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Abstract

We mechanize proofs of several results from the matching with contracts literature, which generalize those of the
classical two-sided matching scenarios that go by the name of stable marriage. Our focus is on game theoretic
issues. Along the way we develop executable algorithms for computing optimal stable matches.
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1 Introduction

As economists have turned their attention to the design of such markets as school enrolments, internships, and
housing refugees (Andersson and Ehlers 2016), particular matching scenarios have proven to be useful models.
Roth (2015) defines matching as “economist-speak for how we get the many things we choose in life that also
must choose us,” and one such two-sided market is now colloquially known as the stable marriage problem. It was
initially investigated by Gale and Shapley (1962), who introduced the key solution concept of stability, and the
deferred-acceptance algorithm that efficiently constructs stable matches for it. We refer readers unfamiliar with this
classical work to §2, where we formalize this scenario and mechanize a non-constructive existence proof of stable
matches due to Sotomayor (1996). Further in-depth treatment can be found in the very readable monographs by
Gusfield and Irving (1989) (algorithmics), Roth and Sotomayor (1990) (economics), and Manlove (2013).
Recently Hatfield and Milgrom (2005) (see also Fleiner (2000, 2002, 2003)) have recast the two-sided matching
model to incorporate contracts, which intuitively allow agents to additionally indicate preferences over conditions
such as salary. By allowing many-to-one matches, some aspects of a labour market can be modelled. Their analysis
leans heavily on the lattice structure of the stable matches, and yields pleasingly simple and general algorithms
(§5). Later work trades this structure for generality, and the analysis becomes more intricate (§6). The key
game-theoretic result is the (one-sided) strategy-proofness of the optimal stable match (§8).
This work was motivated by the difficulty of navigating the literature on matching with contracts by non-specialists,
as observed by Caminati et al. (2015a,b). We impose some order by formalizing much of it in Isabelle/HOL (Nipkow
et al. 2002), a proof assistant for a simply-typed higher-order logic. By carefully writing definitions that are
executable and testable, we avail ourselves of Isabelle’s automatic tools, specifically nitpick and sledgehammer,
to rapidly identify errors when formulating assertions. We focus primarily on strategic (game theoretic) issues, but
our development is also intended to serve as a foundation for further results.
The proof assistant forces us to take care of all details, which yields a verbosity that may deter some readers. We
suggest that most will fare best by reading the definitions and lemma/theorem statements closely, and skipping
the proofs. (The important results are labelled theorem and proposition, but often the lemmas contain the
meat.) The material in §4 on choice functions is mostly for reference.
This PDF is generated directly from the development’s sources and is extensively hyperlinked, but for some
purposes there is no substitute to firing up Isabelle.

2 Sotomayor (1996): A non-constructive proof of the existence of stable
marriages

We set the scene with a non-constructive proof of the existence of stable matches due to Sotomayor (1996). This
approach is pleasantly agnostic about the strictness of preferences, and moreover avoids getting bogged down in
reasoning about programs; most existing proofs involve such but omit formal treatments of the requisite assertions.
This tradition started with Gale and Shapley (1962); see Bijlsma (1991) for a rigorous treatment.
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The following contains the full details of an Isabelle/HOL formalization of her proof, and aims to introduce the
machinery we will make heavy use of later. Further developments will elide many of the more tedious technicalities
that we include here.
The scenario consists of disjoint finite sets of men M and women W, represented as types ′m::finite and ′w::finite
respectively. We diverge from Sotomayor by having each man and woman rank only acceptable partners in a way
that is transitive and complete. (Here completeness requires Refl in addition to Total as the latter does not imply
the former, and so we end up with a total preorder.) Such orders therefore include cycles of indifference, i.e., are
not antisymmetric.
Also matches are treated as relations rather than functions.
We model this scenario in a locale, a sectioning mechanism for stating a series of lemmas relative to a set of fixed
variables (fixes) and assumptions (assumes) that can later be instantiated and discharged.

type-synonym ( ′m, ′w) match = ( ′m × ′w) set

locale StableMarriage =
fixes Pm :: ′m::finite ⇒ ′w::finite rel
fixes Pw :: ′w ⇒ ′m rel
assumes Pm-pref : ∀m. Preorder (Pm m) ∧ Total (Pm m)
assumes Pw-pref : ∀w. Preorder (Pw w) ∧ Total (Pw w)

begin

A match assigns at most one man to each woman, and vice-versa. It is also individually rational, i.e., the partners
are acceptable to each other. The constant Field is the union of the Domain and Range of a relation.

definition match :: ( ′m, ′w) match ⇒ bool where
match µ ←→ inj-on fst µ ∧ inj-on snd µ ∧ µ ⊆ (

⋃
m. {m} × Field (Pm m)) ∩ (

⋃
w. Field (Pw w) × {w})

A woman prefers one man to another if her preference order ranks the former over the latter, and strictly prefers
him if additionally the latter is not ranked over the former, and similarly for the men.

abbreviation (input) m-for w µ ≡ {m. (m, w) ∈ µ}
abbreviation (input) w-for m µ ≡ {w. (m, w) ∈ µ}

definition m-prefers :: ′m ⇒ ( ′m, ′w) match ⇒ ′w set where
m-prefers m µ = {w ′ ∈ Field (Pm m). ∀w∈w-for m µ. (w, w ′) ∈ Pm m}

definition w-prefers :: ′w ⇒ ( ′m, ′w) match ⇒ ′m set where
w-prefers w µ = {m ′ ∈ Field (Pw w). ∀m∈m-for w µ. (m, m ′) ∈ Pw w}

definition m-strictly-prefers :: ′m ⇒ ( ′m, ′w) match ⇒ ′w set where
m-strictly-prefers m µ = {w ′ ∈ Field (Pm m). ∀w∈w-for m µ. (w, w ′) ∈ Pm m ∧ (w ′, w) /∈ Pm m}

definition w-strictly-prefers :: ′w ⇒ ( ′m, ′w) match ⇒ ′m set where
w-strictly-prefers w µ = {m ′ ∈ Field (Pw w). ∀m∈m-for w µ. (m, m ′) ∈ Pw w ∧ (m ′, m) /∈ Pw w}

A couple blocks a match µ if both strictly prefer each other to anyone they are matched with in µ.

definition blocks :: ′m ⇒ ′w ⇒ ( ′m, ′w) match ⇒ bool where
blocks m w µ ←→ w ∈ m-strictly-prefers m µ ∧ m ∈ w-strictly-prefers w µ

We say a match is stable if there are no blocking couples.

definition stable :: ( ′m, ′w) match ⇒ bool where
stable µ ←→ match µ ∧ (∀m w. ¬ blocks m w µ)

lemma stable-match:
assumes stable µ
shows match µ
〈proof 〉

Our goal is to show that for every preference order there is a stable match. Stable matches in this scenario form a
lattice, and this proof implicitly adopts the traditional view that men propose and women choose.
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The definitions above form the trust basis for this existence theorem; the following are merely part of the proof
apparatus, and Isabelle/HOL enforces their soundness with respect to the argument. We will see these concepts
again in later developments.
Firstly, a match is simple if every woman party to a blocking pair is single. The most obvious such match leaves
everyone single.

definition simple :: ( ′m, ′w) match ⇒ bool where
simple µ ←→ match µ ∧ (∀m w. blocks m w µ −→ w /∈ Range µ)

lemma simple-match:
assumes simple µ
shows match µ
〈proof 〉

lemma simple-ex:
∃µ. simple µ
〈proof 〉

Sotomayor observes the following:

lemma simple-no-single-women-stable:
assumes simple µ
assumes ∀w. w ∈ Range µ — No woman is single
shows stable µ
〈proof 〉

lemma stable-simple:
assumes stable µ
shows simple µ
〈proof 〉

Secondly, a weakly Pareto optimal match for men (among all simple matches) is one for which there is no other
match that all men like as much and some man likes more.

definition m-weakly-prefers :: ′m ⇒ ( ′m, ′w) match ⇒ ′w set where
m-weakly-prefers m µ = {w ′ ∈ Field (Pm m). ∀w∈w-for m µ. (w, w ′) ∈ Pm m}

definition weakly-preferred-by-men :: ( ′m, ′w) match ⇒ ( ′m, ′w) match ⇒ bool where
weakly-preferred-by-men µ µ ′

←→ (∀m. ∀w∈w-for m µ. ∃w ′∈w-for m µ ′. w ′ ∈ m-weakly-prefers m µ)

definition strictly-preferred-by-a-man :: ( ′m, ′w) match ⇒ ( ′m, ′w) match ⇒ bool where
strictly-preferred-by-a-man µ µ ′

←→ (∃m. ∃w∈w-for m µ ′. w ∈ m-strictly-prefers m µ)

definition weakly-Pareto-optimal-for-men :: ( ′m, ′w) match ⇒ bool where
weakly-Pareto-optimal-for-men µ
←→ simple µ ∧ ¬(∃µ ′. simple µ ′ ∧ weakly-preferred-by-men µ µ ′ ∧ strictly-preferred-by-a-man µ µ ′)

We will often provide introduction rules for more complex predicates, and sometimes derive these by elementary
syntactic manipulations expressed by the attributes enclosed in square brackets after a use-mention of a lemma.
The lemmas command binds a name to the result. To conform with the Isar structured proof language, we use
meta-logic (“Pure” in Isabelle terminology) connectives:

∧
denotes universal quantification, and =⇒ implication.

lemma weakly-preferred-by-menI :
assumes

∧
m w. (m, w) ∈ µ =⇒ ∃w ′. (m, w ′) ∈ µ ′ ∧ w ′ ∈ m-weakly-prefers m µ

shows weakly-preferred-by-men µ µ ′

〈proof 〉

lemmas simpleI = iffD2 [OF simple-def , unfolded conj-imp-eq-imp-imp, rule-format]
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lemma weakly-Pareto-optimal-for-men-simple:
assumes weakly-Pareto-optimal-for-men µ
shows simple µ
〈proof 〉

Later we will elide obvious technical lemmas like the following. The more obscure proofs are typically generated
automatically by sledgehammer (Blanchette et al. 2016).

lemma m-weakly-prefers-Pm:
assumes match µ
assumes (m, w) ∈ µ
shows w ′ ∈ m-weakly-prefers m µ ←→ (w, w ′) ∈ Pm m
〈proof 〉

lemma match-Field:
assumes match µ
assumes (m, w) ∈ µ
shows w ∈ Field (Pm m)

and m ∈ Field (Pw w)
〈proof 〉

lemma weakly-preferred-by-men-refl:
assumes match µ
shows weakly-preferred-by-men µ µ
〈proof 〉

Sotomayor, p137 provides an alternative definition of weakly-preferred-by-men. The syntax (is ?lhs ←→ pat) binds
the schematic variables ?lhs and ?rhs to the terms separated by ←→.

lemma weakly-preferred-by-men-strictly-preferred-by-a-man:
assumes match µ
assumes match µ ′

shows weakly-preferred-by-men µ µ ′←→ ¬strictly-preferred-by-a-man µ ′ µ (is ?lhs ←→ ?rhs)
〈proof 〉

lemma weakly-Pareto-optimal-for-men-def2 :
weakly-Pareto-optimal-for-men µ
←→ simple µ ∧ (∀µ ′. simple µ ′ ∧ strictly-preferred-by-a-man µ µ ′ −→ strictly-preferred-by-a-man µ ′ µ)

〈proof 〉

Sotomayor claims that the existence of such a weakly Pareto optimal match for men is “guaranteed by the fact
that the set of simple matchings is nonempty [our simple-ex lemma] and finite and the preferences are transitive.”
The following lemmas express this intuition:

lemma trans-finite-has-maximal-elt:
assumes trans r
assumes finite (Field r)
assumes Field r 6= {}
shows ∃ x∈Field r . (∀ y∈Field r . (x, y) ∈ r −→ (y, x) ∈ r)
〈proof 〉

lemma weakly-Pareto-optimal-for-men-ex:
∃µ. weakly-Pareto-optimal-for-men µ
〈proof 〉

The main result proceeds by contradiction.

lemma weakly-Pareto-optimal-for-men-stable:
assumes weakly-Pareto-optimal-for-men µ
shows stable µ
〈proof 〉
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theorem stable-ex:
∃µ. stable µ
〈proof 〉

We can exit the locale context and later re-enter it.

end

We interpret the locale by supplying constants that instantiate the variables we fixed earlier, and proving that these
satisfy the assumptions. In this case we provide concrete preference orders, and by doing so we demonstrate that
our theory is non-vacuous. We arbitrarily choose Roth and Sotomayor (1990, Example 2.15) which demonstrates
the non-existence of man- or woman-optimal matches if preferences are non-strict. (We define optimality shortly.)
The following bunch of types eases the description of this particular scenario.

datatype M = M1 | M2 | M3
datatype W = W1 | W2 | W3

lemma M-UNIV : UNIV = set [M1 , M2 , M3 ] 〈proof 〉
lemma W-UNIV : UNIV = set [W1 , W2 , W3 ] 〈proof 〉

instance M :: finite 〈proof 〉
instance W :: finite 〈proof 〉

lemma M-All:
shows (∀m. P m) ←→ (∀m∈set [M1 , M2 , M3 ]. P m)
〈proof 〉

lemma W-All:
shows (∀w. P w) ←→ (∀w∈set [W1 , W2 , W3 ]. P w)
〈proof 〉

primrec Pm :: M ⇒ W rel where
Pm M1 = { (W1 , W1 ), (W1 , W2 ), (W1 , W3 ), (W2 , W2 ), (W2 , W3 ), (W3 , W3 ), (W3 , W2 ) }
| Pm M2 = { (W1 , W1 ), (W1 , W2 ), (W2 , W2 ) }
| Pm M3 = { (W1 , W1 ), (W1 , W3 ), (W3 , W3 ) }

primrec Pw :: W ⇒ M rel where
Pw W1 = { (M3 , M3 ), (M3 , M2 ), (M3 , M1 ), (M2 , M2 ), (M2 , M1 ), (M1 , M1 ) }
| Pw W2 = { (M2 , M2 ), (M2 , M1 ), (M1 , M1 ) }
| Pw W3 = { (M3 , M3 ), (M3 , M1 ), (M1 , M1 ) }

lemma Pm: Preorder (Pm m) ∧ Total (Pm m)
〈proof 〉

lemma Pw: Preorder (Pw w) ∧ Total (Pw w)
〈proof 〉

interpretation Non-Strict: StableMarriage Pm Pw
〈proof 〉

We demonstrate that there are only two stable matches in this scenario. Isabelle/HOL does not have any special
support for these types of model checking problems, so we simply try all combinations of men and women. Clearly
this does not scale, and for larger domains we need to be a bit cleverer (see §7).

lemma Non-Strict-stable1 :
shows Non-Strict.stable {(M1 , W2 ), (M2 , W1 ), (M3 , W3 )}
〈proof 〉

lemma Non-Strict-stable2 :
shows Non-Strict.stable {(M1 , W3 ), (M2 , W2 ), (M3 , W1 )}
〈proof 〉
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lemma Non-Strict-stable-matches:
Non-Strict.stable µ
←→ µ = {(M1 , W2 ), (M2 , W1 ), (M3 , W3 )}
∨ µ = {(M1 , W3 ), (M2 , W2 ), (M3 , W1 )} (is ?lhs ←→ ?rhs)

〈proof 〉

So far the only interesting result in this interpretation of StableMarriage is the Non-Strict.stable-ex theorem, i.e.,
that there is a stable match. We now add the notion of optimality to our locale, and all interpretations will
automatically inherit it. Later we will also extend locales by adding new fixed variables and assumptions.
Following Roth and Sotomayor (1990, Definition 2.11), a stable match is optimal for men if every man likes it at
least as much as any other stable match (and similarly for an optimal for women match).

context StableMarriage
begin

definition optimal-for-men :: ( ′m, ′w) match ⇒ bool where
optimal-for-men µ
←→ stable µ ∧ (∀µ ′. stable µ ′ −→ weakly-preferred-by-men µ ′ µ)

definition w-weakly-prefers :: ′w ⇒ ( ′m, ′w) match ⇒ ′m set where
w-weakly-prefers w µ = {m ′ ∈ Field (Pw w). ∀m∈m-for w µ. (m, m ′) ∈ Pw w}

definition weakly-preferred-by-women :: ( ′m, ′w) match ⇒ ( ′m, ′w) match ⇒ bool where
weakly-preferred-by-women µ µ ′

←→ (∀w. ∀m∈m-for w µ. ∃m ′∈m-for w µ ′. m ′ ∈ w-weakly-prefers w µ)

definition optimal-for-women :: ( ′m, ′w) match ⇒ bool where
optimal-for-women µ
←→ stable µ ∧ (∀µ ′. stable µ ′ −→ weakly-preferred-by-women µ µ ′)

end

We can show that there is no optimal stable match for these preferences:

lemma NonStrict-not-optimal:
assumes Non-Strict.stable µ
shows ¬Non-Strict.optimal-for-men µ ∧ ¬Non-Strict.optimal-for-women µ
〈proof 〉

Sotomayor (1996) remarks that, if the preferences are strict, there is only one weakly Pareto optimal match for
men, and that it is man-optimal. (This is the match found by the classic man-proposing deferred acceptance
algorithm due to Gale and Shapley (1962).) However she omits a proof that the man-optimal match actually exists
under strict preferences.
The easiest way to show this and further results is to exhibit the lattice structure of the stable matches discovered
by Conway (see Roth and Sotomayor (1990, Theorem 2.16)), where the men- and women-optimal matches are the
extremal points. This suggests looking for a monotonic function whose fixed points are this lattice, which is the
essence of the analysis of matching with contracts in §5.

3 Preliminaries
〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

3.1 MaxR: maximum elements of linear orders

We generalize the existing max and Max functions to work on orders defined over sets. See §4.6 for choice-function
related lemmas.

locale MaxR =
fixes r :: ′a::finite rel

7



assumes r-Linear-order : Linear-order r
begin

The basic function chooses the largest of two elements:

definition maxR :: ′a ⇒ ′a ⇒ ′a where
maxR x y = (if (x, y) ∈ r then y else x)〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

We hoist this to finite sets using the Finite-Set.fold combinator. For code generation purposes it seems inevitable
that we need to fuse the fold and filter into a single total recursive definition.

definition MaxR-f :: ′a ⇒ ′a option ⇒ ′a option where
MaxR-f x acc = (if x ∈ Field r then Some (case acc of None ⇒ x | Some y ⇒ maxR x y) else acc)

interpretation MaxR-f : comp-fun-idem MaxR-f

definition MaxR-opt :: ′a set ⇒ ′a option where
MaxR-opt-eq-fold ′: MaxR-opt A = Finite-Set.fold MaxR-f None A〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

end

interpretation MaxR-empty: MaxR {}
〈proof 〉

interpretation MaxR-singleton: MaxR {(x,x)} for x
〈proof 〉

lemma MaxR-r-domain [iff ]:
assumes MaxR r
shows MaxR (Restr r A)
〈proof 〉

3.2 Linear orders from lists

Often the easiest way to specify a concrete linear order is with a list. Here these run from greatest to least.

primrec linord-of-listP :: ′a ⇒ ′a ⇒ ′a list ⇒ bool where
linord-of-listP x y [] ←→ False
| linord-of-listP x y (z # zs) ←→ (z = y ∧ x ∈ set (z # zs)) ∨ linord-of-listP x y zs

definition linord-of-list :: ′a list ⇒ ′a rel where
linord-of-list xs ≡ {(x, y). linord-of-listP x y xs}
〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

lemma linord-of-list-Linear-order :
assumes distinct xs
assumes ys = set xs
shows linear-order-on ys (linord-of-list xs)

Every finite linear order is generated by a list.

〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉
lemma linear-order-on-list:

assumes linear-order-on ys r
assumes ys = Field r
assumes finite ys
shows ∃ !xs. r = linord-of-list xs ∧ distinct xs ∧ set xs = ys
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4 Choice Functions

We now develop a few somewhat general results about choice functions, following Border (2012); Moulin (1985);
Sen (1970). Hansson and Grüne-Yanoff (2012) provide some philosophical background on this topic. While this
material is foundational to the story we tell about stable matching, it is perhaps best skipped over on a first
reading.
The game here is to study conditions on functions that yield acceptable choices from a given set of alternatives
drawn from some universe (a set, often a type in HOL). We adopt the Isabelle convention of attaching the suffix
on to predicates that are defined on subsets of their types.
type-synonym ′a cfun = ′a set ⇒ ′a set

Most results require that the choice function yield a subset of its argument:
definition f-range-on :: ′a set ⇒ ′a cfun ⇒ bool where

f-range-on A f ←→ (∀B⊆A. f B ⊆ B)

abbreviation f-range :: ′a cfun ⇒ bool where
f-range ≡ f-range-on UNIV 〈proof 〉〈proof 〉

Economists typically assume that the universe is finite, and f is decisive, i.e., yields non-empty sets when given
non-empty sets.
definition decisive-on :: ′a set ⇒ ′a cfun ⇒ bool where

decisive-on A f ←→ (∀B⊆A. B 6= {} −→ f B 6= {})

abbreviation decisive :: ′a cfun ⇒ bool where
decisive ≡ decisive-on UNIV 〈proof 〉〈proof 〉

Often we can mildly generalise existing results by not requiring that f be decisive, and by dropping the finiteness
hypothesis. We make essential use of the former generalization in §5.
Some choice functions, such as those arising from linear orders (§4.6), are resolute: these always yield a single
choice.
definition resolute-on :: ′a set ⇒ ′a cfun ⇒ bool where

resolute-on A f ←→ (∀B⊆A. B 6= {} −→ (∃ a. f B = {a}))

abbreviation resolute :: ′a cfun ⇒ bool where
resolute ≡ resolute-on UNIV

lemma resolute-on-decisive-on:
assumes resolute-on A f
shows decisive-on A f

Often we talk about the choices that are rejected by f :
abbreviation Rf :: ′a cfun ⇒ ′a cfun where

Rf f X ≡ X − f X

Typically there are many (almost-)equivalent formulations of each property in the literature. We try to formulate
our rules in terms of the most general of these.

4.1 The substitutes condition, AKA independence of irrelevant alternatives AKA Chernoff

Loosely speaking, the substitutes condition asserts that an alternative that is rejected from A shall remain rejected
when there is “increased competition,” i.e., from all sets that contain A.
Hatfield and Milgrom (2005) define this property as simply the monotonicity of Rf. Aygün and Sönmez (2012b)
instead use the complicated condition shown here. Condition α, due to Sen (1970, p17, see below), is the most
general and arguably the most perspicuous.
definition substitutes-on :: ′a set ⇒ ′a cfun ⇒ bool where

substitutes-on A f ←→ ¬(∃B⊆A. ∃ a b. {a, b} ⊆ A − B ∧ b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}))
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abbreviation substitutes :: ′a cfun ⇒ bool where
substitutes ≡ substitutes-on UNIV

lemma substitutes-on-def2 [simplified]:
substitutes-on A f ←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. b /∈ f (B ∪ {b}) −→ b /∈ f (B ∪ {a, b}))〈proof 〉

lemma substitutes-on-union:
assumes a /∈ f (B ∪ {a})
assumes substitutes-on (A ∪ B ∪ {a}) f
assumes finite A
shows a /∈ f (A ∪ B ∪ {a})

lemma substitutes-on-antimono:
assumes substitutes-on B f
assumes A ⊆ B
shows substitutes-on A f

The equivalence with the monotonicity of alternative-rejection requires a finiteness constraint.

lemma substitutes-on-Rf-mono-on:
assumes substitutes-on A f
assumes finite A
shows mono-on (Pow A) (Rf f )

lemma Rf-mono-on-substitutes:
assumes mono-on (Pow A) (Rf f )
shows substitutes-on A f

The above substitutes condition is equivalent to the independence of irrelevant alternatives, AKA condition α due
to Sen (1970). Intuitively if a is chosen from a set A, then it must be chosen from every subset of A that it belongs
to. Note the lack of finiteness assumptions here.

definition iia-on :: ′a set ⇒ ′a cfun ⇒ bool where
iia-on A f ←→ (∀B⊆A. ∀C⊆B. ∀ a∈C . a ∈ f B −→ a ∈ f C )

abbreviation iia :: ′a cfun ⇒ bool where
iia ≡ iia-on UNIV

lemma Rf-mono-on-iia-on:
shows mono-on (Pow A) (Rf f ) ←→ iia-on A f

lemma Rf-mono-iia:
shows mono (Rf f ) ←→ iia f

lemma substitutes-iia:
assumes finite A
shows substitutes-on A f ←→ iia-on A f

One key result is that the choice function must be idempotent if it satisfies iia or any of the equivalent conditions.

lemma iia-f-idem:
assumes f-range-on A f
assumes iia-on A f
assumes B ⊆ A
shows f (f B) = f B
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Hatfield and Milgrom (2005, p914, bottom right) claim that the substitutes condition coincides with the substitutable
preferences condition for the college admissions problem of Roth and Sotomayor (1990, Definition 6.2), which is
similar to iia:

definition substitutable-preferences-on :: ′a set ⇒ ′a cfun ⇒ bool where
substitutable-preferences-on A f ←→ (∀B⊆A. ∀ a∈B. ∀ b∈B. a 6= b ∧ a ∈ f B −→ a ∈ f (B − {b}))

lemma substitutable-preferences-on-substitutes-on:
shows substitutable-preferences-on A f ←→ substitutes-on A f (is ?lhs ←→ ?rhs)

Moulin (1985, p152) defines an equivalent Chernoff condition. Intuitively this captures the idea that “a best choice
in some issue [set of alternatives] is still best if the issue shrinks.”

definition Chernoff-on :: ′a set ⇒ ′a cfun ⇒ bool where
Chernoff-on A f ←→ (∀B⊆A. ∀C⊆B. f B ∩ C ⊆ f C )

abbreviation Chernoff :: ′a cfun ⇒ bool where
Chernoff ≡ Chernoff-on UNIV

lemmas Chernoff-onI = iffD2 [OF Chernoff-on-def , rule-format]
lemmas Chernoff-def = Chernoff-on-def [where A=UNIV , simplified]

lemma Chernoff-on-iia-on:
shows Chernoff-on A f ←→ iia-on A f

lemma Chernoff-on-union:
assumes Chernoff-on A f
assumes f-range-on A f
assumes B ⊆ A C ⊆ A
shows f (B ∪ C ) ⊆ f B ∪ f C

Moulin (1985, p159) states a series of equivalent formulations of the Chernoff condition. He also claims that these
hold if the two sets are disjoint.

lemma Chernoff-a:
assumes f-range-on A f
shows Chernoff-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C ) ⊆ f B ∪ C ) (is ?lhs ←→ ?rhs)

lemma Chernoff-b: — essentially the converse of Chernoff-on-union
assumes f-range-on A f
shows Chernoff-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C ) ⊆ f B ∪ f C ) (is ?lhs ←→ ?rhs)

lemma Chernoff-c:
assumes f-range-on A f
shows Chernoff-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C ) ⊆ f (f B ∪ C )) (is ?lhs ←→ ?rhs)

lemma Chernoff-d:
assumes f-range-on A f
shows Chernoff-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C ) ⊆ f (f B ∪ f C )) (is ?lhs ←→ ?rhs)

4.2 The irrelevance of rejected contracts condition AKA consistency AKA Aizerman

Aygün and Sönmez (2012b, §4) propose to repair the results of Hatfield and Milgrom (2005) by imposing the
irrelevance of rejected contracts (IRC) condition. Intuitively this requires the choice function f to ignore unchosen
alternatives.

definition irc-on :: ′a set ⇒ ′a cfun ⇒ bool where
irc-on A f ←→ (∀B⊆A. ∀ a∈A. a /∈ f (B ∪ {a}) −→ f (B ∪ {a}) = f B)
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abbreviation irc :: ′a cfun ⇒ bool where
irc ≡ irc-on UNIV

lemma irc-on-discard:
assumes irc-on A f
assumes finite C
assumes B ∪ C ⊆ A
assumes f (B ∪ C ) ∩ C = {}
shows f (B ∪ C ) = f B

An equivalent condition is called consistency by some (Chambers and Yenmez (2013, Definition 2), Fleiner (2002,
Equation (14))). Like iia, this formulation generalizes to infinite universes.

definition consistency-on :: ′a set ⇒ ′a cfun ⇒ bool where
consistency-on A f ←→ (∀B⊆A. ∀C⊆B. f B ⊆ C −→ f B = f C )

abbreviation consistency :: ′a cfun ⇒ bool where
consistency ≡ consistency-on UNIV

lemma irc-on-consistency-on:
assumes irc-on A f
assumes finite A
shows consistency-on A f

lemma consistency-on-irc-on:
assumes f-range-on A f
assumes consistency-on A f
shows irc-on A f

These conditions imply that f is idempotent:

lemma consistency-on-f-idem:
assumes f-range-on A f
assumes consistency-on A f
assumes B ⊆ A
shows f (f B) = f B

Moulin (1985, p154) defines a similar but weaker property he calls Aizerman:

definition Aizerman-on :: ′a set ⇒ ′a cfun ⇒ bool where
Aizerman-on A f ←→ (∀B⊆A. ∀C⊆B. f B ⊆ C −→ f C ⊆ f B)

abbreviation Aizerman :: ′a cfun ⇒ bool where
Aizerman ≡ Aizerman-on UNIV

lemma consistency-on-Aizerman-on:
assumes consistency-on A f
shows Aizerman-on A f

The converse requires f to be idempotent (Moulin 1985, p157):

lemma Aizerman-on-idem-on-consistency-on:
assumes Aizerman-on A f
assumes ∀B⊆A. f (f B) = f B
shows consistency-on A f
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4.3 The law of aggregate demand condition aka size monotonicity

Hatfield and Milgrom (2005, §III) impose the law of aggregate demand (aka size monotonicity) to obtain the rural
hospitals theorem (§5.6). It captures the following intuition:

[...] Roughly, this law states that as the price falls, agents should demand more of a good. Here, price
falls correspond to more contracts being available, and more demand corresponds to taking on (weakly)
more contracts.

The card function takes a finite set into its cardinality (as a natural number).

definition lad-on :: ′a set ⇒ ′a::finite cfun ⇒ bool where
lad-on A f ←→ (∀B⊆A. ∀C⊆B. card (f C ) ≤ card (f B))

abbreviation lad :: ′a::finite cfun ⇒ bool where
lad ≡ lad-on UNIV

This definition is identical amongst Hatfield and Milgrom (2005, §III), Fleiner (2002, (20)), and Aygün and Sönmez
(2012b, Definition 4).

〈proof 〉〈proof 〉
Aygün and Sönmez (2012b, §5, Proposition 1) show that substitutes and lad imply irc, which therefore rescues
many results in the matching-with-contracts literature.

lemma lad-on-substitutes-on-irc-on:
assumes f-range-on A f
assumes substitutes-on A f
assumes lad-on A f
shows irc-on A f

The converse does not hold.

4.4 The expansion condition

According to Moulin (1985, p152), a choice function satifies expansion if an alternative chosen from two sets is also
chosen from their union.

definition expansion-on :: ′a set ⇒ ′a cfun ⇒ bool where
expansion-on A f ←→ (∀B⊆A. ∀C⊆A. f B ∩ f C ⊆ f (B ∪ C ))

abbreviation expansion :: ′a cfun ⇒ bool where
expansion ≡ expansion-on UNIV

Condition γ due to Sen (1971) generalizes expansion to collections of sets of choices.

definition expansion-gamma-on :: ′a set ⇒ ′a set set ⇒ ′a cfun ⇒ bool where
expansion-gamma-on A As f ←→ (

⋃
As⊆A ∧ As 6= {} −→ (

⋂
A∈As. f A) ⊆ f (

⋃
As))

definition expansion-gamma :: ′a set set ⇒ ′a cfun ⇒ bool where
expansion-gamma ≡ expansion-gamma-on UNIV

lemma expansion-gamma-expansion:
assumes ∀As. expansion-gamma-on A As f
shows expansion-on A f

lemma expansion-expansion-gamma:
assumes expansion-on A f
assumes finite As
shows expansion-gamma-on A As f
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The expansion condition plays a major role in the study of the rationalizability of choice functions, which we
explore next.

4.5 Axioms of revealed preference

We digress from our taxonomy of conditions on choice functions to discuss rationalizability. A choice function is
rationalizable if there exists some binary relation that generates it, typically by taking the greatest or maximal
elements of the given set of alternatives:

definition greatest :: ′a rel ⇒ ′a cfun where
greatest r X = {x∈X . ∀ y∈X . (y, x) ∈ r}

definition maximal :: ′a rel ⇒ ′a cfun where
maximal r X = {x∈X . ∀ y∈X . ¬(x, y) ∈ r}

lemma (in MaxR) greatest:
shows set-option (MaxR-opt X) = greatest r (X ∩ Field r)
〈proof 〉〈proof 〉

Note that greatest requires the relation to be reflexive and total, and maximal requires it to be irreflexive, for the
choice functions to ever yield non-empty sets.
This game of uncovering the preference relations (if any) underlying a choice function goes by the name of revealed
preference. (In contrast, later we show how these conditions guarantee the existence of stable many-to-one matches.)
See Moulin (1985) and Border (2012) for background, intuition and critique, and Sen (1971) for further classical
results and proofs.
We adopt the following notion here:

definition rationalizes-on :: ′a set ⇒ ′a cfun ⇒ ′a rel ⇒ bool where
rationalizes-on A f r ←→ (∀B⊆A. f B = greatest r B)

abbreviation rationalizes :: ′a cfun ⇒ ′a rel ⇒ bool where
rationalizes ≡ rationalizes-on UNIV

In words, relation r rationalizes the choice function f over universe A if f B picks out the greatest elements of B ⊆
A with respect to r. At this point r can be any relation that does the job, but soon enough we will ask that it
satisfy some familiar ordering properties.
The analysis begins by determining under what constraints f can be rationalized, continues by establishing some
properties of all rationalizable choice functions, and concludes by considering what it takes to establish stronger
properties.
Following Border (2012, §5, Definition 2) and Sen (1971, Definition 2), we can generate the revealed weakly preferred
relation for the choice function f :

definition rwp-on :: ′a set ⇒ ′a cfun ⇒ ′a rel where
rwp-on A f = {(x, y). ∃B⊆A. x ∈ B ∧ y ∈ f B}

abbreviation rwp :: ′a cfun ⇒ ′a rel where
rwp ≡ rwp-on UNIV

lemma rwp-on-refl-on:
assumes f-range-on A f
assumes decisive-on A f
shows refl-on A (rwp-on A f )

In words, if it is ever possible that x ∈ B is available and f B chooses y, then y is taken to always be at least as
good as x.
The V-axiom asserts that whatever is revealed to be at least as good as anything else on offer is chosen:

definition V-axiom-on :: ′a set ⇒ ′a cfun ⇒ bool where
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V-axiom-on A f ←→ (∀B⊆A. ∀ y∈B. (∀ x ∈ B. (x, y) ∈ rwp-on A f ) −→ y ∈ f B)

abbreviation V-axiom :: ′a cfun ⇒ bool where
V-axiom ≡ V-axiom-on UNIV

This axiom characterizes rationality; see Border (2012, Theorem 7). Sen (1971, §3) calls a decisive choice function
that satisfies V-axiom normal.

lemma rationalizes-on-f-range-on-V-axiom-on:
assumes rationalizes-on A f r
shows f-range-on A f

and V-axiom-on A f

lemma f-range-on-V-axiom-on-rationalizes-on:
assumes f-range-on A f
assumes V-axiom-on A f
shows rationalizes-on A f (rwp-on A f )

theorem V-axiom-on-rationalizes-on:
shows (f-range-on A f ∧ V-axiom-on A f ) ←→ (∃ r . rationalizes-on A f r)

We could also ask that f be determined directly by how it behaves on pairs (Sen (1971), Moulin (1985, p151)),
which turns out to be equivalent:

definition rationalizable-binary-on :: ′a set ⇒ ′a cfun ⇒ bool where
rationalizable-binary-on A f ←→ (∀B⊆A. f B = {y ∈ B. ∀ x∈B. y ∈ f {x, y}})

abbreviation rationalizable-binary :: ′a cfun ⇒ bool where
rationalizable-binary ≡ rationalizable-binary-on UNIV

theorem V-axiom-realizable-binary:
assumes f-range-on A f
shows V-axiom-on A f ←→ rationalizable-binary-on A f 〈proof 〉

All rationalizable choice functions satisfy iia and expansion (Sen (1971), Moulin (1985, p152)).

lemma rationalizable-binary-on-iia-on:
assumes f-range-on A f
assumes rationalizable-binary-on A f
shows iia-on A f

lemma rationalizable-binary-on-expansion-on:
assumes f-range-on A f
assumes rationalizable-binary-on A f
shows expansion-on A f

The converse requires the set of alternatives to be finite, and moreover fails if the choice function is not decisive.

lemma rationalizable-binary-on-converse:
fixes f :: ′a::finite cfun
assumes f-range-on A f
assumes decisive-on A f
assumes iia-on A f
assumes expansion-on A f
shows rationalizable-binary-on A f

That settles the issue of existence, but it is not clear that the relation is really “rational” (for instance, rwp-on A f
need not be transitive). Therefore the analysis continues by further constraining the choice function so that it is
rationalized by familiar ordering relations.
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For instance, the following shows that the axioms of revealed preference are rationalized by total preorders (Sen
1971, Definitions 8 and 13)1. These are alo equivalent to some congruence axioms due to Samuelson (Border 2012).
We define x to be strictly revealed-preferred to y if there is a situation where both are on offer and only y is chosen:

definition rsp-on :: ′a set ⇒ ′a cfun ⇒ ′a rel where — (Sen 1971, Definition 8)
rsp-on A f = {(x, y). ∃B⊆A. x ∈ Rf f B ∧ y ∈ f B}

abbreviation rsp :: ′a cfun ⇒ ′a rel where
rsp ≡ rsp-on UNIV

This relation is typically denoted by P, for strict preference. The not-worse-than relation R is recovered by:

definition rspR-on :: ′a set ⇒ ′a cfun ⇒ ′a rel where — (Sen 1971, Definition 9)
rspR-on A f = {(x, y). {x, y} ⊆ A ∧ (y, x) /∈ rsp-on A f }

abbreviation rspR :: ′a cfun ⇒ ′a rel where
rspR ≡ rspR-on UNIV

Sen (1971, p309) defines the weak axiom of revealed preference (WARP) as follows:

definition warp-on :: ′a set ⇒ ′a cfun ⇒ bool where
warp-on A f ←→ (∀ (x, y)∈rsp-on A f . (y, x) /∈ rwp-on A f )

abbreviation warp :: ′a cfun ⇒ bool where
warp ≡ warp-on UNIV

The strong axiom of revealed preference (SARP) is essentially the transitive closure of warp (Sen 1971, p309):

definition sarp-on :: ′a set ⇒ ′a cfun ⇒ bool where
sarp-on A f ←→ (∀ (x, y)∈(rsp-on A f )+. (y, x) /∈ rwp-on A f )

abbreviation sarp :: ′a cfun ⇒ bool where
sarp ≡ sarp-on UNIV

lemma sarp-on-warp-on: — Sen (1970, T.3 part)
assumes sarp-on A f
shows warp-on A f

lemma rsp-on-irrefl:
A 6= {} =⇒ irrefl (rsp-on A f )

For decisive choice functions, warp implies sarp. We show this following Sen (1971), via the weak congruence axiom
(WCA): if f chooses x from some set B and y is revealed to be weakly preferred, then f must choose y from B as
well.

definition wca-on :: ′a set ⇒ ′a cfun ⇒ bool where
wca-on A f ←→ (∀ (x, y)∈rwp-on A f . ∀B⊆A. x ∈ f B ∧ y ∈ B −→ y ∈ f B)

abbreviation wca :: ′a cfun ⇒ bool where
wca ≡ wca-on UNIV

Decisive choice functions that satisfy wca are rationalized by total preorders, in particular rwp, and the converse
obtains if they are normal.

lemma wca-on-V-axiom-on:
assumes wca-on A f
assumes f-range-on A f
assumes decisive-on A f

1For Sen (1970, p9), an ordering is complete (total), reflexive, and transitive. Alternative names are: complete pre-ordering, complete
quasi-ordering, and weak ordering.
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shows V-axiom-on A f

lemma wca-on-total-on:
assumes wca-on A f
assumes f-range-on A f
assumes decisive-on A f
shows total-on A (rwp-on A f )

lemma rwp-on-trans:
assumes wca-on A f
assumes f-range-on A f
assumes decisive-on A f
shows trans (rwp-on A f )

lemma wca-on-V-axiom-on-preorder-on: — Sen (1970, T.1, T.3 part)
assumes f-range-on A f
assumes decisive-on A f
shows wca-on A f ←→ V-axiom-on A f ∧ preorder-on A (rwp-on A f ) ∧ total-on A (rwp-on A f )〈proof 〉

lemma wca-on-rwp-on-rspR-on: — Sen (1970, T.2)
assumes wca-on A f
assumes f-range-on A f
assumes decisive-on A f
shows rwp-on A f = rspR-on A f 〈proof 〉

lemma rwp-on-rspR-on-wca-on: — Sen (1970, T.2)
assumes rwp-on A f = rspR-on A f
shows wca-on A f

lemma wca-on-warp-on: — Sen (1970, T.3 part)
shows wca-on A f ←→ warp-on A f

lemma warp-on-sarp-on: — Sen (1970, T.3 part)
assumes warp-on A f
assumes f-range-on A f
assumes decisive-on A f
shows sarp-on A f
〈proof 〉
〈proof 〉

The decisive constraint here is necessary: consider a Condorcet cycle over {x, y, z}: forcing f {x, y, z} to be
non-empty resolves this.
Sen (1971) proves that these and other conditions on choice functions are equivalent (under the decisive hypothesis).

4.5.1 The strong axiom of revealed preference ala Aygün and Sönmez (2012b)

Aygün and Sönmez (2012b, §6) adopt a different definition for a strong axiom of revealed preference and show that
it holds for all choice functions that satisfy iia and consistency.

abbreviation nth-mod :: ′a list ⇒ nat ⇒ ′a (infixl ‹!%› 100 ) where
xs !% i ≡ xs ! (i mod length xs)

definition mwc-sarp :: ′a cfun ⇒ bool where
mwc-sarp f ←→
¬(∃Xs. length Xs > 1 ∧ distinct (map f Xs) ∧ (∀ i. f (Xs!%i) ⊂ Xs!%i ∩ Xs!%(i+1 )))

lemma iia-consistency-mwc-sarp:
assumes f-range f
assumes iia f — substitutes
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assumes consistency f — irc
shows mwc-sarp f
〈proof 〉

〈proof 〉

4.6 Choice functions arising from linear orders

An obvious way to construct a choice function is to derive one from a linear order, i.e., a list of strict preferences.
We allow such rankings to omit some alternatives, which means the resulting function is not decisive.
We work with a finite universe here.

locale linear-cf =
fixes r :: ′a::finite rel
fixes linear-cf :: ′a cfun
assumes r-linear : Linear-order r
assumes linear-cf-def : linear-cf X ≡ set-option (MaxR.MaxR-opt r X)

begin

interpretation MaxR: MaxR r 〈proof 〉〈proof 〉〈proof 〉
lemma range:

shows linear-cf X ⊆ X ∩ Field r

lemmas range ′ = rev-subsetD[OF - range, of x] for x

lemma singleton:
shows x ∈ linear-cf X ←→ linear-cf X = {x}

lemma subset:
assumes linear-cf Y ⊆ X
assumes X ⊆ Y
shows linear-cf Y = linear-cf X

lemma union:
shows linear-cf (X ∪ Y ) = (if linear-cf X = {} then linear-cf Y else if linear-cf Y = {} then linear-cf X else
{MaxR.maxR x y |x y. x ∈ linear-cf X ∧ y ∈ linear-cf Y })

lemma mono:
assumes x ∈ linear-cf X
shows ∃ y ∈ linear-cf (X ∪ Y ). (x, y) ∈ r

lemmas greatest = MaxR.greatest[folded linear-cf-def ]

lemma preferred:
assumes (x, y) ∈ r
assumes x ∈ linear-cf X
assumes y ∈ X
shows y = x

lemma card-le:
shows card (linear-cf X) ≤ 1

lemma card:
shows card (linear-cf X) = (if X ∩ Field r = {} then 0 else 1 )

lemma f-range:
shows f-range-on X linear-cf

lemma domain:
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shows linear-cf (X ∩ Field r) = linear-cf X

lemma decisive-on:
shows decisive-on (Field r) linear-cf

lemma resolute-on:
shows resolute-on (Field r) linear-cf

lemma Rf-mono-on:
shows mono-on X (Rf linear-cf )

lemmas iia = iffD1 [OF Rf-mono-on-iia-on Rf-mono-on]

lemma Chernoff :
shows Chernoff-on X linear-cf

lemma irc:
shows irc-on X linear-cf

lemma consistency:
shows consistency-on X linear-cf

lemma lad:
shows lad-on X linear-cf

end

4.7 Plott’s path independence condition

As recognised by Fleiner (2002, §4) and Chambers and Yenmez (2013) in the context of matching with contracts,
the irc and substitutes conditions together are equivalent to path independence, a condition introduced to the
social choice setting by Plott (1973). Moulin (1985, Lemma 6) ascribes this equivalence result to Aizerman and
Malishevski (1981).
definition path-independent-on :: ′a set ⇒ ′a cfun ⇒ bool where

path-independent-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C ) = f (B ∪ f C ))

abbreviation path-independent :: ′a cfun ⇒ bool where
path-independent ≡ path-independent-on UNIV

Intuitively a choice function satisfying this condition ignores the order in which choices are made in the following
sense:
lemma path-independent-on-symmetric:

assumes f-range-on A f
shows path-independent-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C ) = f (f B ∪ f C ))

lemma path-independent-on-Chernoff-on:
assumes path-independent-on A f
assumes f-range-on A f
shows Chernoff-on A f

lemma path-independent-on-consistency-on:
assumes path-independent-on A f
shows consistency-on A f

lemma Chernoff-on-consistency-on-path-independent-on:
assumes f-range-on A f
shows Chernoff-on A f ∧ consistency-on A f ←→ path-independent-on A f
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lemma (in linear-cf ) path-independent:
shows path-independent linear-cf

4.7.1 Path independence and decomposition into orderings

We now show that a choice function over a finite universe satisfying path-independent is characterized by taking
the maximum elements of some finite set of orderings.
Moulin (1985, Definition 12) says that a choice function is pseudo-rationalized by the orderings Rs if f chooses all
of the greatest r elements of B for each r ∈ Rs:

definition pseudo-rationalizable-on :: ′a::finite set ⇒ ′a rel set ⇒ ′a cfun ⇒ bool where
pseudo-rationalizable-on A Rs f
←→ (∀ r∈Rs. Linear-order r) ∧ (∀B⊆A. f B = (

⋃
r∈Rs. greatest r (B ∩ Field r)))

lemma pseudo-rationalizable-on-def2 :
pseudo-rationalizable-on A Rs f
←→ (∀ r∈Rs. Linear-order r) ∧ (∀B⊆A. f B = (

⋃
r∈Rs. set-option (MaxR.MaxR-opt r B)))

We deviate from Moulin in using non-total linear orders, where his are total, asymmetric, and transitive; in other
words, strict total linear orders. This allows us to treat non-decisive choice functions, and we later show that the
choice function is decisive iff the orders are total.
Moulin (1985, Theorem 5) assumes Aizerman and Chernoff, which are equivalent to path-independent.

lemma Aizerman-on-Chernoff-on-path-independent-on:
assumes f-range-on A f
shows Aizerman-on A f ∧ Chernoff-on A f ←→ path-independent-on A f

It is straightforward to show that pseudo-rationalizable choice functions satisfy path-independent using the properties
of MaxR.MaxR-opt:

lemma pseudo-rationalizable-on-path-independent-on:
assumes pseudo-rationalizable-on A Rs f
shows path-independent-on A f

The converse requires that we construct a suitable set of orderings that rationalize f C for each C ⊆ A. We do this
by finding a set B ⊆ A where f B ⊆ C by successively removing elements in f A − f C. (As these elements are
chosen by f from supersets of B, we rank these above all of those in f B.) By consistency (§4.2), f C = f B. We
generate one order for each element of f C. Some extra care takes care of decisive choice functions.
Termination is guaranteed by the finiteness of A and the f-range-on hypothesis.

context
fixes A :: ′a::finite set
fixes f :: ′a cfun
notes conj-cong[fundef-cong]

begin

function (domintros) mk-linear-orders :: ′a set ⇒ ′a set ⇒ ′a list set where
mk-linear-orders C B =
(if f B = {} then {[]}
else if f B ⊆ C

then {b # cs |b cs. b ∈ f B ∧ cs ∈ mk-linear-orders {} (B − {b})}
else let b = SOME x. x ∈ f B − C in {b # cs |cs. cs ∈ mk-linear-orders C (B − {b})})

context
assumes f-range-on A f

begin
〈proof 〉〈proof 〉
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lemma mk-linear-orders-non-empty:
assumes B ⊆ A
shows ∃ r . r ∈ mk-linear-orders C B

lemma mk-linear-orders-range:
assumes r ∈ mk-linear-orders C B
assumes B ⊆ A
shows set r ⊆ B

lemma mk-linear-orders-nth:
assumes r ∈ mk-linear-orders C B
assumes B ⊆ A
assumes i < length r
shows r ! i ∈ f (B − set (take i r))

lemma mk-linear-orders-distinct:
assumes r ∈ mk-linear-orders C B
assumes B ⊆ A
shows distinct r

lemma mk-linear-orders-Linear-order :
assumes r ∈ mk-linear-orders C A
shows Linear-order (linord-of-list r)

lemma mk-linear-orders-decisive-on-set-r :
assumes r ∈ mk-linear-orders C B
assumes decisive-on A f
assumes B ⊆ A
shows set r = B

lemma mk-linear-orders-decisive-on-refl-on:
assumes r ∈ mk-linear-orders C A
assumes decisive-on A f
shows refl-on A (linord-of-list r)

lemma mk-linear-orders-decisive-on-total-on:
assumes r ∈ mk-linear-orders C A
assumes decisive-on A f
shows total-on A (linord-of-list r)

lemma mk-linear-orders-set-r-decisive-on:
assumes r ∈ mk-linear-orders C B
assumes B ⊆ A
assumes B ⊆ set r
assumes iia-on A f
shows decisive-on B f

lemma mk-linear-orders-total-on-decisive-on:
assumes r ∈ mk-linear-orders C A
assumes A ⊆ set r
assumes iia-on A f
shows decisive-on A f

lemma mk-linear-orders-MaxR-opt-f :
assumes r ∈ mk-linear-orders C A
assumes MaxR.MaxR-opt (linord-of-list r) D = Some x
assumes iia-on A f
assumes D ⊆ A
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shows x ∈ f D

lemma mk-linear-orders-f-MaxR-opt:
assumes x ∈ f C
assumes consistency-on A f
assumes B ⊆ A
assumes C ⊆ B
shows ∃ r∈mk-linear-orders C B. MaxR.MaxR-opt (linord-of-list r) C = Some x

end

end

lemma path-independent-on-pseudo-rationalizable-on:
fixes f :: ′a::finite cfun
assumes path-independent-on A f
assumes f-range-on A f
assumes Rs-def [simp]: Rs = (

⋃
C∈Pow A. linord-of-list ‘ mk-linear-orders f C A)

shows pseudo-rationalizable-on A Rs f ∧ (∀ r∈Rs. refl-on A r ∧ total-on A r ←→ decisive-on A f )

Our top-level theorem is essentially Moulin (1985, Theorem 5):

theorem pseudo-rationalizable:
assumes f-range-on A f
shows path-independent-on A f

←→ (∃Rs. pseudo-rationalizable-on A Rs f ∧ (∀ r∈Rs. refl-on A r ∧ total-on A r ←→ decisive-on A f ))

5 Hatfield and Milgrom (2005): Matching with contracts

We take the original paper on matching with contracts by Hatfield and Milgrom (2005) as our roadmap, which
follows a similar path to Roth and Sotomayor (1990, §2.5). We defer further motivation to these texts. Our first
move is to capture the scenarios described in their §I(A) (p916) in a locale.

locale Contracts =
fixes Xd :: ′x::finite ⇒ ′d::finite
fixes Xh :: ′x ⇒ ′h::finite
fixes Pd :: ′d ⇒ ′x rel
fixes Ch :: ′h ⇒ ′x cfun
assumes Pd-linear : ∀ d. Linear-order (Pd d)
assumes Pd-range: ∀ d. Field (Pd d) ⊆ {x. Xd x = d}
assumes Ch-range: ∀ h. ∀X . Ch h X ⊆ {x∈X . Xh x = h}
assumes Ch-singular : ∀ h. ∀X . inj-on Xd (Ch h X)

begin

The set of contracts is modelled by the type ′x, a free type variable that will later be interpreted by some non-empty
set. Similarly ′d and ′h track the names of doctors and hospitals respectively. All of these are finite by virtue of
belonging to the finite type class.
We fix four constants:

• Xd (Xh) projects the name of the relevant doctor (hospital) from a contract;

• Pd maps doctors to their linear preferences over some subset of contracts that name them (assumptions
Pd-linear and Pd-range); and

• Ch maps hospitals to their choice functions (§4), which are similarly constrained to contracts that name
them (assumption Ch-range). Moreover their choices must name each doctor at most once, i.e., Xd must be
injective on these (assumption Ch-singular).
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The reader familiar with the literature will note that we do not have a null contract (also said to represent the
outside option of unemployment), and instead use partiality of the doctors’ preferences. This provides two benefits:
firstly, Xh is a total function here, and secondly we achieve some economy of description when instantiating this
locale as Pd only has to rank the relevant contracts.
We note in passing that neither the doctors’ nor hospitals’ choice functions are required to be decisive, unlike the
standard literature on choice functions (§4).
In addition to the above, the following constitute the definitions that must be trusted for the results we prove to
be meaningful.
definition Cd :: ′d ⇒ ′x cfun where

Cd d ≡ set-option ◦ MaxR.MaxR-opt (Pd d)

definition CD-on :: ′d set ⇒ ′x cfun where
CD-on ds X = (

⋃
d∈ds. Cd d X)

abbreviation CD :: ′x set ⇒ ′x set where
CD ≡ CD-on UNIV

definition CH :: ′x cfun where
CH X = (

⋃
h. Ch h X)

The function Cd constructs a choice function from the doctor’s linear preferences (see §4.6). Both CD and CH
simply aggregate opinions in the obvious way. The functions CD-on is parameterized with a set of doctors to
support the proofs of §5.5.
We also define RD (Rh, RH ) to be the subsets of a given set of contracts that are rejected by the doctors (hospitals).
(The abbreviation Rf is defined in §4.)
abbreviation (input) RD-on :: ′d set ⇒ ′x cfun where

RD-on ds ≡ Rf (CD-on ds)

abbreviation (input) RD :: ′x cfun where
RD ≡ RD-on UNIV

abbreviation (input) Rh :: ′h ⇒ ′x cfun where
Rh h ≡ Rf (Ch h)

abbreviation (input) RH :: ′x cfun where
RH ≡ Rf CH

A mechanism maps doctor and hospital preferences into a match (here a set of contracts).
type-synonym (in −) ( ′d, ′h, ′x) mechanism = ( ′d ⇒ ′x rel)⇒ ( ′h ⇒ ′x cfun)⇒ ′d set ⇒ ′x set〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

An allocation is a set of contracts where each names a distinct doctor. (Hospitals can contract multiple doctors.)
abbreviation (input) allocation :: ′x set ⇒ bool where

allocation ≡ inj-on Xd

We often wish to extract a doctor’s or a hospital’s contract from an allocation.
definition dX :: ′x set ⇒ ′d ⇒ ′x set where

dX X d = {x ∈ X . Xd x = d}

definition hX :: ′x set ⇒ ′h ⇒ ′x set where
hX X h = {x ∈ X . Xh x = h}〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

Stability is the key property we look for in a match (here a set of contracts), and consists of two parts.
Firstly, we ask that it be individually rational, i.e., the contracts in the match are actually acceptable to all
participants. Note that this implies the match is an allocation.
definition individually-rational-on :: ′d set ⇒ ′x set ⇒ bool where

individually-rational-on ds X ←→ CD-on ds X = X ∧ CH X = X
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abbreviation individually-rational :: ′x set ⇒ bool where
individually-rational ≡ individually-rational-on UNIV

The second condition requires that there be no coalition of a hospital and one or more doctors who prefer another
set of contracts involving them; the hospital strictly, the doctors weakly. Contrast this definition with the classical
one for stable marriages given in §2.

definition blocking-on :: ′d set ⇒ ′x set ⇒ ′h ⇒ ′x set ⇒ bool where
blocking-on ds X h X ′←→ X ′ 6= Ch h X ∧ X ′ = Ch h (X ∪ X ′) ∧ X ′ ⊆ CD-on ds (X ∪ X ′)

definition stable-no-blocking-on :: ′d set ⇒ ′x set ⇒ bool where
stable-no-blocking-on ds X ←→ (∀ h X ′. ¬blocking-on ds X h X ′)

abbreviation stable-no-blocking :: ′x set ⇒ bool where
stable-no-blocking ≡ stable-no-blocking-on UNIV

definition stable-on :: ′d set ⇒ ′x set ⇒ bool where
stable-on ds X ←→ individually-rational-on ds X ∧ stable-no-blocking-on ds X

abbreviation stable :: ′x set ⇒ bool where
stable ≡ stable-on UNIV 〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

end

5.1 Theorem 1: Existence of stable pairs

We proceed to define a function whose fixed points capture all stable matches. Hatfield and Milgrom (2005, I(B),
p917) provide the following intuition:

The first theorem states that a set of contracts is stable if any alternative contract would be rejected by
some doctor or some hospital from its suitably defined opportunity set. In the formulas below, think of
the doctors’ opportunity set as XD and the hospitals’ opportunity set as XH. If X ′ is the corresponding
stable set, then XD must include, in addition to X ′, all contracts that would not be rejected by the
hospitals, and XH must similarly include X ′ and all contracts that would not be rejected by the doctors.
If X ′ is stable, then every alternative contract is rejected by somebody, so X = XH ∪ XD [where X is
the set of all contracts]. This logic is summarized in the first theorem.

See also Fleiner (2003, p6,§4) and Fleiner (2002, §2), from whom we adopt the term stable pair.

context Contracts
begin

definition stable-pair-on :: ′d set ⇒ ′x set × ′x set ⇒ bool where
stable-pair-on ds = (λ(XD, XH ). XD = − RH XH ∧ XH = − RD-on ds XD)

abbreviation stable-pair :: ′x set × ′x set ⇒ bool where
stable-pair ≡ stable-pair-on UNIV

abbreviation match :: ′x set × ′x set ⇒ ′x set where
match X ≡ fst X ∩ snd X

Hatfield and Milgrom (2005, Theorem 1) state that every solution (XD, XH ) of stable-pair yields a stable match
XD ∩ XH, and conversely, i.e., every stable match is the intersection of some stable pair. Aygün and Sönmez
(2012b) show that neither is the case without further restrictions on the hospitals’ choice functions Ch; we exhibit
their counterexample below.
Even so we can establish some properties in the present setting:

lemma stable-pair-on-CD-on:
assumes stable-pair-on ds XD-XH
shows match XD-XH = CD-on ds (fst XD-XH )
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lemma stable-pair-on-CH :
assumes stable-pair-on ds XD-XH
shows match XD-XH = CH (snd XD-XH )

lemma stable-pair-on-CD-on-CH :
assumes stable-pair-on ds XD-XH
shows CD-on ds (fst XD-XH ) = CH (snd XD-XH )

lemma stable-pair-on-allocation:
assumes stable-pair-on ds XD-XH
shows allocation (match XD-XH )
〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

We run out of steam on the following two lemmas, which are the remaining requirements for stability.

lemma
assumes stable-pair-on ds XD-XH
shows individually-rational-on ds (match XD-XH )
〈proof 〉

lemma
assumes stable-pair-on ds XD-XH
shows stable-no-blocking (match XD-XH )
〈proof 〉

Hatfield and Milgrom (2005) also claim that the converse holds:

lemma
assumes stable-on ds X
obtains XD-XH where stable-pair-on ds XD-XH and X = match XD-XH
〈proof 〉

Again, the following counterexample shows that the substitutes condition on Ch is too weak to guarantee this. We
show it holds under stronger assumptions in §5.1.3.

end

5.1.1 Theorem 1 does not hold (Aygün and Sönmez 2012b)

The following counterexample, due to Aygün and Sönmez (2012b, §3: Example 2), comprehensively demonstrates
that Hatfield and Milgrom (2005, Theorem 1) does not hold.
We create three types: D2 consists of two elements, representing the doctors, and H is the type of the single
hospital. There are four contracts in the type X4.

datatype D2 = D1 | D2
datatype H1 = H
datatype X4 = Xd1 | Xd1 ′ | Xd2 | Xd2 ′〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉
primrec X4d :: X4 ⇒ D2 where

X4d Xd1 = D1
| X4d Xd1 ′ = D1
| X4d Xd2 = D2
| X4d Xd2 ′ = D2

abbreviation X4h :: X4 ⇒ H1 where
X4h - ≡ H

primrec PX4d :: D2 ⇒ X4 rel where
PX4d D1 = linord-of-list [Xd1 ′, Xd1 ]
| PX4d D2 = linord-of-list [Xd2 , Xd2 ′]

function CX4h :: H1 ⇒ X4 cfun where
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CX4h - {Xd1} = {Xd1}
| CX4h - {Xd1 ′} = {Xd1 ′}
| CX4h - {Xd2} = {Xd2}
| CX4h - {Xd2 ′} = {Xd2 ′}
| CX4h - {Xd1 , Xd1 ′} = {Xd1}
| CX4h - {Xd1 , Xd2} = {Xd1 , Xd2}
| CX4h - {Xd1 , Xd2 ′} = {Xd2 ′}
| CX4h - {Xd1 ′, Xd2} = {Xd1 ′}
| CX4h - {Xd1 ′, Xd2 ′} = {Xd1 ′, Xd2 ′}
| CX4h - {Xd2 , Xd2 ′} = {Xd2}
| CX4h - {Xd1 , Xd1 ′, Xd2} = {}
| CX4h - {Xd1 , Xd1 ′, Xd2 ′} = {}
| CX4h - {Xd1 , Xd2 , Xd2 ′} = {}
| CX4h - {Xd1 ′, Xd2 , Xd2 ′} = {}
| CX4h - {Xd1 , Xd1 ′, Xd2 , Xd2 ′} = {}
| CX4h - {} = {}
〈proof 〉〈proof 〉〈proof 〉〈proof 〉

interpretation StableNoDecomp: Contracts X4d X4h PX4d CX4h

There are two stable matches in this model.

〈proof 〉〈proof 〉

lemma stable:
shows StableNoDecomp.stable X ←→ X = {Xd1 , Xd2} ∨ X = {Xd1 ′, Xd2 ′}〈proof 〉

However neither arises from a pair XD, XH that satisfy StableNoDecomp.stable-pair :

lemma StableNoDecomp-XD-XH :
shows StableNoDecomp.stable-pair (XD, XH ) ←→ (XD = {} ∧ XH = {Xd1 , Xd1 ′, Xd2 , Xd2 ′})〈proof 〉

proposition
assumes StableNoDecomp.stable-pair (XD, XH )
shows ¬StableNoDecomp.stable (XD ∩ XH )

Moreover the converse of Theorem 1 does not hold either: the single decomposition that satisfies StableNoDe-
comp.stable-pair (StableNoDecomp-XD-XH) does not yield a stable match:

proposition
assumes StableNoDecomp.stable X
shows ¬(∃XD XH . StableNoDecomp.stable-pair (XD, XH ) ∧ X = XD ∩ XH )

So there is not hope for Hatfield and Milgrom (2005, Theorem 1) as it stands. Note that the counterexample
satisfies the substitutes condition (see §4.1):

lemma
shows substitutes (CX4h H )

Therefore while substitutes supports the monotonicity argument that underpins their deferred-acceptance algorithm
(see §5.2), it is not enough to rescue Theorem 1. One way forward is to constrain the hospitals’ choice functions,
which we discuss in the next section.

5.1.2 Theorem 1 holds with independence of rejected contracts

Aygün and Sönmez (2012b) propose to rectify this issue by requiring hospitals’ choices to satisfy irc (§4.2).
Reassuringly their counterexample fails to satisfy it:

lemma
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shows ¬irc (CX4h H )

We adopt this hypothesis by extending the Contracts locale:

locale ContractsWithIRC = Contracts +
assumes Ch-irc: ∀ h. irc (Ch h)

begin

This property requires that Ch behave, for example, as follows:

lemma Ch-domain:
shows Ch h (A ∩ {x. Xh x = h}) = Ch h A

lemmas Ch-irc-idem = consistency-on-f-idem[OF Ch-f-range Ch-consistency, simplified]

lemma CH-irc-idem:
shows CH (CH A) = CH A

lemma Ch-CH-irc-idem:
shows Ch h (CH A) = Ch h A

This suffices to show the left-to-right direction of Theorem 1.

lemma stable-pair-on-individually-rational:
assumes stable-pair-on ds XD-XH
shows individually-rational-on ds (match XD-XH )

lemma stable-pair-on-stable-no-blocking-on:
assumes stable-pair-on ds XD-XH
shows stable-no-blocking-on ds (match XD-XH )
〈proof 〉

theorem stable-pair-on-stable-on:
assumes stable-pair-on ds XD-XH
shows stable-on ds (match XD-XH )

end

5.1.3 The converse of Theorem 1

The forward direction of Theorem 1 gives us a way of finding stable matches by computing fixed points of a
function closely related to stable-pair (see §5.2). The converse says that every stable match can be decomposed in
this way, which implies that the stable matches form a lattice (see also §5.2).
The following proofs assume that the hospitals’ choice functions satisfy substitutes and irc.

context ContractsWithIRC
begin

context
fixes ds :: ′b set
fixes X :: ′a set

begin

Following Hatfield and Milgrom (2005, Proof of Theorem 1), we partition the set of all contracts into [X , XD-smallest
− X , XH-largest − X ] with careful definitions of the two sets XD-smallest and XH-largest. Specifically XH-largest
contains all contracts ranked at least as good as those in X by the doctors, considering unemployment and
unacceptable contracts. Similarly XD-smallest contains those ranked at least as poorly.

definition XH-largest :: ′a set where
XH-largest =

27



{y. Xd y ∈ ds
∧ y ∈ Field (Pd (Xd y))
∧ (∀ x ∈ dX X (Xd y). (x, y) ∈ Pd (Xd y))}

definition XD-smallest :: ′a set where
XD-smallest = − (XH-largest − X)

context
assumes stable-on ds X

begin

lemma Ch-XH-largest-Field:
assumes x ∈ Ch h XH-largest
shows x ∈ Field (Pd (Xd x))
〈proof 〉

lemma Ch-XH-largest-Xd:
assumes x ∈ Ch h XH-largest
shows Xd x ∈ ds
〈proof 〉

lemma X-subseteq-XH-largest:
shows X ⊆ XH-largest
〈proof 〉

lemma X-subseteq-XD-smallest:
shows X ⊆ XD-smallest
〈proof 〉

lemma X-XD-smallest-XH-largest:
shows X = XD-smallest ∩ XH-largest
〈proof 〉

The goal of the next few lemmas is to show the constituents of stable-pair-on ds (XD-smallest, XH-largest).
Intuitively, if a doctor has a contract x in X, then all of their contracts in XH-largest are at least as desirable as
x, and so the stable-no-blocking hypothesis guarantees the hospitals choose x from XH-largest, and similarly the
doctors x from XD-smallest.
lemma XH-largestCdXXH-largest:

assumes x ∈ Ch h XH-largest
shows x ∈ Cd (Xd x) (X ∪ Ch h XH-largest)
〈proof 〉

lemma CH-XH-largest:
shows CH XH-largest = X
〈proof 〉

lemma Cd-XD-smallest:
assumes d ∈ ds
shows Cd d (XD-smallest ∩ Field (Pd d)) = Cd d (X ∩ Field (Pd d))
〈proof 〉

lemma CD-on-XD-smallest:
shows CD-on ds XD-smallest = X
〈proof 〉

theorem stable-on-stable-pair-on:
shows stable-pair-on ds (XD-smallest, XH-largest)
〈proof 〉
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end

end

Our ultimate statement of Theorem 1 of Hatfield and Milgrom (2005) ala Aygün and Sönmez (2012b) goes as
follows, bearing in mind that we are working in the ContractsWithIRC locale:
theorem T1 :

shows stable-on ds X ←→ (∃XD-XH . stable-pair-on ds XD-XH ∧ X = match XD-XH )
〈proof 〉

end

5.2 Theorem 3: Algorithmics

Having revived Theorem 1, we reformulate stable-pair as a monotone (aka isotone) function and exploit the lattice
structure of its fixed points, following Hatfield and Milgrom (2005, §II, Theorem 3). This underpins all of their
results that we formulate here. Fleiner (2002, §2) provides an intuitive gloss of these definitions.
context Contracts
begin

definition F1 :: ′x cfun where
F1 X ′ = − RH X ′

definition F2 :: ′d set ⇒ ′x cfun where
F2 ds X ′ = − RD-on ds X ′

definition F :: ′d set ⇒ ′x set × ′x set dual ⇒ ′x set × ′x set dual where
F ds = (λ(XD, XH ). (F1 (undual XH ), dual (F2 ds (F1 (undual XH )))))

We exploit Isabelle/HOL’s ordering type classes (over the type constructors ′a set and ′a × ′b) to define F. As F is
antimono (where antimono f = (∀ x y. x ≤ y −→ f y ≤ f x) for a lattice order ≤) on its second argument XH, we
adopt the dual lattice order using the type constructor ′a dual, where dual and undual mediate the isomorphism
on values, to satisfy Isabelle/HOL’s mono predicate. Note we work under the substitutes hypothesis here.
Relating this function to stable-pair is syntactically awkward but straightforward:
lemma fix-F-stable-pair-on:

assumes X = F ds X
shows stable-pair-on ds (map-prod id undual X)

lemma stable-pair-on-fix-F :
assumes stable-pair-on ds X
shows map-prod id dual X = F ds (map-prod id dual X)

end

The function F is monotonic under substitutes.
locale ContractsWithSubstitutes = Contracts +

assumes Ch-substitutes: ∀ h. substitutes (Ch h)
begin

lemma F1-antimono:
shows antimono F1

lemma F2-antimono:
shows antimono (F2 ds)

lemma F-mono:
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shows mono (F ds)

We define the extremal fixed points using Isabelle/HOL’s least and greatest fixed point operators:

definition gfp-F :: ′b set ⇒ ′a set × ′a set where
gfp-F ds = map-prod id undual (gfp (F ds))

definition lfp-F :: ′b set ⇒ ′a set × ′a set where
lfp-F ds = map-prod id undual (lfp (F ds))

lemmas gfp-F-stable-pair-on = fix-F-stable-pair-on[OF gfp-unfold[OF F-mono], folded gfp-F-def ]
lemmas lfp-F-stable-pair-on = fix-F-stable-pair-on[OF lfp-unfold[OF F-mono], folded lfp-F-def ]

These last two lemmas show that the least and greatest fixed points do satisfy stable-pair.
Using standard fixed-point properties, we can establish:

lemma F2-o-F1-mono:
shows mono (F2 ds ◦ F1 )

lemmas F2-F1-mono = F2-o-F1-mono[unfolded o-def ]

lemma gfp-F-lfp-F :
shows gfp-F ds = (F1 (lfp (F2 ds ◦ F1 )), lfp (F2 ds ◦ F1 ))

end

We need hospital CFs to satisfy both substitutes and irc to relate these fixed points to stable matches.

locale ContractsWithSubstitutesAndIRC =
ContractsWithSubstitutes + ContractsWithIRC

begin

lemmas gfp-F-stable-on = stable-pair-on-stable-on[OF gfp-F-stable-pair-on]
lemmas lfp-F-stable-on = stable-pair-on-stable-on[OF lfp-F-stable-pair-on]

end

We demonstrate the effectiveness of our definitions by executing an example due to Hatfield and Milgrom (2005,
p920) using Isabelle/HOL’s code generator (Haftmann and Nipkow 2010). Note that, while adequate for this toy
instance, the representations used here are hopelessly näive: sets are represented by lists and operations typically
traverse the entire contract space. It is feasible, with more effort, to derive efficient algorithms; see, for instance,
Bijlsma (1991); Bulwahn et al. (2008).

context ContractsWithSubstitutes
begin

lemma gfp-F-code[code]:
shows gfp-F ds = map-prod id undual (while (λA. F ds A 6= A) (F ds) top)

lemma lfp-F-code[code]:
shows lfp-F ds = map-prod id undual (while (λA. F ds A 6= A) (F ds) bot)

end

There are two hospitals and two doctors.

datatype H2 = H1 | H2

The contract space is simply the Cartesian product D2 × H2.

type-synonym X-D2-H2 = D2 × H2

Doctor D1 prefers H1 � H2, doctor D2 the same H1 � H2 (but over different contracts).
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primrec P-D2-H2-d :: D2 ⇒ X-D2-H2 rel where
P-D2-H2-d D1 = linord-of-list [(D1 , H1 ), (D1 , H2 )]
| P-D2-H2-d D2 = linord-of-list [(D2 , H1 ), (D2 , H2 )]

Hospital H1 prefers {D1} � {D2} � ∅, and hospital H2 {D1 , D2} � {D1} � {D2} � ∅. We interpret these
constraints as follows:

definition P-D2-H2-H1 :: X-D2-H2 cfun where
P-D2-H2-H1 A = (if (D1 , H1 ) ∈ A then {(D1 , H1 )} else if (D2 , H1 ) ∈ A then {(D2 , H1 )} else {})

definition P-D2-H2-H2 :: X-D2-H2 cfun where
P-D2-H2-H2 A =

(if {(D1 , H2 ), (D2 , H2 )} ⊆ A then {(D1 , H2 ), (D2 , H2 )} else
if (D1 , H2 ) ∈ A then {(D1 , H2 )} else if (D2 , H2 ) ∈ A then {(D2 , H2 )} else {})

primrec P-D2-H2-h :: H2 ⇒ X-D2-H2 cfun where
P-D2-H2-h H1 = P-D2-H2-H1
| P-D2-H2-h H2 = P-D2-H2-H2 〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

Isabelle’s code generator requires us to hoist the relevant definitions from the locale to the top-level (see the
codegen documentation, §7.3).

global-interpretation P920-example:
ContractsWithSubstitutes fst snd P-D2-H2-d P-D2-H2-h

defines P920-example-gfp-F = P920-example.gfp-F
and P920-example-lfp-F = P920-example.lfp-F
and P920-example-F = P920-example.F
and P920-example-F1 = P920-example.F1
and P920-example-F2 = P920-example.F2
and P920-example-maxR = P920-example.maxR
and P920-example-MaxR-f = P920-example.MaxR-f
and P920-example-Cd = P920-example.Cd
and P920-example-CD-on = P920-example.CD-on
and P920-example-CH = P920-example.CH

〈proof 〉〈proof 〉〈proof 〉

We can now evaluate the gfp of P920-example.F (i.e., F specialized to the above constants) using Isabelle’s value
antiquotation or eval method. This yields the (XD, XH ) pair:

({(D1 , H1 ), (D1 , H2 ), (D2 , H2 )}, {(D1 , H1 ), (D2 , H1 ), (D2 , H2 )})

The stable match is therefore {(D1 , H1 ), (D2 , H2 )}.
The lfp of P920-example.F is identical to the gfp:

({(D1 , H1 ), (D1 , H2 ), (D2 , H2 )}, {(D1 , H1 ), (D2 , H1 ), (D2 , H2 )})

This implies that there is only one stable match in this scenario.

5.3 Theorem 4: Optimality

Hatfield and Milgrom (2005, Theorem 4) assert that the greatest fixed point gfp-F of F yields the stable match
most preferred by the doctors in the following sense:

context Contracts
begin

definition doctor-optimal-match :: ′d set ⇒ ′x set ⇒ bool where
doctor-optimal-match ds Y
←→ (stable-on ds Y ∧ (∀X . ∀ x∈X . stable-on ds X −→ (∃ y ∈ Y . (x, y) ∈ Pd (Xd x))))

〈proof 〉
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end

In a similar sense, lfp-F is the doctor-pessimal match.
We state a basic doctor-optimality result in terms of stable-pair in the ContractsWithSubstitutes locale for generality;
we can establish doctor-optimal-match only under additional constraints on hospital choice functions (see §5.1.2).
context ContractsWithSubstitutes
begin

context
fixes XD-XH :: ′a set × ′a set
fixes ds :: ′b set
assumes stable-pair-on ds XD-XH

begin

lemma gfp-F-upperbound:
shows (fst XD-XH , dual (snd XD-XH )) ≤ gfp (F ds)

lemma XD-XH-gfp-F :
shows fst XD-XH ⊆ fst (gfp-F ds)

and snd (gfp-F ds) ⊆ snd XD-XH

lemma lfp-F-upperbound:
shows lfp (F ds) ≤ (fst XD-XH , dual (snd XD-XH ))

lemma XD-XH-lfp-F :
shows fst (lfp-F ds) ⊆ fst XD-XH

and snd XD-XH ⊆ snd (lfp-F ds)

We appeal to the doctors’ linear preferences to show the optimality (pessimality) of gfp-F (lfp-F) for doctors.
theorem gfp-f-doctor-optimal:

assumes x ∈ match XD-XH
shows ∃ y ∈ match (gfp-F ds). (x, y) ∈ Pd (Xd x)

theorem lfp-f-doctor-pessimal:
assumes x ∈ match (lfp-F ds)
shows ∃ y ∈ match XD-XH . (x, y) ∈ Pd (Xd x)

end

end

theorem (in ContractsWithSubstitutesAndIRC ) gfp-F-doctor-optimal-match:
shows doctor-optimal-match ds (match (gfp-F ds))

Conversely lfp-F is most preferred by the hospitals in a revealed-preference sense, and gfp-F least preferred. These
results depend on Ch-domain and hence the irc hypothesis on hospital choice functions.
context ContractsWithSubstitutesAndIRC
begin

theorem lfp-f-hospital-optimal:
assumes stable-pair-on ds XD-XH
assumes x ∈ Ch h (match (lfp-F ds))
shows x ∈ Ch h (match (lfp-F ds) ∪ match XD-XH )

theorem gfp-f-hospital-pessimal:
assumes stable-pair-on ds XD-XH
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assumes x ∈ Ch h (match XD-XH )
shows x ∈ Ch h (match (gfp-F ds) ∪ match XD-XH )

end

The general lattice-theoretic results of e.g. Fleiner (2002) depend on the full Tarski-Knaster fixed point theorem,
which is difficult to state in the present type class-based setting. (The theorem itself is available in the Isabelle/HOL
distribution but requires working with less convenient machinery.)

5.4 Theorem 5 does not hold (Hatfield and Kojima 2008)

Hatfield and Milgrom (2005, Theorem 5) claim that:

Suppose H contains at least two hospitals, which we denote by h and h ′. Further suppose that Rf
(Ch h) is not isotone, that is, contracts are not substitutes for h. Then there exist preference orderings
for the doctors in set D, a preference ordering for a hospital h ′ with a single job opening such that,
regardless of the preferences of the other hospitals, no stable set of contracts exists.

Hatfield and Kojima (2008, Observation 1) show this is not true: there can be stable matches even if hospital choice
functions violate substitutes. This motivates looking for conditions weaker than substitutes that still guarantee
stable matches, a project taken up by Hatfield and Kojima (2010); see §6. We omit their counterexample to this
incorrect claim.

5.5 Theorem 6: “Vacancy chain” dynamics

Hatfield and Milgrom (2005, II(C), p923) propose a model for updating a stable match X when a doctor d ′ retires.
Intuitively the contracts mentioning d ′ are discarded and a modified algorithm run from the XH-largest and
XD-smallest sets determined from X. The result is another stable match where the remaining doctors ds − {d ′}
are (weakly) better off and the hospitals (weakly) worse off than they were in the initial state. The proofs are
essentially the same as for optimality (§5.3).
context ContractsWithSubstitutesAndIRC
begin

context
fixes X :: ′a set
fixes d ′ :: ′b
fixes ds :: ′b set

begin

Hatfield and Milgrom do not motivate why the process uses this functional and not F.
definition F ′ :: ′a set × ′a set dual ⇒ ′a set × ′a set dual where

F ′ = (λ(XD, XH ). (− RH (undual XH ), dual (− RD-on (ds−{d ′}) XD)))

lemma F ′-apply:
F ′ (XD, XH ) = (− RH (undual XH ), dual (− RD-on (ds − {d ′}) XD))
〈proof 〉

lemma F ′-mono:
shows mono F ′

lemma fix-F ′-stable-pair-on:
stable-pair-on (ds − {d ′}) (map-prod id undual A)
if A = F ′ A

We model their update process using the while combinator, as we cannot connect it to the extremal fixed points as
we did in §5.2 because we begin computing from the stable match X.
definition F ′-iter :: ′a set × ′a set dual where
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F ′-iter = (while (λA. F ′ A 6= A) F ′ (XD-smallest ds X , dual (XH-largest ds X)))

abbreviation F ′-iter-match :: ′a set where
F ′-iter-match ≡ match (map-prod id undual F ′-iter)

context
assumes stable-on ds X

begin

lemma F-start:
shows F ds (XD-smallest ds X , dual (XH-largest ds X)) = (XD-smallest ds X , dual (XH-largest ds X))

lemma F ′-start:
shows (XD-smallest ds X , dual (XH-largest ds X)) ≤ F ′ (XD-smallest ds X , dual (XH-largest ds X))

lemma
shows F ′-iter-stable-pair-on: stable-pair-on (ds−{d ′}) (map-prod id undual F ′-iter) (is ?thesis1 )

and F ′-start-le-F ′-iter : (XD-smallest ds X , dual (XH-largest ds X)) ≤ F ′-iter (is ?thesis2 )

lemma F ′-iter-match-stable-on:
shows stable-on (ds−{d ′}) F ′-iter-match

theorem F ′-iter-match-doctors-weakly-better-off :
assumes x ∈ Cd d X
assumes d 6= d ′

shows ∃ y ∈ Cd d F ′-iter-match. (x, y) ∈ Pd d

theorem F ′-iter-match-hospitals-weakly-worse-off :
assumes x ∈ Ch h X
shows x ∈ Ch h (F ′-iter-match ∪ X)

Hatfield and Milgrom observe but do not prove that F ′-iter-match is not necessarily doctor-optimal wrt the new
set of doctors, even if X was.
These results seem incomplete. One might expect that the process of reacting to a doctor’s retirement would
involve considering new entrants to the workforce and allowing the set of possible contracts to be refined. There
are also the questions of hospitals opening and closing.

end

end

end

5.6 Theorems 8 and 9: A “rural hospitals” theorem

Given that some hospitals are less desirable than others, the question arises of whether there is a mechanism
that can redistribute doctors to under-resourced hospitals while retaining the stability of the match. Roth’s rural
hospitals theorem (Roth and Sotomayor 1990, Theorem 5.12) resolves this in the negative by showing that each
doctor and hospital signs the same number of contracts in every stable match. In the context of contracts the
theorem relies on the further hypothesis that hospital choices satisfy the law of aggregate demand (§4.3).

locale ContractsWithLAD = Contracts +
assumes Ch-lad: ∀ h. lad (Ch h)

locale ContractsWithSubstitutesAndLAD =
ContractsWithSubstitutes + ContractsWithLAD

We can use results that hold under irc by discharging that hypothesis against lad using the lad-on-substitutes-on-irc-on
lemma. This is the effect of the following sublocale command:
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sublocale ContractsWithSubstitutesAndLAD < ContractsWithSubstitutesAndIRC
〈proof 〉

context ContractsWithSubstitutesAndLAD
begin

The following results lead to Hatfield and Milgrom (2005, Theorem 8), and the proofs go as they say. Again we
state these with respect to an arbitrary solution to stable-pair.

context
fixes XD-XH :: ′a set × ′a set
fixes ds :: ′b set
assumes stable-pair-on ds XD-XH

begin

lemma Cd-XD-gfp-F-card:
assumes d ∈ ds
shows card (Cd d (fst XD-XH )) ≤ card (Cd d (fst (gfp-F ds)))

lemma Ch-gfp-F-XH-card:
shows card (Ch h (snd (gfp-F ds))) ≤ card (Ch h (snd XD-XH ))

theorem Theorem-8 :
shows d ∈ ds =⇒ card (Cd d (fst XD-XH )) = card (Cd d (fst (gfp-F ds)))

and card (Ch h (snd XD-XH )) = card (Ch h (snd (gfp-F ds)))

end

Their result may be more easily understood when phrased in terms of arbitrary stable matches:

corollary rural-hospitals-theorem:
assumes stable-on ds X
assumes stable-on ds Y
shows d ∈ ds =⇒ card (Cd d X) = card (Cd d Y )

and card (Ch h X) = card (Ch h Y )

end

Hatfield and Milgrom (2005, Theorem 9) show that without lad, the rural hospitals theorem does not hold. Their
proof does not seem to justify the theorem as stated (for instance, the contracts x ′, y ′ and z ′ need not exist), and
so we instead simply provide a counterexample (discovered by nitpick) to the same effect.

lemma (in ContractsWithSubstitutesAndIRC ) Theorem-9-counterexample:
assumes stable-on ds Y
assumes stable-on ds Z
shows card (Ch h Y ) = card (Ch h Z )
〈proof 〉

datatype X3 = Xd1 | Xd1 ′ | Xd2 〈proof 〉〈proof 〉〈proof 〉
primrec X3d :: X3 ⇒ D2 where

X3d Xd1 = D1
| X3d Xd1 ′ = D1
| X3d Xd2 = D2

abbreviation X3h :: X3 ⇒ H1 where
X3h - ≡ H

primrec PX3d :: D2 ⇒ X3 rel where
PX3d D1 = linord-of-list [Xd1 , Xd1 ′]
| PX3d D2 = linord-of-list [Xd2 ]
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function CX3h :: H1 ⇒ X3 set ⇒ X3 set where
CX3h - {Xd1} = {Xd1}
| CX3h - {Xd1 ′} = {Xd1 ′}
| CX3h - {Xd2} = {Xd2}
| CX3h - {Xd1 , Xd1 ′} = {Xd1 ′}
| CX3h - {Xd1 , Xd2} = {Xd1 , Xd2}
| CX3h - {Xd1 ′, Xd2} = {Xd1 ′}
| CX3h - {Xd1 , Xd1 ′, Xd2} = {Xd1 ′}
| CX3h - {} = {}
〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉
interpretation Theorem-9 : ContractsWithSubstitutesAndIRC X3d X3h PX3d CX3h

lemma Theorem-9-stable-Xd1 ′:
shows Theorem-9 .stable-on UNIV {Xd1 ′}

lemma Theorem-9-stable-Xd1-Xd2 :
shows Theorem-9 .stable-on UNIV {Xd1 , Xd2}

This violates the rural hospitals theorem:

theorem
shows card (Theorem-9 .CH {Xd1 ′}) 6= card (Theorem-9 .CH {Xd1 , Xd2})

. . . which is attributed to the failure of the hospitals’ choice functions to satisfy lad:

lemma CX3h-not-lad:
shows ¬lad (CX3h h)

Ciupan et al. (2016) discuss an alternative approach to this result in a marriage market.

5.7 Theorems 15 and 16: Cumulative Offer Processes

The goal of Hatfield and Milgrom (2005, §V) is to connect this theory of contracts with matching to earlier work
on auctions by the first of the authors, in particular by eliminating the substitutes hypothesis. They do so by
defining a cumulative offer process (COP):

context Contracts
begin

definition cop-F-HM :: ′d set ⇒ ′x set × ′x set ⇒ ′x set × ′x set where
cop-F-HM ds = (λ(XD, XH ). (− RH XH , XH ∪ CD-on ds (− RH XH )))

Intuitively all of the doctors simultaneously offer their most preferred contracts that have yet to be rejected by the
hospitals, and the hospitals choose amongst these and all that have been offered previously. Asking hospital choice
functions to satisfy the substitutes condition effectively forces hospitals to consider only the contracts they have
previously not rejected.
This definition is neither monotonic nor increasing (i.e., it is not the case that ∀ x. x ≤ cop-F-HM ds x). We rectify
this by focusing on the second part of the definition.

definition cop-F :: ′d set ⇒ ′x set ⇒ ′x set where
cop-F ds XH = XH ∪ CD-on ds (− RH XH )

lemma cop-F-HM-cop-F :
shows cop-F-HM ds XD-XH = (− RH (snd XD-XH ), cop-F ds (snd XD-XH ))
〈proof 〉

lemma cop-F-increasing:
shows x ≤ cop-F ds x
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We have the following straightforward case distinction principles:
lemma cop-F-cases:

assumes x ∈ cop-F ds fp
obtains (fp) x ∈ fp | (CD-on) x ∈ CD-on ds (−RH fp) − fp
〈proof 〉

lemma CH-cop-F-cases:
assumes x ∈ CH (cop-F ds fp)
obtains (CH ) x ∈ CH fp | (RH-fp) x ∈ RH fp | (CD-on) x ∈ CD-on ds (−RH fp) − fp
〈proof 〉

The existence of fixed points for our earlier definitions (§5.2) was guaranteed by the Tarski-Knaster theorem,
which relies on the monotonicity of the defining functional. As cop-F lacks this property, we appeal instead to the
Bourbaki-Witt theorem for increasing functions.
interpretation COP: bourbaki-witt-fixpoint Sup {(x, y). x ≤ y} cop-F ds for ds

definition fp-cop-F :: ′d set ⇒ ′x set where
fp-cop-F ds = COP.fixp-above ds {}

abbreviation cop ds ≡ CH (fp-cop-F ds)

Given that the set of contracts is finite, we avoid continuity and admissibility issues; we have the following
straightforward induction principle:
lemma fp-cop-F-induct[case-names base step]:

assumes P {}
assumes

∧
fp. P fp =⇒ P (cop-F ds fp)

shows P (fp-cop-F ds)

An alternative is to use the while combinator, which is equivalent to the above by COP.fixp-above-conv-while.
In any case, invariant reasoning is essential to verifying the properties of the COP, no matter how we phrase it.
We develop a small program logic to ease the reuse of the invariants we prove.
definition

valid :: ′d set ⇒ ( ′d set ⇒ ′x set ⇒ bool) ⇒ ( ′d set ⇒ ′x set ⇒ bool) ⇒ bool
where

valid ds P Q = (Q ds {} ∧ (∀ fp. P ds fp ∧ Q ds fp −→ Q ds (cop-F ds fp)))

abbreviation
invariant :: ′d set ⇒ ( ′d set ⇒ ′x set ⇒ bool) ⇒ bool

where
invariant ds P ≡ valid ds (λ- -. True) P

Intuitively valid ds P Q asserts that the COP satisfies Q assuming that it satisfies P. This allows us to decompose
our invariant proofs. By setting the precondition to True, invariant ds P captures the proof obligations of
fp-cop-F-induct exactly.
The following lemmas ease the syntactic manipulation of these facts.
lemma validI [case-names base step]:

assumes Q ds {}
assumes

∧
fp. [[P ds fp; Q ds fp]] =⇒ Q ds (cop-F ds fp)

shows valid ds P Q

lemma invariant-cop-FD:
assumes invariant ds P
assumes P ds fp
shows P ds (cop-F ds fp)

37



lemma invariantD:
assumes invariant ds P
shows P ds (fp-cop-F ds)

lemma valid-pre:
assumes valid ds P ′ Q
assumes

∧
fp. P ds fp =⇒ P ′ ds fp

shows valid ds P Q

lemma valid-invariant:
assumes valid ds P Q
assumes invariant ds P
shows invariant ds (λ ds fp. P ds fp ∧ Q ds fp)

lemma valid-conj:
assumes valid ds (λds fp. R ds fp ∧ P ds fp ∧ Q ds fp) P
assumes valid ds (λds fp. R ds fp ∧ P ds fp ∧ Q ds fp) Q
shows valid ds R (λ ds fp. P ds fp ∧ Q ds fp)

end

Hatfield and Milgrom (2005, Theorem 15) assert that fp-cop-F is equivalent to the doctor-offering algorithm gfp-F,
assuming substitutes. (Note that the fixed points generated by increasing functions do not necessarily form a
lattice, so there is not necessarily a hospital-optimal match, and indeed in general these do not exist.) Our proof is
eased by the decomposition lemma gfp-F-lfp-F and the standard properties of fixed points in a lattice.
context ContractsWithSubstitutes
begin

lemma lfp-F2-o-F1-fp-cop-F :
shows lfp (F2 ds ◦ F1 ) = fp-cop-F ds
〈proof 〉

theorem Theorem-15 :
shows gfp-F ds = (− RH (fp-cop-F ds), fp-cop-F ds)
〈proof 〉

theorem Theorem-15-match:
shows match (gfp-F ds) = CH (fp-cop-F ds)
〈proof 〉

end

With some auxiliary definitions, we can evaluate the COP on the example from §5.2.

lemma P920-example-fp-cop-F-value:
shows P920-example-CH (P920-example-fp-cop-F UNIV ) = {(D1 , H1 ), (D2 , H2 )}
〈proof 〉

Hatfield and Milgrom (2005, Theorem 16) assert that this process yields a stable match when we have a single
hospital (now called an auctioneer) with unrestricted preferences. As before, this holds provided the auctioneer’s
preferences satisfy irc.
We begin by establishing two obvious invariants of the COP that hold in general.
context Contracts
begin

definition cop-F-range-inv :: ′d set ⇒ ′x set ⇒ bool where
cop-F-range-inv ds fp ←→ (∀ x∈fp. x ∈ Field (Pd (Xd x)) ∧ Xd x ∈ ds)
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definition cop-F-closed-inv :: ′d set ⇒ ′x set ⇒ bool where
cop-F-closed-inv ds fp ←→ (∀ x∈fp. above (Pd (Xd x)) x ⊆ fp)

The first, cop-F-range-inv, simply states that the result of the COP respects the structural conditions for doctors.
The second cop-F-closed-inv states that the COP is upwards-closed with respect to the doctors’ preferences.

lemma cop-F-range-inv:
shows invariant ds cop-F-range-inv
〈proof 〉

lemma cop-F-closed-inv:
shows invariant ds cop-F-closed-inv
〈proof 〉

lemmas fp-cop-F-range-inv = invariantD[OF cop-F-range-inv]
lemmas fp-cop-F-range-inv ′ = fp-cop-F-range-inv[unfolded cop-F-range-inv-def , rule-format]
lemmas fp-cop-F-closed-inv = invariantD[OF cop-F-closed-inv]
lemmas fp-cop-F-closed-inv ′= subsetD[OF bspec[OF invariantD[OF cop-F-closed-inv, unfolded cop-F-closed-inv-def ,
simplified]]]

The only challenge in showing that the COP yields a stable match is in establishing stable-no-blocking-on. Our key
lemma states that that if CH rejects all contracts for doctor d in fp-cop-F, then all contracts for d are in fp-cop-F.

lemma cop-F-RH :
assumes d ∈ ds
assumes x ∈ Field (Pd d)
assumes aboveS (Pd d) x ⊆ RH fp
shows x ∈ cop-F ds fp

lemma fp-cop-F-all:
assumes d ∈ ds
assumes d /∈ Xd ‘ CH (fp-cop-F ds)
shows Field (Pd d) ⊆ fp-cop-F ds

Aygün and Sönmez (2012b) observe that any blocking contract must be weakly preferred by its doctor to anything
in the outcome of the fp-cop-F :

lemma fp-cop-F-preferred:
assumes y ∈ CD-on ds (CH (fp-cop-F ds) ∪ X ′′)
assumes x ∈ CH (fp-cop-F ds)
assumes Xd x = Xd y
shows (x, y) ∈ Pd (Xd x)

The headline lemma cobbles these results together.

lemma X ′′-closed:
assumes X ′′ ⊆ CD-on ds (CH (fp-cop-F ds) ∪ X ′′)
shows X ′′ ⊆ fp-cop-F ds
〈proof 〉

The irc constraint on the auctioneer’s preferences is needed for stable-no-blocking and their part of individu-
ally-rational.

end

context ContractsWithIRC
begin

lemma cop-stable-no-blocking-on:
shows stable-no-blocking-on ds (cop ds)
〈proof 〉
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theorem Theorem-16 :
assumes h: (UNIV :: ′c set) = {h}
shows stable-on ds (cop ds) (is stable-on ds ?fp)
〈proof 〉

end

5.8 Concluding remarks

From Hatfield and Milgrom (2005), we have not shown Theorems 2, 7, 13 and 14, all of which are intended to
position their results against prior work in this space. We delay establishing their strategic results (Theorems 10,
11 and 12) to §8, after we have developed more useful invariants for the COP.
By assuming irc, Aygün and Sönmez (2012b) are essentially trading on Plott’s path independence condition
(§4.7), as observed by Chambers and Yenmez (2013). The latter show that these results generalize naturally to
many-to-many matches, where doctors also use path-independent choice functions; see also Fleiner (2003).
For many applications, however, substitutes proves to be too strong a condition. The COP of §5.7 provides a way
forward, as we discuss in the next section.

6 Hatfield and Kojima (2010): Substitutes and stability for matching with
contracts

Hatfield and Kojima (2010) set about weakening substitutes and therefore making the cumulative offer processes
(COPs, §5.7) applicable to more matching problems. In doing so they lose the lattice structure of the stable
matches, which necessitates redeveloping the results of §5.
In contrast to the COP of §5.7, Hatfield and Kojima (2010) develop and analyze a single-offer variant, where only
one doctor (who has no held contract) proposes per round. The order of doctors making offers is not specified.
We persist with the simultaneous-offer COP as it is deterministic. See Hirata and Kasuya (2014) for equivalence
arguments.
We begin with some observations due to Aygün and Sönmez. Firstly, as for the matching-with-contracts setting of
§5, Aygün and Sönmez (2012a) demonstrate that these results depend on hospital preferences satisfying irc. We
do not formalize their examples. Secondly, an alternative to hospitals having choice functions (as we have up to
now) is for the hospitals to have preference orders over sets, which is suggested by both Hatfield and Milgrom
(2005) (weakly) and Hatfield and Kojima (2010). Aygün and Sönmez (2012a, §2) argue that this approach is
under-specified and propose to define Ch as choosing amongst maximal elements of some non-strict preference
order (i.e., including indifference). They then claim that this is equivalent to taking Ch as primitive, and so we
continue down that path.

6.1 Theorem 1: the COP yields a stable match under bilateral substitutes

The weakest replacement condition suggested by Hatfield and Kojima (2010, §1) for the substitutes condition on
hospital choice functions is termed bilateral substitutes:

Contracts are bilateral substitutes for a hospital if there are no two contracts x and z and a set of
contracts Y with other doctors than those associated with x and z such that the hospital that regards
Y as available wants to sign z if and only if x becomes available. In other words, contracts are bilateral
substitutes when any hospital, presented with an offer from a doctor he does not currently employ,
never wishes to also hire another doctor he does not currently employ at a contract he previously
rejected.

Note that this constraint is specific to this matching-with-contracts setting, unlike those of §4.

context Contracts
begin

definition bilateral-substitutes-on :: ′x set ⇒ ′x cfun ⇒ bool where
bilateral-substitutes-on A f
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←→ ¬(∃B⊆A. ∃ a b. {a, b} ⊆ A ∧ Xd a /∈ Xd ‘ B ∧ Xd b /∈ Xd ‘ B
∧ b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}))

abbreviation bilateral-substitutes :: ′x cfun ⇒ bool where
bilateral-substitutes ≡ bilateral-substitutes-on UNIV

lemma bilateral-substitutes-on-def2 :
bilateral-substitutes-on A f
←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. Xd a /∈ Xd ‘ B ∧ Xd b /∈ Xd ‘ B ∧ b /∈ f (B ∪ {b}) −→ b /∈ f (B ∪ {a, b}))

lemma substitutes-on-bilateral-substitutes-on:
assumes substitutes-on A f
shows bilateral-substitutes-on A f

Aygün and Sönmez (2012a, §4, Definition 5) give the following equivalent definition:

lemma bilateral-substitutes-on-def3 :
bilateral-substitutes-on A f
←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}) −→ Xd a ∈ Xd ‘ B ∨ Xd b ∈ Xd ‘ B)

end

As before, we define a series of locales that capture the relevant hypotheses about hospital choice functions.

locale ContractsWithBilateralSubstitutes = Contracts +
assumes Ch-bilateral-substitutes: ∀ h. bilateral-substitutes (Ch h)

sublocale ContractsWithSubstitutes < ContractsWithBilateralSubstitutes

locale ContractsWithBilateralSubstitutesAndIRC =
ContractsWithBilateralSubstitutes + ContractsWithIRC

sublocale ContractsWithSubstitutesAndIRC < ContractsWithBilateralSubstitutesAndIRC

context ContractsWithBilateralSubstitutesAndIRC
begin

The key difficulty in showing the stability of the result of the COP under this condition (Hatfield and Kojima
2010, Theorem 1) is in proving that it ensures we get an allocation; the remainder of the proof of §5.7 (for a single
hospital, where this property is trivial) goes through unchanged. We avail ourselves of Hirata and Kasuya (2014,
Lemma), which they say is a restatement of the proof of Hatfield and Kojima (2010, Theorem 1). See also Aygün
and Sönmez (2012a, Appendix A).

lemma bilateral-substitutes-lemma:
assumes Xd x /∈ Xd ‘ Ch h X
assumes d /∈ Xd ‘ Ch h X
assumes d 6= Xd x
shows d /∈ Xd ‘ Ch h (insert x X)
〈proof 〉

Our proof essentially adds the inductive details these earlier efforts skipped over. It is somewhat complicated by
our use of the simultaneous-offer COP.

lemma bilateral-substitutes-lemma-union:
assumes Xd ‘ Ch h X ∩ Xd ‘ Y = {}
assumes d /∈ Xd ‘ Ch h X
assumes d /∈ Xd ‘ Y
assumes allocation Y
shows d /∈ Xd ‘ Ch h (X ∪ Y )

lemma cop-F-CH-CD-on-disjoint:
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assumes cop-F-closed-inv ds fp
assumes cop-F-range-inv ds fp
shows Xd ‘ CH fp ∩ Xd ‘ (CD-on ds (− RH fp) − fp) = {}

Our key lemma shows that we effectively have substitutes for rejected contracts, provided the relevant doctor does
not have a contract held with the relevant hospital. Note the similarity to Theorem 4 (§6.3).
lemma cop-F-RH-mono:

assumes cop-F-closed-inv ds fp
assumes cop-F-range-inv ds fp
assumes Xd x /∈ Xd ‘ Ch (Xh x) fp
assumes x ∈ RH fp
shows x ∈ RH (cop-F ds fp)
〈proof 〉

lemma cop-F-allocation-inv:
valid ds (λds fp. cop-F-range-inv ds fp ∧ cop-F-closed-inv ds fp) (λds fp. allocation (CH fp))
〈proof 〉

lemma fp-cop-F-allocation:
shows allocation (cop ds)

theorem Theorem-1 :
shows stable-on ds (cop ds)

end

Hatfield and Kojima (2010, §3.1) provide an example that shows that the traditional optimality and strategic
results do not hold under bilateral-substitutes, which motivates looking for a stronger condition that remains weaker
than substitutes.
Their example involves two doctors, two hospitals, and five contracts.
datatype X5 = Xd1 | Xd1 ′ | Xd2 | Xd2 ′ | Xd2 ′′

primrec X5d :: X5 ⇒ D2 where
X5d Xd1 = D1
| X5d Xd1 ′ = D1
| X5d Xd2 = D2
| X5d Xd2 ′ = D2
| X5d Xd2 ′′ = D2

primrec X5h :: X5 ⇒ H2 where
X5h Xd1 = H1
| X5h Xd1 ′ = H1
| X5h Xd2 = H1
| X5h Xd2 ′ = H2
| X5h Xd2 ′′ = H1

primrec PX5d :: D2 ⇒ X5 rel where
PX5d D1 = linord-of-list [Xd1 , Xd1 ′]
| PX5d D2 = linord-of-list [Xd2 , Xd2 ′, Xd2 ′′]

primrec CX5h :: H2 ⇒ X5 cfun where
CX5h H1 A =

(if {Xd1 ′, Xd2} ⊆ A then {Xd1 ′, Xd2} else
if {Xd2 ′′} ⊆ A then {Xd2 ′′} else
if {Xd1} ⊆ A then {Xd1} else
if {Xd1 ′} ⊆ A then {Xd1 ′} else
if {Xd2} ⊆ A then {Xd2} else {})
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| CX5h H2 A = { x . x ∈ A ∧ x = Xd2 ′ }
〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

interpretation BSI : Contracts X5d X5h PX5d CX5h

lemma CX5h-bilateral-substitutes:
shows BSI .bilateral-substitutes (CX5h h)
〈proof 〉

lemma CX5h-irc:
shows irc (CX5h h)
〈proof 〉

interpretation BSI : ContractsWithBilateralSubstitutesAndIRC X5d X5h PX5d CX5h

There are two stable matches in this model.

〈proof 〉〈proof 〉

lemma BSI-stable:
shows BSI .stable X ←→ X = {Xd1 , Xd2 ′} ∨ X = {Xd1 ′, Xd2}〈proof 〉

Therefore there is no doctor-optimal match under these preferences:

lemma
¬(∃ (Y ::X5 set). BSI .doctor-optimal-match UNIV Y )
〈proof 〉

6.2 Theorem 3: pareto separability relates unilateral substitutes and substitutes

Hatfield and Kojima (2010, §4) proceed to define unilateral substitutes:

[P]references satisfy unilateral substitutes if whenever a hospital rejects the contract z when that is the
only contract with Xd z available, it still rejects the contract z when the choice set expands.

context Contracts
begin

definition unilateral-substitutes-on :: ′x set ⇒ ′x cfun ⇒ bool where
unilateral-substitutes-on A f
←→ ¬(∃B⊆A. ∃ a b. {a, b} ⊆ A ∧ Xd b /∈ Xd ‘ B ∧ b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}))

abbreviation unilateral-substitutes :: ′x cfun ⇒ bool where
unilateral-substitutes ≡ unilateral-substitutes-on UNIV

lemma unilateral-substitutes-on-def2 :
unilateral-substitutes-on A f
←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. Xd b /∈ Xd ‘ B ∧ b /∈ f (B ∪ {b}) −→ b /∈ f (B ∪ {a, b}))

Aygün and Sönmez (2012a, §4, Definition 6) give the following equivalent definition:

lemma unilateral-substitutes-on-def3 :
unilateral-substitutes-on A f
←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}) −→ Xd b ∈ Xd ‘ B)

lemma substitutes-on-unilateral-substitutes-on:
assumes substitutes-on A f
shows unilateral-substitutes-on A f

lemma unilateral-substitutes-on-bilateral-substitutes-on:
assumes unilateral-substitutes-on A f
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shows bilateral-substitutes-on A f

The following defines locales for the unilateral-substitutes hypothesis, and inserts these between those for substitutes
and bilateral-substitutes.
end

locale ContractsWithUnilateralSubstitutes = Contracts +
assumes Ch-unilateral-substitutes: ∀ h. unilateral-substitutes (Ch h)

sublocale ContractsWithUnilateralSubstitutes < ContractsWithBilateralSubstitutes

sublocale ContractsWithSubstitutes < ContractsWithUnilateralSubstitutes

locale ContractsWithUnilateralSubstitutesAndIRC =
ContractsWithUnilateralSubstitutes + ContractsWithIRC

sublocale ContractsWithUnilateralSubstitutesAndIRC < ContractsWithBilateralSubstitutesAndIRC

sublocale ContractsWithSubstitutesAndIRC < ContractsWithUnilateralSubstitutesAndIRC

Hatfield and Kojima (2010, Theorem 3) relate unilateral-substitutes to substitutes using Pareto separability:

Preferences are Pareto separable for a hospital if the hospital’s choice between x and x ′, two [distinct]
contracts with the same doctor, does not depend on what other contracts the hospital has access to.

This result also depends on irc.
context Contracts
begin

definition pareto-separable-on :: ′x set ⇒ bool where
pareto-separable-on A
←→ (∀B⊆A. ∀C⊆A. ∀ a b. {a, b} ⊆ A ∧ a 6= b ∧ Xd a = Xd b ∧ Xh a = Xh b

∧ a ∈ Ch (Xh b) (B ∪ {a, b}) −→ b /∈ Ch (Xh b) (C ∪ {a, b}))

abbreviation pareto-separable :: bool where
pareto-separable ≡ pareto-separable-on UNIV

lemma substitutes-on-pareto-separable-on:
assumes ∀ h. substitutes-on A (Ch h)
shows pareto-separable-on A
〈proof 〉

lemma unilateral-substitutes-on-pareto-separable-on-substitutes-on:
assumes ∀ h. unilateral-substitutes-on A (Ch h)
assumes ∀ h. irc-on A (Ch h)
assumes pareto-separable-on A
shows substitutes-on A (Ch h)
〈proof 〉

theorem Theorem-3 :
assumes ∀ h. irc-on A (Ch h)
shows (∀ h. substitutes-on A (Ch h)) ←→ (∀ h. unilateral-substitutes-on A (Ch h) ∧ pareto-separable-on A)

end

6.2.1 Afacan and Turhan (2015): doctor separability relates bi- and unilateral substitutes

context Contracts
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begin

Afacan and Turhan (2015, Theorem 1) relate bilateral-substitutes and unilateral-substitutes using doctor separability:

[Doctor separability (DS)] says that if a doctor is not chosen from a set of contracts in the sense that
no contract of him is selected, then that doctor should still not be chosen unless a contract of a new
doctor (that is, doctor having no contract in the given set of contracts) becomes available. For practical
purposes, we can consider DS as capturing contracts where certain groups of doctors are substitutes.
[footnote: If Xd x /∈ Xd ‘ Ch h (Y ∪ {x, z}), then doctor Xd x is not chosen. And under DS, he
continues not to be chosen unless a new doctor comes. Hence, we can interpret it as the doctors in the
given set of contracts are substitutes.]

definition doctor-separable-on :: ′x set ⇒ ′x cfun ⇒ bool where
doctor-separable-on A f
←→ (∀B⊆A. ∀ a b c. {a, b, c} ⊆ A ∧ Xd a 6= Xd b ∧ Xd b = Xd c ∧ Xd a /∈ Xd ‘ f (B ∪ {a, b})
−→ Xd a /∈ Xd ‘ f (B ∪ {a, b, c}))

abbreviation doctor-separable :: ′x cfun ⇒ bool where
doctor-separable ≡ doctor-separable-on UNIV

lemma unilateral-substitutes-on-doctor-separable-on:
assumes unilateral-substitutes-on A f
assumes irc-on A f
assumes ∀B⊆A. allocation (f B)
assumes f-range-on A f
shows doctor-separable-on A f
〈proof 〉

lemma bilateral-substitutes-on-doctor-separable-on-unilateral-substitutes-on:
assumes bilateral-substitutes-on A f
assumes doctor-separable-on A f
assumes f-range-on A f
shows unilateral-substitutes-on A f
〈proof 〉

theorem unilateral-substitutes-on-doctor-separable-on-bilateral-substitutes-on:
assumes irc-on A f
assumes ∀B⊆A. allocation (f B) — A rephrasing of Ch-singular.
assumes f-range-on A f
shows unilateral-substitutes-on A f ←→ bilateral-substitutes-on A f ∧ doctor-separable-on A f

Afacan and Turhan (2015, Remark 2) observe the independence of the doctor-separable, pareto-separable and
bilateral-substitutes conditions.

end

6.3 Theorems 4 and 5: Doctor optimality

context ContractsWithUnilateralSubstitutesAndIRC
begin

We return to analyzing the COP following Hatfield and Kojima (2010). The next goal is to establish a doctor-
optimality result for it in the spirit of §5.3.
We first show that, with hospital choice functions satisfying unilateral-substitutes, we effectively have the substitutes
condition for all contracts that have been rejected. In other words, hospitals never renegotiate with doctors.
The proof is by induction over the finite set Y.

lemma
assumes Xd x /∈ Xd ‘ Ch h X
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assumes x ∈ X
shows no-renegotiation-union: x /∈ Ch h (X ∪ Y )

and x /∈ Ch h (insert x ((X ∪ Y ) − {z. Xd z = Xd x}))

To discharge the first antecedent of this lemma, we need an invariant for the COP that asserts that, for each doctor
d, there is a subset of the contracts currently offered by d that was previously uniformly rejected by the COP, for
each contract that is rejected at the current step. To support a later theorem (see §6.3) we require these subsets to
be upwards-closed with respect to the doctor’s preferences.

definition
cop-F-rejected-inv :: ′b set ⇒ ′a set ⇒ bool

where
cop-F-rejected-inv ds fp ←→ (∀ x∈RH fp. ∃ fp ′⊆fp. x ∈ fp ′ ∧ above (Pd (Xd x)) x ⊆ fp ′ ∧ Xd x /∈ Xd ‘ CH fp ′)

lemma cop-F-rejected-inv:
shows valid ds (λds fp. cop-F-range-inv ds fp ∧ cop-F-closed-inv ds fp ∧ allocation (CH fp)) cop-F-rejected-inv

lemma fp-cop-F-rejected-inv:
shows cop-F-rejected-inv ds (fp-cop-F ds)

Hatfield and Kojima (2010, Theorem 4) assert that we effectively recover substitutes for the contracts relevant to
the COP. We cannot adopt their phrasing as it talks about the execution traces of the COP, and not just its final
state. Instead we present the result we use, which relates two consecutive states in an execution trace of the COP:

theorem Theorem-4 :
assumes cop-F-rejected-inv ds fp
assumes x ∈ RH fp
shows x ∈ RH (cop-F ds fp)

Another way to interpret cop-F-rejected-inv is to observe that the doctor-optimal match contains the least preferred
of the contracts that the doctors have offered.

corollary fp-cop-F-worst:
assumes x ∈ cop ds
assumes y ∈ fp-cop-F ds
assumes Xd y = Xd x
shows (x, y) ∈ Pd (Xd x)

The doctor optimality result, Theorem 5, hinges on showing that no contract in any stable match is ever rejected.

definition
theorem-5-inv :: ′b set ⇒ ′a set ⇒ bool

where
theorem-5-inv ds fp ←→ RH fp ∩

⋃
{X . stable-on ds X} = {}

〈proof 〉
lemma theorem-5-inv:

shows valid ds (λds fp. cop-F-range-inv ds fp ∧ cop-F-closed-inv ds fp
∧ allocation (CH fp) ∧ cop-F-rejected-inv ds fp) theorem-5-inv

〈proof 〉

lemma fp-cop-F-theorem-5-inv:
shows theorem-5-inv ds (fp-cop-F ds)

theorem Theorem-5 :
assumes stable-on ds X
assumes x ∈ X
shows ∃ y ∈ cop ds. (x, y) ∈ Pd (Xd x)
〈proof 〉
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theorem fp-cop-F-doctor-optimal-match:
shows doctor-optimal-match ds (cop ds)

end

The next lemma demonstrates the opposition of interests of doctors and hospitals: if all doctors weakly prefer one
stable match to another, then the hospitals weakly prefer the converse.
As we do not have linear preferences for hospitals, we use revealed preference and hence assume irc holds of hospital
choice functions. Our definition of the doctor-preferred ordering dpref follows the Isabelle/HOL convention of
putting the larger (more preferred) element on the right, and takes care with unemployment.
context Contracts
begin

definition dpref :: ′x set ⇒ ′x set ⇒ bool where
dpref X Y = (∀ x∈X . ∃ y∈Y . (x, y) ∈ Pd (Xd x))

end

context ContractsWithIRC
begin

theorem Lemma-1 :
assumes stable-on ds Y
assumes stable-on ds Z
assumes dpref Z Y
assumes x ∈ Ch h Z
shows x ∈ Ch h (Y ∪ Z )
〈proof 〉

end

Hatfield and Kojima (2010, Corollary 1 (of Theorem 5 and Lemma 1)): unilateral-substitutes implies there is a
hospital-pessimal match, which is indeed the doctor-optimal one.
context ContractsWithUnilateralSubstitutesAndIRC
begin

theorem Corollary-1 :
assumes stable-on ds Z
shows dpref Z (cop ds)

and x ∈ Z =⇒ x ∈ Ch (Xh x) (cop ds ∪ Z )
〈proof 〉

Hatfield and Kojima (2010, p1717) show that there is not always a hospital-optimal/doctor-pessimal match when
hospital preferences satisfy unilateral-substitutes, in contrast to the situation under substitutes (see §5.3). This
reflects the loss of the lattice structure.
end

6.4 Theorem 6: A “rural hospitals” theorem

Hatfield and Kojima (2010, Theorem 6) demonstrates a “rural hospitals” theorem for the COP assuming hospital
choice functions satisfy unilateral-substitutes and lad, as for §5.6. However Aygün and Sönmez (2012a, §4, Example 1)
observe that lad-on-substitutes-on-irc-on does not hold with bilateral-substitutes instead of substitutes, and their
Example 3 similarly for unilateral-substitutes. Moreover fp-cop-F can yield an unstable allocation with just these
two hypotheses. Ergo we need to assume irc even when we have lad, unlike before (see §5.6).
This theorem is the foundation for all later strategic results.
locale ContractsWithUnilateralSubstitutesAndIRCAndLAD = ContractsWithUnilateralSubstitutesAndIRC + Con-
tractsWithLAD
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sublocale ContractsWithSubstitutesAndLAD < ContractsWithUnilateralSubstitutesAndIRCAndLAD

context ContractsWithUnilateralSubstitutesAndIRCAndLAD
begin

context
fixes ds :: ′b set
fixes X :: ′a set
assumes stable-on ds X

begin

The proofs of these first two lemmas are provided by Hatfield and Kojima (2010, Theorem 6). We treat unemployment
in the definition of the function A as we did in §5.1.3.

lemma RHT-Cd-card:
assumes d ∈ ds
shows card (Cd d X) ≤ card (Cd d (cop ds))

lemma RHT-Ch-card:
shows card (Ch h (fp-cop-F ds)) ≤ card (Ch h X)
〈proof 〉

The top-level proof is the same as in §5.6.

lemma Theorem-6-fp-cop-F :
shows d ∈ ds =⇒ card (Cd d X) = card (Cd d (cop ds))

and card (Ch h X) = card (Ch h (fp-cop-F ds))
〈proof 〉

end

theorem Theorem-6 :
assumes stable-on ds X
assumes stable-on ds Y
shows d ∈ ds =⇒ card (Cd d X) = card (Cd d Y )

and card (Ch h X) = card (Ch h Y )

end

6.5 Concluding remarks

We next discuss a kind of interference between doctors termed bossiness in §7. This has some implications for the
strategic issues we discuss in §8.

7 Kojima (2010): The non-existence of a stable and non-bossy mechanism

Kojima (2010) says that “a mechanism is nonbossy if an agent cannot change [the] allocation of other agents unless
doing so also changes her own allocation.” He shows that no mechanism can be both stable-on and nonbossy in a
one-to-one marriage market. We establish this result in our matching-with-contracts setting here.
There are two complications. Firstly, as not all agent preferences yield stable matches (unlike the marriage market),
we constrain hospital choice functions to satisfy ContractsWithBilateralSubstitutesAndIRC, which is the weakest
condition formalized here that ensures that fp-cop-F yields stable matches. (We note that it is not the weakest
condition guaranteeing the existence of stable matches.)
Secondly, non-bossiness needs to separately treat the preferences of the doctors and the choice functions of the
hospitals.
We work in the Contracts locale for its types and the constants Xd and Xh. To account for the quantification over
preferences, we directly use some raw constants from the Contracts locale.
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context Contracts
begin

abbreviation (input) mechanism-domain :: ( ′d ⇒ ′x rel) ⇒ ( ′h ⇒ ′x cfun) ⇒ bool where
mechanism-domain ≡ ContractsWithBilateralSubstitutesAndIRC Xd Xh

definition nonbossy :: ′d set ⇒ ( ′d, ′h, ′x) mechanism ⇒ bool where
nonbossy ds ϕ ←→
(∀Pd Pd ′ Ch. ∀ d∈ds. mechanism-domain Pd Ch ∧ mechanism-domain (Pd(d:=Pd ′)) Ch −→

dX (ϕ Pd Ch ds) d = dX (ϕ (Pd(d:=Pd ′)) Ch ds) d −→ ϕ Pd Ch ds = ϕ (Pd(d:=Pd ′)) Ch ds)
∧ (∀Pd Ch Ch ′ h. mechanism-domain Pd Ch ∧ mechanism-domain Pd (Ch(h:=Ch ′)) −→

hX (ϕ Pd Ch ds) h = hX (ϕ Pd (Ch(h:=Ch ′)) ds) h −→ ϕ Pd Ch ds = ϕ Pd (Ch(h:=Ch ′)) ds)

definition mechanism-stable :: ′d set ⇒ ( ′d, ′h, ′x) mechanism ⇒ bool where
mechanism-stable ds ϕ
←→ (∀Pd Ch. mechanism-domain Pd Ch −→ Contracts.stable-on Pd Ch ds (ϕ Pd Ch ds))

〈proof 〉〈proof 〉
end

The proof is somewhat similar to those for Roth’s impossibility results (see, for instance, Roth and Sotomayor
(1990, Theorem 4.4)). It relies on the existence of at least three doctors, three hospitals, and a complete set of
contracts between these. The following locale captures a suitable set of constraints.

locale BossyConstants =
fixes Xd :: ′x ⇒ ′d
fixes Xh :: ′x ⇒ ′h
fixes d1h1 d1h2 d1h3 :: ′x
fixes d2h1 d2h2 d2h3 :: ′x
fixes d3h1 d3h2 d3h3 :: ′x
fixes ds :: ′d set
assumes ds: distinct [Xd d1h1 , Xd d2h1 , Xd d3h1 ]
assumes hs: distinct [Xh d1h1 , Xh d1h2 , Xh d1h3 ]
assumes Xd-xs:

Xd ‘ {d1h2 , d1h3} = {Xd d1h1}
Xd ‘ {d2h2 , d2h3} = {Xd d2h1}
Xd ‘ {d3h2 , d3h3} = {Xd d3h1}

assumes Xh-xs:
Xh ‘ {d2h1 , d3h1} = {Xh d1h1}
Xh ‘ {d2h2 , d3h2} = {Xh d1h2}
Xh ‘ {d2h3 , d3h3} = {Xh d1h3}

assumes dset: {Xd d1h1 , Xd d2h1 , Xd d3h1} ⊆ ds

locale ContractsWithBossyConstants =
Contracts + BossyConstants

begin

abbreviation (input) d1 ≡ Xd d1h1
abbreviation (input) d2 ≡ Xd d2h1
abbreviation (input) d3 ≡ Xd d3h1

abbreviation (input) h1 ≡ Xh d1h1
abbreviation (input) h2 ≡ Xh d1h2
abbreviation (input) h3 ≡ Xh d1h3
〈proof 〉

We proceed to show that variations on the following preferences for doctors and hospitals force a stable mechanism
to be bossy. Recall that linord-of-list constructs a linear order from a list of elements greatest to least. The hospital
choice functions take at most one contract from those on offer, and are again ordered from most preferable to least.

definition BPd :: ′b ⇒ ′a rel where
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BPd ≡ map-of-default {} [ (d1 , linord-of-list [d1h3 , d1h2 , d1h1 ])
, (d2 , linord-of-list [d2h3 , d2h2 , d2h1 ])
, (d3 , linord-of-list [d3h1 , d3h2 , d3h3 ]) ]

abbreviation mkhord :: ′d list ⇒ ′d cfun where
mkhord xs X ≡ set-option (List.find (λx. x∈X) xs)

definition BCh :: ′c ⇒ ′a cfun where
BCh ≡ map-of-default (λ-. {}) [ (h1 , mkhord [d1h1 , d2h1 , d3h1 ])

, (h2 , mkhord [])
, (h3 , mkhord [d3h3 , d2h3 , d1h3 ]) ]

Interpreting the Contracts locale gives us access to some useful constants.
interpretation Bossy: Contracts Xd Xh BPd BCh

lemma BPd-BCh-mechanism-domain:
shows mechanism-domain BPd BCh
〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉
lemma Bossy-stable:

shows Bossy.stable-on ds X ←→ X = {d1h1 , d3h3}〈proof 〉

The second preference order has doctor d2 reject all contracts and is otherwise the same as the first.
definition BPd ′ :: ′b ⇒ ′a rel where

BPd ′ = BPd(d2 := {})

interpretation Bossy ′: Contracts Xd Xh BPd ′ BCh

lemma BPd ′-BCh-mechanism-domain:
shows mechanism-domain BPd ′ BCh
〈proof 〉〈proof 〉
lemma Bossy ′-stable:

shows Bossy ′.stable-on ds X ←→ X = {d1h3 , d3h1} ∨ X = {d1h1 , d3h3}〈proof 〉

The third preference order adjusts the choice function of hospital h2 and is otherwise the same as the second.
definition BCh ′ :: ′c ⇒ ′a cfun where

BCh ′ ≡ BCh(h2 := mkhord [d1h2 , d2h2 , d3h2 ])

interpretation Bossy ′′: Contracts Xd Xh BPd ′ BCh ′

lemma BPd ′-BCh ′-mechanism-domain:
shows mechanism-domain BPd ′ BCh ′

〈proof 〉〈proof 〉〈proof 〉
lemma Bossy ′′-stable:

shows Bossy ′′.stable-on ds X ←→ X = {d3h1 , d1h3}〈proof 〉

theorem Theorem-1 :
shows ¬(mechanism-stable ds ϕ ∧ nonbossy ds ϕ)
〈proof 〉

In particular, the COP (see §6) is bossy as it always yields stable matches under mechanism-stable.
theorem Theorem-1-COP:
¬nonbossy ds Contracts.cop
〈proof 〉

end

Therefore doctors can interfere with other doctors’ allocations under the COP without necessarily disadvantaging
themselves, which has implications for the notion of group strategy-proof (Hatfield and Kojima 2009); see §8.2.
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8 Strategic results

We proceed to establish a series of strategic results for the COP (see §5.7 and §6), making use of the invariants we
developed for it. These results also apply to the matching-with-contracts setting of §5, and where possible we
specialize our lemmas to it.

8.1 Hatfield and Milgrom (2005): Theorems 10 and 11: Truthful revelation as a Dominant
Strategy

Theorems 10 and 11 demonstrate that doctors cannot obtain better results for themselves in the doctor-optimal
match (i.e., cop ds, equal to match (gfp-F ds) by Theorem-15-match assuming hospital preferences satisfy substitutes)
by misreporting their preferences. (See Roth and Sotomayor (1990, §4.2) for a discussion about the impossibility
of a mechanism being strategy-proof for all agents.)
Hatfield and Milgrom (2005, §III(B)) provide the following intuition:

We will show the positive incentive result for the doctor-offering algorithm in two steps which highlight
the different roles of the two preference assumptions. First, we show that the substitutes condition, by
itself, guarantees that doctors cannot benefit by exaggerating the ranking of an unattainable contract.
More precisely, if there exists a preferences list for a doctor d such that d obtains contract x by
submitting this list, then d can also obtain x by submitting a preference list that includes only contract
x [Theorem 10]. Second, we will show that adding the law of aggregate demand guarantees that a doctor
does at least as well as reporting truthfully as by reporting any singleton [Theorem 11]. Together, these
are the dominant strategy result.

We prove Theorem 10 via a lemma that states that the contracts above x ∈ X for some stable match X with
respect to manipulated preferences Pd (Xd x) do not improve the outcome for doctor Xd x with respect to their
true preferences Pd ′ (Xd x) in the doctor-optimal match for Pd ′.
This is weaker than Hatfield and Kojima (2009, Lemma 1) (see §8.2) as we do not guarantee that the allocation
does not change. By the bossiness result of §7, such manipulations can change the outcomes of the other doctors;
this lemma establishes that only weak improvements are possible.
context ContractsWithUnilateralSubstitutesAndIRC
begin

context
fixes d ′ :: ′b
fixes Pd ′ :: ′b ⇒ ′a rel
assumes Pd ′-d ′-linear : Linear-order (Pd ′ d ′)
assumes Pd ′-d ′-range: Field (Pd ′ d ′) ⊆ {y. Xd y = d ′}
assumes Pd ′: ∀ d. d 6=d ′ −→ Pd ′ d = Pd d

begin
〈proof 〉〈proof 〉
interpretation PdXXX : ContractsWithUnilateralSubstitutesAndIRC Xd Xh Pd ′ Ch

theorem Pd-above-irrelevant:
assumes d ′-Field: dX X d ′ ⊆ Field (Pd ′ d ′)
assumes d ′-Above: Above (Pd ′ d ′) (dX X d ′) ⊆ Above (Pd d ′) (dX X d ′)
assumes x ∈ X
assumes stable-on ds X
shows ∃ y ∈ PdXXX .cop ds. (x, y) ∈ Pd ′ (Xd x)
〈proof 〉

end

end

We now specialize this lemma to Theorem 10 by defining a preference order for the doctors where distinguished
doctors ds submit single preferences for the contracts they receive in the doctor-optimal match.
The function override-on f g A = (λa. if a ∈ A then g a else f a) denotes function update at several points.
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context Contracts
begin

definition Pd-singletons-for-ds :: ′x set ⇒ ′d set ⇒ ′d ⇒ ′x rel where
Pd-singletons-for-ds X ds ≡ override-on Pd (λd. dX X d × dX X d) ds
〈proof 〉〈proof 〉〈proof 〉
end

We interpret our ContractsWithUnilateralSubstitutesAndIRC locale with respect to this updated preference order,
which gives us the stable match and properties of it.
context ContractsWithUnilateralSubstitutesAndIRC
begin

context
fixes ds :: ′b set
fixes X :: ′a set
assumes stable-on ds X

begin

interpretation
Singleton-for-d: ContractsWithUnilateralSubstitutesAndIRC Xd Xh Pd-singletons-for-ds X {d} Ch for d

Our version of Hatfield and Milgrom (2005, Theorem 10) (for the COP) states that if a doctor submits a preference
order containing just x, where x is their contract in some stable match X, then that doctor receives exactly x in
the doctor-optimal match and all other doctors do at least as well.
theorem Theorem-10-fp-cop-F :

assumes x ∈ X
shows ∃ y ∈ Singleton-for-d.cop d ds. (x, y) ∈ Pd-singletons-for-ds X {d} (Xd x)
〈proof 〉

end

end

We can recover the original Theorem 10 by specializing this result to gfp-F.
context ContractsWithSubstitutesAndIRC
begin

interpretation
Singleton-for-d: ContractsWithSubstitutesAndIRC Xd Xh Pd-singletons-for-ds (match (gfp-F ds)) {d} Ch

for ds d

theorem Theorem-10 :
assumes x ∈ match (gfp-F ds)
shows ∃ y ∈ match (Singleton-for-d.gfp-F ds d ds). (x, y) ∈ Pd-singletons-for-ds (match (gfp-F ds)) {d} (Xd x)
〈proof 〉

corollary Theorem-10-d:
assumes x ∈ match (gfp-F ds)
shows x ∈ match (Singleton-for-d.gfp-F ds (Xd x) ds)
〈proof 〉

end

The second theorem (Hatfield and Milgrom 2005, Theorem 11) depends on both Theorem 10 and the rural
hospitals theorem (§5.6, §6.4). It shows that, assuming everything else is fixed, if doctor d ′ obtains contract x with
(manipulated) preferences Pd d ′ in the doctor-optimal match, then they will obtain a contract at least as good by
submitting their true preferences Pd ′ d ′ (with respect to these true preferences).
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locale TruePrefs = Contracts +
fixes x :: ′a
fixes X :: ′a set
fixes ds :: ′b set
fixes Pd ′ :: ′b ⇒ ′a rel
assumes x: x ∈ X
assumes X : stable-on ds X
assumes Pd ′-d ′-x: x ∈ Field (Pd ′ (Xd x))
assumes Pd ′-d ′-linear : Linear-order (Pd ′ (Xd x))
assumes Pd ′-d ′-range: Field (Pd ′ (Xd x)) ⊆ {y. Xd y = Xd x}
assumes Pd ′: ∀ d. d 6=Xd x −→ Pd ′ d = Pd d
〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉
locale ContractsWithUnilateralSubstitutesAndIRCAndLADAndTruePrefs =

ContractsWithUnilateralSubstitutesAndIRCAndLAD + TruePrefs
begin

interpretation TruePref : ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh Pd ′ Ch

interpretation TruePref-tax: ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh Pd ′-tax Ch

interpretation
Singleton-for-d: ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh Pd-singletons-for-ds X {Xd x} Ch
〈proof 〉
lemma Theorem-11-Pd ′-tax:

shows ∃ y∈TruePref-tax.cop ds. (x, y) ∈ Pd ′-tax (Xd x)
〈proof 〉

theorem Theorem-11-fp-cop-F :
shows ∃ y∈TruePref .cop ds. (x, y) ∈ Pd ′ (Xd x)
〈proof 〉

end

locale ContractsWithSubstitutesAndLADAndTruePrefs =
ContractsWithSubstitutesAndLAD + TruePrefs

sublocale ContractsWithSubstitutesAndLADAndTruePrefs
< ContractsWithUnilateralSubstitutesAndIRCAndLADAndTruePrefs

context ContractsWithSubstitutesAndLADAndTruePrefs
begin

interpretation TruePref : ContractsWithSubstitutesAndLAD Xd Xh Pd ′ Ch

theorem Theorem-11 :
shows ∃ y∈match (TruePref .gfp-F ds). (x, y) ∈ Pd ′ (Xd x)
〈proof 〉

end

Note that this theorem depends on the hypotheses introduced by the TruePrefs locale, and only applies to doctor
Xd x. The following sections show more general and syntactically self-contained results.
We omit Hatfield and Milgrom (2005, Theorem 12), which demonstrates the almost-necessity of LAD for truth
revelation to be the dominant strategy for doctors.

8.2 Hatfield and Kojima (2009, 2010): The doctor-optimal match is group strategy-proof

Hatfield and Kojima (2010, Theorem 7) assert that the COP is group strategy-proof, which we define below. We
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begin by focusing on a single agent (Hatfield and Kojima 2009):

A mechanism ϕ is strategy-proof if, for any preference profile Pd, there is no doctor d and preferences
Pd ′ such that d strictly prefers yd to xd according to Pd d, where xd and yd are the (possibly null)
contracts for d in ϕ Pd and ϕ Pd(d := Pd ′), respectively.

The syntax f (a := b) = (λx. if x = a then b else f x) denotes function update at a point.
We make this definition in the Contracts locale to avail ourselves of some types and the Xd and Xh constants. We
also restrict hospital preferences to those that guarantee our earlier strategic results. As gfp-F requires these to
satisfy the stronger substitutes constraint for stable matches to exist, we now deal purely with the COP.
context Contracts
begin

abbreviation (input) mechanism-domain :: ( ′d ⇒ ′x rel) ⇒ ( ′h ⇒ ′x cfun) ⇒ bool where
mechanism-domain ≡ ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh

definition strategy-proof :: ′d set ⇒ ( ′d, ′h, ′x) mechanism ⇒ bool where
strategy-proof ds ϕ ←→
(∀Pd Ch. mechanism-domain Pd Ch −→
¬(∃ d∈ds. ∃Pd ′. mechanism-domain (Pd(d:=Pd ′)) Ch
∧ (∃ y∈ϕ (Pd(d:=Pd ′)) Ch ds. y ∈ AboveS (Pd d) (dX (ϕ Pd Ch ds) d))))

〈proof 〉

theorem fp-cop-F-strategy-proof :
shows strategy-proof ds Contracts.cop (is strategy-proof - ?ϕ)

end

The adaptation to groups is straightforward (Hatfield and Kojima 2009, 2010):

A mechanism ϕ is group strategy-proof if, for any preference profile Pd, there is no group of doctors ds ′

⊆ ds and a preference profile Pd ′ such that every d ∈ ds ′ strictly prefers yd to xd according to Pd d,
where xd and yd are the (possibly null) contracts for d in ϕ Pd and ϕ Pd(d1 := Pd ′ d1, . . . , dn := Pd ′

dn), respectively.

This definition requires all doctors in the coalition to strictly prefer the outcome with manipulated preferences, as
Kojima’s bossiness results (see §7) show that a doctor may influence other doctors’ allocations without affecting
their own. See Hatfield and Kojima (2009, §3) for discussion, and also Roth and Sotomayor (1990, Chapter 4); in
particular their §4.3.1 discusses the robustness of these results and exogenous transfers.
context Contracts
begin

definition group-strategy-proof :: ′d set ⇒ ( ′d, ′h, ′x) mechanism ⇒ bool where
group-strategy-proof ds ϕ ←→
(∀Pd Ch. mechanism-domain Pd Ch −→
¬(∃ ds ′⊆ds. ds ′ 6= {} ∧ (∃Pd ′. mechanism-domain (override-on Pd Pd ′ ds ′) Ch
∧ (∀ d∈ds ′. ∃ y∈ϕ (override-on Pd Pd ′ ds ′) Ch ds. y ∈ AboveS (Pd d) (dX (ϕ Pd Ch ds) d)))))

〈proof 〉
lemma group-strategy-proof-strategy-proof :

assumes group-strategy-proof ds ϕ
shows strategy-proof ds ϕ

end

Perhaps surprisingly, Hatfield and Kojima (2010, Lemma 1, for a single doctor) assert that shuffling any contract
above the doctor-optimal one to the top of a doctor’s preference order preserves exactly the doctor-optimal match,
which on the face of it seems to contradict the bossiness result of §7: by the earlier strategy-proofness results, this
cannot affect the outcome for that particular doctor, but by bossiness it may affect others. The key observation is
that this manipulation preserves blocking coalitions in the presence of lad.
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This result is central to showing the group-strategy-proofness of the COP.

context Contracts
begin

definition shuffle-to-top :: ′x set ⇒ ′d ⇒ ′x rel where
shuffle-to-top Y = (λd. Pd d − dX Y d × UNIV ∪ (Domain (Pd d) ∪ dX Y d) × dX Y d)

definition Pd-shuffle-to-top :: ′d set ⇒ ′x set ⇒ ′d ⇒ ′x rel where
Pd-shuffle-to-top ds ′ Y = override-on Pd (shuffle-to-top Y ) ds ′

〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉
end

context ContractsWithUnilateralSubstitutesAndIRCAndLAD
begin

lemma Lemma-1 :
assumes allocation Y
assumes III : ∀ d∈ds ′′. ∃ y∈Y . y ∈ AboveS (Pd d) (dX (cop ds) d)
shows cop ds = Contracts.cop (Pd-shuffle-to-top ds ′′ Y ) Ch ds
〈proof 〉
〈proof 〉
〈proof 〉

〈proof 〉

The top-level theorem states that the COP is group strategy proof. To account for the quantification over
preferences, we directly use the raw constants from the Contracts locale.

theorem fp-cop-F-group-strategy-proof :
shows group-strategy-proof ds Contracts.cop

(is group-strategy-proof - ?ϕ)
〈proof 〉

end

Again, this result does not directly apply to gfp-F due to the mechanism domain hypothesis.
Finally, Hatfield and Kojima (2010, Corollary 2) (respectively, Hatfield and Kojima (2009, Corollary 1)) assert that
the COP (gfp-F) is “weakly Pareto optimal”, i.e., that there is no individually-rational allocation that every doctor
strictly prefers to the doctor-optimal match.

context ContractsWithUnilateralSubstitutesAndIRCAndLAD
begin

theorem Corollary-2 :
assumes ds 6= {}
shows ¬(∃Y . individually-rational-on ds Y

∧ (∀ d∈ds. ∃ y∈Y . y ∈ AboveS (Pd d) (dX (cop ds) d)))
〈proof 〉

end

Roth and Sotomayor (1990, §4.4) discuss how the non-proposing agents can strategise to improve their outcomes
in one-to-one matches.

9 Concluding remarks

We conclude with a brief and inexhaustive survey of related work.
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9.1 Related work

Computer-assisted and formal reasoning. Bijlsma (1991) gives a formal pencil-and-paper derivation of the
Gale-Shapley deferred-acceptance algorithm under total strict preferences and one-to-one matching (colloquially, a
marriage market). He provides termination and complexity arguments, and discusses representation issues. Hamid
and Castleberry (2010) treat the same algorithm in the Coq proof assistant, give a termination proof and show
that it always yields a stable match. Both focus more on reasoning about programs than the theory of stable
matches. Intriguingly, the latter claims that Akamai uses (modified) stable matching to assign clients to servers in
their content distribution network.
Brandt and Geist (2014) use SAT technology to find results in social choice theory. They claim that the encodings
used by general purpose tools like nitpick are too inefficient for their application.

Stable matching. In addition to the monographs Gusfield and Irving (1989); Manlove (2013); Roth and
Sotomayor (1990), Roth (2008) provides a good overview up to 2007 of open problems and other aspects of this
topic that we did not explore here. Sönmez and Switzer (2013) incorporate quotas and put the COP to work at
the United States Military Academy. Andersson and Ehlers (2016) analyze the possibility of matching of refugees
with landlords in Sweden (without mentioning matching with contracts).
One of the more famous applications of matching theory is to kidney donation (Roth 2015), a repugnant market
where the economists’ basic tool of pricing things is considered verboten. These markets are sometimes, but
not always, two-sided – kidneys are often exchanged due to compatibility issues, but there are also altruistic
donations and recipients who cannot reciprocate – and so the model we discussed here is not applicable. Instead
generalizations of Gale’s top trading cycles algorithm are pressed into service (Abdulkadirolu and Sönmez 1999;
Shapley and Scarf 1974; Sönmez and Ünver 2010). Much recent work has hybridized these approaches – for instance,
Dworczak (2016) uses a combination to enumerate all stable matches.
Echenique (2012) shows that the matching with contracts model of §5 is no more general than that of Kelso and
Crawford (1982) (a job matching market with salaries). Schlegel generalizes this result to the COP setting of §6, and
moreover shows how lattice structure can be recovered there, which yields a hospital-proposing deferred-acceptance
algorithm that relies only on unilaterally substitutable hospital choice functions. See Hatfield and Kominers (2016)
for a discussion of the many-to-many case.
Roth and Sotomayor (1990, Theorem 2.33) point to alternatives to the deferred-acceptance algorithm, and to more
general matching scenarios involving couples and roommates. Manlove (2013) provides a comprehensive survey of
matching with preferences.

Further results: COP. Afacan (2014) explores the following two properties:

[Population monotonicity] says that no doctor is to be worse off whenever some others leave the market.
[Resource monotonicity], on the other hand, requires that no doctor should lose whenever hospitals
start hiring more doctors.

He shows that the COP is population and resource monotonic under irc and bilateral_substitutes. Also Afacan
(2015) characterizes the COP by the properties truncation proof (“no doctor can ever benefit from truncating
his preferences”) and invariant to lower tail preferences change (“any doctor’s assignment does not depend on
his preferences over worse contracts”); that the COP satisfies these properties was demonstrated in §6. See also
Hatfield et al. (2016) for another set of conditions that characterize the COP.
Hirata and Kasuya (2016) show how the strategic results can be obtained without the rural hospitals theorem, in a
setting that requires irc but not substitutability.

Further results: Strategy. There are many different ways to think about the manipulation of economic
mechanisms. Some continue in the game-theoretic tradition (Gonczarowski 2014), and, for instance, compare the
manipulability of mechanisms that yield stable matches (Chen et al. 2016). Techniques from computer science help
refine the notion of strategy-proofness (Ashlagi and Gonczarowski 2015) and enable complexity-theoretic arguments
(Aziz et al. 2015; Deng et al. 2016). Kojima and Pathak (2009) have analyzed the scope for manipulation in large
matching markets.
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