
Stochastic Matrices and the Perron–Frobenius
Theorem∗

René Thiemann

March 17, 2025

Abstract

Stochastic matrices are a convenient way to model discrete-time
and finite state Markov chains. The Perron–Frobenius theorem tells
us something about the existence and uniqueness of non-negative eigen-
vectors of a stochastic matrix.

In this entry, we formalize stochastic matrices, link the formal-
ization to the existing AFP-entry on Markov chains, and apply the
Perron–Frobenius theorem to prove that stationary distributions al-
ways exist, and they are unique if the stochastic matrix is irreducible.

Contents
1 Introduction 1

2 Stochastic Matrices 2

3 Stochastic Vectors and Probability Mass Functions 4

4 Stochastic Matrices and Markov Models 6

5 Eigenspaces 8

6 Stochastic Matrices and the Perron–Frobenius Theorem 11

1 Introduction
In their AFP entry Markov Models [2], Hölzl and Nipkow provide a frame-
work for specifying discrete- and continuous-time Markov chains.

In the following, we instantiate their framework by formalizing right-
stochastic matrices and stochastic vectors. These vectors encode probability

∗Supported by FWF (Austrian Science Fund) project Y757.

1

mass functions over a finite set of states, whereas stochastic matrices can be
utilized to model discrete-time and finite space Markov chains.

The formulation of Markov chains as matrices has the advantage that
certain concepts can easily be expressed via matrices. For instance, a sta-
tionary distribution is nothing else than a non-negative real eigenvector of
the transition matrix for eigenvalue 1. As a consequence, we can derive
certain properties on Markov chains using results on matrices. To be more
precise, we utilize the formalization of the Perron–Frobenius theorem [1] to
prove that a stationary distribution always exists, and that it is unique if
the transition matrix is irreducible.

2 Stochastic Matrices
We define a type for stochastic vectors and right-stochastic matrices, i.e.,
non-negative real vectors and matrices where the sum of each column is 1.
For this type we define a matrix-vector multplication, i.e., we show that A∗v
is a stochastic vector, if A is a right-stochastic matrix and v a stochastic
vector.
theory Stochastic-Matrix

imports Perron-Frobenius.Perron-Frobenius-Aux
begin

definition non-neg-vec :: ′a :: linordered-idom ^ ′n ⇒ bool where
non-neg-vec A ≡ (∀ i. A $ i ≥ 0)

definition stoch-vec :: ′a :: comm-ring-1 ^ ′n ⇒ bool where
stoch-vec v = (sum (λ i. v $ i) UNIV = 1)

definition right-stoch-mat :: ′a :: comm-ring-1 ^ ′n ^ ′m ⇒ bool where
right-stoch-mat a = (∀ j. stoch-vec (column j a))

typedef ′i st-mat = { a :: real ^ ′i ^ ′i. non-neg-mat a ∧ right-stoch-mat a}
morphisms st-mat Abs-st-mat
by (rule exI [of - χ i j. if i = undefined then 1 else 0],

auto simp: non-neg-mat-def elements-mat-h-def right-stoch-mat-def stoch-vec-def
column-def)

setup-lifting type-definition-st-mat

typedef ′i st-vec = { v :: real ^ ′i. non-neg-vec v ∧ stoch-vec v}
morphisms st-vec Abs-st-vec
by (rule exI [of - χ i. if i = undefined then 1 else 0],

auto simp: non-neg-vec-def stoch-vec-def)

setup-lifting type-definition-st-vec

lift-definition transition-vec-of-st-mat :: ′i :: finite st-mat ⇒ ′i ⇒ ′i st-vec

2

is λ a i. column i a
by (auto simp: right-stoch-mat-def non-neg-mat-def stoch-vec-def

elements-mat-h-def non-neg-vec-def column-def)

lemma non-neg-vec-st-vec: non-neg-vec (st-vec v)
by (transfer , auto)

lemma non-neg-mat-mult-non-neg-vec: non-neg-mat a =⇒ non-neg-vec v =⇒
non-neg-vec (a ∗v v)
unfolding non-neg-mat-def non-neg-vec-def elements-mat-h-def
by (auto simp: matrix-vector-mult-def intro!: sum-nonneg)

lemma right-stoch-mat-mult-stoch-vec: assumes right-stoch-mat a and stoch-vec
v
shows stoch-vec (a ∗v v)
proof −

note ∗ = assms[unfolded right-stoch-mat-def column-def stoch-vec-def , simplified]
have stoch-vec (a ∗v v) = ((

∑
i∈UNIV .

∑
j∈UNIV . a $ i $ j ∗ v $ j) = 1)

(is - = (?sum = 1))
unfolding stoch-vec-def matrix-vector-mult-def by auto

also have ?sum = (
∑

j∈UNIV .
∑

i∈UNIV . a $ i $ j ∗ v $ j)
by (rule sum.swap)

also have . . . = (
∑

j∈UNIV . v $ j)
by (rule sum.cong[OF refl], insert ∗, auto simp: sum-distrib-right[symmetric])

also have . . . = 1 using ∗ by auto
finally show ?thesis by simp

qed

lift-definition st-mat-times-st-vec :: ′i :: finite st-mat ⇒ ′i st-vec ⇒ ′i st-vec
(infixl ‹∗st› 70) is (∗v)
using right-stoch-mat-mult-stoch-vec non-neg-mat-mult-non-neg-vec by auto

lift-definition to-st-vec :: real ^ ′i ⇒ ′i st-vec is
λ x. if stoch-vec x ∧ non-neg-vec x then x else (χ i. if i = undefined then 1 else

0)
by (auto simp: non-neg-vec-def stoch-vec-def)

lemma right-stoch-mat-st-mat: right-stoch-mat (st-mat A)
by transfer auto

lemma non-neg-mat-st-mat: non-neg-mat (st-mat A)
by (transfer , auto simp: non-neg-mat-def elements-mat-h-def)

lemma st-mat-mult-st-vec: st-mat A ∗v st-vec X = st-vec (A ∗st X) by (transfer ,
auto)

lemma st-vec-nonneg[simp]: st-vec x $ i ≥ 0
using non-neg-vec-st-vec[of x] by (auto simp: non-neg-vec-def)

3

lemma st-mat-nonneg[simp]: st-mat x $ i $h j ≥ 0
using non-neg-mat-st-mat[of x] by (auto simp: non-neg-mat-def elements-mat-h-def)

end

3 Stochastic Vectors and Probability Mass Func-
tions

We prove that over a finite type, stochastic vectors and probability mass
functions are essentially the same thing: one can convert between both rep-
resentations.
theory Stochastic-Vector-PMF

imports Stochastic-Matrix
HOL−Probability.Probability-Mass-Function

begin

lemma sigma-algebra-UNIV-finite[simp]: sigma-algebra (UNIV :: ′a :: finite set)
UNIV
proof (unfold-locales, goal-cases)

case (4 a b)
show ?case by (intro exI [of - {a−b}], auto)

qed auto

definition measure-of-st-vec ′ :: ′a st-vec ⇒ ′a :: finite set ⇒ ennreal where
measure-of-st-vec ′ x I = sum (λ i. st-vec x $ i) I

lemma positive-measure-of-st-vec ′[simp]: positive A (measure-of-st-vec ′ x)
unfolding measure-of-st-vec ′-def positive-def by auto

lemma measure-space-measure-of-st-vec ′: measure-space UNIV UNIV (measure-of-st-vec ′

x)
unfolding measure-space-def

proof (simp, simp add: countably-additive-def measure-of-st-vec ′-def disjoint-family-on-def ,
clarify, goal-cases)
case (1 A)
let ?x = st-vec x
define N where N = {i. A i 6= {}}
let ?A =

⋃
(A ‘ N)

have finite B =⇒ B ⊆ ?A =⇒ ∃ K . finite K ∧ K ⊆ N ∧ B ⊆
⋃
(A ‘ K) for B

proof (induct rule: finite-induct)
case (insert b B)
from insert(3−4) obtain K where K : finite K K ⊆ N B ⊆

⋃
(A ‘ K) by

auto
from insert(4) obtain a where a: a ∈ N b ∈ A a by auto
show ?case by (intro exI [of - insert a K], insert a K , auto)

qed auto
from this[OF - subset-refl] obtain K where ∗: finite K K ⊆ N

⋃
(A ‘ K) = ?A

4

by auto
{

assume K ⊂ N
then obtain n where ∗∗: n ∈ N n /∈ K by auto
from this[unfolded N-def] obtain a where a: a ∈ A n by auto
with ∗∗ ∗ obtain k where ∗∗∗: k ∈ K a ∈ A k by force
from ∗∗ ∗∗∗ have n 6= k by auto
from 1 [rule-format, OF this] have A n ∩ A k = {} by auto
with ∗∗∗ a have False by auto

}
with ∗ have fin: finite N by auto
have id:

⋃
(A ‘ UNIV) = ?A unfolding N-def by auto

show (
∑

i. ennreal (sum (($h) ?x) (A i))) =
ennreal (sum (($h) ?x) (

⋃
(A ‘ UNIV))) unfolding id

apply (subst suminf-finite[OF fin], (auto simp: N-def)[1])
apply (subst sum-ennreal, (insert non-neg-vec-st-vec[of x], auto simp: non-neg-vec-def

intro!: sum-nonneg)[1])
apply (rule arg-cong[of - - ennreal])
apply (subst sum.UNION-disjoint[OF fin], insert 1 , auto)
done

qed

context begin
setup-lifting type-definition-measure

lift-definition measure-of-st-vec :: ′a st-vec ⇒ ′a :: finite measure is
λ x. (UNIV , UNIV , measure-of-st-vec ′ x)
by (auto simp: measure-space-measure-of-st-vec ′)

lemma sets-measure-of-st-vec[simp]: sets (measure-of-st-vec x) = UNIV
unfolding sets-def by (transfer , auto)

lemma space-measure-of-st-vec[simp]: space (measure-of-st-vec x) = UNIV
unfolding space-def by (transfer , auto)

lemma emeasure-measure-of-st-vec[simp]: emeasure (measure-of-st-vec x) I =
sum (λ i. st-vec x $ i) I
unfolding emeasure-def by (transfer ′, auto simp: measure-of-st-vec ′-def)

lemma prob-space-measure-of-st-vec: prob-space (measure-of-st-vec x)
by (unfold-locales, intro exI [of - UNIV], auto, transfer , auto simp: stoch-vec-def)

end

lift-definition st-vec-of-pmf :: ′i :: finite pmf ⇒ ′i st-vec is
λ pmF . vec-lambda (pmf pmF)

proof (intro conjI , goal-cases)
case (2 pmF)
show stoch-vec (vec-lambda (pmf pmF))

unfolding stoch-vec-def

5

apply auto
apply (unfold measure-pmf-UNIV [of pmF , symmetric])
by (simp add: measure-pmf-conv-infsetsum)

qed (auto simp: non-neg-vec-def stoch-vec-def)

context pmf-as-measure
begin
lift-definition pmf-of-st-vec :: ′a :: finite st-vec ⇒ ′a pmf is measure-of-st-vec
proof (goal-cases)

case (1 x)
show ?case

by (auto simp: prob-space-measure-of-st-vec measure-def)
(rule AE-I [where N = {i. st-vec x $ i = 0}], auto)

qed

lemma st-vec-st-vec-of-pmf [simp]:
st-vec (st-vec-of-pmf x) $ i = pmf x i
by (simp add: st-vec-of-pmf .rep-eq)

lemma pmf-pmf-of-st-vec[simp]: pmf (pmf-of-st-vec x) i = st-vec x $ i
by (transfer , auto simp: measure-def)

lemma st-vec-of-pmf-pmf-of-st-vec[simp]: st-vec-of-pmf (pmf-of-st-vec x) = x
proof −

have st-vec (st-vec-of-pmf (pmf-of-st-vec x)) = st-vec x
unfolding vec-eq-iff by auto

thus ?thesis using st-vec-inject by blast
qed

lemma pmf-of-st-vec-inj: (pmf-of-st-vec x = pmf-of-st-vec y) = (x = y)
by (metis st-vec-of-pmf-pmf-of-st-vec)

end
end

4 Stochastic Matrices and Markov Models
We interpret stochastic matrices as Markov chain with discrete time and
finite state and prove that the bind-operation on probability mass functions
is precisely matrix-vector multiplication. As a consequence, the notion of
stationary distribution is equivalent to being an eigenvector with eigenvalue
1.
theory Stochastic-Matrix-Markov-Models
imports

Markov-Models.Classifying-Markov-Chain-States
Stochastic-Vector-PMF

begin

definition transition-of-st-mat :: ′i st-mat ⇒ ′i :: finite ⇒ ′i pmf where

6

transition-of-st-mat a i = pmf-as-measure.pmf-of-st-vec (transition-vec-of-st-mat
a i)

lemma st-vec-transition-vec-of-st-mat[simp]:
st-vec (transition-vec-of-st-mat A a) $ i = st-mat A $ i $ a
by (transfer , auto simp: column-def)

locale transition-matrix = pmf-as-measure +
fixes A :: ′i :: finite st-mat

begin
sublocale MC-syntax transition-of-st-mat A .

lemma measure-pmf-of-st-vec[simp]: measure-pmf (pmf-of-st-vec x) = measure-of-st-vec
x

by (rule pmf-as-measure.pmf-of-st-vec.rep-eq)

lemma pmf-transition-of-st-mat[simp]: pmf (transition-of-st-mat A a) i = st-mat
A $ i $ a

unfolding transition-of-st-mat-def
by (transfer , auto simp: measure-def)

lemma bind-is-matrix-vector-mult: (bind-pmf x (transition-of-st-mat A)) =
pmf-as-measure.pmf-of-st-vec (A ∗st st-vec-of-pmf x)

proof (rule pmf-eqI , goal-cases)
case (1 i)
define X where X = st-vec-of-pmf x
have pmf (bind-pmf x (transition-of-st-mat A)) i =
(
∑

a∈UNIV . pmf x a ∗R pmf (transition-of-st-mat A a) i)
unfolding pmf-bind by (subst integral-measure-pmf [of UNIV], auto)

also have . . . = (
∑

a∈UNIV . st-mat A $ i $ a ∗ st-vec X $ a)
by (rule sum.cong[OF refl], auto simp: X-def)

also have . . . = (st-mat A ∗v st-vec X) $ i
unfolding matrix-vector-mult-def by auto

also have . . . = st-vec (A ∗st X) $ i unfolding st-mat-mult-st-vec by simp
also have . . . = pmf (pmf-of-st-vec (A ∗st X)) i by simp
finally show ?case by (simp add: X-def)

qed

lemmas stationary-distribution-alt-def =
stationary-distribution-def [unfolded bind-is-matrix-vector-mult]

lemma stationary-distribution-implies-pmf-of-st-vec:
assumes stationary-distribution N
shows ∃ x. N = pmf-of-st-vec x

proof −
from assms[unfolded stationary-distribution-alt-def] show ?thesis by auto

qed

lemma stationary-distribution-pmf-of-st-vec:

7

stationary-distribution (pmf-of-st-vec x) = (A ∗st x = x)
unfolding stationary-distribution-alt-def pmf-of-st-vec-inj by auto

end
end

5 Eigenspaces
Using results on Jordan-Normal forms, we prove that the geometric multi-
plicity of an eigenvalue (i.e., the dimension of the eigenspace) is bounded by
the algebraic multiplicity of an eigenvalue (i.e., the multiplicity as root of
the characteristic polynomial.). As a consequence we derive that any two
eigenvectors of some eigenvalue with multiplicity 1 must be scalar multiples
of each other.
theory Eigenspace
imports

Jordan-Normal-Form.Jordan-Normal-Form-Uniqueness
Perron-Frobenius.Perron-Frobenius-Aux

begin
hide-const (open) Coset.order

The dimension of every generalized eigenspace is bounded by the al-
gebraic multiplicity of an eigenvalue. Hence, in particular the geometric
multiplicity is smaller than the algebraic multiplicity.
lemma dim-gen-eigenspace-order-char-poly: assumes jnf : jordan-nf A n-as

shows dim-gen-eigenspace A lam k ≤ order lam (char-poly A)
unfolding jordan-nf-order [OF jnf] dim-gen-eigenspace[OF jnf]
by (induct n-as, auto)

Every eigenvector is contained in the eigenspace.
lemma eigenvector-mat-kernel-char-matrix: assumes A: A ∈ carrier-mat n n

and ev: eigenvector A v lam
shows v ∈ mat-kernel (char-matrix A lam)

using ev[unfolded eigenvector-char-matrix[OF A]] A
unfolding mat-kernel-def by (auto simp: char-matrix-def)

If the algebraic multiplicity is one, then every two eigenvectors are scalar
multiples of each other.
lemma unique-eigenvector-jnf : assumes jnf : jordan-nf (A :: ′a :: field mat) n-as

and ord: order lam (char-poly A) = 1
and ev: eigenvector A v lam eigenvector A w lam

shows ∃ a. v = a ·v w
proof −

let ?cA = char-matrix A lam
from similar-matD jnf [unfolded jordan-nf-def] obtain n where

A: A ∈ carrier-mat n n by auto
from dim-gen-eigenspace-order-char-poly[OF jnf , of lam 1 , unfolded ord]
have dim: kernel-dim ?cA ≤ 1

8

unfolding dim-gen-eigenspace-def by auto
from eigenvector-mat-kernel-char-matrix[OF A ev(1)]
have vk: v ∈ mat-kernel ?cA .
from eigenvector-mat-kernel-char-matrix[OF A ev(2)]
have wk: w ∈ mat-kernel ?cA .
from ev[unfolded eigenvector-def] A have

v: v ∈ carrier-vec n v 6= 0 v n and
w: w ∈ carrier-vec n w 6= 0 v n by auto

have cA: ?cA ∈ carrier-mat n n using A
unfolding char-matrix-def by auto

interpret kernel n n ?cA
by (unfold-locales, rule cA)

from kernel-basis-exists[OF A] obtain B where B: finite B basis B by auto
from this[unfolded Ker .basis-def] have basis: mat-kernel ?cA = span B by auto
{

assume card B = 0
with B basis have bas: mat-kernel ?cA = local.span {} by auto
also have . . . = {0 v n} unfolding Ker .span-def by auto
finally have False using v vk by auto

}
with Ker .dim-basis[OF B] dim have card B = Suc 0 by (cases card B, auto)
hence ∃ b. B = {b} using card-eq-SucD by blast
then obtain b where Bb: B = {b} by blast
from B(2)[unfolded Bb Ker .basis-def] have bk: b ∈ mat-kernel ?cA by auto
hence b: b ∈ carrier-vec n using cA mat-kernelD(1) by blast
from Bb basis have mat-kernel ?cA = span {b} by auto
also have . . . = NC .span {b}

by (rule span-same, insert bk, auto)
also have . . . ⊆ { a ·v b | a. True}
proof −

{
fix x
assume x ∈ NC .span {b}
from this[unfolded NC .span-def] obtain a A

where x: x = NC .lincomb a A and A: A ⊆ {b} by auto
hence A = {} ∨ A = {b} by auto
hence ∃ a. x = a ·v b
proof

assume A = {} thus ?thesis unfolding x using b by (intro exI [of - 0],
auto)

next
assume A = {b} thus ?thesis unfolding x using b

by (intro exI [of - a b], auto simp: NC .lincomb-def)
qed

}
thus ?thesis by auto

qed
finally obtain vv ww where vb: v = vv ·v b and wb: w = ww ·v b using vk wk

by force+

9

from wb w b have ww: ww 6= 0 by auto
from arg-cong[OF wb, of λ x. inverse ww ·v x] w ww b have b = inverse ww ·v

w
by (auto simp: smult-smult-assoc)

from vb[unfolded this smult-smult-assoc] show ?thesis by auto
qed

Getting rid of the JNF-assumption for complex matrices.
lemma unique-eigenvector-complex: assumes A: A ∈ carrier-mat n n

and ord: order lam (char-poly A :: complex poly) = 1
and ev: eigenvector A v lam eigenvector A w lam

shows ∃ a. v = a ·v w
proof −

from jordan-nf-exists[OF A] char-poly-factorized[OF A] obtain n-as
where jordan-nf A n-as by auto

from unique-eigenvector-jnf [OF this ord ev] show ?thesis .
qed

Convert the result to real matrices via homomorphisms.
lemma unique-eigenvector-real: assumes A: A ∈ carrier-mat n n

and ord: order lam (char-poly A :: real poly) = 1
and ev: eigenvector A v lam eigenvector A w lam

shows ∃ a. v = a ·v w
proof −

let ?c = complex-of-real
let ?A = map-mat ?c A
from A have cA: ?A ∈ carrier-mat n n by auto
have ord: order (?c lam) (char-poly ?A) = 1

unfolding of-real-hom.char-poly-hom[OF A]
by (subst map-poly-inj-idom-divide-hom.order-hom, unfold-locales, rule ord)

note evc = of-real-hom.eigenvector-hom[OF A]
from unique-eigenvector-complex[OF cA ord evc evc, OF ev] obtain a :: complex

where id: map-vec ?c v = a ·v map-vec ?c w by auto

from ev[unfolded eigenvector-def] A have carr : v ∈ carrier-vec n w ∈ carrier-vec
n

v 6= 0 v n by auto
then obtain i where i: i < n v $ i 6= 0 unfolding Matrix.vec-eq-iff by auto
from arg-cong[OF id, of λ x. x $ i] carr i
have ?c (v $ i) = a ∗ ?c (w $ i)

by auto
with i(2) have a ∈ Reals
by (metis Reals-cnj-iff complex-cnj-complex-of-real complex-cnj-mult mult-cancel-right

mult-eq-0-iff of-real-hom.hom-zero of-real-hom.injectivity)
then obtain b where a: a = ?c b by (rule Reals-cases)
from id[unfolded a] have map-vec ?c v = map-vec ?c (b ·v w) by auto
hence v = b ·v w by (rule of-real-hom.vec-hom-inj)
thus ?thesis by auto

10

qed

Finally, the statement converted to HMA-world.
lemma unique-eigen-vector-real: assumes ord: order lam (charpoly A :: real poly)
= 1

and ev: eigen-vector A v lam eigen-vector A w lam
shows ∃ a. v = a ∗s w using assms
proof (transfer , goal-cases)

case (1 lam A v w)
show ?case

by (rule unique-eigenvector-real[OF 1 (1−2 ,4 ,6)])
qed

end

6 Stochastic Matrices and the Perron–Frobenius
Theorem

Since a stationary distribution corresponds to a non-negative real eigenvec-
tor of the stochastic matrix, we can apply the Perron–Frobenius theorem.
In this way we easily derive that every stochastic matrix has a stationary
distribution, and moreover that this distribution is unique, if the matrix is
irreducible, i.e., if the graph of the matrix is strongly connected.
theory Stochastic-Matrix-Perron-Frobenius
imports

Perron-Frobenius.Perron-Frobenius-Irreducible
Stochastic-Matrix-Markov-Models
Eigenspace

begin

hide-const (open) Coset.order

lemma pf-nonneg-mat-st-mat: pf-nonneg-mat (st-mat A)
by (unfold-locales, auto simp: non-neg-mat-st-mat)

lemma stoch-non-neg-vec-norm1 : assumes stoch-vec (v :: real ^ ′n) non-neg-vec
v

shows norm1 v = 1
unfolding assms(1)[unfolded stoch-vec-def , symmetric] norm1-def
by (rule sum.cong, insert assms(2)[unfolded non-neg-vec-def], auto)

lemma stationary-distribution-exists: ∃ v. A ∗st v = v
proof −

let ?A = st-mat A
let ?c = complex-of-real
let ?B = χ i j. ?c (?A $ i $ j)
have real-non-neg-mat ?B using non-neg-mat-st-mat[of A]

11

unfolding real-non-neg-mat-def elements-mat-h-def non-neg-mat-def
by auto

from Perron-Frobenius.perron-frobenius-both[OF this] obtain v a where
ev: eigen-vector ?B v (?c a) and nn: real-non-neg-vec v
and a: a = HMA-Connect.spectral-radius ?B by auto

from spectral-radius-ev[of ?B, folded a] have a0 : a ≥ 0 by auto
define w where w = (χ i. Re (v $ i))
from nn have vw: v = (χ i. ?c (w $ i)) unfolding real-non-neg-vec-def w-def

by (auto simp: vec-elements-h-def)
from ev[unfolded eigen-vector-def] have v0 : v 6= 0 and ev: ?B ∗v v = ?c a ∗s

v by auto
from v0 have w0 : w 6= 0 unfolding vw by (auto simp: Finite-Cartesian-Product.vec-eq-iff)
{

fix i
from ev have Re ((?B ∗v v) $ i) = Re ((?c a ∗s v) $ i) by simp
also have Re ((?c a ∗s v) $ i) = (a ∗s w) $ i unfolding vw by simp
also have Re ((?B ∗v v) $ i) = (?A ∗v w) $ i unfolding vw

by (simp add: matrix-vector-mult-def)
also note calculation

}
hence ev: ?A ∗v w = a ∗s w by (auto simp: Finite-Cartesian-Product.vec-eq-iff)
from nn have nn: non-neg-vec w
unfolding vw by (auto simp: real-non-neg-vec-def non-neg-vec-def vec-elements-h-def)

let ?n = norm1 w
from w0 have n0 : ?n 6= 0 by auto
hence n-pos: ?n > 0 using norm1-ge-0 [of w] by linarith
define u where u = inverse ?n ∗s w
have nn: non-neg-vec u using nn n-pos unfolding u-def non-neg-vec-def by

auto
have nu: norm1 u = 1 unfolding u-def scalar-mult-eq-scaleR norm1-scaleR

using n-pos
by (auto simp: field-simps)

have 1 : stoch-vec u unfolding stoch-vec-def nu[symmetric] norm1-def
by (rule sum.cong, insert nn[unfolded non-neg-vec-def], auto)

from arg-cong[OF ev, of λ x. inverse ?n ∗s x]
have ev: ?A ∗v u = a ∗s u unfolding u-def

by (auto simp: ac-simps vector-smult-distrib matrix-vect-scaleR)
from right-stoch-mat-mult-stoch-vec[OF right-stoch-mat-st-mat[of A] 1 , unfolded

ev]
have st: stoch-vec (a ∗s u) .
from non-neg-mat-mult-non-neg-vec[OF non-neg-mat-st-mat[of A] nn, unfolded

ev]
have nn ′: non-neg-vec (a ∗s u) .
from stoch-non-neg-vec-norm1 [OF st nn ′, unfolded scalar-mult-eq-scaleR norm1-scaleR

nu] a0
have a = 1 by auto
with ev st have ev: ?A ∗v u = u and st: stoch-vec u by auto
show ?thesis using ev st nn

12

by (intro exI [of - to-st-vec u], transfer , auto)
qed

lemma stationary-distribution-unique:
assumes fixed-mat.irreducible (st-mat A)
shows ∃ ! v. A ∗st v = v

proof −
from stationary-distribution-exists obtain v where ev: A ∗st v = v by auto
show ?thesis
proof (intro ex1I , rule ev)

fix w
assume A ∗st w = w
thus w = v using ev assms
proof (transfer , goal-cases)

case (1 A w v)
interpret perron-frobenius A

by (unfold-locales, insert 1 , auto)
from 1 have ∗: eigen-vector A v 1 le-vec 0 v eigen-vector A w 1

by (auto simp: eigen-vector-def stoch-vec-def non-neg-vec-def)
from nonnegative-eigenvector-has-ev-sr [OF ∗(1−2)] have sr1 : sr = 1 by

auto
from multiplicity-sr-1 [unfolded sr1] have order 1 (charpoly A) = 1 .
from unique-eigen-vector-real[OF this ∗(1 ,3)] obtain a where

vw: v = a ∗s w by auto
from 1 (2 ,4)[unfolded stoch-vec-def] have sum (($h) v) UNIV = sum (($h)

w) UNIV by auto
also have sum (($h) v) UNIV = a ∗ sum (($h) w) UNIV unfolding vw

by (auto simp: sum-distrib-left)
finally have a = 1 using 1 (2)[unfolded stoch-vec-def] by auto
with vw show v = w by auto

qed
qed

qed

Let us now convert the stationary distribution results from matrices to
Markov chains.
context transition-matrix
begin

lemma stationary-distribution-exists:
∃ x. stationary-distribution (pmf-of-st-vec x)

proof −
from stationary-distribution-exists obtain x where ev: A ∗st x = x by auto
show ?thesis

by (intro exI [of - x], unfold stationary-distribution-pmf-of-st-vec,
simp add: ev)

qed

lemma stationary-distribution-unique: assumes fixed-mat.irreducible (st-mat A)

13

shows ∃ ! N . stationary-distribution N
proof −

from stationary-distribution-exists obtain x where
st: stationary-distribution (pmf-of-st-vec x) by blast

show ?thesis
proof (rule ex1I , rule st)

fix N
assume st ′: stationary-distribution N
from stationary-distribution-implies-pmf-of-st-vec[OF this] obtain y where

N : N = pmf-of-st-vec y by auto
from st ′[unfolded N] st
have A ∗st x = x A ∗st y = y unfolding stationary-distribution-pmf-of-st-vec

by auto
from stationary-distribution-unique[OF assms] this have x = y by auto
with N show N = pmf-of-st-vec x by auto

qed
qed
end
end

References
[1] J. Divasón, O. Kunar, R. Thiemann, and A. Yamada. Perron-frobenius

theorem for spectral radius analysis. Archive of Formal Proofs, May
2016. http://isa-afp.org/entries/Perron_Frobenius.html, Formal proof
development.

[2] J. Hölzl and T. Nipkow. Markov models. Archive of Formal Proofs, Jan.
2012. http://isa-afp.org/entries/Markov_Models.html, Formal proof de-
velopment.

14

http://isa-afp.org/entries/Perron_Frobenius.html
http://isa-afp.org/entries/Markov_Models.html

	Introduction
	Stochastic Matrices
	Stochastic Vectors and Probability Mass Functions
	Stochastic Matrices and Markov Models
	Eigenspaces
	Stochastic Matrices and the Perron–Frobenius Theorem

