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Abstract

Stochastic matrices are a convenient way to model discrete-time
and finite state Markov chains. The Perron—Frobenius theorem tells
us something about the existence and uniqueness of non-negative eigen-
vectors of a stochastic matrix.

In this entry, we formalize stochastic matrices, link the formal-
ization to the existing AFP-entry on Markov chains, and apply the
Perron-Frobenius theorem to prove that stationary distributions al-
ways exist, and they are unique if the stochastic matrix is irreducible.
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1 Introduction

In their AFP entry Markov Models [2], Hélzl and Nipkow provide a frame-
work for specifying discrete- and continuous-time Markov chains.

In the following, we instantiate their framework by formalizing right-
stochastic matrices and stochastic vectors. These vectors encode probability
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mass functions over a finite set of states, whereas stochastic matrices can be
utilized to model discrete-time and finite space Markov chains.

The formulation of Markov chains as matrices has the advantage that
certain concepts can easily be expressed via matrices. For instance, a sta-
tionary distribution is nothing else than a non-negative real eigenvector of
the transition matrix for eigenvalue 1. As a consequence, we can derive
certain properties on Markov chains using results on matrices. To be more
precise, we utilize the formalization of the Perron-Frobenius theorem [1] to
prove that a stationary distribution always exists, and that it is unique if
the transition matrix is irreducible.

2 Stochastic Matrices

We define a type for stochastic vectors and right-stochastic matrices, i.e.,
non-negative real vectors and matrices where the sum of each column is 1.
For this type we define a matrix-vector multplication, i.e., we show that Axwv
is a stochastic vector, if A is a right-stochastic matrix and v a stochastic
vector.

theory Stochastic-Matriz

imports Perron-Frobenius. Perron-Frobenius-Aux
begin

definition non-neg-vec :: 'a :: linordered-idom ~ 'n = bool where
non-neg-vec A = (V i. A$ > 0)

definition stoch-vec :: 'a :: comm-ring-1 ~ 'n = bool where

stoch-vec v = (sum (A i. v $ () UNIV = 1)

definition right-stoch-mat :: 'a :: comm-ring-1 ~ 'n ~ 'm = bool where
right-stoch-mat a = (V j. stoch-vec (column j a))

typedef i st-mat = { a :: real 7 'i " 'i. non-neg-mat a A right-stoch-mat a}
morphisms st-mat Abs-st-mat
(proof )

setup-lifting type-definition-st-mat

typedef 'i st-vec = { v :: real  'i. non-neg-vec v A stoch-vec v}
morphisms st-vec Abs-st-vec
{proof)

setup-lifting type-definition-st-vec
lift-definition transition-vec-of-st-mat :: 'i :: finite st-mat = 'i = 'i st-vec

is A a 7. column i a
(proof )



lemma non-neg-vec-st-vec: non-neg-vec (st-vec v)
{proof)

lemma non-neg-mat-mult-non-neg-vec: non-neg-mat a = non-neg-vec v —>
non-neg-vec (a *v v)
{proof)

lemma right-stoch-mat-mult-stoch-vec: assumes right-stoch-mat a and stoch-vec
v
shows stoch-vec (a *v v)

(proof)

lift-definition st-mat-times-st-vec :: 'i :: finite st-mat = 'i st-vec = 'i st-vec
(infix] ¢xsty 70) is (xv)
(proof )

lift-definition to-st-vec :: real ~ i = 'i st-vec is

A z. if stoch-vec x A non-neg-vec x then x else (x i. if i = undefined then 1 else
0)

(proof )

lemma right-stoch-mat-st-mat: right-stoch-mat (st-mat A)
(proof)

lemma non-neg-mat-st-mat: non-neg-mat (st-mat A)
(proof)

lemma st-mat-mult-st-vec: st-mat A xv st-vec X = st-vec (A xst X) (proof)

lemma st-vec-nonneg[simpl: st-vec x $ i > 0

(proof)

lemma st-mat-nonneg[simp|: st-mat z $ i $h j > 0
{proof)

end

3 Stochastic Vectors and Probability Mass Func-
tions

We prove that over a finite type, stochastic vectors and probability mass
functions are essentially the same thing: one can convert between both rep-
resentations.

theory Stochastic-Vector-PMF

imports Stochastic-Matrix

HOL— Probability. Probability- Mass- Function
begin



lemma sigma-algebra- UNIV-finite[simp|: sigma-algebra (UNIV :: 'a :: finite set)
UNIV
(proof )

definition measure-of-st-vec’ :: 'a st-vec = 'a :: finite set = ennreal where
measure-of-st-vec’ © I = sum (X i. st-vec x $ 7) I

lemma positive-measure-of-st-vec'[simp]: positive A (measure-of-st-vec’ x)
(proof )

lemma measure-space-measure-of-st-vec’: measure-space UNIV UNIV (measure-of-st-vec’
x)
(proof)

context begin
setup-lifting type-definition-measure

lift-definition measure-of-st-vec :: 'a st-vec = 'a :: finite measure is
X z. (UNIV, UNIV, measure-of-st-vec’ x)

(proof)

lemma sets-measure-of-st-vec[simp|: sets (measure-of-st-vec x) = UNIV
{proof)

lemma space-measure-of-st-vec[simp|: space (measure-of-st-vec ) = UNIV
{proof)

lemma emeasure-measure-of-st-vec[simp|: emeasure (measure-of-st-vec x) I =
sum (X i. stvec z $ i) I

(proof)

lemma prob-space-measure-of-st-vec: prob-space (measure-of-st-vec x)

(proof )
end

lift-definition st-vec-of-pmf :: i :: finite pmf = 'i st-vec is
A pmF. vec-lambda (pmf pmF)
(proof)

context pmf-as-measure
begin

lift-definition pmf-of-st-vec :
(proof )

‘a :: finite st-vec = 'a pmf is measure-of-st-vec

lemma st-vec-st-vec-of-pmf[simp):
st-vec (st-vec-of-pmf x) $ i = pmfx i
(proof )



lemma pmf-pmf-of-st-vec[simpl: pmf (pmf-of-st-vec z) i = st-vec x $ i
(proof )

lemma st-vec-of-pmf-pmf-of-st-vec[simp): st-vec-of-pmf (pmf-of-st-vec x) = x

(proof)

lemma pmf-of-st-vec-inj: (pmf-of-st-vec x = pmf-of-st-vec y) = (z = y)

(proof)
end

end

4 Stochastic Matrices and Markov Models

We interpret stochastic matrices as Markov chain with discrete time and
finite state and prove that the bind-operation on probability mass functions
is precisely matrix-vector multiplication. As a consequence, the notion of
stationary distribution is equivalent to being an eigenvector with eigenvalue
1.

theory Stochastic-Matriz-Markov-Models
imports
Markov-Models. Classifying- Markov- Chain-States
Stochastic-Vector-PMF
begin

definition transition-of-st-mat :: 'i st-mat = 'i :: finite = i pmf where
transition-of-st-mat a i = pmf-as-measure.pmf-of-st-vec (transition-vec-of-st-mat
a i)

lemma st-vec-transition-vec-of-st-mat[simp]:
st-vec (transition-vec-of-st-mat A a) $ i = st-mat A$ i $ a
{proof)

locale transition-matrix = pmf-as-measure +
fixes A :: i :: finite st-mat
begin
sublocale MC-syntaz transition-of-st-mat A (proof)

lemma measure-pmf-of-st-vec[simp|: measure-pmf (pmf-of-st-vec x) = measure-of-st-vec
T
(proof )

lemma pmj-transition-of-st-mat[simp]: pmf (transition-of-st-mat A a) i = st-mat
A$iSa
(proof )

lemma bind-is-matriz-vector-mult: (bind-pmf x (transition-of-st-mat A)) =
pmf-as-measure.pmf-of-st-vec (A xst st-vec-of-pmf x)
(proof)



lemmas stationary-distribution-alt-def =
stationary-distribution-def [unfolded bind-is-matriz-vector-mult]

lemma stationary-distribution-implies-pmf-of-st-vec:
assumes stationary-distribution N
shows 3 z. N = pmf-of-st-vec x

(proof)

lemma stationary-distribution-pmf-of-st-vec:
stationary-distribution (pmf-of-st-vec ) = (A xst © = )

(proof )
end

end

5 Eigenspaces

Using results on Jordan-Normal forms, we prove that the geometric multi-
plicity of an eigenvalue (i.e., the dimension of the eigenspace) is bounded by
the algebraic multiplicity of an eigenvalue (i.e., the multiplicity as root of
the characteristic polynomial.). As a consequence we derive that any two
eigenvectors of some eigenvalue with multiplicity 1 must be scalar multiples
of each other.

theory Figenspace

imports
Jordan-Normal-Form.Jordan-Normal-Form-Uniqueness
Perron-Frobenius. Perron- Frobenius- Aux

begin

hide-const (open) Coset.order

The dimension of every generalized eigenspace is bounded by the al-
gebraic multiplicity of an eigenvalue. Hence, in particular the geometric
multiplicity is smaller than the algebraic multiplicity.
lemma dim-gen-eigenspace-order-char-poly: assumes jnf: jordan-nf A n-as

shows dim-gen-eigenspace A lam k < order lam (char-poly A)
(proof)

Every eigenvector is contained in the eigenspace.

lemma cigenvector-mat-kernel-char-matriz: assumes A: A € carrier-mat n n
and ev: eigenvector A v lam
shows v € mat-kernel (char-matriz A lam)

{proof)

If the algebraic multiplicity is one, then every two eigenvectors are scalar
multiples of each other.

lemma unique-eigenvector-jnf: assumes jnf: jordan-nf (A :: 'a :: field mat) n-as
and ord: order lam (char-poly A) = 1



and ev: eigenvector A v lam eigenvector A w lam
shows 4 a. v =a -, w

(proof)
Getting rid of the JNF-assumption for complex matrices.

lemma unique-eigenvector-complexr: assumes A: A € carrier-mat n n
and ord: order lam (char-poly A :: complex poly) = 1
and ev: eigenvector A v lam eigenvector A w lam

shows 34 a. v =a -, w

(proof)
Convert the result to real matrices via homomorphisms.

lemma unique-eigenvector-real: assumes A: A € carrier-mat n n
and ord: order lam (char-poly A :: real poly) = 1
and ev: eigenvector A v lam eigenvector A w lam

shows 4 a. v=1a -, w

(proof)
Finally, the statement converted to HMA-world.

lemma unique-eigen-vector-real: assumes ord: order lam (charpoly A ::

=1
and ev: eigen-vector A v lam eigen-vector A w lam
shows 3 a. v = a *s w (proof)

end

real poly)

6 Stochastic Matrices and the Perron—Frobenius

Theorem

Since a stationary distribution corresponds to a non-negative real eigenvec-
tor of the stochastic matrix, we can apply the Perron—Frobenius theorem.
In this way we easily derive that every stochastic matrix has a stationary
distribution, and moreover that this distribution is unique, if the matrix is

irreducible, i.e., if the graph of the matrix is strongly connected.

theory Stochastic-Matriz- Perron-Frobenius
imports
Perron-Frobenius. Perron-Frobenius-Irreducible
Stochastic-Matriz-Markov-Models
Figenspace
begin

hide-const (open) Coset.order

lemma pf-nonneg-mat-st-mat: pf-nonneg-mat (st-mat A)
(proof)



lemma stoch-non-neg-vec-norm1: assumes stoch-vec (v :: real ~ 'n) non-neg-vec
v
shows norml v = 1

{proof)

lemma stationary-distribution-exists: 3 v. A xst v = v
(proof)

lemma stationary-distribution-unique:
assumes fized-mat.irreducible (st-mat A)
shows 3! v. A xstv =

(proof)

Let us now convert the stationary distribution results from matrices to
Markov chains.

context transition-matric
begin

lemma stationary-distribution-exists:
3 z. stationary-distribution (pmf-of-st-vec x)
(proof)

lemma stationary-distribution-unique: assumes fized-mat.irreducible (st-mat A)
shows 3! N. stationary-distribution N

(proof)
end

end
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