Stone Algebras

Walter Guttmann

March 17, 2025

Abstract

A range of algebras between lattices and Boolean algebras gener-
alise the notion of a complement. We develop a hierarchy of these
pseudo-complemented algebras that includes Stone algebras. Indepen-
dently of this theory we study filters based on partial orders. Both
theories are combined to prove Chen and Grétzer’s construction theo-
rem for Stone algebras. The latter involves extensive reasoning about
algebraic structures in addition to reasoning in algebraic structures.

Contents
1 Synopsis and Motivation

2 Lattice Basics

2.1 General Facts and Notations
2.2 Orders e
2.3 Semilatticeso
2.4 Lattices e e e
2.5 Linear Orders
2.6 Non-trivial Algebras
2.7 Homomorphisms

Pseudocomplemented Algebras

3.1 P-Algebras
3.1.1 Pseudocomplemented Lattices
3.1.2 Pseudocomplemented Distributive Lattices

3.2 Stone Algebras

3.3 Heyting Algebras L L L oL
3.3.1 Heyting Semilattices
3.3.2 Heyting Lattices
3.3.3 Heyting Algebras
3.3.4 Brouwer Algebras

3.4 Boolean Algebras oL

4 Filters 33

4.1 Orders e 34
4.2 Lattices L 37
4.3 Distributive Lattices o0 41
5 Stone Construction 43
5.1 The Triple of a Stone Algebra 44
5.1.1 Regular Elements 45
5.1.2 Dense Elements 46
5.1.3 The Structure Map 47

5.2 Properties of Triples 48
5.3 The Stone Algebra of a Triple 51
5.4 The Stone Algebra of the Triple of a Stone Algebra 52
5.5 Stone Algebra Isomorphism 54
5.6 Triple Isomorphism L. 55
5.6.1 Boolean Algebra Isomorphism 56
5.6.2 Distributive Lattice Isomorphism 57
5.6.3 Structure Map Preservation 59

1 Synopsis and Motivation

This document describes the following four theory files:

x Lattice Basics is a small theory with basic definitions and facts extend-
ing Isabelle/HOL’s lattice theory. It is used by the following theories.

x Pseudocomplemented Algebras contains a hierarchy of algebraic struc-
tures between lattices and Boolean algebras. Many results of Boolean
algebras can be derived from weaker axioms and are useful for more
general models. In this theory we develop a number of algebraic struc-
tures with such weaker axioms. The theory has four parts. We first
extend lattices and distributive lattices with a pseudocomplement op-
eration to obtain (distributive) p-algebras. An additional axiom of
the pseudocomplement operation yields Stone algebras. The third
part studies a relative pseudocomplement operation which results in
Heyting algebras and Brouwer algebras. We finally show that Boolean
algebras instantiate all of the above structures.

« Filters contains an order-/lattice-theoretic development of filters. We
prove the ultrafilter lemma in a weak setting, several results about the
lattice structure of filters and a few further results from the literature.
Our selection is due to the requirements of the following theory.

x Construction of Stone Algebras contains the representation of Stone
algebras as triples and the corresponding isomorphisms [7, 21]. It

is also a case study of reasoning about algebraic structures. Every
Stone algebra is isomorphic to a triple comprising a Boolean algebra,
a distributive lattice with a greatest element, and a bounded lattice
homomorphism from the Boolean algebra to filters of the distributive
lattice. We carry out the involved constructions and explicitly state
the functions defining the isomorphisms. A function lifting is used
to work around the need for dependent types. We also construct an
embedding of Stone algebras to inherit theorems using a technique of
universal algebra.

Algebras with pseudocomplements in general, and Stone algebras in partic-
ular, appear widely in mathematical literature; for example, see [4, 5, 6, 17].
We apply Stone algebras to verify Prim’s minimum spanning tree algorithm
in Isabelle/HOL in [20].

There are at least two Isabelle/HOL theories related to filters. The
theory HOL/Algebra/Ideal.thy defines ring-theoretic ideals in locales with
a carrier set. In the theory HOL/Filter.thy a filter is defined as a set of sets.
Filters based on orders and lattices abstract from the inner set structure;
this approach is used in many texts such as [4, 5, 6, 9, 17]. Moreover, it is
required for the construction theorem of Stone algebras, whence our theory
implements filters this way.

Besides proving the results involved in the construction of Stone algebras,
we study how to reason about algebraic structures defined as Isabelle/HOL
classes without carrier sets. The Isabelle/HOL theories HOL/Algebra/*.thy
use locales with a carrier set, which facilitates reasoning about algebraic
structures but requires assumptions involving the carrier set in many places.
Extensive libraries of algebraic structures based on classes without carrier
sets have been developed and continue to be developed [1, 2, 3, 10, 11, 13,
14, 15, 16, 19, 22, 24, 25, 26]. It is unlikely that these libraries will be
converted to carrier-based theories and that carrier-free and carrier-based
implementations will be consistently maintained and evolved; certainly this
has not happened so far and initial experiments suggest potential drawbacks
for proof automation [12]. An improvement of the situation seems to require
some form of automation or system support that makes the difference irrel-
evant.

In the present development, we use classes without carrier sets to reason
about algebraic structures. To instantiate results derived in such classes,
the algebras must be represented as Isabelle/HOL types. This is possible to
a certain extent, but causes a problem if the definition of the underlying set
depends on parameters introduced in a locale; this would require dependent
types. For the construction theorem of Stone algebras we work around this
restriction by a function lifting. If the parameters are known, the functions
can be specialised to obtain a simple (non-dependent) type that can instan-
tiate classes. For the construction theorem this specialisation can be done

using an embedding. The extent to which this approach can be generalised
to other settings remains to be investigated.

2 Lattice Basics

This theory provides notations, basic definitions and facts of lattice-related
structures used throughout the subsequent development.

theory Lattice-Basics
imports Main

begin

2.1 General Facts and Notations

The following results extend basic Isabelle/HOL facts.

lemma imp-as-conj:
assumes Pz — Q =z
shows Px AN Qx +— Px

{proof)

lemma if-distrib-2:
f (if ¢ then x else y) (if ¢ then z else w) = (if ¢ then fz z else fy w)
(proof)

lemma [eft-invertible-inj:
Vz.g(fz)=2) = inj f
(proof)

lemma invertible-bij:
assumes Vz . g (fz) =z
andVy . f(gy) =y
shows b7j f
(proof)

lemma finite-ne-subset-induct [consumes 8, case-names singleton insert]:
assumes finite F'

and F # {}

and F C S

and singleton: Az . P {z}

and insert: Ao F . finite F —= F #{} = FCS=zcS= a2 ¢F
= PF = P (insert x I)

shows P F

(proof)

lemma finite-set-of-finite-funs-pred:
assumes finite { z::'a . True }
and finite { y=:'b. Py }

shows finite { f. (Va::'a . P (f2)) }
{proof)

We use the following notations for the join, meet and complement op-
erations. Changing the precedence of the unary complement allows us to
write terms like ——z instead of —(—xz).

context sup
begin

notation sup (infixl <L) 65)

definition additive :: ('a = 'a) = bool
where additive f =Vzy.f(zUy)=fzUfy

end

context inf
begin

notation inf (infixl <7 67)
end

context uminus
begin

unbundle no uminus-syntax

notation uminus (<(<open-block notation=«prefix —»— -)» [80] 80)
end
2.2 Orders

We use the following definition of monotonicity for operations defined in
classes. The standard mono places a sort constraint on the target type. We
also give basic properties of Galois connections and lift orders to functions.
context ord

begin

definition isotone :: (‘a = 'a) = bool
where isotone f =Vzy.x <y — fa <fy

definition galois :: ('a = ’a) = (‘a = 'a) = bool
where galois lu=Vzy.le <y+—x<uy

definition lifted-less-eq :: ('a = 'a) = (‘a = 'a) = bool (x(- << -)» [51, 51] 50)
where f << g=Vz.fz<gz

end

context order
begin

lemma order-lesseqg-imp:
Vz.2<z—y<z)¢s—y<z
(proof)

lemma galois-char:
galois lu <— (Vz .z <u(lz)) AN(Vz .l (uz) <z) A isotone | A isotone u
{proof)

lemma galois-closure:
galois lu = lz=1(u(lz)) ANuz=u(l(uzx))

(proof)

lemma [lifted-refiexive:
f=9=1[<<yg
(proof)

lemma lifted-transitive:
[<Lg=g<<h=f<<h
(proof)

lemma lifted-antisymmetric:
[S£9g=g9<<f=1f=y
(proof)

If the image of a finite non-empty set under f is a totally ordered, there
is an element that minimises the value of f.

lemma finite-set-minimal:
assumes finite s

and s # {}
and Vzes . Vyes . fa < fyV fy<fx
shows dmes . Vzes . fm < fz

(proof)

end

2.3 Semilattices

The following are basic facts in semilattices.
context semilattice-sup

begin

lemma sup-left-isotone:
r<y=zUz<ylUz

{proof)

lemma sup-right-isotone:
r<y=zUzx<zUy
(proof)

lemma sup-left-divisibility:
z<y+— (Fz.zUz=y)
(proof)

lemma sup-right-divisibility:
z<y+— Fz.zUz=y)
(proof)

lemma sup-same-context:
r<ylUz=y<zUz=zUz=9yUz=z

(proof)

lemma sup-relative-same-increasing:
rl{y=—=zlUz=zUlw=—yUz=yUw
(proof)

end

Every bounded semilattice is a commutative monoid. Finite sums de-
fined in commutative monoids are available via the following sublocale.

context bounded-semilattice-sup-bot

begin

sublocale sup-monoid: comm-monoid-add where plus = sup and zero = bot
(proof)

end

context semilattice-inf
begin

lemma inf-same-context:
r<yMNz=y<zMNz=zMNz=yMz

{proof)

end

The following class requires only the existence of upper bounds, which is
a property common to bounded semilattices and (not necessarily bounded)
lattices. We use it in our development of filters.

class directed-semilattice-inf = semilattice-inf +
assumes ub: 3z . x <z Ay <z

We extend the inf sublocale, which dualises the order in semilattices, to
bounded semilattices.
context bounded-semilattice-inf-top

begin

subclass directed-semilattice-inf

{proof)

sublocale inf: bounded-semilattice-sup-bot where sup = inf and less-eq =
greater-eq and less = greater and bot = top

(proof)

end

2.4 Lattices

context lattice
begin

subclass directed-semilattice-inf

{proof)

definition dual-additive :: (‘a = 'a) = bool
where dual-additive f =Vzy.f(xUy)=fazNfy

end

Not every bounded lattice has complements, but two elements might still
be complements of each other as captured in the following definition. In this
situation we can apply, for example, the shunting property shown below. We
introduce most definitions using the abbreviation command.

context bounded-lattice
begin

abbreviation complement x y = x U y = top A x I y = bot

lemma complement-symmetric:
complement x y = complement y x

{proof)

definition conjugate :: (a = 'a) = (‘a = 'a) = bool
where conjugate fg=Vzry.fx M y=bot<— zMgy= bot

end

class dense-lattice = bounded-lattice +
assumes bot-meet-irreducible: x M y = bot — x = bot V y = bot

context distrib-lattice

begin

lemma relative-equality:
sUz=yUz=—2axlz=yllz=— =1y
(proof)

end

Distributive lattices with a greatest element are widely used in the con-
struction theorem for Stone algebras.

class distrib-lattice-bot = bounded-lattice-bot + distrib-lattice
class distrib-lattice-top = bounded-lattice-top + distrib-lattice

class bounded-distrib-lattice = bounded-lattice + distrib-lattice
begin

subclass distrib-lattice-bot (proof)
subclass distrib-lattice-top (proof)

lemma complement-shunting:
assumes complement z w
shows z Mz < y+—z<wly

(proof)

end

2.5 Linear Orders

We next consider lattices with a linear order structure. In such lattices, join
and meet are selective operations, which give the maximum and the mini-
mum of two elements, respectively. Moreover, the lattice is automatically
distributive.

class bounded-linorder = linorder + order-bot + order-top

class linear-lattice = lattice + linorder
begin

lemma maz-sup:
marry =2 Uy
(proof)

lemma min-inf:
minzy=zMy

{proof)

lemma sup-inf-selective:

zUy=zAzNy=y)VEUy=yAzNy=uz)
{proof)

lemma sup-selective:
rUy=zVzUy=y
(proof)

lemma inf-selective:
clly=zVazlly=y
(proof)

subclass distrib-lattice
(proof)

lemma sup-less-eq:
r<yUz+—z<yVvVze<z

(proof)

lemma inf-less-eq:
zMNy<z+—z<2Vy<z
(proof)

lemma sup-inf-sup:
zUy=(zUy) U (0 y)
(proof)

end

The following class derives additional properties if the linear order of the
lattice has a least and a greatest element.

class linear-bounded-lattice = bounded-lattice + linorder
begin

subclass linear-lattice {proof)
subclass bounded-linorder (proof)
subclass bounded-distrib-lattice {proof)
lemma sup-dense:
x # top = y # top = x U y # top
{proof)

lemma inf-dense:
x # bot = y # bot = z M y # bot
(proof)

lemma sup-not-bot:
x # bot = x U y # bot

10

{proof)

lemma inf-not-top:
x # top = x My # top
(proof)

subclass dense-lattice
(proof)

end

Every bounded linear order can be expanded to a bounded lattice. Join
and meet are maximum and minimum, respectively.

class linorder-lattice-expansion = bounded-linorder + sup + inf +
assumes sup-def [simp]: x Uy = maz x y
assumes inf-def [simpl: z My = min z y

begin

subclass linear-bounded-lattice
(proof)

end

2.6 Non-trivial Algebras

Some results, such as the existence of certain filters, require that the algebras
are not trivial. This is not an assumption of the order and lattice classes
that come with Isabelle/HOL; for example, bot = top may hold in bounded
lattices.

class non-trivial =
assumes consistent: I3x y . T £ y

class non-trivial-order = non-trivial + order
class non-trivial-order-bot = non-trivial-order + order-bot

class non-trivial-bounded-order = non-trivial-order-bot + order-top
begin

lemma bot-not-top:
bot # top
(proof)

end

2.7 Homomorphisms

This section gives definitions of lattice homomorphisms and isomorphisms
and basic properties.

11

class sup-inf-top-bot-uminus = sup + inf + top + bot + uminus
class sup-inf-top-bot-uminus-ord = sup-inf-top-bot-uminus + ord

context boolean-algebra
begin

subclass sup-inf-top-bot-uminus-ord (proof)
end

abbreviation sup-homomorphism :: (‘a::sup = 'b:sup) = bool
where sup-homomorphism f =Vzy.f(zUy) =fzUfy

abbreviation inf-homomorphism :: ('a::inf = 'b::inf) = bool
where inf-homomorphism f =Vzy.f(xNy) =faNfy

abbreviation bot-homomorphism :: ('a::bot = 'b::bot) = bool
where bot-homomorphism f = f bot = bot

abbreviation top-homomorphism :: (‘a::top = 'b::itop) = bool
where top-homomorphism f = f top = top

abbreviation minus-homomorphism :: (‘a::minus = 'b:minus) = bool
where minus-homomorphism f =Vzy . f (z —y)=fz — fy

abbreviation uminus-homomorphism :: ('a::uminus = 'b::uminus) = bool
where uminus-homomorphism f =Vz . f (—z) = —f =z

abbreviation sup-inf-homomorphism :: ('a:{sup,inf} = 'b::{sup,inf}) = bool
where sup-inf-homomorphism f = sup-homomorphism f A inf-homomorphism f

abbreviation sup-inf-top-homomorphism :: ('a::{sup,inf,top} =
'b::{ sup,inf,top}) = bool

where sup-inf-top-homomorphism f = sup-inf-homomorphism f A
top-homomorphism f

abbreviation sup-inf-top-bot-homomorphism :: ('a::{sup,inf top,bot} =
'b::{ sup,inf,top,bot}) = bool

where sup-inf-top-bot-homomorphism f = sup-inf-top-homomorphism f A
bot-homomorphism f

abbreviation bounded-lattice-homomorphism :: (‘a::bounded-lattice =
'b::bounded-lattice) = bool
where bounded-lattice-homomorphism f = sup-inf-top-bot-homomorphism f

abbreviation sup-inf-top-bot-uminus-homomorphism ::

("a::sup-inf-top-bot-uminus = 'b::sup-inf-top-bot-uminus) = bool
where sup-inf-top-bot-uminus-homomorphism f =

sup-inf-top-bot-homomorphism f A uminus-homomorphism f

12

abbreviation sup-inf-top-bot-uminus-ord-homomorphism ::

('a::sup-inf-top-bot-uminus-ord = 'b::sup-inf-top-bot-uminus-ord) = bool
where sup-inf-top-bot-uminus-ord-homomorphism f =

sup-inf-top-bot-uminus-homomorphism f N Vzxy .z <y — fz < fy)

abbreviation sup-inf-top-isomorphism :: ('a:{sup,inf,top} = 'b::{sup,inf, top})
= bool
where sup-inf-top-isomorphism f = sup-inf-top-homomorphism f N bij f

abbreviation bounded-lattice-top-isomorphism :: (‘a::bounded-lattice-top =
'b::bounded-lattice-top) = bool
where bounded-lattice-top-isomorphism [= sup-inf-top-isomorphism f

abbreviation sup-inf-top-bot-uminus-isomorphism :: ('a::sup-inf-top-bot-uminus
= 'b::sup-inf-top-bot-uminus) = bool

where sup-inf-top-bot-uminus-isomorphism f =
sup-inf-top-bot-uminus-homomorphism f N bij f

abbreviation boolean-algebra-isomorphism :: ('a::boolean-algebra =
'b::boolean-algebra) = bool

where boolean-algebra-isomorphism f = sup-inf-top-bot-uminus-isomorphism f
A minus-homomorphism f

lemma sup-homomorphism-mono:
sup-homomorphism (f::'a::semilattice-sup = 'b::semilattice-sup) = mono f
(proof)

lemma sup-isomorphism-ord-isomorphism:
assumes sup-homomorphism (f::'a::semilattice-sup = 'b::semilattice-sup)
and b7j f
shows © < y<+— fz < fy

(proof)

lemma minus-homomorphism-default:
assumes Yz y::'a:{inf, minus,uminus} . . — y = x M —y
and Vz y:'bo{inf,minus,uminus} . x — y =z M —y
and inf-homomorphism (f::'a = 'b)
and uminus-homomorphism f
shows minus-homomorphism f

{proof)

end

3 Pseudocomplemented Algebras

This theory expands lattices with a pseudocomplement operation. In par-
ticular, we consider the following algebraic structures:

13

« pseudocomplemented lattices (p-algebras)

« pseudocomplemented distributive lattices (distributive p-algebras)
x Stone algebras

* Heyting semilattices

+x Heyting lattices

+x Heyting algebras

x Heyting-Stone algebras

x Brouwer algebras

* Boolean algebras

Most of these structures and many results in this theory are discussed in
[4, 5,6, 8, 17, 23].

theory P-Algebras
imports Lattice-Basics

begin

3.1 P-Algebras

In this section we add a pseudocomplement operation to lattices and to
distributive lattices.

3.1.1 Pseudocomplemented Lattices

The pseudocomplement of an element y is the greatest element whose meet
with y is the least element of the lattice.

class p-algebra = bounded-lattice + uminus +
assumes pseudo-complement: © M y = bot +— x < —y
begin

subclass sup-inf-top-bot-uminus-ord (proof)

Regular elements and dense elements are frequently used in pseudocom-
plemented algebras.

abbreviation reqular r =z = ——=z

abbreviation dense x = —x = bot

abbreviation complemented xt = Jy . z My = bot A z U y = top
abbreviation in-p-image x = dy . x = —y

abbreviation selection sz =s=——sMNzx

14

abbreviation dense-elements = { = . dense z }
abbreviation regular-elements = { z . in-p-image = }

lemma p-bot [simp]:
—bot = top
(proof)

lemma p-top [simp]:
—top = bot
(proof)
The pseudocomplement satisfies the following half of the requirements
of a complement.

lemma inf-p [simp]:

x M —z = bot
(proof)

lemma p-inf [simp]:
—z M x = bot
(proof)

lemma pp-inf-p:
——z M —x = bot
(proof)

The double complement is a closure operation.

lemma pp-increasing:
< —=x
(proof)

lemma ppp [simp):

—— =z
(proof)

lemma pp-idempotent:
————z = ——x
(proof)

lemma regular-in-p-image-iff:
regular T <— in-p-image T
(proof)

lemma pseudo-complement-pp:
Ny =bot +— ——x < —y
(proof)

lemma p-antitone:

r<y— —y< —x

(proof)

15

lemma p-antitone-sup:
—(zUy < -z
(proof)

lemma p-antitone-inf:
—z < —(zMy)
(proof)

lemma p-antitone-iff:
TS —ys—y< —w
(proof)

lemma pp-isotone:
r<y=— —x< ——y
(proof)

lemma pp-isotone-sup:
s < ——(zUy)
(proof)

lemma pp-isotone-inf:

——(zNy) < ——z
(proof)

One of De Morgan’s laws holds in pseudocomplemented lattices.

lemma p-dist-sup [simp]:
—(zUy)=—a—y
(proof)

lemma p-supdist-inf:
—zU—-y< —(zNy)

(proof)

lemma pp-dist-pp-sup [simp]:
(U) = —(r U y)
(proof)

lemma p-sup-p [simp:
—(z U —x) = bot
(proof)

lemma pp-sup-p [simp]:
——(z U —z) = top
(proof)

lemma dense-pp:
dense x <— ——x = top

{proof)

16

lemma dense-sup-p:
dense (z U —x)
(proof)

lemma regular-char:
reqular © +— (Jy . z = —y)
(proof)

lemma pp-inf-bot-iff:
x My =bot <— ——x My = bot
(proof)

Weak forms of the shunting property hold. Most require a pseudocom-
plemented element on the right-hand side.

lemma p-shunting-swap:
TNy —z+—zlMz< —y

{proof)

lemma pp-inf-below-iff:
zMNy< —z4+— ——zMNy< —2
(proof)

lemma p-inf-pp [simp]:
—(z N ——y) = —(zTy)
(proof)

lemma p-inf-pp-pp [simp]:
—(=—z M ——y)=—(zNy)
(proof)

lemma regular-closed-inf:
reqular © = reqular y = regular (z N y)

{proof)

lemma regular-closed-p:
reqular (—z)
(proof)

lemma regular-closed-pp:
reqular (——zx)
(proof)

lemma regular-closed-bot:
reqular bot
(proof)

lemma regular-closed-top:
regular top

17

{proof)

lemma pp-dist-inf [simp]:
——(@ny)=——al-——y
(proof)

lemma inf-import-p [simpl:
zN—(zNy)=zN—y
(proof)

Pseudocomplements are unique.

lemma p-unique:
Vz.zNy=bot+—zr<2)= 2= —y
(proof)

lemma madduz-3-5:
zUz=zU—(yU —y)
(proof)

lemma shunting-1-pp:
< ——y+— M —y = bot
(proof)

lemma pp-pp-inf-bot-iff:
x My =bot <— ——x M ——y = bot
(proof)

lemma inf-pp-semi-commute:
zN——y < ——(zMy)

(proof)

lemma inf-pp-commute:
——(——a M y) = —a N ——y
(proof)

lemma sup-pp-semi-commute:
5U——y < ——(zUy)
(proof)

lemma regular-sup:
reqular 2 = (2 < 2 ANy < z<+— ——(zUy) < 2)

{proof)

lemma dense-closed-inf:
dense v = dense y = dense (z M y)

(proof)

lemma dense-closed-sup:
dense t = dense y = dense (z U y)

18

{proof)

lemma dense-closed-pp:
dense ¥ = dense (——x)

(proof)

lemma dense-closed-top:
dense top

{proof)

lemma dense-up-closed:
dense t =—> ¢ < y = dense y

{proof)

lemma regular-dense-top:
reqular t = dense t = x = top

(proof)

lemma selection-char:
selection s t +— (Jy . s=—yMNx)
(proof)

lemma selection-closed-inf:
selection s © == selection t © == selection (s M t) x

{proof)

lemma selection-closed-pp:
reqular © = selection s © = selection (——s) ©

{proof)

lemma selection-closed-bot:
selection bot x

{proof)

lemma selection-closed-id:
selection x ©

(proof)

Conjugates are usually studied for Boolean algebras, however, some of
their properties generalise to pseudocomplemented algebras.
lemma conjugate-unique-p:
assumes conjugate f g
and conjugate f h
shows uminus o g = uminus o h

(proof)

lemma conjugate-symmetric:
conjugate f g = conjugate g f
(proof)

19

lemma additive-isotone:
additive f = isotone f

{proof)

lemma dual-additive-antitone:
assumes dual-additive f
shows isotone (uminus o f)

(proof)

lemma conjugate-dual-additive:
assumes conjugate f g
shows dual-additive (uminus o f)

(proof)

lemma conjugate-isotone-pp:
conjugate f g = isotone (uminus o uminus o f)

{proof)

lemma conjugate-char-1-pp:

conjug)atefg — Vey. flaN—(gy) < —=fzN—-yAglyn —(fz) < ——g
Yy —x
(proof)

lemma conjugate-char-1-isotone:

conjugate f g = isotone f = isotone g = f(z T —(gy)) < fz N —y A g(y
Nn—(fz)) <gyn -z

(proof)

lemma dense-lattice-char-1:
Vzy.zMNy=bot — x=botVy=bot)+— (Vz .z # bot — dense x)
(proof)

lemma dense-lattice-char-2:
Vzy.zNy=bot — x =bot Vy=bot) +— (Vz . regular t — x = bot V
x = top)
(proof)

lemma restrict-below-Rep-eq:
TN ——y<z=zlNy=zMNzly
(proof)

end

The following class gives equational axioms for the pseudocomplement
operation.

class p-algebra-eq = bounded-lattice + uminus +

20

assumes p-bot-eq: —bot = top
and p-top-eq: —top = bot
and inf-import-p-eq: c M —(z Ny) =z M —y
begin

lemma inf-p-eq:

x M —x = bot
(proof)

subclass p-algebra
(proof)

end

3.1.2 Pseudocomplemented Distributive Lattices

We obtain further properties if we assume that the lattice operations are
distributive.

class pd-algebra = p-algebra + bounded-distrib-lattice
begin

lemma p-inf-sup-below:
oM (zUy) <y
(proof)

lemma pp-inf-sup-p [simp]:
——zN(zU—-2)=1
(proof)

lemma complement-p:
rNy=bt =z Uy=top—= —x =y
(proof)

lemma complemented-regular:
complemented x = regular x

{proof)

lemma regular-inf-dense:
Jy z . reqular y A dense z AN x =y Tz

{proof)

lemma madduz-3-12 [simp]:
(zU—y)N(zUy =z
(proof)

lemma madduz-3-13 [simp]:

Uy N—z=yN—z
(proof)

21

lemma madduz-3-20:
(()vl_lw)l_l(fvl_lx))l_lf((vﬂy)I_I(fvl_lz)):(vl_lwl_lfy)l_l(fvl_lxl_l
(proof)

lemma order-char-1:
r<ys+<—z<yld -z
(proof)

lemma order-char-2:
r<ys—zzUd-zz<ylU -2z

{proof)

lemma half-shunting:
r<yUz=zMN-2<y

(proof)

end

3.2 Stone Algebras

A Stone algebra is a distributive lattice with a pseudocomplement that satis-
fies the following equation. We thus obtain the other half of the requirements
of a complement at least for the regular elements.

class stone-algebra = pd-algebra +
assumes stone [simp]: —z U ——z = top
begin

As a consequence, we obtain both De Morgan’s laws for all elements.

lemma p-dist-inf [simp]:
—(zNy)=-zU-y

(proof)

lemma pp-dist-sup [simp]:
——(zUy) =-——zlU——y
(proof)

lemma regular-closed-sup:
reqular © = regular y = regular (z U y)

(proof)
The regular elements are precisely the ones having a complement.

lemma regular-complemented-iff:
reqular x <— complemented x

{proof)

lemma selection-closed-sup:

22

selection s © = selection t © = selection (s U t) x

(proof)

lemma huntington-3-pp [simp]:
—(—zU—-y)U—(—zUy) =—z1
(proof)

lemma madduz-3-3 [simp]:
—(zUyuU—(zU -y =-2z
{proof)

lemma madduz-3-11-pp:
(N —y)U(@nN-——y) ==
(proof)

lemma maddux-3-19-pp:
(—zMNy)U(——zMN2)=(——z Uy N(—zU2)

(proof)
lemma compl-inter-eq-pp:
——rxNNy=—2axMNz=— —axlMNy=—-allz=—y=2
(proof)
lemma madduz-3-21-pp [simp]:
——zU(—zNy =—-—2zUy
(proof)

lemma shunting-2-pp:
< ——y+— —z U ——y = top
(proof)

lemma shunting-p:
rMNy< —z+—z< —2zU—y
(proof)

The following weak shunting property is interesting as it does not require
the element z on the right-hand side to be regular.

lemma shunting-var-p:
rMN—y<z<—zr<zU-—-——y

(proof)

lemma conjugate-char-2-pp:

conjugate f g «— fbot = bot A g bot = bot AN (Vzy.fzMy < ——(f(z N
(@) ANgyna<——(g(y N —=(fz))))
(proof)

lemma conjugate-char-2-pp-additive:
assumes conjugate f g

23

and additive f
and additive g

shows fz My < f(z M ——=(gy)) AgyMa<glyn ——(fz))
(proof)

end

abbreviation stone-algebra-isomorphism :: (‘a::stone-algebra =
'b::stone-algebra) = bool
where stone-algebra-isomorphism f = sup-inf-top-bot-uminus-isomorphism f

Every bounded linear order can be expanded to a Stone algebra. The
pseudocomplement takes bot to the top and every other element to bot.

class linorder-stone-algebra-expansion = linorder-lattice-expansion + uminus +
assumes uminus-def [simp]: —z = (if x = bot then top else bot)
begin

subclass stone-algebra
(proof)

The regular elements are the least and greatest elements. All elements
except the least element are dense.

lemma regular-bot-top:
reqular x <— © = bot V x = top

{proof)

lemma not-bot-dense:
x # bot = ——1x = top

{proof)

end

3.3 Heyting Algebras

In this section we add a relative pseudocomplement operation to semilattices
and to lattices.

3.3.1 Heyting Semilattices

The pseudocomplement of an element y relative to an element z is the least
element whose meet with y is below z. This can be stated as a Galois
connection. Specialising z = bot gives (non-relative) pseudocomplements.
Many properties can already be shown if the underlying structure is just a
semilattice.

class implies =

24

fixes implies :: 'a = 'a = 'a (infixl <~ 65)

class heyting-semilattice = semilattice-inf + implies +
assumes implies-galois: My < z +— x <y~ 2
begin

lemma implies-below-eq [simp]:
yn(z~y =y
(proof)

lemma implies-increasing:
TSy~ T
{proof)

lemma implies-galois-swap:
<y 2z y< T2

(proof)

lemma implies-galois-var:
zMNy<z+—=y<zT~2

(proof)

lemma implies-galois-increasing:
<y~ (z7y)

{proof)

lemma implies-galois-decreasing:
(y~~az)Ny<=z
(proof)

lemma implies-mp-below:
g (z~y) <y

{proof)

lemma implies-isotone:
Tl y=>z~x<2z~~y

(proof)

lemma implies-antitone:
r<y=—=y~2<1x~2
(proof)

lemma implies-isotone-inf:
o~ (yMz) <z~ y
(proof)

lemma implies-antitone-inf:

o~ z2< (xMy) ~ 2

{proof)

25

lemma implies-curry:
o (Y~ z) = (Ny) 2
(proof)

lemma implies-curry-flip:
T (Y~ 2) =y~ (2 2)
{proof)

lemma triple-implies [simp]:
(z~y) >y ~y=z~y
(proof)

lemma implies-mp-eq [simp]:
zN(z~y)=zNy
(proof)

lemma implies-dist-implies:
T (Y~ z) S (2 y) ~ (2 2)
(proof)

lemma implies-import-inf [simp]:
g ((My) ~ (z~2) =20y~ 2)
(proof)

lemma implies-dist-inf:
o~ (yMz)=(z~y) Mz~ 2z
(proof)

lemma implies-itself-top:
y<xT~z
(proof)

lemma inf-implies-top:
z<(zMy)~z
(proof)

lemma inf-inf-implies [simp]:
2N ((zNy)~2z)=2
{proof)

lemma le-implies-top:
< y=2<71~Yy
(proof)

lemma le-iff-le-implies:

Tl ys— <~y
(proof)

26

lemma implies-inf-isotone:
z~~y<(zNz)~ (ynz)
(proof)

lemma implies-transitive:
(@~y)N(y~2z2)<z~2z
(proof)

lemma implies-inf-absorb [simp]:
z~(zMy)=xz~y

(proof)

lemma implies-implies-absorb [simp]:
P (@ y) =7y
(proof)

lemma implies-inf-identity:
(z~y)Ny=y
{proof)

lemma implies-itself-same:
T T =y oy
(proof)

end

The following class gives equational axioms for the relative pseudocom-
plement operation (inequalities can be written as equations).
class heyting-semilattice-eq = semilattice-inf + implies +
assumes implies-mp-below: © M (z ~ y) < y
and implies-galois-increasing: © < y ~» (x M y)
and implies-isotone-inf: © ~ (y M z) <z~ y
begin

subclass heyting-semilattice
(proof)

end

The following class allows us to explicitly give the pseudocomplement of
an element relative to itself.

class bounded-heyting-semilattice = bounded-semilattice-inf-top +
heyting-semilattice
begin

lemma implies-itself [simp]:

T~ T = top
{proof)

27

lemma implies-order:
T < yé&— 1z~ y=top
(proof)

lemma inf-implies [simp]:
(x M y) ~ x = top
{proof)

lemma top-implies [simpl:
top ~» T =1
(proof)

end

3.3.2 Heyting Lattices

We obtain further properties if the underlying structure is a lattice. In
particular, the lattice operations are automatically distributive in this case.

class heyting-lattice = lattice + heyting-semilattice
begin

lemma sup-distrib-inf-le:
(zUy) N(zU2) <zU(yn2)
(proof)

subclass distrib-lattice
(proof)

lemma implies-isotone-sup:
x>y <z~ (yUz)
(proof)

lemma implies-antitone-sup:
(zUy) ~2z<z~ 2
(proof)

lemma implies-sup:
T2 < (Y~ z) (U y) ~ 2)

(proof)

lemma implies-dist-sup:
(zUy)~»z=(z~2)0(y~ 2)
(proof)

lemma implies-antitone-isotone:
(zUy)~(zNy) <z~y
(proof)

lemma implies-antisymmetry:

28

(z~y)N(y~z)=(zUy) ~ (zNy)
(proof)

lemma sup-inf-implies [simp]:
(zUy) M (z~y) =y
(proof)

lemma implies-subdist-sup:
(z~>y)U(z~2z2) <z~ (yU2)
(proof)

lemma implies-subdist-inf:
(2~ 2)U(y~2) < (zNy) 2z
(proof)

lemma implies-sup-absorb:
(2 y) Uz < (zU2)~ (yU 2)
(proof)

lemma sup-below-implies-implies:

tUy < (z~y) ~y

{proof)

end

class bounded-heyting-lattice = bounded-lattice + heyting-lattice
begin

subclass bounded-heyting-semilattice (proof)

lemma implies-bot [simp]:
bot ~~ = = top

{proof)

end

3.3.3 Heyting Algebras

The pseudocomplement operation can be defined in Heyting algebras, but
it is typically not part of their signature. We add the definition as an axiom
so that we can use the class hierarchy, for example, to inherit results from
the class pd-algebra.
class heyting-algebra = bounded-heyting-lattice + uminus +

assumes uminus-eq: —x = x ~> bot
begin

subclass pd-algebra
(proof)

29

lemma boolean-implies-below:
—zUy<z~~y

(proof)

lemma negation-implies:
(2 y) = ——a N —y

(proof)

lemma double-negation-dist-implies:
(g~ y) = == =y
(proof)

end

The following class gives equational axioms for Heyting algebras.
class heyting-algebra-eq = bounded-lattice + implies + uminus +
assumes implies-mp-eq: © M (z ~ y) =z My
and implies-import-inf: x M ((x M y) ~ (z ~ 2)) =z M (y ~ 2)
and inf-inf-implies: z 1 ((z N y) ~ x) = 2
and uminus-eq-eq: —x = x ~> bot
begin

subclass heyting-algebra

(proof)

end

A relative pseudocomplement is not enough to obtain the Stone equation,
so we add it in the following class.
class heyting-stone-algebra = heyting-algebra +
assumes heyting-stone: —x U ——x = top
begin

subclass stone-algebra
(proof)

end

3.3.4 Brouwer Algebras

Brouwer algebras are dual to Heyting algebras. The dual pseudocomple-
ment of an element y relative to an element x is the least element whose
join with y is above z. We can now use the binary operation provided by
Boolean algebras in Isabelle/HOL because it is compatible with dual rela-
tive pseudocomplements (not relative pseudocomplements).

30

class brouwer-algebra = bounded-lattice + minus + uminus +
assumes minus-galois: t < y U z+— 1z — y < 2
and uminus-eq-minus: —x = top — x
begin

sublocale brouwer: heyting-algebra where inf = sup and less-eq = greater-eq
and less = greater and sup = inf and bot = top and top = bot and implies =
Az y.y—zx

(proof)

lemma curry-minus:
z—(yUz)=(x—y — 2z
(proof)

lemma minus-subdist-sup:
(z—2)U(y—2)<(zUy) — 2z
(proof)

lemma inf-sup-minus:
(zNyu(z—y ==
(proof)

end

3.4 Boolean Algebras

This section integrates Boolean algebras in the above hierarchy. In particu-
lar, we strengthen several results shown above.

context boolean-algebra
begin

Every Boolean algebra is a Stone algebra, a Heyting algebra and a
Brouwer algebra.

subclass stone-algebra
(proof)

sublocale heyting: heyting-algebra where implies = Az y . —x U y
(proof)

subclass brouwer-algebra

{proof)

lemma huntington-3 [simpl:
—(zU-yU—(-zUy =2
{proof)

lemma madduz-3-1:

rUd—-zrz=9yU—y
{proof)

31

lemma madduz-3-4:
zU(yU —y) =2zU—2
(proof)

lemma madduz-3-11 [simp]:
(zMy) U (zn—y) ==z
(proof)

lemma madduz-3-19:
(—zMNy)U(zNz)=(xUy) N(—zU2)
(proof)

lemma compl-inter-eq:
zcMNy=zNz= —aNy=—-zalz=y==z2
(proof)

lemma madduz-3-21 [simp]:
zU(—zNy)=zUy
{proof)

lemma shunting-1:
< y<+— xl —y = bot
{proof)

lemma uminus-involutive:
uminus o uminus = id
(proof)

lemma uminus-injective:
uminus o f = uminus o ¢ = f = ¢
(proof)

lemma conjugate-unique:
conjugate f g = conjugate fh = g = h
(proof)

lemma dual-additive-additive:
dual-additive (uminus o f) = additive f

{proof)

lemma conjugate-additive:
conjugate f g = additive f
(proof)

lemma conjugate-isotone:
conjugate f g = isotone f

(proof)

32

lemma conjugate-char-1:

C(;njugatefg<—> Vzy. . fan—(gy) <fazn—yAglyn —(fz)) <gyn
—T
(proof)

lemma conjugate-char-2:

conjugate f g <— fbot = bot A gbot =bot AN Vaxy.fzNy<flzMNgy) Ag
yNz<g(ynfz)

(proof)

lemma shunting:
zMNy<z<+—z<2zU—y

{proof)

lemma shunting-var:
zMN—y<z<+—z<zUy

(proof)

end
class non-trivial-stone-algebra = non-trivial-bounded-order + stone-algebra
class non-trivial-boolean-algebra = non-trivial-stone-algebra + boolean-algebra

end

4 Filters

This theory develops filters based on orders, semilattices, lattices and dis-
tributive lattices. We prove the ultrafilter lemma for orders with a least
element. We show the following structure theorems:

* The set of filters over a directed semilattice forms a lattice with a
greatest element.

x The set of filters over a bounded semilattice forms a bounded lattice.

x The set of filters over a distributive lattice with a greatest element
forms a bounded distributive lattice.

Another result is that in a distributive lattice ultrafilters are prime filters.
We also prove a lemma of Gratzer and Schmidt about principal filters.

We apply these results in proving the construction theorem for Stone
algebras (described in a separate theory). See, for example, [4, 5, 6, 9, 17]
for further results about filters.

theory Filters

imports Lattice-Basics

33

begin

4.1 Orders

This section gives the basic definitions related to filters in terms of orders.
The main result is the ultrafilter lemma.

context ord

begin

abbreviation down :: 'a = ‘a set («|-» [81] 80)
where |z ={y.y <=z}

abbreviation down-set :: ‘a set = 'a set (|- [81] 80)
where X ={y.3zeX .y <=z}

abbreviation is-down-set :: 'a set = bool
where is-down-set X =VzeX . Vy.y <z — yeX

abbreviation is-principal-down :: 'a set = bool
where is-principal-down X = 3z . X = |z

abbreviation up :: ‘a = ‘a set (<1~ [81] 80)
where fz={y .2z <y}

abbreviation up-set :: ‘a set = 'a set (<t~ [81] 80)
where 1 X ={y.32eX . z<y}

abbreviation is-up-set :: ‘a set = bool
where is-up-set X =VzeX . Vy .z <y — yeX

abbreviation is-principal-up :: 'a set = bool
where is-principal-up X = Jx . X = Tz
A filter is a non-empty, downward directed, up-closed set.

definition filter :: ‘a set = bool
where filter F = (F # {}) AN (Vz€F .VyeF .3zeF . 2 <z AN z<y) A
is-up-set F'

abbreviation proper-filter :: 'a set = bool
where proper-filter F' = filter F N F # UNIV

abbreviation ultra-filter :: 'a set = bool
where ultra-filter F = proper-filter F N (V G . proper-filler G AN F C G — F

abbreviation filters :: 'a set set
where filters = { F::'a set . filter F }

34

lemma filter-map-filter:
assumes filter I’
and mono f
andVzy.fe<y— Fz.2<zANy=f2)
shows filter (f ‘ F)
(proof)

end

context order
begin

lemma self-in-downset [simp]:
x € lx

(proof)

lemma self-in-upset [simp]:
x €Tz
{proof)

lemma up-filter [simp]:
filter (1)
{proof)

lemma up-set-up-set [simpl:
is-up-set (1X)
(proof)

lemma up-injective:
Te=Ty=uz=y
(proof)

lemma up-antitone:
r<y<+—TyCtz
(proof)

end

context order-bot
begin

lemma bot-in-downset [simp]:
bot € |z
{proof)

lemma down-bot [simpl:

Jbot = {bot}
(proof)

35

lemma up-bot [simpl:
Thot = UNIV
{proof)

The following result is the ultrafilter lemma, generalised from [9, 10.17]
to orders with a least element. Its proof uses Isabelle/HOL’s Zorn-Lemma,
which requires closure under union of arbitrary (possibly empty) chains.
Actually, the proof does not use any of the underlying order properties except
bot-least.

lemma ultra-filter:
assumes proper-filter F
shows 3 G . ultra-filter G N F C G

(proof)

end

context order-top
begin

lemma down-top [simp):
Jtop = UNIV
{proof)

lemma top-in-upset [simp]:
top € Tz
(proof)

lemma up-top [simp]:
Ttop = {top}
(proof)

lemma filter-top [simp):
filter {top}
(proof)

lemma top-in-filter [simp):
filter F = top € F
(proof)

end

The existence of proper filters and ultrafilters requires that the underly-
ing order contains at least two elements.
context non-trivial-order

begin

lemma proper-filter-exists:
3F . proper-filter F
(proof)

36

end

context non-trivial-order-bot
begin

lemma ultra-filter-exists:
3F . ultra-filter F

{proof)

end

context non-trivial-bounded-order
begin

lemma proper-filter-top:
proper-filter {top}
(proof)

lemma ultra-filter-top:
3G . ultra-filter G A top € G

{proof)

end

4.2 Lattices

This section develops the lattice structure of filters based on a semilattice
structure of the underlying order. The main results are that filters over a
directed semilattice form a lattice with a greatest element and that filters
over a bounded semilattice form a bounded lattice.

context semilattice-sup
begin

abbreviation prime-filter :: 'a set = bool
where prime-filter F' = proper-filker FA NVzy .2 UyeF —xz € FVyckF)

end

context semilattice-inf
begin

lemma filter-inf-closed:
fiter F —=z2ze€ F —=yeF=zaNyeckF

(proof)

lemma filter-univ:

filter UNIV
(proof)

37

The operation filter-sup is the join operation in the lattice of filters.

definition filter-sup F G ={ z . Jz€F . JyeG .2 Ny <z}

lemma filter-sup:
assumes filter F
and filter G
shows filter (filter-sup F Q)

(proof)

lemma filter-sup-left-upper-bound:
assumes filter G
shows F' C filter-sup F G

(proof)

lemma filter-sup-symmetric:
filter-sup F G = filter-sup G F
(proof)

lemma filter-sup-right-upper-bound:
filter F = G C filter-sup F G
(proof)

lemma filter-sup-least-upper-bound:
assumes filter H
and F C H
and G C H
shows filter-sup FF G C H

(proof)

lemma filter-sup-left-isotone:
G C H = filter-sup G F C filter-sup H F
(proof)

lemma filter-sup-right-isotone:
G C H = filter-sup F G C filter-sup FF H
(proof)

lemma filter-sup-right-isotone-var:
filter-sup F (G N H) C filter-sup F H
(proof)

lemma up-dist-inf:
Tz My) = filter-sup (1) (Ty)
(proof)

The following result is part of [9, Exercise 2.23].

lemma filter-inf-filter [simp]:
assumes filter F'
shows filter (f{ y . 3z€F .z Nz = y})

38

(proof)

end
context directed-semilattice-inf
begin
Set intersection is the meet operation in the lattice of filters.

lemma filter-inf:
assumes filter F
and filter G
shows filter (F N G)

(proof)

end

We introduce the following type of filters to instantiate the lattice classes
and thereby inherit the results shown about lattices.

typedef (overloaded) ‘a filter = { F::'a::order set . filter F }
{proof)

lemma simp-filter [simp):
filter (Rep-filter x)
{proof)

setup-lifting type-definition-filter

The set of filters over a directed semilattice forms a lattice with a greatest
element.

instantiation filter :: (directed-semilattice-inf) bounded-lattice-top
begin

lift-definition top-filter :: 'a filter is UNIV
(proof)

lift-definition sup-filter :: 'a filter = 'a filter = 'a filter is filter-sup
(proof)

lift-definition inf-filter :: 'a filter = 'a filter = 'a filter is inter
(proof)

lift-definition less-eg-filter :: 'a filter = 'a filter = bool is subset-eq (proof)
lift-definition less-filter :: 'a filter = 'a filter = bool is subset (proof)

instance
(proof)

end

39

context bounded-semilattice-inf-top
begin

abbreviation filter-complements F' G = filter F N\ filter G A filter-sup F G =
UNIV A F N G = {top}

end

The set of filters over a bounded semilattice forms a bounded lattice.

instantiation filter :: (bounded-semilattice-inf-top) bounded-lattice
begin

lift-definition bot-filter :: 'a filter is {top}
(proof)

instance
(proof)

end

context lattice
begin

lemma up-dist-sup:
Nz Uy =TzN1Ty
(proof)

end

For convenience, the following function injects principal filters into the
filter type. We cannot define it in the order class since the type filter requires
the sort constraint order that is not available in the class. The result of the
function is a filter by lemma up-filter.

abbreviation up-filter :: ‘a::order = 'a filter
where up-filter x = Abs-filter (Tz)

lemma up-filter-dist-inf:
up-filter ((x::'a:lattice) M y) = up-filter z U up-filter y
(proof)

lemma up-filter-dist-sup:
up-filter ((x::'a::lattice) U y) = up-filter x M up-filter y
(proof)

lemma up-filter-injective:
up-filter x = up-filter y —= v =1y
(proof)

40

lemma up-filter-antitone:
z < y +— up-filter y < up-filter x
(proof)

The following definition applies a function to each element of a filter. The
subsequent lemma gives conditions under which the result of this application
is a filter.

abbreviation filter-map :: (‘a::order = 'b::order) = 'a filter = b filter
where filter-map f F = Abs-filter (f ¢ Rep-filter F)

lemma filter-map-filter:
assumes mono f
andVzy.fz<y— 3z.2<zAy=/[2)
shows filter (f ¢ Rep-filter F)
(proof)

4.3 Distributive Lattices

In this section we additionally assume that the underlying order forms a
distributive lattice. Then filters form a bounded distributive lattice if the
underlying order has a greatest element. Moreover ultrafilters are prime
filters. We also prove a lemma of Grétzer and Schmidt about principal
filters.

context distrib-lattice
begin

lemma filter-sup-left-dist-inf:
assumes filter F'
and filter G
and filter H
shows filter-sup F (G N H) = filter-sup F G N filter-sup F H
(proof)

lemma filter-inf-principal-rep:
FNG="1= (JzeF .3ycG . z=z Uy)
(proof)

lemma filter-sup-principal-rep:
assumes filter F’
and filter G
and filter-sup F G = 1z
shows JzeF . JyeG .z =22 My
(proof)

lemma inf-sup-principal-auz:
assumes filter F
and filter G
and is-principal-up (filter-sup F G)

41

and is-principal-up (F N G)
shows is-principal-up F
(proof)

The following result is [18, Lemma II]. If both join and meet of two filters
are principal filters, both filters are principal filters.
lemma inf-sup-principal:
assumes filter F
and filter G
and is-principal-up (filter-sup F G)
and is-principal-up (F N G)
shows is-principal-up F N is-principal-up G

(proof)

lemma filter-sup-absorb-inf: filter F — filter G = filter-sup (F N G) G = G
(proof)

lemma filter-inf-absorb-sup: filter F — filter G = filter-sup F G N G = G
(proof)

lemma filter-inf-right-dist-sup:
assumes filter F
and filter G
and filter H
shows filter-sup FF G N H = filter-sup (F N H) (G N H)

(proof)

The following result generalises [9, 10.11] to distributive lattices as re-
marked after that section.

lemma ultra-filter-prime:
assumes ultra-filter F
shows prime-filter F

(proof)
lemma up-dist-inf-inter:

assumes is-up-set S
shows Tz M y) N S = filter-sup (tz N S) (ty N S) N S

(proof)
end

context distrib-lattice-bot
begin

lemma prime-filter:
proper-filter F —> 3 G . prime-filter G N F C G

{proof)

end

42

context distrib-lattice-top
begin

lemma complemented-filter-inf-principal:
assumes filter-complements F G
shows is-principal-up (F N 1x)
(proof)

end

The set of filters over a distributive lattice with a greatest element forms
a bounded distributive lattice.

instantiation filter :: (distrib-lattice-top) bounded-distrib-lattice
begin

instance

(proof)
end

end

5 Stone Construction

This theory proves the uniqueness theorem for the triple representation of
Stone algebras and the construction theorem of Stone algebras [7, 21]. Every
Stone algebra S has an associated triple consisting of

* the set of regular elements B(S) of S,
 the set of dense elements D(S) of S, and

% the structure map ¢(S) : B(S) — F(D(S)) defined by ¢(x) = Tz N
D(S).

Here F'(X) is the set of filters of a partially ordered set X. We first show
that

* B(S) is a Boolean algebra,

x D(S) is a distributive lattice with a greatest element, whence F'(D(S))
is a bounded distributive lattice, and

* (9) is a bounded lattice homomorphism.

Next, from a triple 7' = (B, D,) such that B is a Boolean algebra, D
is a distributive lattice with a greatest element and ¢ : B — F(D) is a
bounded lattice homomorphism, we construct a Stone algebra S(T"). The

43

elements of S(T") are pairs taken from B x F(D) following the construction
of [21]. We need to represent S(T') as a type to be able to instantiate the
Stone algebra class. Because the pairs must satisfy a condition depending
on ¢, this would require dependent types. Since Isabelle/HOL does not have
dependent types, we use a function lifting instead. The lifted pairs form a
Stone algebra.

Next, we specialise the construction to start with the triple associated
with a Stone algebra S, that is, we construct S(B(S), D(S),¢(S)). In this
case, we can instantiate the lifted pairs to obtain a type of pairs (that no
longer implements a dependent type). To achieve this, we construct an
embedding of the type of pairs into the lifted pairs, so that we inherit the
Stone algebra axioms (using a technique of universal algebra that works for
universally quantified equations and equational implications).

Next, we show that the Stone algebras S(B(S), D(S5),¢(S)) and S are
isomorphic. We give explicit mappings in both directions. This implies the
uniqueness theorem for the triple representation of Stone algebras.

Finally, we show that the triples (B(S(T)), D(S(T)), ¢(S(T))) and T are
isomorphic. This requires an isomorphism of the Boolean algebras B and
B(S(T)), an isomorphism of the distributive lattices D and D(S(T)), and a
proof that they preserve the structure maps. We give explicit mappings of
the Boolean algebra isomorphism and the distributive lattice isomorphism
in both directions. This implies the construction theorem of Stone algebras.
Because S(T) is implemented by lifted pairs, so are B(S(7T)) and D(S(T));
we therefore also lift B and D to establish the isomorphisms.

theory Stone-Construction
imports P-Algebras Filters

begin

A triple consists of a Boolean algebra, a distributive lattice with a great-
est element, and a structure map. The Boolean algebra and the distributive
lattice are represented as HOL types. Because both occur in the type of the
structure map, the triple is determined simply by the structure map and
its HOL type. The structure map needs to be a bounded lattice homomor-
phism.

locale triple =
fixes phi :: 'a::boolean-algebra = 'b::distrib-lattice-top filter
assumes hom: bounded-lattice-homomorphism phi

5.1 The Triple of a Stone Algebra

In this section we construct the triple associated to a Stone algebra.

44

5.1.1 Regular Elements

The regular elements of a Stone algebra form a Boolean subalgebra.

typedef (overloaded) 'a regular = regular-elements::'a::stone-algebra set
{proof)

lemma simp-regular [simp]:
Jy . Rep-regular x = —vy
{proof)

setup-lifting type-definition-regular

instantiation regular :: (stone-algebra) boolean-algebra
begin

lift-definition sup-regular :: 'a reqular = 'a regular = 'a regular is sup
(proof)

lift-definition inf-reqular :: ‘a reqular = 'a reqular = 'a regular is inf
(proof)

lift-definition minus-regular :: ’'a reqular = 'a regular = 'a regular is Az y . x
M-y
(proof)

lift-definition uminus-regular :: 'a reqular = 'a reqular is uminus
(proof)

lift-definition bot-regular :: 'a regular is bot
(proof)

lift-definition top-regular :: 'a regular is top
(proof)

lift-definition less-eg-regular :: 'a reqular = 'a reqular = bool is less-eq {proof)
lift-definition less-reqular :: 'a reqular = 'a regular = bool is less {proof)

instance
(proof)

end

instantiation regular :: (non-trivial-stone-algebra) non-trivial-boolean-algebra
begin

instance
(proof)

45

end

5.1.2 Dense Elements

The dense elements of a Stone algebra form a distributive lattice with a
greatest element.

typedef (overloaded) 'a dense = dense-elements::'a::stone-algebra set
(proof)

lemma simp-dense [simp):
— Rep-dense x = bot
(proof)

setup-lifting type-definition-dense

instantiation dense :: (stone-algebra) distrib-lattice-top
begin

lift-definition sup-dense :: 'a dense = 'a dense = 'a dense is sup
(proof)

lift-definition inf-dense :: 'a dense = 'a dense = 'a dense is inf
(proof)

lift-definition top-dense :: 'a dense is top
(proof)

lift-definition less-eg-dense :: ‘a dense = 'a dense = bool is less-eq {proof)
lift-definition less-dense :: 'a dense = 'a dense = bool is less (proof)

instance
(proof)

end

lemma up-filter-dense-antitone-dense:
dense (x U —x U y) A dense (x U —x U y U 2)

{proof)

lemma up-filter-dense-antitone:
up-filter (Abs-dense (x U —x U y U 2)) < up-filter (Abs-dense (z U —z U y))
(proof)

The filters of dense elements of a Stone algebra form a bounded distribu-
tive lattice.

type-synonym ‘a dense-filter = 'a dense filter

typedef (overloaded) ‘a dense-filter-type = { x::'a dense-filter . True }

46

(proof)
setup-lifting type-definition-dense-filter-type

instantiation dense-filter-type :: (stone-algebra) bounded-distrib-lattice
begin

lift-definition sup-dense-filter-type :: 'a dense-filter-type = 'a dense-filter-type
= 'a dense-filter-type is sup {proof)

lift-definition inf-dense-filter-type :: 'a dense-filter-type = 'a dense-filter-type =
'a dense-filter-type is inf (proof)

lift-definition bot-dense-filter-type :: 'a dense-filter-type is bot (proof)
lift-definition top-dense-filter-type :: 'a dense-filter-type is top {proof)

lift-definition less-eg-dense-filter-type :: 'a dense-filter-type = 'a dense-filter-type
= bool is less-eq (proof)

lift-definition less-dense-filter-type :: 'a dense-filter-type = 'a dense-filter-type
= bool is less (proof)

instance
(proof)

end

5.1.3 The Structure Map

The structure map of a Stone algebra is a bounded lattice homomorphism.
It maps a regular element z to the set of all dense elements above —xz. This
set is a filter.

abbreviation stone-phi-base :: 'a::stone-algebra regular = 'a dense set
where stone-phi-base x = { y . —Rep-regular x < Rep-dense y }

lemma stone-phi-base-filter:
filter (stone-phi-base x)

{proof)

definition stone-phi :: 'a::stone-algebra reqular = 'a dense-filter
where stone-phi x = Abs-filter (stone-phi-base x)

To show that we obtain a triple, we only need to prove that stone-phi is a
bounded lattice homomorphism. The Boolean algebra and the distributive
lattice requirements are taken care of by the type system.

interpretation stone-phi: triple stone-phi

{proof)

47

5.2 Properties of Triples

In this section we construct a certain set of pairs from a triple, introduce
operations on these pairs and develop their properties. The given set and
operations will form a Stone algebra.

context triple
begin

lemma phi-bot:
phi bot = Abs-filter {top}
(proof)

lemma phi-top:
phi top = Abs-filter UNIV
(proof)

The occurrence of phi in the following definition of the pairs creates a
need for dependent types.

definition pairs :: (‘a x 'b filter) set
where pairs = { (z,y) . 3z . y = phi (—x) U up-filter z }

Operations on pairs are defined in the following. They will be used to
establish that the pairs form a Stone algebra.
fun pairs-less-eq :: ('a x 'b filter) = (‘a x 'b filter) = bool
where pairs-less-eq (z,y) (z,w) = (z < 2 A w < y)

fun pairs-less :: (‘a x 'b filter) = (‘a x 'b filter) = bool
where pairs-less (z,y) (z,w) = (pairs-less-eq (z,y) (z,w) A = pairs-less-eq (z,w)

(z,y))

fun pairs-sup :: (‘a x 'b filter) = (‘a x 'b filter) = ('a x 'b filter)
where pairs-sup (z,y) (z,w) = (z U 2,y M w)

fun pairs-inf :: (‘a x b filter) = (‘a x 'b filter) = (‘a x 'b filter)
where pairs-inf (z,y) (z,w) = (z M 2,y U w)

fun pairs-minus = (‘a x b filter) = ('a x 'b filter) = (‘a x 'b filter)
where pairs-minus (z,y) (z,w) = (z N —z,y U phi 2)

fun pairs-uminus :: (‘a x 'b filter) = (‘a x 'b filter)
where pairs-uminus (z,y) = (—z,phi x)

abbreviation pairs-bot :: (‘a x 'b filter)
where pairs-bot = (bot,Abs-filter UNIV)

abbreviation pairs-top :: (‘a x 'b filter)
where pairs-top = (top,Abs-filter {top})

lemma pairs-top-in-set:

48

(z,y) € pairs = top € Rep-filter y
(proof)

lemma phi-complemented:
complement (phi) (phi (—x))
(proof)

lemma phi-inf-principal:
dz . up-filter z = phi x M up-filter y
(proof)

Quite a bit of filter theory is involved in showing that the intersection
of phi x with a principal filter is a principal filter, so the following function
can extract its least element.

fun rho :: 'a = b= b
where rho z y = (SOME z . up-filter z = phi x M up-filter y)

lemma rho-char:
up-filter (rho x y) = phi x M up-filter y
(proof)
The following results show that the pairs are closed under the given
operations.
lemma pairs-sup-closed:
assumes (z,y) € pairs
and (z,w) € pairs
shows pairs-sup (z,y) (z,w) € pairs
(proof)

lemma pairs-inf-closed:
assumes (z,y) € pairs
and (z,w) € pairs
shows pairs-inf (z,y) (z,w) € pairs
(proof)

lemma pairs-uminus-closed:
pairs-uminus (z,y) € pairs

{proof)

lemma pairs-bot-closed:
pairs-bot € pairs

{proof)

lemma pairs-top-closed:
pairs-top € pairs
(proof)
We prove enough properties of the pair operations so that we can later
show they form a Stone algebra.

49

lemma pairs-sup-dist-inf:

(z,y) € pairs = (z,w) € pairs = (u,v) € pairs = pairs-sup (z,y) (pairs-inf
(zyw) (u,v)) = pairs-inf (pairs-sup (z,y) (z,w)) (pairs-sup (z,y) (u,v))

(proof)

lemma pairs-phi-less-eq:
(z,y) € pairs = phi (—z) <y
(proof)

lemma pairs-uminus-galois:
assumes (z,y) € pairs
and (z,w) € pairs
shows pairs-inf (z,y) (z,w) = pairs-bot <— pairs-less-eq (z,y) (pairs-uminus
(2,0))
{proof)

lemma pairs-stone:

(z,y) € pairs = pairs-sup (pairs-uminus (z,y)) (pairs-uminus (pairs-uminus
(z,9))) = pairs-top

(proof)

The following results show how the regular elements and the dense ele-

ments among the pairs look like.
abbreviation dense-pairs = { (z,y) . (z,y) € pairs A\ pairs-uminus (z,y) =
pairs-bot }
abbreviation reqular-pairs = { (z,y) . (z,y) € pairs A\ pairs-uminus

(pairs-uminus (z,y)) = (z,y) }
abbreviation is-principal-up-filter t = 3y . x = up-filter y

lemma dense-pairs:
dense-pairs = { (z,y) . * = top N is-principal-up-filter y }
(proof)

lemma regular-pairs:
reqular-pairs = { (x,y) . y = phi (—z) }
(proof)
The following extraction function will be used in defining one direction
of the Stone algebra isomorphism.

fun rho-pair :: 'a x 'b filter = b
where rho-pair (z,y) = (SOME z . up-filter z = phi z M y)

lemma get-rho-pair-char:
assumes (z,y) € pairs
shows up-filter (rho-pair (z,y)) = phi z My
(proof)

lemma sa-iso-pair:
(——z,phi (—z) U up-filter y) € pairs

50

{proof)

end

5.3 The Stone Algebra of a Triple

In this section we prove that the set of pairs constructed in a triple forms a
Stone Algebra. The following type captures the parameter phi on which the
type of triples depends. This parameter is the structure map that occurs
in the definition of the set of pairs. The set of all structure maps is the
set of all bounded lattice homomorphisms (of appropriate type). In order
to make it a HOL type, we need to show that at least one such structure
map exists. To this end we use the ultrafilter lemma: the required bounded
lattice homomorphism is essentially the characteristic map of an ultrafilter,
but the latter must exist. In particular, the underlying Boolean algebra
must contain at least two elements.

typedef (overloaded) (‘a,’d) phi = { f::’a::non-trivial-boolean-algebra =

'b:: distrib-lattice-top filter . bounded-lattice-homomorphism f }
(proof)

lemma simp-phi [simp]:
bounded-lattice-homomorphism (Rep-phi x)
(proof)

setup-lifting type-definition-phi

The following implements the dependent type of pairs depending on
structure maps. It uses functions from structure maps to pairs with the
requirement that, for each structure map, the corresponding pair is contained
in the set of pairs constructed for a triple with that structure map.

If this type could be defined in the locale triple and instantiated to Stone
algebras there, there would be no need for the lifting and we could work with
triples directly.
typedef (overloaded) (’a,’d) lifted-pair = {
pf::("a::non-trivial-boolean-algebra,'b:: distrib-lattice-top) phi = 'a x 'b filter . V[.
pf f € triple.pairs (Rep-phi f) }

(proof)

lemma simp-lifted-pair [simp):
YV f . Rep-lifted-pair pf f € triple.pairs (Rep-phi f)
(proof)
setup-lifting type-definition-lifted-pair
The lifted pairs form a Stone algebra.

instantiation lifted-pair :: (non-trivial-boolean-algebra,distrib-lattice-top)
stone-algebra

o1

begin
All operations are lifted point-wise.

lift-definition sup-lifted-pair :: ('a,’d) lifted-pair = ('a,’d) lifted-pair = ('a,’d)
lifted-pair is Azf yf [. triple.pairs-sup (zf f) (yf f)
(proof)

lift-definition inf-lifted-pair :: ('a,’d) lifted-pair = (‘a,’d) lifted-pair = ('a,’d)
lifted-pair is Aaf yf [. triple.pairs-inf («f f) (yf f)
(proof)

lift-definition uminus-lifted-pair :: ('a,’d) lifted-pair = ('a,’d) lifted-pair is \zf f
. triple.pairs-uminus (Rep-phi f) (zf f)
(proof)

lift-definition bot-lifted-pair :: ('a,’d) lifted-pair is \f . triple.pairs-bot
(proof)

lift-definition top-lifted-pair :: ('a,’d) lifted-pair is Af . triple.pairs-top
(proof)

lift-definition less-eg-lifted-pair :: (‘a,’d) lifted-pair = (‘a,’d) lifted-pair = bool
is \af yf . V[. triple.pairs-less-eq (zf f) (yf f) {proof)

lift-definition less-lifted-pair :: ('a,’d) lifted-pair = ('a,’d) lifted-pair = bool is
Azfyf . (Vf . triple.pairs-less-eq (zf f) (yf [)) A = (Vf . triple.pairs-less-eq (yf f)
(zf f)) (proof)

instance

(proof)

end

5.4 The Stone Algebra of the Triple of a Stone Algebra

In this section we specialise the above construction to a particular structure
map, namely the one obtained in the triple of a Stone algebra. For this
particular structure map (as well as for any other particular structure map)
the resulting type is no longer a dependent type. It is just the set of pairs
obtained for the given structure map.

typedef (overloaded) ‘a stone-phi-pair = triple.pairs
(stone-phi::'a::stone-algebra regular = 'a dense-filter)
(proof)

setup-lifting type-definition-stone-phi-pair
instantiation stone-phi-pair :: (stone-algebra) sup-inf-top-bot-uminus-ord

begin

52

lift-definition sup-stone-phi-pair :: 'a stone-phi-pair = 'a stone-phi-pair = 'a
stone-phi-pair is triple.pairs-sup
(proof)

lift-definition inf-stone-phi-pair :: 'a stone-phi-pair = 'a stone-phi-pair = 'a
stone-phi-pair is triple.pairs-inf
(proof)

lift-definition uminus-stone-phi-pair :: 'a stone-phi-pair = 'a stone-phi-pair is
triple.pairs-uminus stone-phi

{proof)

lift-definition bot-stone-phi-pair :: 'a stone-phi-pair is triple.pairs-bot
(proof)

lift-definition top-stone-phi-pair :: 'a stone-phi-pair is triple.pairs-top
(proof)

lift-definition less-eq-stone-phi-pair :: 'a stone-phi-pair = 'a stone-phi-pair =
bool is triple.pairs-less-eq (proof)

lift-definition less-stone-phi-pair :: 'a stone-phi-pair = 'a stone-phi-pair = bool
is triple.pairs-less (proof)

instance (proof)

end

The result is a Stone algebra and could be proved so by repeating and
specialising the above proof for lifted pairs. We choose a different approach,
namely by embedding the type of pairs into the lifted type. The embedding
injects a pair z into a function as the value at the given structure map;
this makes the embedding injective. The value of the function at any other
structure map needs to be carefully chosen so that the resulting function is a
Stone algebra homomorphism. We use ——uz, which is essentially a projection
to the regular element component of z, whence the image has the structure
of a Boolean algebra.
fun stone-phi-embed :: 'a::non-trivial-stone-algebra stone-phi-pair = ('a regular,’a
dense) lifted-pair

where stone-phi-embed v = Abs-lifted-pair (Af . if Rep-phi f = stone-phi then
Rep-stone-phi-pair x else triple.pairs-uminus (Rep-phi f) (triple.pairs-uminus
(Rep-phi f) (Rep-stone-phi-pair)))

The following lemma shows that in both cases the value of the function
is a valid pair for the given structure map.

lemma stone-phi-embed-triple-pair:
(if Rep-phi f = stone-phi then Rep-stone-phi-pair z else triple.pairs-uminus

93

(Rep-phi f) (triple.pairs-uminus (Rep-phi f) (Rep-stone-phi-pair z))) €
triple.pairs (Rep-phi f)
(proof)

The following result shows that the embedding preserves the operations
of Stone algebras. Of course, it is not (yet) a Stone algebra homomorphism
as we do not know (yet) that the domain of the embedding is a Stone algebra.
To establish the latter is the purpose of the embedding.

lemma stone-phi-embed-homomorphism:
sup-inf-top-bot-uminus-ord-homomorphism stone-phi-embed

{proof)

The following lemmas show that the embedding is injective and reflects
the order. The latter allows us to easily inherit properties involving in-
equalities from the target of the embedding, without transforming them to
equations.

lemma stone-phi-embed-injective:
inj stone-phi-embed

(proof)

lemma stone-phi-embed-order-injective:
assumes stone-phi-embed x < stone-phi-embed y
shows z < y

(proof)

lemma stone-phi-embed-strict-order-isomorphism:
T < y <— stone-phi-embed © < stone-phi-embed y

(proof)

Now all Stone algebra axioms can be inherited using the embedding.
This is due to the fact that the axioms are universally quantified equations
or conditional equations (or inequalities); this is called a quasivariety in
universal algebra. It would be useful to have this construction available for
arbitrary quasivarieties.

instantiation stone-phi-pair :: (non-trivial-stone-algebra) stone-algebra
begin

instance

(proof)

end

5.5 Stone Algebra Isomorphism

In this section we prove that the Stone algebra of the triple of a Stone algebra
is isomorphic to the original Stone algebra. The following two definitions
give the isomorphism.

54

abbreviation sa-iso-inv :: ‘a::non-trivial-stone-algebra stone-phi-pair = 'a
where sa-iso-inv = Ap . Rep-regular (fst (Rep-stone-phi-pair p)) M Rep-dense
(triple.rho-pair stone-phi (Rep-stone-phi-pair p))

abbreviation sa-iso :: 'a::non-trivial-stone-algebra = 'a stone-phi-pair
where sa-iso = Az . Abs-stone-phi-pair (Abs-reqular (——x),stone-phi
(Abs-regular (—z)) U up-filter (Abs-dense (z U —zx)))

lemma sa-iso-triple-pair:

(Abs-regular (——z),stone-phi (Abs-reqular (—z)) U up-filter (Abs-dense (z U
—1))) € triple.pairs stone-phi

(proof)

lemma stone-phi-inf-dense:

stone-phi (Abs-regular (—x)) M up-filter (Abs-dense (y U —y)) < up-filter
(Abs-dense (y U —y U z))
{proof)

lemma stone-phi-complement:
complement (stone-phi (Abs-regular (—x))) (stone-phi (Abs-regular (——z)))

(proof)

lemma up-dense-stone-phi:
up-filter (Abs-dense (x U —z)) < stone-phi (Abs-regular (——z))
(proof)
The following two results prove that the isomorphisms are mutually in-
verse.
lemma sa-iso-left-invertible:

sa-iso-inv (sa-iso) = x

(proof)

lemma sa-iso-right-invertible:
sa-iso (sa-iso-inv p) = p
(proof)
It remains to show the homomorphism properties, which is done in the
following result.
lemma sa-iso:

stone-algebra-isomorphism sa-iso

(proof)

5.6 Triple Isomorphism

In this section we prove that the triple of the Stone algebra of a triple is
isomorphic to the original triple. The notion of isomorphism for triples is
described in [7]. It amounts to an isomorphism of Boolean algebras, an iso-
morphism of distributive lattices with a greatest element, and a commuting
diagram involving the structure maps.

95

5.6.1 Boolean Algebra Isomorphism

We first define and prove the isomorphism of Boolean algebras. Because
the Stone algebra of a triple is implemented as a lifted pair, we also lift the
Boolean algebra.

typedef (overloaded) (’a,’d) lifted-boolean-algebra = {
zf ::(az:non-trivial-boolean-algebra,'b:: distrib-lattice-top) phi = 'a . True }
(proof)

setup-lifting type-definition-lifted-boolean-algebra

instantiation lifted-boolean-algebra ::
(non-trivial-boolean-algebra,distrib-lattice-top) boolean-algebra
begin

lift-definition sup-lifted-boolean-algebra :: ('a,’d) lifted-boolean-algebra = ('a,’d)
lifted-boolean-algebra = ('a,’'d) lifted-boolean-algebra is Azf yf f . sup (zf) (yf f)
{proof)

lift-definition inf-lifted-boolean-algebra :: ('a,’b) lifted-boolean-algebra = ('a,’d)
lifted-boolean-algebra = ('a,’d) lifted-boolean-algebra is Axf yf f . inf (zf) (yf f)
(proof)

lift-definition minus-lifted-boolean-algebra :: ('a,’d) lifted-boolean-algebra =
("a,’d) lifted-boolean-algebra = ('a,’d) lifted-boolean-algebra is Azf yf f . minus (zf
F) (f f) (proof)

lift-definition uminus-lifted-boolean-algebra :: ('a,’d) lifted-boolean-algebra =
('a,’d) lifted-boolean-algebra is Axf f . uminus (zf f) (proof)

lift-definition bot-lifted-boolean-algebra :: ('a,’d) lifted-boolean-algebra is Af . bot
(proof)

lift-definition top-lifted-boolean-algebra :: ('a,’d) lifted-boolean-algebra is Af . top
{proof)

lift-definition less-eg-lifted-boolean-algebra :: ('a,’d) lifted-boolean-algebra =
('a,’d) lifted-boolean-algebra = bool is \af yf . V[. less-eq (af) (yf f) (proof)

lift-definition less-lifted-boolean-algebra :: ('a,’d) lifted-boolean-algebra = ('a,’d)
lifted-boolean-algebra = bool is Axf yf . (Vf . less-eq (xf f) (yf f)) A= (V[.
less-eq (yf f) (af f)) (proof)

instance
(proof)

end

The following two definitions give the Boolean algebra isomorphism.

o6

abbreviation ba-iso-inv :: (‘a::non-trivial-boolean-algebra,’b:: distrib-lattice-top)
lifted-boolean-algebra = ('a,’d) lifted-pair reqular

where ba-iso-inv = Azf . Abs-reqular (Abs-lifted-pair (Af .
(Rep-lifted-boolean-algebra xf f,Rep-phi f (— Rep-lifted-boolean-algebra xf f))))

abbreviation ba-iso :: (‘a::non-trivial-boolean-algebra,’b:: distrib-lattice-top)
lifted-pair reqular = ('a,’d) lifted-boolean-algebra

where ba-iso = Apf . Abs-lifted-boolean-algebra (Af . fst (Rep-lifted-pair
(Rep-regular pf) f))

lemma ba-iso-inv-lifted-pair:

(Rep-lifted-boolean-algebra zf f,Rep-phi f (— Rep-lifted-boolean-algebra zf f)) €
triple.pairs (Rep-phi f)

(proof)

lemma ba-iso-inv-regular:
reqular (Abs-lifted-pair (Af . (Rep-lifted-boolean-algebra xf f,Rep-phi f
(= Rep-lifted-boolean-algebra zf f))))
(proof)
The following two results prove that the isomorphisms are mutually in-
verse.
lemma ba-iso-left-invertible:

ba-iso-inv (ba-iso pf) = pf
(proof)

lemma ba-iso-right-invertible:

ba-iso (ba-iso-inv zf) = zf
(proof)

The isomorphism is established by proving the remaining Boolean alge-

bra homomorphism properties.
lemma ba-iso:

boolean-algebra-isomorphism ba-iso
(proof)

5.6.2 Distributive Lattice Isomorphism

We carry out a similar development for the isomorphism of distributive
lattices. Again, the original distributive lattice with a greatest element needs
to be lifted to match the lifted pairs.

typedef (overloaded) (‘a,’d) lifted-distrib-lattice-top = {

zf ::(az:non-trivial-boolean-algebra, 'b:: distrib-lattice-top) phi = 'b . True }
(proof)

setup-lifting type-definition-lifted-distrib-lattice-top

instantiation lifted-distrib-lattice-top ::
(non-trivial-boolean-algebra,distrib-lattice-top) distrib-lattice-top

o7

begin

lift-definition sup-lifted-distrib-lattice-top :: ('a,’d) lifted-distrib-lattice-top =
('a,’d) lifted-distrib-lattice-top = ('a,’d) lifted-distrib-lattice-top is Azf yf f . sup
(zf f) (uf) (proof)

lift-definition inf-lifted-distrib-lattice-top :: (‘a,’d) lifted-distrib-lattice-top =
('a,’d) lifted-distrib-lattice-top = ('a,’d) lifted-distrib-lattice-top is Axf yf f . inf
(zf f) (uf f) (proof)

lift-definition top-lifted-distrib-lattice-top :: ('a,’b) lifted-distrib-lattice-top is \f .
top {proof)

lift-definition less-eg-lifted-distrib-lattice-top :: ('a,’d) lifted-distrib-lattice-top =
('a,’d) lifted-distrib-lattice-top = bool is Aaf yf . V[. less-eq (zf f) (yf f) (proof)

lift-definition less-lifted-distrib-lattice-top :: ('a,’d) lifted-distrib-lattice-top =
('a,’d) lifted-distrib-lattice-top = bool is \zf yf . (V[. less-eq (zf) (uf f)) A —
(Vf . less-eq (yf f) (af [)) (proof)

instance

{proof)

end

The following function extracts the least element of the filter of a dense
pair, which turns out to be a principal filter. It is used to define one of the
isomorphisms below.

fun get-dense :: (‘a::non-trivial-boolean-algebra,’d:: distrib-lattice-top) lifted-pair
dense = ('a,’b) phi = 'b

where get-dense pf f = (SOME z . Rep-lifted-pair (Rep-dense pf) [=
(top,up-filter z2))

lemma get-dense-char:
Rep-lifted-pair (Rep-dense pf) f = (top,up-filter (get-dense pf f))
(proof)

The following two definitions give the distributive lattice isomorphism.

abbreviation dl-iso-inv :: ('a:non-trivial-boolean-algebra,’d:: distrib-lattice-top)
lifted-distrib-lattice-top = ('a,’d) lifted-pair dense

where di-iso-inv = Azf . Abs-dense (Abs-lifted-pair (Af . (top,up-filter
(Rep-lifted-distrib-lattice-top zf f))))

abbreviation dl-iso :: ('a::non-trivial-boolean-algebra,’b:: distrib-lattice-top)
lifted-pair dense = ('a,’b) lifted-distrib-lattice-top
where di-iso = Apf . Abs-lifted-distrib-lattice-top (get-dense pf)

lemma di-iso-inv-lifted-pair:
(top,up-filter (Rep-lifted-distrib-lattice-top zf f)) € triple.pairs (Rep-phi f)

o8

{proof)

lemma di-iso-inv-dense:
dense (Abs-lifted-pair (\f . (top,up-filter (Rep-lifted-distrib-lattice-top xf f))))
(proof)

The following two results prove that the isomorphisms are mutually in-
verse.

lemma di-iso-left-invertible:
dl-iso-inv (dl-iso pf) = pf
(proof)

lemma di-iso-right-invertible:
dl-iso (dl-iso-inv af) = zf
(proof)

To obtain the isomorphism, it remains to show the homomorphism prop-
erties of lattices with a greatest element.

lemma dl-iso:
bounded-lattice-top-isomorphism dl-iso

(proof)

5.6.3 Structure Map Preservation

We finally show that the isomorphisms are compatible with the structure
maps. This involves lifting the distributive lattice isomorphism to filters of
distributive lattices (as these are the targets of the structure maps). To this
end, we first show that the lifted isomorphism preserves filters.
lemma phi-iso-filter:

filter ((Agqf::("a::non-trivial-boolean-algebra,’d:: distrib-lattice-top) lifted-pair dense
. Rep-lifted-distrib-lattice-top (dl-iso qf) f) ¢ Rep-filter (stone-phi pf))
(proof)

The commutativity property states that the same result is obtained in
two ways by starting with a regular lifted pair pf:

x apply the Boolean algebra isomorphism to the pair; then apply a struc-
ture map f to obtain a filter of dense elements; or,

* apply the structure map stone-phi to the pair; then apply the distribu-
tive lattice isomorphism lifted to the resulting filter.

lemma phi-iso:

Rep-phi f (Rep-lifted-boolean-algebra (ba-iso pf) f) = filter-map
(Agf::('az:non-trivial-boolean-algebra,'b:: distrib-lattice-top) lifted-pair dense .
Rep-lifted-distrib-lattice-top (dl-iso qf) f) (stone-phi pf)

(proof)

end

99

References

[1]

2]

A. Armstrong, S. Foster, G. Struth, and T. Weber. Relation algebra.
Archive of Formal Proofs, 2016, first version 2014.

A. Armstrong, V. B. F. Gomes, and G. Struth. Kleene algebra with
tests and demonic refinement algebras. Archive of Formal Proofs, 2016,
first version 2014.

A. Armstrong, V. B. F. Gomes, G. Struth, and T. Weber. Kleene
algebra. Archive of Formal Proofs, 2016, first version 2013.

R. Balbes and P. Dwinger. Distributive Lattices. University of Missouri
Press, 1974.

G. Birkhoff. Lattice Theory, volume XXV of Colloguium Publications.
American Mathematical Society, third edition, 1967.

T. S. Blyth. Lattices and Ordered Algebraic Structures. Springer, 2005.

C. C. Chen and G. Gratzer. Stone lattices. I: Construction theorems.
Canadian Journal of Mathematics, 21:884-894, 19609.

H. B. Curry. Foundations of Mathematical Logic. Dover Publications,
1977.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, second edition, 2002.

J. Divasén and J. Aransay. Echelon form. Archive of Formal Proofs,
2016, first version 2015.

S. Foster and G. Struth. Regular algebras. Archive of Formal Proofs,
2016, first version 2014.

S. Foster, G. Struth, and T. Weber. Automated engineering of rela-
tional and algebraic methods in Isabelle/HOL. In H. de Swart, editor,
Relational and Algebraic Methods in Computer Science, volume 6663 of
Lecture Notes in Computer Science, pages 52—67. Springer, 2011.

H. Furusawa and G. Struth. Binary multirelations. Archive of Formal
Proofs, 2016, first version 2015.

G. Georgescu, L. Leustean, and V. Preoteasa. Pseudo-hoops. Archive
of Formal Proofs, 2016, first version 2011.

V. B. F. Gomes, W. Guttmann, P. Hoéfner, G. Struth, and T. Weber.
Kleene algebras with domain. Archive of Formal Proofs, 2016.

60

[16]

[17]

[18]

[19]

[20]

V. B. F. Gomes and G. Struth. Residuated lattices. Archive of Formal
Proofs, 2016, first version 2015.

G. Grétzer. Lattice Theory: First Concepts and Distributive Lattices.
W. H. Freeman and Co., 1971.

G. Gratzer and E. T. Schmidt. On ideal theory for lattices. Acta
Scientiarium Mathematicarum, 19(1-2):82-92, 1958.

W. Guttmann. Isabelle/HOL theories of algebras for iteration, infi-
nite executions and correctness of sequential computations. Technical
Report TR-COSC 02/15, University of Canterbury, 2015.

W. Guttmann. Relation-algebraic verification of Prim’s minimum span-
ning tree algorithm. In A. Sampaio and F. Wang, editors, Theoretical
Aspects of Computing — ICTAC 2016, volume 9965 of Lecture Notes in
Computer Science, pages 51-68. Springer, 2016.

T. Katrindk. A new proof of the construction theorem for Stone alge-
bras. Proceedings of the American Mathematical Society, 40(1):75-78,
1973.

G. Klein, R. Kolanski, and A. Boyton. Separation algebra. Archive of
Formal Proofs, 2016, first version 2012.

R. D. Maddux. Relation-algebraic semantics. Theoretical Comput. Sci.,
160(1-2):1-85, 1996.

V. Preoteasa. Algebra of monotonic Boolean transformers. Archive of
Formal Proofs, 2016, first version 2011.

V. Preoteasa. Lattice properties. Archive of Formal Proofs, 2016, first
version 2011.

M. Wampler-Doty. A complete proof of the Robbins conjecture. Archive
of Formal Proofs, 2016, first version 2010.

61

	Synopsis and Motivation
	Lattice Basics
	General Facts and Notations
	Orders
	Semilattices
	Lattices
	Linear Orders
	Non-trivial Algebras
	Homomorphisms

	Pseudocomplemented Algebras
	P-Algebras
	Pseudocomplemented Lattices
	Pseudocomplemented Distributive Lattices

	Stone Algebras
	Heyting Algebras
	Heyting Semilattices
	Heyting Lattices
	Heyting Algebras
	Brouwer Algebras

	Boolean Algebras

	Filters
	Orders
	Lattices
	Distributive Lattices

	Stone Construction
	The Triple of a Stone Algebra
	Regular Elements
	Dense Elements
	The Structure Map

	Properties of Triples
	The Stone Algebra of a Triple
	The Stone Algebra of the Triple of a Stone Algebra
	Stone Algebra Isomorphism
	Triple Isomorphism
	Boolean Algebra Isomorphism
	Distributive Lattice Isomorphism
	Structure Map Preservation

