc e
and t < (v*0vT) Mg
and g7 = g¢
and v = T x t*
and injective r
and T < T
and r7 x ((v* 0T) M g)* < rT * t*
shows 7T x (((v U €T * top) * (v U el x top)T) M g)* < T % (t U e)*
proof —
let ?2d = (v*vT) Mg
have 1: (v U el x top) * (v U el x top)T = v* vl Uwv*w
Uel xe
using assms(1—3) ve-dist by simp
have tT < 247
using assms(4) conv-isotone by simp

T

T T

xelel xvxuv

also have ... = (v * vT) M g7
by (simp add: conv-dist-comp conv-dist-inf)
also have ... = 2d

by (simp add: assms(5))
finally have 2: tT < 24

have v x vT' = (v x)T x (rT % t*)

by (metis assms(6) conv-involutive)
also have ... = t7* % (r x 7)) x t*

by (simp add: comp-associative conv-dist-comp conv-star-commute)
also have ... < tT* % 1 % t*

by (simp add: assms(7) mult-left-isotone star-right-induct-mult-iff

star-sub-one)

also have ...

by simp
also have ... < 2d* * t*

using 2 by (simp add: comp-left-isotone star.circ-isotone)
also have ... < 2d* % 2d*

using assms(4) mult-right-isotone star-isotone by simp
also have 3: ... = 2d*

by (simp add: star.circ-transitive-equal)
finally have 4: v * v < 2d*

tT* % t*

50

have 5: rT x 2d* x (v * vT M g) < rT % 2d*
by (simp add: comp-associative mult-right-isotone star.circ-plus-same
star.left-plus-below-circ)
have rT x 2d* x (v * vT x e g) <rT % 2d* x v x0T x e
by (simp add: comp-associative comp-right-isotone)
also have ... < rT « 2d* x ¢
using 3 / by (metis comp-associative comp-isotone eq-refl)
finally have 6: r7 x 2d* x (v x v x el g) < T x 2d* x e

have 7:Vz . rT x (1 Uwvx ovT) x el x 2 = bot
proof
fix z
have 7 x (1 Uvx vT) x el x o < 7T % (1 Uwvxol) x el x top
by (simp add: mult-right-isotone)

also have ... = T % €T % top U rT % v x vT x T * top
by (simp add: comp-associative mult-left-dist-sup mult-right-dist-sup)
also have ... = rT x e x top

by (metis assms(1,2) mult-assoc mult-right-dist-sup mult-right-zero
sup-bot-right vTeT)
also have ... < v7 x e x top
by (simp add: assms(8) comp-isotone)
also have ... = bot
using vTeT assms(1,2) by simp
finally show 77 % (1 U v * vT) x el x z = bot
by (simp add: le-bot)
qged
have r7 x 2d* x (eT x v x vT M g) < rT % 2d* x e % v * T
by (simp add: comp-associative comp-right-isotone)
also have ... < rT x (1 U v x vT) x T x v x o7
by (metis assms(2) star.circ-isotone vector-vector-star inf-lel
comp-associative comp-right-isotone comp-left-isotone)
also have ... = bot
using 7 by simp
finally have 8: 7 x 2d* x (eT x v x vT M g) = bot
by (simp add: le-bot)
have rT x 2d* x (el x e g) < rT x 2d* x el x ¢
by (simp add: comp-associative comp-right-isotone)
also have ... < 7T % (1 UvxvT) x el xe
by (metis assms(2) star.circ-isotone vector-vector-star inf-lel
comp-associative comp-right-isotone comp-left-isotone)
also have ... = bot
using 7 by simp
finally have 9: rT % 2d* x (eI % e M g) = bot
by (simp add: le-bot)
have rT x 2d* x (v U el % top) x (v U e x top)T M g) = T % 2d* * ((v * vT
Uovx vl xelel xvxol Uel xe)Myg)
using 1 by simp
also have ... = 77 % 2d* x (vx T M g) U (v* v x e g) U (T x v x T M
g) U (e" x eNyg))

o1

by (simp add: inf-sup-distrib2)
also have ... = 17 % 2d* x (v vT Mg U rT % 2d* x (v* 0T x e g) U rT *
2d* x (el xvx 0l Mg) U rT % 2d* x (el % e N g)
by (simp add: comp-left-dist-sup)
also have ... = 77 % 2d* x (v* vT M g) U rT % 2d* x (v x vT x e g)
using § 9 by simp
also have ... < 7T « 2d* U rT % 2d* x ¢
using 5 6 sup.mono by simp
also have ... = rT x 2d* x (1 U e)
by (simp add: mult-left-dist-sup)
finally have 10: T x 2d* x ((v U e x top) * (v U €T x top)T M g) < rT %
2d* x (1 U e)
by simp
have rT x 2d* x e x (v v M g) < 7T % 2d* x e x v * vT
by (simp add: comp-associative comp-right-isotone)
also have ... = bot
by (metis assms(1,2) comp-associative comp-right-zero ev comp-left-zero)
finally have 11: rT % 2d* x e x (v x vT 1 g) = bot
by (simp add: le-bot)
have 1T x 2d* x e x (vx vl x e g) <1l % 2d* x e x v x vl x ¢
by (simp add: comp-associative comp-right-isotone)
also have ... = bot
by (metis assms(1,2) comp-associative comp-right-zero ev comp-left-zero)
finally have 12: T x 2d* x e x (v x vT % e g) = bot
by (simp add: le-bot)
have 1T x 2d* x e x (el x v x vl M g) <77 % 2d* x e x T x v x oT
by (simp add: comp-associative comp-right-isotone)
also have ... < rT % 2d* x 1 x v % vT
by (metis assms(3) arc-injective comp-associative comp-left-isotone
comp-right-isotone)
also have ... = v7 % 2d* x v x v
by simp
also have ... < rT x 2d* x 2d*
using 4 by (simp add: mult-right-isotone mult-assoc)
also have ... = 7 % 2d*
by (simp add: star.circ-transitive-equal comp-associative)
finally have 13: r7 % 2d* x e * (eT x v x0T M g) < rT x 2d*

T

T

have 17 x 2d* x e x (eT x eMg) < rT x 2d* x e x el x ¢
by (simp add: comp-associative comp-right-isotone)
also have ... < rT % 2d* x 1 % e
by (metis assms(8) arc-injective comp-associative comp-left-isotone
comp-right-isotone)
also have ... = 7 x 2d* x ¢
by simp
finally have 14: T x 2d* x e x (el x e g) < rl x 2d* x ¢

have 77 x 2d* x e * (v U €T % top) * (vU eF x top)T M g) = rT x 2d* % e x
(vx vl Uvxol selel xvx0l Uel xe)Myg)

52

using 1 by simp
also have ... = 77 % 2d* x e x (v *x T M g) U (vx vT xeMg) U (el % v x 0T
Mg U (e % en g))
by (simp add: inf-sup-distrib2)
also have ... = 77 % 2d* x e x (v vl M g) U T % 2d* x e * (v * v x e g)
UrT s 2d* s ex (el xvx 0T Mg)UrT x 2d* x e x (el x eMyg)
by (simp add: comp-left-dist-sup)
also have ... = 77 % 2d* x e x (el x v x0T T g) U rT % 2d* x e * (el % e g)
using 11 12 by simp
also have ... < rT % 2d* U rT % 2d* x e
using 13 14 sup-mono by simp
also have ... = r7 % 2d* x (1 U e)
by (simp add: mult-left-dist-sup)
finally have 15: rT % 2d* x e ((v U el x top) x (v U el x top)T M g) < rT *
2d* % (1 U e)
by simp
have rT < ¢T x 2d*
using mult-right-isotone star.circ-reflexive by fastforce
also have ... < rT x 2d* % (1 U e)
by (simp add: semiring.distrib-left)
finally have 16: rT < rT x 2d* x (1 U ¢)

have rT x 2d* x (1 U e) * (v U el * top) * (v U el x top)T M g) = T x 2d*
* (v U el x top) x (v U el x top)T Mg) U rT x 2d* % e x ((vU el * top) x (v U
el x top)T M g)
by (simp add: semiring.distrib-left semiring.distrib-right)
also have ... < 7T % 2d* x (1 U e)
using 10 15 le-supl by simp
finally have r7 * 2d* x (1 U e) * (v U el x top) * (v U el * top)T M g) < rT
x 2d* x (1 U e)

hence 77 U rT % 2d* x (1 U e) * (v U el x top) * (v U el x top)T M g) < rT
x 2d* x (1 U e)
using 16 sup-least by simp
hence 77 x (v U el * top) * (v U eT x top)T M g)* < 7T % 2d* (1 U e)
by (simp add: star-right-induct)
also have ... < rT x t* x (1 U e)
by (simp add: assms(9) mult-left-isotone)
also have ... < rT x (t U e)*
by (simp add: star-one-sup-below)
finally show ?thesis

qged

4.1.2 Exchange gives Spanning Trees

The following abbreviations are used in the spanning tree application using
Prim’s algorithm to construct the new tree for the exchange property. It
is obtained by replacing an edge with one that has minimal weight and

93

reversing the path connecting these edges. Here, w represents a weighted
graph, v represents a set of nodes and e represents an edge.

abbreviation prim-F :: '‘a = 'a = 'a = 'a where prim-Ewve=wll ——v %
—oT M top * e x wT*

abbreviation prim-P :: ‘a = 'a = 'a = 'a where prim-Pwve=w M —v *
—oT M top * e x wT*

abbreviation prim-EP :: 'a = 'a = 'a = ’a where prim-EP wv e = w N —v
M top * e * wl*

abbreviation prim-W :: 'a = ‘a = 'a = 'a where prim-Ww v e = (w1
—(prim-EP w v €)) U (prim-P w v e)T U e

T

The lemmas in this section are used to show that the relation after
exchange represents a spanning tree. The results in the next section are
used to show that it is a minimum spanning tree.

lemma exchange-injective-3:
assumes ¢ < v x —vT
and vector v
shows (w M —(prim-EP w v e)) * eI = bot
proof —
have 1: top x e < —v
by (simp add: assms schroeder-4-p vTeT)
have top x e < top * e x w'*
using sup-right-divisibility star.circ-back-loop-fixpoint by blast
hence top * e < —v? M top * e * w'™
using 1 by simp
hence top * ¢ < —(w M —prim-EP w v e)
by (metis inf.assoc inf-import-p le-infI2 p-antitone p-antitone-iff)
hence (w M —(prim-EP w v €)) * eI < bot
using p-top schroeder-4-p by blast
thus ?thesis
using le-bot by simp
qed

T

lemma exchange-injective-6:
assumes arc e
and forest w
shows (prim-P w v e)T x eI’ = bot
proof —
have e x top x e < ——1
by (simp add: assms(1) p-antitone p-antitone-iff point-injective)
hence 1: e x —1 % e < bot
by (metis conv-involutive p-top triple-schroeder-p)
have (prim-P w v e)T eI < (w M top x e x w™)T
using comp-inf.mult-left-isotone conv-dist-inf mult-left-isotone by simp

*ET

also have ... = (w? M w?™*T x eI x top) * €T
by (simp add: comp-associative conv-dist-comp conv-dist-inf)
also have ... = w* * 7 * top M w? * €7

by (simp add: conv-star-commute inf-vector-comp)
also have ... < (w? M w* * e * top x e) x (ef M wT * e * top)

54

by (metis dedekind mult-assoc conv-involutive inf-commute)
also have ... < (w* x e x top * e) * (wh * el * top)

by (simp add: mult-isotone)
also have ... < (top * e) * (w * eI * top)

by (simp add: mult-left-isotone)
also have ... = top * e x wt x e’ * top

using mult-assoc by simp
also have ... < top * e x —1 x eT * top

using assms(2) mult-left-isotone mult-right-isotone by simp
also have ... < bot

using 1 by (metis le-bot semiring.mult-not-zero mult-assoc)
finally show ?thesis

using le-bot by simp

qed

The graph after exchanging is injective.

lemma exchange-injective:
assumes arc €
and e < v * —v
and forest w
and vector v
shows injective (prim-W w v e)
proof —
have 1: (w I —(prim-EP w v e)) * (w I —(prim-EP w v e))T < 1
proof —
have (w M —(prim-EP w v e)) * (w M —(prim-EP w v €))7 < w x w’
by (simp add: comp-isotone conv-isotone)
also have ... < 1
by (simp add: assms(3))
finally show ?thesis

T

qed
have 2: (w I —(prim-EP w v e)) * (prim-P w v)77 < 1
proof —
have top x (prim-P w v e)T = top x (wT M —v x —vT M wT*T % T x top)
by (simp add: comp-associative conv-complement conv-dist-comp
conv-dist-inf)
also have ... = top * e * w'* * (Wl M —v * —v
by (metis comp-inf-vector conv-dist-comp conv-involutive inf-top-left
mult-assoc)
also have ... < top * e * w'* x (w? M top * —v
using comp-inf.mult-right-isotone mult-left-isotone mult-right-isotone by
stmp
also have ... = top x e * w™™* x wT M —v
by (metis assms(4) comp-inf-covector vector-conv-compl)
also have ... < —vT M top % e * w'™*
by (simp add: comp-associative comp-isotone inf.coboundedll
star.circ-plus-same star.left-plus-below-circ)
finally have top * (prim-P w v e)T < —(w M —prim-EP w v ¢)

)
T %

)

T % T

95

by (metis inf.assoc inf-import-p le-infI2 p-antitone p-antitone-iff)
hence (w M —(prim-EP w v €)) * (prim-P w v e)TT < bot
using p-top schroeder-4-p by blast
thus ?thesis
by (simp add: bot-unique)
qed
have 3: (w M —(prim-EP w v e)) * el < 1
by (metis assms(2,4) exchange-injective-3 bot-least)
have 4: (prim-P w v e)T % (w M —(prim-EP w v e))T < 1
using 2 conv-dist-comp coreflexive-symmetric by fastforce
have 5: (prim-P w v)T * (prim-P w v e)TT < 1
proof —
have (prim-P w v e)T * (prim-P w v e)
wT*)
by (simp add: conv-dist-inf mult-isotone)
also have ... = w* % 7 * top * top * e * w
using conuv-star-commute conv-dist-comp conv-involutive conv-top mult-assoc
by presburger
also have ... = w* x e” * top * e *x w
by (simp add: comp-associative)
also have ... < w* * 1 % wl™*
by (metis comp-left-isotone comp-right-isotone mult-assoc assms(1)
point-injective)
finally have (prim-P w v e)T x (prim-P w v e)TT < w* » wT™* 1w’ x w
by (simp add: conv-isotone inf.left-commute inf.sup-monoid.add-commute
mult-isotone)
also have ... < 1
by (simp add: assms(3) forest-separate)
finally show ?thesis

TT < (top * e x w™)T x (top * e *

T %

T *

qed
have 6: (prim-P w v e)T * T < 1
using assms exchange-injective-6 bot-least by simp
have 7: e * (w M —(prim-EP w v e))T < 1
using 3 by (metis conv-dist-comp conv-involutive coreflexive-symmetric)
have 8: e * (prim-P w v e)TT < 1
using 6 conv-dist-comp coreflexive-symmetric by fastforce
have 9: e x ¢ < 1
by (simp add: assms(1) arc-injective)
have (prim-W w v e) * (prim-W w v e)T = (w M —(prim-EP w v €)) * (w N
—(prim-EP w v e))T U (w N —(prim-EP w v e)) * (prim-P w v e)TT U (w N
—(prim-EP w v €)) * eI U (prim-P w v)T x (w M —(prim-EP w v e))T U
(prim-P w v e)T * (prim-P w v e)TT U (prim-P w v e)T x T U e * (wn
—(prim-EP w v e))T U e * (prim-P wv e)TT U e x T
using comp-left-dist-sup comp-right-dist-sup conv-dist-sup sup.assoc by simp
also have ... < 1
using 1 23456789 by simp
finally show ?thesis

o6

qed

lemma pv:
assumes vector v
shows (prim-P w v e)
proof —
have (prim-P w v e)T x v < (—v x —0T)T x 0
by (meson conv-isotone inf-lel inf-le2 mult-left-isotone order-trans)

T %« v = bot

T)T

also have ... = —v x —vT % v
by (simp add: conv-complement conv-dist-comp)
also have ... = bot

by (simp add: assms covector-vector-comp mult-assoc)
finally show ?thesis
by (simp add: order.antisym)
qed

lemma vector-pred-inv:
assumes arc €
and e < v *x —v
and forest w
and wvector v
and wx v < w
shows (prim-W w v e) * (v U el * top) < v U el * top
proof —
have (prim-W w v e) * eI * top = (w M —(prim-EP w v e)) * e * top U
(prim-P w v e)T % eI % top U e * eI * top
by (simp add: mult-right-dist-sup)
also have ... = e x 7 * top
using assms exchange-injective-3 exchange-injective-6 comp-left-zero by simp
also have ... < v x —v7 x T * top
by (simp add: assms(2) comp-isotone)
also have ... < v x top
by (simp add: comp-associative mult-right-isotone)
also have ... = v
by (simp add: assms(4))
finally have 1: (prim-W w v e) * el x top < v

T

have (prim-Ww v e) x v = (w M —(prim-EP w v e)) * v U (prim-P w v e)T * v

Uexw
by (simp add: mult-right-dist-sup)
also have ... = (w M —(prim-EP w v e)) * v
by (metis assms(2,4) pv ev sup-bot-right)
also have ... < w * v
by (simp add: mult-left-isotone)
finally have 2: (prim-Wwwve) x v <w
using assms(5) order-trans by blast
have (prim-W w v e) x (v U el x top) = (prim-W w v e) * v U (prim-W w v e)
x el % top
by (simp add: semiring.distrib-left mult-assoc)

o7

also have ... < v
using 1 2 by simp

also have ... < v U e x* top
by simp

finally show ?thesis

qed
The graph after exchanging is acyclic.

lemma exchange-acyclic:
assumes vector v
and e < v *x —v
and wx v < w
and acyclic w
shows acyclic (prim-W w v €)
proof —
have 1: (prim-P w v e
proof —
have (prim-P w v e)T x e < (—v * —v
by (meson conv-order dual-order.trans inf.cobounded1 inf.cobounded2
mult-left-isotone)
also have ... = —v x —v' x e
by (simp add: conv-complement conv-dist-comp)
also have ... < —v % —vT % v x —o7T
by (simp add: assms(2) comp-associative mult-right-isotone)
also have ... = bot
by (simp add: assms(1) covector-vector-comp mult-assoc)
finally show ?thesis
by (simp add: bot-unique)
qed
have 2: e x e = bot
using assms(1,2) ee by auto
have 3: (w M —(prim-EP w v e)) * (prim-P w v)T = bot
proof —
have top * (prim-P w v e) < top * (—v x —vT M top * e * w
using comp-inf.mult-semi-associative mult-right-isotone by auto
also have ... < top * —v * —vT M top * top * e * w! *
by (simp add: comp-inf-covector mult-assoc)
also have ... < top x —vT M top * e x wT*
using mult-left-isotone top.extremum inf-mono by presburger
also have ... = —vT M top * e * wT™*
by (simp add: assms(1) vector-conv-compl)
finally have top * (prim-P w v e) < —(w M —prim-EP w v e)
by (metis inf.assoc inf-import-p le-infI2 p-antitone p-antitone-iff)
hence (w M —(prim-EP w v €)) * (prim-P w v e)T < bot
using p-top schroeder-4-p by blast
thus ?thesis
using bot-unique by blast
qed

T

)T % e = bot

T 5 e

T

T*)

o8

T = wn —(prim-EP w v e)

hence 4: (w M —(prim-EP w v €)) * (prim-P w v €)
using star-absorb by blast
hence 5: (w M —(prim-EP w v €))* x (prim-P w v e)T* = (w N —(prim-EP w
ve))t
by (metis star-plus mult-assoc)
hence 6: (w M —(prim-EP w v €))* x (prim-P w v e)
e))T U (prim-P w v e)T™*
by (metis star.circ-loop-fizpoint mult-assoc)
have 7: (w M —(prim-EP w v e))™ x e < v * top
proof —
have e < v x top
using assms(2) dual-order.trans mult-right-isotone top-greatest by blast
hence 8: e U w * v * top < v * top
by (simp add: assms(1,3) comp-associative)
have (w M —(prim-EP wv e))t x e < wt x e
by (simp add: comp-isotone star-isotone)
also have ... < w* * e
by (simp add: mult-left-isotone star.left-plus-below-cire)
also have ... < v x top
using 8 by (simp add: comp-associative star-left-induct)
finally show ?thesis

T = (w N —(prim-EP w v

qed
have 9: (prim-P w v)T % (w M —(prim-EP w v e))* * e = bot
proof —
have (prim-P w v e)T % (w M —(prim-EP w v e))* x e < (prim-P w v)T x v
* top
using 7 by (simp add: mult-assoc mult-right-isotone)
also have ... = bot
by (simp add: assms(1) pv)
finally show ?thesis
using bot-unique by blast
qed
have 10: e * (w I —(prim-EP w v e))* * e = bot
proof —
have ¢ x (w N —(prim-EP w v €))T x e < e x v x top
using 7 by (simp add: mult-assoc mult-right-isotone)
also have ... < v —vT * v * top
by (simp add: assms(2) mult-left-isotone)
also have ... = bot
by (simp add: assms(1) covector-vector-comp mult-assoc)
finally show ?thesis
using bot-unique by blast

qed
have 11: e * (prim-P w v ¢)T* x (w M —(prim-EP w v €))* < v x —vT
proof —

have 12: —vT x w < —o7

by (metis assms(3) conv-complement order-lesseq-imp pp-increasing
schroeder-6-p)

99

have v x —vT x (w M —(prim-EP wv e)) < v* —vl * w
by (simp add: comp-isotone star-isotone)
also have ... < v x —oT
using 12 by (simp add: comp-isotone comp-associative)
finally have 13: v * —vT % (w N —(prim-EP w v e)) < v * —vT
have 14: (prim-P w v)T < —v * —ovT
by (metis conv-complement conv-dist-comp conv-involutive conv-order inf-lel
inf-le2 order-trans)
have e * (prim-P w v e)T* < v x —vT * (prim-Pw v e
by (simp add: assms(2) mult-left-isotone)
also have ... = v * —vT U v * —vT x (prim-P w v e)T+
by (metis mult-assoc star.circ-back-loop-fixpoint star-plus sup-commute)
also have ... = v x —vT U v * —vT x (prim-P w v €)T* % (prim-P w v e)
by (simp add: mult-assoc star-plus)
also have ... < v * —vT U v x —vT % (prim-P w v e)T* x —v x —oT
using 14 mult-assoc mult-right-isotone sup-right-isotone by simp
also have ... < v * —vT U v * top x —v7
by (metis top-greatest mult-right-isotone mult-left-isotone mult-assoc
sup-right-isotone)
also have ... = v * —v
by (simp add: assms(1))
finally have ¢ * (prim-P w v e)T* % (w 1M —(prim-EP w v e))* < v * —vT x
(w N —(prim-EP w v e))*
by (simp add: mult-left-isotone)
also have ... < v x —oT
using 13 by (simp add: star-right-induct-mult)
finally show ?thesis

T)T*

T

T

qed

have 15: (w M —(prim-EP w v €))* % (prim-P w v)T* % (w M —(prim-EP w v
e))* < —1

proof —

have (w M —(prim-EP w v e))™ * (prim-P w v e)T* x (w N —(prim-EP w v
e))* = (wn —(prim-EP wv e))™ x (w N —(prim-EP w v ¢))*
using 5 by simp
also have ... = (w M —(prim-EP w v €))*
by (simp add: mult-assoc star.circ-transitive-equal)
also have ... < wt
by (simp add: comp-isotone star-isotone)
finally show ?thesis
using assms(4) by simp
qed
have 16: (prim-P w v €)
N —(prim-EP w v e))* < —1
proof —
have (w M —(prim-EP w v €)™ * (prim-P w v e)T+ < (w M —(prim-EP w v
e))t * (prim-P w v e)T*
by (simp add: mult-right-isotone star.left-plus-below-circ)

T T *

* (w M —(prim-EP w v e))* * (prim-P wv e)** * (w

60

also have ... = (w 1 —(prim-EP w v e))™
using 5 by simp
also have ... < wt
by (simp add: comp-isotone star-isotone)
finally have (w M —(prim-EP w v €))* * (prim-P w v)T+ < —1
using assms(4) by simp
hence 17: (prim-P w v e)T+ % (w M —(prim-EP w v e))t < —1
by (simp add: comp-commute-below-diversity)
have (prim-P w v)Tt < wl*
by (simp add: comp-isotone conv-dist-inf inf.left-commute
inf.sup-monoid.add-commute star-isotone)
also have ... = w7
by (simp add: conv-dist-comp conv-star-commute star-plus)
also have ... < —1
using assms(4) conv-complement conv-isotone by force
finally have 18: (prim-P w v)T+ < —1

have (prim-P w v)T % (w N —(prim-EP w v e))* * (prim-P w v €)T* x (w I
—(prim-EP w v €))* = (prim-P w v e)T x ((w M —(prim-EP w v e))* U (prim-P
wove)l*) x (w N —(prim-EP w v e))*

using 6 by (simp add: comp-associative)

also have ... = (prim-P w v)T % (w N —(prim-EP w v e)) * (w M
—(prim-EP w v €))* U (prim-P w v e)T+ % (w N —(prim-EP w v €))*

by (simp add: mult-left-dist-sup mult-right-dist-sup)

also have ... = (prim-P w v e)T x (w M —(prim-EP w v €))* U (prim-P w v
e)TT x (w N —(prim-EP w v €))*

by (simp add: mult-assoc star.circ-transitive-equal)

also have ... = (prim-P w v e)T x (w M —(prim-EP w v €))* U (prim-P w v
e) T+ x (1 U (wn —(prim-EP w v e))*)

using star-left-unfold-equal by simp

also have ... = (prim-P w v e)T x (w 1N —(prim-EP w v €))* U (prim-P w v
e)T+ % (w N —(prim-EP w v e))* U (prim-P w v)T+

by (simp add: mult-left-dist-sup sup.left-commaute sup-commute)

also have ... = ((prim-P w v e)T U (prim-P w v e)TF) (w N —(prim-EP w v

e))T U (prim-P w v e)T+
by (simp add: mult-right-dist-sup)
also have ... = (prim-P w v e)T% % (w N —(prim-EP w v €))™ U (prim-P w v
6)T+
using star.circ-mult-increasing by (simp add: le-iff-sup)
also have ... < —1
using 17 18 by simp
finally show ?thesis

qed
have 19: e * (w I —(prim-EP w v e))* * (prim-P w v e)T* x (w N —(prim-EP
wove)) < —1
proof —
have e * (w I —(prim-EP w v €))* x (prim-P w v e)T* x (w M —(prim-EP w
ve)* =ex ((wn —(prim-EP w v e))* U (prim-P w v e)T*) x (w M —(prim-EP

61

wove))*
using 6 by (simp add: mult-assoc)
also have ... = e x (w M —(prim-EP w v e))* x (w N —(prim-EP wv e))* U e
* (prim-P w v e)T* x (w N —(prim-EP w v €))*
by (simp add: mult-left-dist-sup mult-right-dist-sup)
also have ... = e * (w M —(prim-EP w v e))* U e * (prim-P w v e)T* % (w N
—(prim-EP w v e))*
by (simp add: mult-assoc star.circ-transitive-equal)
also have ... < e x (prim-P w v e)T* x (w N —(prim-EP w v €)™ U e x
(prim-P w v e)T* x (w M —(prim-EP w v €))*
by (metis mult-right-sub-dist-sup-right semiring.add-right-mono
star.circ-back-loop-fixpoint)
also have ... < e x (prim-P w v e)T* * (w M —(prim-EP w v e))*
using mult-right-isotone star.left-plus-below-circ by auto
also have ... < v % —vT
using 11 by simp
also have ... < —1
by (simp add: pp-increasing schroeder-3-p)
finally show ?thesis

qged
have 20: (prim-W w v e) * (w N —(prim-EP w v €))* * (prim-P w v €)
N —(prim-EP wv e))* < —1
using 15 16 19 by (simp add: comp-right-dist-sup)
have 21: (w M —(prim-EP w v €)™ * e * (prim-P w v e)T* x (w N —(prim-EP
wove)) < —1
proof —
have (w I —(prim-EP w v e)) * v —vl < wx v * —v
by (simp add: comp-isotone star-isotone)
also have ... < v x —oT
by (simp add: assms(3) mult-left-isotone)
finally have 22: (w M —(prim-EP w v e)) * v x —vT < v % —v

T**(w

T

T

have (w I —(prim-EP w v e))™ % e x (prim-P w v e)T* % (w N —(prim-EP w
ve))* < (wh —(prim-EP wve))t x vx —oT
using 11 by (simp add: mult-right-isotone mult-assoc)
also have ... < (w M —(prim-EP w v €))* * v —vT
using mult-left-isotone star.left-plus-below-circ by blast
also have ... < v x —oT
using 22 by (simp add: star-left-induct-mult mult-assoc)
also have ... < —1
by (simp add: pp-increasing schroeder-3-p)
finally show ?thesis

qed
have 23: (prim-P w v)T * (w M —(prim-EP w v €))* * e * (prim-P w v)
(w M —(prim-EP w v e))* < —1
proof —
have (prim-P w v e)T * (w M —(prim-EP w v e€))

T**

T

*xe= (prim-Pwwve) xe

62

U (prim-P w v e)T % (w M —(prim-EP w v e))T * e
using comp-left-dist-sup mult-assoc star.circ-loop-fixpoint sup-commute by
auto
also have ... = bot
using 1 9 by simp
finally show ?%thesis
by simp
qed
have 2/: e * (w M —(prim-EP w v e))* * e * (prim-P w v e)T* x (w N
—(prim-EP w v €))* < —1
proof —
have e x (w N —(prim-EP wv e))* * e=ex el e *x (w N —(prim-EP w v
et x e
using comp-left-dist-sup mult-assoc star.circ-loop-fixpoint sup-commute by
auto
also have ... = bot
using 2 10 by simp
finally show ?thesis
by simp
qed
have 25: (prim-W w v e) x (w N —(prim-EP w v €))
(w N —(prim-EP w v e))* < —1
using 21 23 24 by (simp add: comp-right-dist-sup)
have (prim-W w v e)* = ((prim-P w v e)T U e)* x ((w N —(prim-EP w v e)) *
((prim-P w v e)T U €)*)*
by (metis star-sup-1 sup.left-commute sup-commute)
also have ... = ((prim-P w v e)T* U e * (prim-P w v ¢)T*) * ((w N —(prim-EP
wve)) * ((prim-P w v e)T* U e x (prim-P w v e)T*))*
using 1 2 star-separate by auto
also have ... = ((prim-P w v e)T* U e x (prim-P w v e)T*) % ((w N —(prim-EP
wwve))x (1Uex (prim-Pwwve)l*))*
using 4 mult-left-dist-sup by auto
also have ... = (w M —(prim-EP w v €))* * ((prim-P w v e)T* U e * (prim-P w
ve)T*) x (wn —(prim-EP w v e))*
using 3 9 10 star-separate-2 by blast
also have ... = (w I —(prim-EP w v e))* * (prim-P w v e)T* x (w N
—(prim-EP w v e))* U (w M —(prim-EP w v €))* x e * (prim-P w v e)T* * (w N
—(prim-EP w v €))*
by (simp add: semiring.distrib-left semiring.distrib-right mult-assoc)
finally have (prim-W w v e)™ = (prim-W w v e) * ((w 1 —(prim-EP w v €))*
* (prim-P w v e)T* x (w N —(prim-EP w v €))* U (w M —(prim-EP w v €))* x e
* (prim-P w v e)T* x (w N —(prim-EP w v €))*)
by simp
also have ... = (prim-W w v e) x (w N —(prim-EP w v €))* x (prim-P w v €)
* (w N —(prim-EP w v e))* U (prim-Ww v e) * (w N —(prim-EP w v e))* * e %
(prim-P w v e)T* x (w 1 —(prim-EP w v €))*
by (simp add: comp-left-dist-sup comp-associative)
also have ... < —1
using 20 25 by simp

Tx

* % e x (prim-P w v €)' *

T

63

finally show ?thesis

qed

The following lemma shows that an edge across the cut between visited
nodes and unvisited nodes does not leave the component of visited nodes.

lemma mst-subgraph-inv:
assumes ¢ < v * —v’ 1 g
and t < g
and v = T x t*
shows e < (r1 x ¢*)T «x (r
proof —
have e < vx* —vl Mg
by (rule assms(1))
also have ... < v x (—vl' Ml xg) N g
by (simp add: dedekind-1)
also have ... < v vl x gy
by (simp add: comp-associative comp-right-isotone inf-commute le-infI2)

Txginyg

also have ... = v+ (rT x t*) x g g
by (simp add: assms(3))
also have ... = (1T« t)T x (rT x t*) x g g

by (metis assms(8) conv-involutive)
also have ... < (17T«)T« (T x g*) x gN g
using assms(2) comp-inf.mult-left-isotone comp-isotone star-isotone by auto
also have ... < (17«)T x (T x g") N g
using inf.sup-right-isotone inf-commute mult-assoc mult-right-isotone
star.left-plus-below-circ star-plus by presburger
also have ... < (rT x g))T x (rT x g*) N g
using assms(2) comp-inf.mult-left-isotone conv-dist-comp conv-isotone
mult-left-isotone star-isotone by auto
finally show ?thesis

qged

The following lemmas show that the tree after exchanging contains the
currently constructed and tree and its extension by the chosen edge.

lemma mst-extends-old-tree:
assumes t < w
and t < v x*xwv
and vector v
shows t < prim-Ww v e
proof —
have t M prim-EP w v e < t I —T
by (simp add: inf.coboundedI2 inf.sup-monoid.add-assoc)
also have ... < v % vT M =T
by (simp add: assms(2) inf.coboundedI1)
also have ... < bot
by (simp add: assms(3) covector-vector-comp eg-refl schroeder-2)
finally have t < —(prim-EP w v e)

T

64

using le-bot pseudo-complement by blast
hence t < w M —(prim-EP w v e)
using assms(1) by simp
thus ?thesis
using le-supll by blast
qed

lemma mst-extends-new-tree:
tgw:>t§v*vT:>vect0rv:>tUe§pm'm-Wwve
using mst-extends-old-tree by auto

Lemmas forests-bot-1, forests-bot-2, forests-bot-3 and fc-comp-eq-fc were
contributed by Nicolas Robinson-O’Brien.

lemma forests-bot-1:
assumes equivalence e
and forest f
shows (—e M f) * (e f)T = bot
proof —
have f * fT < e
using assms dual-order.trans by blast
hence f x (e f)T < e
by (metis conv-dist-inf inf.boundedE inf.cobounded2 inf.orderE
mult-right-isotone)
hence —e M f * (e M f)T = bot
by (simp add: p-antitone pseudo-complement)
thus ?thesis
by (metis assms(1) comp-isotone conv-dist-inf
equivalence-comp-right-complement inf.boundedl inf.cobounded! inf.cobounded?
le-bot)
qed

lemma forests-bot-2:
assumes equivalence e
and forest f
shows (—e M f1) x x 1 (e M f7) * y = bot
proof —
have (—e M f) * (e M f1) = bot
using assms forests-bot-1 conv-dist-inf by simp
thus ?thesis
by (smt assms(1) comp-associative comp-inf.semiring.mult-not-zero
conv-complement conv-dist-comp conv-dist-inf conv-involutive dedekind-1
inf.cobounded? inf.sup-monoid.add-commute le-bot mult-right-zero p-antitone-iff
pseudo-complement semiring.mult-not-zero symmetric-top-closed top.extremum)
qged

lemma forests-bot-3:
assumes equivalence e
and forest f
shows z % (—e M f) My x (e N f) = bot

65

proof —
have (e M f) * (—e M fT) = bot
using assms forests-bot-1 conv-dist-inf conv-complement by (smt
conv-dist-comp conv-involutive conv-order coreflexive-bot-closed
coreflexive-symmetric)
hence y * (e M f) * (—e M fT) = bot
by (simp add: comp-associative)
hence 7: 2 My * (e f) * (—e M fT) = bot
using comp-inf.semiring.mult-not-zero by blast
hence (z My * (e M f) x (—e M f1)) % (—e N f) = bot
using semiring.mult-not-zero by blast
hence 7 * (—e M fI)T My * (e f) = bot
using ! dedekind-2 inf-commute schroeder-2 by auto
thus ?thesis
by (simp add: assms(1) conv-complement conv-dist-inf)
qged

lemma acyclic-plus:
acyclic t = acyclic (zT)
by (simp add: star.circ-transitive-equal star.left-plus-circ mult-assoc)

end

We finally add the Kleene star to Stone relation algebras. Kleene star and
the relational operations are reasonably independent. The only additional
axiom we need in the generalisation to Stone-Kleene relation algebras is that
star distributes over double complement.

class stone-kleene-relation-algebra = stone-relation-algebra + pd-kleene-allegory +
assumes pp-dist-star: ——(z*) = (——1z)*
begin

lemma reachable-without-loops:
= (z N —1)*
proof (rule order.antisym)
have z % (z M —1)*=(x N) *(eN—=1)*U(zN—1)x(zN—=1)*
by (metis madduz-3-11-pp mult-right-dist-sup regular-one-closed)
also have ... < (z M —1)*
by (metis inf.cobounded2 le-supl mult-left-isotone star.circ-circ-mult
star.left-plus-below-circ star-involutive star-one)
finally show z* < (z M —1)*
by (metis inf.cobounded?2 madduz-3-11-pp regular-one-closed
star. circ-cire-mult star.circ-sup-2 star-involutive star-sub-one)
next
show (z 1 —1)* < z*
by (simp add: star-isotone)
qged

lemma plus-reachable-without-loops:
gt =(@n-0*tu(zni)

66

by (metis comp-associative madduz-3-11-pp regular-one-closed
star.circ-back-loop-fixpoint star.circ-loop-fixpoint sup-assoc
reachable-without-loops)

lemma star-plus-without-loops:
N —1=ztMn-—1
by (metis madduz-3-13 star-left-unfold-equal)

lemma regular-closed-star:
reqular © = regular (z*)
by (simp add: pp-dist-star)

lemma components-idempotent:
components (components x) = components x
using pp-dist-star star-involutive by auto

lemma fe-comp-eq-fe:
—forest-components (——f) = —forest-components f
by (metis conv-complement p-comp-pp p-pp-comp pp-dist-star)

The following lemma shows that the nodes reachable in the tree after
exchange contain the nodes reachable in the tree before exchange.

lemma mst-reachable-inv:
assumes regular (prim-EP w v e)
and vector r
and e < v *x —v
and vector v
and v7 = T x t*
and t < w
and t < v x*xw
and w*x v < w
shows rT x w* < rT x (prim-W w v €)*
proof —
have 1: T < T x (prim-W w v e)*
using sup.bounded-iff star.circ-back-loop-prefixpoint by blast
have top * e x (wT M —vT)* x wl M —oT = top * e * (w? M —vT)* * (wh' N
—oT)

T

T

by (simp add: assms(4) covector-comp-inf vector-conv-compl)
also have ... < top * e * (wl M —vT)*
by (simp add: comp-isotone mult-assoc star.circ-plus-same
star.left-plus-below-circ)
finally have 2: top * e * (w? M —vT)* % w? < top x e * (wT M —0vT)* U ——oT
by (simp add: shunting-var-p)
have 3: ——vT x wT < top * e x (wT M —vT)* U ——oT
by (metis assms(8) conv-dist-comp conv-order mult-assoc order.trans
pp-comp-semi-commute pp-isotone sup.coboundedll sup-commute)

have /: top x e < top x e x (wl M —vT)* U ——oT
using sup-right-divisibility star.circ-back-loop-fixpoint le-supll by blast
have (top * e * (wl' M —vT)* U ——0T) % w? = top x e x (w? 11 —0vT)* x w? U

67

T T

——vl xw
by (simp add: comp-right-dist-sup)
also have ... < top x e x (wl M —vT)* U ——o7

using 2 3 by simp
finally have top * e U (top * e * (wT M —vT)* U ——2T) % wT < top * e *
(w? M=oYy 1 ——oT
using 4 by simp
hence 5: top * e * w'™* < top x e x (wl M —vT)* U ——oT
by (simp add: star-right-induct)
have 6: top x e < top x e * (wl M —v x —vT M w* x el x top)*
using sup-right-divisibility star.circ-back-loop-fixpoint by blast
have (top * e * (wl M —v * —vT M w* x el * top)*)T < (top x e x w'™*)T
by (simp add: star-isotone mult-right-isotone conv-isotone inf-assoc)
also have ... = w* x 7 * top
by (simp add: conv-dist-comp conv-star-commute mult-assoc)
finally have 7: (top * e * (w” M —v x —vT M w* * T x top)*)T < w* x €T *
top

have (top * e * (w? M —v * —vT T w* * el * top)*)T < (top * e x (—v *
—UT)*)T
by (simp add: conv-isotone inf-commute mult-right-isotone star-isotone
le-infI2)
also have ... < (top * v x —vT * (—v x —0T)*)T
by (metis assms(8) conv-isotone mult-left-isotone mult-right-isotone
mult-assoc)
also have ... = (top * v * (—v! * —v)* * —v
by (simp add: mult-assoc star-slide)
also have ... < (top x —vT)T
using conv-order mult-left-isotone by auto
also have ... = —v
by (simp add: assms(4) conv-complement vector-conv-compl)
finally have 8: (top * e * (w” M —v x —vT M w* * T x top)*)T < w* x €T *
top I —wv
using 7 by simp
have covector (top * e x (wT M —v x —vT M w* * T * top)*)
by (simp add: covector-mult-closed)
hence top x e * (wl M —v * —vT M w* * €T x top)* * (wh M —vT) = top x e *
(wT' M —vx =0T M w* x el x top)* * (wh M —vT M (top * e x (W' M —v x =0T
N w* x el x top)*)7T)
by (metis comp-inf-vector-1 inf.idem)
also have ... < top x e * (wl M —v x —vT M w* x e * top)* * (wh M —vT N
w* x el x top M —v)
using 8 mult-right-isotone inf.sup-right-isotone inf-assoc by simp
also have ... = top * e * (w' M —v x —vT M w* * T * top)* * (w' M (—v N
—vT) 1 w* x e * top)
using inf-assoc inf-commute by (simp add: inf-assoc)
also have ... = top x e * (wl M —v * —vT M w* x el x top)* * (wl' M —v
—vT M w* x el x top)
using assms(4) conv-complement vector-complement-closed vector-covector by

T T)T

68

fastforce
also have ... < top * e * (wl M —v * —vT M w* x 7 top)*
by (simp add: comp-associative comp-isotone star.circ-plus-same
star.left-plus-below-circ)
finally have 9: top * e U top x e * (wl M —v x —vT 11 w* x eI top)* * (w
N —oT) < top * e * (wh M —v* —vT M w* x el x top)*
using 6 by simp
have prim-EP wv e < —vT Mtop x e x w
using inf.sup-left-isotone by auto
also have ... < top x e x (wl M —vT)
using 5 by (metis inf-commute shunting-var-p)
also have ... < top * e * (w' M —v * —vT M w* x 7 * top)*
using 9 by (simp add: star-right-induct)
finally have 10: prim-EP w v e < top * e x (prim-P w v e
by (simp add: conv-complement conv-dist-comp conv-dist-inf
conv-star-commute mult-assoc)
have top x e = top * (v * —vT I e)
by (simp add: assms(3) inf.absorb2)
also have ... < top * (v * top M e)
using inf.sup-right-isotone inf-commute mult-right-isotone top-greatest by
presburger
also have ... = (top M (v * top)T) x e
using assms(4) covector-inf-comp-3 by presburger
also have ... = top * v x e
by (simp add: conv-dist-comp)
also have ... = top = r7 x t* x ¢
by (simp add: assms(5) comp-associative)
also have ... < top * 1 * (prim-W w v e)* * e
by (metis assms(4,6,7) mst-extends-old-tree star-isotone mult-left-isotone
mult-right-isotone)
finally have 11: top x e < top * 11 % (prim-W w v e)* x e

T

T x

*

)T*

have rT x (prim-W w v e)* * (prim-EP w v e) < 7 x (prim-W w v e)* * (top

* e * (prim-P w v e)T™)
using 10 mult-right-isotone by blast
also have ... = v x (prim-W w v €)* * top * e x (prim-P w v e)
by (simp add: mult-assoc)
also have ... < top * e x (prim-Pw v e
by (metis comp-associative comp-inf-covector inf.idem
inf.sup-right-divisibility)
also have ... < top x 1 x (prim-W w v €)* * e x (prim-P w v e)
using 11 by (simp add: mult-left-isotone)
also have ... = rT x (prim-W w v e)* * e * (prim-P w v e)
using assms(2) vector-conv-covector by auto
also have ... < rT x (prim-W w v e)* * (prim-W w v €) * (prim-P w v e)
by (simp add: mult-left-isotone mult-right-isotone)
also have ... < rT x (prim-W w v €)* * (prim-W w v e) * (prim-W w v e)*
by (meson dual-order.trans mult-right-isotone star-isotone sup-gel sup-ge2)
also have ... < rT x (prim-W w v e)*

T %

)T*

T %
T

Tx

69

by (metis mult-assoc mult-right-isotone star.circ-transitive-equal
star.left-plus-below-circ)
finally have 12: v % (prim-W w v €)* * (prim-EP w v e) < rT x (prim-W w v
e)*

have 77 x (prim-W w v e)* x w < r¥" % (prim-W w v e)* * (w L prim-EP w v)
by (simp add: inf-assoc)
also have ... = 77 % (prim-W w v e)* x ((w U prim-EP w v) N (—(prim-EP w
ve) U prim-EP w v e))
by (metis assms(1) inf-top-right stone)

also have ... = 77 % (prim-W w v e)* * ((w M —(prim-EP w v e)) U prim-EP w
ve)
by (simp add: sup-inf-distrib2)
also have ... = rT x (prim-W w v e)* * (w M —(prim-EP w v e)) U rT x

(prim-W w v e)* x (prim-EP w v e)
by (simp add: comp-left-dist-sup)
also have ... < T x (prim-W w v €)* * (prim-W w v e) U r
e)* * (prim-EP w v e)
using mult-right-isotone sup-left-isotone by auto
also have ... < rT x (prim-W w v e)* U rT x (prim-W w v €)* * (prim-EP w v

€)
using mult-assoc mult-right-isotone star.circ-plus-same
star.left-plus-below-circ sup-left-isotone by auto
also have ... = rT x (prim-W w v)*
using 12 sup.absorbl by blast
finally have r* U r7 x (prim-W w v e)* x w < rT % (prim-W w v €)*
using 1 by simp
thus ?thesis
by (simp add: star-right-induct)
qed

T s (prim-W w v

Some of the following lemmas already hold in pseudocomplemented dis-
tributive Kleene allegories.

4.1.3 Exchange gives Minimum Spanning Trees

The lemmas in this section are used to show that the after exchange we
obtain a minimum spanning tree. The following lemmas show various inter-
actions between the three constituents of the tree after exchange.

lemma epm-1:

vector v = prim-E w v e U prim-P w v e = prim-EP wv e

by (metis inf-commute inf-sup-distribl mult-assoc mult-right-dist-sup
regular-closed-p regular-complement-top vector-conv-compl)

lemma epm-2:
assumes regular (prim-EP w v e)
and wvector v
shows (w M —(prim-EP w v e)) U prim-P w v e U prim-E wv e = w
proof —

70

have (w N —(prim-EP w v ¢e)) U prim-P w v e U prim-E w v e = (w N
—(prim-EP w v e)) U prim-EP w v e
using epm-1 sup-assoc sup-commute assms(2) by (simp add: inf-sup-distrib1)
also have ... = w U prim-EP wv e
by (metis assms(1) inf-top.right-neutral regular-complement-top
sup-inf-distrib2)
also have ... = w
by (simp add: sup-inf-distrib1)
finally show ?thesis

qged

lemma epm-4:
assumes e < w
and injective w
and w*x v < w
and e < v *x —v
shows top * e x w' T < top * v
proof —
have w* x v < v
by (simp add: assms(3) star-left-induct-mult)
hence 1: vT % wT™* < T
using conv-star-commute conv-dist-comp conv-isotone by fastforce
have e * w? < wx wf Mex w?
by (simp add: assms(1) mult-left-isotone)
also have ... < 1 M e x w?
using assms(2) inf.sup-left-isotone by auto

T
T

also have ... = 1 M w * e’
using calculation conv-dist-comp conv-involutive coreflexive-symmetric by
fastforce
also have ... < w * T
by simp

also have ... < w x —v % vT
by (metis assms(4) conv-complement conv-dist-comp conv-involutive
conv-order mult-assoc mult-right-isotone)
also have ... < top x vl
by (simp add: mult-left-isotone)
finally have top * e x w'+ < top * vT % w’™*
by (metis order.antisym comp-associative comp-isotone dense-top-closed
mult-left-isotone transitive-top-closed)
also have ... < top x ol
using 1 by (simp add: mult-assoc mult-right-isotone)
finally show ?thesis

qed
lemma epm-5:

assumes e < w
and injective w

71

and wx v <w
and e < v *x —v
and vector v
shows prim-P w v e = bot
proof —
have 1: e = w M top * e
by (simp add: assms(1,2) epm-3)
have 2: top * e x wTt < top * v7
by (simp add: assms(1—4) epm-4)
have 3: —v x —vT M top * vT = bot
by (simp add: assms(5) comp-associative covector-vector-comp
inf.sup-monoid.add-commute schroeder-2)
have prim-P wv e = (w M —v* —vl Mtop*e) U (wM —vs* —vl Mtop e *
wl)
by (metis inf-sup-distribl mult-assoc star.circ-back-loop-fixpoint star-plus
sup-commute)
also have ... < (e M —v * —vT) U (w M —v x —vT M top * e * wl™)
using 1 by (metis comp-inf.mult-semi-associative
inf.sup-monoid.add-commute semiring.add-right-mono)
also have ... < (e —v * —vT) U (w M —v * —vT M top x vT)
using 2 by (metis sup-right-isotone inf.sup-right-isotone)
also have ... < (e M —v * —vT) U (—v * —vT M top x vT)
using inf.assoc le-infI2 by auto
also have ... < v % —0vT M —v % —v
using 3 assms(4) inf.sup-left-isotone by auto
also have ... < v x top 'l —v * top
using inf.sup-mono mult-right-isotone top-greatest by blast
also have ... = bot
using assms(5) inf-compl-bot vector-complement-closed by auto
finally show ?thesis
by (simp add: le-iff-inf)
qed

T

T

lemma epm-6:
assumes e < w
and injective w
and wx v < v
and e < v x —v
and vector v
shows prim-Fwve=c¢e
proof —
have 1: e < ——v x —w
using assms(4) mult-isotone order-lesseq-imp pp-increasing by blast
have 2: top * e x w't < top * v7
by (simp add: assms(1—4) epm-4)
have 3: e = w M top x e
by (simp add: assms(1,2) epm-3)
hence e < top * e * w'*
by (metis le-infI2 star.circ-back-loop-fixpoint sup.commute sup-gel)

T

T

72

hence 4: e < prim-E w v e
using 1 by (simp add: assms(1))
have 5: ——v * —vT M top * v7 = bot
by (simp add: assms(5) comp-associative covector-vector-comp
inf.sup-monoid.add-commute schroeder-2)
have prim-Ewve= (w ——v* —vT Mtop x e) U (w ——v* —vl M top *
ex wl't)
by (metis inf-sup-distribl mult-assoc star.circ-back-loop-fizpoint star-plus
sup-commute)
also have ... < (el ——v * —0vT) U (w M ——v x —vT M top * e * wl'™)
using 3 by (metis comp-inf.mult-semi-associative
inf.sup-monoid.add-commute semiring.add-right-mono)

also have ... < (e ——wv x —vT) U (w N ——v * —vT M top * vT)
using 2 by (metis sup-right-isotone inf.sup-right-isotone)
also have ... < (e ——v x —vT) U (——v * —vT M top * vT)

using inf.assoc le-inflI2 by auto
also have ... < ¢
by (simp add: 5)
finally show ?thesis
using 4 by (simp add: order.antisym)
qed

lemma epm-7:

reqular (prim-EP w v e) = e < w = injective w — w *x v < v = e < v *
—vT = vector v = prim-Wwve=w

by (metis conv-bot epm-2 epm-5 epm-6)

lemma epm-8:
assumes acyclic w
shows (w M —(prim-EP w v e)) M (prim-P w v e)T = bot
proof —
have (w M —(prim-EP w v e)) M (prim-P w v e)T < w N w”
by (meson conv-isotone inf-lel inf-mono order-trans)
thus ?thesis
by (metis assms acyclic-asymmetric inf.commute le-bot)
qed

lemma epm-9:
assumes ¢ < v * —v
and vector v
shows (w M —(prim-EP w v €)) M e = bot
proof —
have 1: e < —wv
by (metis assms complement-conv-sub vector-conv-covector ev p-antitone-iff
p-bot)
have (w I —(prim-EP wv e)) Me = (w M ——vT Me) U (w M —(top * e *
wl™) M e)
by (simp add: inf-commute inf-sup-distrib1)
also have ... < (——vT M e) U (—(top x e x wT™*) M e)

T

T

73

using comp-inf.mult-left-isotone inf.cobounded? semiring.add-mono by blast
also have ... = —(top x e x w'*) M e
using 1 by (metis inf.sup-relative-same-increasing inf-commute
inf-sup-distribl madduz-5-13 regular-closed-p)
also have ... = bot
by (metis inf.sup-relative-same-increasing inf-bot-right inf-commute inf-p
mult-left-isotone star-outer-increasing top-greatest)
finally show ?thesis
by (simp add: le-iff-inf)
qged

lemma epm-10:
assumes e < v x —v
and vector v
shows (prim-P w v e)T M e = bot
proof —
have (prim-P w v)T < —v x —oT
by (simp add: conv-complement conv-dist-comp conv-dist-inf inf.absorb-iff1
inf.left-commute inf-commute)
hence (prim-Pwv e)l Me < —vx —vl Mo x* —v
using assms(1) inf-mono by blast
also have ... < —v * top M v * top
using inf.sup-mono mult-right-isotone top-greatest by blast
also have ... = bot
using assms(2) inf-compl-bot vector-complement-closed by auto
finally show ?thesis
by (simp add: le-iff-inf)
qed

T

T

lemma epm-11:
assumes vector v
shows (w M —(prim-EP w v e)) M prim-P w v e = bot
proof —
have prim-P w v e < prim-EP w v e
by (metis assms comp-isotone inf.sup-left-isotone inf.sup-right-isotone
order.refl top-greatest vector-conv-compl)
thus ?thesis
using inf-le2 order-trans p-antitone pseudo-complement by blast
qed

lemma epm-12:
assumes vector v
shows (w M —(prim-EP w v e)) M prim-E w v e = bot
proof —
have prim-FE w v e < prim-EP w v e
by (metis assms comp-isotone inf.sup-left-isotone inf.sup-right-isotone
order.refl top-greatest vector-conv-compl)
thus ?thesis
using inf-le2 order-trans p-antitone pseudo-complement by blast

74

qed

lemma epm-13:
assumes vector v
shows prim-P w v e 'l prim-E w v e = bot

proof —
have prim-P w v e N prim-Ewwve < —v* —vT M ——v x —vT
by (meson dual-order.trans inf.coboundedl inf.sup-mono inf-le2)
also have ... < —v x top N ——wv * top

using inf.sup-mono mult-right-isotone top-greatest by blast
also have ... = bot
using assms inf-compl-bot vector-complement-closed by auto
finally show ?thesis
by (simp add: le-iff-inf)
qed

The following lemmas show that the relation characterising the edge
across the cut is an arc.

lemma arc-edge-1:
assumes e < v x —vL T g
and vector v
and v = T x t*
and t < g
and 77 x g
shows top *
proof —
have top x e < top x (v —vT [g)
using assms(1) mult-right-isotone by auto
also have ... < top * (v * top M g)
using inf.sup-right-isotone inf-commute mult-right-isotone top-greatest by
presburger
also have ... = v7 x g
by (metis assms(2) covector-inf-comp-3 inf-top.left-neutral)
also have ... = 1T x t* x g
by (simp add: assms(3))
also have ... < T x g* x ¢
by (simp add: assms(4) mult-left-isotone mult-right-isotone star-isotone)
also have ... < T x g*
by (simp add: mult-assoc mult-right-isotone star.right-plus-below-circ)
also have ... < 7T x w*
by (simp add: assms(5))
also have ... < vT % w*
by (metis assms(8) mult-left-isotone mult-right-isotone mult-1-right
star. circ-reflexive)
finally show ?thesis

*STT *
e < vl % w*

qed

lemma arc-edge-2:

75

assumes ¢ < v * —v’ 1 g
and vector v
and v7 = 7T % t*
and t < g
and 7 x g* < T xw
and w*x v < w
and injective w
shows top * e x w'* < vT x w
proof —
have 1: top * e < vT * w*
using assms(1—5) arc-edge-1 by blast
have o7 T T T

*

*

x wt x wl

x w* x wl = o7 wl Uw
by (metis mult-assoc mult-left-dist-sup star.circ-loop-fizpoint sup-commute)
also have ... < o7 U o7 % wt x wT
by (metis assms(6) conv-dist-comp conv-isotone sup-left-isotone)
also have ... = v U vT x w* x (w * wT)
by (metis mult-assoc star-plus)
also have ... < o7 U o7 % w*
by (metis assms(7) mult-right-isotone mult-1-right sup-right-isotone)
also have ... = v x w*
by (metis star.circ-back-loop-fixpoint sup-absorb2 sup-ge2)
finally show ?thesis
using 1 star-right-induct by auto

qed

lemma arc-edge-3:
assumes e < v * —T' N g
and vector v
and v7 = T x t*
and t < g
and 7 x g* < rT x w
and wx v < w
and injective w
and prim-F w v e = bot
shows e = bot
proof —
have bot = prim-F w v e
by (simp add: assms(8))
also have ... = w M ——v * top M top * —vT M top *x e x w
by (metis assms(2) comp-inf-covector inf.assoc inf-top.left-neutral
vector-conv-compl)
also have ... = wNtopx ex w'* M —vT' N ——v
using assms(2) inf.assoc inf.commute vector-conv-compl
vector-complement-closed by (simp add: inf-assoc)
finally have 1: w M top * e ¥+ wT* M —vT < —y
using shunting-1-pp by force
have w* x el x top = (top * e * w
by (simp add: conv-star-commute comp-associative conv-dist-comp)
also have ... < (vT * w*)T

*

T *

T*)T

76

using assms(1—7) arc-edge-2 by (simp add: conv-isotone)
also have ... = w’™* x v
by (simp add: conv-star-commute conv-dist-comp)

finally have 2: w* x e” * top < w?* % v

have (w? M w* x T * top)T x —v = (w M top * e * w'™*) x —v
by (simp add: conv-dist-comp conv-dist-inf conv-star-commaute mult-assoc)
also have ... = (w M top * e x w'™* M —vT) x top
by (metis assms(2) conv-complement covector-inf-comp-3 inf-top.right-neutral
vector-complement-closed)
also have ... < —v * top
using 1 by (simp add: comp-isotone)

also have ... = —v
using assms(2) vector-complement-closed by auto
finally have (w? M w* x e * top) x ——v < ——v
using p-antitone-iff schroeder-3-p by auto
hence w* * e x top M w’ x ——v < ——w
by (simp add: inf-vector-comp)

hence 3: wl x ——v < ——ov U —(w* * el * top)

by (simp add: inf.commute shunting-p)
have w x —(w* * €T * top) < —(w* * eI * top)
by (metis mult-assoc p-antitone p-antitone-iff schroeder-3-p
star.circ-loop-fixpoint sup-commaute sup-right-divisibility)
also have ... < ——v U —(w* * e * top)
by simp
finally have w’ x (——v U —(w* * €T * top)) < ——v U —(w* x el * top)
using 3 by (simp add: mult-left-dist-sup)

hence w'™* % (——v U —(w* * T x top)) < ——v U —(w* * €T * top)
using star-left-induct-mult-iff by blast
hence w'™* * ——v < ——v U —(w* * e * top)

by (simp add: semiring.distrib-left)
hence w* * €7 * top M w'™
by (simp add: inf-commute shunting-p)
hence w* * e * top < ——w
using 2 by (metis inf.absorb1 p-antitone-iff p-comp-pp vector-export-comp)
hence 4: T x top < ——v
by (metis mult-assoc star.circ-loop-fizpoint sup.bounded-iff)
have e” * top < (v * —vT)T * top
using assms(1) comp-isotone conv-isotone by auto
also have ... < —v x top
by (simp add: conv-complement conv-dist-comp mult-assoc mult-right-isotone)
also have ... = —v
using assms(2) vector-complement-closed by auto
finally have e’ * top < bot
using 4 shunting-1-pp by auto
hence e = bot
using order.antisym bot-least top-right-mult-increasing by blast
thus ?thesis
using conv-bot by fastforce

¥ ——0u < ——0

77

qed

lemma arc-edge-4:
assumes e < vx —v Mg
and vector v
and o7 = 7T « ¢+

and t < g
and T % g* < rT % w*
and arc e
shows top x prim-E w v e x top = top
proof —
have —— o7 * w = (——vT x w N —vT) U (=0T % wn ——o7)
by (simp add: madduz-3-11-pp)
also have ... < (—ov7 x wn —o?) U ——oT
using sup-right-isotone by auto
also have ... = —v7 % (w M —v7) U ——o7T

using assms(2) covector-comp-inf covector-complement-closed
vector-conv-covector by auto
also have ... < ——v7 % (w M —vT) * w* U ——oT
by (metis star.circ-back-loop-fizpoint sup.cobounded? sup-left-isotone)
finally have 7: —— o7 x w < ——0T x (w1 —0T) % w* U ——o7

have ——o7 % (w M —vT) * w* * w < —o7 * (w N —v?) x w* U ——2T
by (simp add: le-supll mult-assoc mult-right-isotone star.circ-plus-same
star.left-plus-below-circ)

hence 2: (——vT * (w M —v?) x w* U ——vT) x w < ——oT % (w N —oT) x w*
——
using 1 by (simp add: inf.orderE mult-right-dist-sup)
have vT < ——oT % (w N —oT) x w* U ——oT
by (simp add: pp-increasing sup.coboundedI2)
hence v! x w* < ——ovT x (w N —v1) x w* U ——oT
using 2 by (simp add: star-right-induct)
hence 3: —vT M7 * w* < ——o7 % (w N —v7) x w*

by (metis inf-commute shunting-var-p)
have top x e = top * e M vT * w*
by (meson assms(1—5) arc-edge-1 inf.orderE)
also have ... < top * v * —vT M VT % w*
using assms(1) inf.sup-left-isotone mult-assoc mult-right-isotone by auto
also have ... < top * —vT M o7 * w*
using inf.sup-left-isotone mult-left-isotone top-greatest by blast
also have ... = —vT M o7 % w*
by (simp add: assms(2) vector-conv-compl)
also have ... < ——vT % (w M —vT) * w*
using 3 by simp
also have ... = (top M (——v)T) x (w N —vT) * w*
by (simp add: conv-complement)
also have ... = top * (w M ——v M —v') * w*
using assms(2) covector-inf-comp-3 inf-assoc inf-left-commute
vector-complement-closed by presburger

")

78

also have ... = top * (w M ——v * —vT) * w*
by (metis assms(2) vector-complement-closed conv-complement inf-assoc
vector-covector)
finally have top * (el x top)T < top » (w M ——v % —vT) % w*
by (metis conv-dist-comp conv-involutive conv-top mult-assoc top-mult-top)
hence top < top x (w M ——v * —vT) x w* x (el * top)
using assms(6) shunt-bijective by blast

)

also have ... = top * (w M ——v * —vT) * (top * e x w*)T
by (simp add: conv-dist-comp mult-assoc)
also have ... = top x (w M ——v * —vT M top x e x w*T) x top

by (simp add: comp-inf-vector-1 mult-assoc)
finally show ?thesis
by (simp add: conv-star-commute top-le)
qed

lemma arc-edge-5:
assumes vector v
and w*xv<w
and injective w
and arc e
shows (prim-FE w v e)T x top * prim-FE wve< 1
proof —
have 1: T x top x e < 1
by (simp add: assms(4) point-injective)
have prim-F w v e < ——v x top
by (simp add: inf-commute le-infI2 mult-right-isotone)
hence 2: prim-Ewve < ——v
by (simp add: assms(1) vector-complement-closed)
have 3: w * ——v < ——v
by (simp add: assms(2) p-antitone p-antitone-iff)
have w M top * prim-E wv e < w * (prim-E w v)T * prim-Ew v e
by (metis dedekind-2 inf.commute inf-top.left-neutral)
also have ... < w* w? * prim-Ewv e
by (simp add: conv-isotone le-infl1 mult-left-isotone mult-right-isotone)
also have ... < prim-Ew v e
by (metis assms(8) mult-left-isotone mult-left-one)
finally have 4: w M top * prim-E wv e < prim-E w v e

have w™ M top * prim-E w v e = w* * (w M top x prim-E w v e)
by (simp add: comp-inf-covector star-plus)
also have ... < w* * prim-F w v e
using 4 by (simp add: mult-right-isotone)
also have ... < ——vw
using 2 3 star-left-induct sup.bounded-iff by blast
finally have 5: w™ M top * prim-E w v e M —v = bot
using shunting-1-pp by blast
hence 6: w1 (prim-E w v e)T x top M —vT = bot
using conv-complement conv-dist-comp conv-dist-inf conv-top conv-bot by
force

79

have (prim-E w v e)T * top x prim-E w v e < (top * e x w™)T x top = (top * e

* wl™)
by (simp add: conv-isotone mult-isotone)
also have ... = w* * e * top * e * w'*

by (metis conv-star-commute conv-dist-comp conv-involutive conv-top
mult-assoc top-mult-top)
also have ... < w* x w
using 1 by (metis mult-assoc mult-1-right mult-right-isotone mult-left-isotone)
also have ... = w* U w’*
by (metis assms(8) cancel-separate order.eq-iff star.circ-sup-sub-sup-one-1
star.circ-plus-one star-involutive)
also have ... = wt U wT* U 1
by (metis star.circ-plus-one star-left-unfold-equal sup.assoc sup.commute)
finally have 7: (prim-E w v e)T top * prim-Ewv e < wt U wl+ U 1

T *

have prim-F wve < ——uv % —T

by (simp add: le-infI1)
also have ... < top x —v

by (simp add: mult-left-isotone)
also have ... = —vT

by (simp add: assms(1) vector-conv-compl)
finally have 8: prim-E w v e < —vT

T

hence 9: (prim-E w v e)T < —v
by (metis conv-complement conv-involutive conv-isotone)
have (prim-E w v e)T * top x prim-Ewv e = (w™ U wl* U 1) N (prim-E w v
)T % top * prim-E w v e
using 7 by (simp add: inf.absorb-iff2)
also have ... = (1 M (prim-E w v e)T % top * prim-E w v e) U (wt N (prim-E
w v e)T x top x prim-E w v e) U (wI'™* M (prim-E w v e)T x top x prim-E w v e)
using comp-inf.mult-right-dist-sup sup-assoc sup-commute by auto
also have ... < 1 U (w* M (prim-E w v e)T x top x prim-E w v e) U (w?+ N
(prim-E w v e)T * top * prim-E w v e)
using inf-lel sup-left-isotone by blast
also have ... < 1 U (w* M (prim-E w v)T * top * prim-E w v e) U (wl+ N
(prim-E w v e)T * top x —oT)
using 8 inf.sup-right-isotone mult-right-isotone sup-right-isotone by blast
also have ... < 1 Ll (wr M —wv * top * prim-E w v e) U (w1 (prim-E w v
e)T x top x —vT)
using 9 by (metis inf.sup-right-isotone mult-left-isotone sup.commute
sup-right-isotone)
also have ... = 1 U (w" M —v x top M top * prim-E w v e) U (w!* M (prim-E
wove)l * top N top x —v7)
by (metis (no-types) vector-export-comp inf-top-right inf-assoc)
also have ... = 1 U (wr M —v M top x prim-E w v e) U (wT+ M (prim-E w v
e)T x top M —v
using assms
also have ...
using 5 6 by (simp add: conv-star-commute conv-dist-comp inf.commute

€

~

—~

)
1) vector-complement-closed vector-conv-compl by auto
1

80

inf-assoc star.circ-plus-same)
finally show ?thesis

qed

lemma arc-edge-6':
assumes vector v
and w*x v < w
and injective w
and arc e
shows prim-E w v e * top * (prim-E w v e)T < 1
proof —
have prim-E w v e * 1 x (prim-E wv e)T < w * w
using comp-isotone conv-order inf.coboundedll mult-one-associative by auto
also have ... < I
by (simp add: assms(3))
finally have 1: prim-Ew v e x 1 x (prim-E w v e)T < 1

T

have (prim-E w v e)T * top * prim-Ewv e < 1
by (simp add: assms arc-edge-5)
also have ... < ——1
by (simp add: pp-increasing)
finally have 2: prim-E w v e x —1 % (prim-E w v)T < bot
by (metis conv-involutive regular-closed-bot regqular-dense-top
triple-schroeder-p)
have prim-E w v e * top * (prim-E w v e)T = prim-E w v e x 1 * (prim-E w v
)T Uprim-Ewvex —1 % (prim-E w v e)T
by (metis mult-left-dist-sup mult-right-dist-sup regqular-complement-top
regular-one-closed)
also have ... < 1
using 1 2 by (simp add: bot-unique)
finally show ?thesis

qed

lemma arc-edge:
assumes ¢ < v x —v! Mg
and vector v
and v7 = T x t*
and t < g
and 7 x g* < rT x w
and wx v < v
and injective w
and arc e
shows arc (prim-E w v e)
proof (intro conjI)
have prim-E w v e * top * (prim-E w v e)T < 1
using assms(2,6—8) arc-edge-6 by simp
thus injective (prim-E w v e % top)

*

81

by (metis conv-dist-comp conv-top mult-assoc top-mult-top)
next
show surjective (prim-E w v e x top)
using assms(1—5,8) arc-edge-4 mult-assoc by simp
next
have (prim-E w v e)T * top * prim-Ewv e < 1
using assms(2,6—8) arc-edge-5 by simp
thus injective ((prim-E w v e)T x top)
by (metis conv-dist-comp conv-involutive conv-top mult-assoc top-mult-top)
next
have top * prim-E w v e x top = top
using assms(1—5,8) arc-edge-4 by simp
thus surjective ((prim-E w v e)T * top)
by (metis mult-assoc conv-dist-comp conv-top)
qed

4.1.4 Invariant implies Postcondition

The lemmas in this section are used to show that the invariant implies the
postcondition at the end of the algorithm. The following lemma shows that
the nodes reachable in the graph are the same as those reachable in the
constructed tree.

lemma span-post:
assumes regular v
and vector v
and v7 = T x t*
and v * —vT M g = bot
and t<vxv' Mg
and rT x (v x0T M g)* <l %t
shows v = T x g*
proof —
let 2o =v*xvT My
have 1: rT < T
using assms(3) mult-right-isotone mult-1-right star.circ-reflexive by fastforce
have v x top Mg = (v* vl Lvx —vT) Mg
by (metis assms(1) conv-complement mult-left-dist-sup
regular-complement-top)

also have ... = ?vv U (v * —vT M g)
by (simp add: inf-sup-distrib2)
also have ... = %vv

by (simp add: assms(4))
finally have 2: v * top M g = %vv
by simp
have rT x 2o0* < 0T % 200*
using 1 by (simp add: comp-left-isotone)
also have ... < v x (v x vT)*
by (simp add: comp-right-isotone star.circ-isotone)
also have ... < vT
by (simp add: assms(2) vector-star-1)

82

finally have 7 x 2vv* < o7
by simp
hence rT x 2vv* x g = (rT x 2o0* M1 07) x ¢
by (simp add: inf.absorb1)
also have ... = rT % 2vv* % (v * top M g)
by (simp add: assms(2) covector-inf-comp-3)
also have ... = T % 2p0* % 2w
using 2 by simp
also have ... < rT % 2pv*
by (simp add: comp-associative comp-right-isotone star.left-plus-below-circ
star-plus)
finally have 7 U rT x 2vv* % ¢ < rT % 2p0*
using star.circ-back-loop-prefixpoint by auto
hence 7 % g* < T x 2pv*
using star-right-induct by blast
hence rT x g* = rT x 2pv*
by (simp add: order.antisym mult-right-isotone star-isotone)
also have ... = r7 x t*
using assms(5,6) order.antisym mult-right-isotone star-isotone by auto
also have ... = ¢v7
by (simp add: assms(3))
finally show ?thesis
by simp
qed

The following lemma shows that the minimum spanning tree extending
a tree is the same as the tree at the end of the algorithm.

lemma mst-post:
assumes vector r
and injective r
and v7 = T x t*
and forest w
and t < w
and w < v x v
shows w =t
proof —
have 1: vector v
using assms(1,3) covector-mult-closed vector-conv-covector by auto
have w * v < v % vT % v
by (simp add: assms(6) mult-left-isotone)
also have ... < v
using 1 by (metis mult-assoc mult-right-isotone top-greatest)
finally have 2: w*x v < v

T

have 3: r < v
by (metis assms(8) conv-order mult-right-isotone mult-1-right
star.circ-reflexive)
have j: v M —r = tT* x r M —7
by (metis assms(8) conv-dist-comp conv-involutive conv-star-commute)

83

also have ... = (r U tT'T % r) 1 —r
using mult-assoc star.circ-loop-fixpoint sup-commute by auto
also have ... < tT+ % r
by (simp add: shunting)
also have ... < T « top
by (simp add: comp-isotone mult-assoc)
finally have 1 M (v 1 —7) % (v 11 —r)T < 1 117 % top * (T * top)T
using conv-order inf.sup-right-isotone mult-isotone by auto
also have ... = 1 M t7 * top * ¢
by (metis conv-dist-comp conv-involutive conv-top mult-assoc top-mult-top)
also have ... < tT x (top x t T t % 1)
by (metis conv-involutive dedekind-1 inf.commute mult-assoc)
also have ... < tT % ¢
by (simp add: mult-right-isotone)
finally have 5: 1 M (v —7) % (v —r)T < T % ¢

have w *x wt < —1

by (metis assms(4) mult-right-isotone order-trans star.circ-increasing

star.left-plus-circ)

hence 6: wTT < —w

by (metis conv-star-commute mult-assoc mult-1-left triple-schroeder-p)
have w x r Mwl ™ x r = (wn wl*) % r

using assms(2) by (simp add: injective-comp-right-dist-inf)
also have ... = bot

using 6 p-antitone pseudo-complement-pp semiring.mult-not-zero by blast
finally have 7: w * r M w’ t * r = bot

have —1 x r < —r

using assms(2) dual-order.trans pp-increasing schroeder-4-p by blast
hence —1 *x r x top < —r

by (simp add: assms(1) comp-associative)
hence 8: rT x —1 x r < bot

by (simp add: mult-assoc schroeder-6-p)
have rT x wx r < rT s« wt x r

by (simp add: mult-left-isotone mult-right-isotone star.circ-mult-increasing)
also have ... < rT %« —1 % r

by (simp add: assms(4) comp-isotone)
finally have 77 % w % r < bot

using 8 by simp
hence w x r x top < —r

by (simp add: mult-assoc schroeder-6-p)
hence w x r < —r

by (simp add: assms(1) comp-associative)
hence w*r < —rMw=x v

using 3 by (simp add: mult-right-isotone)
also have ... < —rMw

using 2 by (simp add: le-infI2)
also have ... = —r M t7* x r

using 4/ by (simp add: inf-commute)

84

also have ... < —r M wT™* % r

using assms(5) comp-inf.mult-right-isotone conv-isotone mult-left-isotone
star-isotone by auto
also have ... = —r M (r U w?* x 1)
using mult-assoc star.circ-loop-fixpoint sup-commute by auto
also have ... < wTt % r
using inf.commute madduz-3-13 by auto
finally have w x r = bot
using 7 by (simp add: le-iff-inf)
hence w = w M top * —r'
by (metis complement-conv-sub conv-dist-comp conv-involutive conv-bot
inf.assoc inf.orderE regular-closed-bot regular-dense-top top-left-mult-increasing)
also have ... = w M v * v7 N top * —rT
by (simp add: assms(6) inf-absorb1)
also have ... < w M top * vT M top * —r
using comp-inf.mult-left-isotone comp-inf.mult-right-isotone mult-left-isotone
by auto
also have ... = w M top * (v M —r
using 1 assms(1) covector-inf-closed inf-assoc vector-conv-compl
vector-conv-covector by auto

T

)

also have ... = w x (I M (v —71) * top)
by (simp add: comp-inf-vector conv-complement conv-dist-inf)
also have ... = w * (1 M (v M —7) * (v 1 —7)T)

by (metis conv-top dedekind-eq inf-commute inf-top-left mult-1-left
mult-1-right)
also have ... < w * tT * ¢
using 5 by (simp add: comp-isotone mult-assoc)
also have ... < w * w? * ¢
by (simp add: assms(5) comp-isotone conv-isotone)
also have ... < ¢
using assms(4) mult-left-isotone mult-1-left by fastforce
finally show ?thesis
by (simp add: assms(5) order.antisym)
qed

4.2 Kruskal’s Algorithm

The following results are used for proving the correctness of Kruskal’s min-
imum spanning tree algorithm.

4.2.1 Preservation of Invariant

We first treat the preservation of the invariant. The following lemmas show
conditions necessary for preserving that f is a forest.

lemma kruskal-injective-inv-2:
assumes arc e
and acyclic f
shows top * e * fT* x f1' < —e

85

proof —
have f < —fT~*
using assms(2) acyclic-star-below-complement p-antitone-iff by simp
hence e x f < top * e x —f1*
by (simp add: comp-isotone top-left-mult-increasing)

also have ... = —(top x e x f1*)
by (metis assms(1) comp-mapping-complement conv-dist-comp conv-involutive
conv-top)

finally show ?thesis
using schroeder-4-p by simp
qged

lemma kruskal-injective-inv-3:
assumes arc €
and forest f
shows (top * e * fT*)T % (top x e x fT)N fI 5 f < 1
proof —
have (top * e * f7*)T x (top * e x f1*) = f* x el % top x e x fI*
by (metis conv-dist-comp conv-involutive conv-star-commaute conv-top
vector-top-closed mult-assoc)
also have ... < f* x fI*
by (metis assms(1) arc-expanded mult-left-isotone mult-right-isotone
mult-1-left mult-assoc)
finally have (top * e x fT)T x (top x e x fT) N f1 s f < 5 fI* 0 fT 5 f
using inf.sup-left-isotone by simp
also have ... < 1
using assms(2) forest-separate by simp
finally show ?thesis
by simp
qed

lemma kruskal-acyclic-inv:
assumes acyclic f
and covector q
and (f M ¢)7 * f* x e = bot
and e x f* x e = bot
and f7* % f* < —e
shows acyclic (f M —q) U (f 1)T U e)
proof —
have (f M —q) * (f M)" = (f N —q) * (f" 1 ¢")
by (simp add: conv-dist-inf)
hence 1: (f M —q) * (f N ¢)T = bot
by (metis assms(2) comp-inf.semiring.mult-zero-right comp-inf-vector-1
conv-bot covector-bot-closed inf.sup-monoid.add-assoc p-inf)
hence 2: (f M —¢)* * (f M)" = (f N ¢)"
using mult-right-zero star-absorb star-simulation-right-equal by fastforce
hence 5: (f N —q) U (fN ")t =(fNg"™ = (fN -9t U (fng™t
by (simp add: plus-sup)
have 4: (f M —q) U (f N ") = (f N ™ * (f N —g)*

86

using 2 by (simp add: star.circ-sup-9)
have (f M ¢)" « (f N —g)* x e < (f1g)" xf*xe
by (simp add: mult-left-isotone mult-right-isotone star-isotone)
hence (f M ¢)T x (f 1 —q)* * e = bot
using assms(3) le-bot by simp
hence 5: (f M)T (f M —q)* x e= (f M —q)* * e
by (metis comp-associative conv-bot conv-dist-comp conv-involutive
conv-star-commaute star-absorb)
have e x (fM —¢)* xe<ex f*xe
by (simp add: mult-left-isotone mult-right-isotone star-isotone)
hence ¢ * (f M —¢)* * e = bot
using assms(4) le-bot by simp
hence 6: ((f 11 —q)* x)T = (f 1 —¢)* x ¢
by (simp add: comp-associative star-absorb)
have f7* % 1 x fT* x f* < —e
by (simp add: assms(H) star.circ-transitive-equal)
hence 7: f* x e x fT* x f* < —1
by (metis comp-right-one conv-involutive conv-one conv-star-commute
triple-schroeder-p)
have (f M —g)* * (f N)T+ < —1
using 1 2 by (metis forest-bot mult-left-zero mult-assoc)
hence 8: (f M)T+« (f N —¢)t < —1
using comp-commute-below-diversity by simp
have 9: fT+ < —1
using assms(1) acyclic-star-below-complement schroeder-5-p by force
have ((f M —q) U (f N)T U e)* = (((f N —q) U (f 1 9))* % &)* * ((f 1 —q)
LGN U (N —g) U (f 1 g)T)* x)
by (simp add: plus-sup)
alsohave ... = (f M @)™ x (f M —g)* xe)* * (f N)T x (f N —g)T U (f N
OTH U ((F N T« (f N —g)* + o)
using 3 4 by simp

also have ... = ((f M —q)* + &) « ((/ 1)™ + (f 1 —g)* U (f 1 9)7*) U ((f
M—g)* *e)*
using 5 by simp
alsohave ... = (f M —¢)* xelU 1) x (N T x (fn -t U (fNgTH) L
(fM—q)* *e
using 6 by (metis star-left-unfold-equal sup-monoid.add-commute)
alsohave ... = (f M —¢)* el (f M —q)* xex (f N)TT U (fM1 —q)* x e *

fng™«Fn-gtu(fng™«(fn-gtu(ng™t
using comp-associative mult-left-dist-sup mult-right-dist-sup sup-assoc
sup-commute by simp
also have ... = (f M —¢)* x e* (f N ¢)T* x (f M1 —¢)* U (f N ¢)T* x (f N
—gtu(fngtt
by (metis star.circ-back-loop-fixpoint star-plus sup-monoid.add-commute
mult-assoc)
alsohave ... < f*sex fI*x (fN—g)* U (fN ™« (fn—gT U (fn Tt
using mult-left-isotone mult-right-isotone star-isotone sup-left-isotone

conv-isotone order-trans inf-lel by meson
alsohave ... < f* xex fI s« f*U(fN)T« (f N —g)t U fT+

87

using mult-left-isotone mult-right-isotone star-isotone sup-left-isotone
sup-right-isotone conv-isotone order-trans inf-lel by meson
alsohave ... = f* s ex fI*x f*U (Nt *x(fN—gt U (fn—gt ufr+
by (simp add: star.circ-loop-fixpoint sup-monoid.add-assoc mult-assoc)
alsohave ... < f* s ex fI*x AU (fN¢TT * (f N —g)T U fr U fTt
using mult-left-isotone mult-right-isotone star-isotone sup-left-isotone
sup-right-isotone order-trans inf-lel by meson
also have ... < —1
using 7 8 9 assms(1) by simp
finally show ?thesis
by simp
qed

lemma kruskal-exchange-acyclic-inv-1:
assumes acyclic f
and covector q
shows acyclic ((f 1 —q) U (f 1 ¢)7)
using kruskal-acyclic-inv[where e=bot| by (simp add: assms)

lemma kruskal-exchange-acyclic-inv-2:
assumes acyclic w
and injective w
and d < w
and bijective (d* x top)
and bijective (e x top)
and d < top * el x w
and w * €T x top = bot
shows acyclic ((w M —d) U e)
proof —
let v = wn —d
let 2w = %v U e
have d” * top < w* * e * top
by (metis assms(6) comp-associative comp-inf.star.circ-decompose-9
comp-inf.star-star-absorb comp-isotone conv-dist-comp conv-involutive conv-order
conv-star-commaute conv-top inf.coboundedl vector-top-closed)
hence 1: e x top < w'™* * dT * top
by (metis assms(4,5) bijective-reverse comp-associative conv-star-commute)
have 2: 2v x d¥ * top = bot
by (simp add: assms(2,3) kruskal-ezchange-acyclic-inv-3)
have 2v * wTT % d7 x top < w * w' T * dT * top
by (simp add: mult-left-isotone)
also have ... < wT™* % d7 * top
by (metis assms(2) mult-left-isotone mult-1-left mult-assoc)
finally have v * w* % dT * top < wT™* * d¥ * top
using 2 by (metis bot-least comp-associative mult-right-dist-sup
star.circ-back-loop-fizpoint star.circ-plus-same sup-least)
hence 3: v % e % top < wl™* % dT * top
using 1 by (simp add: comp-associative star-left-induct sup-least)
have d * eT < bot

T %

88

by (metis assms(3,7) conv-bot conv-dist-comp conv-involutive conv-top
order.trans inf.absorb2 inf.cobounded2 inf-commute le-bot p-antitone-iff p-top
schroeder-4-p top-left-mult-increasing)
hence 4: el x top < —(dT * top)
by (metis (no-types) comp-associative inf.cobounded2 le-bot p-antitone-iff
schroeder-3-p semiring.mult-zero-left)
have 207 x —(d7 * top) < —(dT * top)
using schroeder-3-p mult-assoc 2 by simp
hence 2vT* x eI x top < —(dT x top)
using 4 by (simp add: comp-associative star-left-induct sup-least)
hence 5: dT x top < — (207" x e x top)
by (simp add: p-antitone-iff)
have w * 20T* x eT x top = w * €T * top U w * 207+ x €T x top
by (metis star-left-unfold-equal mult-right-dist-sup mult-left-dist-sup
mult-1-right mult-assoc)
also have ... = w * 207t x T * top
using assms(7) by simp
also have ... < w * wT * 207* % T x top
by (simp add: comp-associative conv-isotone mult-left-isotone
mult-right-isotone)
also have ... < 2v7* x T x top
by (metis assms(2) mult-1-left mult-left-isotone)
finally have w * 207* % €T % top < —— (20T x eI x top)
by (simp add: p-antitone p-antitone-iff)
hence w! x —(?2vT* x €T x top) < —(?2vT* x €T x top)
using comp-associative schroeder-3-p by simp
hence 6: w™™* * d7 * top < —(20T* x €T * top)
using 5 by (simp add: comp-associative star-left-induct sup-least)
have e x 2v* x e < e x 20" x e * top
by (simp add: top-right-mult-increasing)
also have ... < e x wT* % dT * top
using 3 by (simp add: comp-associative mult-right-isotone)
also have ... < e x —(2v7* x T x top)
using 6 by (simp add: comp-associative mult-right-isotone)
also have ... < bot
by (metis conv-complement-sub-leq conv-dist-comp conv-involutive
conv-star-commute le-bot mult-right-sub-dist-sup-right p-bot regular-closed-bot
star.circ-back-loop-fixpoint)
finally have 7: e x v* x e = bot
by (simp add: order.antisym)
hence 2v* x ¢ < —1
by (metis bot-least comp-associative comp-commute-below-diversity ex231d
order-lesseq-imp semiring.mult-zero-left star.circ-left-top)
hence 8: 2v* * e *x Z0* < —1
by (metis comp-associative comp-commute-below-diversity
star.circ-transitive-equal)
have 1 M ?wt = 1 M 2w * 2v* % (e x 2v*)*
by (simp add: star-sup-1 mult-assoc)
also have ... = 1 M 2w x %v* x (e x %v* U 1)

T x

89

using 7 by (metis star.circ-mult-1 star-absorb sup-monoid.add-commute
mult-assoc)
also have ... = 1 M (20T x e x 2o* U 2ot U e x 20" x e x 0% U e x 0*)
by (simp add: comp-associative mult-left-dist-sup mult-right-dist-sup sup-assoc
sup-commute sup-left-commute)

also have ... = 1 M (207 x e x 2v* U 2vF U e x 20*)
using 7 by simp
also have ... = 1 M (%0* x e x 2v* LU ZoT)

by (metis (mono-tags, opaque-lifting) comp-associative star.circ-loop-fizpoint
sup-assoc sup-commaute)
also have ... < 1 M (2v* x e x 2v* U w™)
using comp-inf.mult-right-isotone comp-isotone semiring.add-right-mono
star-isotone sup-commute by simp

also have ... = (1 M 2v* x e x 2v*) U (1 N w™)
by (simp add: inf-sup-distrib1)
also have ... = 1 N 2v* % e x v*

by (metis assms(1) inf-commute pseudo-complement sup-bot-right)
also have ... = bot
using 8 p-antitone-iff pseudo-complement by simp
finally show ?thesis
using le-bot p-antitone-iff pseudo-complement by auto
qged

4.2.2 Exchange gives Spanning Trees

The lemmas in this section are used to show that the relation after exchange
represents a spanning tree.

lemma inf-star-import:
assumes r < 2
and univalent z
and reflexive y
and regular z
shows z* % y M z2* < % % (y M z*%)
proof —
have 1: y < z* x (y M 2*) U —2*
by (metis assms(4) pp-dist-star shunting-var-p star.circ-loop-fixpoint
sup.cobounded?)
have z * —z* M 2zt <z * (—z* M2l x 2t)
by (simp add: dedekind-1)
also have ... < z % (—z* M 27 x 21)
using assms(1) comp-inf.mult-right-isotone conv-isotone mult-left-isotone
mult-right-isotone by simp
also have ... <z % (—z* M 1 % z*)
by (metis assms(2) comp-associative comp-inf.mult-right-isotone
mult-left-isotone mult-right-isotone)
finally have 2: x *+ —2* M 2zt = bot
by (simp add: order.antisym)
have z * —2* M z* = (zx —2*Nzt) U (zx —2* M 1)
by (metis comp-inf.semiring.distrib-left star-left-unfold-equal sup-commute)

90

also have ... < z* * (y M 2%)
using 2 by (simp add: assms(8) inf.coboundedI2 reflexive-mult-closed
star.circ-reflezive)
finally have z « —z* < z* % (y M 2*) U —2*
by (metis assms(4) pp-dist-star shunting-var-p)
hence z x (" x (y M 2*) U —2%) < a* % (y M 2*) U —2*
by (metis le-supE le-supl mult-left-dist-sup star.circ-loop-fixpoint
sup.cobounded?)
hence z* x y < z* % (y M 2*) U —2*
using 1 by (simp add: star-left-induct)
hence z* x y M ——2z* < 2% % (y M 2¥)
using shunting-var-p by simp
thus ?thesis
using order.trans inf.sup-right-isotone pp-increasing by blast
qed

lemma kruskal-exchange-forest-components-inv:
assumes injective ((w M —d) U e)
and regular d
and e x top x e = e
and d < top x e x w
and w * €T x top = bot
and injective w
and d < w
and d < (wn —d)T* x €T * top
shows forest-components w < forest-components ((w M —d) U e)
proof —
let v = wn —d
let w = %vUe
let ?f = forest-components ?w
have 1: %0 x dT « top = bot
by (simp add: assms(6,7) kruskal-exchange-acyclic-inv-3)
have 2: d * ¢ < bot
by (metis assms(5,7) conv-bot conv-dist-comp conv-involutive conv-top
order.trans inf.absorb2 inf.cobounded?2 inf-commute le-bot p-antitone-iff p-top
schroeder-4-p top-left-mult-increasing)
have w* % e” x top = e’ * top
by (metis assms(5) conv-bot conv-dist-comp conv-involutive
conv-star-commaute star.circ-top star-absorb)
hence w* * e * top < —(d” * top)
using 2 by (metis (no-types) comp-associative inf.cobounded? le-bot
p-antitone-iff schroeder-3-p semiring.mult-zero-left)
hence 3: e x top < —(w™™* % d¥ x top)
by (metis conv-star-commute p-antitone-iff schroeder-3-p mult-assoc)
have 2v * wT™* % d7 x top = %v x d¥ * top U 2v x wT T % d7 * top
by (metis comp-associative mult-left-dist-sup star.circ-loop-fixpoint
sup-commute)
also have ... < w * wl'™ % d7 * top
using 1 by (simp add: mult-left-isotone)

T %

91

also have ... < wT* x d7 % top
by (metis assms(6) mult-assoc mult-1-left mult-left-isotone)
finally have ?v x w'™* % d7 * top < ——(w™* x dT * top)
using p-antitone p-antitone-iff by auto
hence /: ?vT x —(wT™* % dT top) < —(wT™* * dT * top)
using comp-associative schroeder-3-p by simp
have 5: injective ?v
using assms(1) conv-dist-sup mult-left-dist-sup mult-right-dist-sup by simp
have 2v 20T* x T x top = 2v x €T * top LU 20 x 207+ x €T x top
by (metis comp-associative mult-left-dist-sup star.circ-loop-fixpoint
sup-commute)
also have ... < wx el x top U 20 * 20T+ % €T x top
using mult-left-isotone sup-left-isotone by simp
also have ... < w x €T x top L 207* x €T x top
using 5 by (metis mult-assoc mult-1-left mult-left-isotone sup-right-isotone)
finally have v % 207* x €7 % top < 2v7* % €T x top
by (simp add: assms(5))
hence 2v* * d * top < 2vT* x T * top
by (metis assms(8) star-left-induct sup-least comp-associative
mult-right-sub-dist-sup-right sup.orderE vector-top-closed)
also have ... < —(w™* x d7 * top)
using 3 / by (simp add: comp-associative star-left-induct)
also have ... < —(dT * top)
by (metis p-antitone star.circ-left-top star-outer-increasing mult-assoc)
finally have 6: ?v* x d * top < —(d” * top)
by simp
have d” * top < w* * e * top
by (metis assms(4) comp-associative comp-inf.star.circ-sup-2 comp-isotone
conv-dist-comp conv-involutive conv-order conv-star-commute conv-top
vector-top-closed)
also have ... < (Zv U d)* * e * top
by (metis assms(2) comp-inf.semiring.distrib-left madduz-3-11-pp
mult-left-isotone star-isotone sup.cobounded?2 sup-commute sup-inf-distrib1)

also have ... = 2v* * (d * 2v*)* *x e * top
by (simp add: star-sup-1)
also have ... = 20* % e * top U 2v* % d x 20* % (d x 20*)* x e x top

by (metis semiring.distrib-right star.circ-unfold-sum star-decompose-1
star-decompose-3 mult-assoc)
also have ... < 2v* % e x top L 2v* * d * top
by (metis comp-associative comp-isotone le-supl mult-left-dist-sup
mult-right-dist-sup mult-right-isotone star.circ-decompose-5 star-decompose-3
sup.coboundedl sup-commute top.extremum)
finally have d7 * top < 2v* x e * top U (dT * top M 2v* x d * top)
using sup-inf-distrib2 sup-monoid.add-commute by simp
hence d7 x top < 20" % e * top
using 6 by (metis inf-commute pseudo-complement sup-monoid.add-0-right)
hence 7: d < top x el % 27>
by (metis comp-associative conv-dist-comp conv-involutive conv-isotone
conv-star-commute conv-top order.trans top-right-mult-increasing)

92

have 8: %v < ?f
using forest-components-increasing le-supE by blast
have d < 2v7* x €T % top M top * T x 2T*
using 7 assms(8) by simp
also have ... = 207* x ¢© x top x e
by (metis inf-top-right vector-inf-comp vector-top-closed mult-assoc)
also have ... = 2v7* x T x 27>
by (metis assms(83) comp-associative conv-dist-comp conv-top)
also have ... < 27* x T x 2f
using 8 by (metis assms(1) forest-components-equivalence cancel-separate-1
conv-dist-comp conv-order mult-left-isotone star-involutive star-isotone)
also have ... < 27* x 2f x of
by (metis assms(1) forest-components-equivalence forest-components-increasing
conv-isotone le-supE mult-left-isotone mult-right-isotone)
also have ... < 9f x 2f x 7f
by (metis comp-associative comp-isotone conv-dist-sup star.circ-loop-fixpoint
star-isotone sup.coboundedl sup.cobounded2)
also have ... = 7f
by (simp add: assms(1) forest-components-equivalence preorder-idempotent)
finally have w < ?f
using 8 by (metis assms(2) shunting-var-p sup.orderE)
thus ?thesis
using assms(1) forest-components-idempotent forest-components-isotone by
fastforce
qed

Ty 29T

lemma kruskal-spanning-inv:
assumes injective ((f M —q) U (f 1 ¢)T U e)
and regular q
and regular e
and (—h M ——g)* < forest-components f
shows components (—(h 1M —e M —eT) M g) < forest-components ((f M —q) U
(1 gT Ue)
proof —
let of = (f —q)U (Mg Ue
let 2h = hm —en —e”
let ?F = forest-components f
let ?FF = forest-components ?f
have 1: equivalence ?FF
using assms(1) forest-components-equivalence by simp
hence 2: ?f x ?FF < ?FF
using order.trans forest-components-increasing mult-left-isotone by blast
have 3: ?fT x ?FF < ?FF
using 1 by (metis forest-components-increasing mult-left-isotone conv-isotone
preorder-idempotent)
have (f M q) * ?FF < 2fT x ?FF
using conv-dist-sup conv-involutive sup-assoc sup-left-commute
mult-left-isotone by simp
hence 4: (f M q) * ?FF < ?FF

93

using 3 order.trans by blast
have (f M —q) x ?FF < ?f x ¢FF
using le-supll mult-left-isotone by simp
hence (f M —q) x ?FF < ?FF
using 2 order.trans by blast
hence ((f M q) U (f N —q)) *x ¢FF < ?FF
using 4 mult-right-dist-sup by simp
hence f x ?FF < ?FF
by (metis assms(2) madduz-3-11-pp)
hence 5: f* x ?FF < ?FF
using star-left-induct-mult-iff by simp
have (f M —q)T x 2FF < 2fT x ?FF
by (meson conv-isotone order.trans mult-left-isotone sup.cobounded?)
hence 6: (f 1 —q)? * ?FF < ?FF
using 3 order.trans by blast
have (f M ¢)7 * ?FF < 2f x ?FF
by (simp add: mult-left-isotone sup.left-commute sup-assoc)
hence (f M ¢q)7 % ?FF < ?FF
using 2 order.trans by blast
hence ((f N —¢)T U (f N ¢)T) * ?FF < ?FF
using 6 mult-right-dist-sup by simp
hence 7 x ?FF < ?FF
by (metis assms(2) conv-dist-sup madduz-3-11-pp)
hence 7: ?F x ¢FF < ?FF
using 5 star-left-induct mult-assoc by simp
have 8: e x ?FF < ?FF
using 2 by (simp add: mult-right-dist-sup mult-left-isotone)
have e x ?FF < 2fT x ?FF
by (simp add: mult-left-isotone conv-isotone)
also have ... < 2FF x ?FF
using 1 by (metis forest-components-increasing mult-left-isotone conv-isotone)
finally have e’ x ?FF < ?FF
using 1 preorder-idempotent by auto
hence 9: (?F U e U el) x ?FF < ?FF
using 7 8 mult-right-dist-sup by simp
have components (—?h M g) < ((=h M ——g) U e U eT)*
by (metis assms(8) comp-inf.mult-left-sub-dist-sup-left conv-complement
p-dist-inf pp-dist-inf reqular-closed-p star-isotone sup-inf-distrib2
sup-monoid.add-assoc)
also have ... < ((=h M ——g)* U e U eT)*
using star.circ-increasing star-isotone sup-left-isotone by simp
also have ... < (?F U el el)*
using assms(4) sup-left-isotone star-isotone by simp
also have ... < ?FF
using 1 9 star-left-induct by force
finally show ?thesis
by simp
qed

94

lemma kruskal-exchange-spanning-inv-1:
assumes injective ((w M —q) U (w1 ¢q)7)
and regular (w M q)
and components g < forest-components w
shows components g < forest-components ((w M —q) U (w M ¢)T)
proof —
let 7p = wMgq
let 2w = (w M —q) U #pT
have 1: w N —%p < forest-components ?w
by (metis forest-components-increasing inf-import-p le-supE)
have w N ?p < 2w’
by (simp add: conv-dist-sup)
also have ... < forest-components ?w
by (metis assms(1) conv-isotone forest-components-equivalence
forest-components-increasing)
finally have w N (%p U —%p) < forest-components 2w
using 1 inf-sup-distrib! by simp
hence w < forest-components 2w
by (metis assms(2) inf-top-right stone)
hence 2: w* < forest-components 2w
using assms(1) star-isotone forest-components-star by force
hence 3: wT* < forest-components 2w
using assms(1) conv-isotone conv-star-commute forest-components-equivalence
by force
have components g < forest-components w
using assms(3) by simp
also have ... < forest-components 2w x forest-components ?w
using 2 3 mult-isotone by simp
also have ... = forest-components ?w
using assms(1) forest-components-equivalence preorder-idempotent by simp
finally show ?thesis
by simp
qed

lemma kruskal-exchange-spanning-inv-2:
assumes injective w
and w* x el = 7
and f U fT < (wn —dn —d") u (w1 —dn —d")
and d < forest-components f x eT * top
shows d < (w M —d)T* x €T * top
proof —
have 1: (w M —d M —d?) * (wf' M —d N —-d’) < 1
using assms(1) comp-isotone order.trans inf.cobounded! by blast
have d < forest-components f * e* * top
using assms(4) by simp
also have ... < (f U fI)* * (f U fT)* * €T % top
by (simp add: comp-isotone star-isotone)
also have ... = (f U f7)* x eT * top
by (simp add: star.circ-transitive-equal)

95

also have ... < ((w M —d M —dT) U (wT M —d 11 —d?))* = T x top
using assms(3) by (simp add: comp-isotone star-isotone)
also have ... = (w? M —d M —dT)* (w N —d 1 —d?")* * eT * top
using 1 cancel-separate-1 by simp
also have ... < (wT' M —d M —d7)* x w* * T * top
by (simp add: inf-assoc mult-left-isotone mult-right-isotone star-isotone)
also have ... = (w? M —d M —d7)* = T * top
using assms(2) mult-assoc by simp
also have ... < (w? M —d?)* x eI top
using mult-left-isotone conv-isotone star-isotone comp-inf.mult-right-isotone
inf.cobounded? inf.left-commute inf.sup-monoid.add-commute by presburger
also have ... = (w M —d)T* x €T x top
using conv-complement conv-dist-inf by presburger
finally show ?thesis
by simp
qed

lemma kruskal-spanning-inv-1:
assumes ¢ < F
and regular e
and components (—h M g) < F
and equivalence F
shows components (—(h M —e M —eT) M g) < F
proof —
have 1: F'x F < F
using assms(4) by simp
hence 2: e x F < F
using assms(1) mult-left-isotone order-lesseq-imp by blast
have eI « F < F
by (metis assms(1,4) conv-isotone mult-left-isotone preorder-idempotent)
hence 3: (FUelUel)« F<F
using 1 2 mult-right-dist-sup by simp
have components (—(h M —e M —eT) M g) < ((=h M ——g) U el e)*
by (metis assms(2) comp-inf.mult-left-sub-dist-sup-left conv-complement
p-dist-inf pp-dist-inf regular-closed-p star-isotone sup-inf-distrib2
sup-monotid.add-assoc)
also have ... < ((=h M ——g)* U e U eT)*
using sup-left-isotone star.circ-increasing star-isotone by simp
also have ... < (F U e U eT)*
using assms(3) sup-left-isotone star-isotone by simp
also have ... < F
using 3 assms(4) star-left-induct by force
finally show ?thesis
by simp
qed

lemma kruskal-reroot-edge:

assumes injective (el * top)
and acyclic w

96

shows ((w M —(top * e x w™*)) U (w M top * e * w'*)T) x eT = bot
proof —
let ?g = top *x e x w
let 9p = wn g
let 2w = (wn —%q) U #pT
have (w M —2q) * e x top = w * (eI x top M —2¢7)
by (metis comp-associative comp-inf-vector-1 conv-complement
covector-complement-closed vector-top-closed)
also have ... = w x (el * top M —(w* * el x top))
by (simp add: conv-dist-comp conv-star-commute mult-assoc)
also have ... = bot
by (metis comp-associative comp-inf.semiring.mult-not-zero
inf.sup-relative-same-increasing inf-p mult-right-zero star.circ-loop-fizpoint
sup-commute sup-left-divisibility)
finally have 1: (w M —%q) * e * top = bot
by simp
have ?pT x €T x top = (w? M w* * €T * top) * €T * top
by (simp add: conv-dist-comp conv-star-commute mult-assoc conv-dist-inf)

T %

also have ... = w* x 7 * top M w” * T * top
by (simp add: inf-vector-comp vector-export-comp)
also have ... = (w* M wT) x T * top

using assms(1) injective-comp-right-dist-inf mult-assoc by simp
also have ... = bot
using assms(2) acyclic-star-below-complement-1 semiring.mult-not-zero by
blast
finally have 2w * e’ * top = bot
using 1 mult-right-dist-sup by simp
thus ?thesis
by (metis star.circ-top star-absorb)
qed

4.2.3 Exchange gives Minimum Spanning Trees

The lemmas in this section are used to show that the after exchange we
obtain a minimum spanning tree. The following lemmas show that the
relation characterising the edge across the cut is an arc.

lemma kruskal-edge-arc:
assumes equivalence F'
and forest w
and arc e
and regular F'
and F < forest-components (F M w)
and regular w
and w * 7 = bot
and e x F x e = bot
and eI < w*
shows arc (w M top * €T x w™™* M F % e % top M top * e x —F)
proof (unfold arc-expanded, intro conjI)
let 2E = top * e x wT*

97

let 2F = F T x top
let ?G = top x e x —F
let 2FF = F x T x e x F
let GG = —F x e’ xex —F
let 2w = forest-components (F M w)
have F M w™* < forest-components (F M w) M w’™*
by (simp add: assms(5) inf.coboundedl1)
also have ... < (F M w)™ % ((F 1 w)* 1 w'™)
apply (rule inf-star-import)
apply (simp add: conv-isotone)
apply (simp add: assms(2))
apply (simp add: star.circ-reflexive)
by (metis assms(6) conv-complement)
also have ... < (F 1 w)™™* % (w* 1N w?™)
using comp-inf.mult-left-isotone mult-right-isotone star-isotone by simp
also have ... = (F 1 w)T*
by (simp add: assms(2) acyclic-star-inf-conv)
finally have w * (F M w™™*) s el x e < wx (Fw)™™ x el xe
by (simp add: mult-left-isotone mult-right-isotone)
also have ... = wx el x e Uw* (FNw)?* xel xe
by (metis comp-associative mult-left-dist-sup star.circ-loop-fixpoint
sup-commute)
also have ... = w * (F T
by (simp add: assms(7))
also have ... < w x (F 1 w)T*
by (metis assms(8) arc-univalent mult-assoc mult-1-right mult-right-isotone)
also have ... < w * w? x (F M w)T*
by (simp add: comp-associative conv-isotone mult-left-isotone
mult-right-isotone)
also have ... < (F n w)™™
using assms(2) coreflexive-comp-top-inf inf.sup-right-divisibility by auto
also have ... < FT*
by (simp add: conv-dist-inf star-isotone)
finally have 1: w * (F M w™*) x el x e < F
by (metis assms(1) order.antisym mult-1-left mult-left-isotone
star.circ-plus-same star.circ-reflexive star.left-plus-below-circ
star-left-induct-mult-iff)
have F x ¢! x e < forest-components (F M w) * e? * e
by (simp add: assms(5) mult-left-isotone)
also have ... < forest-components w * e’ * e
by (simp add: comp-isotone conv-dist-inf star-isotone)
also have ... = w!™* x el x ¢
by (metis (no-types) assms(7) comp-associative conv-bot conv-dist-comp
conv-involutive conv-star-commute star-absorb)
also have ... < wT*
by (metis assms(3) arc-univalent mult-assoc mult-1-right mult-right-isotone)
finally have 2: F x e¥ x e < wT*
by simp
have w x F x e

w)T x el x e

T T T

se<wx Fxel xexe' xe

98

using comp-associative ex231c mult-right-isotone by simp
also have ... = w x (F x e x e M w™) x e x ¢
using 2 by (simp add: comp-associative inf.absorb1)
also have ... < w * (F M wl™*) x el x e
by (metis assms(3) arc-univalent mult-assoc mult-1-right mult-right-isotone
mult-left-isotone inf.sup-left-isotone)
also have ... < F
using 1 by simp
finally have 8: w* F x el x e < F
by simp
hence ¢ x e x F x wl < F
by (metis assms(1) conv-dist-comp conv-dist-inf conv-involutive inf.absorb-iff1
mult-assoc)
hence e” x ex Fx wl < el % topn F
by (simp add: comp-associative mult-right-isotone)
also have ... < el x ex F
by (metis conv-involutive dedekind-1 inf-top-left mult-assoc)
finally have /: el s e x F x wT < el xex F
by simp
have (top * e)T * (?F M wT™*) = el x top x e x F * w!™*
by (metis assms(1) comp-inf.star.circ-decompose-9 comp-inf.star-star-absorb
conv-dist-comp conv-involutive conv-top covector-inf-comp-3 vector-top-closed
mult-assoc)
also have ... = e’ xex F x w
by (simp add: assms(3) arc-top-edge)
also have ... < el x e x F
using 4 star-right-induct-mult by simp
also have ... < F
by (metis assms(3) arc-injective conv-involutive mult-1-left mult-left-isotone)
finally have 5: (top *) * (?F M w!™*) < F
by simp
have (?F M w) * w' = ?F M w * v’
by (simp add: vector-export-comp)
also have ... < ¢F 1 wT*
by (metis assms(2) comp-associative inf.sup-right-isotone mult-left-isotone
star.circ-transitive-equal star-left-unfold-equal sup.absorb-iff2
sup-monoid.add-assoc)
also have 6: ... < top x e x F
using 5 by (metis assms(3) shunt-mapping conv-dist-comp conv-involutive
conv-top)
finally have 7: (?F M w) * wTt < top x e x F
by simp
have e x top x e < 1
by (simp add: assms(3) point-injective)
also have ... < F
by (simp add: assms(1))
finally have 8: e x —F % el < bot
by (metis p-antitone p-antitone-iff p-bot regular-closed-bot schroeder-3-p
schroeder-4-p mult-assoc)

T T *

99

have ?FF Mw x (wT+ N 2GG) * wT < 2F M w * (w1 2GG) x w”
using comp-inf.mult-left-isotone mult-isotone mult-assoc by simp
also have ... < 2F M w * (wT+ N 2G) * v’
by (metis assms(8) arc-top-edge comp-inf.star.circ-decompose-9
comp-inf-covector inf .sup-right-isotone inf-le2 mult-left-isotone mult-right-isotone
vector-top-closed mult-assoc)

also have ... = (?F M w) * (w'* M 2G) x w”
by (simp add: vector-export-comp)
also have ... = (?F M w) x wT* « (?GT N w’)

by (simp add: covector-comp-inf covector-comp-inf-1 covector-mult-closed)
also have ... < top * e x F' x (?GT 1 w™)
using 7 mult-left-isotone by simp
also have ... < top * e ¥ F * ?GT
by (simp add: mult-right-isotone)
also have ... = top x e x —F x eI x top
by (metis assms(1) conv-complement conv-dist-comp conv-top
equivalence-comp-left-complement mult-assoc)
finally have 9: ?FF M w * (w'+ 1M 2GG) x w' = bot
using 8 by (metis comp-associative covector-bot-closed le-bot vector-bot-closed)
hence 10: ?FF M w * (wt N 7GG) x wl = bot
using assms(1) comp-associative conv-bot conv-complement conv-dist-comp
conv-dist-inf conv-star-commute star.circ-plus-same by fastforce
have (w M ?E M 2F N 2G) x top *+ (w N 2E N 2F 11 2G)T = (2F N (w M 2E M
?@)) x top x (wn 2E N 2G)T 1 2FT)
by (simp add: conv-dist-inf inf-commute inf-left-commute)
also have ... = (?F M (w M ?E M 2G)) * top * (w1 ?E 11 2G)T 1 2FT
using covector-comp-inf vector-conv-covector vector-mult-closed
vector-top-closed by simp
also have ... = ?F M (w M ?E N ?G) x top x (w N ?E 1 2G)T 1 2FT
by (simp add: vector-export-comp)
also have ... = ?F MM top x e x F N (w N ?E 1 2G) * top * (w1 ?E M 2G)T
by (simp add: assms(1) conv-dist-comp inf-assoc inf-commute mult-assoc)
also have ... = ?F x e x F M (w M 2E M 2G) * top * (w N 2E N 2G)T
by (metis comp-associative comp-inf-covector inf-top.left-neutral)
also have ... = ?FF M (w M ?E N ?G) * (top * (w N ?E M 2G)T)
using assms(3) arc-top-edge comp-associative by simp
also have ... = ?FF 1 (w N ?E N 2G) * (top * (?GT N (?ET 1 w™)))
by (simp add: conv-dist-inf inf-assoc inf-commute inf-left-commute)
also have ... = ?FF M (w M ?E N ?G) * (?G = (?ET 11 wT))
by (metis covector-comp-inf-1 covector-top-closed covector-mult-closed
inf-top-left)

also have ... = ?FF 1 (w1 ?E N ?G) x (G N ?E) x w’
by (metis covector-comp-inf-1 covector-top-closed mult-assoc)
also have ... = ?FF M (w M ?E) * (?GT 1N 2G 1 ?E) * w’

by (metis covector-comp-inf-1 covector-mult-closed inf.sup-monoid.add-assoc
vector-top-closed)
also have ... = ?FF M w x (?ET N ?2GT 11 2G N ?E) » w’
by (metis covector-comp-inf-1 covector-mult-closed inf.sup-monoid.add-assoc
vector-top-closed)

100

also have ... = ?FF M w x (?ET 1 2E N (?GT 1 2G)) * w?
by (simp add: inf-commute inf-left-commute)

also have ... = ?FF M w x (?ET M 2E N (=F x el % top 1 2G)) * w’
by (simp add: assms(1) conv-complement conv-dist-comp mult-assoc)
also have ... = ?FF M w x (PET N ?E N (=F x e x 2Q)) * w”
by (metis comp-associative comp-inf-covector inf-top.left-neutral)
also have ... = ?FF M w x (?ET N ?2E N ?2GG) * w”
by (metis assms(3) arc-top-edge comp-associative)
also have ... = ?FF M w x (w* x e * top M ?E N ?GG) * wl
by (simp add: comp-associative conv-dist-comp conv-star-commute)
also have ... = ?FF M w x (w* * e * 2B N ?GG) * w’

by (metis comp-associative comp-inf-covector inf-top.left-neutral)
also have ... < 2FF M w x (w* * w'* N 2GG) * w?
by (metis assms(3) mult-assoc mult-1-right mult-left-isotone mult-right-isotone
inf.sup-left-isotone inf.sup-right-isotone arc-expanded)
also have ... = 2FF Mw * (vt U 1 U w™) N 2GG) x w”
by (simp add: assms(2) cancel-separate-eq star-left-unfold-equal
sup-monoid.add-commute)

also have ... = 2FF Mw x (w™ U 1 U w') M 2GG) x w’
using star.circ-plus-one star-left-unfold-equal sup-assoc by presburger
also have ... = (?FF M w * (wt N 2GG) » wT) U (?FF M w * (1 M ?GG) *

wl) U (2FF Nw * (wT't 1 2GG) * wTh)
by (simp add: inf-sup-distribl inf-sup-distrib2 semiring.distrib-left
semiring. distrib-right)
also have ... < w * (1 M ?GG) wT
using 9 10 by simp
also have ... < w * w
by (metis inf.coboundedl mult-1-right mult-left-isotone mult-right-isotone)
also have ... < 1
by (simp add: assms(2))
finally show (w M ?E M 2F M 2G) x top * (w M ?E M 2F N 2G)T < 1
by simp
have wTt M —FsxeT xex —FNuwl s Fx el xex Fxw<wltn?Gn
wl « Fxel xex Fxw
using top-greatest inf.sup-left-isotone inf.sup-right-isotone mult-left-isotone
by simp
also have ... < wTt M 2G N w” % 2F
using comp-associative inf.sup-right-isotone mult-right-isotone top.extremum
by presburger
also have ... = w’ x (wT* N 2F) N 2G
using assms(2) inf-assoc inf-commute inf-left-commute
univalent-comp-left-dist-inf by simp
also have ... < w” x (top * e x F) M 2G
using 6 by (metis inf.sup-monoid.add-commute inf.sup-right-isotone
mult-right-isotone)
also have ... < top x e x F 11 2G
by (metis comp-associative comp-inf-covector mult-left-isotone top.extremum)
also have ... = bot
by (metis assms(3) conv-dist-comp conv-involutive conv-top inf-p

T

101

mult-right-zero univalent-comp-left-dist-inf)
finally have 11: wTT M —Fsx el s ex —Fw' « Fxel xex F x w= bot
by (simp add: order.antisym)
hence 12: w M —Fx el s ex —FNwl *x Fxel xex Fx w= bot
using assms(1) comp-associative conv-bot conv-complement conv-dist-comp
conv-dist-inf conv-star-commute star.circ-plus-same by fastforce
have (w M ?2E M 2F N 2G)T x top x (w1 ?E M 2F N 2G) = ((w N 2E N 2G)T
N 2ET) % top » (2F 1 (w N 2E N ?2G))
by (simp add: conv-dist-inf inf-commute inf-left-commute)

also have ... = (w M ?E 1 ?G)T x 2F x (?F M (w N ?E N ?G))
by (simp add: covector-inf-comp-3 vector-mult-closed)
also have ... = (w M ?E 1 2G)T « (2F M 2FT) % (w M ?E 1 2G)

using covector-comp-inf covector-inf-comp-3 vector-conv-covector
vector-mult-closed by simp

also have ... = (w N ?E M ?G)T « (?F 11 2FT) x (w N ?E) N ?G
by (simp add: comp-associative comp-inf-covector)
also have ... = (w N ?E M ?G)T « (?F 1 ?FT) x wn ?E N ?2G
by (simp add: comp-associative comp-inf-covector)
also have ... = (?GT M (?ET nw?)) « (?F N 2FT) x wn 2E N 2G
by (simp add: conv-dist-inf inf.left-commute inf.sup-monoid.add-commute)
also have ... = ?GT n (?ET nwT) « (?F N 2FT) x w N 2E N 2G

by (metis (no-types) comp-associative conv-dist-comp conv-top
vector-export-comp)
also have ... = ?GT 1 BT nw? * (?F N 2FT) x w N ?E 1 2G
by (metis (no-types) comp-associative inf-assoc conv-dist-comp conv-top
vector-export-comp)
also have ... = ?ET M 2E N (?GT 11 2G) N wT * (?F N 2FT) x w
by (simp add: inf-assoc inf.left-commute inf.sup-monoid.add-commute)
also have ... = w* x e * top M ?E M (?GT 1 2G) M wT * (?F N 2FT) x w
by (simp add: comp-associative conv-dist-comp conv-star-commute)
also have ... = w* x e x ?E M (?GT N 2G) N w? « (?F 11 2FT) % w
by (metis comp-associative comp-inf-covector inf-top.left-neutral)
also have ... < w* * wT* 11 (?GT M 2G) N w? % (?F N 2FT) x w
by (metis assms(3) mult-assoc mult-1-right mult-left-isotone mult-right-isotone
inf.sup-left-isotone arc-expanded)

also have ... = w* * w* M (=F x el x top N 2G) M w? * (?F 1 2FT) x w
by (simp add: assms(1) conv-complement conv-dist-comp mult-assoc)

also have ... = w* * w'* M —F x T x 2G M w” x (2F N 2FT) % w
by (metis comp-associative comp-inf-covector inf-top.left-neutral)

also have ... = w* * w'* M —F x el x ex —F N wl x (2F N 2FT) % w
by (metis assms(3) arc-top-edge mult-assoc)

also have ... = w* * w'* M —F x el x ex —F M w!l x (?F Ntop * e x F) x w
by (simp add: assms(1) conv-dist-comp mult-assoc)

also have ... = w* * w'* M —Fx el s ex —FNwl x (?Fxex F)xw
by (metis comp-associative comp-inf-covector inf-top.left-neutral)

alsohave ... = w* s w* M —Fxel xex —Fw *Fxel xex Fxw
by (metis assms(8) arc-top-edge mult-assoc)

alsohave ... = (wt U1 U W) N —Fxel xex —Friuwl « Fxel xexF

* W

102

by (simp add: assms(2) cancel-separate-eq star-left-unfold-equal
sup-monoid.add-commute)

alsohave ... = (wr U1 U wl)M —Fxel xex —Frwl « Fxel xexF
* W
using star.circ-plus-one star-left-unfold-equal sup-assoc by presburger
alsohave ... = (wr M —Fsxel s ex —FNwl s Fxel xex Fxw) U (10N

—Fxelsex —FNuwl s Fxelxex Fxw)U (T —Fxel xex—FnN
wl x Fx el x ex Fxw)
by (simp add: inf-sup-distrib2)
also have ... < 1
using 11 12 by (simp add: inf.coboundedIl)
finally show (w M ?E M 2F 11 2G)T x top + (w N 2E T 2F N 2G) < 1
by simp
have (w M —F) « (Fw’) <wx*wl M —Fx F
by (simp add: mult-isotone)
also have ... < 1 M —F
using assms(1,2) comp-inf.comp-isotone equivalence-comp-right-complement
by auto
also have ... = bot
using assms(1) bot-unique pp-isotone pseudo-complement-pp by blast
finally have 13: (w N —F) % (F N wT) = bot
by (simp add: order.antisym)
have w N ?G < F % (w N ?G)
by (metis assms(1) mult-1-left mult-right-dist-sup sup.absorb-iff2)
also have ... < F x (w N ¢G) * w*
by (metis eq-refl le-supE star.circ-back-loop-fizpoint)
finally have 14: w N G < F % (w N ?G) * w*
by simp
have wMtop x e x F<wx (e x)T xex F
by (metis (no-types) comp-inf.star-slide dedekind-2 inf-left-commute
inf-top-right mult-assoc)
also have ... < F
using 3 assms(1) by (metis comp-associative conv-dist-comp mult-left-isotone
preorder-idempotent)
finally have w M —F < —(top * e x F)
using order.trans p-shunting-swap pp-increasing by blast

also have ... = G
by (metis assms(3) comp-mapping-complement conv-dist-comp conv-involutive
conv-top)

finally have (w M —F) « F x (w N ?G) = (w N —F N ?G) « F x (w N ?G)
by (simp add: inf.absorbl)
also have ... < (w N —F M ?G) « F x w
by (simp add: comp-isotone)
also have ... < (w M —F N ¢G) x forest-components (F M w) * w
by (simp add: assms(5) mult-left-isotone mult-right-isotone)
also have ... < (w M —F M ?2G) * (F 1 w)™* w* x w
by (simp add: mult-left-isotone mult-right-isotone star-isotone mult-assoc)
also have ... < (w M —F M ?G) x (F 11 w)T* x w*
by (simp add: comp-associative mult-right-isotone star.circ-plus-same

103

star.left-plus-below-circ)
also have ... = (w M —F M ?G) * w* U (w M —F M 2G) x (F 1w x w*
by (metis comp-associative inf.sup-monoid.add-assoc mult-left-dist-sup
star. circ-loop-fizpoint sup-commute)
also have ... < (w M —F 1M ?2G) x w* U (w1 —F N 2G) * (F 11 w)T * top
by (metis mult-assoc top-greatest mult-right-isotone sup-right-isotone)
also have ... < (w M —F M 2G) * w* U (w M —F) % (F 11 w)T * top
using inf.coboundedl mult-left-isotone sup-right-isotone by blast
also have ... < (w M ?G) * w* U (w N —F) x (F 1 w)T % top
using inf.sup-monoid.add-assoc inf.sup-right-isotone mult-left-isotone
sup-commute sup-right-isotone by simp
also have ... = (w M ?G) * w* U (w N —F) % (F 1 w?") * top
by (simp add: assms(1) conv-dist-inf)
also have ... < 1 % (w N ?G) x w*
using 13 by simp
also have ... < F x (w M ?G) * w*
using assms(1) mult-left-isotone by blast
finally have 15: (w M —F) « F x (w N ?2G) < F % (w N ?G) * w*
by simp
have (wN F) « F « (wN ?G) < F % Fx (wnN ?G)
by (simp add: mult-left-isotone)
also have ... = F x (w1 ?QG)
by (simp add: assms(1) preorder-idempotent)
also have ... < F x (w N ?G) * w*
by (metis eq-refl le-supE star.circ-back-loop-fizpoint)
finally have (w M F) * F x (wN ?G) < F % (w N ?2G) x w*
by simp
hence (WM F) U (wN —F)) « Fx (wnN ?G) < F x (wnN ?G) x w*
using 15 by (simp add: semiring.distrib-right)
hence w « F x (w N ?G) < F * (w N ?G) * w*
by (metis assms(4) madduz-3-11-pp)
hence w *x F x (wM ?G) * w* < F x (w N ?G) x w*
by (metis (full-types) comp-associative mult-left-isotone
star.circ-transitive-equal)
hence w* * (w N ¢G) < F x (w N ?G) * w*
using 14 by (simp add: mult-assoc star-left-induct)
hence 16: wt M 2G < F x (w N ?G) * w*
by (simp add: covector-comp-inf covector-mult-closed star.circ-plus-same)
have 17: eT x top * eI < —F
using assms(8) le-bot triple-schroeder-p by simp
hence (top x)T x eI < —F
by (simp add: conv-dist-comp)
hence 18: ¢ < 2@
by (metis assms(3) shunt-mapping conv-dist-comp conv-involutive conv-top)
have ¢ < —F
using 17 by (simp add: assms(3) arc-top-arc)
also have ... < —1
by (simp add: assms(1) p-antitone)
finally have ¢” < w* M —1

104

using assms(9) by simp
also have ... < wt
using shunting-var-p star-left-unfold-equal sup-commute by simp
finally have ¢! < w* M 2G
using 18 by simp
hence e’ < F x (w N ?GQ) x w*
using 16 order-trans by blast
also have ... = (F x w M ?G) * w*
by (simp add: comp-associative comp-inf-covector)
finally have e” * top * e < (F x w N ?GQ) x w*
by (simp add: assms(3) arc-top-arc)
hence e’ x top * (e x top)T < (F x w N ?G) * w*
by (metis conv-dist-comp conv-top vector-top-closed mult-assoc)
hence el x top < (F x w M ?G) * w* * e * top
by (metis assms(8) shunt-bijective mult-assoc)
hence (top x €)T x top < (F * w M ?G) x w* * e x top
by (simp add: conv-dist-comp mult-assoc)
hence top < top x e x (F x w M ?G) *x w* % e * top
by (metis assms(3) shunt-mapping conv-dist-comp conv-involutive conv-top
mult-assoc)
also have ... = top * e x F' x w * (w* * e x top 1 ?GT)
by (metis comp-associative comp-inf-vector-1)
also have ... = top * (w M (top * e * F)T) % (w* * e x top N ?G7)
by (metis comp-inf-vector-1 inf-top.left-neutral)
also have ... = top x (w N 2F) * (w* * e x top M ?G7T)
by (simp add: assms(1) conv-dist-comp mult-assoc)
also have ... = top * (w N ?F) = (?ET 1 2GT)
by (simp add: comp-associative conv-dist-comp conv-star-commute)
also have ... = top * (w N ?F N ?2G) * ?ET
by (simp add: comp-associative comp-inf-vector-1)
also have ... = top * (w M 2F N 2G N ?E) * top
using comp-inf-vector-1 mult-assoc by simp
finally show top x (w M ¢E M ¢F M ¢G) % top = top
by (simp add: inf-commute inf-left-commute top-le)

qed
lemma kruskal-edge-arc-1:
assumes ¢ < ——h
and h < g

and symmetric g
and components g < forest-components w
and w * 7 = bot
shows e’ < w*
proof —
have w? * top < —(eT * top)
using assms(d) schroeder-3-p vector-bot-closed mult-assoc by fastforce
hence 1: w” x top M el * top = bot
using pseudo-complement by simp
have e’ < e” % top M ——hT

105

using assms(1) conv-complement conv-isotone top-right-mult-increasing by
fastforce
also have ... < e x top N ——g
by (metis assms(2,3) inf.sup-right-isotone pp-isotone conv-isotone)
also have ... < e % top M components g
using inf.sup-right-isotone star.circ-increasing by simp
also have ... < €T « top M forest-components w
using assms(4) comp-inf.mult-right-isotone by simp

also have ... = (el * top M w?™*) * w*
by (simp add: inf-assoc vector-export-comp)
also have ... = (T x top M1 1) w* U (T * top M w?™+) x w*

by (metis inf-sup-distribl semiring.distrib-right star-left-unfold-equal)
also have ... < w* U (e * top M w? ™) * w*
by (metis inf-le2 mult-1-left mult-left-isotone sup-left-isotone)
also have ... < w* U (el * top M w?h) * top
using comp-associative comp-inf.mult-right-isotone sup-right-isotone
mult-right-isotone top.extremum vector-export-comp by presburger
also have ... = w”*
using 1 inf.sup-monoid.add-commute inf-vector-comp by simp
finally show ?thesis
by simp
qged

lemma kruskal-edge-between-components-1:
assumes equivalence F'
and mapping (top x €)
shows F' < —(w M top * €T % wT™* M F % €T % top N top * e x —F)
proof —
let 2d = w M top x eT x wT* T F % €T % top M top * e x —F
have 2d M F < F x e x top N F
by (meson inf-lel inf-le2 le-infl order-trans)
also have ... < (F x e x top)T x F
by (simp add: mult-assoc vector-restrict-comp-conv)
also have ... = top x e x F x F
by (simp add: assms(1) comp-associative conv-dist-comp conv-star-commute)
also have ... = top x e x F
using assms(1) preorder-idempotent mult-assoc by fastforce
finally have ?d M F < top x e x F' 1 top *x e x —F
by (simp add: le-infI1)
also have ... = top x e x F' 1 —(top x e x F)
using assms(2) conv-dist-comp total-conv-surjective
comp-mapping-complement by simp
finally show ?thesis
by (metis inf-p le-bot p-antitone-iff pseudo-complement)
qed

lemma kruskal-edge-between-components-2:

assumes forest-components f < —d
and injective f

106

and f U fT < wU w”
shows f U fT' < (wn —dn —d7) u (wh N —d n —d")
proof —
let ?F = forest-components f
have 2FT < —47
using assms(1) conv-complement conv-order by fastforce
hence 1: 9F < —d7T
by (simp add: conv-dist-comp conv-star-commute)
have equivalence ?F
using assms(2) forest-components-equivalence by simp
hence f U fT < 2F
by (metis conv-dist-inf forest-components-increasing inf.absorb-iff2
sup.boundedI)
also have ... < —d N —dT
using 1 assms(1) by simp
finally have f U f7' < —d 1 —d”
by simp
thus ?thesis
by (metis assms(3) inf-sup-distrib2 le-inf-iff)
qed

end

4.3 Related Structures

Stone algebras can be expanded to Stone-Kleene relation algebras by reusing
some operations.

sublocale stone-algebra < comp-inf: stone-kleene-relation-algebra where star =
Az . top and one = top and times = inf and conv = id

apply unfold-locales

by simp

Every bounded linear order can be expanded to a Stone algebra, which
can be expanded to a Stone relation algebra, which can be expanded to a
Stone-Kleene relation algebra.

class linorder-stone-kleene-relation-algebra-expansion =

linorder-stone-relation-algebra-expansion + star +
assumes star-def [simpl: z* = top

begin

subclass kleene-algebra
apply unfold-locales
apply simp
apply (simp add: min.coboundedIl min.commute)
by (simp add: min.coboundedl1)

subclass stone-kleene-relation-algebra

apply unfold-locales
by simp

107

end

A Kleene relation algebra is based on a relation algebra.

class kleene-relation-algebra = relation-algebra + stone-kleene-relation-algebra
begin

Seehttps://arxiv.org/abs/2310.08946 for the following results sce-1-
sce-4.

lemma scc-1:
assumes [My < z
and z7 x y < y
and y * 27 < y
and (zMy) x 2z <z
shows z* My < 2
proof —
have z x (—yUz)Ny=xx2My
proof (rule order.antisym)
have z x (—y U 2) Ny <z x (—y U 2) Mal *y)
by (simp add: dedekind-1)
also have ... < z % ((—y U 2) M y)
by (simp add: assms(2) le-infI2 mult-right-isotone)
also have ... < z % 2
by (simp add: inf.sup-monoid.add-commute mult-right-isotone)
finally show z « (—yUz2) Ny <z*x2z2MNy
by simp
show z x 2 My <zx*x(—yU2) My
by (simp add: inf-commute le-infI2 mult-right-isotone)
qed
also have ... < (z My x 27) * 2
by (simp add: dedekind-2)
also have ... < (z M y) * z
by (simp add: assms(3) le-infI2 mult-left-isotone)
also have ... < 2z
by (simp add: assms(4))
finally have 7: z % (—y U 2) Ny < z

have (I Uzx(—yU2)Ny={I Ny U(zx*x(—yU2) MNy)
by (simp add: comp-inf.mult-right-dist-sup)

also have ... < 2z
using 1 by (simp add: assms(1))

finally have 1 Uz % (—y U 2) < —y U z
using shunt! by blast

hence z* < —y U z
using star-left-induct by fastforce

thus ?thesis
by (simp add: shuntl)

qged

108

https://arxiv.org/abs/2310.08946

lemma scc-2:
T

assumes z° x y < y
and y x (z M y)*T <y
shows z* My < (z M y)*

proof —
have 1: 1 My < (z M y)*
by (simp add: inf.coboundedll star.circ-reflexive)
have (z M y) * (z N y)* < (z N y)*
by (simp add: star.left-plus-below-circ)
thus ?thesis
using 1 assms scc-1 by blast
qed

lemma scc-3:
5 M ZITT* S (.’L" m xT*)*
proof —
have 1: z7 % 2T* < T~
by (simp add: star.left-plus-below-circ)
have 27* x (z M z7*)*T < gT* 5 o*T
by (simp add: star-isotone conv-isotone mult-right-isotone)
also have ... = z7* % gT*
by (simp add: conv-star-commute)
finally have z7* % (z M 27*)*T < g7+
by (simp add: star.circ-transitive-equal)
thus ?thesis
using 1 scc-2 by auto
qged

lemma scc-4:
* 1 iET* — (213 m xT*)*
proof (rule order.antisym)
show z* M z7* < (z M 27*)*
by (simp add: scc-3)
have 1: (z M z7*)* < z*
by (simp add: star-isotone)
have (z M z7*)* < gT**
by (simp add: star-isotone)
also have ... = z7*
using star-involutive by auto
finally show (z M z7*)* < 2* M 27~
using 1 by simp
qged

end

class stone-kleene-relation-algebra-tarski = stone-kleene-relation-algebra +
stone-relation-algebra-tarski

class kleene-relation-algebra-tarski = kleene-relation-algebra +

109

stone-kleene-relation-algebra-tarski
begin

subclass relation-algebra-tarski ..
end

class stone-kleene-relation-algebra-consistent = stone-kleene-relation-algebra +
stone-relation-algebra-consistent
begin

lemma acyclic-reachable-different:
assumes acyclic p bijective y x < pT * y
shows z # y
proof (rule ccontr)
assume 1: ~x # y
have z * yT < p*t
using assms(2,3) shunt-bijective by blast
also have ... < —1
by (simp add: assms(1))
finally show Fulse
using 1 by (metis assms(2) dual-order.antisym le-supI2 mult-1-left
order-char-1 point-not-bot schroeder-4-p semiring.mult-not-zero)
qed

end

class kleene-relation-algebra-consistent = kleene-relation-algebra +
stone-kleene-relation-algebra-consistent

begin

subclass relation-algebra-consistent ..

end

class stone-kleene-relation-algebra-tarski-consistent =
stone-kleene-relation-algebra + stone-relation-algebra-tarski-consistent
begin

subclass stone-kleene-relation-algebra-tarski ..

subclass stone-kleene-relation-algebra-consistent ..

end

class kleene-relation-algebra-tarski-consistent = kleene-relation-algebra +

stone-kleene-relation-algebra-tarski-consistent
begin

110

subclass relation-algebra-tarski-consistent ..
end

class linorder-stone-kleene-relation-algebra-tarski-consistent-expansion =
linorder-stone-kleene-relation-algebra-expansion + non-trivial-bounded-order
begin

subclass stone-kleene-relation-algebra-tarski-consistent
apply unfold-locales
by (simp-all add: bot-not-top)

end

end

5 Subalgebras of Kleene Relation Algebras

In this theory we show that the regular elements of a Stone-Kleene relation
algebra form a Kleene relation subalgebra.

theory Kleene-Relation-Subalgebras
imports Stone-Relation-Algebras. Relation-Subalgebras Kleene-Relation-Algebras
begin

instantiation regular :: (stone-kleene-relation-algebra) kleene-relation-algebra
begin

lift-definition star-reqular :: ‘a regular = 'a regular is star
using reqular-closed-p regqular-closed-star by blast

instance

apply intro-classes

apply (metis (mono-tags, lifting) star-regular.rep-eq less-eq-regular.rep-eq
left-kleene-algebra-class.star-left-unfold one-reqular.rep-eq simp-regular
sup-regular.rep-eq times-reqular.rep-eq)

apply (metis (mono-tags, lifting) less-eq-reqular.rep-eq
left-kleene-algebra-class.star-left-induct simp-regular star-regular.rep-eq
sup-regular.rep-eq times-reqular.rep-eq)

apply (metis (mono-tags, lifting) less-eq-regular.rep-eq
strong-left-kleene-algebra-class. star-right-induct simp-reqular star-reqular.rep-eq
sup-regular.rep-eq times-reqular.rep-eq)

by simp

end

end

111

6 Matrix Kleene Algebras

This theory gives a matrix model of Stone-Kleene relation algebras. The
main result is that matrices over Kleene algebras form Kleene algebras. The
automata-based construction is due to Conway [7]. An implementation of
the construction in Isabelle/HOL that extends [2] was given in [3] without
a correctness proof.

For specifying the size of matrices, Isabelle/HOL’s type system requires
the use of types, not sets. This creates two issues when trying to implement
Conway’s recursive construction directly. First, the matrix size changes for
recursive calls, which requires dependent types. Second, some submatrices
used in the construction are not square, which requires typed Kleene algebras
[14], that is, categories of Kleene algebras.

Because these instruments are not available in Isabelle/HOL, we use
square matrices with a constant size given by the argument of the Kleene
star operation. Smaller, possibly rectangular submatrices are identified by
two lists of indices: one for the rows to include and one for the columns to
include. Lists are used to make recursive calls deterministic; otherwise sets
would be sufficient.

theory Matriz-Kleene-Algebras

imports Stone-Relation-Algebras. Matriz-Relation-Algebras
Kleene-Relation-Algebras

begin

6.1 Matrix Restrictions

In this section we develop a calculus of matrix restrictions. The restriction of
a matrix to specific row and column indices is implemented by the following
function, which keeps the size of the matrix and sets all unused entries to
bot.
definition restrict-matriz :: 'a list = (‘a,’b::bot) square = 'a list = ('a,’b)
square (¢- {-) - [90,41,90] 91)

where restrict-matriz as f bs = (A(i,§) . if List.member as © A List.member bs j
then f (i,j) else bot)

The following function captures Conway’s automata-based construction
of the Kleene star of a matrix. An index k is chosen and s contains all other
indices. The matrix is split into four submatrices a, b, ¢, d including/not
including row/column k. Four matrices are computed containing the entries
given by Conway’s construction. These four matrices are added to obtain
the result. All matrices involved in the function have the same size, but
matrix restriction is used to set irrelevant entries to bot.

!/

primrec star-matriz’ :: 'a list = (‘a,’b:{star times,bounded-semilattice-sup-bot})

square = ('a,’b) square where

112

star-matriz’ Nil g = mbot |
star-matriz’ (k#s) g = (
let r = [k] in
let a = r{g)rin
let b= r{g)s in
let ¢ = s(g)r in
let d = s(g)s in
let as = r(star o a)r in
let ds = star-matriz’ s d in
lete=a®bO ds® cin
let es = r{star o e)r in
letf=d® c®as® bin
let fs = star-matriz’ s fin
eSPasObO fsDds® c® es® fs

The Kleene star of the whole matrix is obtained by taking as indices
all elements of the underlying type ‘a. This is conveniently supplied by the
enum class.
fun star-matriz :: (‘a::enum,’b::{ star,times,bounded-semilattice-sup-bot}) square
= ('a,’b) square (<-©» [100] 100) where star-matriz f = star-matriz’
(enum-class.enum::'a list) f

The following lemmas deconstruct matrices with non-empty restrictions.

lemma restrict-empty-left:
[1{f)ls = mbot
by (unfold restrict-matriz-def List.member-def bot-matriz-def) auto

lemma restrict-empty-right:
ks(f)[] = mbot
by (unfold restrict-matriz-def List.member-def bot-matriz-def) auto

lemma restrict-nonempty-left:
fixes f :: ('a,’b::bounded-semilattice-sup-bot) square
shows (k#ks)(f)ls = [k](f)Is @ ks{f)ls

by (unfold restrict-matriz-def List.member-def sup-matriz-def) auto

lemma restrict-nonempty-right:
fixes f :: ('a,’b::bounded-semilattice-sup-bot) square
shows ks(f)(I#ls) = ks(f)[I] ® ks{f)ls

by (unfold restrict-matriz-def List.member-def sup-matriz-def) auto

lemma restrict-nonempty:
fixes f :: ('a,’b::bounded-semilattice-sup-bot) square
shows (k#tks)(f)(I##ls) = [KI(N[I] © [KI(f)ls © ks(f)[I] © ks(f)ls

by (unfold restrict-matriz-def List.member-def sup-matriz-def) auto

The following predicate captures that two index sets are disjoint. This
has consequences for composition and the unit matrix.

113

abbreviation disjoint ks s = —(3z . List.member ks x A List.member ls x)

lemma times-disjoint:
fixes f g :: ('a,’b::idempotent-semiring) square
assumes disjoint ls ms
shows ks(f)ls ® ms(g)ns = mbot
proof (rule ext, rule prod-cases)
fix ij
have (ks(f)ls © ms(ghns) (i) = (s (ks(f)is) (ik) * (ms(gms) (k)
by (simp add: times-matriz-def)
also have ... = (|| (if List.member ks i A List.member ls k then f (i,k) else
bot) * (if List.member ms k A List.member ns j then g (k.j) else bot))
by (simp add: restrict-matriz-def)
also have ... = (| | if List.member ms k A List.member ns j then bot * g (k,j)
else (if List.member ks i A List.member ls k then f (i,k) else bot) x bot)
using assms by (auto intro: sup-monoid.sum.cong)
also have ... = (| | k::'a) bot)
by (simp add: sup-monoid.sum.neutral)

also have ... = bot
by (simp add: eq-iff le-funl)
also have ... = mbot (i,5)

by (simp add: bot-matriz-def)
finally show (ks(f)is ® ms{(g)ns) (i,j) = mbot (i,j)

qed

lemma one-disjoint:
assumes disjoint ks Is
shows ks((mone::('a,’b::idempotent-semiring) square))ls = mbot
proof (rule ext, rule prod-cases)
let 20 = mone:('a,’d) square
fix ij
have (ks(?0)ls) (i,j) = (if List.member ks i N List.member ls j then if i = j
then 1 else bot else bot)
by (simp add: restrict-matriz-def one-matriz-def)

also have ... = bot
using assms by auto
also have ... = mbot (i,j)

by (simp add: bot-matriz-def)
finally show (ks(?0)ls) (i,j) = mbot (i,5)
qged

The following predicate captures that an index set is a subset of another
index set. This has consequences for repeated restrictions.

abbreviation is-sublist ks s = Vx . List. member ks © — List.member ls z

lemma restrict-sublist:
assumes is-sublist Is ks

114

and is-sublist ms ns
shows Is(ks(f)ns)yms = Is(f)ms
proof (rule ext, rule prod-cases)
fix ij
show (Is(hs(f)nsyms) (i) = (Is{f)ms) (i.)
proof (cases List.member ls i A List.member ms j)
case True thus ?thesis
by (simp add: assms restrict-matriz-def)
next
case Fulse thus ?thesis
by (unfold restrict-matriz-def) auto
qed
qed

lemma restrict-superlist:
assumes is-sublist ls ks
and is-sublist ms ns
shows ks(ls(f)ms)ns = Is(f)ms
proof (rule ext, rule prod-cases)
fix ij
show (ks(ls(f)ms)ns) (i) = (Is(f)ms) (i)
proof (cases List.member ls i A List.member ms j)
case True thus ?thesis
by (simp add: assms restrict-matriz-def)
next
case Fulse thus ?thesis
by (unfold restrict-matriz-def) auto
qed
qed

The following lemmas give the sizes of the results of some matrix oper-
ations.

lemma restrict-sup:
fixes f g :: ('a,’b::bounded-semilattice-sup-bot) square
shows ks(f @ g)ls = ks(f)ls ® ks(g)ls
by (unfold restrict-matriz-def sup-matriz-def) auto

lemma restrict-times:
fixes f g :: ('a,’b::idempotent-semiring) square
shows ks(ks(f)ls ® ls{gyms)yms = ks(f)ls © Is(g)ms
proof (rule ext, rule prod-cases)
fix 7j
have (ks{(ks(f)ls ® Is(g)ms))ms) (i,j) = (if List.member ks i A List.member
ms j then (| |k (ks(f)ls) (i,k) = (Is(g)ms) (k7)) else bot)
by (simp add: times-matriz-def restrict-matriz-def)
also have ... = (if List.member ks i A List.member ms j then (|| (if
List.member ks i A List.member ls k then f (i,k) else bot) * (if List.member Is k
A List.member ms j then g (k,j) else bot)) else bot)
by (simp add: restrict-matriz-def)

115

also have ... = (if List.member ks i N List.member ms j then (|| if
List.member Is k then f (i,k) = g (k,j) else bot) else bot)
by (auto intro: sup-monoid.sum.cong)

also have ... = (| | if List.member ks i A List.member ms j then (if
List.member Is k then f (i,k) x g (k,j) else bot) else bot)
by auto
also have ... = (| (if List.member ks i A List.member ls k then f (i,k) else

bot) * (if List.member Is k A List.member ms j then g (k) else bot))
by (auto intro: sup-monoid.sum.cong)
also have ... = (| |k (ks(f)ls) (i,k) * (Is(g)yms) (k.5))
by (simp add: restrict-matriz-def)
also have ... = (ks(f)ls @ Is{gyms) (i,j)
by (simp add: times-matriz-def)
finally show (ks{(ks(f)ls © Is(g)yms))ms) (i,j) = (ks(f)ls © Is(g)ms) (i)

qged

lemma restrict-star:
fixes g :: (“a,’b::kleene-algebra) square
shows t(star-matriz’ t g)t = star-matriz’ t g
proof (induct arbitrary: g rule: list.induct)
case Nil show ?case
by (simp add: restrict-empty-left)

next
case (Cons k s)
let %t = k#s

assume Ag:('a,’d) square . s(star-matriz’ s gys = star-matriz’ s g
hence 1: Ag::(‘a,’b) square . ?t(star-matriz’ s g) ?t = star-matriz’ s g
by (metis member-rec(1) restrict-superlist)
show ?t(star-matriz’ 2t g) 2t = star-matriz’ ?t g
proof —
let 7r = [k]
let %a = 2r{g)%r
let b = 2r(g)s
let ?c = s(g)?r
let ?d = s(g)s
let as = ?r{star o %a)?r
let ?ds = star-matriz’ s ?d
let e = 20 & %0 © %ds © 7c
let %es = ?r{star o %e)or
let of = 2d ® %c ® %as © %b
let ?fs = star-matriz’ s ?f
have 2: ?t(%as)?t = %as N 2L{?b) %t = 2b N\ 2L(%c) %t = ¢ N 9t(%es) 2t = Zes
by (simp add: restrict-superlist member-def)
have 3: ?t(?%ds) 7t = 2ds N 7t(%fs) 2t = ?fs
using 1 by simp
have /: ?t(?t(%as) 2t © 2t(?b) 2t © 2t(?2fs) 7t) 7t = 2t(%as)?t © 7t(?b) %t ©
2t 2fs) 2t
by (metis (no-types) restrict-times)

116

have 5: 2t(?t(2ds) 7t © 2t(%c) 2t © 2t(%es)?t)?t = 2t(2ds) 7t © 2t(%c) %t ©
2t(%es) 2t
by (metis (no-types) restrict-times)
have ?t(star-matriz’ ?t g)?t = ?t(%es ® %as © b © ?fs ® 2ds © %c © Pes @
2fs) 2t
by (metis star-matriz’.simps(2))

also have ... = 2t(%es) 2t @ 7t{%as © ?b © fs)?2t @ ?t{%ds © %c © Pes)?t &
2L 2fs) 7t
by (simp add: restrict-sup)
also have ... = %es @ %as ® 720 © fs @ 2ds © ?c ® %es @ ?fs
using 2 8 4/ 5 by simp
also have ... = star-matriz’ ?t g

by (metis star-matriz’.simps(2))
finally show ?thesis

qged
qed

lemma restrict-one:
assumes — List. member ks k
shows (k#ks){(mone::('a,’b::idempotent-semiring) square))(k#ks) =
[k]{(mone)[k] & ks{(mone)ks
by (subst restrict-nonempty) (simp add: assms member-rec one-disjoint)

lemma restrict-one-left-unit:
ks((mone::('a::finite, b::idempotent-semiring) square))ks @ ks(f)ls = ks{f)ls
proof (rule ext, rule prod-cases)
let 0 = mone:('a,’b::idempotent-semiring) square
fix ij
have (ks(?0)ks © ks(f)ls) (i,7) = (Ur (ks{%0)ks) (i,k) = (ks(f)ls) (k.f))
by (simp add: times-matriz-def)
also have ... = (|| (if List.member ks i A List.member ks k then 20 (i,k) else
bot) (if List.member ks k N List.member ls j then f (k,j) else bot))
by (simp add: restrict-matriz-def)
also have ... = (| (if List.member ks i A List.member ks k then (if { = k then
1 else bot) else bot) * (if List.member ks k A List.member Is j then f (k,j) else
bot))
by (unfold one-matriz-def) auto
also have ... = (| | (if © = k then (if List.member ks i then 1 else bot) else bot)
 (if List.member ks k N List.member ls j then f (k.j) else bot))
by (auto intro: sup-monoid.sum.cong)
also have ... = (|| if i = k then (if List.member ks i then 1 else bot) x (if
List.member ks i A List.member s j then f (i,j) else bot) else bot)
by (rule sup-monoid.sum.cong) simp-all

also have ... = (if List.member ks i then 1 else bot) * (if List.member ks i A
List.member ls j then f (i,j) else bot)
by simp
also have ... = (if List.member ks i A List.member ls j then f (i,j) else bot)
by simp

117

also have ... = (ks(f)ls) (i,j)
by (simp add: restrict-matriz-def)
finally show (ks(%0)ks @ ks(f)ls) (i,5) = (ks(f)ls) (i,5)

qged
The following lemmas consider restrictions to singleton index sets.

lemma restrict-singleton:

(KINM) (4g) = (if i = k A j = Lthen f (i.j) else bot)
by (simp add: restrict-matriz-def List.member-def)

lemma restrict-singleton-list:
([K){f)1s) (i,5) = (if i = k A List.member s j then f (i,j) else bot)
by (simp add: restrict-matriz-def List.member-def)

lemma restrict-list-singleton:
(ks(H)[1]) (i,4) = (if List.member ks i A j = I then f (i,j) else bot)
by (simp add: restrict-matriz-def List.member-def)

lemma restrict-singleton-product:
fixes f g :: ('a::finite,’b::kleene-algebra) square
shows ([E|(f)[I] © [m[{(g)[n]) (i) = (if i =k Al=mAj=nthenf (il)*g
(m,j) else bot)
proof —
have ()] © [ml()n]) (i) = (Un (KAL) (.0) * (m)ig)[a]) ()
by (simp add: times-matriz-def)
also have ... = (| |n (if i =k A h =l then f (i,h) else bot) x (if h=m A j=mn
then g (h,j) else bot))
by (simp add: restrict-singleton)
also have ... = (| | if h = [then (if i = k then f (i,h) else bot) = (if h = m A j
= n then g (h,j) else bot) else bot)
by (rule sup-monoid.sum.cong) auto

also have ... = (if i = k then f (i,]) else bot) * (if | = m A j = n then g (1,5)
else bot)
by simp
also have ... = (if i =k ANl =m A j= nthen f (i) x g (m,j) else bot)
by simp

finally show ?thesis

qged

The Kleene star unfold law holds for matrices with a single entry on the
diagonal.

lemma restrict-star-unfold:

[J{(mone::('a::finite,'b::kleene-algebra) square))[l] @ [J{f)[]] @ [[]{star o f)[]] =
[[[{star o f)]I]
proof (rule ext, rule prod-cases)

let 20 = mone:('a,’b::kleene-algebra) square

fix ij

118

have ([1}{%0)[1] & [()1] ® [[(star o A (i) = (14Zo) 1) (i) U (A1 ©
istar o D) (i)
by (simp add: sup-matriz-def)
also have ... = ([[[{?0)[l]) (i) U (Ux (LKNH) (k) * ([U(star o f)[1]) (K.7))
by (simp add: times-matriz-def)
also have ... = ([{|(?0)[1]) (i,j) U (Uk (if i = L A k = 1 then f (i,k) else bot) *
(if k=1Nj=1lthen (f (kj))* else bot))
by (simp add: restrict-singleton o-def)
also have ... = ([{|{?0)[1]) (4,) U (| |x if & = I then (if i = I then f (i,k) else
bot) = (if j = 1 then (f (k,j))* else bot) else bot)
apply (rule arg-cong2[where f=sup])
apply simp
by (rule sup-monoid.sum.cong) auto
also have ... = ([{|(?0)[1]) (4,j) U (if i = [then f (i,]) else bot) * (if j = I then
(f (1,4))* else bot)
by simp
also have ... = (if i =1 A j=1lthen 1 U f (I,I) x (f (I,1))* else bot)
by (simp add: restrict-singleton one-matriz-def)
also have ... = (if i = I A j = L then (f (1,1))* else bot)
by (simp add: star-left-unfold-equal)
also have ... = ([{|(star o f)[I]) (4,j)
by (simp add: restrict-singleton o-def)
finally show ([{%0)[1] & [J(/)[1] ® [[{star o)I)) (i) = ({(star o NI (i)

qed

lemma restrict-all:
enum-class.enum(f) enum-class.enum = f
by (simp add: restrict-matriz-def List.member-def enum-UNIV)

The following shows the various components of a matrix product. It is
essentially a recursive implementation of the product.

lemma restrict-nonempty-product:
fixes f g :: ('a::finite,’b::idempotent-semiring) square
assumes — List.member Is [
shows (kths)(f) (Ltls) © (I4tls) (g) (meems) = (1A © []
© Is(g)[m]) ® (KNI © [[{g)ms & [k](f)ls © Is(g)ms) & (ks(f
k’5<f>lf§~ © Is(g)[m]) & (ks(f)[l] © [){g)ms & ks(f)ls © Is(g)ms)
proof —
have (k#tks) (f)(1ls) © (Lls)(g) (mtms) = (BRI @ [K()is & ks(N)[l] &
ks(f)is) © ([1(g)[m] & [{g)ms & Is(g)[m] & Is(g)ms)
by (metis restrict-nonempty)
also have ... = [K[(f)[I] © ([l}(g)[m] [[](g)ms & Is(g)[m] & ls(g)m
© ([I{g)[m] & [[[{g)ms & Is(g)[m] & Is(g)ms) & ks(f)[I] © ([[]{g)[m] & [l}(g >
@ Is(g)[m] @ ls(g)ms) & ks(f)ls © ([[J(g)[m] ® [[{g)ms & Is(g)[m] & I
by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
{]]<)

{g)[m } [1;} {f)ls

I

2
N
2]
E
—
~
=
&

also have ... = ([K|(f)[]] © [|(g)[m] &] © [li(g)ms & [© Is
& A © ts(gyms) © (H(7)is © [(g)lm] B K © [{g)ms © [k]<f>
Is(g)[m] @ [k]{f)ls © ls(g)ms) ® (ks(N)[I] © [I[{g)[m] ® ks(f)[I] © [l]{g)ms ®

119

ks © Islg)m] & ks(f)11] © Is(g)yms) © (ks(fis © [1)(g)[m] @ ksif)ls ®
){gyms & ks(f)is © Is(g)m] & ks(f)ls © Is(g)ms)
by (simp add: matriz-idempotent-semiring. mult-left-dist-sup)
also have ... = ([K[(/)[l] © [I[{g)[m] & [K[(/)[I] © [[|{g)ms) & ([K](f)Is ©
Is(g)[m] & [k](f)Is © Is(g)ms) & (ks(f)[I] © [[[{g)[m] ® ks(N)[I] © [l](g)ms) &
(ks(f)ls © Is(g)[m] @ ks(f)ls © ls(g)ms)
using assms by (simp add: List.member-def times-disjoint)
also have ... = ([£](/)[l] © [[[{g)[m] © [K]{f)Is © Is(g)[m]) & ([E}{N)[I] ©
[[[{g)ms & [K](f)Is © Is(g)ms) & (ks(f)[l] © [[[{g)[m] & ks(f)ls © Is(g)[m]) &
(ks(H)[l] © [[){g)ms & ks(f)ls © Is(g)ms)
by (simp add: matriz-bounded-semilattice-sup-bot.sup-monoid.add-assoc
matriz-semilattice-sup. sup-left-commute)
finally show ?thesis

qed
Equality of matrices is componentwise.

lemma restrict-nonempty-eq:
(k##tks) (f) (Igtls) = (k#ks)(g) (I3tls) «— KO = [KI(g)[l) A [KI{F)ls = [k](g)ls
A ks({}[l} = ks(g)[I] N ks{f)ls = ks(g)ls
proo
assume 1: (k#ks)(f)(I#ls) = (k#ks)(g)(I1#ls)
have 2: is-sublist [k] (k#ks) A is-sublist ks (k#ks) A is-sublist [I] (I#1s) A
is-sublist ls (I#ls)
by (simp add: member-rec)
hence [K](f)[1] = []((k#ks) (1) (1)1 A (K () = [K((ksths) () (1)) s A
ks(F) (1] = ks{(Aths) P I A k(s = ks((ksths) (7) (1#t1s)) s
by (simp add: restrict-sublist)
kt<h;1ls (KO = TR 1] A [ls = [k(g)ls A ks(f)II] = ks(g)[I] A ks(f)ls =
flsing 1 2 by (simp add: restrict-sublist)
next

assume 3: [K|(f)[I] = [K[(g)[I] A [K](f)ls = [kI{(g)ls A ks(F)[I] = ks(g)[I] A ks(f)ls

= ks(g)ls
show (ks (/) (441s) = (K4tks) (g) (14ls)
proof (rule ext, rule prod-cases)
fix ij
have 4: f (k,0) = g (k)
using 3 by (metis restrict-singleton)
have 5: List.member ls j = f (k,j) = g (k,j)
using 3 by (metis restrict-singleton-list)
have 6: List.member ks i = f (i,1) = g (4,)
using 3 by (metis restrict-list-singleton)
have (ks(f)ls) (i.j) = (ks(g)ls) (i.j)
using 3 by simp
hence 7: List.member ks i = List.member ls j = f (i,j) = g (i,j)
by (simp add: restrict-matriz-def)
have ((k#ks)(f)(I#ls)) (i,7) = (if (i = k V List.member ks i) A (j =1V
List.member Is j) then f (i,) else bot)

120

by (simp add: restrict-matriz-def List.member-def)
also have ... = (if i = k A j = lthen f (i,j) else if i = k A List.member ls j
then f (4,j) else if List.member ks i A j = [then f (i,j) else if List.member ks i N
List.member ls j then f (i,j) else bot)
by auto
also have ... = (if i = k A j = lthen g (i,j) else if i = k A List.member s j
then g (i,j) else if List.member ks i A j = [then g (i,j) else if List. member ks i A
List.member ls j then g (i,j) else bot)
using 4 5 6 7 by simp

also have ... = (if (i = k V List.member ks i) A (j = 1 V List.member ls j)
then g (i,j) else bot)
by auto

also have ... = ((k#ks)(g)(I#ls)) (4,5)
by (simp add: restrict-matriz-def List.member-def)

finally show ((k#ks)(f)(I#1s)) (i.j) = ((k#ks){g)(I##1s)) (4.4)

qed
qed

Inequality of matrices is componentwise.

lemma restrict-nonempty-less-eq:

fixes f g :: ('a,’b::idempotent-semiring) square

shows (k#ks)(f)(I#ls) = (k#ks)(g)(l#1s) «— [KI(/)[I] = [K()[1] A [R)(f)ls =<
[K){g)ls N ks(F)[I] = ks{(g)[I] A ks(f)ls = ks(g)ls

by (unfold matriz-semilattice-sup.sup.order-iff) (metis (no-types, lifting)
restrict-nonempty-eq restrict-sup)

The following lemmas treat repeated restrictions to disjoint index sets.

lemma restrict-disjoint-left:
assumes disjoint ks ms
shows ms(ks(f)ls)ns = mbot
proof (rule ext, rule prod-cases)
fix ij
have (ms(ks(f)ls)ns) (i,7) = (if List.member ms i A List.member ns j then if
List.member ks i A List.member s j then f (i,j) else bot else bot)
by (simp add: restrict-matriz-def)
thus (ms(ks(f)ls)ns) (i,j) = mbot (i,j)
using assms by (simp add: bot-matriz-def)
qged

lemma restrict-disjoint-right:
assumes disjoint ls ns
shows ms{ks(f)ls)ns = mbot
proof (rule ext, rule prod-cases)
fix ij
have (ms(ks(f)lsyns) (i,j) = (if List.member ms i A List.member ns j then if
List.member ks i A List.member ls j then f (i,j) else bot else bot)
by (simp add: restrict-matriz-def)
thus (ms(ks(f)ls)ns) (i,j) = mbot (i,§)

121

using assms by (simp add: bot-matriz-def)
qed

The following lemma expresses the equality of a matrix and a product
of two matrices componentwise.

lemma restrict-nonempty-product-eq:
fixes f g h :: (‘a::finite,'b::idempotent-semiring) square
assumes — List.member ks k
and — List.member ls [
and — List. member ms m
shows (k#ks)(f)(I#ls) © (I#1s)(g)(m#tms) = (k#ks)(h)(m#ms) «—
(KO © [I{g)Im] @ [k]{(f)ls © Is(g)[m] = [K](h)[m] A [E](H)[I] © [I](g)ms &
[K]{f)ls © Is(g)ms = [k|(h)yms N ks(f)[I] © [l (g)[m] & ks(f)ls © Is(g)[m] =
ks(h)[m] A ks(f)[]] © [l]{g)ms & ks(f)ls © ls(g)ms = ks(h)ms
proof —
have 1: disjoint [k] ks A disjoint [m] ms
by (simp add: assms(1,3) member-rec)
have 2: (k] ((k#ths) () (I#ls) © (1#t1s)(g) (meems)) [m] = [K(F)[1) © [0(g)[m] &
[K(f)is © is{g)lm)
proof —
have [k|((k#ks)(f)(I#1s
& [kl(f)ls © Is(g)[m]) & ([k
[1l{g)[m] & ks(f)ls © Is(g >([

by (simp add: as

9)(matms))[m] = [K[(([k]{H)[] © [[{g)[m]
(1] © [l[{g)ms & [K](f)ls © ls(g)ms) & (ks(f)[I] ©
(1] © [l){g)ms & ks(f)ls © ls(g)ms))[m]
2) restrict-nonempty-product)
also have ... = [k[([k J{g)[m])[| & [K([K](f)ls © Is(g)[m]
[EK[EJCA 1 © [l {g)ms)[m] [E[E](F)ls © Is(g)yms)[m] & [K](ks(f)[l] ©
[{g)[m])[m] & [K](ks(f)ls © Is(g)[m])[m] & [k](ks(f)[I] © [l](g)ms)[m]
[[{ks(f)ls © ls(g)ms)[m]
by (simp add: matriz-bounded-semilattice-sup-bot.sup-monoid.add-assoc
restrict-sup)
also have ... = [k[(f)[I] © [l[[{g)[m] ® [k](f)Is © Is(g)[m] & [K]([K]([K](/)[l] ©
[[](g)ms)ms)[m] & [K|([K]([F](f)ls © ls(g)ms)ms)[m] & [k](ks(ks(f)]!
[(g)[m])[m])[m] & [K](ks(ks(f)ls © Is(g)[m]}[m])[m] & [k]{ks(ks(f)]
[{ghmsms)[m] @ [](ks(ks()s © Is(gyms)ms)[m]
by (simp add: restrict-times)
also have ... = [K(/)[1] © [Il{g)[m] @ [K(/)is © is{g)[m]
using 1 by (metis restrict-disjoint-left restrict-disjoint-right
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-right)
finally show ?thesis

)m] ©

2]

!
ms)
m]

qe(i
have 3: [k[((k#ks)(f)(I#ls) © (I#£1s)(g)(m#ms))ms = [E[(f)[I] © [[[{g)ms &
[K(f)ls © ls(g)ms

proof —

have [k]((k#ks)(f) (I#ls) © (I#1s)(g)(m#ms))ms = [E{([K](f)[1] © [[}{g)[m] &
[K]{F)ls © Is(g)[m]) & ([KI(NH[I] © [l(g)ms & [K](f)ls © Is(g)ms) & (ks(f)[l] ©
[1[{g)[m] ® ks(f)ls © Is(g)[m]) & (ks(f)[]] © [I(g)ms @ ks(f)ls © Is(g)ms))ms
by (simp add: assms(2) restrict-nonempty-product)
)

also have ... = [K[([K](/)[I] © [[[{g)[m])ms © [KI([k](f)Is © Is(g)[m])ms &

122

(KRNI © [I{g)ms)ms @ [K([K](f)Is © ls(g)ms)ms & [k]{ks(f)[I] ©
[]<g><[m]yms @ [k](ks(f)ls © Is(g)[m]yms @ [K|(ks(N)[I] © [l)(g)ms)ms @ [k](ks(f)Is

Is(g)ms)ms
by (szmp add: matriz-bounded-semilattice-sup-bot.sup-monoid.add-assoc

restrict-sup)
also have ... = [K}{[K]([K](/)[1] ® [1{g)[m]
Is{gm])[ml)yms @ (K[© [{g)ms @ [H](
[[[{g)[m])[m]yms & [K](ks(ks(f)ls © Is(g)[m])
[[[{g)ms)ms)yms & [k](ks(ks(f)ls © Is(g)m
by (simp add: restrict-times)
also have ... = [K|{(f)[l] © [[[{g)ms @ [k](f)Is @ Is(g)ms
using I by (metis restrict-disjoint-left restrict-disjoint-right
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-right
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-left)
finally show ?thesis

qe(i
have /: ks((k#ks)(f)(I#1s) © (I#ls){g)(m#tms))[m] = ks(f)[I] © [l](g)[m] &
k8<f>15f® 1s(g)[m]
proof —
have ks((k#ks)(f)(l#ls) © (I#tls)(g)(m#tms))[m] = ks(([K[(/)[I] © [I[{g)[m] &
| © [l{g)ms & [k1<f>ls © ls(g)ms) & (ks(f)

[K](f)ls © Is(g)[m]) & ([k](F)[!] ©
[(g)[m] & ks(f)ls © Is(g)[m]) & (ks(f)[l] © [I[{g)ms & ks(f)ls © ls(g)ms))[m]
by (simp add: assms(2) restrict-nonempty-product)
also have ... = ks([k[(f)[]] © [I[(g)[m])[m] & ks([k](f)ls © s(g)[m])[m] &

1o [l
ks([K)(N)11) © [I]{g)ms)[m] & ks([k](f)Is © ls
[[{g)[m])[m] & ks(ks(f)ls © ls(g)[m])[m]
© ls(g)ms)[m]

by (simp add: matriz-bounded-semilattice-sup-bot.sup-monoid.add-assoc

restrict-sup)
also have ... = ks([K[([k](£)[I] © [[](g)[m])[m])[m] & ks([k]([K](f)Is ©
ls(g)[m])[m])[m] & ks([K[{[K](F)[I] © [I](g)ms)ms)[m] @ ks([k([K](f)ls ©
Is{ghmshms)[m] ® ks(F)[l] © [{g)[m] ® ks(f)ls © Is(g)m] @ ks(ks{ks(f)[l] ©
[){g)ms)ms)[m] & ks{ks(ks(f)ls © is{g)ms)ms)[m]
by (simp add: restrict-times)
also have ... = ks{(f)[I] ® [[]{g)[m] @ ks(f)is © Is{g)[m)]
using 1 by (metis restrict-disjoint-left restrict-disjoint-right
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-right
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-left)

finally show ?thesis

I
(gyms)[m] © ks(ks(
© ks(ks(f)[l] © [l]{g)m

ged
have 5: ks{(k#ths) (1) (i#tls) © (1#tls)(g) (mems)yms = ks(F)[l] © (1) (gyms @
ks(f)lsf@ Is(g)yms
proof —
have ks((k#ks)(f)(I#1s) © (I#ls)(g)(m#ms))ms = ks(([k](f >[] [11{g)[m] ®
[K(f)ls © Is(g)[m]) © (KN © [U(g)ms ® [Kl(f)ls © Is(g)ms) @ (ks(f)[I] ©

[l
[[l{g)[m] & ks(f)ls © ls(g)[m]) & (ks(H[I] © [[l{g)ms & ks(f)ls © ls(g)ms))ms
by (simp add: assms(2) restrict-nonempty-product)

123

also have ... = ks([k](f)[I] ® [{]{g)[m])ms & ks([k]{f)ls © ls(g)[m])ms B
ks((K(F) 1) © [{g)ms)ms & ks([K](f)is © s(g)ms)yms & ks(ks(P[I © [1(g)[m]yms
@ ks(ks(f)ls © Is(g)[m])ms & ks(ks(f)[I] @ [[]{g)ms)ms & ks{ks(f)ls ® ls{g)ms)ms

by (simp add: matriz-bounded-semilattice-sup-bot.sup-monoid.add-assoc
restrict-sup)

also have ... = ks([K|([K](/)[I] © [[](g)[m])[m])ms & ks([k]([K](f)ls ©
o)l nlyms © kRN © [ghmspmstins © (s ©
Is{ghmsyms)ms @ ks(ks(ks(f}{1] © [I1{g)[m])[ml}ms @ ks(ks(ks(f)is
Is(g)[m])[m])yms & ks(f)[I] © [l](g)ms & ks(f)ls © ls(g)ms

by (simp add: restrict-times)

also have ... = ks(f)[1] @ [[](g)ms & ks{f)ls © ls(g)ms

using I by (metis restrict-disjoint-left restrict-disjoint-right
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-left)

finally show ?thesis

qged
have (ktks) () (Lls) © (141s)(g) (mtms) = (kths)(h)(mtms)
(hiehs) (sths)) (t1s) ® (14Els)) (mems))(mittms) = (keeks) (b) (mdtms)
by (simp add: restrict-times)
also have ... «— [k]((k#ks)(f)(I#ls) © (I#1s)(g)(m#ms))[m] = [k](h)[m] A
[R){(Aths)) (21s) © (1A1s) (g)(matms)yms = [k](byms A ks((kdcks) () (14tls) ©
(lil?)é;@(m#m@ﬂm} = ks(h)[m] A ks((k#ks)(f)(I#1s) © (I#ls){g)(m#ms))ms
by (meson restrict-nonempty-eq)
also have ... «+— [E](H[]] ® [1]{(g)[m
(KO © [ll{gyms & [K](f)Is © Is(g)m
ks()ls © Is(g)m] = ks(h}om] A k()1
using 2 3 4 5 by simp
finally show ?thesis
by simp
qed

The following lemma gives a componentwise characterisation of the in-
equality of a matrix and a product of two matrices.

lemma restrict-nonempty-product-less-eq:
fixes f g h :: (‘a::finite,'b::idempotent-semiring) square
assumes — List.member ks k
and — List.member Is [
and — List.member ms m

shows (k#ks)(f)(I#ls) © (I#1s)(g)(m#tms) = (kdtks)(h)(mtms)
(KO © [l{g)Im] @ [K]{f)ls © Is(g)[m] = [K](h)[m] A [K](H[I] © [I]{g)ms &
[K(f)ls © ls(g)yms = [K](h)yms A ks(f)[I] © [l (g)[m] & ks(f)ls © Is(g)[m] =
ks(h)[fm] A ks(HT © [I[{g)yms @ ks(f)ls © Is(g)yms < ks(h)ms
proof —

have 1: [K]((k#ks)(f)(I#1s) © (I#1s){g) (m#ms))[m] = [F|(/)[l] © [Ul(g)[m] &
[K(f)ls © ls(g)[m]

by (metis assms restrict-nonempty-product-eq restrict-times)
have 2: [k|((k#tks)(f) (I£ls) © (131s){g)(m#tms))ms = [K]()[I] © [U)(g)ms ®
[K(f)ls © Is(g)ms

124

by (metis assms restrict-nonempty-product-eq restrict-times)
have 3: ks((k#ks) (f) (#1s) © (1415){g) (m#tms))[m] = ks(F)[1] © [{g)[m] &
ks(f)ls © ls(g)[m]
by (metis assms restrict-nonempty-product-eq restrict-times)
have 4: ks((k#ks) (f) (#1s) © (115){g) (m#tms))yms = ks(f)[]] © [[{g)ms &
ks(f)ls ® ls{g)ms
by (metis assms restrict-nonempty-product-eq restrict-times)
have (k#ks)(f)(I#ls) © (I3#ls){g)(m#tms) = (k#tks)(h)(mAms) «—
(k#tks)((k#ks) (f) (I#ls) © (I##1s)(g) (m#tms))(m#tms) 2 (k#ks)(h)(m# ms)
by (simp add: restrict-times)
also have ... «— [k[((k#ks)(f)(I#ls) © (I#£1s)(g)(m#tms))[m] < [k](h)[m] A
(K] ((keks) () (11s) © (115){g) (mettms)yms < [K](hyms A ks((k#ks) () (I#ls) ©
(l#;ls<)}§> g)(mettms))[m] = ks(h)[m] A ks{(k#tks) () (I#1s) © (1#1s)(g) (mdtms))ms
by (meson restrict-nonempty-less-eq)

also have ... «— [K|(f)[]] © [[)(g)[m] @ [K]{f)ls © Is(g)[m] = [K](h)[m] A
(KNI © [Ug)yms @ [K]{f)ls © Is(g)ms < [k[(hyms A ks(f)[[] © [[[{g)[m] @
ks(f)ls © Is(g)[m] = ks(h)[m] A ks(f)[l] ® [l]{g)ms @ ks{f)ls © Is(g)ms =< ks(h)yms

using 1 2 3 4 by simp
finally show ?thesis
by simp
qged

The Kleene star induction laws hold for matrices with a single entry on
the diagonal. The matrix g can actually contain a whole row/colum at the
appropriate index.

lemma restrict-star-left-induct:
fixes f g :: ('a::finite,’b::kleene-algebra) square
shows distinct ms = [[|{f)[]] ® [[]{g)ms = [l]{g)ms = [I|{star o f)[I] ©
[[]{g)ms = [I](g)ms
proof (induct ms)
case Nil thus ?case
by (simp add: restrict-empty-right)
next
case (Cons m ms)
assume 1: distinct ms = [IJ(/)[I]] © [{]{(g)ms = [{|{g)ms = [[]{(star o f)[I] ®
[ll{g)ms = [l]{g)ms
assume 2: distinct (m#ms)
assume 3: [I(1)[]] ® [I1{g) (m#ms) < [I(g)(mtms)
have 4: [I|(f)[I] © [[[{g)[m] = [{g)[m] A [IXN)I] © [l](g)ms = [I]{g)ms
using 2 3 by (metis distinct.simps(2) matriz-semilattice-sup.sup.bounded-iff
member-def member-rec(2) restrict-nonempty-product-less-eq)
hence 5: [{|(star o f)[I] ® [l](g)ms = [{]{g)ms
using 1 2 by simp
have f (1,0) * g (I,m) < g (I,m)
using 4 by (metis restrict-singleton-product restrict-singleton
less-eq-matriz-def)
hence 6: (f (I,L1))* = g (I,m) < g (I,m)
by (simp add: star-left-induct-mult)

125

have [[)(star o f)[l] © [l(g)(m] < [(g){m]
proof (unfold less-eqg-matriz-def, rule alll, rule prod-cases)
fix ¢ j
have ([l](star o f)[I] © [I|{g)[m]) (i.5) = (LI» ([(star o H[I]) (i,k) *
(g [m]) (k.5))
by (simp add: times-matriz-def)
also have ... = (| (if i = I A k =l then (f (i,k))* else bot) x (if k =1 A j
= m then g (k,j) else bot))
by (simp add: restrict-singleton o-def)
also have ... = (|| if k = [then (if i = L then (f (i,k))* else bot) * (if j = m
then g (k,j) else bot) else bot)
by (rule sup-monoid.sum.cong) auto

also have ... = (if i = [then (f (4,1))* else bot) x (if 1 = m then g (1,j) else
bot)
by simp
also have ... = (if i = I A j = m then (f (1,1))* * g (I,m) else bot)
by simp

also have ... < ([l](g)[m]) (¢,j)
using 6 by (simp add: restrict-singleton)
finally show ([l|(star o f)[I] © [I[{g)[m]) (i.j) < ([[}{g)[m]) (i.4)

qed
thus [[(star o /)] © [[{g)(m#ms) = [1)(g) (mAms)
using 2 5 by (metis (no-types, opaque-lifting)
matriz-idempotent-semiring. mult-left-dist-sup matriz-semilattice-sup.sup.mono
restrict-nonempty-right)
qged

lemma restrict-star-right-induct:
fixes f g :: (‘a::finite,'b::kleene-algebra) square
shows distinct ms = ms(g)[l] @ [J{H[]] = ms(g)[]] = ms(g)[l] ® [l](star o
11l = ms(g)l]
proof (induct ms)
case Nil thus ?case
by (simp add: restrict-empty-left)
next
case (Cons m ms)
assume 1: distinct ms = ms(g)[l] © [IJ{(f)[l] 2 ms(g)[l]| = ms(g)[l]] © [I|{star
o H)I] < mslg)[l
assume 2: distinct (m#ms)
assume 3: (m#tms)(g)[l] © [I(/)[I] 2 (m#ms){g)[l]
have 4: [m](g)[]] © [N = [m[{g)[l] A ms(g)[l] © [HI] = ms{g)[l]
using 2 3 by (metis distinct.simps(2) matriz-semilattice-sup.sup.bounded-iff
member-def member-rec(2) restrict-nonempty-product-less-eq)
hence 5: ms(g)[l] © [{|(star o f)[I] = ms(g)[!]
using 7 2 by simp
have g (m,l) = f (1,I) < g (m,l)
using 4 by (metis restrict-singleton-product restrict-singleton
less-eq-matriz-def)

126

hence 6: g (m,l) x (f (L,)))* < g (m,])
by (simp add: star-right-induct-mult)
have [m](g)[l] © [I](star o f)[I] = [m]{g)[l]
proof (unfold less-eq-matriz-def, rule alll, rule prod-cases)
fix ij
have ([m]{g)[l] © [[|(star o f)[I]) (i.j) = (Ux ([m[{g)[l]) (i,k) * ([[](star o
) (k)
by (simp add: times-matriz-def)
also have ... = (| | (if i = m A k = [then g (4,k) else bot) x (if k=1 AN j=
I then (f (k.j))* else bot))
by (simp add: restrict-singleton o-def)
also have ... = (| |, if k = [then (if i = m then g (i,k) else bot) = (if j =1
then (f (k,j))* else bot) else bot)
by (rule sup-monoid.sum.cong) auto

also have ... = (if i = m then g (4,]) else bot) = (if j = 1 then (f (1,))* else
bot)
by simp
also have ... = (if i = m A j = [then g (m,l) * (f (1,]))* else bot)
by simp

also have ... < ([m](g)[l]) (i.j)
using 6 by (simp add: restrict-singleton)
(Im](g

finally show ([m|(g)[] © [l|(star o f)[I]) (i.j) < ([m[{g)[l]) (i.5)

qed
thus (m#ms)(g)[l] © [[|(star o f)[I] = (m#ms)(g)[I]
using 2 5 by (metis (no-types, opaque-lifting)
matriz-idempotent-semiring. mult-right-dist-sup matriz-semilattice-sup.sup.mono
restrict-nonempty-left)
qed

lemma restrict-pp:
fixes f :: ('a,’b::p-algebra) square
shows ks(oof)is = ao(ks(f)ls)
by (unfold restrict-matriz-def uminus-matriz-def) auto

lemma pp-star-commute:
fixes f :: ('a,’b::stone-kleene-relation-algebra) square
shows ©6(star o f) = star 0 ©6f
by (simp add: uminus-matriz-def o-def pp-dist-star)

6.2 Matrices form a Kleene Algebra

Matrices over Kleene algebras form a Kleene algebra using Conway’s con-
struction. It remains to prove one unfold and two induction axioms of the
Kleene star. Each proof is by induction over the size of the matrix repre-
sented by an index list.

interpretation matriz-kleene-algebra: kleene-algebra-var where sup =

sup-matriz and less-eq = less-eq-matriz and less = less-matriz and bot =
bot-matrix::('a::enum,’b::kleene-algebra) square and one = one-matriz and times

127

= times-matriz and star = star-matric
proof

fix y 2 (‘a,’d) square

let ?e = enum-class.enum::'a list

let 20 = mone :: ('a,’b) square

have Vg :: ('a,’d) square . distinct %e — (?e{%0)%e @ %e(g)%e @ star-matriz’
%e g) = (star-matriz’ %e g)

proof (induct rule: list.induct)

case Nil thus ?case
by (simp add: restrict-empty-left)

next
case (Cons k s)
let 2t = k#s

assume 1: Vg :: ('a,’d) square . distinct s — (s(?0)s @ s(g)s © star-matriz’
s g) = (star-matriz’ s g)
show Vg :: (‘a,’b) square . distinct 2t — (?t(%0)?t @ ?t(g)?t © star-matriz’
2t g) = (star-matriz’ 2t g)
proof (rule alll, rule impl)
fix g :: (‘a,’d) square
assume 2: distinct 7t
let 7r = [k]
let %a = ?r{g)?r
let b = 2r(g)s
let ?c = s(g)?r
let 2d = s(g)s
let %as = ?r{star o ?a)?r
let ?ds = star-matriz’ s 2d
let e = 20 @& %0 © %ds © ?c
let %es = 2r(star o %e)?r
let of = 2d ® %c © %as ©® %b
let ?fs = star-matriz’ s ?f
have s(%ds)s = 2ds N s(?fs)s = ?fs
by (simp add: restrict-star)
hence 3: ?r(%e)?r = %e A s(?f)s = ?f
by (metis (no-types, lifting) restrict-one-left-unit restrict-sup restrict-times)
have 4: disjoint s ?r N disjoint ?r s
using 2 by (simp add: in-set-member member-rec)
hence 5: 7t(%0)?t = ?r(?0)?r @ s(?0)s
by (meson member-rec(1) restrict-one)
have 6: ?t(g)?t © %es = %04 © %es © %c © Zes
proof —
have ?t(g)?t © %es = (%a @ ?b @ ?c @ ?d) © Pes
by (metis restrict-nonempty)

also have ... = 20 © %es ® 20 © %es @ 2c © Zes ® ?d © Pes
by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
also have ... = %0 © %es ® %c ©® Zes

using 4 by (simp add: times-disjoint)
finally show ?thesis

128

qed
have 7: 7t(g)?t © %as ©® 90 © ?fs = %4 © %as © b © ?fs ® ?c © %as © ?b
© fs
proof —
have ?2i{(g)?t ® %as ® b © ?fs= (a4 ® ?b® ?2c ® 2d) ® %as ©® 2b © 9fs
by (metis restrict-nonempty)
also have ... = 20 ©® 2as © 20 © fs ® 20 ©® %as ©® 20 ©® ?fs & ?c ©® ?as
OO %D ?2d0O %as © b O fs
by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
also have ... = 24 ©® %as © 20 ® ?fs ® 2c © %as ©® 2b © ?fs
using 4 by (simp add: times-disjoint)
finally show ?thesis

qed
have 8: 7t(g)7t © 2ds ® %c © Zes =20 ® 2ds ® %c © Pes ® ?d ® %ds © %c
® Zes
proof —
have 7t(g)?t © 2ds ©® 2c © %es = (Pa ® 26 ® 2c ® 2d) © 9ds © ¢ © Pes
by (metis restrict-nonempty)
also have ... = 20 ® 2ds ® 7¢ ® %es ® 20 © 2ds ©® %c © %es ® %c © %ds
© % ® %es® ?d© ?ds ©® %c © Pes
by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
also have ... = 20 © 2ds ® ?¢ ® %es @ 2d © ?ds ® ?c ® Pes
using 4 by (metis (no-types, lifting) times-disjoint
matriz-idempotent-semiring. mult-left-zero restrict-star
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-right
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-left)
finally show ?thesis

qed
have 9: ?t(g)?t © ?fs = 20 © ?fs ® 2d © ?fs
proof —
have ?t(g)?t © ?fs = (%a ® 20 ® %c ® ?d) © ?fs
by (metis restrict-nonempty)

also have ... = 204 © s ® 20 © ?fs ® ¢ © ?fs ® 2d © ?fs
by (simp add: matriz-idempotent-semiring.mult-right-dist-sup)
also have ... = 20 © ?fs ® 2d ©® ?fs

using 4 by (metis (no-types, lifting) times-disjoint restrict-star
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-right
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-left)
finally show ?thesis

qed
have ?t(20) %t ® ?2t(g) %t ® star-matriz’ ?t g = 76(20) 7t ® 7t(g)?t © (%es ®
Zas © b © ?fs @ ?ds © Pc © Pes @ ?fs)
by (metis star-matriz’.simps(2))
also have ... = 2¢(20) 7%t @ 2t(g) 7t © %es @ 2t(g) %t © %as © ?2b © fs @
2(g) 7t © 2ds © Pc © Pes ® 7t{g)?t © s
by (simp add: matriz-idempotent-semiring. mult-left-dist-sup

129

matriz-monoid.mult-assoc matriz-semilattice-sup. sup-assoc)
also have ... = 2r(20)?r ® s(%0)s ® 2a © %es ® 2c © Zes ® %a © %as © b
OB %2%c® %8O DO s B DO 2ds © ¢ © %es P d © %ds ©® Pc © Pes B
20O s ® %O s
using 5 6 7 8 9 by (simp add: matriz-semilattice-sup.sup.assoc)
also have ... = (?r(?0)%r © (%a © %es ® ?b © %ds © ?c © ?es)) & (%b ©
s @ %04 © %as © b O 2fs) ® (Pc © es ® 2d © 2ds © ¢ © %es) @ (s(?0)s ®
(2d © ?fs ® 2c © Zas © ?b © ?fs))
by (simp only: matriz-semilattice-sup.sup-assoc
matriz-semilattice-sup. sup-commute matriz-semilattice-sup.sup-left-commute)
also have ... = (?r(?0)%r @ (%a © %es ® ?b © %ds © %c © ?Zes)) ®
(2r(20)%1 © 26 © 2fs ® %a O %as © %0 © %fs) B (s(?0)s © 2c © Pes ® ?d © ?ds
© %c® %es) @ (s(?0)s ® (2d © ?fs @ %c © Zas © ?2b © 7fs))
by (simp add: restrict-one-left-unit)
also have ... = (?r{?0)%r © %e © %es) @ ((?r{?0)%r ® %a © %as) ® %b ©
2fs) @ ((s(?0)s @ ?d © 2ds) ® %c @ %es) @ (s(%0)s @ ?2f © 2fs)
by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
also have ... = (9r(?0)%r @ %2e © %es) ® ((?r(?0)%r ® %a © %as) ® %b ©
fs) @ ((s(?0)s ® ?d © 2ds) © %c © Pes) & ?fs
using 1 2 8 by (metis distinct.simps(2))
also have ... = (?r{?0)%r © %e © %es) @ ((?r{?0)%r ® %a © %as) ©® %b ©
2fs) @ (9ds © %¢ © %es) B s
using 1 2 by (metis (no-types, lifting) distinct.simps(2) restrict-superlist)

also have ... = %es @ ((?r(?0)%2r @ %a © %as) © ?b © ?fs) @ (%2ds © ¢ ©
Zes) @ 7fs
using 3 by (metis restrict-star-unfold)
also have ... = %es ® %as © 2b © 9fs @ 2ds © ¢ © %Pes ® s

by (metis (no-types, lifting) restrict-one-left-unit restrict-star-unfold
restrict-times)
also have ... = star-matriz’ 7t g
by (metis star-matriz’.simps(2))
finally show %t(%0)?t @ ?t(g)?t © star-matriz’ %t g = star-matriz’ 7t g

qed
qed
thus % @ y © y© < ¢©
by (simp add: enum-distinct restrict-all)
next
fix zy 2z :: ('a,’d) square
let ?e = enum-class.enum::’a list
have Vg h :: (‘a,’b) square . ¥ zs . distinct ?e A distinct zs — (?e{g)%e ®
Ze(h)zs <X Ze(h)zs — star-matriz’ ?e g © Ze(h)zs <X Ze(h)zs)
proof (induct rule: list.induct)
case Nil thus Zcase
by (simp add: restrict-empty-left)
case (Cons k s)
let %t = k+#s
assume 1: Vg h :: (‘a,’b) square . ¥ zs . distinct s A distinct zs — (s(g)s ©
s{h)zs =X s(h)zs — star-matriz’ s g © s(h)zs X s(h)zs)

130

show Vg h :: (‘a,’b) square . ¥ zs . distinct 7t A distinct zs — (?t(g) %t ©
2t(hyzs = 2t(h)zs — star-matriz’ 7t g © 2t(h)zs < 2t(h)zs)
proof (intro alll)
fix g b :: (‘a,’d) square
fix zs :: 'a list
show distinct 2t A distinct zs — (2¢{g) 9t ® ?t(h)zs < ?t(h)zs —>
star-matriz’ 7t g © 2t(h)zs = 2t{h)zs)
proof (cases zs)
case Nil thus ?thesis
by (metis restrict-empty-right restrict-star restrict-times)
next
case (Cons y ys)
assume 2: zs = y#ys
show distinct ?t N distinct zs — (2t{g) 2t © ?t(h)zs < ?t(h)zs —
star-matriz’ 7t g © ?t(hyzs <X 2t(h)zs)
proof (intro impl)
let 2y = [y]
assume 3: distinct 7t A\ distinct zs
hence 4: distinct s A distinct ys A = List. member s k N\ — List.member
ys y
using 2 by (simp add: List.member-def)
let ?r = [k]
let %a = ?r{g)%r
s

let 2b = 2r(g)
let ?c = s(g)?r
let ?d = s(g)s

let %as = ?r(star o %a)%r
let ?ds = star-matriz’ s 2d
let 7e = 20 @& %0 © %ds © 7c
let %es = ?r(star o ?e)r
let of = 2d ® %c ® %as © %b
let ?fs = star-matriz’ s ?f
let ?ha = 2r(h) %y
let ?hb = 2r(h)ys
let ?he = s(h) %y
let ?hd = s(h)ys
assume ?t(g) 7t © 2t(h)zs = ?t(h)zs
hence 5: %6 ©® 2ha @ 20 ® ?hc < %ha N\ %a © 2hb @ 2b © ?hd < 2hb A
2c® ha @ 2d © ?he =X ¢he A 2c © 2hb @ 2d © ?hd < ?hd
using 2 3 4 by (simp add: restrict-nonempty-product-less-eq)
have 6: s(?ds)s = 2ds N s{?fs)s = s
by (simp add: restrict-star)
hence 7: ?r(%e)%r = %e N s(?f)s = ?f
by (metis (no-types, lifting) restrict-one-left-unit restrict-sup
restrict-times)
have 8: disjoint s ?r N disjoint ?r s
using 3 by (simp add: in-set-member member-rec(1) member-rec(2))
have 9: %es © ?t(h)zs = %es © ?ha & Pes © Zhb
proof —

131

have %es ® 2t(h)zs = %es ® (%ha ® ?hd @& hc ® ?hd)
using 2 by (metis restrict-nonempty)

also have ... = %es ©® ?ha & %es ©® ?hb b %es © Zhe B %es © ?hd
by (simp add: matriz-idempotent-semiring.mult-left-dist-sup)
also have ... = %es ©® ?ha ® %es ©® ?hbd

using 8 by (simp add: times-disjoint)
finally show ?thesis

qed
have 10: ?as ® %0 © 9fs © ?t(h)zs = %as ©® ?b © ?fs ©® ?hc @ %as © ?b
© ?fs © ?hd
proof —
have %as ® ?b ® ?fs © ?t(hyzs = %as ©® ?b © 9fs ® (?ha ® ?hb & ?hc
@ ?hd)
using 2 by (metis restrict-nonempty)
also have ... = 2as ©® ?b © ?fs ©® %ha ® %as ® ?b © ?fs © ?hb @ Zas
O %O %s © ?he ® %as © 70 © ?fs © ?hd
by (simp add: matriz-idempotent-semiring. mult-left-dist-sup)
also have ... = %as ©® 20 © (?fs © ?ha) ® %as © 2b © (9fs © ?hd) ®
%as © 20 © ?fs © %he ® %as © b © Yfs © ?hd
by (simp add: matriz-monoid.mult-assoc)
also have ... = a5 ® 2b ® mbot @ %as ©® ?b ® mbot ® %as ©® ?b © ?fs
© %he ® Zas © 20 © ?fs © hd
using 6 8 by (metis (no-types) times-disjoint)
also have ... = %2as ©® 26 © ?fs ® %hc ® %as ® 7b © ?fs ©® ?hd
by simp
finally show ?thesis

qed
have 11: ?ds ©® ?c¢ ® %es ® ?t(hyzs = 2ds ® %c ® Pes ® ?ha & 2ds ® %c
© Zes © ?hb
proof —
have %ds ® %c ® %es ® ?t(h)zs = ?ds ® ?c ® %es ® (%ha ® ?hb & ?hc
@ %hd)
using 2 by (metis restrict-nonempty)
also have ... = 2ds ©® ¢ © %es ® ?ha ® %ds ©® %c ® %es ©® ?hb ® %ds
© % ® %es ® %he ® %ds ©® %¢ ® %es ® ?hd
by (simp add: matriz-idempotent-semiring. mult-left-dist-sup)
also have ... = 2ds ® ¢ ® %es ©® ?ha ® ?ds ©® ?c ® %es ©® ?hb B ?ds
© %c© (%es ©® %he) @ 2ds © 2¢ © (Yes © ?hd)
by (simp add: matriz-monoid.mult-assoc)
also have ... = %ds ©® ¢ © %es ® ?ha ® %ds ® %c ® %es ©® ?hb O %ds
® %c ® mbot @ ?ds ® ¢c © mbot
using 8 by (metis times-disjoint)
also have ... = 2ds ® ¢ ® %es ©® ?ha P ?ds ©® ?c ©® %es @ ?hb
by simp
finally show ?thesis

qed

132

have 12: ?fs ©® ?t(hyzs = 9fs © ?he & ?fs © %hd
proof —
have ?fs © %t(h)zs = fs © (?ha © ?hb & ?hc & ?hd)
using 2 by (metis restrict-nonempty)

also have ... = ?fs © ?ha ® ?fs © ?hb ® ?fs © ?hc @ ?fs ©® ?hd
by (simp add: matriz-idempotent-semiring. mult-left-dist-sup)
also have ... = 2fs ® %hc & ?fs ® ?hd

using 6 8 by (metis (no-types) times-disjoint
matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-left)
finally show ?thesis

qed
have 13: %es ©® ?ha < ?ha
proof —
have 20 © 2ds ® 2c ® ?ha < 20 ® ?ds ® ?hc
using 5 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < 20 ©® %hc
using 1 8 5 by (simp add:
matriz-idempotent-semiring. mult-right-isotone matriz-monoid.mult-assoc
member-rec(2) restrict-sublist)
also have ... < %ha
using 5 by simp
finally have ?e ©® %ha =< %ha
using 5 by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
thus ?thesis
using 7 by (simp add: restrict-star-left-induct)
qed
have 1/: ?es ® ?hb < ?hb
proof —
have 20 © 2ds ® 2¢ ® ?hb <X 2b ©® 2ds ® ?hd
using 5 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < 2b ©® ?hd
using 1 4 5 by (simp add:
matriz-idempotent-semiring. mult-right-isotone matriz-monoid.mult-assoc
restrict-sublist)
also have ... < ?hb
using 5 by simp
finally have ?e ©® ?hb < ?hb
using 5 by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
thus ?thesis
using / 7 by (simp add: restrict-star-left-induct)
qed
have 15: ?fs ® ?hc < ?hc
proof —
have %¢c ® %as ® 2b ® ?hc =< 2¢c ® %as ® “ha
using 5 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)

133

also have ... < ?c ® %ha
using 5 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc restrict-star-left-induct restrict-sublist)
also have ... < %he
using 5 by simp
finally have ?f ® ?hc X %hc
using 5 by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
thus ?thesis
using 1 3 7 by simp
qged
have 16: ?fs © ?hd < ?hd
proof —
have %¢c ® %as ® 2b ® ?hd < 2¢c ® 2as ©® ?hb
using 5 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < ?c ©® ?hb
using 4 5 by (simp add: matriz-idempotent-semiring. mult-right-isotone
matriz-monoid.mult-assoc restrict-star-left-induct restrict-sublist)
also have ... < %hd
using 5 by simp
finally have ?f ©® ?hd < ?hd
using 5 by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
thus ?thesis
using 1 4 7 by simp
qed
have 17: 2as ©® 20 ©® ?fs ©® ?hc = %ha
proof —
have %as ® 20 ©® 2fs ® ?hc < 2as ©® 2b © ?hc
using 15 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < %as ©® %ha
using 5 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < %ha
using 5 by (simp add: restrict-star-left-induct restrict-sublist)
finally show ?thesis

qed
have 18: %2as ® %0 ©® ?fs ©® ?hd < ?hb
proof —
have %as ©® %0 ©® 2fs ® ?hd < %as ©® ?b © ?hd
using 16 by (simp add: matriz-idempotent-semiring. mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < %as ® 2hb
using 5 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < 2hb
using / 5 by (simp add: restrict-star-left-induct restrict-sublist)
finally show ?thesis

134

qed
have 19: ?ds ® ¢ ©® %es ©® ?ha < ?hc
proof —
have 2ds ® ¢ ® %es ® %ha < %ds ©® %c ® “ha
using 138 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)
also have ... <X 2ds ©® %hc
using 5 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < ?hc
using 1 8 5 by (simp add: restrict-sublist)
finally show ?thesis

qed
have 20: ?ds ® 2c ©® %es ©® ?hb < ?hd
proof —
have 2ds ® 2¢c ® %es ® ?hb < 2ds ® ?c ® ?hb
using 14 by (simp add: matriz-idempotent-semiring.mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < 2ds ® ?hd
using 5 by (simp add: matriz-idempotent-semiring. mult-right-isotone
matriz-monoid.mult-assoc)
also have ... < 2hd
using 1 / 5 by (simp add: restrict-sublist)
finally show ?thesis

qed
have 21: ?es ® ?ha & %as ® ?b ® ?fs ® ?hc =X %ha
using 13 17 matriz-semilattice-sup.le-supl by blast
have 22: ?es ©® ?hb @ %as ©® 20 ® ?fs ©® ?hd < ?hb
using 14 18 matriz-semilattice-sup.le-supl by blast
have 23: 2ds ©® %c © %es ® ?ha @© ?fs © ?hc < %hc
using 15 19 matriz-semilattice-sup.le-supl by blast
have 2/: ?ds ® %c © %es © ?hb @ ?fs © ?hd < ?hd
using 16 20 matriz-semilattice-sup.le-supl by blast
have star-matriz’ 7t g © 2t(h)zs = (Pes ® %as © ?b © ?fs @ 2ds © ¢ ©
%es @ ?fs) © ?t(h)zs
by (metis star-matriz’.simps(2))
also have ... = Zes ® ?t(h)zs @ %as © b © fs ©® ?t(h)zs ® 2ds © ?c ©
Zes @ ?t(hyzs @ ?fs © ?t(h)zs
by (simp add: matriz-idempotent-semiring.mult-right-dist-sup)
also have ... = 2es ® %ha @ %es © ?hb @ %as ©® ?b ® 2fs ® ?he O Zas ©
200 s © ¢hd & ?ds © ¢ ©® Pes ©® ?ha ® ?ds ©® ¢ ©® Pes ® ?hb & ?fs © ?hc
P fs © ?hd
using 9 10 11 12 by (simp only: matriz-semilattice-sup.sup-assoc)
also have ... = (?es © %ha @ %as © ?2b © %fs © ?he) ® (Pes © ?hd @ fas
© %O %O %hd) & (%ds © ?c @ %es © ?ha & 2fs © %he) & (9ds © ¢ © Pes ©
?hb @ ?fs © ?hd)

135

by (simp only: matriz-semilattice-sup.sup-assoc
matriz-semilattice-sup.sup-commute matriz-semilattice-sup.sup-left-commute)
also have ... < %ha © ?hb ® ?hc © ?hd
using 21 22 23 24 matrixz-semilattice-sup.sup.mono by blast
also have ... = ?t(h)zs
using 2 by (metis restrict-nonempty)
finally show star-matriz’ ¢t ¢ © ?t(h)zs < 2t(h)zs

qed
qed
qed
qed
hence V zs . distinct zs — (y © Pe(z)zs < Ze(x)zs — y© © Pe(z)2s <
Ze(x)2s)
by (simp add: enum-distinct restrict-all)
thusy Oz <2z—1y° 0z =1
by (metis restrict-all enum-distinct)
next
fix x y z :: ('a,’d) square
let ?e = enum-class.enum::’a list
have Vg h :: (‘a,’b) square . ¥ zs . distinct ?e A distinct zs — (zs(h) %e ©
%e(g)?e = zs(h)%e — zs(h)?e © star-matriz’ %e g < zs(h) %e)
proof (induct rule:list.induct)
case Nil thus Zcase
by (simp add: restrict-empty-left)
case (Cons k s)
let 2t = k#s
assume 1: Vg h :: (‘a,’b) square . ¥ zs . distinct s A distinct zs — (zs{h)s ®
s{gys <X zs(h)s — zs(h)s © star-matriz’ s g < zs(h)s)
show Vg h :: (‘a,’b) square . ¥ zs . distinct 7t A distinct zs — (zs(h) 7t ®
2t(g) 7t < zs(h) 2t — zs(h) 2t © star-matriz’ ?t g < zs{h) ?t)
proof (intro alll)
fix g h :: ("a,’b) square
fix zs :: 'a list
show distinct 7t A distinct zs — (zs(h) 7t © 7t(g) 7t < zs(h) %t —> zs(h) 7t
© star-matriz’ 2t g < zs(h) ?t)
proof (cases zs)
case Nil thus ?thesis
by (metis restrict-empty-left restrict-star restrict-times)
next
case (Cons y ys)
assume 2: zs = y#ys
show distinct 7t N distinct zs — (zs(h)?t © ?t(g)?t < zs(h) %t —
zs(h) 2t © star-matriz’ 2t g < zs(h) 2t)
proof (intro impl)
let 7y = [y]
assume 3: distinct ¢t A\ distinct zs
hence 4: distinct s A distinct ys A = List.member s k N\ — List.member

ysy

136

using 2 by (simp add: List.member-def)
let 7r = [k]
let %a = ?r{g)?r
let ?b = 2r(g)s
let ?c = s(g)r
let ?2d = s{(g)s
let %as = ?r(star o %a)%r
let ?ds = star-matriz’ s ?d
let e = %a & 20 © %ds ® ¢
let %es = ?r(star o %e) r
let of = 2d @ %c ® %as © b
let ?fs = star-matriz’ s ?f
let ?ha = 2y(h)or
let ?hb = ?y(h)s
let ?hc = ys(h) ?r
let ?hd = ys(h)s
assume zs(h) %t © ?t(g) 2t < zs(h) %t
hence 5: ?ha © %a ® ?hb © %¢c X ?ha A\ ?ha ® 20 @ ¢hb © ?d < ?hb A
?he © 204 @ ?hd © 2¢ <X ?he N\ 2he © 20 @ ?hd © ?d < ?hd
using 2 3 4 by (simp add: restrict-nonempty-product-less-eq)
have 6: s(%ds)s = 2ds N s(?fs)s = %fs
by (simp add: restrict-star)
hence 7: ?r(%e)%r = %e N s(?f)s = ?f
by (metis (no-types, lifting) restrict-one-left-unit restrict-sup
restrict-times)
have 8: disjoint s ?r A disjoint ?r s
using 3 by (simp add: in-set-member member-rec)
have 9: zs(h)?t © %es = %ha © %es & %hc © Pes
proof —
have zs(h)?t ® ?es = (?ha ® ?hb & ?hc & ?hd) © ?es
using 2 by (metis restrict-nonempty)

also have ... = ?ha © %es ® 2hd © %es @ ?hec ©® Pes @ ?hd © Zes
by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
also have ... = ?ha © %es @ ?hc © ?es

using 8 by (simp add: times-disjoint)
finally show ?thesis

qed
have 10: zs(h)?t ©® %as ©® ?b © ?fs = %ha © %as © ?b © ?fs @ Zhc ©
a5 ® b © ?fs
proof —
have zs(h)?t © %as ©® ?b © 9fs = (?ha @ ?hb @ ?hc @ ?hd) © Zas ®
% © 7fs
using 2 by (metis restrict-nonempty)
also have ... = 2ha ©® 2as ® 20 ® ?fs ® hb © %as ©® 7b © ?fs & ?hc
© %as © b © ?fs ® ?hd @ %as © b © ?fs
by (simp add: matriz-idempotent-semiring.mult-right-dist-sup)
also have ... = ?ha © %as ® 20 © ?fs @ mbot ® ?b © ?fs & ?hc © Zas
© %O ?fs ® mbot © ?b O ?fs

137

using 8 by (metis (no-types) times-disjoint)

also have ... = 2ha ® 2as ® 20 ® ?fs ® ?hc © %as ©® ?b © ?fs
by simp

finally show ?thesis

qed
have 11: 2s(h)2t ® ?ds ® %c © %es = ?hb © %ds ©® %c © %es ® ?hd ©
?ds © %c © Zes
proof —
have zs(h)?t © ?ds ©® %c ©® %es = (?ha @ ?hb @ ?he @ ?hd) © ?ds ©
c © Zes
using 2 by (metis restrict-nonempty)
also have ... = ?ha © 2ds ©® %c ® Zes @ ?hb © 2ds © %c © Zes @ ?hc
© ?ds ® %c© %es @ ?hd © %ds © Pc © Yes
by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
also have ... = mbot ® ?c ® %es @ ?hb ® ?ds ® ?c ® %es & mbot ® ?c
® %es ® ?hd ® ?ds ©® ?c ® Pes
using 6 8 by (metis (no-types) times-disjoint)
also have ... = ?hb © %ds © ¢ © %es ® %hd © ds © ?c © Zes
by simp
finally show ?thesis

qed
have 12: zs(h) 2t © ?fs = %hb © 2fs ® Zhd © ?fs
proof —
have zs(h)?t © ?fs = (?ha & ?hb & %he & ?hd) © 2fs
using 2 by (metis restrict-nonempty)

also have ... = %ha © ?fs ® ?hb © fs @ ?hc © ?fs ® ?hd © ?fs
by (simp add: matriz-idempotent-semiring. mult-right-dist-sup)
also have ... = %hb © ?fs ® ?hd © %fs

using 6 8 by (metis (no-types) times-disjoint

matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-right

matriz-bounded-semilattice-sup-bot.sup-monoid.add-0-left)
finally show ?thesis

qed
have 13: ?ha ©® %es < %ha
proof —
have ?ha ® 20 ® 2ds ©® ?c < ?hb ® 2ds ® ?c
using 5 by (simp add: matriz-idempotent-semiring.mult-left-isotone)
also have ... < 2hb ® ?c
using 1 4/ 5 by (simp add:
matriz-idempotent-semiring.mult-left-isotone restrict-sublist)
also have ... < %ha
using 5 by simp
finally have ?ha ® %e =< %ha
using 5 by (simp add: matriz-idempotent-semiring. mult-left-dist-sup
matriz-monoid.mult-assoc)
thus ?thesis

138

using 7 by (simp add: restrict-star-right-induct)
qed
have 1/: ?hb ® ?fs < %hb
proof —
have 2hb ® 2¢c © %as ® 20 < 2ha ® %as © %b
using 5 by (metis matriz-semilattice-sup.le-supE
matriz-idempotent-semiring.mult-left-isotone)
also have ... < %ha ® 2b
using 5 by (simp add: matriz-idempotent-semiring.mult-left-isotone
restrict-star-right-induct restrict-sublist)
also have ... < ?hb
using 5 by simp
finally have ?hb © ?f < ?hb
using 5 by (simp add: matriz-idempotent-semiring.mult-left-dist-sup
matriz-monoid.mult-assoc)
thus ?thesis
using 1 8 7 by simp
qed
have 15: ?he ©® %es < %he
proof —
have 2hc © 20 © 2ds ® %c < ?hd © 2ds ® ?c
using 5 by (simp add: matriz-idempotent-semiring.mult-left-isotone)
also have ... < ?hd © ¢
using 1 4 5 by (simp add:
matriz-idempotent-semiring.mult-left-isotone restrict-sublist)
also have ... < %he
using 5 by simp
finally have ?hc ® %e < %hc
using 5 by (simp add: matriz-idempotent-semiring.mult-left-dist-sup
matriz-monoid.mult-assoc)
thus ?thesis
using / 7 by (simp add: restrict-star-right-induct)
qed
have 16: ?hd © ?fs < ?hd
proof —
have 2hd ©® ¢ ® %as ® 2b < ?hc ©® Zas ® 2b
using 5 by (simp add: matriz-idempotent-semiring.mult-left-isotone)
also have ... < ?hc ©® ?b
using / 5 by (simp add: matriz-idempotent-semiring. mult-left-isotone
restrict-star-right-induct restrict-sublist)
also have ... < %hd
using 5 by simp
finally have ?hd © ?f <X ?hd
using 5 by (simp add: matriz-idempotent-semiring.mult-left-dist-sup
matriz-monoid.mult-assoc)
thus ?thesis
using 1 4 7 by simp
qed
have 17: ?hb © ?ds ©® %c © Zes = ?ha

139

proof —
have 2hb ® 2ds ® %¢c ® %es < ?hb O 2¢c © Zes
using 1 4 5 by (simp add:
matriz-idempotent-semiring.mult-left-isotone restrict-sublist)
also have ... < %ha ©® Zes
using 5 by (simp add: matriz-idempotent-semiring. mult-left-isotone)
also have ... < %ha
using 13 by simp
finally show ?thesis

qed
have 18: ?ha ©® %as ©® 2b ® ?fs < ?hb
proof —
have %ha ©® %as ©® 20 ® ?fs <X %ha ©® 20 ©® ?fs
using 5 by (simp add: matriz-idempotent-semiring. mult-left-isotone
restrict-star-right-induct restrict-sublist)
also have ... < ?hb © %fs
using 5 by (simp add: matriz-idempotent-semiring.mult-left-isotone)
also have ... < %hb
using 14 by simp
finally show ?thesis
by simp
qed
have 19: ?hd ©® ?ds © %c ©® %es < %hc
proof —
have 2hd © 2ds ® 2c ® %es < ?hd © 2c © Zes
using 1 4/ 5 by (simp add:
matriz-idempotent-semiring.mult-left-isotone restrict-sublist)
also have ... <X %hec ® %es
using 5 by (simp add: matriz-idempotent-semiring.mult-left-isotone)
also have ... < %he
using 15 by simp
finally show ?thesis
by simp
qed
have 20: ?hc¢ ©® %as ® ?b © ?fs <X ?hd
proof —
have ?hc © %as ® 20 ©® %fs <X ?hc ® 2b © ?fs
using / 5 by (simp add: matriz-idempotent-semiring. mult-left-isotone
restrict-star-right-induct restrict-sublist)
also have ... < %hd © 7fs
using 5 by (simp add: matriz-idempotent-semiring. mult-left-isotone)
also have ... < ?hd
using 16 by simp
finally show ?thesis
by simp
qed
have 21: ?ha © %es © ?hb © 2ds ® ?¢c ® %es =< ?ha
using 13 17 matriz-semilattice-sup.le-supl by blast

140

have 22: ?ha ® %as © 2b ® 9fs ® ?hb © %fs < ?hb
using 14 18 matriz-semilattice-sup.le-supl by blast
have 23: ?hc ©® %es @ ?hd ©® ?ds © ¢ ©® %es < ?hc
using 15 19 matriz-semilattice-sup.le-supl by blast
have 2/: ?hc¢ © %as ® 20 ® ?fs @ ?hd ©® ?fs < ?hd
using 16 20 matriz-semilattice-sup.le-supl by blast
have zs(h) 2t © star-matriz’ 7t g = zs(h) %t © (%es @ %as © b © ?fs @
?ds © %c © Zes @ ?fs)
by (metis star-matriz’.simps(2))
also have ... = zs(h) 7t © Zes @ zs(h) %t © %as © ?b © 2fs @ zs(h)?t ©
2ds ©® %c © Zes @ zs(h)?t © 9fs
by (simp add: matriz-idempotent-semiring. mult-left-dist-sup
matriz-monoid.mult-assoc)
also have ... = %ha © %es @ ?hc © %es @ ?ha © %as © ?b © ?fs & %hc
© %as© %O s D hb © %ds © ¢ © Pes @ Zhd © ?ds ©® Pc © Pes @ Zhb © %fs
@ %hd © ?fs
using 9 10 11 12 by (simp add: matriz-semilattice-sup.sup-assoc)
also have ... = (?ha ® %es @ ?hb © %ds ©® %c © %es) ® (?ha © %as © 2b
© ?fs @ 7hb © fs) @ (?he © Pes ® ?hd © %ds © ¢ © Zes) ® (Phe © Pas © 7b
© s @ ?hd © ?fs)
using 9 10 11 12 by (simp only: matriz-semilattice-sup. sup-assoc
matriz-semilattice-sup.sup-commute matriz-semilattice-sup.sup-left-commute)
also have ... < ?ha © ?hb © ?hc © ?hd
using 21 22 23 24 matriz-semilattice-sup.sup.mono by blast
also have ... = zs(h) 7t
using 2 by (metis restrict-nonempty)
finally show zs(h) 2t © star-matriz’ 2t g < zs(h) %t

qed
qed
qed
qed
hence V zs . distinct zs — (zs(z)%e © y < zs(x)%e — 2s{z) % © y© =<
zs(z) %e)
by (simp add: enum-distinct restrict-all)
thusz 0 y=<2—20y° <z
by (metis restrict-all enum-distinct)
qged

6.3 Matrices form a Stone-Kleene Relation Algebra

Matrices over Stone-Kleene relation algebras form a Stone-Kleene relation
algebra. It remains to prove the axiom about the interaction of Kleene star
and double complement.

interpretation matriz-stone-kleene-relation-algebra: stone-kleene-relation-algebra
where sup = sup-matriz and inf = inf-matriz and less-eq = less-eq-matriz and
less = less-matriz and bot =

bot-matriz::('a::enum,’b:: stone-kleene-relation-algebra) square and top =
top-matriz and uminus = uminus-matriz and one = one-matriz and times =

141

times-matriz and conv = conv-matriz and star = star-matriz
proof
fix z :: (‘a,’d) square
let ?e = enum-class.enum::'a list
let 20 = mone :: ('a,’b) square
show 600(z°) = (60)°
proof (rule matriz-order.order-antisym)
have Vg :: (‘a,’d) square . distinct ?e — 66(star-matriz’ ?e (66g)) =
star-matriz’ %e (©6g)
proof (induct rule: list.induct)
case Nil thus ?Zcase
by simp
next
case (Cons k s)
let %t = k#s
assume 1: Vg :: (‘a,’b) square . distinct s — ©6(star-matriz’ s (66g)) =
star-matriz’ s (©6g)
show Vg :: (a,’b) square . distinct 2t — ©6(star-matriz’ 7t (66g)) =
star-matriz’ 7t (56g)
proof (rule alll, rule impl)
fix g :: (‘a,’d) square
assume 2: distinct 7t
let 7r = [k]
let %a = %r{(cog)?r
let 7b = ?r{cog)s
let 7c = s(©6g) ?r
let ?2d = s(©6g)s
let %as = ?r(star o %a)%r
let ?ds = star-matriz’ s ?d
let e = 20 @ 20 © %ds © ?c
let %es = 2r(star o ?e)?r
let 9% = 2d & %c ® %as © %b
let ?fs = star-matriz’ s ?f
have s(%ds)s = 2ds N s(?fs)s = %fs
by (simp add: restrict-star)
have 3: ©6% = %a AN ©66% = %0 N ©66% = %c N ©66%d = 2d
by (metis matriz-p-algebra.regular-closed-p restrict-pp)
hence 4: ©66%s = %as
by (metis pp-star-commute restrict-pp)
hence 669f = 2f
using 3 by (metis matriz-stone-algebra.reqular-closed-sup
matriz-stone-relation-algebra.regular-mult-closed)
hence 5: 00 %s = 7fs
using 1 2 by (metis distinct.simps(2))
have 6: 66%s = ?ds
using 1 2 by (simp add: restrict-pp)
hence 66 % = %e
using 3 by (metis matriz-stone-algebra.reqular-closed-sup
matriz-stone-relation-algebra.reqular-mult-closed)

142

hence 7: ©667%s = %es
by (metis pp-star-commute restrict-pp)
have ©6&(star-matriz’ 7t (669)) = 66(%s & %as © %D © ?fs @ %ds © ?c
© Zes @ ?fs)
by (metis star-matriz’.simps(2))
also have ... = 66%s @ ©6%s © ©O% © 6% s ® ©66%ds © 6% ©
66 7%s & 06 %s
by (simp add: matriz-stone-relation-algebra.pp-dist-comp)
also have ... = %es ® %as © 20 © ?fs ® 2ds © %c © %es P ?fs
using 3 4/ 5 6 7 by simp
finally show ©6(star-matriz’ 7t (66g)) = star-matriz’ 7t (66g)
by (metis star-matriz’.simps(2))
qed
qed
hence (©0612)° = 06((667)?)
by (simp add: enum-distinct restrict-all)
thus 06(z°) < (001)®
by (metis matriz-kleene-algebra.star. circ-isotone
matriz-p-algebra.pp-increasing matriz-p-algebra.pp-isotone)
next
have %0 ® 0or © 00(z°) = ©6(2°)
by (metis matriz-kleene-algebra.star-left-unfold-equal
matriz-p-algebra.sup-pp-semi-commute matriz-stone-relation-algebra. pp-dist-comp)
thus (007)° < 60(z®)
using matriz-kleene-algebra.star-left-induct by fastforce
qged
qged

interpretation matriz-stone-kleene-relation-algebra-consistent:
stone-kleene-relation-algebra-consistent where sup = sup-matriz and inf =
inf-matriz and less-eq = less-eq-matriz and less = less-matriz and bot =
bot-matriz :: ('a::enum,’b::stone-kleene-relation-algebra-consistent) square and top
= top-matriz and uminus = uminus-matriz and one = one-matriz and times =
times-matriz and conv = conv-matriz and star = star-matric

interpretation matriz-stone-kleene-relation-algebra-tarski:
stone-kleene-relation-algebra-tarski where sup = sup-matriz and inf =
inf-matriz and less-eq = less-eq-matriz and less = less-matriz and bot =
bot-matriz :: ('a::enum,’b::stone-kleene-relation-algebra-tarski) square and top =
top-matriz and uminus = uminus-matriz and one = one-matriz and times =
times-matriz and conv = conv-matriz and star = star-matrix

interpretation matriz-stone-kleene-relation-algebra-tarski-consistent:
stone-kleene-relation-algebra-tarski-consistent where sup = sup-matriz and inf
= inf-matriz and less-eq = less-eq-matriz and less = less-matriz and bot =
bot-matriz :: ('a::enum,’b::stone-kleene-relation-algebra-tarski-consistent) square
and top = top-matriz and uminus = uminus-matriz and one = one-matriz and

143

times = times-matriz and conv = conv-matriz and star = star-matriz

end

References

1]

2]

[9]

[10]

[11]

[12]

A. Armstrong, S. Foster, G. Struth, and T. Weber. Relation algebra.
Archive of Formal Proofs, 2016, first version 2014.

A. Armstrong, V. B. F. Gomes, G. Struth, and T. Weber. Kleene
algebra. Archive of Formal Proofs, 2016, first version 2013.

T. Asplund. Formalizing the Kleene star for square matrices. Bache-
lor Thesis IT 14 002, Uppsala Universitet, Department of Information
Technology, 2014.

R. J. R. Back and J. von Wright. Reasoning algebraically about loops.
Acta Inf., 36(4):295-334, 1999.

S. L. Bloom and Z. Esik. Iteration Theories: The Equational Logic of
Iterative Processes. Springer, 1993.

E. Cohen. Separation and reduction. In R. Backhouse and J. N.
Oliveira, editors, Mathematics of Program Construction, volume 1837
of Lecture Notes in Computer Science, pages 45-59. Springer, 2000.

J. H. Conway. Regular Algebra and Finite Machines. Chapman and
Hall, 1971.

S. Foster and G. Struth. Regular algebras. Archive of Formal Proofs,
2016, first version 2014.

W. Guttmann. Algebras for iteration and infinite computations. Acta
Inf., 49(5):343-359, 2012.

W. Guttmann. Relation-algebraic verification of Prim’s minimum span-
ning tree algorithm. In A. Sampaio and F. Wang, editors, Theoretical
Aspects of Computing — ICTAC 2016, volume 9965 of Lecture Notes in
Computer Science, pages 51-68. Springer, 2016.

W. Guttmann. Stone relation algebras. Archive of Formal Proofs, 2017.

W. Guttmann. Stone relation algebras. In P. Hofner, D. Pous, and
G. Struth, editors, Relational and Algebraic Methods in Computer
Science, volume 10226 of Lecture Notes in Computer Science, pages
127-143. Springer, 2017.

144

[13] D. Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Information and Computation, 110(2):366-390, 1994.

[14] D. Kozen. Typed Kleene algebra. Technical Report TR98-1669, Cornell
University, 1998.

[15] B. Moller. Kleene getting lazy. Sci. Comput. Programming,
65(2):195-214, 2007.

[16] K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis, Uni-
versity of California, Berkeley, 1984.

[17] J. von Wright. Towards a refinement algebra. Sci. Comput. Program-
ming, 51(1-2):23-45, 2004.

145

	Synopsis and Motivation
	Iterings
	Conway Semirings
	Iterings

	Kleene Algebras
	Kleene Relation Algebras
	Prim's Algorithm
	Preservation of Invariant
	Exchange gives Spanning Trees
	Exchange gives Minimum Spanning Trees
	Invariant implies Postcondition

	Kruskal's Algorithm
	Preservation of Invariant
	Exchange gives Spanning Trees
	Exchange gives Minimum Spanning Trees

	Related Structures

	Subalgebras of Kleene Relation Algebras
	Matrix Kleene Algebras
	Matrix Restrictions
	Matrices form a Kleene Algebra
	Matrices form a Stone-Kleene Relation Algebra

