Stochastic Matrices and the Perron–Frobenius Theorem*

René Thiemann

February 23, 2021

Abstract

Stochastic matrices are a convenient way to model discrete-time and finite state Markov chains. The Perron–Frobenius theorem tells us something about the existence and uniqueness of non-negative eigenvectors of a stochastic matrix.

In this entry, we formalize stochastic matrices, link the formalization to the existing AFP-entry on Markov chains, and apply the Perron–Frobenius theorem to prove that stationary distributions always exist, and they are unique if the stochastic matrix is irreducible.

Contents

1 Introduction 1
2 Stochastic Matrices 2
3 Stochastic Vectors and Probability Mass Functions 3
4 Stochastic Matrices and Markov Models 5
5 Eigenspaces 6
6 Stochastic Matrices and the Perron–Frobenius Theorem 7

1 Introduction

In their AFP entry Markov Models [2], Hölzl and Nipkow provide a framework for specifying discrete- and continuous-time Markov chains.

In the following, we instantiate their framework by formalizing right-stochastic matrices and stochastic vectors. These vectors encode probability

*Supported by FWF (Austrian Science Fund) project Y757.
mass functions over a finite set of states, whereas stochastic matrices can be utilized to model discrete-time and finite space Markov chains.

The formulation of Markov chains as matrices has the advantage that certain concepts can easily be expressed via matrices. For instance, a stationary distribution is nothing else than a non-negative real eigenvector of the transition matrix for eigenvalue 1. As a consequence, we can derive certain properties on Markov chains using results on matrices. To be more precise, we utilize the formalization of the Perron–Frobenius theorem [1] to prove that a stationary distribution always exists, and that it is unique if the transition matrix is irreducible.

2 Stochastic Matrices

We define a type for stochastic vectors and right-stochastic matrices, i.e., non-negative real vectors and matrices where the sum of each column is 1. For this type we define a matrix-vector multiplication, i.e., we show that $A \cdot v$ is a stochastic vector, if A is a right-stochastic matrix and v a stochastic vector.

theory Stochastic-Matrix
 imports Perron-Frobenius.Perron-Frobenius-Aux
begin

definition non-neg-vec :: 'a :: linordered-idom ⇒ 'n ⇒ bool where
 non-neg-vec A ≡ (∀ i. A $ i ≥ 0)

definition stoch-vec :: 'a :: comm-ring-1 ⇒ 'n ⇒ bool where
 stoch-vec v = (λ i. v $ i UNIV = 1)

definition right-stoch-mat :: 'a :: comm-ring-1 ⇒ 'n ⇒ 'm ⇒ bool where
 right-stoch-mat a = (∀ j. stoch-vec (column j a))

typedef 'i st-mat = { a :: real ⇒ 'i ⇒ 'i. non-neg-mat a ∧ right-stoch-mat a}
morphisms st-mat Abs-st-mat
⟨proof⟩

setup-lifting type-definition-st-mat

typedef 'i st-vec = { v :: real ⇒ 'i. non-neg-vec v ∧ stoch-vec v}
morphisms st-vec Abs-st-vec
⟨proof⟩

setup-lifting type-definition-st-vec

lift-definition transition-vec-of-st-mat :: 'i :: finite st-mat ⇒ 'i ⇒ 'i st-vec
 is λ a i. column i a
⟨proof⟩
lemma non-neg-vec-st-vec: non-neg-vec (st-vec v)
⟨proof⟩

lemma non-neg-mat-mult-non-neg-vec: non-neg-mat a ⇒ non-neg-vec v ⇒
non-neg-vec (a *v v)
⟨proof⟩

lemma right-stoch-mat-mult-stoch-vec: assumes right-stoch-mat a and stoch-vec v
shows stoch-vec (a *v v)
⟨proof⟩

lift-definition st-mat-times-st-vec :: 'i :: finite st-mat ⇒ 'i st-vec ⇒ 'i st-vec
(infixl "*st" 70) is (*v)
⟨proof⟩

lift-definition to-st-vec :: real ^ 'i ⇒ 'i st-vec is
λ x. if stoch-vec x ∧ non-neg-vec x then x else (χ i. if i = undefined then 1 else 0)
⟨proof⟩

lemma right-stoch-mat-st-mat: right-stoch-mat (st-mat A)
⟨proof⟩

lemma non-neg-mat-st-mat: non-neg-mat (st-mat A)
⟨proof⟩

lemma st-mat-mult-st-vec: st-mat A *v st-vec X = st-vec (A *st X) ⟨proof⟩

lemma st-vec-nonneg(simp): st-vec x $ i ≥ 0
⟨proof⟩

lemma st-mat-nonneg[simp]: st-mat x $ i $h j ≥ 0
⟨proof⟩

end

3 Stochastic Vectors and Probability Mass Functions

We prove that over a finite type, stochastic vectors and probability mass functions are essentially the same thing: one can convert between both representations.

theory Stochastic-Vector-PMF
imports Stochastic-Matrix
HOL−Probability.Probability-Mass-Function
begin
lemma sigma-algebra-UNIV-finite[simp]: sigma-algebra (UNIV :: 'a :: finite set)
UNIV
⟨proof⟩

definition measure-of-st-vec' :: 'a st-vec ⇒ 'a :: finite set ⇒ ennreal where
measure-of-st-vec' x I = sum (λ i. st-vec x $ i) I

lemma positive-measure-of-st-vec' [simp]: positive A (measure-of-st-vec' x)
⟨proof⟩

lemma measure-space-measure-of-st-vec': measure-space UNIV UNIV (measure-of-st-vec' x)
⟨proof⟩

context begin
setup-lifting type-definition-measure

lift-definition measure-of-st-vec :: 'a st-vec ⇒ 'a :: finite measure is
λ x. (UNIV, UNIV, measure-of-st-vec' x)
⟨proof⟩

lemma sets-measure-of-st-vec[simp]: sets (measure-of-st-vec x) = UNIV
⟨proof⟩

lemma space-measure-of-st-vec[simp]: space (measure-of-st-vec x) = UNIV
⟨proof⟩

lemma emeasure-measure-of-st-vec[simp]: emeasure (measure-of-st-vec x) I =
sum (λ i. st-vec x $ i) I
⟨proof⟩

lemma prob-space-measure-of-st-vec: prob-space (measure-of-st-vec x)
⟨proof⟩
end

lift-definition st-vec-of-pmf :: 'i :: finite pmf ⇒ 'i st-vec is
λ pmF. vec-lambda (pmf pmF)
⟨proof⟩

context pmf-as-measure
begin
lift-definition pmf-of-st-vec :: 'a :: finite st-vec ⇒ 'a pmf is measure-of-st-vec
⟨proof⟩

lemma st-vec-st-vec-of-pmf[simp]:
st-vec (st-vec-of-pmf x) $ i = pmf x i
⟨proof⟩
lemma pmf-pmf-of-st-vec[simp]: pmf (pmf-of-st-vec x) i = st-vec x $ i
(proof)

lemma st-vec-of-pmf-pmf-of-st-vec[simp]: st-vec-of-pmf (pmf-of-st-vec x) = x
(proof)

lemma pmf-of-st-vec-inj: (pmf-of-st-vec x = pmf-of-st-vec y) = (x = y)
(proof)

end

4 Stochastic Matrices and Markov Models

We interpret stochastic matrices as Markov chain with discrete time and finite state and prove that the bind-operation on probability mass functions is precisely matrix-vector multiplication. As a consequence, the notion of stationary distribution is equivalent to being an eigenvector with eigenvalue 1.
lemmas stationary-distribution-alt-def =
 stationary-distribution-def unfold bind-is-matrix-vector-mult

lemma stationary-distribution-implies-pmf-of-st-vec:
 assumes stationary-distribution N
 shows ∃ x. N = pmf-of-st-vec x
 ⟨proof⟩

lemma stationary-distribution-pmf-of-st-vec:
 stationary-distribution (pmf-of-st-vec x) = (A * st x = x)
 ⟨proof⟩
end

5 Eigenspaces

Using results on Jordan-Normal forms, we prove that the geometric multiplicity of an eigenvalue (i.e., the dimension of the eigenspace) is bounded by the algebraic multiplicity of an eigenvalue (i.e., the multiplicity as root of the characteristic polynomial). As a consequence we derive that any two eigenvectors of some eigenvalue with multiplicity 1 must be scalar multiples of each other.

theory Eigenspace
imports
 Jordan-Normal-Form, Jordan-Normal-Form-Uniqueness
 Perron-Frobenius, Perron-Frobenius-Aux
begin
hide-const (open) Coset.order

 The dimension of every generalized eigenspace is bounded by the algebraic multiplicity of an eigenvalue. Hence, in particular the geometric multiplicity is smaller than the algebraic multiplicity.

lemma dim-gen-eigenspace-order-char-poly: assumes jnf: jordan-nf A n-as
 shows dim-gen-eigenspace A lam k ≤ order lam (char-poly A)
 ⟨proof⟩

 Every eigenvector is contained in the eigenspace.

lemma eigenvector-mat-kernel-char-matrix: assumes A: A ∈ carrier-mat n n
 and ev: eigenvector A v lam
 shows v ∈ mat-kernel (char-matrix A lam)
 ⟨proof⟩

 If the algebraic multiplicity is one, then every two eigenvectors are scalar multiples of each other.

lemma unique-eigenvector-jnf: assumes jnf: jordan-nf (A :: 'a :: field mat) n-as
 and ord: order lam (char-poly A) = 1
and ev: eigenvector $A v$ lam eigenvector $A w$ lam
shows $\exists a. v = a \cdot v w$
⟨proof⟩

Getting rid of the JNF-assumption for complex matrices.

lemma unique-eigenvector-complex: assumes $A: A \in \text{carrier-mat } n\ n$
and $\text{ord: order lam (char-poly } A :: \text{complex poly) } = 1$
and ev: eigenvector $A v$ lam eigenvector $A w$ lam
shows $\exists a. v = a \cdot v w$
⟨proof⟩

Convert the result to real matrices via homomorphisms.

lemma unique-eigenvector-real: assumes $A: A \in \text{carrier-mat } n\ n$
and $\text{ord: order lam (char-poly } A :: \text{real poly) } = 1$
and ev: eigenvector $A v$ lam eigenvector $A w$ lam
shows $\exists a. v = a \cdot v w$
⟨proof⟩

Finally, the statement converted to HMA-world.

lemma unique-eigen-vector-real: assumes $\text{ord: order lam (charpoly } A :: \text{real poly)}$
$= 1$
and ev: eigen-vector $A v$ lam eigen-vector $A w$ lam
shows $\exists a. v = a \cdot s w$ ⟨proof⟩

end

6 Stochastic Matrices and the Perron–Frobenius Theorem

Since a stationary distribution corresponds to a non-negative real eigenvector of the stochastic matrix, we can apply the Perron–Frobenius theorem. In this way we easily derive that every stochastic matrix has a stationary distribution, and moreover that this distribution is unique, if the matrix is irreducible, i.e., if the graph of the matrix is strongly connected.

theory Stochastic-Matrix-Perron-Frobenius
imports
 Perron-Frobenius.Perron-Frobenius-Irreducible
 Stochastic-Matrix-Markov-Models
 Eigenspace
begin

hide-const (open) Coset.order

lemma pf-nonneg-mat-st-mat: pf-nonneg-mat (st-mat A)
⟨proof⟩

end
lemma stock-non-neg-vec-norm1: assumes stock-vec (v :: real ^ 'n) non-neg-vec v

shows norm1 v = 1
⟨proof⟩

lemma stationary-distribution-exists: ∃ v. A * st v = v
⟨proof⟩

lemma stationary-distribution-unique:
 assumes fixed-mat.irreducible (st-mat A)
 shows ∃! v. A * st v = v
⟨proof⟩

Let us now convert the stationary distribution results from matrices to Markov chains.

context transition-matrix
begin

lemma stationary-distribution-exists:
 ∃ x. stationary-distribution (pmf-of-st-vec x)
⟨proof⟩

lemma stationary-distribution-unique: assumes fixed-mat.irreducible (st-mat A)
 shows ∃! N. stationary-distribution N
⟨proof⟩
end
end

References
