Stellar Quorum Systems

Giuliano Losa Galois, Inc., USA giuliano@galois.com

March 19, 2025

Abstract

We formalize the static properties of personal Byzantine quorum systems (PBQSs) and Stellar quorum systems, as described in the paper "Stellar Consensus by Reduction", to appear at DISC 2019.

Contents

1	Per	sonal Byzantine quorum systems
	1.1	The set of participants not blocked by malicious participants
	1.2	Consensus clusters and intact sets
2	Ste	llar quorum systems
	2.1	Properties of blocking sets
	2.2	Reachability through a set
	2.3	Elementary quorums
	2.4	The intact sets of the Stellar Whitepaper
		2.4.1 Intact and the Cascade Theorem
		2.4.2 The Union Theorem

This theory formalizes some of the results appearing in the paper "Stellar Consensus By Reduction"[1]. We prove static properties of personal Byzantine quorum systems and Stellar quorum systems.

```
theory Stellar-Quorums
imports Main
begin
```

1 Personal Byzantine quorum systems

```
locale personal-quorums =
 fixes quorum-of :: 'node \Rightarrow 'node set \Rightarrow bool
 assumes quorum-assm: \land p p'. \llbracket quorum\text{-}of p Q; p' \in Q \rrbracket \implies quorum\text{-}of p' Q
   — In other words, a quorum (of some participant) is a quorum of all its members.
begin
definition blocks where
   - Set R blocks participant p.
 blocks R p \equiv \forall Q. quorum-of p Q \longrightarrow Q \cap R \neq \{\}
abbreviation blocked-by where blocked-by R \equiv \{p : blocks \ R \ p\}
lemma blocked-blocked-subset-blocked:
  blocked-by (blocked-by R) \subseteq blocked-by R
\langle proof \rangle
end
We now add the set of correct participants to the model.
locale with-w = personal-quorums quorum-of for quorum-of :: 'node \Rightarrow 'node set
\Rightarrow bool +
 fixes W::'node\ set-W is the set of correct participants
begin
abbreviation B where B \equiv -W
  — B is the set of malicious participants.
definition quorum-of-set where quorum-of-set S Q \equiv \exists p \in S . quorum-of p Q
```

1.1 The set of participants not blocked by malicious participants

```
definition L where L \equiv W - (blocked-by\ B)
lemma l2\colon p\in L \Longrightarrow \exists\ Q\subseteq W.\ quorum-of\ p\ Q
\langle proof \rangle
```

lemma *l3*: — If a participant is not blocked by the malicious participants, then it has a quorum consisting exclusively of correct participants which are not blocked

```
by the malicious participants. assumes p \in L shows \exists Q \subseteq L. quorum-of p \in Q \langle proof \rangle
```

1.2 Consensus clusters and intact sets

definition is-intertwined where

— This definition is not used in this theory, but we include it to formalize the notion of intertwined set appearing in the DISC paper.

```
is-intertwined S \equiv S \subseteq W
 \land (\forall Q \ Q' \ . \ quorum-of-set \ S \ Q \land quorum-of-set \ S \ Q' \longrightarrow W \cap Q \cap Q' \neq \{\})
```

definition is-cons-cluster where

— Consensus clusters

```
is-cons-cluster C \equiv C \subseteq W \land (\forall p \in C . \exists Q \subseteq C . quorum-of p Q) \land (\forall Q Q' . quorum-of-set C Q \land quorum-of-set C Q' \longrightarrow W \cap Q \cap Q' \neq \{\})
```

definition strong-consensus-cluster where

```
strong\text{-}consensus\text{-}cluster\ I \equiv I \subseteq W \land (\forall\ p \in I\ .\ \exists\ Q \subseteq I\ .\ quorum\text{-}of\ p\ Q) \\ \land (\forall\ Q\ Q'\ .\ quorum\text{-}of\text{-}set\ I\ Q \land\ quorum\text{-}of\text{-}set\ I\ Q' \longrightarrow I\ \cap\ Q\ \cap\ Q' \neq \{\})
```

 ${\bf lemma}\ strong-consensus-cluster-imp-cons-cluster:$

```
— Every intact set is a consensus cluster shows strong-consensus-cluster I \Longrightarrow is\text{-}cons\text{-}cluster\ I \langle proof \rangle
```

 ${\bf lemma}\ cons\text{-}cluster\text{-}neq\text{-}cons\text{-}cluster\text{:}$

— Some consensus clusters are not strong consensus clusters and have no superset that is a strong consensus cluster.

```
shows is-cons-cluster I \land (\forall \ J \ . \ I \subseteq J \longrightarrow \neg strong\text{-}consensus\text{-}cluster \ J) nit-pick[falsify=false, card 'node=3, expect=genuine] \langle proof \rangle
```

Next we show that the union of two consensus clusters that intersect is a consensus cluster.

theorem *cluster-union*:

```
assumes is-cons-cluster C_1 and is-cons-cluster C_2 and C_1 \cap C_2 \neq \{\} shows is-cons-cluster (C_1 \cup C_2) \langle proof \rangle
```

Similarly, the union of two strong consensus clusters is a strong consensus cluster.

lemma strong-cluster-union:

```
assumes strong-consensus-cluster C_1 and strong-consensus-cluster C_2 and C_1 \cap C_2 \neq \{\}
shows strong-consensus-cluster (C_1 \cup C_2)
\langle proof \rangle
```

2 Stellar quorum systems

```
locale stellar =
  fixes slices :: 'node \Rightarrow 'node set set — the quorum slices
   and W:: 'node \ set — the well-behaved nodes
 assumes slices-ne: \land p : p \in W \Longrightarrow slices p \neq \{\}
begin
definition quorum where
  quorum Q \equiv \forall p \in Q \cap W. (\exists Sl \in slices p . Sl \subseteq Q)
definition quorum-of where quorum-of p Q \equiv quorum Q \land (p \notin W \lor (\exists Sl \in A))
slices\ p\ .\ Sl\subseteq\ Q))
  — TODO: p \notin W needed?
lemma quorum-union:quorum Q \Longrightarrow quorum Q' \Longrightarrow quorum (Q \cup Q')
  \langle proof \rangle
lemma l1:
  assumes \bigwedge p . p \in S \Longrightarrow \exists Q \subseteq S . quorum-of p Q and p \in S
 shows quorum-of p S \langle proof \rangle
lemma is-pbqs:
 assumes quorum-of p \ Q and p' \in Q
 shows quorum-of p' Q
  — This is the property required of a PBQS.
  \langle proof \rangle
interpretation with-w quorum-of
   — Stellar quorums form a personal quorum system.
  \langle proof \rangle
lemma quorum-is-quorum-of-some-slice:
  assumes quorum-of p \ Q and p \in W
  obtains S where S \in slices \ p and S \subseteq Q
   and \bigwedge p'. p' \in S \cap W \Longrightarrow quorum\text{-}of p' Q
  \langle proof \rangle
lemma is-cons-cluster C \Longrightarrow quorum \ C
  — Every consensus cluster is a quorum.
  \langle proof \rangle
```

2.1 Properties of blocking sets

inductive blocking-min where

— This is the set of correct participants that are eventually blocked by a set R when byzantine processors do not take steps.

```
[\![p\in W;\,\forall\ Sl\in slices\ p\ .\ \exists\ q\in Sl\cap W\ .\ q\in R\ \lor\ blocking\text{-min}\ R\ q]\!]\Longrightarrow blocking\text{-min}\ R\ p
```

inductive-cases blocking-min-elim:blocking-min R p

inductive blocking-max where

— This is the set of participants that are eventually blocked by a set R when byzantine processors help epidemic propagation.

```
[\![p\in W;\,\forall\ Sl\in slices\ p\ .\ \exists\ q\in Sl\ .\ q\in R\cup B\ \lor\ blocking\text{-}max\ R\ q]\!]\Longrightarrow blocking\text{-}max\ R\ p
```

inductive-cases blocking-max R p

Next we show that if R blocks p and p belongs to a consensus cluster S, then $R \cap S \neq \{\}$.

We first prove two auxiliary lemmas:

```
\mathbf{lemma} \ cons\text{-}cluster\text{-}wb : p \in C \Longrightarrow is\text{-}cons\text{-}cluster \ C \Longrightarrow p \in W \langle proof \rangle
```

```
\mathbf{lemma}\ cons\text{-}cluster\text{-}has\text{-}ne\text{-}slices:
```

```
assumes is-cons-cluster C and p \in C
and Sl \in slices p
shows Sl \neq \{\}
\langle proof \rangle
```

lemma cons-cluster-has-cons-cluster-slice:

```
assumes is-cons-cluster C and p \in C obtains Sl where Sl \in slices\ p and Sl \subseteq C \langle proof \rangle
```

 $\textbf{theorem} \ \textit{blocking-max-intersects-intact}:$

— if R blocks p when malicious participants help epidemic propagation, and p belongs to a consensus cluster C, then $R \cap C \neq \{\}$

```
assumes blocking-max R p and is-cons-cluster C and p \in C shows R \cap C \neq \{\} \langle proof \rangle
```

Now we show that if $p \in C$, C is a consensus cluster, and quorum Q is such that $Q \cap C \neq \{\}$, then $Q \cap W$ blocks p.

We start by defining the set of participants reachable from a participant through correct participants. Their union trivially forms a quorum. Moreover, if p is not blocked by a set R, then we show that the set of participants reachable from p and not blocked by R forms a quorum disjoint from R. It follows that if p is a member of a consensus cluster C and Q is a quorum of a member of C, then $Q \cap W$ must block p, as otherwise quorum intersection would be violated.

```
inductive not-blocked for p R where
```

```
 [Sl \in slices \ p; \ \forall \ q \in Sl \cap W \ . \ q \notin R \land \neg blocking\text{-}min \ R \ q; \ q \in Sl] \Longrightarrow not\text{-}blocked \ p \ R \ q
```

```
| [not\text{-}blocked\ p\ R\ p';\ p'\in W;\ Sl\in slices\ p';\ \forall\ q\in Sl\cap W\ .\ q\notin R\ \land \neg blocking\text{-}min
R \ q; \ q \in Sl \implies not\text{-blocked} \ p \ R \ q
inductive-cases not-blocked-cases:not-blocked p\ R\ q
lemma l_4:
  fixes Q p R
  defines Q \equiv \{q : not\text{-}blocked \ p \ R \ q\}
  shows quorum Q
\langle proof \rangle
lemma l5:
  fixes Q p R
  defines Q \equiv \{q : not\text{-}blocked \ p \ R \ q\}
  assumes \neg blocking\text{-}min\ R\ p\ \text{and}\ \langle p\in C\rangle\ \text{and}\ \langle is\text{-}cons\text{-}cluster\ C\rangle
  shows quorum-of p Q
\langle proof \rangle
lemma cons-cluster-ne-slices:
  assumes is-cons-cluster C and p \in C and Sl \in slices p
  shows Sl \neq \{\}
  \langle proof \rangle
lemma l6:
  fixes Q p R
  defines Q \equiv \{q : not\text{-}blocked \ p \ R \ q\}
  shows Q \cap R \cap W = \{\}
\langle proof \rangle
theorem quorum-blocks-cons-cluster:
  assumes quorum-of-set C Q and p \in C and is-cons-cluster C
  shows blocking-min (Q \cap W) p
\langle proof \rangle
```

2.2 Reachability through a set

Here we define the part of a quorum Q of p that is reachable through correct participants from p. We show that if p and p' are members of the same consensus cluster and Q is a quorum of p and Q' is a quorum of p', then the intersection $Q \cap Q' \cap W$ is reachable from both p and p' through the consensus cluster.

```
inductive reachable-through for p S where reachable-through p S p | [reachable-through <math>p S p'; p' \in W; Sl \in slices p'; Sl \subseteq S; p'' \in Sl] \implies reachable-through <math>p S p''
```

definition truncation where truncation $p S \equiv \{p' : reachable\text{-through } p S p'\}$

```
lemma l13:
   assumes quorum\text{-}of\ p\ Q and p\in W and reachable\text{-}through\ p\ Q\ p' shows quorum\text{-}of\ p'\ Q \langle proof \rangle

lemma l14:
   assumes quorum\text{-}of\ p\ Q and p\in W shows quorum\ (truncation\ p\ Q) \langle proof \rangle

lemma l15:
   assumes is\text{-}cons\text{-}cluster\ I and quorum\text{-}of\ p\ Q and quorum\text{-}of\ p'\ Q' and p\in I and p'\in I a
```

2.3 Elementary quorums

In this section we define the notion of elementary quorum, which is a quorum that has no strict subset that is a quorum. It follows directly from the definition that every finite quorum contains an elementary quorum. Moreover, we show that if Q is an elementary quorum and n_1 and n_2 are members of Q, then n_2 is reachable from n_1 in the directed graph over participants defined as the set of edges (n, m) such that m is a member of a slice of n. This lemma is used in the companion paper to show that probabilistic leader-election is feasible.

```
assumes elementary s and n_1 \in s and n_2 \in s and n_1 \in W and n_2 \in W shows \exists l \cdot hd \ (rev \ l) = n_1 \wedge hd \ l = n_2 \wedge path \ l \ (is \ ?P) \langle proof \rangle
```

end

2.4 The intact sets of the Stellar Whitepaper

definition project where

```
project slices S \ n \equiv \{Sl \cap S \mid Sl \ . \ Sl \in slices \ n\}
```

— Projecting on S is the same as deleting the complement of S, where deleting is understood as in the Stellar Whitepaper.

2.4.1 Intact and the Cascade Theorem

locale intact = - Here we fix an intact set I and prove the cascade theorem. $orig: stellar \ slices \ W$

+ $proj:stellar\ project\ slices\ I\ W$ — We consider the projection of the system on I. for $slices\ W\ I\ +$ — An intact set is a set I satisfying the three assumptions below:

```
assumes intact\text{-}wb\text{:}I\subseteq W
and q\text{-}avail\text{:}orig.quorum\ I-I is a quorum in the original system.
```

```
and q-inter: \land Q Q' . [[proj.quorum Q; proj.quorum Q'; Q \cap I \neq \{\}; Q' \cap I \neq \{\}] \implies Q \cap Q' \cap I \neq \{\}
```

— Any two sets that intersect I and that are quorums in the projected system intersect in I. Note that requiring that $Q \cap Q' \neq \{\}$ instead of $Q \cap Q' \cap I \neq \{\}$ would be equivalent.

begin

theorem *blocking-safe*: — A set that blocks an intact node contains an intact node. If this were not the case, quorum availability would trivially be violated.

```
fixes S n assumes n \in I and \forall Sl \in slices n . Sl \cap S \neq \{\} shows S \cap I \neq \{\} \langle proof \rangle
```

theorem cascade:

— If U is a quorum of an intact node and S is a super-set of U, then either S includes all intact nodes or there is an intact node outside of S which is blocked by the intact members of S. This shows that, in SCP, once the intact members of a quorum accept a statement, a cascading effect occurs and all intact nodes eventually accept it regardless of what befouled and faulty nodes do.

```
fixes US assumes orig.quorum\ U and U\cap I\neq \{\} and U\subseteq S obtains I\subseteq S\mid \exists\ n\in I-S\ .\ \forall\ Sl\in slices\ n\ .\ Sl\cap S\cap I\neq \{\} \langle proof\rangle
```

end

2.4.2 The Union Theorem

Here we prove that the union of two intact sets that intersect is intact. This implies that maximal intact sets are disjoint.

```
locale intersecting-intact =
  i1:intact slices W I_1 + i2:intact slices W I_2 — We fix two intersecting intact
 + proj:stellar project slices (I_1 \cup I_2) W — We consider the projection of the system
on I_1 \cup I_2.
 for slices W I_1 I_2 +
assumes inter: I_1 \cap I_2 \neq \{\}
begin
theorem union-quorum: i1.orig.quorum (I_1 \cup I_2) — I_1 \cup I_2 is a quorum in the
original system.
  \langle proof \rangle
{\bf theorem}\ union\hbox{-} quorum\hbox{-} intersection\hbox{:}
 assumes proj.quorum Q_1 and proj.quorum Q_2 and Q_1 \cap (I_1 \cup I_2) \neq \{\} and Q_2
\cap (I_1 \cup I_2) \neq \{\}
 shows Q_1 \cap Q_2 \cap (I_1 \cup I_2) \neq \{\}
      – Any two sets that intersect I_1 \cup I_2 and that are quorums in the system
projected on I_1 \cup I_2 intersect in I_1 \cup I_2.
\langle proof \rangle
end
```

References

end

[1] E. Gafni, G. Losa, and D. Mazières. Stellar consensus by reduction. In 33nd International Symposium on Distributed Computing (DISC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.