
Stellar Quorum Systems

Giuliano Losa
Galois, Inc., USA

giuliano@galois.com

March 19, 2025

Abstract

We formalize the static properties of personal Byzantine quorum
systems (PBQSs) and Stellar quorum systems, as described in the pa-
per “Stellar Consensus by Reduction”, to appear at DISC 2019.

Contents
1 Personal Byzantine quorum systems 2

1.1 The set of participants not blocked by malicious participants 3
1.2 Consensus clusters and intact sets 3

2 Stellar quorum systems 6
2.1 Properties of blocking sets . 7
2.2 Reachability through a set . 10
2.3 Elementary quorums . 11
2.4 The intact sets of the Stellar Whitepaper 12

2.4.1 Intact and the Cascade Theorem 13
2.4.2 The Union Theorem 14

1

This theory formalizes some of the results appearing in the paper "Stellar
Consensus By Reduction"[1]. We prove static properties of personal Byzan-
tine quorum systems and Stellar quorum systems.
theory Stellar-Quorums

imports Main
begin

1 Personal Byzantine quorum systems
locale personal-quorums =

fixes quorum-of :: ′node ⇒ ′node set ⇒ bool
assumes quorum-assm:

∧
p p ′ . [[quorum-of p Q; p ′ ∈ Q]] =⇒ quorum-of p ′ Q

— In other words, a quorum (of some participant) is a quorum of all its members.
begin

definition blocks where
— Set R blocks participant p.
blocks R p ≡ ∀ Q . quorum-of p Q −→ Q ∩ R 6= {}

abbreviation blocked-by where blocked-by R ≡ {p . blocks R p}

lemma blocked-blocked-subset-blocked:
blocked-by (blocked-by R) ⊆ blocked-by R

proof −
have False if p ∈ blocked-by (blocked-by R) and p /∈ blocked-by R for p
proof −

have Q ∩ blocked-by R 6= {} if quorum-of p Q for Q
using ‹p ∈ blocked-by (blocked-by R)› that unfolding blocks-def by auto

have Q ∩ R 6= {} if quorum-of p Q for Q
proof −

obtain p ′ where p ′ ∈ blocked-by R and p ′ ∈ Q
by (meson Int-emptyI ‹

∧
Q. quorum-of p Q =⇒ Q ∩ blocked-by R 6= {}›

‹quorum-of p Q›)
hence quorum-of p ′ Q

using quorum-assm that by blast
with ‹p ′ ∈ blocked-by R› show Q ∩ R 6= {}

using blocks-def by auto
qed
hence p ∈ blocked-by R by (simp add: blocks-def)
thus False using that(2) by auto

qed
thus blocked-by (blocked-by R) ⊆ blocked-by R

by blast
qed

end

We now add the set of correct participants to the model.

2

locale with-w = personal-quorums quorum-of for quorum-of :: ′node ⇒ ′node set
⇒ bool +

fixes W :: ′node set — W is the set of correct participants
begin

abbreviation B where B ≡ −W
— B is the set of malicious participants.

definition quorum-of-set where quorum-of-set S Q ≡ ∃ p ∈ S . quorum-of p Q

1.1 The set of participants not blocked by malicious partic-
ipants

definition L where L ≡ W − (blocked-by B)

lemma l2 : p ∈ L =⇒ ∃ Q ⊆ W . quorum-of p Q
unfolding L-def blocks-def using DiffD2 by auto

lemma l3 : — If a participant is not blocked by the malicious participants, then it
has a quorum consisting exclusively of correct participants which are not blocked
by the malicious participants.

assumes p ∈ L shows ∃ Q ⊆ L . quorum-of p Q
proof −

have False if
∧

Q . quorum-of p Q =⇒ Q ∩ (−L) 6= {}
proof −

obtain Q where quorum-of p Q and Q ⊆ W
using l2 ‹p ∈ L› by auto

have Q ∩ (−L) 6= {} using that ‹quorum-of p Q› by simp
obtain p ′ where p ′ ∈ Q ∩ (−L) and quorum-of p ′ Q
using ‹Q ∩ − L 6= {}› ‹quorum-of p Q› inf .left-idem quorum-assm by fastforce

hence Q ∩ B 6= {} unfolding L-def
using CollectD Compl-Diff-eq Int-iff inf-le1 personal-quorums.blocks-def per-

sonal-quorums-axioms subset-empty by fastforce
thus False using ‹Q ⊆ W › by auto

qed
thus ?thesis by (metis disjoint-eq-subset-Compl double-complement)

qed

1.2 Consensus clusters and intact sets
definition is-intertwined where

— This definition is not used in this theory, but we include it to formalize the
notion of intertwined set appearing in the DISC paper.

is-intertwined S ≡ S ⊆ W
∧ (∀ Q Q ′ . quorum-of-set S Q ∧ quorum-of-set S Q ′ −→ W ∩ Q ∩ Q ′ 6= {})

definition is-cons-cluster where
— Consensus clusters

3

is-cons-cluster C ≡ C ⊆ W ∧ (∀ p ∈ C . ∃ Q ⊆ C . quorum-of p Q)
∧ (∀ Q Q ′ . quorum-of-set C Q ∧ quorum-of-set C Q ′ −→ W ∩ Q ∩ Q ′ 6=

{})

definition strong-consensus-cluster where
strong-consensus-cluster I ≡ I ⊆ W ∧ (∀ p ∈ I . ∃ Q ⊆ I . quorum-of p Q)

∧ (∀ Q Q ′ . quorum-of-set I Q ∧ quorum-of-set I Q ′ −→ I ∩ Q ∩ Q ′ 6= {})

lemma strong-consensus-cluster-imp-cons-cluster :
— Every intact set is a consensus cluster

shows strong-consensus-cluster I =⇒ is-cons-cluster I
unfolding strong-consensus-cluster-def is-cons-cluster-def
by blast

lemma cons-cluster-neq-cons-cluster :
— Some consensus clusters are not strong consensus clusters and have no superset

that is a strong consensus cluster.
shows is-cons-cluster I ∧ (∀ J . I ⊆ J −→ ¬strong-consensus-cluster J) nit-

pick[falsify=false, card ′node=3 , expect=genuine]
oops

Next we show that the union of two consensus clusters that intersect is a
consensus cluster.
theorem cluster-union:

assumes is-cons-cluster C 1 and is-cons-cluster C 2 and C 1 ∩ C 2 6= {}
shows is-cons-cluster (C 1∪ C 2)

proof −
have C 1 ∪ C 2 ⊆ W

using assms(1) assms(2) is-cons-cluster-def by auto
moreover
have ∀ p ∈ (C 1∪C 2) . ∃ Q ⊆ (C 1∪C 2) . quorum-of p Q

using ‹is-cons-cluster C 1› ‹is-cons-cluster C 2› unfolding is-cons-cluster-def
by (meson UnE le-supI1 le-supI2)

moreover
have W ∩ Q1 ∩ Q2 6= {}

if quorum-of-set (C 1∪C 2) Q1 and quorum-of-set (C 1∪C 2) Q2

for Q1 Q2

proof −
have W ∩ Q1 ∩ Q2 6= {} if quorum-of-set C Q1 and quorum-of-set C Q2 and

C = C 1 ∨ C = C 2 for C
using ‹is-cons-cluster C 1› ‹is-cons-cluster C 2› ‹quorum-of-set (C 1∪C 2) Q1›

‹quorum-of-set (C 1∪C 2) Q2› that
unfolding quorum-of-set-def is-cons-cluster-def by metis

moreover
have ‹W ∩ Q1 ∩ Q2 6= {}› if is-cons-cluster C 1 and is-cons-cluster C 2

and C 1 ∩ C 2 6= {} and quorum-of-set C 1 Q1 and quorum-of-set C 2 Q2

for C 1 C 2 — We generalize to avoid repeating the argument twice
proof −

obtain p Q where quorum-of p Q and p ∈ C 1 ∩ C 2 and Q ⊆ C 2

4

using ‹C 1 ∩ C 2 6= {}› ‹is-cons-cluster C 2› unfolding is-cons-cluster-def
by blast

have Q ∩ Q1 6= {} using ‹is-cons-cluster C 1› ‹quorum-of-set C 1 Q1› ‹quo-
rum-of p Q› ‹p ∈ C 1 ∩ C 2›

unfolding is-cons-cluster-def quorum-of-set-def
by (metis Int-assoc Int-iff inf-bot-right)

hence quorum-of-set C 2 Q1 using ‹Q ⊆ C 2› ‹quorum-of-set C 1 Q1› quo-
rum-assm unfolding quorum-of-set-def by blast

thus W ∩ Q1 ∩ Q2 6= {} using ‹is-cons-cluster C 2› ‹quorum-of-set C 2 Q2›
unfolding is-cons-cluster-def by blast

qed
ultimately show ?thesis using assms that unfolding quorum-of-set-def by

auto
qed
ultimately show ?thesis using assms

unfolding is-cons-cluster-def by simp
qed

Similarly, the union of two strong consensus clusters is a strong consensus
cluster.
lemma strong-cluster-union:

assumes strong-consensus-cluster C 1 and strong-consensus-cluster C 2 and C 1

∩ C 2 6= {}
shows strong-consensus-cluster (C 1∪ C 2)

proof −
have C 1 ∪ C 2 ⊆ W

using assms(1) assms(2) strong-consensus-cluster-def by auto
moreover
have ∀ p ∈ (C 1∪C 2) . ∃ Q ⊆ (C 1∪C 2) . quorum-of p Q

using ‹strong-consensus-cluster C 1› ‹strong-consensus-cluster C 2› unfolding
strong-consensus-cluster-def

by (meson UnE le-supI1 le-supI2)
moreover
have (C 1∪C 2) ∩ Q1 ∩ Q2 6= {}

if quorum-of-set (C 1∪C 2) Q1 and quorum-of-set (C 1∪C 2) Q2

for Q1 Q2

proof −
have C ∩ Q1 ∩ Q2 6= {} if quorum-of-set C Q1 and quorum-of-set C Q2 and

C = C 1 ∨ C = C 2 for C
using ‹strong-consensus-cluster C 1› ‹strong-consensus-cluster C 2› that
unfolding quorum-of-set-def strong-consensus-cluster-def by metis

hence (C 1∪C 2) ∩ Q1 ∩ Q2 6= {} if quorum-of-set C Q1 and quorum-of-set C
Q2 and C = C 1 ∨ C = C 2 for C

by (metis Int-Un-distrib2 disjoint-eq-subset-Compl sup.boundedE that)
moreover

have ‹(C 1∪C 2) ∩ Q1 ∩ Q2 6= {}› if strong-consensus-cluster C 1 and strong-consensus-cluster
C 2

and C 1 ∩ C 2 6= {} and quorum-of-set C 1 Q1 and quorum-of-set C 2 Q2

for C 1 C 2 — We generalize to avoid repeating the argument twice

5

proof −
obtain p Q where quorum-of p Q and p ∈ C 1 ∩ C 2 and Q ⊆ C 2

using ‹C 1 ∩ C 2 6= {}› ‹strong-consensus-cluster C 2› unfolding strong-consensus-cluster-def
by blast

have Q ∩ Q1 6= {} using ‹strong-consensus-cluster C 1› ‹quorum-of-set C 1

Q1› ‹quorum-of p Q› ‹p ∈ C 1 ∩ C 2›
unfolding strong-consensus-cluster-def quorum-of-set-def
by (metis Int-assoc Int-iff inf-bot-right)

hence quorum-of-set C 2 Q1 using ‹Q ⊆ C 2› ‹quorum-of-set C 1 Q1› quo-
rum-assm unfolding quorum-of-set-def by blast

thus (C 1∪C 2) ∩ Q1 ∩ Q2 6= {} using ‹strong-consensus-cluster C 2› ‹quo-
rum-of-set C 2 Q2›

unfolding strong-consensus-cluster-def by blast
qed
ultimately show ?thesis using assms that unfolding quorum-of-set-def by

auto
qed
ultimately show ?thesis using assms

unfolding strong-consensus-cluster-def by simp
qed

end

2 Stellar quorum systems
locale stellar =

fixes slices :: ′node ⇒ ′node set set — the quorum slices
and W :: ′node set — the well-behaved nodes

assumes slices-ne:
∧

p . p ∈ W =⇒ slices p 6= {}
begin

definition quorum where
quorum Q ≡ ∀ p ∈ Q ∩ W . (∃ Sl ∈ slices p . Sl ⊆ Q)

definition quorum-of where quorum-of p Q ≡ quorum Q ∧ (p /∈ W ∨ (∃ Sl ∈
slices p . Sl ⊆ Q))

— TODO: p /∈ W needed?

lemma quorum-union:quorum Q =⇒ quorum Q ′ =⇒ quorum (Q ∪ Q ′)
unfolding quorum-def
by (metis IntE Int-iff UnE inf-sup-aci(1) sup.coboundedI1 sup.coboundedI2)

lemma l1 :
assumes

∧
p . p ∈ S =⇒ ∃ Q ⊆ S . quorum-of p Q and p∈ S

shows quorum-of p S using assms unfolding quorum-of-def quorum-def
by (meson Int-iff subset-trans)

lemma is-pbqs:
assumes quorum-of p Q and p ′ ∈ Q

6

shows quorum-of p ′ Q
— This is the property required of a PBQS.
using assms
by (simp add: quorum-def quorum-of-def)

interpretation with-w quorum-of
— Stellar quorums form a personal quorum system.
unfolding with-w-def personal-quorums-def
quorum-def quorum-of-def by simp

lemma quorum-is-quorum-of-some-slice:
assumes quorum-of p Q and p ∈ W
obtains S where S ∈ slices p and S ⊆ Q

and
∧

p ′ . p ′ ∈ S ∩ W =⇒ quorum-of p ′ Q
using assms unfolding quorum-def quorum-of-def by fastforce

lemma is-cons-cluster C =⇒ quorum C
— Every consensus cluster is a quorum.
unfolding is-cons-cluster-def
by (metis inf .order-iff l1 quorum-of-def stellar .quorum-def stellar-axioms)

2.1 Properties of blocking sets
inductive blocking-min where

— This is the set of correct participants that are eventually blocked by a set R
when byzantine processors do not take steps.
[[p ∈ W ; ∀ Sl ∈ slices p . ∃ q ∈ Sl∩W . q ∈ R ∨ blocking-min R q]] =⇒

blocking-min R p
inductive-cases blocking-min-elim:blocking-min R p

inductive blocking-max where
— This is the set of participants that are eventually blocked by a set R when

byzantine processors help epidemic propagation.
[[p ∈ W ; ∀ Sl ∈ slices p . ∃ q ∈ Sl . q ∈ R∪B ∨ blocking-max R q]] =⇒

blocking-max R p
inductive-cases blocking-max R p

Next we show that if R blocks p and p belongs to a consensus cluster S,
then R ∩ S 6= {}.

We first prove two auxiliary lemmas:
lemma cons-cluster-wb:p ∈ C =⇒ is-cons-cluster C =⇒ p∈W

using is-cons-cluster-def by fastforce

lemma cons-cluster-has-ne-slices:
assumes is-cons-cluster C and p∈C

and Sl ∈ slices p
shows Sl 6= {}
using assms unfolding is-cons-cluster-def quorum-of-set-def quorum-of-def quo-

rum-def

7

by (metis empty-iff inf-bot-left inf-bot-right subset-refl)

lemma cons-cluster-has-cons-cluster-slice:
assumes is-cons-cluster C and p∈C
obtains Sl where Sl ∈ slices p and Sl ⊆ C
using assms unfolding is-cons-cluster-def quorum-of-set-def quorum-of-def quo-

rum-def
by (metis Int-commute empty-iff inf .order-iff inf-bot-right le-infI1)

theorem blocking-max-intersects-intact:
— if R blocks p when malicious participants help epidemic propagation, and p

belongs to a consensus cluster C, then R ∩ C 6= {}
assumes blocking-max R p and is-cons-cluster C and p ∈ C
shows R ∩ C 6= {} using assms

proof (induct)
case (1 p R)
obtain Sl where Sl ∈ slices p and Sl ⊆ C using cons-cluster-has-cons-cluster-slice

using 1 .prems by blast
moreover have Sl ⊆ W using assms(2) calculation(2) is-cons-cluster-def by

auto
ultimately show ?case

using 1 .hyps assms(2) by fastforce
qed

Now we show that if p ∈ C, C is a consensus cluster, and quorum Q is such
that Q ∩ C 6= {}, then Q ∩ W blocks p.
We start by defining the set of participants reachable from a participant
through correct participants. Their union trivially forms a quorum. More-
over, if p is not blocked by a set R, then we show that the set of participants
reachable from p and not blocked by R forms a quorum disjoint from R. It
follows that if p is a member of a consensus cluster C and Q is a quorum of
a member of C, then Q ∩ W must block p, as otherwise quorum intersection
would be violated.
inductive not-blocked for p R where
[[Sl ∈ slices p; ∀ q ∈ Sl∩W . q /∈ R ∧ ¬blocking-min R q; q ∈ Sl]] =⇒ not-blocked

p R q
| [[not-blocked p R p ′; p ′ ∈ W ; Sl ∈ slices p ′; ∀ q ∈ Sl∩W . q /∈ R ∧ ¬blocking-min
R q; q ∈ Sl]] =⇒ not-blocked p R q
inductive-cases not-blocked-cases:not-blocked p R q

lemma l4 :
fixes Q p R
defines Q ≡ {q . not-blocked p R q}
shows quorum Q

proof −
have ∃ S ∈ slices n . S ⊆ Q if n∈Q∩W for n
proof−

have not-blocked p R n using assms that by blast

8

hence n /∈ R and ¬blocking-min R n by (metis Int-iff not-blocked.simps that)+
thus ?thesis using blocking-min.intros not-blocked.intros(2) that unfolding

Q-def
by (simp; metis mem-Collect-eq subsetI)

qed
thus ?thesis by (simp add: quorum-def)

qed

lemma l5 :
fixes Q p R
defines Q ≡ {q . not-blocked p R q}
assumes ¬blocking-min R p and ‹p∈C › and ‹is-cons-cluster C ›
shows quorum-of p Q

proof −
have p∈W

using assms(3 ,4) cons-cluster-wb by blast
obtain Sl where Sl ∈ slices p and ∀ q ∈ Sl∩W . q /∈ R ∧ ¬blocking-min R q

by (meson ‹p ∈ W › assms(2) blocking-min.intros)
hence Sl ⊆ Q unfolding Q-def using not-blocked.intros(1) by blast
with l4 ‹Sl ∈ slices p› show quorum-of p Q

using Q-def quorum-of-def by blast
qed

lemma cons-cluster-ne-slices:
assumes is-cons-cluster C and p∈C and Sl ∈ slices p
shows Sl 6={}
using assms cons-cluster-has-ne-slices cons-cluster-wb stellar .quorum-of-def stel-

lar-axioms by fastforce

lemma l6 :
fixes Q p R
defines Q ≡ {q . not-blocked p R q}
shows Q ∩ R ∩ W = {}

proof −
have q /∈ R if not-blocked p R q and q∈ W for q using that

by (metis Int-iff not-blocked.simps)
thus ?thesis unfolding Q-def by auto

qed

theorem quorum-blocks-cons-cluster :
assumes quorum-of-set C Q and p∈C and is-cons-cluster C
shows blocking-min (Q ∩ W) p

proof (rule ccontr)
assume ¬ blocking-min (Q ∩ W) p
have p∈W using assms(2 ,3) is-cons-cluster-def by auto
define Q ′ where Q ′ ≡ {q . not-blocked p (Q∩W) q}
have quorum-of p Q ′ using Q ′-def ‹¬ blocking-min (Q ∩ W) p› assms(2)

assms(3) l5 (1) by blast

9

moreover have Q ′ ∩ Q ∩ W = {}
using Q ′-def l6 by fastforce

ultimately show False using assms unfolding is-cons-cluster-def
by (metis Int-commute inf-sup-aci(2) quorum-of-set-def)

qed

2.2 Reachability through a set

Here we define the part of a quorum Q of p that is reachable through correct
participants from p. We show that if p and p ′ are members of the same
consensus cluster and Q is a quorum of p and Q ′ is a quorum of p ′, then
the intersection Q ∩ Q ′ ∩ W is reachable from both p and p ′ through the
consensus cluster.
inductive reachable-through for p S where

reachable-through p S p
| [[reachable-through p S p ′; p ′ ∈ W ; Sl ∈ slices p ′; Sl ⊆ S ; p ′′ ∈ Sl]] =⇒ reach-
able-through p S p ′′

definition truncation where truncation p S ≡ {p ′ . reachable-through p S p ′}

lemma l13 :
assumes quorum-of p Q and p ∈ W and reachable-through p Q p ′

shows quorum-of p ′ Q
using assms using quorum-assm reachable-through.cases
by (metis is-pbqs subset-iff)

lemma l14 :
assumes quorum-of p Q and p ∈ W
shows quorum (truncation p Q)

proof −
have ∃ S ∈ slices p ′ . ∀ q ∈ S . reachable-through p Q q if reachable-through p

Q p ′ and p ′ ∈ W for p ′

by (meson assms l13 quorum-is-quorum-of-some-slice stellar .reachable-through.intros(2)
stellar-axioms that)

thus ?thesis
by (metis IntE mem-Collect-eq stellar .quorum-def stellar-axioms subsetI trun-

cation-def)
qed

lemma l15 :
assumes is-cons-cluster I and quorum-of p Q and quorum-of p ′ Q ′ and p ∈ I

and p ′ ∈ I and Q ∩ Q ′ ∩ W 6= {}
shows W ∩ (truncation p Q) ∩ (truncation p ′ Q ′) 6= {}

proof −
have quorum (truncation p Q) and quorum (truncation p ′ Q ′) using l14 assms

is-cons-cluster-def by auto
moreover have quorum-of-set I (truncation p Q) and quorum-of-set I (truncation

p ′ Q ′)

10

by (metis IntI assms(4 ,5) calculation mem-Collect-eq quorum-def quorum-of-def
quorum-of-set-def reachable-through.intros(1) truncation-def)+

moreover note ‹is-cons-cluster I ›
ultimately show ?thesis unfolding is-cons-cluster-def by auto

qed

end

2.3 Elementary quorums

In this section we define the notion of elementary quorum, which is a quorum
that has no strict subset that is a quorum. It follows directly from the defi-
nition that every finite quorum contains an elementary quorum. Moreover,
we show that if Q is an elementary quorum and n1 and n2 are members
of Q, then n2 is reachable from n1 in the directed graph over participants
defined as the set of edges (n, m) such that m is a member of a slice of
n. This lemma is used in the companion paper to show that probabilistic
leader-election is feasible.
locale elementary = stellar
begin

definition elementary where
elementary s ≡ quorum s ∧ (∀ s ′ . s ′ ⊂ s −→ ¬quorum s ′)

lemma finite-subset-wf :
shows wf {(X , Y). X ⊂ Y ∧ finite Y }
by (metis finite-psubset-def wf-finite-psubset)

lemma quorum-contains-elementary:
assumes finite s and ¬ elementary s and quorum s
shows ∃ s ′ . s ′ ⊂ s ∧ elementary s ′ using assms

proof (induct s rule:wf-induct[where ?r={(X , Y). X ⊂ Y ∧ finite Y }])
case 1
then show ?case using finite-subset-wf by simp

next
case (2 x)
then show ?case
by (metis (full-types) elementary-def finite-psubset-def finite-subset in-finite-psubset

less-le psubset-trans)
qed

inductive path where
path []

|
∧

x . path [x]
|
∧

l n . [[path l; S ∈ Q (hd l); n ∈ S]] =⇒ path (n#l)

theorem elementary-connected:
assumes elementary s and n1 ∈ s and n2 ∈ s and n1 ∈ W and n2 ∈ W

11

shows ∃ l . hd (rev l) = n1 ∧ hd l = n2 ∧ path l (is ?P)
proof −

{ assume ¬?P
define x where x ≡ {n ∈ s . ∃ l . l 6= [] ∧ hd (rev l) = n1 ∧ hd l = n ∧ path

l}
have n2 /∈ x using ‹¬?P› x-def by auto
have n1 ∈ x unfolding x-def using assms(2) path.intros(2) by force
have quorum x
proof −

{ fix n
assume n ∈ x
have ∃ S . S ∈ slices n ∧ S ⊆ x
proof −

obtain S where S ∈ slices n and S ⊆ s using ‹elementary s› ‹n ∈ x›
unfolding x-def

by (force simp add:elementary-def quorum-def)
have S ⊆ x
proof −

{ assume ¬ S ⊆ x
obtain m where m ∈ S and m /∈ x using ‹¬ S ⊆ x› by auto

obtain l ′ where hd (rev l ′) = n1 and hd l ′ = n and path l ′ and l ′ 6= []
using ‹n ∈ x› x-def by blast

have path (m # l ′) using ‹path l ′› ‹m∈ S› ‹S ∈ slices n› ‹hd l ′ = n›
using path.intros(3) by fastforce

moreover have hd (rev (m # l ′)) = n1 using ‹hd (rev l ′) = n1› ‹l ′
6= []› by auto

ultimately have m ∈ x using ‹m ∈ S› ‹S ⊆ s› x-def by auto
hence False using ‹m /∈ x› by blast }

thus ?thesis by blast
qed
thus ?thesis

using ‹S ∈ slices n› by blast
qed }

thus ?thesis by (meson Int-iff quorum-def)
qed
moreover have x ⊂ s

using ‹n2 /∈ x› assms(3) x-def by blast
ultimately have False using ‹elementary s›

using elementary-def by auto
}
thus ?P by blast

qed

end

2.4 The intact sets of the Stellar Whitepaper
definition project where

12

project slices S n ≡ {Sl ∩ S | Sl . Sl ∈ slices n}
— Projecting on S is the same as deleting the complement of S, where deleting

is understood as in the Stellar Whitepaper.

2.4.1 Intact and the Cascade Theorem
locale intact = — Here we fix an intact set I and prove the cascade theorem.

orig:stellar slices W
+ proj:stellar project slices I W — We consider the projection of the system on I.
for slices W I + — An intact set is a set I satisfying the three assumptions

below:
assumes intact-wb:I ⊆ W

and q-avail:orig.quorum I — I is a quorum in the original system.
and q-inter :

∧
Q Q ′ . [[proj.quorum Q; proj.quorum Q ′; Q ∩ I 6= {}; Q ′ ∩ I 6=

{}]] =⇒ Q ∩ Q ′ ∩ I 6= {}
— Any two sets that intersect I and that are quorums in the projected system

intersect in I. Note that requiring that Q ∩ Q ′ 6= {} instead of Q ∩ Q ′ ∩ I 6= {}
would be equivalent.
begin

theorem blocking-safe: — A set that blocks an intact node contains an intact node.
If this were not the case, quorum availability would trivially be violated.

fixes S n
assumes n∈I and ∀ Sl∈ slices n .Sl∩S 6= {}
shows S ∩ I 6= {}
using assms q-avail intact-wb unfolding orig.quorum-def
by auto (metis inf .absorb-iff2 inf-assoc inf-bot-right inf-sup-aci(1))

theorem cascade:
— If U is a quorum of an intact node and S is a super-set of U, then either S
includes all intact nodes or there is an intact node outside of S which is blocked by
the intact members of S. This shows that, in SCP, once the intact members of a
quorum accept a statement, a cascading effect occurs and all intact nodes eventually
accept it regardless of what befouled and faulty nodes do.

fixes U S
assumes orig.quorum U and U ∩ I 6= {} and U ⊆ S
obtains I ⊆ S | ∃ n ∈ I − S . ∀ Sl ∈ slices n . Sl ∩ S ∩ I 6= {}

proof −
have False if 1 :∀ n ∈ I − S . ∃ Sl ∈ slices n . Sl ∩ S ∩ I = {} and 2 :¬(I ⊆

S)
proof −

First we show that I − S is a quorum in the projected system. This is
immediate from the definition of quorum and assumption 1.

have proj.quorum (I−S) using 1
by (simp add: proj.quorum-def project-def) (metis DiffI IntE IntI empty-iff

subsetI)

Then we show that U is also a quorum in the projected system:

13

moreover have proj.quorum U using ‹orig.quorum U ›
unfolding proj.quorum-def orig.quorum-def project-def
by (simp; meson Int-commute inf .coboundedI2)

Since quorums of I must intersect, we get a contradiction:
ultimately show False using ‹U ⊆ S› ‹U ∩ I 6= {}› ‹¬(I⊆S)› q-inter by

auto
qed
thus ?thesis using that by blast

qed

end

2.4.2 The Union Theorem

Here we prove that the union of two intact sets that intersect is intact. This
implies that maximal intact sets are disjoint.
locale intersecting-intact =

i1 :intact slices W I 1 + i2 :intact slices W I 2 — We fix two intersecting intact
sets I 1 and I 2.
+ proj:stellar project slices (I 1∪I 2) W — We consider the projection of the system

on I 1 ∪ I 2.
for slices W I 1 I 2 +

assumes inter :I 1 ∩ I 2 6= {}
begin

theorem union-quorum: i1 .orig.quorum (I 1∪I 2) — I 1 ∪ I 2 is a quorum in the
original system.

using i1 .intact-axioms i2 .intact-axioms
unfolding intact-def stellar-def intact-axioms-def i1 .orig.quorum-def
by (metis Int-iff Un-iff le-supI1 le-supI2)

theorem union-quorum-intersection:
assumes proj.quorum Q1 and proj.quorum Q2 and Q1 ∩ (I 1∪I 2) 6= {} and Q2

∩ (I 1∪I 2) 6= {}
shows Q1 ∩ Q2 ∩ (I 1∪I 2) 6= {}

— Any two sets that intersect I 1 ∪ I 2 and that are quorums in the system
projected on I 1 ∪ I 2 intersect in I 1 ∪ I 2.
proof −

First we show that Q1 and Q2 are quorums in the projections on I 1 and I 2.
have i1 .proj.quorum Q1 using ‹proj.quorum Q1›

unfolding i1 .proj.quorum-def proj.quorum-def project-def
by auto (metis Int-Un-distrib Int-iff Un-subset-iff)

moreover have i2 .proj.quorum Q2 using ‹proj.quorum Q2›
unfolding i2 .proj.quorum-def proj.quorum-def project-def
by auto (metis Int-Un-distrib Int-iff Un-subset-iff)

moreover have i2 .proj.quorum Q1 using ‹proj.quorum Q1›

14

unfolding proj.quorum-def i2 .proj.quorum-def project-def
by auto (metis Int-Un-distrib Int-iff Un-subset-iff)

moreover have i1 .proj.quorum Q2 using ‹proj.quorum Q2›
unfolding proj.quorum-def i1 .proj.quorum-def project-def
by auto (metis Int-Un-distrib Int-iff Un-subset-iff)

Next we show that Q1 and Q2 intersect if they are quorums of, respectively,
I 1 and I 2. This is the only interesting part of the proof.

moreover have Q1 ∩ Q2 ∩ (I 1∪I 2) 6= {}
if i1 .proj.quorum Q1 and i2 .proj.quorum Q2 and i2 .proj.quorum Q1

and Q1 ∩ I 1 6= {} and Q2 ∩ I 2 6= {}
for Q1 Q2

proof −
have i1 .proj.quorum I 2

proof −
have i1 .orig.quorum I 2 by (simp add: i2 .q-avail)
thus ?thesis unfolding i1 .orig.quorum-def i1 .proj.quorum-def project-def

by auto (meson Int-commute Int-iff inf-le2 subset-trans)
qed
moreover note ‹i1 .proj.quorum Q1›
ultimately have Q1 ∩ I 2 6= {} using i1 .q-inter inter ‹Q1 ∩ I 1 6= {}› by blast

moreover note ‹i2 .proj.quorum Q2›
moreover note ‹i2 .proj.quorum Q1›
ultimately have Q1 ∩ Q2 ∩ I 2 6= {} using i2 .q-inter ‹Q2 ∩ I 2 6= {}› by

blast
thus ?thesis by (simp add: inf-sup-distrib1)

qed

Next we show that Q1 and Q2 intersect if they are quorums of the same
intact set. This is obvious.

moreover
have Q1 ∩ Q2 ∩ (I 1∪I 2) 6= {}

if i1 .proj.quorum Q1 and i1 .proj.quorum Q2 and Q1 ∩ I 1 6= {} and Q2 ∩ I 1

6= {}
for Q1 Q2

by (simp add: Int-Un-distrib i1 .q-inter that)
moreover
have Q1 ∩ Q2 ∩ (I 1∪I 2) 6= {}

if i2 .proj.quorum Q1 and i2 .proj.quorum Q2 and Q1 ∩ I 2 6= {} and Q2 ∩ I 2

6= {}
for Q1 Q2

by (simp add: Int-Un-distrib i2 .q-inter that)

Finally we have covered all the cases and get the final result:
ultimately
show ?thesis
by (smt (verit, best) Int-Un-distrib Int-commute assms(3) assms(4) sup-eq-bot-iff)

15

qed

end

end

References

[1] E. Gafni, G. Losa, and D. Mazières. Stellar consensus by reduction. In
33nd International Symposium on Distributed Computing (DISC 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

16

	Personal Byzantine quorum systems
	The set of participants not blocked by malicious participants
	Consensus clusters and intact sets

	Stellar quorum systems
	Properties of blocking sets
	Reachability through a set
	Elementary quorums
	The intact sets of the Stellar Whitepaper
	Intact and the Cascade Theorem
	The Union Theorem

