
Stable Matching

Peter Gammie

March 19, 2025

Abstract

We mechanize proofs of several results from the matching with contracts literature, which generalize those of the
classical two-sided matching scenarios that go by the name of stable marriage. Our focus is on game theoretic
issues. Along the way we develop executable algorithms for computing optimal stable matches.

Contents

1 Introduction 2

2 Sotomayor (1996): A non-constructive proof of the existence of stable marriages 2

3 Preliminaries 10
3.1 MaxR: maximum elements of linear orders . 10
3.2 Linear orders from lists . 10

4 Choice Functions 11
4.1 The substitutes condition, AKA independence of irrelevant alternatives AKA Chernoff 12
4.2 The irrelevance of rejected contracts condition AKA consistency AKA Aizerman 13
4.3 The law of aggregate demand condition aka size monotonicity . 15
4.4 The expansion condition . 15
4.5 Axioms of revealed preference . 16

4.5.1 The strong axiom of revealed preference ala Aygün and Sönmez (2012b) 20
4.6 Choice functions arising from linear orders . 21
4.7 Plott’s path independence condition . 22

4.7.1 Path independence and decomposition into orderings . 23

5 Hatfield and Milgrom (2005): Matching with contracts 25
5.1 Theorem 1: Existence of stable pairs . 27

5.1.1 Theorem 1 does not hold (Aygün and Sönmez 2012b) . 28
5.1.2 Theorem 1 holds with independence of rejected contracts 29
5.1.3 The converse of Theorem 1 . 31

5.2 Theorem 3: Algorithmics . 33
5.3 Theorem 4: Optimality . 36
5.4 Theorem 5 does not hold (Hatfield and Kojima 2008) . 37
5.5 Theorem 6: “Vacancy chain” dynamics . 37
5.6 Theorems 8 and 9: A “rural hospitals” theorem . 38
5.7 Theorems 15 and 16: Cumulative Offer Processes . 40
5.8 Concluding remarks . 45

6 Hatfield and Kojima (2010): Substitutes and stability for matching with contracts 45
6.1 Theorem 1: the COP yields a stable match under bilateral substitutes 45
6.2 Theorem 3: pareto separability relates unilateral substitutes and substitutes 50

1

6.2.1 Afacan and Turhan (2015): doctor separability relates bi- and unilateral substitutes 52
6.3 Theorems 4 and 5: Doctor optimality . 54
6.4 Theorem 6: A “rural hospitals” theorem . 59
6.5 Concluding remarks . 61

7 Kojima (2010): The non-existence of a stable and non-bossy mechanism 61

8 Strategic results 64
8.1 Hatfield and Milgrom (2005): Theorems 10 and 11: Truthful revelation as a Dominant Strategy . 64
8.2 Hatfield and Kojima (2009, 2010): The doctor-optimal match is group strategy-proof 69

9 Concluding remarks 75
9.1 Related work . 76

10 Acknowledgements 76

References 79

1 Introduction

As economists have turned their attention to the design of such markets as school enrolments, internships, and
housing refugees (Andersson and Ehlers 2016), particular matching scenarios have proven to be useful models.
Roth (2015) defines matching as “economist-speak for how we get the many things we choose in life that also
must choose us,” and one such two-sided market is now colloquially known as the stable marriage problem. It was
initially investigated by Gale and Shapley (1962), who introduced the key solution concept of stability, and the
deferred-acceptance algorithm that efficiently constructs stable matches for it. We refer readers unfamiliar with this
classical work to §2, where we formalize this scenario and mechanize a non-constructive existence proof of stable
matches due to Sotomayor (1996). Further in-depth treatment can be found in the very readable monographs by
Gusfield and Irving (1989) (algorithmics), Roth and Sotomayor (1990) (economics), and Manlove (2013).
Recently Hatfield and Milgrom (2005) (see also Fleiner (2000, 2002, 2003)) have recast the two-sided matching
model to incorporate contracts, which intuitively allow agents to additionally indicate preferences over conditions
such as salary. By allowing many-to-one matches, some aspects of a labour market can be modelled. Their analysis
leans heavily on the lattice structure of the stable matches, and yields pleasingly simple and general algorithms
(§5). Later work trades this structure for generality, and the analysis becomes more intricate (§6). The key
game-theoretic result is the (one-sided) strategy-proofness of the optimal stable match (§8).
This work was motivated by the difficulty of navigating the literature on matching with contracts by non-specialists,
as observed by Caminati et al. (2015a,b). We impose some order by formalizing much of it in Isabelle/HOL (Nipkow
et al. 2002), a proof assistant for a simply-typed higher-order logic. By carefully writing definitions that are
executable and testable, we avail ourselves of Isabelle’s automatic tools, specifically nitpick and sledgehammer,
to rapidly identify errors when formulating assertions. We focus primarily on strategic (game theoretic) issues, but
our development is also intended to serve as a foundation for further results.
The proof assistant forces us to take care of all details, which yields a verbosity that may deter some readers. We
suggest that most will fare best by reading the definitions and lemma/theorem statements closely, and skipping
the proofs. (The important results are labelled theorem and proposition, but often the lemmas contain the
meat.) The material in §4 on choice functions is mostly for reference.
This PDF is generated directly from the development’s sources and is extensively hyperlinked, but for some
purposes there is no substitute to firing up Isabelle.

2 Sotomayor (1996): A non-constructive proof of the existence of stable
marriages

We set the scene with a non-constructive proof of the existence of stable matches due to Sotomayor (1996). This
approach is pleasantly agnostic about the strictness of preferences, and moreover avoids getting bogged down in
reasoning about programs; most existing proofs involve such but omit formal treatments of the requisite assertions.
This tradition started with Gale and Shapley (1962); see Bijlsma (1991) for a rigorous treatment.

2

https://en.wikipedia.org/wiki/Stable_marriage_problem

The following contains the full details of an Isabelle/HOL formalization of her proof, and aims to introduce the
machinery we will make heavy use of later. Further developments will elide many of the more tedious technicalities
that we include here.
The scenario consists of disjoint finite sets of men M and women W, represented as types ′m::finite and ′w::finite
respectively. We diverge from Sotomayor by having each man and woman rank only acceptable partners in a way
that is transitive and complete. (Here completeness requires Refl in addition to Total as the latter does not imply
the former, and so we end up with a total preorder.) Such orders therefore include cycles of indifference, i.e., are
not antisymmetric.
Also matches are treated as relations rather than functions.
We model this scenario in a locale, a sectioning mechanism for stating a series of lemmas relative to a set of fixed
variables (fixes) and assumptions (assumes) that can later be instantiated and discharged.

type-synonym (′m, ′w) match = (′m × ′w) set

locale StableMarriage =
fixes Pm :: ′m::finite ⇒ ′w::finite rel
fixes Pw :: ′w ⇒ ′m rel
assumes Pm-pref : ∀m. Preorder (Pm m) ∧ Total (Pm m)
assumes Pw-pref : ∀w. Preorder (Pw w) ∧ Total (Pw w)

begin

A match assigns at most one man to each woman, and vice-versa. It is also individually rational, i.e., the partners
are acceptable to each other. The constant Field is the union of the Domain and Range of a relation.

definition match :: (′m, ′w) match ⇒ bool where
match µ ←→ inj-on fst µ ∧ inj-on snd µ ∧ µ ⊆ (

⋃
m. {m} × Field (Pm m)) ∩ (

⋃
w. Field (Pw w) × {w})

A woman prefers one man to another if her preference order ranks the former over the latter, and strictly prefers
him if additionally the latter is not ranked over the former, and similarly for the men.

abbreviation (input) m-for w µ ≡ {m. (m, w) ∈ µ}
abbreviation (input) w-for m µ ≡ {w. (m, w) ∈ µ}

definition m-prefers :: ′m ⇒ (′m, ′w) match ⇒ ′w set where
m-prefers m µ = {w ′ ∈ Field (Pm m). ∀w∈w-for m µ. (w, w ′) ∈ Pm m}

definition w-prefers :: ′w ⇒ (′m, ′w) match ⇒ ′m set where
w-prefers w µ = {m ′ ∈ Field (Pw w). ∀m∈m-for w µ. (m, m ′) ∈ Pw w}

definition m-strictly-prefers :: ′m ⇒ (′m, ′w) match ⇒ ′w set where
m-strictly-prefers m µ = {w ′ ∈ Field (Pm m). ∀w∈w-for m µ. (w, w ′) ∈ Pm m ∧ (w ′, w) /∈ Pm m}

definition w-strictly-prefers :: ′w ⇒ (′m, ′w) match ⇒ ′m set where
w-strictly-prefers w µ = {m ′ ∈ Field (Pw w). ∀m∈m-for w µ. (m, m ′) ∈ Pw w ∧ (m ′, m) /∈ Pw w}

A couple blocks a match µ if both strictly prefer each other to anyone they are matched with in µ.

definition blocks :: ′m ⇒ ′w ⇒ (′m, ′w) match ⇒ bool where
blocks m w µ ←→ w ∈ m-strictly-prefers m µ ∧ m ∈ w-strictly-prefers w µ

We say a match is stable if there are no blocking couples.

definition stable :: (′m, ′w) match ⇒ bool where
stable µ ←→ match µ ∧ (∀m w. ¬ blocks m w µ)

lemma stable-match:
assumes stable µ
shows match µ

using assms unfolding stable-def by blast

Our goal is to show that for every preference order there is a stable match. Stable matches in this scenario form a
lattice, and this proof implicitly adopts the traditional view that men propose and women choose.

3

The definitions above form the trust basis for this existence theorem; the following are merely part of the proof
apparatus, and Isabelle/HOL enforces their soundness with respect to the argument. We will see these concepts
again in later developments.
Firstly, a match is simple if every woman party to a blocking pair is single. The most obvious such match leaves
everyone single.

definition simple :: (′m, ′w) match ⇒ bool where
simple µ ←→ match µ ∧ (∀m w. blocks m w µ −→ w /∈ Range µ)

lemma simple-match:
assumes simple µ
shows match µ

using assms unfolding simple-def by blast

lemma simple-ex:
∃µ. simple µ

unfolding simple-def blocks-def match-def by auto

Sotomayor observes the following:

lemma simple-no-single-women-stable:
assumes simple µ
assumes ∀w. w ∈ Range µ — No woman is single
shows stable µ

using assms unfolding simple-def stable-def by blast

lemma stable-simple:
assumes stable µ
shows simple µ

using assms unfolding simple-def stable-def by blast

Secondly, a weakly Pareto optimal match for men (among all simple matches) is one for which there is no other
match that all men like as much and some man likes more.

definition m-weakly-prefers :: ′m ⇒ (′m, ′w) match ⇒ ′w set where
m-weakly-prefers m µ = {w ′ ∈ Field (Pm m). ∀w∈w-for m µ. (w, w ′) ∈ Pm m}

definition weakly-preferred-by-men :: (′m, ′w) match ⇒ (′m, ′w) match ⇒ bool where
weakly-preferred-by-men µ µ ′

←→ (∀m. ∀w∈w-for m µ. ∃w ′∈w-for m µ ′. w ′ ∈ m-weakly-prefers m µ)

definition strictly-preferred-by-a-man :: (′m, ′w) match ⇒ (′m, ′w) match ⇒ bool where
strictly-preferred-by-a-man µ µ ′

←→ (∃m. ∃w∈w-for m µ ′. w ∈ m-strictly-prefers m µ)

definition weakly-Pareto-optimal-for-men :: (′m, ′w) match ⇒ bool where
weakly-Pareto-optimal-for-men µ
←→ simple µ ∧ ¬(∃µ ′. simple µ ′ ∧ weakly-preferred-by-men µ µ ′ ∧ strictly-preferred-by-a-man µ µ ′)

We will often provide introduction rules for more complex predicates, and sometimes derive these by elementary
syntactic manipulations expressed by the attributes enclosed in square brackets after a use-mention of a lemma.
The lemmas command binds a name to the result. To conform with the Isar structured proof language, we use
meta-logic (“Pure” in Isabelle terminology) connectives:

∧
denotes universal quantification, and =⇒ implication.

lemma weakly-preferred-by-menI :
assumes

∧
m w. (m, w) ∈ µ =⇒ ∃w ′. (m, w ′) ∈ µ ′ ∧ w ′ ∈ m-weakly-prefers m µ

shows weakly-preferred-by-men µ µ ′

using assms unfolding weakly-preferred-by-men-def by blast

lemmas simpleI = iffD2 [OF simple-def , unfolded conj-imp-eq-imp-imp, rule-format]

4

lemma weakly-Pareto-optimal-for-men-simple:
assumes weakly-Pareto-optimal-for-men µ
shows simple µ

using assms unfolding weakly-Pareto-optimal-for-men-def by simp

Later we will elide obvious technical lemmas like the following. The more obscure proofs are typically generated
automatically by sledgehammer (Blanchette et al. 2016).

lemma m-weakly-prefers-Pm:
assumes match µ
assumes (m, w) ∈ µ
shows w ′ ∈ m-weakly-prefers m µ ←→ (w, w ′) ∈ Pm m

using spec[OF Pm-pref , where x=m] assms unfolding m-weakly-prefers-def match-def preorder-on-def
by simp (metis (no-types, opaque-lifting) FieldI2 fst-conv inj-on-contraD snd-conv)

lemma match-Field:
assumes match µ
assumes (m, w) ∈ µ
shows w ∈ Field (Pm m)

and m ∈ Field (Pw w)
using assms unfolding match-def by blast+

lemma weakly-preferred-by-men-refl:
assumes match µ
shows weakly-preferred-by-men µ µ

using assms unfolding weakly-preferred-by-men-def m-weakly-prefers-def
by clarsimp (meson Pm-pref m-weakly-prefers-Pm match-Field(1) preorder-on-def refl-onD)

Sotomayor, p137 provides an alternative definition of weakly-preferred-by-men. The syntax (is ?lhs ←→ pat) binds
the schematic variables ?lhs and ?rhs to the terms separated by ←→.

lemma weakly-preferred-by-men-strictly-preferred-by-a-man:
assumes match µ
assumes match µ ′

shows weakly-preferred-by-men µ µ ′←→ ¬strictly-preferred-by-a-man µ ′ µ (is ?lhs ←→ ?rhs)
proof(rule iffI)

assume ?lhs then show ?rhs
unfolding weakly-preferred-by-men-def strictly-preferred-by-a-man-def

m-weakly-prefers-def m-strictly-prefers-def by fastforce
next

assume ?rhs show ?lhs
proof(rule weakly-preferred-by-menI)

fix m w assume (m, w) ∈ µ
from assms ‹?rhs› ‹(m, w) ∈ µ› obtain w ′ where XXX : (m, w ′) ∈ µ ′ (w ′, w) ∈ Pm m −→ (w, w ′) ∈ Pm m

unfolding match-def strictly-preferred-by-a-man-def m-strictly-prefers-def by blast
with spec[OF Pm-pref , where x=m] assms ‹(m, w) ∈ µ›
show ∃w ′. (m, w ′) ∈ µ ′ ∧ w ′ ∈ m-weakly-prefers m µ

unfolding preorder-on-def total-on-def by (metis m-weakly-prefers-Pm match-Field(1) refl-onD)
qed

qed

lemma weakly-Pareto-optimal-for-men-def2 :
weakly-Pareto-optimal-for-men µ
←→ simple µ ∧ (∀µ ′. simple µ ′ ∧ strictly-preferred-by-a-man µ µ ′ −→ strictly-preferred-by-a-man µ ′ µ)

unfolding weakly-Pareto-optimal-for-men-def simple-def
by (meson weakly-preferred-by-men-strictly-preferred-by-a-man)

Sotomayor claims that the existence of such a weakly Pareto optimal match for men is “guaranteed by the fact
that the set of simple matchings is nonempty [our simple-ex lemma] and finite and the preferences are transitive.”
The following lemmas express this intuition:

5

lemma trans-finite-has-maximal-elt:
assumes trans r
assumes finite (Field r)
assumes Field r 6= {}
shows ∃ x∈Field r . (∀ y∈Field r . (x, y) ∈ r −→ (y, x) ∈ r)

using assms(2 ,1 ,3) by induct (auto elim: transE)

lemma weakly-Pareto-optimal-for-men-ex:
∃µ. weakly-Pareto-optimal-for-men µ

proof −
let ?r = {(µ, µ ′). simple µ ∧ simple µ ′ ∧ weakly-preferred-by-men µ µ ′}
from trans-finite-has-maximal-elt[where r=?r]
obtain x where x ∈ Field ?r ∀ y∈Field ?r . (x, y) ∈ ?r −→ (y, x) ∈ ?r
proof

from Pm-pref show trans ?r
unfolding trans-def weakly-preferred-by-men-def m-weakly-prefers-def m-strictly-prefers-def
by simp (meson order-on-defs(1) transE)

from simple-ex weakly-preferred-by-men-refl[OF simple-match] show Field ?r 6= {}
unfolding Field-def by force

qed simp-all
then show ?thesis

unfolding weakly-Pareto-optimal-for-men-def Field-def
using simple-match weakly-preferred-by-men-strictly-preferred-by-a-man by auto

qed

The main result proceeds by contradiction.

lemma weakly-Pareto-optimal-for-men-stable:
assumes weakly-Pareto-optimal-for-men µ
shows stable µ

proof(rule ccontr)
assume ¬stable µ
from ‹weakly-Pareto-optimal-for-men µ› have simple µ by (rule weakly-Pareto-optimal-for-men-simple)
from ‹¬stable µ› ‹simple µ› obtain m ′ w where blocks m ′ w µ and w /∈ Range µ

unfolding simple-def stable-def by blast+
— Choose an m that w weakly prefers to any blocking man.
— We restrict the preference order Pw w to the men who strictly prefer w over their match in µ.
let ?r = Restr (Pw w) {m. w ∈ m-strictly-prefers m µ}
from trans-finite-has-maximal-elt[where r=?r]
obtain m where m ∈ Field ?r ∀m ′∈Field ?r . (m, m ′) ∈ ?r −→ (m ′, m) ∈ ?r
proof

from Pw-pref show trans ?r
unfolding preorder-on-def by (blast intro: trans-Restr)

from Pw-pref ‹blocks m ′ w µ› have (m ′, m ′) ∈ ?r
unfolding blocks-def w-strictly-prefers-def preorder-on-def by (blast dest: refl-onD)

then show Field ?r 6= {} by (metis FieldI2 empty-iff)
qed simp-all
with ‹blocks m ′ w µ› ‹w /∈ Range µ›
have blocks m w µ and ∀m ′. blocks m ′ w µ ∧ (m, m ′) ∈ Pw w −→ (m ′, m) ∈ Pw w

unfolding blocks-def w-strictly-prefers-def Field-def by auto
— Construct a new (simple) match containing the blocking pair. . .
let ?µ ′ = µ − {(m, w ′) |w ′. True} ∪ {(m, w)}
— . . . and show that it is a Pareto improvement for men over µ.
have simple ?µ ′

proof(rule simpleI)
from ‹simple µ› ‹blocks m w µ› show match ?µ ′

unfolding blocks-def match-def simple-def m-strictly-prefers-def w-strictly-prefers-def
by (safe; clarsimp simp: inj-on-diff ; blast)

fix m ′ w ′ assume blocks m ′ w ′ ?µ ′

6

from ‹blocks m ′ w ′ ?µ ′› ‹∀m ′. blocks m ′ w µ ∧ (m, m ′) ∈ Pw w −→ (m ′, m) ∈ Pw w›
have w ′ 6= w

unfolding blocks-def m-strictly-prefers-def w-strictly-prefers-def by auto
show w ′ /∈ Range ?µ ′

proof(cases (m, w ′) ∈ µ)
case True
from ‹simple µ› ‹blocks m ′ w ′ ?µ ′› ‹w ′ 6= w› ‹(m, w ′) ∈ µ›
show ?thesis

unfolding simple-def match-def
by clarsimp (metis (no-types, opaque-lifting) fst-conv inj-on-contraD snd-conv)

next
case False
from Pm-pref ‹blocks m w µ› ‹blocks m ′ w ′ ?µ ′› ‹(m, w ′) /∈ µ›
have blocks m ′ w ′ µ

unfolding preorder-on-def blocks-def m-strictly-prefers-def w-strictly-prefers-def
by simp (metis transE)

with ‹simple µ› ‹w ′ 6= w› show ?thesis unfolding simple-def by blast
qed

qed
moreover have weakly-preferred-by-men µ ?µ ′

proof(rule weakly-preferred-by-menI)
fix m ′ w ′ assume (m ′, w ′) ∈ µ
then show ∃w ′. (m ′, w ′) ∈ ?µ ′ ∧ w ′ ∈ m-weakly-prefers m ′ µ
proof(cases m ′ = m)

case True
from ‹blocks m w µ› ‹(m ′, w ′) ∈ µ› ‹m ′ = m› show ?thesis

unfolding m-weakly-prefers-def blocks-def m-strictly-prefers-def by blast
next

case False
from Pm-pref ‹simple µ› ‹(m ′, w ′) ∈ µ› ‹m ′ 6= m› show ?thesis

by clarsimp (meson m-weakly-prefers-Pm match-Field preorder-on-def refl-onD simple-match)
qed

qed
moreover from ‹blocks m w µ› have strictly-preferred-by-a-man µ ?µ ′

unfolding strictly-preferred-by-a-man-def blocks-def by blast
moreover note ‹weakly-Pareto-optimal-for-men µ›
ultimately show False

unfolding weakly-Pareto-optimal-for-men-def by blast
qed

theorem stable-ex:
∃µ. stable µ

using weakly-Pareto-optimal-for-men-stable weakly-Pareto-optimal-for-men-ex by blast

We can exit the locale context and later re-enter it.

end

We interpret the locale by supplying constants that instantiate the variables we fixed earlier, and proving that these
satisfy the assumptions. In this case we provide concrete preference orders, and by doing so we demonstrate that
our theory is non-vacuous. We arbitrarily choose Roth and Sotomayor (1990, Example 2.15) which demonstrates
the non-existence of man- or woman-optimal matches if preferences are non-strict. (We define optimality shortly.)
The following bunch of types eases the description of this particular scenario.

datatype M = M1 | M2 | M3
datatype W = W1 | W2 | W3

lemma M-UNIV : UNIV = set [M1 , M2 , M3] using M .exhaust by auto
lemma W-UNIV : UNIV = set [W1 , W2 , W3] using W .exhaust by auto

7

instance M :: finite by standard (simp add: M-UNIV)
instance W :: finite by standard (simp add: W-UNIV)

lemma M-All:
shows (∀m. P m) ←→ (∀m∈set [M1 , M2 , M3]. P m)

by (metis M-UNIV UNIV-I)

lemma W-All:
shows (∀w. P w) ←→ (∀w∈set [W1 , W2 , W3]. P w)

by (metis W-UNIV UNIV-I)

primrec Pm :: M ⇒ W rel where
Pm M1 = { (W1 , W1), (W1 , W2), (W1 , W3), (W2 , W2), (W2 , W3), (W3 , W3), (W3 , W2) }
| Pm M2 = { (W1 , W1), (W1 , W2), (W2 , W2) }
| Pm M3 = { (W1 , W1), (W1 , W3), (W3 , W3) }

primrec Pw :: W ⇒ M rel where
Pw W1 = { (M3 , M3), (M3 , M2), (M3 , M1), (M2 , M2), (M2 , M1), (M1 , M1) }
| Pw W2 = { (M2 , M2), (M2 , M1), (M1 , M1) }
| Pw W3 = { (M3 , M3), (M3 , M1), (M1 , M1) }

lemma Pm: Preorder (Pm m) ∧ Total (Pm m)
unfolding preorder-on-def refl-on-def trans-def total-on-def
by (cases m) (safe, auto)

lemma Pw: Preorder (Pw w) ∧ Total (Pw w)
unfolding preorder-on-def refl-on-def trans-def total-on-def
by (cases w) (safe, auto)

interpretation Non-Strict: StableMarriage Pm Pw
using Pm Pw by unfold-locales blast+

We demonstrate that there are only two stable matches in this scenario. Isabelle/HOL does not have any special
support for these types of model checking problems, so we simply try all combinations of men and women. Clearly
this does not scale, and for larger domains we need to be a bit cleverer (see §7).

lemma Non-Strict-stable1 :
shows Non-Strict.stable {(M1 , W2), (M2 , W1), (M3 , W3)}

unfolding Non-Strict.stable-def Non-Strict.match-def Non-Strict.blocks-def Non-Strict.m-strictly-prefers-def
Non-Strict.w-strictly-prefers-def

by clarsimp (metis M .exhaust)

lemma Non-Strict-stable2 :
shows Non-Strict.stable {(M1 , W3), (M2 , W2), (M3 , W1)}

unfolding Non-Strict.stable-def Non-Strict.match-def Non-Strict.blocks-def Non-Strict.m-strictly-prefers-def
Non-Strict.w-strictly-prefers-def

by clarsimp (metis M .exhaust)

lemma Non-Strict-stable-matches:
Non-Strict.stable µ
←→ µ = {(M1 , W2), (M2 , W1), (M3 , W3)}
∨ µ = {(M1 , W3), (M2 , W2), (M3 , W1)} (is ?lhs ←→ ?rhs)

proof(rule iffI)
assume ?lhs
have µ ∈ set ‘ set (subseqs (List.product [M1 , M2 , M3] [W1 , W2 , W3]))

by (subst subseqs-powset; clarsimp; metis M .exhaust W .exhaust)
with ‹?lhs› show ?rhs

unfolding Non-Strict.stable-def Non-Strict.match-def
apply (simp cong: INF-cong-simp SUP-cong-simp cong del: image-cong-simp)

8

apply (elim disjE)
apply (simp-all cong: INF-cong-simp SUP-cong-simp cong del: image-cong-simp)
apply (simp-all add: M-All W-All Non-Strict.blocks-def Non-Strict.m-strictly-prefers-def

Non-Strict.w-strictly-prefers-def cong: INF-cong-simp SUP-cong-simp cong del: image-cong-simp)
done

next
assume ?rhs with Non-Strict-stable1 Non-Strict-stable2 show ?lhs by blast

qed

So far the only interesting result in this interpretation of StableMarriage is the Non-Strict.stable-ex theorem, i.e.,
that there is a stable match. We now add the notion of optimality to our locale, and all interpretations will
automatically inherit it. Later we will also extend locales by adding new fixed variables and assumptions.
Following Roth and Sotomayor (1990, Definition 2.11), a stable match is optimal for men if every man likes it at
least as much as any other stable match (and similarly for an optimal for women match).
context StableMarriage
begin

definition optimal-for-men :: (′m, ′w) match ⇒ bool where
optimal-for-men µ
←→ stable µ ∧ (∀µ ′. stable µ ′ −→ weakly-preferred-by-men µ ′ µ)

definition w-weakly-prefers :: ′w ⇒ (′m, ′w) match ⇒ ′m set where
w-weakly-prefers w µ = {m ′ ∈ Field (Pw w). ∀m∈m-for w µ. (m, m ′) ∈ Pw w}

definition weakly-preferred-by-women :: (′m, ′w) match ⇒ (′m, ′w) match ⇒ bool where
weakly-preferred-by-women µ µ ′

←→ (∀w. ∀m∈m-for w µ. ∃m ′∈m-for w µ ′. m ′ ∈ w-weakly-prefers w µ)

definition optimal-for-women :: (′m, ′w) match ⇒ bool where
optimal-for-women µ
←→ stable µ ∧ (∀µ ′. stable µ ′ −→ weakly-preferred-by-women µ µ ′)

end

We can show that there is no optimal stable match for these preferences:
lemma NonStrict-not-optimal:

assumes Non-Strict.stable µ
shows ¬Non-Strict.optimal-for-men µ ∧ ¬Non-Strict.optimal-for-women µ

proof −
from assms[unfolded Non-Strict-stable-matches] show ?thesis
proof(rule disjE)

assume µ = {(M1 , W2), (M2 , W1), (M3 , W3)}
with assms show ?thesis

unfolding Non-Strict.optimal-for-men-def Non-Strict.weakly-preferred-by-men-def
Non-Strict.m-weakly-prefers-def Non-Strict.optimal-for-women-def
Non-Strict.weakly-preferred-by-women-def Non-Strict.w-weakly-prefers-def
Non-Strict-stable-matches

by clarsimp (rule conjI ; rule exI [where x={(M1 , W3), (M2 , W2), (M3 , W1)}]; blast)
next

assume µ = {(M1 , W3), (M2 , W2), (M3 , W1)}
with assms show ?thesis

unfolding Non-Strict.optimal-for-men-def Non-Strict.weakly-preferred-by-men-def
Non-Strict.m-weakly-prefers-def Non-Strict.optimal-for-women-def
Non-Strict.weakly-preferred-by-women-def Non-Strict.w-weakly-prefers-def
Non-Strict-stable-matches

by clarsimp (rule conjI ; rule exI [where x={(M1 , W2), (M2 , W1), (M3 , W3)}]; blast)
qed

qed
9

Sotomayor (1996) remarks that, if the preferences are strict, there is only one weakly Pareto optimal match for
men, and that it is man-optimal. (This is the match found by the classic man-proposing deferred acceptance
algorithm due to Gale and Shapley (1962).) However she omits a proof that the man-optimal match actually exists
under strict preferences.
The easiest way to show this and further results is to exhibit the lattice structure of the stable matches discovered
by Conway (see Roth and Sotomayor (1990, Theorem 2.16)), where the men- and women-optimal matches are the
extremal points. This suggests looking for a monotonic function whose fixed points are this lattice, which is the
essence of the analysis of matching with contracts in §5.

3 Preliminaries

3.1 MaxR: maximum elements of linear orders

We generalize the existing max and Max functions to work on orders defined over sets. See §4.6 for choice-function
related lemmas.

locale MaxR =
fixes r :: ′a::finite rel
assumes r-Linear-order : Linear-order r

begin

The basic function chooses the largest of two elements:

definition maxR :: ′a ⇒ ′a ⇒ ′a where
maxR x y = (if (x, y) ∈ r then y else x)

We hoist this to finite sets using the Finite-Set.fold combinator. For code generation purposes it seems inevitable
that we need to fuse the fold and filter into a single total recursive definition.

definition MaxR-f :: ′a ⇒ ′a option ⇒ ′a option where
MaxR-f x acc = (if x ∈ Field r then Some (case acc of None ⇒ x | Some y ⇒ maxR x y) else acc)

interpretation MaxR-f : comp-fun-idem MaxR-f

definition MaxR-opt :: ′a set ⇒ ′a option where
MaxR-opt-eq-fold ′: MaxR-opt A = Finite-Set.fold MaxR-f None A

end

interpretation MaxR-empty: MaxR {}
by unfold-locales simp

interpretation MaxR-singleton: MaxR {(x,x)} for x
by unfold-locales simp

lemma MaxR-r-domain [iff]:
assumes MaxR r
shows MaxR (Restr r A)

using assms Linear-order-Restr unfolding MaxR-def by blast

3.2 Linear orders from lists

Often the easiest way to specify a concrete linear order is with a list. Here these run from greatest to least.

primrec linord-of-listP :: ′a ⇒ ′a ⇒ ′a list ⇒ bool where
linord-of-listP x y [] ←→ False
| linord-of-listP x y (z # zs) ←→ (z = y ∧ x ∈ set (z # zs)) ∨ linord-of-listP x y zs

definition linord-of-list :: ′a list ⇒ ′a rel where
linord-of-list xs ≡ {(x, y). linord-of-listP x y xs}

10

lemma linord-of-list-Linear-order :
assumes distinct xs
assumes ys = set xs
shows linear-order-on ys (linord-of-list xs)

Every finite linear order is generated by a list.

lemma linear-order-on-list:
assumes linear-order-on ys r
assumes ys = Field r
assumes finite ys
shows ∃ !xs. r = linord-of-list xs ∧ distinct xs ∧ set xs = ys

4 Choice Functions

We now develop a few somewhat general results about choice functions, following Border (2012); Moulin (1985);
Sen (1970). Hansson and Grüne-Yanoff (2012) provide some philosophical background on this topic. While this
material is foundational to the story we tell about stable matching, it is perhaps best skipped over on a first
reading.
The game here is to study conditions on functions that yield acceptable choices from a given set of alternatives
drawn from some universe (a set, often a type in HOL). We adopt the Isabelle convention of attaching the suffix
on to predicates that are defined on subsets of their types.

type-synonym ′a cfun = ′a set ⇒ ′a set

Most results require that the choice function yield a subset of its argument:

definition f-range-on :: ′a set ⇒ ′a cfun ⇒ bool where
f-range-on A f ←→ (∀B⊆A. f B ⊆ B)

abbreviation f-range :: ′a cfun ⇒ bool where
f-range ≡ f-range-on UNIV

Economists typically assume that the universe is finite, and f is decisive, i.e., yields non-empty sets when given
non-empty sets.

definition decisive-on :: ′a set ⇒ ′a cfun ⇒ bool where
decisive-on A f ←→ (∀B⊆A. B 6= {} −→ f B 6= {})

abbreviation decisive :: ′a cfun ⇒ bool where
decisive ≡ decisive-on UNIV

Often we can mildly generalise existing results by not requiring that f be decisive, and by dropping the finiteness
hypothesis. We make essential use of the former generalization in §5.
Some choice functions, such as those arising from linear orders (§4.6), are resolute: these always yield a single
choice.

definition resolute-on :: ′a set ⇒ ′a cfun ⇒ bool where
resolute-on A f ←→ (∀B⊆A. B 6= {} −→ (∃ a. f B = {a}))

abbreviation resolute :: ′a cfun ⇒ bool where
resolute ≡ resolute-on UNIV

lemma resolute-on-decisive-on:
assumes resolute-on A f
shows decisive-on A f

Often we talk about the choices that are rejected by f :
11

abbreviation Rf :: ′a cfun ⇒ ′a cfun where
Rf f X ≡ X − f X

Typically there are many (almost-)equivalent formulations of each property in the literature. We try to formulate
our rules in terms of the most general of these.

4.1 The substitutes condition, AKA independence of irrelevant alternatives AKA Chernoff

Loosely speaking, the substitutes condition asserts that an alternative that is rejected from A shall remain rejected
when there is “increased competition,” i.e., from all sets that contain A.
Hatfield and Milgrom (2005) define this property as simply the monotonicity of Rf. Aygün and Sönmez (2012b)
instead use the complicated condition shown here. Condition α, due to Sen (1970, p17, see below), is the most
general and arguably the most perspicuous.
definition substitutes-on :: ′a set ⇒ ′a cfun ⇒ bool where

substitutes-on A f ←→ ¬(∃B⊆A. ∃ a b. {a, b} ⊆ A − B ∧ b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}))

abbreviation substitutes :: ′a cfun ⇒ bool where
substitutes ≡ substitutes-on UNIV

lemma substitutes-on-def2 [simplified]:
substitutes-on A f ←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. b /∈ f (B ∪ {b}) −→ b /∈ f (B ∪ {a, b}))

lemma substitutes-on-union:
assumes a /∈ f (B ∪ {a})
assumes substitutes-on (A ∪ B ∪ {a}) f
assumes finite A
shows a /∈ f (A ∪ B ∪ {a})

lemma substitutes-on-antimono:
assumes substitutes-on B f
assumes A ⊆ B
shows substitutes-on A f

The equivalence with the monotonicity of alternative-rejection requires a finiteness constraint.
lemma substitutes-on-Rf-mono-on:

assumes substitutes-on A f
assumes finite A
shows mono-on (Pow A) (Rf f)

lemma Rf-mono-on-substitutes:
assumes mono-on (Pow A) (Rf f)
shows substitutes-on A f

The above substitutes condition is equivalent to the independence of irrelevant alternatives, AKA condition α due
to Sen (1970). Intuitively if a is chosen from a set A, then it must be chosen from every subset of A that it belongs
to. Note the lack of finiteness assumptions here.
definition iia-on :: ′a set ⇒ ′a cfun ⇒ bool where

iia-on A f ←→ (∀B⊆A. ∀C⊆B. ∀ a∈C . a ∈ f B −→ a ∈ f C)

abbreviation iia :: ′a cfun ⇒ bool where
iia ≡ iia-on UNIV

lemma Rf-mono-on-iia-on:
shows mono-on (Pow A) (Rf f) ←→ iia-on A f

lemma Rf-mono-iia:
12

shows mono (Rf f) ←→ iia f

lemma substitutes-iia:
assumes finite A
shows substitutes-on A f ←→ iia-on A f

One key result is that the choice function must be idempotent if it satisfies iia or any of the equivalent conditions.

lemma iia-f-idem:
assumes f-range-on A f
assumes iia-on A f
assumes B ⊆ A
shows f (f B) = f B

Hatfield and Milgrom (2005, p914, bottom right) claim that the substitutes condition coincides with the substitutable
preferences condition for the college admissions problem of Roth and Sotomayor (1990, Definition 6.2), which is
similar to iia:

definition substitutable-preferences-on :: ′a set ⇒ ′a cfun ⇒ bool where
substitutable-preferences-on A f ←→ (∀B⊆A. ∀ a∈B. ∀ b∈B. a 6= b ∧ a ∈ f B −→ a ∈ f (B − {b}))

lemma substitutable-preferences-on-substitutes-on:
shows substitutable-preferences-on A f ←→ substitutes-on A f (is ?lhs ←→ ?rhs)

Moulin (1985, p152) defines an equivalent Chernoff condition. Intuitively this captures the idea that “a best choice
in some issue [set of alternatives] is still best if the issue shrinks.”

definition Chernoff-on :: ′a set ⇒ ′a cfun ⇒ bool where
Chernoff-on A f ←→ (∀B⊆A. ∀C⊆B. f B ∩ C ⊆ f C)

abbreviation Chernoff :: ′a cfun ⇒ bool where
Chernoff ≡ Chernoff-on UNIV

lemmas Chernoff-onI = iffD2 [OF Chernoff-on-def , rule-format]
lemmas Chernoff-def = Chernoff-on-def [where A=UNIV , simplified]

lemma Chernoff-on-iia-on:
shows Chernoff-on A f ←→ iia-on A f

lemma Chernoff-on-union:
assumes Chernoff-on A f
assumes f-range-on A f
assumes B ⊆ A C ⊆ A
shows f (B ∪ C) ⊆ f B ∪ f C

Moulin (1985, p159) states a series of equivalent formulations of the Chernoff condition. He also claims that these
hold if the two sets are disjoint.

lemma Chernoff-a:
assumes f-range-on A f
shows Chernoff-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C) ⊆ f B ∪ C) (is ?lhs ←→ ?rhs)

lemma Chernoff-b: — essentially the converse of Chernoff-on-union
assumes f-range-on A f
shows Chernoff-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C) ⊆ f B ∪ f C) (is ?lhs ←→ ?rhs)

lemma Chernoff-c:
assumes f-range-on A f

13

shows Chernoff-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C) ⊆ f (f B ∪ C)) (is ?lhs ←→ ?rhs)

lemma Chernoff-d:
assumes f-range-on A f
shows Chernoff-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C) ⊆ f (f B ∪ f C)) (is ?lhs ←→ ?rhs)

4.2 The irrelevance of rejected contracts condition AKA consistency AKA Aizerman

Aygün and Sönmez (2012b, §4) propose to repair the results of Hatfield and Milgrom (2005) by imposing the
irrelevance of rejected contracts (IRC) condition. Intuitively this requires the choice function f to ignore unchosen
alternatives.
definition irc-on :: ′a set ⇒ ′a cfun ⇒ bool where

irc-on A f ←→ (∀B⊆A. ∀ a∈A. a /∈ f (B ∪ {a}) −→ f (B ∪ {a}) = f B)

abbreviation irc :: ′a cfun ⇒ bool where
irc ≡ irc-on UNIV

lemma irc-on-discard:
assumes irc-on A f
assumes finite C
assumes B ∪ C ⊆ A
assumes f (B ∪ C) ∩ C = {}
shows f (B ∪ C) = f B

An equivalent condition is called consistency by some (Chambers and Yenmez (2013, Definition 2), Fleiner (2002,
Equation (14))). Like iia, this formulation generalizes to infinite universes.
definition consistency-on :: ′a set ⇒ ′a cfun ⇒ bool where

consistency-on A f ←→ (∀B⊆A. ∀C⊆B. f B ⊆ C −→ f B = f C)

abbreviation consistency :: ′a cfun ⇒ bool where
consistency ≡ consistency-on UNIV

lemma irc-on-consistency-on:
assumes irc-on A f
assumes finite A
shows consistency-on A f

lemma consistency-on-irc-on:
assumes f-range-on A f
assumes consistency-on A f
shows irc-on A f

These conditions imply that f is idempotent:
lemma consistency-on-f-idem:

assumes f-range-on A f
assumes consistency-on A f
assumes B ⊆ A
shows f (f B) = f B

Moulin (1985, p154) defines a similar but weaker property he calls Aizerman:
definition Aizerman-on :: ′a set ⇒ ′a cfun ⇒ bool where

Aizerman-on A f ←→ (∀B⊆A. ∀C⊆B. f B ⊆ C −→ f C ⊆ f B)

abbreviation Aizerman :: ′a cfun ⇒ bool where
14

Aizerman ≡ Aizerman-on UNIV

lemma consistency-on-Aizerman-on:
assumes consistency-on A f
shows Aizerman-on A f

The converse requires f to be idempotent (Moulin 1985, p157):

lemma Aizerman-on-idem-on-consistency-on:
assumes Aizerman-on A f
assumes ∀B⊆A. f (f B) = f B
shows consistency-on A f

4.3 The law of aggregate demand condition aka size monotonicity

Hatfield and Milgrom (2005, §III) impose the law of aggregate demand (aka size monotonicity) to obtain the rural
hospitals theorem (§5.6). It captures the following intuition:

[...] Roughly, this law states that as the price falls, agents should demand more of a good. Here, price
falls correspond to more contracts being available, and more demand corresponds to taking on (weakly)
more contracts.

The card function takes a finite set into its cardinality (as a natural number).

definition lad-on :: ′a set ⇒ ′a::finite cfun ⇒ bool where
lad-on A f ←→ (∀B⊆A. ∀C⊆B. card (f C) ≤ card (f B))

abbreviation lad :: ′a::finite cfun ⇒ bool where
lad ≡ lad-on UNIV

This definition is identical amongst Hatfield and Milgrom (2005, §III), Fleiner (2002, (20)), and Aygün and Sönmez
(2012b, Definition 4).

Aygün and Sönmez (2012b, §5, Proposition 1) show that substitutes and lad imply irc, which therefore rescues
many results in the matching-with-contracts literature.

lemma lad-on-substitutes-on-irc-on:
assumes f-range-on A f
assumes substitutes-on A f
assumes lad-on A f
shows irc-on A f

The converse does not hold.

4.4 The expansion condition

According to Moulin (1985, p152), a choice function satifies expansion if an alternative chosen from two sets is also
chosen from their union.

definition expansion-on :: ′a set ⇒ ′a cfun ⇒ bool where
expansion-on A f ←→ (∀B⊆A. ∀C⊆A. f B ∩ f C ⊆ f (B ∪ C))

abbreviation expansion :: ′a cfun ⇒ bool where
expansion ≡ expansion-on UNIV

Condition γ due to Sen (1971) generalizes expansion to collections of sets of choices.

definition expansion-gamma-on :: ′a set ⇒ ′a set set ⇒ ′a cfun ⇒ bool where
expansion-gamma-on A As f ←→ (

⋃
As⊆A ∧ As 6= {} −→ (

⋂
A∈As. f A) ⊆ f (

⋃
As))

15

definition expansion-gamma :: ′a set set ⇒ ′a cfun ⇒ bool where
expansion-gamma ≡ expansion-gamma-on UNIV

lemma expansion-gamma-expansion:
assumes ∀As. expansion-gamma-on A As f
shows expansion-on A f

lemma expansion-expansion-gamma:
assumes expansion-on A f
assumes finite As
shows expansion-gamma-on A As f

The expansion condition plays a major role in the study of the rationalizability of choice functions, which we
explore next.

4.5 Axioms of revealed preference

We digress from our taxonomy of conditions on choice functions to discuss rationalizability. A choice function is
rationalizable if there exists some binary relation that generates it, typically by taking the greatest or maximal
elements of the given set of alternatives:

definition greatest :: ′a rel ⇒ ′a cfun where
greatest r X = {x∈X . ∀ y∈X . (y, x) ∈ r}

definition maximal :: ′a rel ⇒ ′a cfun where
maximal r X = {x∈X . ∀ y∈X . ¬(x, y) ∈ r}

lemma (in MaxR) greatest:
shows set-option (MaxR-opt X) = greatest r (X ∩ Field r)

Note that greatest requires the relation to be reflexive and total, and maximal requires it to be irreflexive, for the
choice functions to ever yield non-empty sets.
This game of uncovering the preference relations (if any) underlying a choice function goes by the name of revealed
preference. (In contrast, later we show how these conditions guarantee the existence of stable many-to-one matches.)
See Moulin (1985) and Border (2012) for background, intuition and critique, and Sen (1971) for further classical
results and proofs.
We adopt the following notion here:

definition rationalizes-on :: ′a set ⇒ ′a cfun ⇒ ′a rel ⇒ bool where
rationalizes-on A f r ←→ (∀B⊆A. f B = greatest r B)

abbreviation rationalizes :: ′a cfun ⇒ ′a rel ⇒ bool where
rationalizes ≡ rationalizes-on UNIV

In words, relation r rationalizes the choice function f over universe A if f B picks out the greatest elements of B ⊆
A with respect to r. At this point r can be any relation that does the job, but soon enough we will ask that it
satisfy some familiar ordering properties.
The analysis begins by determining under what constraints f can be rationalized, continues by establishing some
properties of all rationalizable choice functions, and concludes by considering what it takes to establish stronger
properties.
Following Border (2012, §5, Definition 2) and Sen (1971, Definition 2), we can generate the revealed weakly preferred
relation for the choice function f :

definition rwp-on :: ′a set ⇒ ′a cfun ⇒ ′a rel where
rwp-on A f = {(x, y). ∃B⊆A. x ∈ B ∧ y ∈ f B}

16

abbreviation rwp :: ′a cfun ⇒ ′a rel where
rwp ≡ rwp-on UNIV

lemma rwp-on-refl-on:
assumes f-range-on A f
assumes decisive-on A f
shows refl-on A (rwp-on A f)

In words, if it is ever possible that x ∈ B is available and f B chooses y, then y is taken to always be at least as
good as x.
The V-axiom asserts that whatever is revealed to be at least as good as anything else on offer is chosen:

definition V-axiom-on :: ′a set ⇒ ′a cfun ⇒ bool where
V-axiom-on A f ←→ (∀B⊆A. ∀ y∈B. (∀ x ∈ B. (x, y) ∈ rwp-on A f) −→ y ∈ f B)

abbreviation V-axiom :: ′a cfun ⇒ bool where
V-axiom ≡ V-axiom-on UNIV

This axiom characterizes rationality; see Border (2012, Theorem 7). Sen (1971, §3) calls a decisive choice function
that satisfies V-axiom normal.

lemma rationalizes-on-f-range-on-V-axiom-on:
assumes rationalizes-on A f r
shows f-range-on A f

and V-axiom-on A f

lemma f-range-on-V-axiom-on-rationalizes-on:
assumes f-range-on A f
assumes V-axiom-on A f
shows rationalizes-on A f (rwp-on A f)

theorem V-axiom-on-rationalizes-on:
shows (f-range-on A f ∧ V-axiom-on A f) ←→ (∃ r . rationalizes-on A f r)

We could also ask that f be determined directly by how it behaves on pairs (Sen (1971), Moulin (1985, p151)),
which turns out to be equivalent:

definition rationalizable-binary-on :: ′a set ⇒ ′a cfun ⇒ bool where
rationalizable-binary-on A f ←→ (∀B⊆A. f B = {y ∈ B. ∀ x∈B. y ∈ f {x, y}})

abbreviation rationalizable-binary :: ′a cfun ⇒ bool where
rationalizable-binary ≡ rationalizable-binary-on UNIV

theorem V-axiom-realizable-binary:
assumes f-range-on A f
shows V-axiom-on A f ←→ rationalizable-binary-on A f

All rationalizable choice functions satisfy iia and expansion (Sen (1971), Moulin (1985, p152)).

lemma rationalizable-binary-on-iia-on:
assumes f-range-on A f
assumes rationalizable-binary-on A f
shows iia-on A f

lemma rationalizable-binary-on-expansion-on:
assumes f-range-on A f
assumes rationalizable-binary-on A f
shows expansion-on A f

17

The converse requires the set of alternatives to be finite, and moreover fails if the choice function is not decisive.

lemma rationalizable-binary-on-converse:
fixes f :: ′a::finite cfun
assumes f-range-on A f
assumes decisive-on A f
assumes iia-on A f
assumes expansion-on A f
shows rationalizable-binary-on A f

That settles the issue of existence, but it is not clear that the relation is really “rational” (for instance, rwp-on A f
need not be transitive). Therefore the analysis continues by further constraining the choice function so that it is
rationalized by familiar ordering relations.
For instance, the following shows that the axioms of revealed preference are rationalized by total preorders (Sen
1971, Definitions 8 and 13)1. These are alo equivalent to some congruence axioms due to Samuelson (Border 2012).
We define x to be strictly revealed-preferred to y if there is a situation where both are on offer and only y is chosen:

definition rsp-on :: ′a set ⇒ ′a cfun ⇒ ′a rel where — (Sen 1971, Definition 8)
rsp-on A f = {(x, y). ∃B⊆A. x ∈ Rf f B ∧ y ∈ f B}

abbreviation rsp :: ′a cfun ⇒ ′a rel where
rsp ≡ rsp-on UNIV

This relation is typically denoted by P, for strict preference. The not-worse-than relation R is recovered by:

definition rspR-on :: ′a set ⇒ ′a cfun ⇒ ′a rel where — (Sen 1971, Definition 9)
rspR-on A f = {(x, y). {x, y} ⊆ A ∧ (y, x) /∈ rsp-on A f }

abbreviation rspR :: ′a cfun ⇒ ′a rel where
rspR ≡ rspR-on UNIV

Sen (1971, p309) defines the weak axiom of revealed preference (WARP) as follows:

definition warp-on :: ′a set ⇒ ′a cfun ⇒ bool where
warp-on A f ←→ (∀ (x, y)∈rsp-on A f . (y, x) /∈ rwp-on A f)

abbreviation warp :: ′a cfun ⇒ bool where
warp ≡ warp-on UNIV

The strong axiom of revealed preference (SARP) is essentially the transitive closure of warp (Sen 1971, p309):

definition sarp-on :: ′a set ⇒ ′a cfun ⇒ bool where
sarp-on A f ←→ (∀ (x, y)∈(rsp-on A f)+. (y, x) /∈ rwp-on A f)

abbreviation sarp :: ′a cfun ⇒ bool where
sarp ≡ sarp-on UNIV

lemma sarp-on-warp-on: — Sen (1970, T.3 part)
assumes sarp-on A f
shows warp-on A f

lemma rsp-on-irrefl:
A 6= {} =⇒ irrefl (rsp-on A f)

For decisive choice functions, warp implies sarp. We show this following Sen (1971), via the weak congruence axiom
(WCA): if f chooses x from some set B and y is revealed to be weakly preferred, then f must choose y from B as
well.

1For Sen (1970, p9), an ordering is complete (total), reflexive, and transitive. Alternative names are: complete pre-ordering, complete
quasi-ordering, and weak ordering.

18

definition wca-on :: ′a set ⇒ ′a cfun ⇒ bool where
wca-on A f ←→ (∀ (x, y)∈rwp-on A f . ∀B⊆A. x ∈ f B ∧ y ∈ B −→ y ∈ f B)

abbreviation wca :: ′a cfun ⇒ bool where
wca ≡ wca-on UNIV

Decisive choice functions that satisfy wca are rationalized by total preorders, in particular rwp, and the converse
obtains if they are normal.

lemma wca-on-V-axiom-on:
assumes wca-on A f
assumes f-range-on A f
assumes decisive-on A f
shows V-axiom-on A f

lemma wca-on-total-on:
assumes wca-on A f
assumes f-range-on A f
assumes decisive-on A f
shows total-on A (rwp-on A f)

lemma rwp-on-trans:
assumes wca-on A f
assumes f-range-on A f
assumes decisive-on A f
shows trans (rwp-on A f)

lemma wca-on-V-axiom-on-preorder-on: — Sen (1970, T.1, T.3 part)
assumes f-range-on A f
assumes decisive-on A f
shows wca-on A f ←→ V-axiom-on A f ∧ preorder-on A (rwp-on A f) ∧ total-on A (rwp-on A f)

lemma wca-on-rwp-on-rspR-on: — Sen (1970, T.2)
assumes wca-on A f
assumes f-range-on A f
assumes decisive-on A f
shows rwp-on A f = rspR-on A f

lemma rwp-on-rspR-on-wca-on: — Sen (1970, T.2)
assumes rwp-on A f = rspR-on A f
shows wca-on A f

lemma wca-on-warp-on: — Sen (1970, T.3 part)
shows wca-on A f ←→ warp-on A f

lemma warp-on-sarp-on: — Sen (1970, T.3 part)
assumes warp-on A f
assumes f-range-on A f
assumes decisive-on A f
shows sarp-on A f

proof(rule sarp-onI)
from ‹warp-on A f › have wca-on A f unfolding wca-on-warp-on .
then have XXX : rwp-on A f = rspR-on A f

and YYY : preorder-on A (rspR-on A f)
and ZZZ : total-on A (rspR-on A f)

fix a b assume (a, b) ∈ (rsp-on A f)+
then have {a, b} ⊆ A and (b, a) /∈ rspR-on A f
proof(induct a b)

19

case (r-into-trancl a b)
{ case 1 from r-into-trancl rsp-on-range[OF assms(2)] show ?case by blast }
{ case 2 from r-into-trancl show ?case by (simp add: rspR-on-def) }

next
case (trancl-into-trancl a b c)
{ case 1 from trancl-into-trancl rsp-on-range[OF assms(2)] show ?case by blast }
{ case 2 from trancl-into-trancl rsp-on-range[OF assms(2)] YYY ZZZ show ?case

unfolding total-on-def preorder-on-def
by clarsimp (metis (no-types, lifting) case-prodD mem-Collect-eq rspR-on-def transD) }

qed
with XXX show (b, a) /∈ rwp-on A f by simp

qed

The decisive constraint here is necessary: consider a Condorcet cycle over {x, y, z}: forcing f {x, y, z} to be
non-empty resolves this.
Sen (1971) proves that these and other conditions on choice functions are equivalent (under the decisive hypothesis).

4.5.1 The strong axiom of revealed preference ala Aygün and Sönmez (2012b)

Aygün and Sönmez (2012b, §6) adopt a different definition for a strong axiom of revealed preference and show that
it holds for all choice functions that satisfy iia and consistency.
abbreviation nth-mod :: ′a list ⇒ nat ⇒ ′a (infixl ‹!%› 100) where

xs !% i ≡ xs ! (i mod length xs)

definition mwc-sarp :: ′a cfun ⇒ bool where
mwc-sarp f ←→
¬(∃Xs. length Xs > 1 ∧ distinct (map f Xs) ∧ (∀ i. f (Xs!%i) ⊂ Xs!%i ∩ Xs!%(i+1)))

lemma iia-consistency-mwc-sarp:
assumes f-range f
assumes iia f — substitutes
assumes consistency f — irc
shows mwc-sarp f

proof(rule mwc-sarpI)
fix Xs
assume LLL: length Xs > 1

and EEE : distinct (map f Xs)
and AAA: ∀ i. f (Xs!%i) ⊂ Xs!%i ∩ Xs!%(i+1)

have 6 : f (
⋃

(set Xs)) ⊆ (
⋂

X∈set Xs. f X)
proof −

have 4 : x /∈ f (
⋃

(set Xs)) if x ∈
⋃
(set Xs) − (

⋃
X∈set Xs. f X) for x

using that ‹iia f › unfolding iia-on-def by simp blast
have 5 : x /∈ f (

⋃
(set Xs)) if x ∈ (

⋃
X∈set Xs. f X) − (

⋂
X∈set Xs. f X) for x

proof −
from that obtain j k where x ∈ f (Xs ! j) x /∈ f (Xs ! k) j < length Xs k < length Xs

by (clarsimp simp: in-set-conv-nth)
with AAA LLL ex-least-nat-le[where n=k + length Xs − j and P=λi. x /∈ f (Xs !% (i + j))]
obtain i where x ∈ f (Xs !% i) − f (Xs !% (i+1))
with AAA have x ∈ Rf f (Xs!%(i+1)) by auto
with LLL show x /∈ f (

⋃
(set Xs))

using ‹iia f › unfolding iia-on-def by clarsimp (meson Suc-lessD Sup-upper mod-less-divisor nth-mem)
qed
from 4 5 have x /∈ f (

⋃
(set Xs)) if x ∈ (

⋃
(set Xs)) − (

⋂
X∈set Xs. f X) for x

using that by blast
with ‹f-range f › show ?thesis by (blast dest: f-range-onD)

qed
moreover have ∀ i. (

⋂
X∈set Xs. f X) ⊂ f (Xs!%i)

proof −
20

from ‹f-range f › LLL have
⋂
(f ‘ set Xs) ⊆ Xs ! 1

using nth-mem f-range-onD by fastforce
with ‹consistency f › LLL 6 have f4 : f (

⋃
(set Xs)) = f (Xs ! 1)

by − (rule consistencyD[where f=f], force+)
with ‹f-range f › LLL 6 have f (Xs ! 1) ⊆ Xs ! 0

using f-range-onD by (metis INT-lower One-nat-def Suc-lessD subset-trans nth-mem top.extremum)
with ‹consistency f › EEE LLL f4 show ?thesis

by (metis One-nat-def Suc-lessD Sup-upper consistencyD length-map nth-eq-iff-index-eq nth-map nth-mem
zero-neq-one)

qed
moreover have ∀ i. f (Xs!%i) = f (

⋃
(set Xs))

proof −
from AAA have ∀ i. f (Xs!%i) ⊆ Xs!%i by auto
moreover from LLL have ∀ i. Xs!%i ⊆

⋃
(set Xs)

by (metis One-nat-def Suc-lessD Sup-upper mod-less-divisor nth-mem)
moreover note 6 ‹∀ i. (

⋂
X∈set Xs. f X) ⊂ f (Xs !% i)›

ultimately show ∀ i. f (Xs!%i) = f (
⋃
(set Xs))

by − (clarsimp; rule consistencyD[OF ‹consistency f ›, symmetric]; meson dual-order .trans psubsetE)
qed
ultimately show False by force

qed

4.6 Choice functions arising from linear orders

An obvious way to construct a choice function is to derive one from a linear order, i.e., a list of strict preferences.
We allow such rankings to omit some alternatives, which means the resulting function is not decisive.
We work with a finite universe here.

locale linear-cf =
fixes r :: ′a::finite rel
fixes linear-cf :: ′a cfun
assumes r-linear : Linear-order r
assumes linear-cf-def : linear-cf X ≡ set-option (MaxR.MaxR-opt r X)

begin

interpretation MaxR: MaxR r by unfold-locales (rule r-linear)

lemma range:
shows linear-cf X ⊆ X ∩ Field r

lemmas range ′ = rev-subsetD[OF - range, of x] for x

lemma singleton:
shows x ∈ linear-cf X ←→ linear-cf X = {x}

lemma subset:
assumes linear-cf Y ⊆ X
assumes X ⊆ Y
shows linear-cf Y = linear-cf X

lemma union:
shows linear-cf (X ∪ Y) = (if linear-cf X = {} then linear-cf Y else if linear-cf Y = {} then linear-cf X else
{MaxR.maxR x y |x y. x ∈ linear-cf X ∧ y ∈ linear-cf Y })

lemma mono:
assumes x ∈ linear-cf X
shows ∃ y ∈ linear-cf (X ∪ Y). (x, y) ∈ r

21

lemmas greatest = MaxR.greatest[folded linear-cf-def]

lemma preferred:
assumes (x, y) ∈ r
assumes x ∈ linear-cf X
assumes y ∈ X
shows y = x

lemma card-le:
shows card (linear-cf X) ≤ 1

lemma card:
shows card (linear-cf X) = (if X ∩ Field r = {} then 0 else 1)

lemma f-range:
shows f-range-on X linear-cf

lemma domain:
shows linear-cf (X ∩ Field r) = linear-cf X

lemma decisive-on:
shows decisive-on (Field r) linear-cf

lemma resolute-on:
shows resolute-on (Field r) linear-cf

lemma Rf-mono-on:
shows mono-on X (Rf linear-cf)

lemmas iia = iffD1 [OF Rf-mono-on-iia-on Rf-mono-on]

lemma Chernoff :
shows Chernoff-on X linear-cf

lemma irc:
shows irc-on X linear-cf

lemma consistency:
shows consistency-on X linear-cf

lemma lad:
shows lad-on X linear-cf

end

4.7 Plott’s path independence condition

As recognised by Fleiner (2002, §4) and Chambers and Yenmez (2013) in the context of matching with contracts,
the irc and substitutes conditions together are equivalent to path independence, a condition introduced to the
social choice setting by Plott (1973). Moulin (1985, Lemma 6) ascribes this equivalence result to Aizerman and
Malishevski (1981).

definition path-independent-on :: ′a set ⇒ ′a cfun ⇒ bool where
path-independent-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C) = f (B ∪ f C))

abbreviation path-independent :: ′a cfun ⇒ bool where
path-independent ≡ path-independent-on UNIV

22

Intuitively a choice function satisfying this condition ignores the order in which choices are made in the following
sense:
lemma path-independent-on-symmetric:

assumes f-range-on A f
shows path-independent-on A f ←→ (∀B C . B ⊆ A ∧ C ⊆ A −→ f (B ∪ C) = f (f B ∪ f C))

lemma path-independent-on-Chernoff-on:
assumes path-independent-on A f
assumes f-range-on A f
shows Chernoff-on A f

lemma path-independent-on-consistency-on:
assumes path-independent-on A f
shows consistency-on A f

lemma Chernoff-on-consistency-on-path-independent-on:
assumes f-range-on A f
shows Chernoff-on A f ∧ consistency-on A f ←→ path-independent-on A f

lemma (in linear-cf) path-independent:
shows path-independent linear-cf

4.7.1 Path independence and decomposition into orderings

We now show that a choice function over a finite universe satisfying path-independent is characterized by taking
the maximum elements of some finite set of orderings.
Moulin (1985, Definition 12) says that a choice function is pseudo-rationalized by the orderings Rs if f chooses all
of the greatest r elements of B for each r ∈ Rs:
definition pseudo-rationalizable-on :: ′a::finite set ⇒ ′a rel set ⇒ ′a cfun ⇒ bool where

pseudo-rationalizable-on A Rs f
←→ (∀ r∈Rs. Linear-order r) ∧ (∀B⊆A. f B = (

⋃
r∈Rs. greatest r (B ∩ Field r)))

lemma pseudo-rationalizable-on-def2 :
pseudo-rationalizable-on A Rs f
←→ (∀ r∈Rs. Linear-order r) ∧ (∀B⊆A. f B = (

⋃
r∈Rs. set-option (MaxR.MaxR-opt r B)))

We deviate from Moulin in using non-total linear orders, where his are total, asymmetric, and transitive; in other
words, strict total linear orders. This allows us to treat non-decisive choice functions, and we later show that the
choice function is decisive iff the orders are total.
Moulin (1985, Theorem 5) assumes Aizerman and Chernoff, which are equivalent to path-independent.
lemma Aizerman-on-Chernoff-on-path-independent-on:

assumes f-range-on A f
shows Aizerman-on A f ∧ Chernoff-on A f ←→ path-independent-on A f

It is straightforward to show that pseudo-rationalizable choice functions satisfy path-independent using the properties
of MaxR.MaxR-opt:
lemma pseudo-rationalizable-on-path-independent-on:

assumes pseudo-rationalizable-on A Rs f
shows path-independent-on A f

The converse requires that we construct a suitable set of orderings that rationalize f C for each C ⊆ A. We do this
by finding a set B ⊆ A where f B ⊆ C by successively removing elements in f A − f C. (As these elements are
chosen by f from supersets of B, we rank these above all of those in f B.) By consistency (§4.2), f C = f B. We
generate one order for each element of f C. Some extra care takes care of decisive choice functions.

23

Termination is guaranteed by the finiteness of A and the f-range-on hypothesis.

context
fixes A :: ′a::finite set
fixes f :: ′a cfun
notes conj-cong[fundef-cong]

begin

function (domintros) mk-linear-orders :: ′a set ⇒ ′a set ⇒ ′a list set where
mk-linear-orders C B =
(if f B = {} then {[]}
else if f B ⊆ C

then {b # cs |b cs. b ∈ f B ∧ cs ∈ mk-linear-orders {} (B − {b})}
else let b = SOME x. x ∈ f B − C in {b # cs |cs. cs ∈ mk-linear-orders C (B − {b})})

context
assumes f-range-on A f

begin

lemma mk-linear-orders-non-empty:
assumes B ⊆ A
shows ∃ r . r ∈ mk-linear-orders C B

lemma mk-linear-orders-range:
assumes r ∈ mk-linear-orders C B
assumes B ⊆ A
shows set r ⊆ B

lemma mk-linear-orders-nth:
assumes r ∈ mk-linear-orders C B
assumes B ⊆ A
assumes i < length r
shows r ! i ∈ f (B − set (take i r))

lemma mk-linear-orders-distinct:
assumes r ∈ mk-linear-orders C B
assumes B ⊆ A
shows distinct r

lemma mk-linear-orders-Linear-order :
assumes r ∈ mk-linear-orders C A
shows Linear-order (linord-of-list r)

lemma mk-linear-orders-decisive-on-set-r :
assumes r ∈ mk-linear-orders C B
assumes decisive-on A f
assumes B ⊆ A
shows set r = B

lemma mk-linear-orders-decisive-on-refl-on:
assumes r ∈ mk-linear-orders C A
assumes decisive-on A f
shows refl-on A (linord-of-list r)

lemma mk-linear-orders-decisive-on-total-on:
assumes r ∈ mk-linear-orders C A
assumes decisive-on A f
shows total-on A (linord-of-list r)

24

lemma mk-linear-orders-set-r-decisive-on:
assumes r ∈ mk-linear-orders C B
assumes B ⊆ A
assumes B ⊆ set r
assumes iia-on A f
shows decisive-on B f

lemma mk-linear-orders-total-on-decisive-on:
assumes r ∈ mk-linear-orders C A
assumes A ⊆ set r
assumes iia-on A f
shows decisive-on A f

lemma mk-linear-orders-MaxR-opt-f :
assumes r ∈ mk-linear-orders C A
assumes MaxR.MaxR-opt (linord-of-list r) D = Some x
assumes iia-on A f
assumes D ⊆ A
shows x ∈ f D

lemma mk-linear-orders-f-MaxR-opt:
assumes x ∈ f C
assumes consistency-on A f
assumes B ⊆ A
assumes C ⊆ B
shows ∃ r∈mk-linear-orders C B. MaxR.MaxR-opt (linord-of-list r) C = Some x

end

end

lemma path-independent-on-pseudo-rationalizable-on:
fixes f :: ′a::finite cfun
assumes path-independent-on A f
assumes f-range-on A f
assumes Rs-def [simp]: Rs = (

⋃
C∈Pow A. linord-of-list ‘ mk-linear-orders f C A)

shows pseudo-rationalizable-on A Rs f ∧ (∀ r∈Rs. refl-on A r ∧ total-on A r ←→ decisive-on A f)

Our top-level theorem is essentially Moulin (1985, Theorem 5):

theorem pseudo-rationalizable:
assumes f-range-on A f
shows path-independent-on A f

←→ (∃Rs. pseudo-rationalizable-on A Rs f ∧ (∀ r∈Rs. refl-on A r ∧ total-on A r ←→ decisive-on A f))

5 Hatfield and Milgrom (2005): Matching with contracts

We take the original paper on matching with contracts by Hatfield and Milgrom (2005) as our roadmap, which
follows a similar path to Roth and Sotomayor (1990, §2.5). We defer further motivation to these texts. Our first
move is to capture the scenarios described in their §I(A) (p916) in a locale.

locale Contracts =
fixes Xd :: ′x::finite ⇒ ′d::finite
fixes Xh :: ′x ⇒ ′h::finite
fixes Pd :: ′d ⇒ ′x rel
fixes Ch :: ′h ⇒ ′x cfun

25

assumes Pd-linear : ∀ d. Linear-order (Pd d)
assumes Pd-range: ∀ d. Field (Pd d) ⊆ {x. Xd x = d}
assumes Ch-range: ∀ h. ∀X . Ch h X ⊆ {x∈X . Xh x = h}
assumes Ch-singular : ∀ h. ∀X . inj-on Xd (Ch h X)

begin

The set of contracts is modelled by the type ′x, a free type variable that will later be interpreted by some non-empty
set. Similarly ′d and ′h track the names of doctors and hospitals respectively. All of these are finite by virtue of
belonging to the finite type class.
We fix four constants:

• Xd (Xh) projects the name of the relevant doctor (hospital) from a contract;

• Pd maps doctors to their linear preferences over some subset of contracts that name them (assumptions
Pd-linear and Pd-range); and

• Ch maps hospitals to their choice functions (§4), which are similarly constrained to contracts that name
them (assumption Ch-range). Moreover their choices must name each doctor at most once, i.e., Xd must be
injective on these (assumption Ch-singular).

The reader familiar with the literature will note that we do not have a null contract (also said to represent the
outside option of unemployment), and instead use partiality of the doctors’ preferences. This provides two benefits:
firstly, Xh is a total function here, and secondly we achieve some economy of description when instantiating this
locale as Pd only has to rank the relevant contracts.
We note in passing that neither the doctors’ nor hospitals’ choice functions are required to be decisive, unlike the
standard literature on choice functions (§4).
In addition to the above, the following constitute the definitions that must be trusted for the results we prove to
be meaningful.
definition Cd :: ′d ⇒ ′x cfun where

Cd d ≡ set-option ◦ MaxR.MaxR-opt (Pd d)

definition CD-on :: ′d set ⇒ ′x cfun where
CD-on ds X = (

⋃
d∈ds. Cd d X)

abbreviation CD :: ′x set ⇒ ′x set where
CD ≡ CD-on UNIV

definition CH :: ′x cfun where
CH X = (

⋃
h. Ch h X)

The function Cd constructs a choice function from the doctor’s linear preferences (see §4.6). Both CD and CH
simply aggregate opinions in the obvious way. The functions CD-on is parameterized with a set of doctors to
support the proofs of §5.5.
We also define RD (Rh, RH) to be the subsets of a given set of contracts that are rejected by the doctors (hospitals).
(The abbreviation Rf is defined in §4.)
abbreviation (input) RD-on :: ′d set ⇒ ′x cfun where

RD-on ds ≡ Rf (CD-on ds)

abbreviation (input) RD :: ′x cfun where
RD ≡ RD-on UNIV

abbreviation (input) Rh :: ′h ⇒ ′x cfun where
Rh h ≡ Rf (Ch h)

abbreviation (input) RH :: ′x cfun where
RH ≡ Rf CH

A mechanism maps doctor and hospital preferences into a match (here a set of contracts).
type-synonym (in −) (′d, ′h, ′x) mechanism = (′d ⇒ ′x rel) ⇒ (′h ⇒ ′x cfun) ⇒ ′d set ⇒ ′x set

26

An allocation is a set of contracts where each names a distinct doctor. (Hospitals can contract multiple doctors.)
abbreviation (input) allocation :: ′x set ⇒ bool where

allocation ≡ inj-on Xd

We often wish to extract a doctor’s or a hospital’s contract from an allocation.
definition dX :: ′x set ⇒ ′d ⇒ ′x set where

dX X d = {x ∈ X . Xd x = d}

definition hX :: ′x set ⇒ ′h ⇒ ′x set where
hX X h = {x ∈ X . Xh x = h}

Stability is the key property we look for in a match (here a set of contracts), and consists of two parts.
Firstly, we ask that it be individually rational, i.e., the contracts in the match are actually acceptable to all
participants. Note that this implies the match is an allocation.
definition individually-rational-on :: ′d set ⇒ ′x set ⇒ bool where

individually-rational-on ds X ←→ CD-on ds X = X ∧ CH X = X

abbreviation individually-rational :: ′x set ⇒ bool where
individually-rational ≡ individually-rational-on UNIV

The second condition requires that there be no coalition of a hospital and one or more doctors who prefer another
set of contracts involving them; the hospital strictly, the doctors weakly. Contrast this definition with the classical
one for stable marriages given in §2.
definition blocking-on :: ′d set ⇒ ′x set ⇒ ′h ⇒ ′x set ⇒ bool where

blocking-on ds X h X ′←→ X ′ 6= Ch h X ∧ X ′ = Ch h (X ∪ X ′) ∧ X ′ ⊆ CD-on ds (X ∪ X ′)

definition stable-no-blocking-on :: ′d set ⇒ ′x set ⇒ bool where
stable-no-blocking-on ds X ←→ (∀ h X ′. ¬blocking-on ds X h X ′)

abbreviation stable-no-blocking :: ′x set ⇒ bool where
stable-no-blocking ≡ stable-no-blocking-on UNIV

definition stable-on :: ′d set ⇒ ′x set ⇒ bool where
stable-on ds X ←→ individually-rational-on ds X ∧ stable-no-blocking-on ds X

abbreviation stable :: ′x set ⇒ bool where
stable ≡ stable-on UNIV

end

5.1 Theorem 1: Existence of stable pairs

We proceed to define a function whose fixed points capture all stable matches. Hatfield and Milgrom (2005, I(B),
p917) provide the following intuition:

The first theorem states that a set of contracts is stable if any alternative contract would be rejected by
some doctor or some hospital from its suitably defined opportunity set. In the formulas below, think of
the doctors’ opportunity set as XD and the hospitals’ opportunity set as XH. If X ′ is the corresponding
stable set, then XD must include, in addition to X ′, all contracts that would not be rejected by the
hospitals, and XH must similarly include X ′ and all contracts that would not be rejected by the doctors.
If X ′ is stable, then every alternative contract is rejected by somebody, so X = XH ∪ XD [where X is
the set of all contracts]. This logic is summarized in the first theorem.

See also Fleiner (2003, p6,§4) and Fleiner (2002, §2), from whom we adopt the term stable pair.
context Contracts
begin

definition stable-pair-on :: ′d set ⇒ ′x set × ′x set ⇒ bool where
27

stable-pair-on ds = (λ(XD, XH). XD = − RH XH ∧ XH = − RD-on ds XD)

abbreviation stable-pair :: ′x set × ′x set ⇒ bool where
stable-pair ≡ stable-pair-on UNIV

abbreviation match :: ′x set × ′x set ⇒ ′x set where
match X ≡ fst X ∩ snd X

Hatfield and Milgrom (2005, Theorem 1) state that every solution (XD, XH) of stable-pair yields a stable match
XD ∩ XH, and conversely, i.e., every stable match is the intersection of some stable pair. Aygün and Sönmez
(2012b) show that neither is the case without further restrictions on the hospitals’ choice functions Ch; we exhibit
their counterexample below.
Even so we can establish some properties in the present setting:

lemma stable-pair-on-CD-on:
assumes stable-pair-on ds XD-XH
shows match XD-XH = CD-on ds (fst XD-XH)

lemma stable-pair-on-CH :
assumes stable-pair-on ds XD-XH
shows match XD-XH = CH (snd XD-XH)

lemma stable-pair-on-CD-on-CH :
assumes stable-pair-on ds XD-XH
shows CD-on ds (fst XD-XH) = CH (snd XD-XH)

lemma stable-pair-on-allocation:
assumes stable-pair-on ds XD-XH
shows allocation (match XD-XH)

We run out of steam on the following two lemmas, which are the remaining requirements for stability.

lemma
assumes stable-pair-on ds XD-XH
shows individually-rational-on ds (match XD-XH)

oops

lemma
assumes stable-pair-on ds XD-XH
shows stable-no-blocking (match XD-XH)

oops

Hatfield and Milgrom (2005) also claim that the converse holds:

lemma
assumes stable-on ds X
obtains XD-XH where stable-pair-on ds XD-XH and X = match XD-XH

oops

Again, the following counterexample shows that the substitutes condition on Ch is too weak to guarantee this. We
show it holds under stronger assumptions in §5.1.3.

end

5.1.1 Theorem 1 does not hold (Aygün and Sönmez 2012b)

The following counterexample, due to Aygün and Sönmez (2012b, §3: Example 2), comprehensively demonstrates
that Hatfield and Milgrom (2005, Theorem 1) does not hold.
We create three types: D2 consists of two elements, representing the doctors, and H is the type of the single
hospital. There are four contracts in the type X4.

28

datatype D2 = D1 | D2
datatype H1 = H
datatype X4 = Xd1 | Xd1 ′ | Xd2 | Xd2 ′

primrec X4d :: X4 ⇒ D2 where
X4d Xd1 = D1
| X4d Xd1 ′ = D1
| X4d Xd2 = D2
| X4d Xd2 ′ = D2

abbreviation X4h :: X4 ⇒ H1 where
X4h - ≡ H

primrec PX4d :: D2 ⇒ X4 rel where
PX4d D1 = linord-of-list [Xd1 ′, Xd1]
| PX4d D2 = linord-of-list [Xd2 , Xd2 ′]

function CX4h :: H1 ⇒ X4 cfun where
CX4h - {Xd1} = {Xd1}
| CX4h - {Xd1 ′} = {Xd1 ′}
| CX4h - {Xd2} = {Xd2}
| CX4h - {Xd2 ′} = {Xd2 ′}
| CX4h - {Xd1 , Xd1 ′} = {Xd1}
| CX4h - {Xd1 , Xd2} = {Xd1 , Xd2}
| CX4h - {Xd1 , Xd2 ′} = {Xd2 ′}
| CX4h - {Xd1 ′, Xd2} = {Xd1 ′}
| CX4h - {Xd1 ′, Xd2 ′} = {Xd1 ′, Xd2 ′}
| CX4h - {Xd2 , Xd2 ′} = {Xd2}
| CX4h - {Xd1 , Xd1 ′, Xd2} = {}
| CX4h - {Xd1 , Xd1 ′, Xd2 ′} = {}
| CX4h - {Xd1 , Xd2 , Xd2 ′} = {}
| CX4h - {Xd1 ′, Xd2 , Xd2 ′} = {}
| CX4h - {Xd1 , Xd1 ′, Xd2 , Xd2 ′} = {}
| CX4h - {} = {}

interpretation StableNoDecomp: Contracts X4d X4h PX4d CX4h

There are two stable matches in this model.

lemma stable:
shows StableNoDecomp.stable X ←→ X = {Xd1 , Xd2} ∨ X = {Xd1 ′, Xd2 ′}

However neither arises from a pair XD, XH that satisfy StableNoDecomp.stable-pair :

lemma StableNoDecomp-XD-XH :
shows StableNoDecomp.stable-pair (XD, XH) ←→ (XD = {} ∧ XH = {Xd1 , Xd1 ′, Xd2 , Xd2 ′})

proposition
assumes StableNoDecomp.stable-pair (XD, XH)
shows ¬StableNoDecomp.stable (XD ∩ XH)

Moreover the converse of Theorem 1 does not hold either: the single decomposition that satisfies StableNoDe-
comp.stable-pair (StableNoDecomp-XD-XH) does not yield a stable match:

proposition
assumes StableNoDecomp.stable X
shows ¬(∃XD XH . StableNoDecomp.stable-pair (XD, XH) ∧ X = XD ∩ XH)

29

So there is not hope for Hatfield and Milgrom (2005, Theorem 1) as it stands. Note that the counterexample
satisfies the substitutes condition (see §4.1):

lemma
shows substitutes (CX4h H)

Therefore while substitutes supports the monotonicity argument that underpins their deferred-acceptance algorithm
(see §5.2), it is not enough to rescue Theorem 1. One way forward is to constrain the hospitals’ choice functions,
which we discuss in the next section.

5.1.2 Theorem 1 holds with independence of rejected contracts

Aygün and Sönmez (2012b) propose to rectify this issue by requiring hospitals’ choices to satisfy irc (§4.2).
Reassuringly their counterexample fails to satisfy it:

lemma
shows ¬irc (CX4h H)

We adopt this hypothesis by extending the Contracts locale:

locale ContractsWithIRC = Contracts +
assumes Ch-irc: ∀ h. irc (Ch h)

begin

This property requires that Ch behave, for example, as follows:

lemma Ch-domain:
shows Ch h (A ∩ {x. Xh x = h}) = Ch h A

lemmas Ch-irc-idem = consistency-on-f-idem[OF Ch-f-range Ch-consistency, simplified]

lemma CH-irc-idem:
shows CH (CH A) = CH A

lemma Ch-CH-irc-idem:
shows Ch h (CH A) = Ch h A

This suffices to show the left-to-right direction of Theorem 1.

lemma stable-pair-on-individually-rational:
assumes stable-pair-on ds XD-XH
shows individually-rational-on ds (match XD-XH)

lemma stable-pair-on-stable-no-blocking-on:
assumes stable-pair-on ds XD-XH
shows stable-no-blocking-on ds (match XD-XH)

proof(rule stable-no-blocking-onI)
fix h X ′′

assume C : X ′′ = Ch h (match XD-XH ∪ X ′′)
assume NE : X ′′ 6= Ch h (match XD-XH)
assume CD: X ′′ ⊆ CD-on ds (match XD-XH ∪ X ′′)
have X ′′ ⊆ snd XD-XH
proof −

from CD have X ′′ ⊆ CD-on ds (CD-on ds (fst XD-XH) ∪ X ′′) by (simp only: stable-pair-on-CD-on[OF
assms])

then have X ′′ ⊆ CD-on ds (fst XD-XH ∪ X ′′)
using CD-on-path-independent unfolding path-independent-def by (simp add: Un-commute)

moreover have fst XD-XH ∩ CD-on ds (fst XD-XH ∪ X ′′) ⊆ CD-on ds (fst XD-XH)
using CD-on-Chernoff unfolding Chernoff-on-def by (simp add: inf-commute)

30

ultimately show ?thesis using assms unfolding stable-pair-on-def split-def by blast
qed
then have Ch h (snd XD-XH) = Ch h (Ch h (snd XD-XH) ∪ X ′′)

by (force intro!: consistencyD[OF Ch-consistency] dest: Ch-range ′)
moreover from NE have X ′′ 6= Ch h (snd XD-XH)

using stable-pair-on-CH [OF assms] CH-domain[of - h] Ch-domain[of h] by (metis Ch-irc-idem)
ultimately have X ′′ 6= Ch h (match XD-XH ∪ X ′′)

using stable-pair-on-CH [OF assms] CH-domain[of - h] Ch-domain[of h]
by (metis (no-types, lifting) inf .right-idem inf-sup-distrib2)

with C show False by blast
qed

theorem stable-pair-on-stable-on:
assumes stable-pair-on ds XD-XH
shows stable-on ds (match XD-XH)

end

5.1.3 The converse of Theorem 1

The forward direction of Theorem 1 gives us a way of finding stable matches by computing fixed points of a
function closely related to stable-pair (see §5.2). The converse says that every stable match can be decomposed in
this way, which implies that the stable matches form a lattice (see also §5.2).
The following proofs assume that the hospitals’ choice functions satisfy substitutes and irc.
context ContractsWithIRC
begin

context
fixes ds :: ′b set
fixes X :: ′a set

begin

Following Hatfield and Milgrom (2005, Proof of Theorem 1), we partition the set of all contracts into [X , XD-smallest
− X , XH-largest − X] with careful definitions of the two sets XD-smallest and XH-largest. Specifically XH-largest
contains all contracts ranked at least as good as those in X by the doctors, considering unemployment and
unacceptable contracts. Similarly XD-smallest contains those ranked at least as poorly.
definition XH-largest :: ′a set where

XH-largest =
{y. Xd y ∈ ds
∧ y ∈ Field (Pd (Xd y))
∧ (∀ x ∈ dX X (Xd y). (x, y) ∈ Pd (Xd y))}

definition XD-smallest :: ′a set where
XD-smallest = − (XH-largest − X)

context
assumes stable-on ds X

begin

lemma Ch-XH-largest-Field:
assumes x ∈ Ch h XH-largest
shows x ∈ Field (Pd (Xd x))

using assms unfolding XH-largest-def by (blast dest: Ch-range ′)

lemma Ch-XH-largest-Xd:
assumes x ∈ Ch h XH-largest
shows Xd x ∈ ds

using assms unfolding XH-largest-def by (blast dest: Ch-range ′)

31

lemma X-subseteq-XH-largest:
shows X ⊆ XH-largest

proof(rule subsetI)
fix x assume x ∈ X
then obtain d where d ∈ ds x ∈ Cd d X using stable-on-CD-on[OF ‹stable-on ds X›] unfolding CD-on-def

by blast
with ‹stable-on ds X› show x ∈ XH-largest

using Pd-linear ′ Pd-range ′ Cd-range subset-Image1-Image1-iff [of Pd d] stable-on-allocation[of ds X]
unfolding XH-largest-def linear-order-on-def partial-order-on-def stable-on-def inj-on-def dX-def
by simp blast

qed

lemma X-subseteq-XD-smallest:
shows X ⊆ XD-smallest

unfolding XD-smallest-def by blast

lemma X-XD-smallest-XH-largest:
shows X = XD-smallest ∩ XH-largest

using X-subseteq-XH-largest unfolding XD-smallest-def by blast

The goal of the next few lemmas is to show the constituents of stable-pair-on ds (XD-smallest, XH-largest).
Intuitively, if a doctor has a contract x in X, then all of their contracts in XH-largest are at least as desirable as
x, and so the stable-no-blocking hypothesis guarantees the hospitals choose x from XH-largest, and similarly the
doctors x from XD-smallest.
lemma XH-largestCdXXH-largest:

assumes x ∈ Ch h XH-largest
shows x ∈ Cd (Xd x) (X ∪ Ch h XH-largest)

proof −
from assms have (y, x) ∈ Pd (Xd x) if Xd y = Xd x and y ∈ X for y

using that by (fastforce simp: XH-largest-def dX-def dest: Ch-range ′)
with Ch-XH-largest-Field[OF assms] Pd-linear Pd-range show ?thesis

using assms Ch-XH-largest-Field[OF assms]
by (clarsimp simp: Cd-greatest greatest-def)

(metis Ch-singular Pd-range ′ inj-onD subset-refl underS-incl-iff)
qed

lemma CH-XH-largest:
shows CH XH-largest = X

proof −
have Ch h XH-largest ⊆ CD-on ds (X ∪ Ch h XH-largest) for h

using XH-largestCdXXH-largest Ch-XH-largest-Xd Ch-XH-largest-Field unfolding CD-on-def by blast
from ‹stable-on ds X› have Ch h XH-largest = Ch h X for h

using ‹Ch h XH-largest ⊆ CD-on ds (X ∪ Ch h XH-largest)› X-subseteq-XH-largest
by − (erule stable-on-blocking-onD[where h=h and X ′′=Ch h XH-largest];

force intro!: consistencyD[OF Ch-consistency] dest: Ch-range ′)
with stable-on-CH [OF ‹stable-on ds X›] show ?thesis unfolding CH-def by simp

qed

lemma Cd-XD-smallest:
assumes d ∈ ds
shows Cd d (XD-smallest ∩ Field (Pd d)) = Cd d (X ∩ Field (Pd d))

proof(cases X ∩ Field (Pd d) = {})
case True
with Pd-range ′ Cd-range ′[where X=X] stable-on-CD-on[OF ‹stable-on ds X›] mem-CD-on-Cd assms
have − XH-largest ∩ Field (Pd d) = {}

unfolding XH-largest-def dX-def by auto blast
then show ?thesis

32

unfolding XD-smallest-def by (simp add: Int-Un-distrib2)
next

case False
with Pd-linear ′[of d] ‹stable-on ds X› stable-on-CD-on stable-on-allocation assms
show ?thesis

unfolding XD-smallest-def order-on-defs total-on-def
by (auto 0 0 simp: Int-Un-distrib2 Cd-greatest greatest-def XH-largest-def dX-def)

(metis (mono-tags, lifting) IntI Pd-range ′ UnCI inj-onD)+
qed

lemma CD-on-XD-smallest:
shows CD-on ds XD-smallest = X

using stable-on-CD-on[OF ‹stable-on ds X›] unfolding CD-on-def2 by (simp add: Cd-XD-smallest)

theorem stable-on-stable-pair-on:
shows stable-pair-on ds (XD-smallest, XH-largest)

proof(rule stable-pair-onI , simp-all only: prod.sel)
from CH-XH-largest have − RH XH-largest = − (XH-largest − X) by blast
also from X-XD-smallest-XH-largest have . . . = XD-smallest unfolding XD-smallest-def by blast
finally show XD-smallest = −RH XH-largest by blast

next
from CD-on-XD-smallest have −RD-on ds XD-smallest = −(XD-smallest − X) by simp
also have . . . = XH-largest unfolding XD-smallest-def using X-subseteq-XH-largest by blast
finally show XH-largest = −RD-on ds XD-smallest by blast

qed

end

end

Our ultimate statement of Theorem 1 of Hatfield and Milgrom (2005) ala Aygün and Sönmez (2012b) goes as
follows, bearing in mind that we are working in the ContractsWithIRC locale:

theorem T1 :
shows stable-on ds X ←→ (∃XD-XH . stable-pair-on ds XD-XH ∧ X = match XD-XH)

using stable-pair-on-stable-on stable-on-stable-pair-on X-XD-smallest-XH-largest by fastforce

end

5.2 Theorem 3: Algorithmics

Having revived Theorem 1, we reformulate stable-pair as a monotone (aka isotone) function and exploit the lattice
structure of its fixed points, following Hatfield and Milgrom (2005, §II, Theorem 3). This underpins all of their
results that we formulate here. Fleiner (2002, §2) provides an intuitive gloss of these definitions.

context Contracts
begin

definition F1 :: ′x cfun where
F1 X ′ = − RH X ′

definition F2 :: ′d set ⇒ ′x cfun where
F2 ds X ′ = − RD-on ds X ′

definition F :: ′d set ⇒ ′x set × ′x set dual ⇒ ′x set × ′x set dual where
F ds = (λ(XD, XH). (F1 (undual XH), dual (F2 ds (F1 (undual XH)))))

We exploit Isabelle/HOL’s ordering type classes (over the type constructors ′a set and ′a × ′b) to define F. As F is
antimono (where antimono f = (∀ x y. x ≤ y −→ f y ≤ f x) for a lattice order ≤) on its second argument XH, we
adopt the dual lattice order using the type constructor ′a dual, where dual and undual mediate the isomorphism

33

on values, to satisfy Isabelle/HOL’s mono predicate. Note we work under the substitutes hypothesis here.
Relating this function to stable-pair is syntactically awkward but straightforward:

lemma fix-F-stable-pair-on:
assumes X = F ds X
shows stable-pair-on ds (map-prod id undual X)

lemma stable-pair-on-fix-F :
assumes stable-pair-on ds X
shows map-prod id dual X = F ds (map-prod id dual X)

end

The function F is monotonic under substitutes.

locale ContractsWithSubstitutes = Contracts +
assumes Ch-substitutes: ∀ h. substitutes (Ch h)

begin

lemma F1-antimono:
shows antimono F1

lemma F2-antimono:
shows antimono (F2 ds)

lemma F-mono:
shows mono (F ds)

We define the extremal fixed points using Isabelle/HOL’s least and greatest fixed point operators:

definition gfp-F :: ′b set ⇒ ′a set × ′a set where
gfp-F ds = map-prod id undual (gfp (F ds))

definition lfp-F :: ′b set ⇒ ′a set × ′a set where
lfp-F ds = map-prod id undual (lfp (F ds))

lemmas gfp-F-stable-pair-on = fix-F-stable-pair-on[OF gfp-unfold[OF F-mono], folded gfp-F-def]
lemmas lfp-F-stable-pair-on = fix-F-stable-pair-on[OF lfp-unfold[OF F-mono], folded lfp-F-def]

These last two lemmas show that the least and greatest fixed points do satisfy stable-pair.
Using standard fixed-point properties, we can establish:

lemma F2-o-F1-mono:
shows mono (F2 ds ◦ F1)

lemmas F2-F1-mono = F2-o-F1-mono[unfolded o-def]

lemma gfp-F-lfp-F :
shows gfp-F ds = (F1 (lfp (F2 ds ◦ F1)), lfp (F2 ds ◦ F1))

end

We need hospital CFs to satisfy both substitutes and irc to relate these fixed points to stable matches.

locale ContractsWithSubstitutesAndIRC =
ContractsWithSubstitutes + ContractsWithIRC

begin

lemmas gfp-F-stable-on = stable-pair-on-stable-on[OF gfp-F-stable-pair-on]
lemmas lfp-F-stable-on = stable-pair-on-stable-on[OF lfp-F-stable-pair-on]

34

end

We demonstrate the effectiveness of our definitions by executing an example due to Hatfield and Milgrom (2005,
p920) using Isabelle/HOL’s code generator (Haftmann and Nipkow 2010). Note that, while adequate for this toy
instance, the representations used here are hopelessly näive: sets are represented by lists and operations typically
traverse the entire contract space. It is feasible, with more effort, to derive efficient algorithms; see, for instance,
Bijlsma (1991); Bulwahn et al. (2008).
context ContractsWithSubstitutes
begin

lemma gfp-F-code[code]:
shows gfp-F ds = map-prod id undual (while (λA. F ds A 6= A) (F ds) top)

lemma lfp-F-code[code]:
shows lfp-F ds = map-prod id undual (while (λA. F ds A 6= A) (F ds) bot)

end

There are two hospitals and two doctors.
datatype H2 = H1 | H2

The contract space is simply the Cartesian product D2 × H2.
type-synonym X-D2-H2 = D2 × H2

Doctor D1 prefers H1 � H2, doctor D2 the same H1 � H2 (but over different contracts).
primrec P-D2-H2-d :: D2 ⇒ X-D2-H2 rel where

P-D2-H2-d D1 = linord-of-list [(D1 , H1), (D1 , H2)]
| P-D2-H2-d D2 = linord-of-list [(D2 , H1), (D2 , H2)]

Hospital H1 prefers {D1} � {D2} � ∅, and hospital H2 {D1 , D2} � {D1} � {D2} � ∅. We interpret these
constraints as follows:
definition P-D2-H2-H1 :: X-D2-H2 cfun where

P-D2-H2-H1 A = (if (D1 , H1) ∈ A then {(D1 , H1)} else if (D2 , H1) ∈ A then {(D2 , H1)} else {})

definition P-D2-H2-H2 :: X-D2-H2 cfun where
P-D2-H2-H2 A =

(if {(D1 , H2), (D2 , H2)} ⊆ A then {(D1 , H2), (D2 , H2)} else
if (D1 , H2) ∈ A then {(D1 , H2)} else if (D2 , H2) ∈ A then {(D2 , H2)} else {})

primrec P-D2-H2-h :: H2 ⇒ X-D2-H2 cfun where
P-D2-H2-h H1 = P-D2-H2-H1
| P-D2-H2-h H2 = P-D2-H2-H2

Isabelle’s code generator requires us to hoist the relevant definitions from the locale to the top-level (see the
codegen documentation, §7.3).
global-interpretation P920-example:

ContractsWithSubstitutes fst snd P-D2-H2-d P-D2-H2-h
defines P920-example-gfp-F = P920-example.gfp-F

and P920-example-lfp-F = P920-example.lfp-F
and P920-example-F = P920-example.F
and P920-example-F1 = P920-example.F1
and P920-example-F2 = P920-example.F2
and P920-example-maxR = P920-example.maxR
and P920-example-MaxR-f = P920-example.MaxR-f
and P920-example-Cd = P920-example.Cd
and P920-example-CD-on = P920-example.CD-on
and P920-example-CH = P920-example.CH

35

We can now evaluate the gfp of P920-example.F (i.e., F specialized to the above constants) using Isabelle’s value
antiquotation or eval method. This yields the (XD, XH) pair:

({(D1 , H1), (D1 , H2), (D2 , H2)}, {(D1 , H1), (D2 , H1), (D2 , H2)})

The stable match is therefore {(D1 , H1), (D2 , H2)}.
The lfp of P920-example.F is identical to the gfp:

({(D1 , H1), (D1 , H2), (D2 , H2)}, {(D1 , H1), (D2 , H1), (D2 , H2)})

This implies that there is only one stable match in this scenario.

5.3 Theorem 4: Optimality

Hatfield and Milgrom (2005, Theorem 4) assert that the greatest fixed point gfp-F of F yields the stable match
most preferred by the doctors in the following sense:

context Contracts
begin

definition doctor-optimal-match :: ′d set ⇒ ′x set ⇒ bool where
doctor-optimal-match ds Y
←→ (stable-on ds Y ∧ (∀X . ∀ x∈X . stable-on ds X −→ (∃ y ∈ Y . (x, y) ∈ Pd (Xd x))))

end

In a similar sense, lfp-F is the doctor-pessimal match.
We state a basic doctor-optimality result in terms of stable-pair in the ContractsWithSubstitutes locale for generality;
we can establish doctor-optimal-match only under additional constraints on hospital choice functions (see §5.1.2).

context ContractsWithSubstitutes
begin

context
fixes XD-XH :: ′a set × ′a set
fixes ds :: ′b set
assumes stable-pair-on ds XD-XH

begin

lemma gfp-F-upperbound:
shows (fst XD-XH , dual (snd XD-XH)) ≤ gfp (F ds)

lemma XD-XH-gfp-F :
shows fst XD-XH ⊆ fst (gfp-F ds)

and snd (gfp-F ds) ⊆ snd XD-XH

lemma lfp-F-upperbound:
shows lfp (F ds) ≤ (fst XD-XH , dual (snd XD-XH))

lemma XD-XH-lfp-F :
shows fst (lfp-F ds) ⊆ fst XD-XH

and snd XD-XH ⊆ snd (lfp-F ds)

We appeal to the doctors’ linear preferences to show the optimality (pessimality) of gfp-F (lfp-F) for doctors.

theorem gfp-f-doctor-optimal:
assumes x ∈ match XD-XH

36

shows ∃ y ∈ match (gfp-F ds). (x, y) ∈ Pd (Xd x)

theorem lfp-f-doctor-pessimal:
assumes x ∈ match (lfp-F ds)
shows ∃ y ∈ match XD-XH . (x, y) ∈ Pd (Xd x)

end

end

theorem (in ContractsWithSubstitutesAndIRC) gfp-F-doctor-optimal-match:
shows doctor-optimal-match ds (match (gfp-F ds))

Conversely lfp-F is most preferred by the hospitals in a revealed-preference sense, and gfp-F least preferred. These
results depend on Ch-domain and hence the irc hypothesis on hospital choice functions.
context ContractsWithSubstitutesAndIRC
begin

theorem lfp-f-hospital-optimal:
assumes stable-pair-on ds XD-XH
assumes x ∈ Ch h (match (lfp-F ds))
shows x ∈ Ch h (match (lfp-F ds) ∪ match XD-XH)

theorem gfp-f-hospital-pessimal:
assumes stable-pair-on ds XD-XH
assumes x ∈ Ch h (match XD-XH)
shows x ∈ Ch h (match (gfp-F ds) ∪ match XD-XH)

end

The general lattice-theoretic results of e.g. Fleiner (2002) depend on the full Tarski-Knaster fixed point theorem,
which is difficult to state in the present type class-based setting. (The theorem itself is available in the Isabelle/HOL
distribution but requires working with less convenient machinery.)

5.4 Theorem 5 does not hold (Hatfield and Kojima 2008)

Hatfield and Milgrom (2005, Theorem 5) claim that:

Suppose H contains at least two hospitals, which we denote by h and h ′. Further suppose that Rf
(Ch h) is not isotone, that is, contracts are not substitutes for h. Then there exist preference orderings
for the doctors in set D, a preference ordering for a hospital h ′ with a single job opening such that,
regardless of the preferences of the other hospitals, no stable set of contracts exists.

Hatfield and Kojima (2008, Observation 1) show this is not true: there can be stable matches even if hospital choice
functions violate substitutes. This motivates looking for conditions weaker than substitutes that still guarantee
stable matches, a project taken up by Hatfield and Kojima (2010); see §6. We omit their counterexample to this
incorrect claim.

5.5 Theorem 6: “Vacancy chain” dynamics

Hatfield and Milgrom (2005, II(C), p923) propose a model for updating a stable match X when a doctor d ′ retires.
Intuitively the contracts mentioning d ′ are discarded and a modified algorithm run from the XH-largest and
XD-smallest sets determined from X. The result is another stable match where the remaining doctors ds − {d ′}
are (weakly) better off and the hospitals (weakly) worse off than they were in the initial state. The proofs are
essentially the same as for optimality (§5.3).
context ContractsWithSubstitutesAndIRC
begin

37

context
fixes X :: ′a set
fixes d ′ :: ′b
fixes ds :: ′b set

begin

Hatfield and Milgrom do not motivate why the process uses this functional and not F.
definition F ′ :: ′a set × ′a set dual ⇒ ′a set × ′a set dual where

F ′ = (λ(XD, XH). (− RH (undual XH), dual (− RD-on (ds−{d ′}) XD)))

lemma F ′-apply:
F ′ (XD, XH) = (− RH (undual XH), dual (− RD-on (ds − {d ′}) XD))
by (simp add: F ′-def)

lemma F ′-mono:
shows mono F ′

lemma fix-F ′-stable-pair-on:
stable-pair-on (ds − {d ′}) (map-prod id undual A)
if A = F ′ A

We model their update process using the while combinator, as we cannot connect it to the extremal fixed points as
we did in §5.2 because we begin computing from the stable match X.
definition F ′-iter :: ′a set × ′a set dual where

F ′-iter = (while (λA. F ′ A 6= A) F ′ (XD-smallest ds X , dual (XH-largest ds X)))

abbreviation F ′-iter-match :: ′a set where
F ′-iter-match ≡ match (map-prod id undual F ′-iter)

context
assumes stable-on ds X

begin

lemma F-start:
shows F ds (XD-smallest ds X , dual (XH-largest ds X)) = (XD-smallest ds X , dual (XH-largest ds X))

lemma F ′-start:
shows (XD-smallest ds X , dual (XH-largest ds X)) ≤ F ′ (XD-smallest ds X , dual (XH-largest ds X))

lemma
shows F ′-iter-stable-pair-on: stable-pair-on (ds−{d ′}) (map-prod id undual F ′-iter) (is ?thesis1)

and F ′-start-le-F ′-iter : (XD-smallest ds X , dual (XH-largest ds X)) ≤ F ′-iter (is ?thesis2)

lemma F ′-iter-match-stable-on:
shows stable-on (ds−{d ′}) F ′-iter-match

theorem F ′-iter-match-doctors-weakly-better-off :
assumes x ∈ Cd d X
assumes d 6= d ′

shows ∃ y ∈ Cd d F ′-iter-match. (x, y) ∈ Pd d

theorem F ′-iter-match-hospitals-weakly-worse-off :
assumes x ∈ Ch h X
shows x ∈ Ch h (F ′-iter-match ∪ X)

Hatfield and Milgrom observe but do not prove that F ′-iter-match is not necessarily doctor-optimal wrt the new
38

set of doctors, even if X was.
These results seem incomplete. One might expect that the process of reacting to a doctor’s retirement would
involve considering new entrants to the workforce and allowing the set of possible contracts to be refined. There
are also the questions of hospitals opening and closing.

end

end

end

5.6 Theorems 8 and 9: A “rural hospitals” theorem

Given that some hospitals are less desirable than others, the question arises of whether there is a mechanism
that can redistribute doctors to under-resourced hospitals while retaining the stability of the match. Roth’s rural
hospitals theorem (Roth and Sotomayor 1990, Theorem 5.12) resolves this in the negative by showing that each
doctor and hospital signs the same number of contracts in every stable match. In the context of contracts the
theorem relies on the further hypothesis that hospital choices satisfy the law of aggregate demand (§4.3).

locale ContractsWithLAD = Contracts +
assumes Ch-lad: ∀ h. lad (Ch h)

locale ContractsWithSubstitutesAndLAD =
ContractsWithSubstitutes + ContractsWithLAD

We can use results that hold under irc by discharging that hypothesis against lad using the lad-on-substitutes-on-irc-on
lemma. This is the effect of the following sublocale command:

sublocale ContractsWithSubstitutesAndLAD < ContractsWithSubstitutesAndIRC
using Ch-range Ch-substitutes Ch-lad by unfold-locales (blast intro: lad-on-substitutes-on-irc-on f-range-onI)

context ContractsWithSubstitutesAndLAD
begin

The following results lead to Hatfield and Milgrom (2005, Theorem 8), and the proofs go as they say. Again we
state these with respect to an arbitrary solution to stable-pair.

context
fixes XD-XH :: ′a set × ′a set
fixes ds :: ′b set
assumes stable-pair-on ds XD-XH

begin

lemma Cd-XD-gfp-F-card:
assumes d ∈ ds
shows card (Cd d (fst XD-XH)) ≤ card (Cd d (fst (gfp-F ds)))

lemma Ch-gfp-F-XH-card:
shows card (Ch h (snd (gfp-F ds))) ≤ card (Ch h (snd XD-XH))

theorem Theorem-8 :
shows d ∈ ds =⇒ card (Cd d (fst XD-XH)) = card (Cd d (fst (gfp-F ds)))

and card (Ch h (snd XD-XH)) = card (Ch h (snd (gfp-F ds)))

end

Their result may be more easily understood when phrased in terms of arbitrary stable matches:

corollary rural-hospitals-theorem:
assumes stable-on ds X
assumes stable-on ds Y
shows d ∈ ds =⇒ card (Cd d X) = card (Cd d Y)

39

and card (Ch h X) = card (Ch h Y)

end

Hatfield and Milgrom (2005, Theorem 9) show that without lad, the rural hospitals theorem does not hold. Their
proof does not seem to justify the theorem as stated (for instance, the contracts x ′, y ′ and z ′ need not exist), and
so we instead simply provide a counterexample (discovered by nitpick) to the same effect.

lemma (in ContractsWithSubstitutesAndIRC) Theorem-9-counterexample:
assumes stable-on ds Y
assumes stable-on ds Z
shows card (Ch h Y) = card (Ch h Z)

oops

datatype X3 = Xd1 | Xd1 ′ | Xd2
primrec X3d :: X3 ⇒ D2 where

X3d Xd1 = D1
| X3d Xd1 ′ = D1
| X3d Xd2 = D2

abbreviation X3h :: X3 ⇒ H1 where
X3h - ≡ H

primrec PX3d :: D2 ⇒ X3 rel where
PX3d D1 = linord-of-list [Xd1 , Xd1 ′]
| PX3d D2 = linord-of-list [Xd2]

function CX3h :: H1 ⇒ X3 set ⇒ X3 set where
CX3h - {Xd1} = {Xd1}
| CX3h - {Xd1 ′} = {Xd1 ′}
| CX3h - {Xd2} = {Xd2}
| CX3h - {Xd1 , Xd1 ′} = {Xd1 ′}
| CX3h - {Xd1 , Xd2} = {Xd1 , Xd2}
| CX3h - {Xd1 ′, Xd2} = {Xd1 ′}
| CX3h - {Xd1 , Xd1 ′, Xd2} = {Xd1 ′}
| CX3h - {} = {}

interpretation Theorem-9 : ContractsWithSubstitutesAndIRC X3d X3h PX3d CX3h

lemma Theorem-9-stable-Xd1 ′:
shows Theorem-9 .stable-on UNIV {Xd1 ′}

lemma Theorem-9-stable-Xd1-Xd2 :
shows Theorem-9 .stable-on UNIV {Xd1 , Xd2}

This violates the rural hospitals theorem:

theorem
shows card (Theorem-9 .CH {Xd1 ′}) 6= card (Theorem-9 .CH {Xd1 , Xd2})

. . . which is attributed to the failure of the hospitals’ choice functions to satisfy lad:

lemma CX3h-not-lad:
shows ¬lad (CX3h h)

Ciupan et al. (2016) discuss an alternative approach to this result in a marriage market.

40

5.7 Theorems 15 and 16: Cumulative Offer Processes

The goal of Hatfield and Milgrom (2005, §V) is to connect this theory of contracts with matching to earlier work
on auctions by the first of the authors, in particular by eliminating the substitutes hypothesis. They do so by
defining a cumulative offer process (COP):

context Contracts
begin

definition cop-F-HM :: ′d set ⇒ ′x set × ′x set ⇒ ′x set × ′x set where
cop-F-HM ds = (λ(XD, XH). (− RH XH , XH ∪ CD-on ds (− RH XH)))

Intuitively all of the doctors simultaneously offer their most preferred contracts that have yet to be rejected by the
hospitals, and the hospitals choose amongst these and all that have been offered previously. Asking hospital choice
functions to satisfy the substitutes condition effectively forces hospitals to consider only the contracts they have
previously not rejected.
This definition is neither monotonic nor increasing (i.e., it is not the case that ∀ x. x ≤ cop-F-HM ds x). We rectify
this by focusing on the second part of the definition.

definition cop-F :: ′d set ⇒ ′x set ⇒ ′x set where
cop-F ds XH = XH ∪ CD-on ds (− RH XH)

lemma cop-F-HM-cop-F :
shows cop-F-HM ds XD-XH = (− RH (snd XD-XH), cop-F ds (snd XD-XH))

unfolding cop-F-HM-def cop-F-def split-def by simp

lemma cop-F-increasing:
shows x ≤ cop-F ds x

We have the following straightforward case distinction principles:

lemma cop-F-cases:
assumes x ∈ cop-F ds fp
obtains (fp) x ∈ fp | (CD-on) x ∈ CD-on ds (−RH fp) − fp

using assms unfolding cop-F-def by blast

lemma CH-cop-F-cases:
assumes x ∈ CH (cop-F ds fp)
obtains (CH) x ∈ CH fp | (RH-fp) x ∈ RH fp | (CD-on) x ∈ CD-on ds (−RH fp) − fp

using assms CH-range cop-F-def by auto

The existence of fixed points for our earlier definitions (§5.2) was guaranteed by the Tarski-Knaster theorem,
which relies on the monotonicity of the defining functional. As cop-F lacks this property, we appeal instead to the
Bourbaki-Witt theorem for increasing functions.

interpretation COP: bourbaki-witt-fixpoint Sup {(x, y). x ≤ y} cop-F ds for ds

definition fp-cop-F :: ′d set ⇒ ′x set where
fp-cop-F ds = COP.fixp-above ds {}

abbreviation cop ds ≡ CH (fp-cop-F ds)

Given that the set of contracts is finite, we avoid continuity and admissibility issues; we have the following
straightforward induction principle:

lemma fp-cop-F-induct[case-names base step]:
assumes P {}
assumes

∧
fp. P fp =⇒ P (cop-F ds fp)

shows P (fp-cop-F ds)

An alternative is to use the while combinator, which is equivalent to the above by COP.fixp-above-conv-while.
41

In any case, invariant reasoning is essential to verifying the properties of the COP, no matter how we phrase it.
We develop a small program logic to ease the reuse of the invariants we prove.

definition
valid :: ′d set ⇒ (′d set ⇒ ′x set ⇒ bool) ⇒ (′d set ⇒ ′x set ⇒ bool) ⇒ bool

where
valid ds P Q = (Q ds {} ∧ (∀ fp. P ds fp ∧ Q ds fp −→ Q ds (cop-F ds fp)))

abbreviation
invariant :: ′d set ⇒ (′d set ⇒ ′x set ⇒ bool) ⇒ bool

where
invariant ds P ≡ valid ds (λ- -. True) P

Intuitively valid ds P Q asserts that the COP satisfies Q assuming that it satisfies P. This allows us to decompose
our invariant proofs. By setting the precondition to True, invariant ds P captures the proof obligations of
fp-cop-F-induct exactly.
The following lemmas ease the syntactic manipulation of these facts.

lemma validI [case-names base step]:
assumes Q ds {}
assumes

∧
fp. [[P ds fp; Q ds fp]] =⇒ Q ds (cop-F ds fp)

shows valid ds P Q

lemma invariant-cop-FD:
assumes invariant ds P
assumes P ds fp
shows P ds (cop-F ds fp)

lemma invariantD:
assumes invariant ds P
shows P ds (fp-cop-F ds)

lemma valid-pre:
assumes valid ds P ′ Q
assumes

∧
fp. P ds fp =⇒ P ′ ds fp

shows valid ds P Q

lemma valid-invariant:
assumes valid ds P Q
assumes invariant ds P
shows invariant ds (λ ds fp. P ds fp ∧ Q ds fp)

lemma valid-conj:
assumes valid ds (λds fp. R ds fp ∧ P ds fp ∧ Q ds fp) P
assumes valid ds (λds fp. R ds fp ∧ P ds fp ∧ Q ds fp) Q
shows valid ds R (λ ds fp. P ds fp ∧ Q ds fp)

end

Hatfield and Milgrom (2005, Theorem 15) assert that fp-cop-F is equivalent to the doctor-offering algorithm gfp-F,
assuming substitutes. (Note that the fixed points generated by increasing functions do not necessarily form a
lattice, so there is not necessarily a hospital-optimal match, and indeed in general these do not exist.) Our proof is
eased by the decomposition lemma gfp-F-lfp-F and the standard properties of fixed points in a lattice.

context ContractsWithSubstitutes
begin

lemma lfp-F2-o-F1-fp-cop-F :
shows lfp (F2 ds ◦ F1) = fp-cop-F ds

proof(rule antisym)

42

have (F2 ds ◦ F1) (fp-cop-F ds) ⊆ cop-F ds (fp-cop-F ds)
by (clarsimp simp: F2-def F1-def cop-F-def)

then show lfp (F2 ds ◦ F1) ⊆ fp-cop-F ds
by (simp add: lfp-lowerbound fp-cop-F-unfold[symmetric])

next
show fp-cop-F ds ⊆ lfp (F2 ds ◦ F1)
proof(induct rule: fp-cop-F-induct)

case base then show ?case by simp
next

case (step fp) note IH = ‹fp ⊆ lfp (F2 ds ◦ F1)›
then have CD-on ds (− RH fp) ⊆ lfp (F2 ds ◦ F1)

apply (subst lfp-unfold[OF F2-o-F1-mono])
by (smt (verit, ccfv-SIG) Compl-iff Contracts.F1-def Contracts.F2-def Contracts-axioms DiffD2

F2-o-F1-mono comp-eq-dest-lhs in-mono monoD subsetI)
with IH show ?case

unfolding cop-F-def by blast
qed

qed

theorem Theorem-15 :
shows gfp-F ds = (− RH (fp-cop-F ds), fp-cop-F ds)

using lfp-F2-o-F1-fp-cop-F unfolding gfp-F-lfp-F F1-def by simp

theorem Theorem-15-match:
shows match (gfp-F ds) = CH (fp-cop-F ds)

using Theorem-15 by (fastforce dest: subsetD[OF CH-range])

end

With some auxiliary definitions, we can evaluate the COP on the example from §5.2.

lemma P920-example-fp-cop-F-value:
shows P920-example-CH (P920-example-fp-cop-F UNIV) = {(D1 , H1), (D2 , H2)}

by eval

Hatfield and Milgrom (2005, Theorem 16) assert that this process yields a stable match when we have a single
hospital (now called an auctioneer) with unrestricted preferences. As before, this holds provided the auctioneer’s
preferences satisfy irc.
We begin by establishing two obvious invariants of the COP that hold in general.
context Contracts
begin

definition cop-F-range-inv :: ′d set ⇒ ′x set ⇒ bool where
cop-F-range-inv ds fp ←→ (∀ x∈fp. x ∈ Field (Pd (Xd x)) ∧ Xd x ∈ ds)

definition cop-F-closed-inv :: ′d set ⇒ ′x set ⇒ bool where
cop-F-closed-inv ds fp ←→ (∀ x∈fp. above (Pd (Xd x)) x ⊆ fp)

The first, cop-F-range-inv, simply states that the result of the COP respects the structural conditions for doctors.
The second cop-F-closed-inv states that the COP is upwards-closed with respect to the doctors’ preferences.
lemma cop-F-range-inv:

shows invariant ds cop-F-range-inv
unfolding valid-def cop-F-range-inv-def cop-F-def by (fastforce simp: mem-CD-on-Cd dest: Cd-range ′)

lemma cop-F-closed-inv:
shows invariant ds cop-F-closed-inv

unfolding valid-def cop-F-closed-inv-def cop-F-def above-def
by (clarsimp simp: subset-iff) (metis Cd-preferred ComplI Un-upper1 mem-CD-on-Cd subsetCE)

43

lemmas fp-cop-F-range-inv = invariantD[OF cop-F-range-inv]
lemmas fp-cop-F-range-inv ′ = fp-cop-F-range-inv[unfolded cop-F-range-inv-def , rule-format]
lemmas fp-cop-F-closed-inv = invariantD[OF cop-F-closed-inv]
lemmas fp-cop-F-closed-inv ′= subsetD[OF bspec[OF invariantD[OF cop-F-closed-inv, unfolded cop-F-closed-inv-def ,
simplified]]]

The only challenge in showing that the COP yields a stable match is in establishing stable-no-blocking-on. Our key
lemma states that that if CH rejects all contracts for doctor d in fp-cop-F, then all contracts for d are in fp-cop-F.

lemma cop-F-RH :
assumes d ∈ ds
assumes x ∈ Field (Pd d)
assumes aboveS (Pd d) x ⊆ RH fp
shows x ∈ cop-F ds fp

lemma fp-cop-F-all:
assumes d ∈ ds
assumes d /∈ Xd ‘ CH (fp-cop-F ds)
shows Field (Pd d) ⊆ fp-cop-F ds

Aygün and Sönmez (2012b) observe that any blocking contract must be weakly preferred by its doctor to anything
in the outcome of the fp-cop-F :

lemma fp-cop-F-preferred:
assumes y ∈ CD-on ds (CH (fp-cop-F ds) ∪ X ′′)
assumes x ∈ CH (fp-cop-F ds)
assumes Xd x = Xd y
shows (x, y) ∈ Pd (Xd x)

The headline lemma cobbles these results together.

lemma X ′′-closed:
assumes X ′′ ⊆ CD-on ds (CH (fp-cop-F ds) ∪ X ′′)
shows X ′′ ⊆ fp-cop-F ds

proof(rule subsetI)
fix x assume x ∈ X ′′

show x ∈ fp-cop-F ds
proof(cases Xd x ∈ Xd ‘ CH (fp-cop-F ds))

case True
then obtain y where Xd y = Xd x and y ∈ CH (fp-cop-F ds) by clarsimp
with assms ‹x ∈ X ′′› show ?thesis

using CH-range fp-cop-F-closed-inv ′ fp-cop-F-preferred unfolding above-def by blast
next

case False with assms ‹x ∈ X ′′› show ?thesis
by (meson Cd-range ′ IntD2 fp-cop-F-all mem-CD-on-Cd rev-subsetD)

qed
qed

The irc constraint on the auctioneer’s preferences is needed for stable-no-blocking and their part of individu-
ally-rational.

end

context ContractsWithIRC
begin

lemma cop-stable-no-blocking-on:
shows stable-no-blocking-on ds (cop ds)

proof(rule stable-no-blocking-onI)
44

fix h X ′′

assume C : X ′′ = Ch h (CH (fp-cop-F ds) ∪ X ′′)
assume NE : X ′′ 6= Ch h (CH (fp-cop-F ds))
assume CD: X ′′ ⊆ CD-on ds (CH (fp-cop-F ds) ∪ X ′′)
from CD have X ′′ ⊆ fp-cop-F ds by (rule X ′′-closed)
then have X : CH (fp-cop-F ds) ∪ X ′′ ⊆ fp-cop-F ds using CH-range by simp
from C NE Ch-CH-irc-idem[of h] show False

using consistency-onD[OF Ch-consistency - X] CH-domain Ch-domain by blast
qed

theorem Theorem-16 :
assumes h: (UNIV :: ′c set) = {h}
shows stable-on ds (cop ds) (is stable-on ds ?fp)

proof(rule stable-onI)
show individually-rational-on ds ?fp
proof(rule individually-rational-onI)

from h have allocation ?fp by (simp add: Ch-singular CH-Ch-singular)
then show CD-on ds ?fp = ?fp

by (rule CD-on-closed) (blast dest: CH-range ′ fp-cop-F-range-inv ′)
show CH (CH (fp-cop-F ds)) = CH (fp-cop-F ds) by (simp add: CH-irc-idem)

qed
show stable-no-blocking-on ds ?fp by (rule cop-stable-no-blocking-on)

qed

end

5.8 Concluding remarks

From Hatfield and Milgrom (2005), we have not shown Theorems 2, 7, 13 and 14, all of which are intended to
position their results against prior work in this space. We delay establishing their strategic results (Theorems 10,
11 and 12) to §8, after we have developed more useful invariants for the COP.
By assuming irc, Aygün and Sönmez (2012b) are essentially trading on Plott’s path independence condition
(§4.7), as observed by Chambers and Yenmez (2013). The latter show that these results generalize naturally to
many-to-many matches, where doctors also use path-independent choice functions; see also Fleiner (2003).
For many applications, however, substitutes proves to be too strong a condition. The COP of §5.7 provides a way
forward, as we discuss in the next section.

6 Hatfield and Kojima (2010): Substitutes and stability for matching with
contracts

Hatfield and Kojima (2010) set about weakening substitutes and therefore making the cumulative offer processes
(COPs, §5.7) applicable to more matching problems. In doing so they lose the lattice structure of the stable
matches, which necessitates redeveloping the results of §5.
In contrast to the COP of §5.7, Hatfield and Kojima (2010) develop and analyze a single-offer variant, where only
one doctor (who has no held contract) proposes per round. The order of doctors making offers is not specified.
We persist with the simultaneous-offer COP as it is deterministic. See Hirata and Kasuya (2014) for equivalence
arguments.
We begin with some observations due to Aygün and Sönmez. Firstly, as for the matching-with-contracts setting of
§5, Aygün and Sönmez (2012a) demonstrate that these results depend on hospital preferences satisfying irc. We
do not formalize their examples. Secondly, an alternative to hospitals having choice functions (as we have up to
now) is for the hospitals to have preference orders over sets, which is suggested by both Hatfield and Milgrom
(2005) (weakly) and Hatfield and Kojima (2010). Aygün and Sönmez (2012a, §2) argue that this approach is
under-specified and propose to define Ch as choosing amongst maximal elements of some non-strict preference
order (i.e., including indifference). They then claim that this is equivalent to taking Ch as primitive, and so we
continue down that path.

45

6.1 Theorem 1: the COP yields a stable match under bilateral substitutes

The weakest replacement condition suggested by Hatfield and Kojima (2010, §1) for the substitutes condition on
hospital choice functions is termed bilateral substitutes:

Contracts are bilateral substitutes for a hospital if there are no two contracts x and z and a set of
contracts Y with other doctors than those associated with x and z such that the hospital that regards
Y as available wants to sign z if and only if x becomes available. In other words, contracts are bilateral
substitutes when any hospital, presented with an offer from a doctor he does not currently employ,
never wishes to also hire another doctor he does not currently employ at a contract he previously
rejected.

Note that this constraint is specific to this matching-with-contracts setting, unlike those of §4.
context Contracts
begin

definition bilateral-substitutes-on :: ′x set ⇒ ′x cfun ⇒ bool where
bilateral-substitutes-on A f
←→ ¬(∃B⊆A. ∃ a b. {a, b} ⊆ A ∧ Xd a /∈ Xd ‘ B ∧ Xd b /∈ Xd ‘ B

∧ b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}))

abbreviation bilateral-substitutes :: ′x cfun ⇒ bool where
bilateral-substitutes ≡ bilateral-substitutes-on UNIV

lemma bilateral-substitutes-on-def2 :
bilateral-substitutes-on A f
←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. Xd a /∈ Xd ‘ B ∧ Xd b /∈ Xd ‘ B ∧ b /∈ f (B ∪ {b}) −→ b /∈ f (B ∪ {a, b}))

lemma substitutes-on-bilateral-substitutes-on:
assumes substitutes-on A f
shows bilateral-substitutes-on A f

Aygün and Sönmez (2012a, §4, Definition 5) give the following equivalent definition:
lemma bilateral-substitutes-on-def3 :

bilateral-substitutes-on A f
←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}) −→ Xd a ∈ Xd ‘ B ∨ Xd b ∈ Xd ‘ B)

end

As before, we define a series of locales that capture the relevant hypotheses about hospital choice functions.
locale ContractsWithBilateralSubstitutes = Contracts +

assumes Ch-bilateral-substitutes: ∀ h. bilateral-substitutes (Ch h)

sublocale ContractsWithSubstitutes < ContractsWithBilateralSubstitutes

locale ContractsWithBilateralSubstitutesAndIRC =
ContractsWithBilateralSubstitutes + ContractsWithIRC

sublocale ContractsWithSubstitutesAndIRC < ContractsWithBilateralSubstitutesAndIRC

context ContractsWithBilateralSubstitutesAndIRC
begin

The key difficulty in showing the stability of the result of the COP under this condition (Hatfield and Kojima
2010, Theorem 1) is in proving that it ensures we get an allocation; the remainder of the proof of §5.7 (for a single
hospital, where this property is trivial) goes through unchanged. We avail ourselves of Hirata and Kasuya (2014,
Lemma), which they say is a restatement of the proof of Hatfield and Kojima (2010, Theorem 1). See also Aygün
and Sönmez (2012a, Appendix A).

46

lemma bilateral-substitutes-lemma:
assumes Xd x /∈ Xd ‘ Ch h X
assumes d /∈ Xd ‘ Ch h X
assumes d 6= Xd x
shows d /∈ Xd ‘ Ch h (insert x X)

proof(rule notI)
assume d ∈ Xd ‘ Ch h (insert x X)
then obtain x ′ where x ′: x ′ ∈ Ch h (insert x X) Xd x ′ = d by blast
with Ch-irc ‹d /∈ Xd ‘ Ch h X›
have x ∈ Ch h (insert x X) unfolding irc-def by blast
let ?X ′ = {y ∈ X . Xd y /∈ {Xd x , d}}
from Ch-range ‹Xd x /∈ Xd ‘ Ch h X› ‹d /∈ Xd ‘ Ch h X› ‹d 6= Xd x› x ′

have Ch h (insert x ′ ?X ′) = Ch h X
using consistencyD[OF Ch-consistency[where h=h], where B=X and C=insert x ′ ?X ′]
by (fastforce iff : image-iff)

moreover from Ch-range Ch-singular ‹d /∈ Xd ‘ Ch h X› x ′ ‹x ∈ Ch h (insert x X)›
have Ch h (insert x (insert x ′ ?X ′)) = Ch h (insert x X)

using consistencyD[OF Ch-consistency[where h=h], where B=insert x X and C=insert x (insert x ′ ?X ′)]
by (clarsimp simp: insert-commute) (blast dest: inj-onD)

moreover note ‹d /∈ Xd ‘ Ch h X› x ′

ultimately show False
using bilateral-substitutesD[OF spec[OF Ch-bilateral-substitutes, of h], where a=x and b=x ′ and B=?X ′] by

fastforce
qed

Our proof essentially adds the inductive details these earlier efforts skipped over. It is somewhat complicated by
our use of the simultaneous-offer COP.

lemma bilateral-substitutes-lemma-union:
assumes Xd ‘ Ch h X ∩ Xd ‘ Y = {}
assumes d /∈ Xd ‘ Ch h X
assumes d /∈ Xd ‘ Y
assumes allocation Y
shows d /∈ Xd ‘ Ch h (X ∪ Y)

lemma cop-F-CH-CD-on-disjoint:
assumes cop-F-closed-inv ds fp
assumes cop-F-range-inv ds fp
shows Xd ‘ CH fp ∩ Xd ‘ (CD-on ds (− RH fp) − fp) = {}

Our key lemma shows that we effectively have substitutes for rejected contracts, provided the relevant doctor does
not have a contract held with the relevant hospital. Note the similarity to Theorem 4 (§6.3).

lemma cop-F-RH-mono:
assumes cop-F-closed-inv ds fp
assumes cop-F-range-inv ds fp
assumes Xd x /∈ Xd ‘ Ch (Xh x) fp
assumes x ∈ RH fp
shows x ∈ RH (cop-F ds fp)

proof(safe)
from ‹x ∈ RH fp› show x ∈ cop-F ds fp using cop-F-increasing by blast

next
assume x ∈ CH (cop-F ds fp)
from Ch-singular ‹x ∈ CH (cop-F ds fp)› ‹x ∈ RH fp›
have Ch (Xh x) (cop-F ds fp) = Ch (Xh x) (fp ∪ (CD-on ds (−RH fp) − fp − {z. Xd z = Xd x}))

unfolding cop-F-def
by − (rule consistencyD[OF Ch-consistency], auto simp: mem-CH-Ch dest: Ch-range ′ inj-onD)

with cop-F-CH-CD-on-disjoint[OF ‹cop-F-closed-inv ds fp› ‹cop-F-range-inv ds fp›]
have Xd x /∈ Xd ‘ Ch (Xh x) (cop-F ds fp)

47

by simp (rule bilateral-substitutes-lemma-union[OF - ‹Xd x /∈ Xd ‘ Ch (Xh x) fp›],
auto simp: CH-def CD-on-inj-on-Xd inj-on-diff)

with ‹x ∈ CH (cop-F ds fp)› show False by (simp add: mem-CH-Ch)
qed

lemma cop-F-allocation-inv:
valid ds (λds fp. cop-F-range-inv ds fp ∧ cop-F-closed-inv ds fp) (λds fp. allocation (CH fp))

proof(induct rule: validI)
case base show ?case by (simp add: CH-simps)

next
case (step fp)
then have allocation (CH fp)

and cop-F-closed-inv ds fp
and cop-F-range-inv ds fp by blast+

note cop-F-CH-CD-on-disjoint = cop-F-CH-CD-on-disjoint[OF ‹cop-F-closed-inv ds fp› ‹cop-F-range-inv ds fp›]
note cop-F-RH-mono = cop-F-RH-mono[OF ‹cop-F-closed-inv ds fp› ‹cop-F-range-inv ds fp›]
show ?case
proof(rule inj-onI)

fix x y
assume x ∈ CH (cop-F ds fp) and y ∈ CH (cop-F ds fp) and Xd x = Xd y
show x = y
proof(cases Xh y = Xh x)

case True with Ch-singular ‹x ∈ CH (cop-F ds fp)› ‹y ∈ CH (cop-F ds fp)› ‹Xd x = Xd y›
show ?thesis by (fastforce simp: mem-CH-Ch dest: inj-onD)

next
case False note ‹Xh y 6= Xh x›
from ‹x ∈ CH (cop-F ds fp)› show ?thesis
proof(cases x rule: CH-cop-F-cases)

case CH note ‹x ∈ CH fp›
from ‹y ∈ CH (cop-F ds fp)› show ?thesis
proof(cases y rule: CH-cop-F-cases)

case CH note ‹y ∈ CH fp›
with ‹allocation (CH fp)› ‹Xd x = Xd y› ‹x ∈ CH fp›
show ?thesis by (blast dest: inj-onD)

next
case RH-fp note ‹y ∈ RH fp›
from ‹allocation (CH fp)› ‹Xd x = Xd y› ‹Xh y 6= Xh x› ‹x ∈ CH fp› have Xd y /∈ Xd ‘ Ch (Xh y) fp

by clarsimp (metis Ch-CH-irc-idem Ch-range ′ inj-on-contraD)
with ‹y ∈ CH (cop-F ds fp)› ‹y ∈ RH fp› cop-F-RH-mono show ?thesis by blast

next
case CD-on note y ′ = ‹y ∈ CD-on ds (− RH fp) − fp›
with cop-F-CH-CD-on-disjoint ‹Xd x = Xd y› ‹x ∈ CH fp› show ?thesis by blast

qed
next

case RH-fp note ‹x ∈ RH fp›
from ‹y ∈ CH (cop-F ds fp)› show ?thesis
proof(cases y rule: CH-cop-F-cases)

case CH note ‹y ∈ CH fp›
from ‹allocation (CH fp)› ‹Xd x = Xd y› ‹Xh y 6= Xh x› ‹y ∈ CH fp› have Xd x /∈ Xd ‘ Ch (Xh x) fp

by clarsimp (metis Ch-CH-irc-idem Ch-range ′ inj-on-contraD)
with ‹x ∈ CH (cop-F ds fp)› ‹x ∈ RH fp› cop-F-RH-mono show ?thesis by blast

next
case RH-fp note ‹y ∈ RH fp›
show ?thesis
proof(cases Xd x ∈ Xd ‘ Ch (Xh x) fp)

case True
with ‹allocation (CH fp)› ‹Xd x = Xd y› ‹Xh y 6= Xh x› have Xd y /∈ Xd ‘ Ch (Xh y) fp

by clarsimp (metis Ch-range ′ inj-onD mem-CH-Ch)
48

with ‹y ∈ CH (cop-F ds fp)› ‹y ∈ RH fp› cop-F-RH-mono show ?thesis by blast
next

case False note ‹Xd x /∈ Xd ‘ Ch (Xh x) fp›
with ‹x ∈ CH (cop-F ds fp)› ‹x ∈ RH fp› cop-F-RH-mono show ?thesis by blast

qed
next

case CD-on note ‹y ∈ CD-on ds (− RH fp) − fp›
from cop-F-CH-CD-on-disjoint ‹Xd x = Xd y› ‹y ∈ CD-on ds (− RH fp) − fp›
have Xd x /∈ Xd ‘ Ch (Xh x) fp by (auto simp: CH-def dest: Ch-range ′)
with ‹x ∈ CH (cop-F ds fp)› ‹x ∈ RH fp› cop-F-RH-mono show ?thesis by blast

qed
next

case CD-on note ‹x ∈ CD-on ds (− RH fp) − fp›
from ‹y ∈ CH (cop-F ds fp)› show ?thesis
proof(cases y rule: CH-cop-F-cases)

case CH note ‹y ∈ CH fp›
with cop-F-CH-CD-on-disjoint ‹Xd x = Xd y› ‹x ∈ CD-on ds (− RH fp) − fp› show ?thesis by blast

next
case RH-fp note ‹y ∈ RH fp›
from cop-F-CH-CD-on-disjoint ‹Xd x = Xd y› ‹x ∈ CD-on ds (− RH fp) − fp›
have Xd y /∈ Xd ‘ Ch (Xh y) fp unfolding CH-def by clarsimp (blast dest: Ch-range ′)
with ‹y ∈ CH (cop-F ds fp)› ‹y ∈ RH fp› cop-F-RH-mono show ?thesis by blast

next
case CD-on note ‹y ∈ CD-on ds (− RH fp) − fp›
with ‹Xd x = Xd y› ‹x ∈ CD-on ds (− RH fp) − fp› show ?thesis

by (meson CD-on-inj-on-Xd DiffD1 inj-on-eq-iff)
qed

qed
qed

qed
qed

lemma fp-cop-F-allocation:
shows allocation (cop ds)

theorem Theorem-1 :
shows stable-on ds (cop ds)

end

Hatfield and Kojima (2010, §3.1) provide an example that shows that the traditional optimality and strategic
results do not hold under bilateral-substitutes, which motivates looking for a stronger condition that remains weaker
than substitutes.
Their example involves two doctors, two hospitals, and five contracts.
datatype X5 = Xd1 | Xd1 ′ | Xd2 | Xd2 ′ | Xd2 ′′

primrec X5d :: X5 ⇒ D2 where
X5d Xd1 = D1
| X5d Xd1 ′ = D1
| X5d Xd2 = D2
| X5d Xd2 ′ = D2
| X5d Xd2 ′′ = D2

primrec X5h :: X5 ⇒ H2 where
X5h Xd1 = H1
| X5h Xd1 ′ = H1
| X5h Xd2 = H1
| X5h Xd2 ′ = H2

49

| X5h Xd2 ′′ = H1

primrec PX5d :: D2 ⇒ X5 rel where
PX5d D1 = linord-of-list [Xd1 , Xd1 ′]
| PX5d D2 = linord-of-list [Xd2 , Xd2 ′, Xd2 ′′]

primrec CX5h :: H2 ⇒ X5 cfun where
CX5h H1 A =

(if {Xd1 ′, Xd2} ⊆ A then {Xd1 ′, Xd2} else
if {Xd2 ′′} ⊆ A then {Xd2 ′′} else
if {Xd1} ⊆ A then {Xd1} else
if {Xd1 ′} ⊆ A then {Xd1 ′} else
if {Xd2} ⊆ A then {Xd2} else {})

| CX5h H2 A = { x . x ∈ A ∧ x = Xd2 ′ }

interpretation BSI : Contracts X5d X5h PX5d CX5h

lemma CX5h-bilateral-substitutes:
shows BSI .bilateral-substitutes (CX5h h)

unfolding BSI .bilateral-substitutes-def by (cases h) (auto simp: X5-ALL)

lemma CX5h-irc:
shows irc (CX5h h)

unfolding irc-def by (cases h) (auto simp: X5-ALL)

interpretation BSI : ContractsWithBilateralSubstitutesAndIRC X5d X5h PX5d CX5h

There are two stable matches in this model.

lemma BSI-stable:
shows BSI .stable X ←→ X = {Xd1 , Xd2 ′} ∨ X = {Xd1 ′, Xd2}

Therefore there is no doctor-optimal match under these preferences:

lemma
¬(∃ (Y ::X5 set). BSI .doctor-optimal-match UNIV Y)

unfolding BSI .doctor-optimal-match-def BSI-stable
apply clarsimp
apply (cut-tac X=Y in X5-pow)
apply clarsimp
apply (elim disjE ; simp add: insert-eq-iff ; simp add: X5-ALL linord-of-list-linord-of-listP)
done

6.2 Theorem 3: pareto separability relates unilateral substitutes and substitutes

Hatfield and Kojima (2010, §4) proceed to define unilateral substitutes:

[P]references satisfy unilateral substitutes if whenever a hospital rejects the contract z when that is the
only contract with Xd z available, it still rejects the contract z when the choice set expands.

context Contracts
begin

definition unilateral-substitutes-on :: ′x set ⇒ ′x cfun ⇒ bool where
unilateral-substitutes-on A f
←→ ¬(∃B⊆A. ∃ a b. {a, b} ⊆ A ∧ Xd b /∈ Xd ‘ B ∧ b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}))

abbreviation unilateral-substitutes :: ′x cfun ⇒ bool where
50

unilateral-substitutes ≡ unilateral-substitutes-on UNIV

lemma unilateral-substitutes-on-def2 :
unilateral-substitutes-on A f
←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. Xd b /∈ Xd ‘ B ∧ b /∈ f (B ∪ {b}) −→ b /∈ f (B ∪ {a, b}))

Aygün and Sönmez (2012a, §4, Definition 6) give the following equivalent definition:

lemma unilateral-substitutes-on-def3 :
unilateral-substitutes-on A f
←→ (∀B⊆A. ∀ a∈A. ∀ b∈A. b /∈ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}) −→ Xd b ∈ Xd ‘ B)

lemma substitutes-on-unilateral-substitutes-on:
assumes substitutes-on A f
shows unilateral-substitutes-on A f

lemma unilateral-substitutes-on-bilateral-substitutes-on:
assumes unilateral-substitutes-on A f
shows bilateral-substitutes-on A f

The following defines locales for the unilateral-substitutes hypothesis, and inserts these between those for substitutes
and bilateral-substitutes.

end

locale ContractsWithUnilateralSubstitutes = Contracts +
assumes Ch-unilateral-substitutes: ∀ h. unilateral-substitutes (Ch h)

sublocale ContractsWithUnilateralSubstitutes < ContractsWithBilateralSubstitutes

sublocale ContractsWithSubstitutes < ContractsWithUnilateralSubstitutes

locale ContractsWithUnilateralSubstitutesAndIRC =
ContractsWithUnilateralSubstitutes + ContractsWithIRC

sublocale ContractsWithUnilateralSubstitutesAndIRC < ContractsWithBilateralSubstitutesAndIRC

sublocale ContractsWithSubstitutesAndIRC < ContractsWithUnilateralSubstitutesAndIRC

Hatfield and Kojima (2010, Theorem 3) relate unilateral-substitutes to substitutes using Pareto separability:

Preferences are Pareto separable for a hospital if the hospital’s choice between x and x ′, two [distinct]
contracts with the same doctor, does not depend on what other contracts the hospital has access to.

This result also depends on irc.

context Contracts
begin

definition pareto-separable-on :: ′x set ⇒ bool where
pareto-separable-on A
←→ (∀B⊆A. ∀C⊆A. ∀ a b. {a, b} ⊆ A ∧ a 6= b ∧ Xd a = Xd b ∧ Xh a = Xh b

∧ a ∈ Ch (Xh b) (B ∪ {a, b}) −→ b /∈ Ch (Xh b) (C ∪ {a, b}))

abbreviation pareto-separable :: bool where
pareto-separable ≡ pareto-separable-on UNIV

lemma substitutes-on-pareto-separable-on:
assumes ∀ h. substitutes-on A (Ch h)

51

shows pareto-separable-on A
proof(rule pareto-separable-onI)

fix B C a b
assume XXX : B ⊆ A C ⊆ A a ∈ A b ∈ A a 6= b Xd a = Xd b Xh a = Xh b a ∈ Ch (Xh b) (insert a (insert b

B))
note Ch-iiaD = iia-onD[OF iffD1 [OF substitutes-iia spec[OF ‹∀ h. substitutes-on A (Ch h)›]], rotated −1 ,

simplified]
from XXX have a ∈ Ch (Xh b) {a, b} by (fast elim: Ch-iiaD)
with XXX have b /∈ Ch (Xh b) {a, b} by (meson Ch-singular inj-on-eq-iff)
with XXX have b /∈ Ch (Xh b) (C ∪ {a, b}) by (blast dest: Ch-iiaD)
with XXX show b /∈ Ch (Xh b) (insert a (insert b C)) by simp

qed

lemma unilateral-substitutes-on-pareto-separable-on-substitutes-on:
assumes ∀ h. unilateral-substitutes-on A (Ch h)
assumes ∀ h. irc-on A (Ch h)
assumes pareto-separable-on A
shows substitutes-on A (Ch h)

proof(rule substitutes-onI)
fix B a b
assume XXX : B ⊆ A a ∈ A b ∈ A b /∈ Ch h (insert b B)
show b /∈ Ch h (insert a (insert b B))
proof(cases Xd b ∈ Xd ‘ B)

case True show ?thesis
proof(cases Xd b ∈ Xd ‘ Ch h (insert b B))

case True
then obtain x where x ∈ Ch h (insert b B) Xd x = Xd b by force
moreover with XXX have x ∈ B x 6= b using Ch-range by blast+
moreover note ‹pareto-separable-on A› XXX
ultimately show ?thesis

using pareto-separable-onD[where A=A and B=B − {x} and a=x and b=b and C=insert a (B − {x})]
Ch-range

by (cases Xh b = h) (auto simp: insert-commute insert-absorb)
next

case False
let ?B ′ = {x ∈ B . Xd x 6= Xd b}
from False have b /∈ Ch h (insert b B) by blast
with ‹∀ h. irc-on A (Ch h)› XXX False have b /∈ Ch h (insert b ?B ′)

using consistency-onD[OF irc-on-consistency-on[where f=Ch h], where B=insert b B and C=insert b
?B ′] Ch-range

by (fastforce iff : image-iff)
with ‹∀ h. unilateral-substitutes-on A (Ch h)› XXX False have b /∈ Ch h (insert a (insert b ?B ′))

using unilateral-substitutes-onD[where f=Ch h and B=?B ′]
by (fastforce iff : image-iff)

with ‹∀ h. irc-on A (Ch h)› XXX False show ?thesis
using consistency-onD[OF irc-on-consistency-on[where f=Ch h],

where A=A and B=insert a (insert b B) and C=insert a (insert b ?B ′)]
Ch-range ′[of - h insert a (insert b B)] Ch-singular

by simp (blast dest: inj-on-contraD)
qed

next
case False
with ‹∀ h. unilateral-substitutes-on A (Ch h)› XXX show ?thesis by (blast dest: unilateral-substitutes-onD)

qed
qed

theorem Theorem-3 :
assumes ∀ h. irc-on A (Ch h)

52

shows (∀ h. substitutes-on A (Ch h)) ←→ (∀ h. unilateral-substitutes-on A (Ch h) ∧ pareto-separable-on A)

end

6.2.1 Afacan and Turhan (2015): doctor separability relates bi- and unilateral substitutes

context Contracts
begin

Afacan and Turhan (2015, Theorem 1) relate bilateral-substitutes and unilateral-substitutes using doctor separability:

[Doctor separability (DS)] says that if a doctor is not chosen from a set of contracts in the sense that
no contract of him is selected, then that doctor should still not be chosen unless a contract of a new
doctor (that is, doctor having no contract in the given set of contracts) becomes available. For practical
purposes, we can consider DS as capturing contracts where certain groups of doctors are substitutes.
[footnote: If Xd x /∈ Xd ‘ Ch h (Y ∪ {x, z}), then doctor Xd x is not chosen. And under DS, he
continues not to be chosen unless a new doctor comes. Hence, we can interpret it as the doctors in the
given set of contracts are substitutes.]

definition doctor-separable-on :: ′x set ⇒ ′x cfun ⇒ bool where
doctor-separable-on A f
←→ (∀B⊆A. ∀ a b c. {a, b, c} ⊆ A ∧ Xd a 6= Xd b ∧ Xd b = Xd c ∧ Xd a /∈ Xd ‘ f (B ∪ {a, b})
−→ Xd a /∈ Xd ‘ f (B ∪ {a, b, c}))

abbreviation doctor-separable :: ′x cfun ⇒ bool where
doctor-separable ≡ doctor-separable-on UNIV

lemma unilateral-substitutes-on-doctor-separable-on:
assumes unilateral-substitutes-on A f
assumes irc-on A f
assumes ∀B⊆A. allocation (f B)
assumes f-range-on A f
shows doctor-separable-on A f

proof(rule doctor-separable-onI)
fix B a b c
assume XXX : B ⊆ A a ∈ A b ∈ A c ∈ A Xd a 6= Xd b Xd b = Xd c Xd a /∈ Xd ‘ f (insert a (insert b B))
have a /∈ f (insert a (insert b (insert c B)))
proof(rule notI)

assume a: a ∈ f (insert a (insert b (insert c B)))
let ?C = {x ∈ B . Xd x 6= Xd a ∨ x = a}
from ‹irc-on A f › ‹f-range-on A f › XXX(1−3 ,7)
have f (insert a (insert b B)) = f (insert a (insert b ?C))

by − (rule consistency-onD[OF irc-on-consistency-on[where A=A and f=f]];
fastforce dest: f-range-onD[where A=A and f=f and B=insert a (insert b B)] simp: rev-image-eqI)

with ‹unilateral-substitutes-on A f › XXX
have abcC : a /∈ f (insert a (insert b (insert c ?C)))

using unilateral-substitutes-onD[where A=A and f=f and a=c and b=a and B=insert b ?C − {a}]
by (force simp: insert-commute)

from ‹irc-on A f › ‹∀B⊆A. allocation (f B)› ‹f-range-on A f › XXX(1−4) a
have f (insert a (insert b (insert c B))) = f (insert a (insert b (insert c ?C)))

by − (rule consistency-onD[OF irc-on-consistency-on[where A=A and f=f]], (auto)[4],
clarsimp, rule conjI , blast dest!: f-range-onD ′[where A=A], metis inj-on-contraD insert-subset)

with a abcC show False by simp
qed
moreover
have a ′ /∈ f (insert a (insert b (insert c B))) if a ′: a ′ ∈ B Xd a ′ = Xd a for a ′

proof(rule notI)
assume a ′X : a ′ ∈ f (insert a (insert b (insert c B)))
let ?B = insert a B − {a ′}

53

from XXX a ′

have XXX-7 ′: Xd a /∈ Xd ‘ f (insert a ′ (insert b ?B))
by clarsimp (metis imageI insert-Diff-single insert-absorb insert-commute)

let ?C = {x ∈ ?B . Xd x 6= Xd a ∨ x = a ′}
from ‹irc-on A f › ‹f-range-on A f › XXX(1−3) a ′ XXX-7 ′

have f (insert a ′ (insert b ?B)) = f (insert a ′ (insert b ?C))
by − (rule consistency-onD[OF irc-on-consistency-on[where A=A and f=f]];

fastforce dest: f-range-onD[where A=A and f=f and B=insert a ′ (insert b ?B)] simp: rev-image-eqI)
with ‹unilateral-substitutes-on A f › XXX(1−6) XXX-7 ′ a ′

have abcC : a ′ /∈ f (insert a ′ (insert b (insert c ?C)))
using unilateral-substitutes-onD[where A=A and f=f and a=c and b=a ′ and B=insert b ?C − {a ′}]
by (force simp: insert-commute rev-image-eqI)

have f (insert a ′ (insert b (insert c ?B))) = f (insert a ′ (insert b (insert c ?C)))
proof(rule consistency-onD[OF irc-on-consistency-on[where A=A and f=f]])

from a ′ have insert a ′ (insert b (insert c ?B)) = insert a (insert b (insert c B)) by blast
with ‹∀B⊆A. allocation (f B)› ‹f-range-on A f › XXX(1−4) a ′ a ′X
show f (insert a ′ (insert b (insert c ?B))) ⊆ insert a ′ (insert b (insert c {x ∈ ?B. Xd x 6= Xd a ∨ x = a ′}))

by clarsimp (rule conjI , blast dest!: f-range-onD ′[where A=A], metis inj-on-contraD insert-subset)
qed (use ‹irc-on A f › XXX(1−4) a ′ in auto)
with a ′ a ′X abcC show False by simp (metis insert-Diff insert-Diff-single insert-commute)

qed
moreover note ‹f-range-on A f › XXX
ultimately show Xd a /∈ Xd ‘ f (insert a (insert b (insert c B)))

by (fastforce dest: f-range-onD[where B=insert a (insert b (insert c B))])
qed

lemma bilateral-substitutes-on-doctor-separable-on-unilateral-substitutes-on:
assumes bilateral-substitutes-on A f
assumes doctor-separable-on A f
assumes f-range-on A f
shows unilateral-substitutes-on A f

proof(rule unilateral-substitutes-onI)
fix B a b
assume XXX : B ⊆ A a ∈ A b ∈ A Xd b /∈ Xd ‘ B b /∈ f (insert b B)
show b /∈ f (insert a (insert b B))
proof(cases Xd a ∈ Xd ‘ B)

case True
then obtain C c where Cc: B = insert c C c /∈ C Xd c = Xd a by (metis Set.set-insert image-iff)
from ‹b /∈ f (insert b B)› Cc have b /∈ f (insert b (insert c C)) by simp
with ‹f-range-on A f › XXX Cc have Xd b /∈ Xd ‘ f (insert b (insert c C))

by clarsimp (metis f-range-onD ′ image-eqI insertE insert-subset)
with ‹doctor-separable-on A f › XXX Cc show ?thesis

by (auto simp: insert-commute dest: doctor-separable-onD)
qed (use ‹bilateral-substitutes-on A f › XXX in ‹simp add: bilateral-substitutes-onD›)

qed

theorem unilateral-substitutes-on-doctor-separable-on-bilateral-substitutes-on:
assumes irc-on A f
assumes ∀B⊆A. allocation (f B) — A rephrasing of Ch-singular.
assumes f-range-on A f
shows unilateral-substitutes-on A f ←→ bilateral-substitutes-on A f ∧ doctor-separable-on A f

Afacan and Turhan (2015, Remark 2) observe the independence of the doctor-separable, pareto-separable and
bilateral-substitutes conditions.

end

54

6.3 Theorems 4 and 5: Doctor optimality

context ContractsWithUnilateralSubstitutesAndIRC
begin

We return to analyzing the COP following Hatfield and Kojima (2010). The next goal is to establish a doctor-
optimality result for it in the spirit of §5.3.
We first show that, with hospital choice functions satisfying unilateral-substitutes, we effectively have the substitutes
condition for all contracts that have been rejected. In other words, hospitals never renegotiate with doctors.
The proof is by induction over the finite set Y.

lemma
assumes Xd x /∈ Xd ‘ Ch h X
assumes x ∈ X
shows no-renegotiation-union: x /∈ Ch h (X ∪ Y)

and x /∈ Ch h (insert x ((X ∪ Y) − {z. Xd z = Xd x}))

To discharge the first antecedent of this lemma, we need an invariant for the COP that asserts that, for each doctor
d, there is a subset of the contracts currently offered by d that was previously uniformly rejected by the COP, for
each contract that is rejected at the current step. To support a later theorem (see §6.3) we require these subsets to
be upwards-closed with respect to the doctor’s preferences.

definition
cop-F-rejected-inv :: ′b set ⇒ ′a set ⇒ bool

where
cop-F-rejected-inv ds fp ←→ (∀ x∈RH fp. ∃ fp ′⊆fp. x ∈ fp ′ ∧ above (Pd (Xd x)) x ⊆ fp ′ ∧ Xd x /∈ Xd ‘ CH fp ′)

lemma cop-F-rejected-inv:
shows valid ds (λds fp. cop-F-range-inv ds fp ∧ cop-F-closed-inv ds fp ∧ allocation (CH fp)) cop-F-rejected-inv

lemma fp-cop-F-rejected-inv:
shows cop-F-rejected-inv ds (fp-cop-F ds)

Hatfield and Kojima (2010, Theorem 4) assert that we effectively recover substitutes for the contracts relevant to
the COP. We cannot adopt their phrasing as it talks about the execution traces of the COP, and not just its final
state. Instead we present the result we use, which relates two consecutive states in an execution trace of the COP:

theorem Theorem-4 :
assumes cop-F-rejected-inv ds fp
assumes x ∈ RH fp
shows x ∈ RH (cop-F ds fp)

Another way to interpret cop-F-rejected-inv is to observe that the doctor-optimal match contains the least preferred
of the contracts that the doctors have offered.

corollary fp-cop-F-worst:
assumes x ∈ cop ds
assumes y ∈ fp-cop-F ds
assumes Xd y = Xd x
shows (x, y) ∈ Pd (Xd x)

The doctor optimality result, Theorem 5, hinges on showing that no contract in any stable match is ever rejected.

definition
theorem-5-inv :: ′b set ⇒ ′a set ⇒ bool

where
theorem-5-inv ds fp ←→ RH fp ∩

⋃
{X . stable-on ds X} = {}

lemma theorem-5-inv:
55

shows valid ds (λds fp. cop-F-range-inv ds fp ∧ cop-F-closed-inv ds fp
∧ allocation (CH fp) ∧ cop-F-rejected-inv ds fp) theorem-5-inv

proof(induct rule: validI)
case base show ?case unfolding theorem-5-inv-def by simp

next
case (step fp)
then have cop-F-range-inv ds fp

and cop-F-closed-inv ds fp
and allocation (CH fp)
and cop-F-rejected-inv ds fp
and theorem-5-inv ds fp by blast+

show ?case
proof(rule theorem-5-invI)

fix z X assume z: z ∈ RH (cop-F ds fp) and z ∈ X and stable-on ds X
from ‹theorem-5-inv ds fp› ‹z ∈ X› ‹stable-on ds X›
have z ′: z /∈ RH fp unfolding theorem-5-inv-def by blast
define Y where Y ≡ Ch (Xh z) (cop-F ds fp)
from z have YYY : z /∈ Ch (Xh z) (insert z Y)

using consistencyD[OF Ch-consistency]
by (simp add: mem-CH-Ch Y-def)

(metis Ch-f-range f-range-on-def insert-subset subset-insertI top-greatest)
have yRx: (x, y) ∈ Pd (Xd y) if x ∈ X and y ∈ Y and Xd y = Xd x for x y
proof(rule ccontr)

assume (x, y) /∈ Pd (Xd y)
with Pd-linear ‹cop-F-range-inv ds fp› ‹stable-on ds X› that
have BBB: (y, x) ∈ Pd (Xd y) ∧ x 6= y

unfolding Y-def cop-F-def cop-F-range-inv-def order-on-defs total-on-def
by (clarsimp simp: mem-CD-on-Cd dest!: Ch-range ′) (metis Cd-range ′ Int-iff refl-onD stable-on-range ′)

from ‹stable-on ds X› ‹cop-F-closed-inv ds fp› ‹theorem-5-inv ds fp› BBB that have x ∈ fp ∧ y ∈ fp
unfolding cop-F-def cop-F-closed-inv-def theorem-5-inv-def above-def Y-def
by (fastforce simp: mem-CD-on-Cd dest: Ch-range ′ Cd-preferred)

with ‹stable-on ds X› ‹theorem-5-inv ds fp› ‹x ∈ X› have x ∈ Ch (Xh x) fp
unfolding theorem-5-inv-def by (force simp: mem-CH-Ch)

with ‹allocation (CH fp)› ‹Xd y = Xd x› BBB have y /∈ Ch (Xh z) fp
by (metis Ch-range ′ inj-onD mem-CH-Ch)

with ‹y ∈ Y › ‹x ∈ fp ∧ y ∈ fp› show False
unfolding Y-def using Theorem-4 [OF ‹cop-F-rejected-inv ds fp›, where x=y]
by (metis Ch-range ′ Diff-iff mem-CH-Ch)

qed
have Xd z /∈ Xd ‘ Y
proof(safe)

fix w assume w: Xd z = Xd w w ∈ Y
show False
proof(cases z ∈ fp)

case True note ‹z ∈ fp›
show False
proof(cases w ∈ fp)

case True note ‹w ∈ fp›
from ‹Xd z = Xd w› ‹w ∈ Y › z ′ ‹z ∈ fp› have w /∈ CH fp

by (metis Ch-irc-idem DiffI YYY Y-def ‹allocation (CH fp)› inj-on-eq-iff insert-absorb)
with Theorem-4 [OF ‹cop-F-rejected-inv ds fp›, where x=w] ‹w ∈ Y › ‹w ∈ fp› show False

unfolding Y-def CH-def by simp
next

case False note ‹w /∈ fp›
with ‹w ∈ Y › have w /∈ Ch (Xh z) fp ∧ w ∈ cop-F ds fp ∧ Xh w = Xh z

unfolding Y-def by (blast dest: Ch-range ′)
with ‹cop-F-closed-inv ds fp› ‹cop-F-range-inv ds fp› ‹z /∈ RH fp› ‹w /∈ fp› ‹z ∈ fp› ‹Xd z = Xd w›
show False

56

unfolding cop-F-closed-inv-def cop-F-range-inv-def above-def
by (fastforce simp: cop-F-def mem-CD-on-Cd Cd-greatest greatest-def)

qed
next

case False note ‹z /∈ fp›
from ‹cop-F-range-inv ds fp› ‹cop-F-closed-inv ds fp› z ‹z /∈ fp› have Xd z /∈ Xd ‘ Ch (Xh z) fp

unfolding cop-F-range-inv-def cop-F-closed-inv-def above-def
by (clarsimp simp: mem-CD-on-Cd Cd-greatest greatest-def dest!: mem-Ch-CH elim!: cop-F-cases)

(blast dest: CH-range ′)
with w ‹z ∈ RH (cop-F ds fp)› ‹z /∈ fp› show False

by (clarsimp simp: Y-def cop-F-def mem-CH-Ch)
(metis CD-on-inj-on-Xd Ch-range ′ Un-iff inj-onD no-renegotiation-union)

qed
qed
show False
proof(cases z ∈ Ch (Xh z) (X ∪ Y))

case True note ‹z ∈ Ch (Xh z) (X ∪ Y)›
with ‹z ∈ X› have Xd z ∈ Xd ‘ Ch (Xh z) (insert z Y)

using no-renegotiation-union[where X=insert z Y and Y=X − {z} and x=z and h=Xh z]
by clarsimp (metis Un-insert-right insert-Diff Un-commute)

with ‹Xd z /∈ Xd ‘ Y › ‹z /∈ Ch (Xh z) (insert z Y)› show False by (blast dest: Ch-range ′)
next

case False note ‹z /∈ Ch (Xh z) (X ∪ Y)›
have ¬stable-on ds X
proof(rule blocking-on-imp-not-stable[OF blocking-onI])

from False ‹z ∈ X› ‹stable-on ds X›
show Ch (Xh z) (X ∪ Y) 6= Ch (Xh z) X

using mem-CH-Ch stable-on-CH by blast
show Ch (Xh z) (X ∪ Y) = Ch (Xh z) (X ∪ Ch (Xh z) (X ∪ Y))

using Ch-range ′ by (blast intro!: consistencyD[OF Ch-consistency])
next

fix x assume x ∈ Ch (Xh z) (X ∪ Y)
with Ch-singular ′[of Xh z X ∪ Ch (Xh z) (cop-F ds fp)]

invariant-cop-FD[OF cop-F-range-inv ‹cop-F-range-inv ds fp›]
stable-on-allocation[OF ‹stable-on ds X›] stable-on-Xd[OF ‹stable-on ds X›]
stable-on-range ′[OF ‹stable-on ds X›]

show x ∈ CD-on ds (X ∪ Ch (Xh z) (X ∪ Y))
unfolding cop-F-range-inv-def
by (clarsimp simp: mem-CD-on-Cd Cd-greatest greatest-def)

(metis Ch-range ′ IntE Pd-range ′ Pd-refl Un-iff Y-def inj-onD yRx)
qed
with ‹stable-on ds X› show False by blast

qed
qed

qed

lemma fp-cop-F-theorem-5-inv:
shows theorem-5-inv ds (fp-cop-F ds)

theorem Theorem-5 :
assumes stable-on ds X
assumes x ∈ X
shows ∃ y ∈ cop ds. (x, y) ∈ Pd (Xd x)

proof −
from fp-cop-F-theorem-5-inv assms
have x: x /∈ RH (fp-cop-F ds)

unfolding theorem-5-inv-def by blast
show ?thesis

57

proof(cases Xd x ∈ Xd ‘ cop ds)
case True
then obtain z where z: z ∈ cop ds Xd z = Xd x by auto
show ?thesis
proof(cases (x, z) ∈ Pd (Xd x))

case True with z show ?thesis by blast
next

case False
with Pd-linear ′[where d=Xd x] fp-cop-F-range-inv ′[of z ds] assms z
have (z, x) ∈ Pd (Xd x)

unfolding order-on-defs total-on-def by (metis CH-range ′ refl-onD stable-on-range ′)
with fp-cop-F-closed-inv ′[of z ds x] x z have x ∈ fp-cop-F ds

unfolding above-def by (force simp: mem-CH-Ch dest: Ch-range ′)
with fp-cop-F-allocation x z have z = x by (fastforce dest: inj-onD)
with Pd-linear assms z show ?thesis

by (meson equalityD2 stable-on-range ′ underS-incl-iff)
qed

next
case False note ‹Xd x /∈ Xd ‘ cop ds›
with assms x show ?thesis

by (metis DiffI Diff-eq-empty-iff fp-cop-F-all emptyE imageI stable-on-Xd stable-on-range ′)
qed

qed

theorem fp-cop-F-doctor-optimal-match:
shows doctor-optimal-match ds (cop ds)

end

The next lemma demonstrates the opposition of interests of doctors and hospitals: if all doctors weakly prefer one
stable match to another, then the hospitals weakly prefer the converse.
As we do not have linear preferences for hospitals, we use revealed preference and hence assume irc holds of hospital
choice functions. Our definition of the doctor-preferred ordering dpref follows the Isabelle/HOL convention of
putting the larger (more preferred) element on the right, and takes care with unemployment.
context Contracts
begin

definition dpref :: ′x set ⇒ ′x set ⇒ bool where
dpref X Y = (∀ x∈X . ∃ y∈Y . (x, y) ∈ Pd (Xd x))

end

context ContractsWithIRC
begin

theorem Lemma-1 :
assumes stable-on ds Y
assumes stable-on ds Z
assumes dpref Z Y
assumes x ∈ Ch h Z
shows x ∈ Ch h (Y ∪ Z)

proof(rule ccontr)
assume x /∈ Ch h (Y ∪ Z)
from ‹x ∈ Ch h Z › ‹x /∈ Ch h (Y ∪ Z)›
have Ch h (Y ∪ Z) 6= Ch h Z by blast
moreover
have Ch h (Y ∪ Z) = Ch h (Z ∪ Ch h (Y ∪ Z))
by (rule consistency-onD[OF Ch-consistency]; auto dest: Ch-range ′)

58

moreover
have y ∈ CD-on ds (Z ∪ Ch h (Y ∪ Z)) if y ∈ Ch h (Y ∪ Z) for y
proof −

from ‹stable-on ds Y › ‹stable-on ds Z › that
have Xd y ∈ ds ∧ y ∈ Field (Pd (Xd y))

using stable-on-Xd stable-on-range ′ Ch-range ′ by (meson Un-iff)
with Pd-linear ′[of Xd y] Ch-singular ‹stable-on ds Y › ‹stable-on ds Z › ‹dpref Z Y › that show ?thesis

unfolding dpref-def
by (clarsimp simp: mem-CD-on-Cd Cd-greatest greatest-def)

(metis Ch-range ′ Pd-Xd Un-iff eq-iff inj-on-contraD stable-on-allocation underS-incl-iff)
qed
ultimately show False by (blast dest: stable-on-blocking-onD[OF ‹stable-on ds Z ›])

qed

end

Hatfield and Kojima (2010, Corollary 1 (of Theorem 5 and Lemma 1)): unilateral-substitutes implies there is a
hospital-pessimal match, which is indeed the doctor-optimal one.

context ContractsWithUnilateralSubstitutesAndIRC
begin

theorem Corollary-1 :
assumes stable-on ds Z
shows dpref Z (cop ds)

and x ∈ Z =⇒ x ∈ Ch (Xh x) (cop ds ∪ Z)
proof −

show dpref Z (cop ds)
by (rule dprefI [OF Theorem-5 [OF ‹stable-on ds Z ›]])

fix x assume x ∈ Z with assms show x ∈ Ch (Xh x) (cop ds ∪ Z)
using Lemma-1 [OF Theorem-1 assms ‹dpref Z (cop ds)›] stable-on-CH
by (fastforce simp: mem-CH-Ch)

qed

Hatfield and Kojima (2010, p1717) show that there is not always a hospital-optimal/doctor-pessimal match when
hospital preferences satisfy unilateral-substitutes, in contrast to the situation under substitutes (see §5.3). This
reflects the loss of the lattice structure.

end

6.4 Theorem 6: A “rural hospitals” theorem

Hatfield and Kojima (2010, Theorem 6) demonstrates a “rural hospitals” theorem for the COP assuming hospital
choice functions satisfy unilateral-substitutes and lad, as for §5.6. However Aygün and Sönmez (2012a, §4, Example 1)
observe that lad-on-substitutes-on-irc-on does not hold with bilateral-substitutes instead of substitutes, and their
Example 3 similarly for unilateral-substitutes. Moreover fp-cop-F can yield an unstable allocation with just these
two hypotheses. Ergo we need to assume irc even when we have lad, unlike before (see §5.6).
This theorem is the foundation for all later strategic results.

locale ContractsWithUnilateralSubstitutesAndIRCAndLAD = ContractsWithUnilateralSubstitutesAndIRC + Con-
tractsWithLAD

sublocale ContractsWithSubstitutesAndLAD < ContractsWithUnilateralSubstitutesAndIRCAndLAD

context ContractsWithUnilateralSubstitutesAndIRCAndLAD
begin

context
fixes ds :: ′b set
fixes X :: ′a set

59

assumes stable-on ds X
begin

The proofs of these first two lemmas are provided by Hatfield and Kojima (2010, Theorem 6). We treat unemployment
in the definition of the function A as we did in §5.1.3.

lemma RHT-Cd-card:
assumes d ∈ ds
shows card (Cd d X) ≤ card (Cd d (cop ds))

lemma RHT-Ch-card:
shows card (Ch h (fp-cop-F ds)) ≤ card (Ch h X)

proof −
define A where A ≡ λX . {y |y. Xd y ∈ ds ∧ y ∈ Field (Pd (Xd y)) ∧ (∀ x ∈ X . Xd x = Xd y −→ (x, y) ∈

Pd (Xd x))}
have A (cop ds) = fp-cop-F ds (is ?lhs = ?rhs)
proof(rule set-elem-equalityI)

fix x assume x ∈ ?lhs
show x ∈ ?rhs
proof(cases Xd x ∈ Xd ‘ cop ds)

case True with ‹x ∈ ?lhs› show ?thesis
unfolding A-def by clarsimp (metis CH-range ′ above-def fp-cop-F-closed-inv ′ mem-Collect-eq)

next
case False with ‹x ∈ ?lhs› fp-cop-F-all show ?thesis

unfolding A-def by blast
qed

next
fix x assume x ∈ ?rhs
with fp-cop-F-worst show x ∈ ?lhs

unfolding A-def using fp-cop-F-range-inv ′[OF ‹x ∈ ?rhs›] by fastforce
qed
moreover
have CH (A X) = X
proof(rule ccontr)

assume CH (A X) 6= X
then have CH (A X) 6= CH X using ‹stable-on ds X› stable-on-CH by blast
then obtain h where XXX : Ch h (A X) 6= Ch h X using mem-CH-Ch by blast
have ¬stable-on ds X
proof(rule blocking-on-imp-not-stable[OF blocking-onI])

show Ch h (A X) 6= Ch h X by fact
from Pd-linear ‹stable-on ds X› show Ch h (A X) = Ch h (X ∪ Ch h (A X))

unfolding A-def
by − (rule consistencyD[OF Ch-consistency],

auto 10 0 dest: Ch-range ′ stable-on-Xd stable-on-range ′ stable-on-allocation inj-onD underS-incl-iff)
next

fix x assume x ∈ Ch h (A X)
with Ch-singular Pd-linear show x ∈ CD-on ds (X ∪ Ch h (A X))

unfolding A-def
by (auto 9 3 simp: mem-CD-on-Cd Cd-greatest greatest-def

dest: Ch-range ′ Pd-range ′ Cd-Xd Cd-single inj-onD underS-incl-iff
intro: FieldI1)

qed
with ‹stable-on ds X› show False by blast

qed
moreover
from Pd-linear Theorem-5 [OF ‹stable-on ds X›] ‹stable-on ds X› have A (cop ds) ⊆ A X

unfolding A-def order-on-defs by (fastforce dest: Pd-Xd elim: transE)
then have card (Ch h (A (cop ds))) ≤ card (Ch h (A X))

by (fastforce intro: ladD[OF spec[OF Ch-lad]])
60

ultimately show ?thesis by (metis (no-types, lifting) Ch-CH-irc-idem)
qed

The top-level proof is the same as in §5.6.

lemma Theorem-6-fp-cop-F :
shows d ∈ ds =⇒ card (Cd d X) = card (Cd d (cop ds))

and card (Ch h X) = card (Ch h (fp-cop-F ds))
proof −

let ?Sum-Cd-COP =
∑

d∈ds. card (Cd d (cop ds))
let ?Sum-Ch-COP =

∑
h∈UNIV . card (Ch h (fp-cop-F ds))

let ?Sum-Cd-X =
∑

d∈ds. card (Cd d X)
let ?Sum-Ch-X =

∑
h∈UNIV . card (Ch h X)

have ?Sum-Cd-COP = ?Sum-Ch-COP
using Theorem-1 stable-on-CD-on CD-on-card[symmetric] CH-card[symmetric] by simp

also have . . . ≤ ?Sum-Ch-X
using RHT-Ch-card by (simp add: sum-mono)

also have . . . = ?Sum-Cd-X
using CD-on-card[symmetric] CH-card[symmetric]
using ‹stable-on ds X› stable-on-CD-on stable-on-CH by auto

finally have ?Sum-Cd-X = ?Sum-Cd-COP
using RHT-Cd-card by (simp add: eq-iff sum-mono)

with RHT-Cd-card show d ∈ ds =⇒ card (Cd d X) = card (Cd d (cop ds))
by (fastforce elim: sum-mono-inv)

have ?Sum-Ch-X = ?Sum-Cd-X
using ‹stable-on ds X› stable-on-CD-on stable-on-CH CD-on-card[symmetric] CH-card[symmetric] by simp

also have . . . ≤ ?Sum-Cd-COP
using RHT-Cd-card by (simp add: sum-mono)

also have . . . = ?Sum-Ch-COP
using CD-on-card[symmetric] CH-card[symmetric]
using Theorem-1 stable-on-CD-on stable-on-CH by auto

finally have ?Sum-Ch-COP = ?Sum-Ch-X
using RHT-Ch-card by (simp add: eq-iff sum-mono)

with RHT-Ch-card show card (Ch h X) = card (Ch h (fp-cop-F ds))
by (fastforce elim: sym[OF sum-mono-inv])

qed

end

theorem Theorem-6 :
assumes stable-on ds X
assumes stable-on ds Y
shows d ∈ ds =⇒ card (Cd d X) = card (Cd d Y)

and card (Ch h X) = card (Ch h Y)

end

6.5 Concluding remarks

We next discuss a kind of interference between doctors termed bossiness in §7. This has some implications for the
strategic issues we discuss in §8.

7 Kojima (2010): The non-existence of a stable and non-bossy mechanism

Kojima (2010) says that “a mechanism is nonbossy if an agent cannot change [the] allocation of other agents unless
doing so also changes her own allocation.” He shows that no mechanism can be both stable-on and nonbossy in a

61

one-to-one marriage market. We establish this result in our matching-with-contracts setting here.
There are two complications. Firstly, as not all agent preferences yield stable matches (unlike the marriage market),
we constrain hospital choice functions to satisfy ContractsWithBilateralSubstitutesAndIRC, which is the weakest
condition formalized here that ensures that fp-cop-F yields stable matches. (We note that it is not the weakest
condition guaranteeing the existence of stable matches.)
Secondly, non-bossiness needs to separately treat the preferences of the doctors and the choice functions of the
hospitals.
We work in the Contracts locale for its types and the constants Xd and Xh. To account for the quantification over
preferences, we directly use some raw constants from the Contracts locale.

context Contracts
begin

abbreviation (input) mechanism-domain :: (′d ⇒ ′x rel) ⇒ (′h ⇒ ′x cfun) ⇒ bool where
mechanism-domain ≡ ContractsWithBilateralSubstitutesAndIRC Xd Xh

definition nonbossy :: ′d set ⇒ (′d, ′h, ′x) mechanism ⇒ bool where
nonbossy ds ϕ ←→
(∀Pd Pd ′ Ch. ∀ d∈ds. mechanism-domain Pd Ch ∧ mechanism-domain (Pd(d:=Pd ′)) Ch −→

dX (ϕ Pd Ch ds) d = dX (ϕ (Pd(d:=Pd ′)) Ch ds) d −→ ϕ Pd Ch ds = ϕ (Pd(d:=Pd ′)) Ch ds)
∧ (∀Pd Ch Ch ′ h. mechanism-domain Pd Ch ∧ mechanism-domain Pd (Ch(h:=Ch ′)) −→

hX (ϕ Pd Ch ds) h = hX (ϕ Pd (Ch(h:=Ch ′)) ds) h −→ ϕ Pd Ch ds = ϕ Pd (Ch(h:=Ch ′)) ds)

definition mechanism-stable :: ′d set ⇒ (′d, ′h, ′x) mechanism ⇒ bool where
mechanism-stable ds ϕ
←→ (∀Pd Ch. mechanism-domain Pd Ch −→ Contracts.stable-on Pd Ch ds (ϕ Pd Ch ds))

end

The proof is somewhat similar to those for Roth’s impossibility results (see, for instance, Roth and Sotomayor
(1990, Theorem 4.4)). It relies on the existence of at least three doctors, three hospitals, and a complete set of
contracts between these. The following locale captures a suitable set of constraints.

locale BossyConstants =
fixes Xd :: ′x ⇒ ′d
fixes Xh :: ′x ⇒ ′h
fixes d1h1 d1h2 d1h3 :: ′x
fixes d2h1 d2h2 d2h3 :: ′x
fixes d3h1 d3h2 d3h3 :: ′x
fixes ds :: ′d set
assumes ds: distinct [Xd d1h1 , Xd d2h1 , Xd d3h1]
assumes hs: distinct [Xh d1h1 , Xh d1h2 , Xh d1h3]
assumes Xd-xs:

Xd ‘ {d1h2 , d1h3} = {Xd d1h1}
Xd ‘ {d2h2 , d2h3} = {Xd d2h1}
Xd ‘ {d3h2 , d3h3} = {Xd d3h1}

assumes Xh-xs:
Xh ‘ {d2h1 , d3h1} = {Xh d1h1}
Xh ‘ {d2h2 , d3h2} = {Xh d1h2}
Xh ‘ {d2h3 , d3h3} = {Xh d1h3}

assumes dset: {Xd d1h1 , Xd d2h1 , Xd d3h1} ⊆ ds

locale ContractsWithBossyConstants =
Contracts + BossyConstants

begin

abbreviation (input) d1 ≡ Xd d1h1
abbreviation (input) d2 ≡ Xd d2h1
abbreviation (input) d3 ≡ Xd d3h1

62

abbreviation (input) h1 ≡ Xh d1h1
abbreviation (input) h2 ≡ Xh d1h2
abbreviation (input) h3 ≡ Xh d1h3

We proceed to show that variations on the following preferences for doctors and hospitals force a stable mechanism
to be bossy. Recall that linord-of-list constructs a linear order from a list of elements greatest to least. The hospital
choice functions take at most one contract from those on offer, and are again ordered from most preferable to least.

definition BPd :: ′b ⇒ ′a rel where
BPd ≡ map-of-default {} [(d1 , linord-of-list [d1h3 , d1h2 , d1h1])

, (d2 , linord-of-list [d2h3 , d2h2 , d2h1])
, (d3 , linord-of-list [d3h1 , d3h2 , d3h3])]

abbreviation mkhord :: ′d list ⇒ ′d cfun where
mkhord xs X ≡ set-option (List.find (λx. x∈X) xs)

definition BCh :: ′c ⇒ ′a cfun where
BCh ≡ map-of-default (λ-. {}) [(h1 , mkhord [d1h1 , d2h1 , d3h1])

, (h2 , mkhord [])
, (h3 , mkhord [d3h3 , d2h3 , d1h3])]

Interpreting the Contracts locale gives us access to some useful constants.

interpretation Bossy: Contracts Xd Xh BPd BCh

lemma BPd-BCh-mechanism-domain:
shows mechanism-domain BPd BCh

lemma Bossy-stable:
shows Bossy.stable-on ds X ←→ X = {d1h1 , d3h3}

The second preference order has doctor d2 reject all contracts and is otherwise the same as the first.

definition BPd ′ :: ′b ⇒ ′a rel where
BPd ′ = BPd(d2 := {})

interpretation Bossy ′: Contracts Xd Xh BPd ′ BCh

lemma BPd ′-BCh-mechanism-domain:
shows mechanism-domain BPd ′ BCh

lemma Bossy ′-stable:
shows Bossy ′.stable-on ds X ←→ X = {d1h3 , d3h1} ∨ X = {d1h1 , d3h3}

The third preference order adjusts the choice function of hospital h2 and is otherwise the same as the second.

definition BCh ′ :: ′c ⇒ ′a cfun where
BCh ′ ≡ BCh(h2 := mkhord [d1h2 , d2h2 , d3h2])

interpretation Bossy ′′: Contracts Xd Xh BPd ′ BCh ′

lemma BPd ′-BCh ′-mechanism-domain:
shows mechanism-domain BPd ′ BCh ′

lemma Bossy ′′-stable:
shows Bossy ′′.stable-on ds X ←→ X = {d3h1 , d1h3}

theorem Theorem-1 :
shows ¬(mechanism-stable ds ϕ ∧ nonbossy ds ϕ)

proof(rule notI , erule conjE)

63

assume S : Bossy.mechanism-stable ds ϕ
assume NB: Bossy.nonbossy ds ϕ
from S Bossy ′-stable BPd ′-BCh-mechanism-domain
consider (A) ϕ BPd ′ BCh ds = {d1h3 , d3h1} | (B) ϕ BPd ′ BCh ds = {d1h1 , d3h3}

unfolding mechanism-stable-def by blast
then show False
proof cases

case A
from S BPd-BCh-mechanism-domain Bossy-stable have ϕ BPd BCh ds = {d1h1 , d3h3}

unfolding mechanism-stable-def by blast
with Xd-xs ds xs dset A show False

using nonbossy-Pd[OF NB BPd-BCh-mechanism-domain BPd ′-BCh-mechanism-domain[unfolded BPd ′-def]]
unfolding BPd ′-def [symmetric] dX-def by fastforce

next
case B
from S BPd ′-BCh ′-mechanism-domain Bossy ′′-stable have ϕ BPd ′ BCh ′ ds = {d3h1 , d1h3}

unfolding mechanism-stable-def by blast
with Xh-xs hs xs dset B show False
using nonbossy-Ch[OF NB BPd ′-BCh-mechanism-domain BPd ′-BCh ′-mechanism-domain[unfolded BCh ′-def]]
unfolding BCh ′-def [symmetric] hX-def by fastforce

qed
qed

In particular, the COP (see §6) is bossy as it always yields stable matches under mechanism-stable.

theorem Theorem-1-COP:
¬nonbossy ds Contracts.cop

using ContractsWithBilateralSubstitutesAndIRC .Theorem-1 Theorem-1 mechanism-stable-def by blast

end

Therefore doctors can interfere with other doctors’ allocations under the COP without necessarily disadvantaging
themselves, which has implications for the notion of group strategy-proof (Hatfield and Kojima 2009); see §8.2.

8 Strategic results

We proceed to establish a series of strategic results for the COP (see §5.7 and §6), making use of the invariants we
developed for it. These results also apply to the matching-with-contracts setting of §5, and where possible we
specialize our lemmas to it.

8.1 Hatfield and Milgrom (2005): Theorems 10 and 11: Truthful revelation as a Dominant
Strategy

Theorems 10 and 11 demonstrate that doctors cannot obtain better results for themselves in the doctor-optimal
match (i.e., cop ds, equal to match (gfp-F ds) by Theorem-15-match assuming hospital preferences satisfy substitutes)
by misreporting their preferences. (See Roth and Sotomayor (1990, §4.2) for a discussion about the impossibility
of a mechanism being strategy-proof for all agents.)
Hatfield and Milgrom (2005, §III(B)) provide the following intuition:

We will show the positive incentive result for the doctor-offering algorithm in two steps which highlight
the different roles of the two preference assumptions. First, we show that the substitutes condition, by
itself, guarantees that doctors cannot benefit by exaggerating the ranking of an unattainable contract.
More precisely, if there exists a preferences list for a doctor d such that d obtains contract x by
submitting this list, then d can also obtain x by submitting a preference list that includes only contract
x [Theorem 10]. Second, we will show that adding the law of aggregate demand guarantees that a doctor
does at least as well as reporting truthfully as by reporting any singleton [Theorem 11]. Together, these
are the dominant strategy result.

64

We prove Theorem 10 via a lemma that states that the contracts above x ∈ X for some stable match X with
respect to manipulated preferences Pd (Xd x) do not improve the outcome for doctor Xd x with respect to their
true preferences Pd ′ (Xd x) in the doctor-optimal match for Pd ′.
This is weaker than Hatfield and Kojima (2009, Lemma 1) (see §8.2) as we do not guarantee that the allocation
does not change. By the bossiness result of §7, such manipulations can change the outcomes of the other doctors;
this lemma establishes that only weak improvements are possible.

context ContractsWithUnilateralSubstitutesAndIRC
begin

context
fixes d ′ :: ′b
fixes Pd ′ :: ′b ⇒ ′a rel
assumes Pd ′-d ′-linear : Linear-order (Pd ′ d ′)
assumes Pd ′-d ′-range: Field (Pd ′ d ′) ⊆ {y. Xd y = d ′}
assumes Pd ′: ∀ d. d 6=d ′ −→ Pd ′ d = Pd d

begin

interpretation PdXXX : ContractsWithUnilateralSubstitutesAndIRC Xd Xh Pd ′ Ch

theorem Pd-above-irrelevant:
assumes d ′-Field: dX X d ′ ⊆ Field (Pd ′ d ′)
assumes d ′-Above: Above (Pd ′ d ′) (dX X d ′) ⊆ Above (Pd d ′) (dX X d ′)
assumes x ∈ X
assumes stable-on ds X
shows ∃ y ∈ PdXXX .cop ds. (x, y) ∈ Pd ′ (Xd x)

proof(rule PdXXX .Theorem-5 [OF ccontr ‹x ∈ X›])
assume ¬PdXXX .stable-on ds X
then show False
proof(cases rule: PdXXX .not-stable-on-cases)

case not-individually-rational
from Pd ′ ‹stable-on ds X› d ′-Field have x ∈ PdXXX .Cd (Xd x) X if x ∈ X for x

using that unfolding dX-def by (force simp: stable-on-range ′ stable-on-allocation PdXXX .Cd-single)
with ‹stable-on ds X› not-individually-rational show False

unfolding PdXXX .individually-rational-on-def
by (auto simp: PdXXX .mem-CD-on-Cd stable-on-Xd dest: stable-on-CH PdXXX .CD-on-range ′)

next
case not-no-blocking
then obtain h X ′′ where PdXXX .blocking-on ds X h X ′′

unfolding PdXXX .stable-no-blocking-on-def by blast
have blocking-on ds X h X ′′

proof(rule blocking-onI)
fix x assume x ∈ X ′′

note Pbos = PdXXX .blocking-on-Field[OF ‹PdXXX .blocking-on ds X h X ′′›]
PdXXX .blocking-on-allocation[OF ‹PdXXX .blocking-on ds X h X ′′›]
PdXXX .blocking-on-CD-on ′[OF ‹PdXXX .blocking-on ds X h X ′′› ‹x ∈ X ′′›]

show x ∈ CD-on ds (X ∪ X ′′)
proof(cases Xd x = d ′)

case True
from Pd-linear ′ d ′-Field d ′-Above ‹x ∈ X ′′› ‹Xd x = d ′› Pbos
have dX X ′′ (Xd x) ⊆ Field (Pd (Xd x))

by (force simp: PdXXX .mem-CD-on-Cd PdXXX .Cd-Above PdXXX .dX-Int-Field-Pd Above-union
Int-Un-distrib2 dX-singular intro: Above-Field)

moreover from ‹stable-on ds X› have dX X (Xd x) ⊆ Field (Pd (Xd x))
by (force dest: dX-range ′ stable-on-range ′)

moreover note Pd-linear ′ Pd-range PdXXX-range d ′-Field d ′-Above ‹x ∈ X ′′› ‹Xd x = d ′› Pbos
ultimately show ?thesis

by (clarsimp simp: PdXXX .mem-CD-on-Cd PdXXX .Cd-Above-dX mem-CD-on-Cd Cd-Above-dX

65

Above-union dX-union Int-Un-distrib2)
(fastforce simp: dX-singular intro: Above-Linear-singleton)

next
case False
with ‹x ∈ PdXXX .CD-on ds (X ∪ X ′′)› show ?thesis

by (clarsimp simp: Pd ′ PdXXX .mem-CD-on-Cd mem-CD-on-Cd PdXXX .Cd-greatest Cd-greatest)
qed

qed (use ‹PdXXX .blocking-on ds X h X ′′› in ‹simp-all add: PdXXX .blocking-on-def ›)
with ‹stable-on ds X› show False by (simp add: blocking-on-imp-not-stable)

qed
qed

end

end

We now specialize this lemma to Theorem 10 by defining a preference order for the doctors where distinguished
doctors ds submit single preferences for the contracts they receive in the doctor-optimal match.
The function override-on f g A = (λa. if a ∈ A then g a else f a) denotes function update at several points.
context Contracts
begin

definition Pd-singletons-for-ds :: ′x set ⇒ ′d set ⇒ ′d ⇒ ′x rel where
Pd-singletons-for-ds X ds ≡ override-on Pd (λd. dX X d × dX X d) ds

end

We interpret our ContractsWithUnilateralSubstitutesAndIRC locale with respect to this updated preference order,
which gives us the stable match and properties of it.
context ContractsWithUnilateralSubstitutesAndIRC
begin

context
fixes ds :: ′b set
fixes X :: ′a set
assumes stable-on ds X

begin

interpretation
Singleton-for-d: ContractsWithUnilateralSubstitutesAndIRC Xd Xh Pd-singletons-for-ds X {d} Ch for d

Our version of Hatfield and Milgrom (2005, Theorem 10) (for the COP) states that if a doctor submits a preference
order containing just x, where x is their contract in some stable match X, then that doctor receives exactly x in
the doctor-optimal match and all other doctors do at least as well.
theorem Theorem-10-fp-cop-F :

assumes x ∈ X
shows ∃ y ∈ Singleton-for-d.cop d ds. (x, y) ∈ Pd-singletons-for-ds X {d} (Xd x)

proof(rule Pd-above-irrelevant[where ds=ds and d ′=d and X=X])
from stable-on-allocation ‹stable-on ds X›
show Above (Pd-singletons-for-ds X {d} d) (Singleton-for-d.dX X d) ⊆ Above (Pd d) (Singleton-for-d.dX X d)

by (clarsimp simp: Above-def Pd-singletons-for-ds-simps dX-def) (metis inj-on-eq-iff stable-on-range ′ Pd-refl)
qed (use stable-on-allocation ‹stable-on ds X› Pd-singletons-for-ds-linear Pd-singletons-for-ds-range assms

in ‹simp-all, simp-all add: Pd-singletons-for-ds-simps dX-def ›)

end

end
66

We can recover the original Theorem 10 by specializing this result to gfp-F.
context ContractsWithSubstitutesAndIRC
begin

interpretation
Singleton-for-d: ContractsWithSubstitutesAndIRC Xd Xh Pd-singletons-for-ds (match (gfp-F ds)) {d} Ch

for ds d

theorem Theorem-10 :
assumes x ∈ match (gfp-F ds)
shows ∃ y ∈ match (Singleton-for-d.gfp-F ds d ds). (x, y) ∈ Pd-singletons-for-ds (match (gfp-F ds)) {d} (Xd x)

using Theorem-10-fp-cop-F Singleton-for-d.Theorem-15-match Theorem-15-match gfp-F-stable-on assms by simp

corollary Theorem-10-d:
assumes x ∈ match (gfp-F ds)
shows x ∈ match (Singleton-for-d.gfp-F ds (Xd x) ds)

using gfp-F-stable-on[of ds] Theorem-10 [OF assms(1), of Xd x] assms
by (clarsimp simp: Pd-singletons-for-ds-simps dX-def inj-on-eq-iff dest!: stable-on-allocation)

end

The second theorem (Hatfield and Milgrom 2005, Theorem 11) depends on both Theorem 10 and the rural
hospitals theorem (§5.6, §6.4). It shows that, assuming everything else is fixed, if doctor d ′ obtains contract x with
(manipulated) preferences Pd d ′ in the doctor-optimal match, then they will obtain a contract at least as good by
submitting their true preferences Pd ′ d ′ (with respect to these true preferences).
locale TruePrefs = Contracts +

fixes x :: ′a
fixes X :: ′a set
fixes ds :: ′b set
fixes Pd ′ :: ′b ⇒ ′a rel
assumes x: x ∈ X
assumes X : stable-on ds X
assumes Pd ′-d ′-x: x ∈ Field (Pd ′ (Xd x))
assumes Pd ′-d ′-linear : Linear-order (Pd ′ (Xd x))
assumes Pd ′-d ′-range: Field (Pd ′ (Xd x)) ⊆ {y. Xd y = Xd x}
assumes Pd ′: ∀ d. d 6=Xd x −→ Pd ′ d = Pd d

locale ContractsWithUnilateralSubstitutesAndIRCAndLADAndTruePrefs =
ContractsWithUnilateralSubstitutesAndIRCAndLAD + TruePrefs

begin

interpretation TruePref : ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh Pd ′ Ch

interpretation TruePref-tax: ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh Pd ′-tax Ch

interpretation
Singleton-for-d: ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh Pd-singletons-for-ds X {Xd x} Ch

lemma Theorem-11-Pd ′-tax:
shows ∃ y∈TruePref-tax.cop ds. (x, y) ∈ Pd ′-tax (Xd x)

proof(rule ccontr)
let ?Z = TruePref-tax.cop ds
assume ¬?thesis then have Xd x /∈ Xd ‘ ?Z

using Pd ′-range Pd ′-linear [of Xd x] Pd ′-d ′-x unfolding order-on-defs
by − (clarsimp, drule (1) bspec,

fastforce simp: Pd ′-tax-def above-def Refl-Field-Restr dest: refl-onD
dest!: CH-range ′ TruePref-tax.fp-cop-F-range-inv ′)

show False
67

proof(cases Singleton-for-d.stable-on ds ?Z)
case True
moreover
from Theorem-10-fp-cop-F [OF X x, of Xd x] X
have x ∈ CH (Singleton-for-d.fp-cop-F ds)

by (force simp: Pd-singletons-for-ds-simps dX-def dest: inj-onD stable-on-allocation)
with Singleton-for-d.fp-cop-F-allocation
have Singleton-for-d.Cd (Xd x) (Singleton-for-d.cop ds) = {x}

by (meson Singleton-for-d.Cd-single Singleton-for-d.Cd-singleton Singleton-for-d.fp-cop-F-range-inv ′

TruePref-tax.CH-range ′)
with Singleton-for-d.Theorem-1 [of ds]
have x ∈ Y if Singleton-for-d.stable-on ds Y for Y

using Singleton-for-d.Theorem-6-fp-cop-F(1)[where ds=ds and X=Y and d=Xd x] that Xd-x-ds x
card-Suc-eq[where A=Singleton-for-d.Cd (Xd x) Y and k=0] stable-on-allocation[OF X]

by (fastforce simp: Singleton-for-d.Cd-singleton[symmetric] Pd-singletons-for-ds-simps dX-def
dest: Singleton-for-d.Cd-range ′ inj-onD)

moreover note ‹Xd x /∈ Xd ‘ ?Z ›
ultimately show False by blast

next
case False note ‹¬Singleton-for-d.stable-on ds ?Z ›
then show False
proof(cases rule: Singleton-for-d.not-stable-on-cases)

case not-individually-rational
with TruePref-tax.Theorem-1 [of ds] ‹Xd x /∈ Xd ‘ ?Z ›
show False

unfolding TruePref-tax.stable-on-def Singleton-for-d.individually-rational-on-def
TruePref-tax.individually-rational-on-def Singleton-for-d.CD-on-def

by (auto dest: Singleton-for-d.Cd-range ′)
(metis TruePref-tax.mem-CD-on-Cd TruePref-tax-Cd-not-x image-eqI)

next
case not-no-blocking
then obtain h X ′′ where Singleton-for-d.blocking-on ds ?Z h X ′′

unfolding Singleton-for-d.stable-no-blocking-on-def by blast
have TruePref-tax.blocking-on ds ?Z h X ′′

proof(rule TruePref-tax.blocking-onI)
fix y assume y ∈ X ′′

with ‹Singleton-for-d.blocking-on ds ?Z h X ′′› have YYY : y ∈ Singleton-for-d.CD-on ds (?Z ∪ X ′′)
unfolding Singleton-for-d.blocking-on-def by blast

show y ∈ TruePref-tax.CD-on ds (?Z ∪ X ′′)
proof(cases Xd y = Xd x)

case True
with inj-on-eq-iff [OF stable-on-allocation x] X YYY have y = x

by (fastforce simp: Singleton-for-d.mem-CD-on-Cd Pd-singletons-for-ds-simps dX-def
dest: Singleton-for-d.Cd-range ′)

with X Xd-x-ds TruePref-tax.Theorem-1 [of ds] ‹Xd x /∈ Xd ‘ ?Z › ‹y ∈ X ′′›
show ?thesis

using Singleton-for-d.blocking-on-allocation[OF ‹Singleton-for-d.blocking-on ds ?Z h X ′′›]
by (clarsimp simp: TruePref-tax.mem-CD-on-Cd TruePref-tax.Cd-greatest greatest-def Pd ′-tax-x)

(metis TruePref-tax.Pd-range ′ image-eqI inj-on-contraD TruePref-tax.Pd-refl)
next

case False with YYY show ?thesis
by (simp add: Singleton-for-d.mem-CD-on-Cd TruePref-tax.mem-CD-on-Cd TruePref-tax-Cd-not-x)

qed
qed (use ‹Singleton-for-d.blocking-on ds ?Z h X ′′› in ‹simp-all add: Singleton-for-d.blocking-on-def ›)
with TruePref-tax.Theorem-1 [of ds] show False by (simp add: TruePref-tax.blocking-on-imp-not-stable)

qed
qed

qed
68

theorem Theorem-11-fp-cop-F :
shows ∃ y∈TruePref .cop ds. (x, y) ∈ Pd ′ (Xd x)

proof −
from Theorem-11-Pd ′-tax
obtain y where y: y ∈ CH (TruePref-tax.fp-cop-F ds)

and xy: (x, y) ∈ Pd ′-tax (Xd x) ..
from TruePref-tax.stable-on-range ′[OF TruePref-tax.Theorem-1]
have dX (CH (TruePref-tax.fp-cop-F ds)) (Xd x) ⊆ Field (Pd ′ (Xd x))

by (clarsimp simp: dX-def) (metis (no-types, opaque-lifting) Pd ′-tax-Pd ′ contra-subsetD mono-Field)
moreover
from TruePref-tax.fp-cop-F-allocation[of ds] Pd ′-tax-Pd ′ y xy
have Above (Pd ′ (Xd x)) (dX (CH (TruePref-tax.fp-cop-F ds)) (Xd x))
⊆ Above (Pd ′-tax (Xd x)) (dX (CH (TruePref-tax.fp-cop-F ds)) (Xd x))

by − (rule Pd ′-Above; fastforce simp: dX-singular above-def dest: TruePref-tax.Pd-Xd)
moreover note Pd ′-linear Pd ′-range TruePref-tax.Theorem-1 [of ds] y
ultimately have z: ∃ z∈CH (TruePref .fp-cop-F ds). (y, z) ∈ Pd ′ (Xd y)

by − (rule TruePref-tax.Pd-above-irrelevant[where d ′=Xd x and X=CH (TruePref-tax.fp-cop-F ds)];
simp add: Pd ′-tax-def)

from Pd ′-linear xy z show ?thesis
unfolding Pd ′-tax-def order-on-defs by clarsimp (metis TruePref .Pd-Xd transE)

qed

end

locale ContractsWithSubstitutesAndLADAndTruePrefs =
ContractsWithSubstitutesAndLAD + TruePrefs

sublocale ContractsWithSubstitutesAndLADAndTruePrefs
< ContractsWithUnilateralSubstitutesAndIRCAndLADAndTruePrefs

context ContractsWithSubstitutesAndLADAndTruePrefs
begin

interpretation TruePref : ContractsWithSubstitutesAndLAD Xd Xh Pd ′ Ch

theorem Theorem-11 :
shows ∃ y∈match (TruePref .gfp-F ds). (x, y) ∈ Pd ′ (Xd x)

using Theorem-11-fp-cop-F TruePref .Theorem-15-match by simp

end

Note that this theorem depends on the hypotheses introduced by the TruePrefs locale, and only applies to doctor
Xd x. The following sections show more general and syntactically self-contained results.
We omit Hatfield and Milgrom (2005, Theorem 12), which demonstrates the almost-necessity of LAD for truth
revelation to be the dominant strategy for doctors.

8.2 Hatfield and Kojima (2009, 2010): The doctor-optimal match is group strategy-proof

Hatfield and Kojima (2010, Theorem 7) assert that the COP is group strategy-proof, which we define below. We
begin by focusing on a single agent (Hatfield and Kojima 2009):

A mechanism ϕ is strategy-proof if, for any preference profile Pd, there is no doctor d and preferences
Pd ′ such that d strictly prefers yd to xd according to Pd d, where xd and yd are the (possibly null)
contracts for d in ϕ Pd and ϕ Pd(d := Pd ′), respectively.

The syntax f (a := b) = (λx. if x = a then b else f x) denotes function update at a point.
We make this definition in the Contracts locale to avail ourselves of some types and the Xd and Xh constants. We

69

also restrict hospital preferences to those that guarantee our earlier strategic results. As gfp-F requires these to
satisfy the stronger substitutes constraint for stable matches to exist, we now deal purely with the COP.

context Contracts
begin

abbreviation (input) mechanism-domain :: (′d ⇒ ′x rel) ⇒ (′h ⇒ ′x cfun) ⇒ bool where
mechanism-domain ≡ ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh

definition strategy-proof :: ′d set ⇒ (′d, ′h, ′x) mechanism ⇒ bool where
strategy-proof ds ϕ ←→
(∀Pd Ch. mechanism-domain Pd Ch −→
¬(∃ d∈ds. ∃Pd ′. mechanism-domain (Pd(d:=Pd ′)) Ch
∧ (∃ y∈ϕ (Pd(d:=Pd ′)) Ch ds. y ∈ AboveS (Pd d) (dX (ϕ Pd Ch ds) d))))

theorem fp-cop-F-strategy-proof :
shows strategy-proof ds Contracts.cop (is strategy-proof - ?ϕ)

end

The adaptation to groups is straightforward (Hatfield and Kojima 2009, 2010):

A mechanism ϕ is group strategy-proof if, for any preference profile Pd, there is no group of doctors ds ′

⊆ ds and a preference profile Pd ′ such that every d ∈ ds ′ strictly prefers yd to xd according to Pd d,
where xd and yd are the (possibly null) contracts for d in ϕ Pd and ϕ Pd(d1 := Pd ′ d1, . . . , dn := Pd ′

dn), respectively.

This definition requires all doctors in the coalition to strictly prefer the outcome with manipulated preferences, as
Kojima’s bossiness results (see §7) show that a doctor may influence other doctors’ allocations without affecting
their own. See Hatfield and Kojima (2009, §3) for discussion, and also Roth and Sotomayor (1990, Chapter 4); in
particular their §4.3.1 discusses the robustness of these results and exogenous transfers.

context Contracts
begin

definition group-strategy-proof :: ′d set ⇒ (′d, ′h, ′x) mechanism ⇒ bool where
group-strategy-proof ds ϕ ←→
(∀Pd Ch. mechanism-domain Pd Ch −→
¬(∃ ds ′⊆ds. ds ′ 6= {} ∧ (∃Pd ′. mechanism-domain (override-on Pd Pd ′ ds ′) Ch
∧ (∀ d∈ds ′. ∃ y∈ϕ (override-on Pd Pd ′ ds ′) Ch ds. y ∈ AboveS (Pd d) (dX (ϕ Pd Ch ds) d)))))

lemma group-strategy-proof-strategy-proof :
assumes group-strategy-proof ds ϕ
shows strategy-proof ds ϕ

end

Perhaps surprisingly, Hatfield and Kojima (2010, Lemma 1, for a single doctor) assert that shuffling any contract
above the doctor-optimal one to the top of a doctor’s preference order preserves exactly the doctor-optimal match,
which on the face of it seems to contradict the bossiness result of §7: by the earlier strategy-proofness results, this
cannot affect the outcome for that particular doctor, but by bossiness it may affect others. The key observation is
that this manipulation preserves blocking coalitions in the presence of lad.
This result is central to showing the group-strategy-proofness of the COP.

context Contracts
begin

definition shuffle-to-top :: ′x set ⇒ ′d ⇒ ′x rel where
shuffle-to-top Y = (λd. Pd d − dX Y d × UNIV ∪ (Domain (Pd d) ∪ dX Y d) × dX Y d)

70

definition Pd-shuffle-to-top :: ′d set ⇒ ′x set ⇒ ′d ⇒ ′x rel where
Pd-shuffle-to-top ds ′ Y = override-on Pd (shuffle-to-top Y) ds ′

end

context ContractsWithUnilateralSubstitutesAndIRCAndLAD
begin

lemma Lemma-1 :
assumes allocation Y
assumes III : ∀ d∈ds ′′. ∃ y∈Y . y ∈ AboveS (Pd d) (dX (cop ds) d)
shows cop ds = Contracts.cop (Pd-shuffle-to-top ds ′′ Y) Ch ds

using finite[of ds ′′] subset-refl
proof(induct ds ′′ rule: finite-subset-induct ′)

case empty show ?case by (simp add: Pd-shuffle-to-top-simps)
next

case (insert d ds ′)
from insert
interpret Pds ′: ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh Pd-shuffle-to-top ds ′ Y Ch
let ?Z = CH (Pds ′.fp-cop-F ds)
note IH = ‹cop ds = ?Z ›
let ?Pd-shuffle-to-top = Pd-shuffle-to-top (insert d ds ′) Y
from insert interpret Pdds ′: ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh ?Pd-shuffle-to-top Ch
have XXX : ?Z = CH (Pdds ′.fp-cop-F ds)
proof(rule Pdds ′.doctor-optimal-match-unique[OF Pdds ′.doctor-optimal-matchI Pdds ′.fp-cop-F-doctor-optimal-match])

show Pdds ′.stable-on ds ?Z
proof(rule Pdds ′.stable-onI)

show Pdds ′.individually-rational-on ds ?Z
proof(rule Pdds ′.individually-rational-onI)

show Pdds ′.CD-on ds ?Z = ?Z (is ?lhs = ?rhs)
proof(rule set-elem-equalityI)

fix x assume x ∈ ?rhs
with ‹allocation Y › IH Pds ′.Theorem-1 [of ds] ‹d /∈ ds ′› show x ∈ ?lhs

by (clarsimp simp: Pds ′.stable-on-Xd Pdds ′.mem-CD-on-Cd Pdds ′.Cd-greatest greatest-def
Pd-shuffle-to-top-Field[OF ‹allocation Y ›],

simp add: Pd-shuffle-to-top-simps shuffle-to-top-def dX-def Set.Ball-def ,
metis stable-on-range ′[OF Theorem-1 [of ds]] inj-on-contraD[OF Pds ′.fp-cop-F-allocation[of ds]]

fp-cop-F-worst[of - ds] Pd-range ′ Pds ′.CH-range ′)
qed (meson IntE Pdds ′.CD-on-range ′)
show CH ?Z = ?Z by (simp add: CH-irc-idem)

qed
show Pdds ′.stable-no-blocking-on ds ?Z
proof(rule Pdds ′.stable-no-blocking-onI2)

fix h X ′′ assume Pbo: Pdds ′.blocking-on ds ?Z h X ′′

have Pds ′.blocking-on ds ?Z h X ′′

proof(rule Pds ′.blocking-onI)
fix x assume x ∈ X ′′

note Pbos = Pdds ′.blocking-on-allocation[OF ‹Pdds ′.blocking-on ds ?Z h X ′′›]
Pdds ′.blocking-on-CD-on ′[OF ‹Pdds ′.blocking-on ds ?Z h X ′′› ‹x ∈ X ′′›]
Pdds ′.blocking-on-Cd[OF ‹Pdds ′.blocking-on ds ?Z h X ′′›, where d=Xd x]

show x ∈ Pds ′.CD-on ds (?Z ∪ X ′′)
proof(cases Xd x = d)

case True
from ‹allocation Y › III ‹d ∈ ds ′′› ‹Xd x = d›
have dX Y (Xd x) ⊆ Field (Pd (Xd x))

by clarsimp (metis AboveS-Pd-Xd AboveS-Field dX-range ′ inj-on-eq-iff)
moreover with ‹allocation Y › ‹d /∈ ds ′›

Pdds ′.blocking-on-Field[OF ‹Pdds ′.blocking-on ds ?Z h X ′′›, where d=d] ‹Xd x = d›
71

have dX X ′′ (Xd x) ⊆ Field (Pd (Xd x))
by (force simp: Pd-shuffle-to-top-simps shuffle-to-top-Field)

moreover note ‹allocation Y › bspec[OF III [unfolded IH] ‹d ∈ ds ′′›] ‹d /∈ ds ′› ‹x ∈ X ′′› ‹Xd x = d›
Pds ′.stable-on-allocation[OF Pds ′.Theorem-1] Pbos

ultimately show ?thesis
by (clarsimp simp: Pdds ′.mem-CD-on-Cd Pds ′.mem-CD-on-Cd Pds ′.Cd-Above Pdds ′.Cd-Above

Int-Un-distrib2 Pd-shuffle-to-top-Field)
(clarsimp simp: Pd-shuffle-to-top-simps dX-singular dX-Int-Field-Pd;
fastforce simp: Above-def AboveS-def Pd-refl shuffle-to-top-def dX-def intro: FieldI1 dest: Pd-range ′

iff : inj-on-eq-iff)
next

case False
from Pbos ‹Xd x 6= d›
show ?thesis

by (simp add: Pdds ′.mem-CD-on-Cd Pds ′.mem-CD-on-Cd Pds ′.Cd-greatest Pdds ′.Cd-greatest)
(simp add: Pd-shuffle-to-top-simps)

qed
qed (use ‹Pdds ′.blocking-on ds ?Z h X ′′› in ‹simp-all add: Pdds ′.blocking-on-def ›)
with Pds ′.Theorem-1 [of ds] show False by (simp add: Pds ′.blocking-on-imp-not-stable)

qed
qed

next
fix W w assume Pdds ′.stable-on ds W w ∈ W

from III ‹d ∈ ds ′′› IH
obtain y where Y : y ∈ Y y ∈ AboveS (Pd d) (dX (Pds ′.cop ds) d) Xd y = d

by (metis AboveS-Pd-Xd)
show ∃ z∈Pds ′.cop ds. (w, z) ∈ Pd-shuffle-to-top (insert d ds ′) Y (Xd w)
proof(cases y ∈ W)

case True note ‹y ∈ W ›
from ‹d /∈ ds ′› ‹Pdds ′.stable-on ds W › Y ‹y ∈ W ›
interpret Pdds ′: ContractsWithUnilateralSubstitutesAndIRCAndLADAndTruePrefs

Xd Xh Pd-shuffle-to-top (insert d ds ′) Y Ch y W ds Pd-shuffle-to-top ds ′ Y
from ‹d /∈ ds ′› Y Pdds ′.Theorem-11-fp-cop-F have False

using Pds ′.stable-on-allocation[OF Pds ′.Theorem-1 [of ds]] Pd-linear Pd-range ′

unfolding order-on-defs antisym-def AboveS-def dX-def
by (clarsimp simp: Pd-shuffle-to-top-simps) (blast dest: Pd-Xd)

then show ?thesis ..
next

case False note ‹y /∈ W ›
show ?thesis
proof (cases Pds ′.stable-on ds W)

case True note ‹Pds ′.stable-on ds W ›
with ‹allocation Y › ‹d /∈ ds ′› Y ‹w ∈ W › ‹y /∈ W › show ?thesis

using Pds ′.Theorem-5 [OF ‹Pds ′.stable-on ds W › ‹w ∈ W ›]
by (auto 0 2 simp: Pd-shuffle-to-top-simps shuffle-to-top-def dX-def AboveS-def dest: Pd-range ′ inj-onD)

next
case False note ‹¬Pds ′.stable-on ds W ›
then show ?thesis
proof(cases rule: Pds ′.not-stable-on-cases)

case not-individually-rational
note Psos = Pdds ′.stable-on-allocation[OF ‹Pdds ′.stable-on ds W ›]

Pdds ′.stable-on-CH [OF ‹Pdds ′.stable-on ds W ›]
Pdds ′.stable-on-Xd[OF ‹Pdds ′.stable-on ds W ›]

have x ∈ Pds ′.Cd (Xd x) W if x ∈ W for x
proof(cases Xd x = d)

case True
with ‹allocation Y › ‹allocation W › Y (1 ,3) ‹y /∈ W ›

Pdds ′.stable-on-range ′[OF ‹Pdds ′.stable-on ds W › ‹x ∈ W ›] ‹x ∈ W ›
72

show ?thesis by (force simp: Pd-shuffle-to-top-Field dest: dX-range ′ inj-onD intro: Pds ′.Cd-single)
next

case False
with ‹allocation Y › ‹allocation W › Pdds ′.stable-on-range ′[OF ‹Pdds ′.stable-on ds W › ‹x ∈ W ›] ‹x ∈

W ›
show ?thesis by (auto simp: Pd-shuffle-to-top-Field intro!: Pds ′.Cd-single)

qed
with not-individually-rational ‹Pdds ′.CH W = W › Psos(3) show ?thesis

unfolding Pds ′.individually-rational-on-def by (auto simp: Pds ′.mem-CD-on-Cd dest: Pds ′.Cd-range ′)
next

case not-no-blocking
then obtain h X ′′ where Pbo: Pds ′.blocking-on ds W h X ′′

unfolding Pds ′.stable-no-blocking-on-def by blast
have Pdds ′.blocking-on ds W h X ′′

proof(rule Pdds ′.blocking-onI)
fix x assume x ∈ X ′′

note Pbos = Pds ′.blocking-on-allocation[OF ‹Pds ′.blocking-on ds W h X ′′›]
Pds ′.blocking-on-CD-on ′[OF ‹Pds ′.blocking-on ds W h X ′′› ‹x ∈ X ′′›]
Pds ′.blocking-on-Field[OF ‹Pds ′.blocking-on ds W h X ′′›, where d=d]

show x ∈ Pdds ′.CD-on ds (W ∪ X ′′)
proof(cases Xd x = d)

case True
from ‹allocation Y › III ‹d ∈ ds ′′› ‹Xd x = d›
have dX Y (Xd x) ⊆ Field (Pd (Xd x))

by clarsimp (metis AboveS-Pd-Xd AboveS-Field dX-range ′ inj-on-eq-iff)
moreover with ‹d /∈ ds ′› ‹Xd x = d› Pbos
have dX X ′′ (Xd x) ⊆ Field (Pd (Xd x))

by (clarsimp simp: Pd-shuffle-to-top-simps)
moreover note ‹allocation Y › ‹d /∈ ds ′› ‹y /∈ W › ‹Xd y = d› ‹x ∈ X ′′› Pbos
ultimately show ?thesis

by (clarsimp simp: Pdds ′.mem-CD-on-Cd Pds ′.mem-CD-on-Cd Pds ′.Cd-Above Pdds ′.Cd-Above
Int-Un-distrib2)

(clarsimp simp: Pd-shuffle-to-top-simps shuffle-to-top-Field dX-singular dX-Int-Field-Pd Un-absorb2 ,
force simp: ‹y ∈ Y › shuffle-to-top-def dX-def Above-def dest: inj-onD intro: FieldI1)

next
case False
from Pbos ‹Xd x 6= d› show ?thesis

by (simp add: Pdds ′.mem-CD-on-Cd Pds ′.mem-CD-on-Cd Pds ′.Cd-greatest Pdds ′.Cd-greatest)
(simp add: Pd-shuffle-to-top-simps)

qed
qed (use ‹Pds ′.blocking-on ds W h X ′′› in ‹simp-all add: Pds ′.blocking-on-def ›)
with ‹Pdds ′.stable-on ds W › have False by (simp add: Pdds ′.blocking-on-imp-not-stable)
then show ?thesis ..

qed
qed

qed
qed
from ‹?Z = CH (Pdds ′.fp-cop-F ds)› IH show cop ds = Pdds ′.cop ds by simp

qed

The top-level theorem states that the COP is group strategy proof. To account for the quantification over
preferences, we directly use the raw constants from the Contracts locale.

theorem fp-cop-F-group-strategy-proof :
shows group-strategy-proof ds Contracts.cop

(is group-strategy-proof - ?ϕ)
proof(rule group-strategy-proofI)

fix Pd Pds ′ Ch ds ′

assume XXX : mechanism-domain Pd Ch mechanism-domain (override-on Pd Pds ′ ds ′) Ch
73

and YYY : ds ′ ⊆ ds ds ′ 6= {}
and ZZZ : ∀ d∈ds ′. ∃ y∈?ϕ (override-on Pd Pds ′ ds ′) Ch ds. y ∈ AboveS (Pd d) (dX (?ϕ Pd Ch ds) d)

from XXX(1) interpret TruePref : ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh Pd Ch .
from XXX(2) interpret

ManiPref : ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh override-on Pd Pds ′ ds ′ Ch .
let ?Y = ManiPref .cop ds
let ?Z = TruePref .cop ds
let ?Pd-shuffle-to-top = TruePref .Pd-shuffle-to-top ds ′ ?Y
interpret ManiPref ′: ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh ?Pd-shuffle-to-top Ch
using TruePref .Ch-unilateral-substitutes TruePref .Ch-irc TruePref .Ch-lad TruePref .Ch-range TruePref .Ch-singular

TruePref .Pd-shuffle-to-top-linear ManiPref .stable-on-allocation[OF ManiPref .Theorem-1 [of ds]]
TruePref .Pd-shuffle-to-top-range ManiPref .dX-range

by unfold-locales simp-all
let ?Y ′ = ManiPref ′.cop ds
have ManiPref ′.stable-on ds ?Y
proof(rule ManiPref ′.stable-onI)

show ManiPref ′.individually-rational-on ds ?Y
proof(rule ManiPref ′.individually-rational-onI)

show ManiPref ′.CD-on ds ?Y = ?Y (is ?lhs = ?rhs)
proof(rule set-elem-equalityI)

fix x assume x ∈ ?rhs
then have Xd x ∈ ds ∧ (Xd x /∈ ds ′ −→ x ∈ Field (Pd (Xd x)))

by (metis ManiPref .fp-cop-F-range-inv ′ TruePref .CH-range ′ override-on-apply-notin)
with ManiPref .Theorem-1 [of ds] ‹x ∈ ?rhs› show x ∈ ?lhs

by (fastforce dest: ManiPref .stable-on-allocation
simp: ManiPref ′.Cd-single ManiPref ′.mem-CD-on-Cd TruePref .Pd-shuffle-to-top-Field dX-def)

qed (meson IntE ManiPref ′.CD-on-range ′)
show ManiPref ′.CH ?Y = ?Y by (simp add: ManiPref ′.CH-irc-idem)

qed
show ManiPref ′.stable-no-blocking-on ds ?Y
proof(rule ManiPref ′.stable-no-blocking-onI2)

fix h X ′′ assume ManiPref ′.blocking-on ds ?Y h X ′′

have ManiPref .blocking-on ds ?Y h X ′′

proof(rule ManiPref .blocking-onI)
fix x assume x ∈ X ′′

note Pbos = ManiPref ′.blocking-on-Field[OF ‹ManiPref ′.blocking-on ds ?Y h X ′′›, where d=Xd x]
ManiPref ′.blocking-on-allocation[OF ‹ManiPref ′.blocking-on ds ?Y h X ′′›]
ManiPref ′.blocking-on-CD-on ′[OF ‹ManiPref ′.blocking-on ds ?Y h X ′′› ‹x ∈ X ′′›]
ManiPref ′.blocking-on-Cd[OF ‹ManiPref ′.blocking-on ds ?Y h X ′′›, where d=Xd x]

show x ∈ ManiPref .CD-on ds (?Y ∪ X ′′)
proof(cases Xd x ∈ ds ′)

case True
from ManiPref .fp-cop-F-allocation[of ds] ‹x ∈ X ′′› ‹Xd x ∈ ds ′› Pbos bspec[OF ZZZ ‹Xd x ∈ ds ′›]
have dX X ′′ (Xd x) ⊆ Field (Pds ′ (Xd x))

by (clarsimp simp: dX-singular ManiPref ′.mem-CD-on-Cd ManiPref ′.Cd-Above TruePref .Pd-shuffle-to-top-Field)
(fastforce simp: TruePref .Pd-shuffle-to-top-simps dX-singular dest: TruePref .AboveS-Pd-Xd

dest: ManiPref .fp-cop-F-range-inv ′ ManiPref .CH-range ′ TruePref .Above-shuffle-to-top)
moreover from ManiPref .stable-on-range ′[OF ManiPref .Theorem-1] ‹Xd x ∈ ds ′›
have dX ?Y (Xd x) ⊆ Field (Pds ′ (Xd x))

by (metis dX-range ′ override-on-apply-in subsetI)
moreover note bspec[OF ZZZ ‹Xd x ∈ ds ′›] ‹x ∈ X ′′› ‹Xd x ∈ ds ′› Pbos
ultimately show ?thesis

using ManiPref .Pd-linear ′[of Xd x] ManiPref .fp-cop-F-allocation[of ds]
ManiPref ′.fp-cop-F-allocation[of ds]

by (clarsimp simp: ManiPref ′.mem-CD-on-Cd ManiPref ′.Cd-Above-dX ManiPref .mem-CD-on-Cd
ManiPref .Cd-Above-dX dX-union dX-singular
TruePref .Pd-shuffle-to-top-Field TruePref .AboveS-Pd-Xd)

(force simp: TruePref .Pd-shuffle-to-top-simps insert-absorb elim: Above-Linear-singleton
74

dest!: TruePref .Above-shuffle-to-top)
next

case False
with Pbos show ?thesis

by (fastforce simp: ManiPref ′.mem-CD-on-Cd ManiPref ′.Cd-greatest ManiPref .mem-CD-on-Cd
ManiPref .Cd-greatest TruePref .Pd-shuffle-to-top-simps)

qed
qed (use ‹ManiPref ′.blocking-on ds ?Y h X ′′› in ‹simp-all add: ManiPref ′.blocking-on-def ›)
with ManiPref .Theorem-1 [of ds] show False by (simp add: ManiPref .blocking-on-imp-not-stable)

qed
qed
with ManiPref ′.stable-on-allocation have {x ∈ ?Y . Xd x ∈ ds ′} ⊆ {x ∈ ?Y ′. Xd x ∈ ds ′}

by (force dest: ManiPref ′.Theorem-5 [of ds]
simp: TruePref .Pd-shuffle-to-top-simps TruePref .shuffle-to-top-def dX-def dest: inj-onD)

moreover
from ManiPref .stable-on-allocation[OF ManiPref .Theorem-1] ZZZ
have ?Z = ?Y ′ by (rule TruePref .Lemma-1)
moreover note YYY ZZZ
ultimately show False

unfolding AboveS-def dX-def by (fastforce simp: ex-in-conv[symmetric] dest: TruePref .Pd-range ′)
qed

end

Again, this result does not directly apply to gfp-F due to the mechanism domain hypothesis.
Finally, Hatfield and Kojima (2010, Corollary 2) (respectively, Hatfield and Kojima (2009, Corollary 1)) assert that
the COP (gfp-F) is “weakly Pareto optimal”, i.e., that there is no individually-rational allocation that every doctor
strictly prefers to the doctor-optimal match.
context ContractsWithUnilateralSubstitutesAndIRCAndLAD
begin

theorem Corollary-2 :
assumes ds 6= {}
shows ¬(∃Y . individually-rational-on ds Y

∧ (∀ d∈ds. ∃ y∈Y . y ∈ AboveS (Pd d) (dX (cop ds) d)))
proof(unfold individually-rational-on-def , safe)

fix Y assume CD-on ds Y = Y CH Y = Y
and Z : ∀ d∈ds. ∃ y∈Y . y ∈ AboveS (Pd d) (dX (cop ds) d)

from ‹CD-on ds Y = Y › have allocation Y by (metis CD-on-inj-on-Xd)
from ‹CD-on ds Y = Y ›
interpret Y : ContractsWithUnilateralSubstitutesAndIRCAndLAD Xd Xh Pd-singletons-for-ds Y ds Ch

using Ch-unilateral-substitutes Ch-irc Ch-lad Ch-range Ch-singular Pd-singletons-for-ds-range
Pd-singletons-for-ds-linear [OF CD-on-inj-on-Xd]

by unfold-locales (simp-all, metis)
from Y .fp-cop-F-doctor-optimal-match Y .doctor-optimal-matchI
have CH (Y .fp-cop-F ds) = Y
proof(rule Y .doctor-optimal-match-unique)

show Y .stable-on ds Y
proof(rule Y .stable-onI)

show Y .individually-rational-on ds Y
proof(rule Y .individually-rational-onI)

from ‹CD-on ds Y = Y › CD-on-Xd[where A=Y and ds=ds] show Y .CD-on ds Y = Y
unfolding Y .CD-on-def CD-on-def
by (force simp: Y .Cd-greatest Cd-greatest greatest-def Pd-singletons-for-ds-simps dX-def)

from ‹CH Y = Y › show Y .CH Y = Y .
qed
show Y .stable-no-blocking-on ds Y

by (rule Y .stable-no-blocking-onI ,
75

drule subset-trans[OF - Y .CD-on-range],
clarsimp simp: Pd-singletons-for-ds-def dX-def Un-absorb1 subset-eq sup-commute)

qed
next

fix x X assume x ∈ X Y .stable-on ds X
with Y .Theorem-5 [of ds X x] Pd-singletons-for-ds-linear [OF ‹allocation Y ›]
show ∃ y∈Y . (x, y) ∈ Pd-singletons-for-ds Y ds (Xd x)

by (fastforce simp: Pd-singletons-for-ds-simps Y .stable-on-Xd dX-def)
qed
from Z ‹CH (Y .fp-cop-F ds) = Y › show False

using group-strategy-proofD[OF
fp-cop-F-group-strategy-proof
ContractsWithUnilateralSubstitutesAndIRCAndLAD-axioms subset-refl
‹ds 6= {}›
Y .ContractsWithUnilateralSubstitutesAndIRCAndLAD-axioms[unfolded Pd-singletons-for-ds-def]]

unfolding Pd-singletons-for-ds-def by force
qed

end

Roth and Sotomayor (1990, §4.4) discuss how the non-proposing agents can strategise to improve their outcomes
in one-to-one matches.

9 Concluding remarks

We conclude with a brief and inexhaustive survey of related work.

9.1 Related work

Computer-assisted and formal reasoning. Bijlsma (1991) gives a formal pencil-and-paper derivation of the
Gale-Shapley deferred-acceptance algorithm under total strict preferences and one-to-one matching (colloquially, a
marriage market). He provides termination and complexity arguments, and discusses representation issues. Hamid
and Castleberry (2010) treat the same algorithm in the Coq proof assistant, give a termination proof and show
that it always yields a stable match. Both focus more on reasoning about programs than the theory of stable
matches. Intriguingly, the latter claims that Akamai uses (modified) stable matching to assign clients to servers in
their content distribution network.
Brandt and Geist (2014) use SAT technology to find results in social choice theory. They claim that the encodings
used by general purpose tools like nitpick are too inefficient for their application.

Stable matching. In addition to the monographs Gusfield and Irving (1989); Manlove (2013); Roth and
Sotomayor (1990), Roth (2008) provides a good overview up to 2007 of open problems and other aspects of this
topic that we did not explore here. Sönmez and Switzer (2013) incorporate quotas and put the COP to work at
the United States Military Academy. Andersson and Ehlers (2016) analyze the possibility of matching of refugees
with landlords in Sweden (without mentioning matching with contracts).
One of the more famous applications of matching theory is to kidney donation (Roth 2015), a repugnant market
where the economists’ basic tool of pricing things is considered verboten. These markets are sometimes, but
not always, two-sided – kidneys are often exchanged due to compatibility issues, but there are also altruistic
donations and recipients who cannot reciprocate – and so the model we discussed here is not applicable. Instead
generalizations of Gale’s top trading cycles algorithm are pressed into service (Abdulkadirolu and Sönmez 1999;
Shapley and Scarf 1974; Sönmez and Ünver 2010). Much recent work has hybridized these approaches – for instance,
Dworczak (2016) uses a combination to enumerate all stable matches.
Echenique (2012) shows that the matching with contracts model of §5 is no more general than that of Kelso and
Crawford (1982) (a job matching market with salaries). Schlegel generalizes this result to the COP setting of §6, and
moreover shows how lattice structure can be recovered there, which yields a hospital-proposing deferred-acceptance
algorithm that relies only on unilaterally substitutable hospital choice functions. See Hatfield and Kominers (2016)
for a discussion of the many-to-many case.

76

Roth and Sotomayor (1990, Theorem 2.33) point to alternatives to the deferred-acceptance algorithm, and to more
general matching scenarios involving couples and roommates. Manlove (2013) provides a comprehensive survey of
matching with preferences.

Further results: COP. Afacan (2014) explores the following two properties:

[Population monotonicity] says that no doctor is to be worse off whenever some others leave the market.
[Resource monotonicity], on the other hand, requires that no doctor should lose whenever hospitals
start hiring more doctors.

He shows that the COP is population and resource monotonic under irc and bilateral_substitutes. Also Afacan
(2015) characterizes the COP by the properties truncation proof (“no doctor can ever benefit from truncating
his preferences”) and invariant to lower tail preferences change (“any doctor’s assignment does not depend on
his preferences over worse contracts”); that the COP satisfies these properties was demonstrated in §6. See also
Hatfield et al. (2016) for another set of conditions that characterize the COP.
Hirata and Kasuya (2016) show how the strategic results can be obtained without the rural hospitals theorem, in a
setting that requires irc but not substitutability.

Further results: Strategy. There are many different ways to think about the manipulation of economic
mechanisms. Some continue in the game-theoretic tradition (Gonczarowski 2014), and, for instance, compare the
manipulability of mechanisms that yield stable matches (Chen et al. 2016). Techniques from computer science help
refine the notion of strategy-proofness (Ashlagi and Gonczarowski 2015) and enable complexity-theoretic arguments
(Aziz et al. 2015; Deng et al. 2016). Kojima and Pathak (2009) have analyzed the scope for manipulation in large
matching markets.

10 Acknowledgements

I thank Rob Irving for a copy of his excellent monograph (Gusfield and Irving 1989), Jasmin C. Blanchette for
help with nitpick, Andreas Lochbihler for his Bourbaki-Witt Fixpoint theory, Orhan Aygün for a helpful discussion
of Aygün and Sönmez (2012a), and Roman Werpachowski for general comments.

References
A. Abdulkadirolu and T. Sönmez. House allocation with existing tenants. Journal of Economic Theory, 88(2):233

– 260, 1999. doi: 10.1006/jeth.1999.2553.

M. O. Afacan. Some further properties of the cumulative offer process. Unpublished, August 2014. URL
http://ssrn.com/abstract=2478418.

M. O. Afacan. Characterizations of the cumulative offer process. Unpublished, August 2015. URL http:
//ssrn.com/abstract=2653751.

M. O. Afacan and B. Turhan. On relationships between substitutes conditions. Economics Letters, 126:10 – 12,
2015. doi: 10.1016/j.econlet.2014.11.007.

M. Aizerman and A. Malishevski. General theory of best variants choice: Some aspects. IEEE Transactions on
Automatic Control, 26(5):1030–1040, October 1981. doi: 10.1109/TAC.1981.1102777.

T. Andersson and L. Ehlers. Assigning refugees to landlords in Sweden: Stable maximum matchings. Working
Paper 2016:18, Department of Economics, School of Economics and Management, Lund University, July 2016.
URL http://project.nek.lu.se/publications/workpap/papers/wp16_18.pdf.

I. Ashlagi and Y. A. Gonczarowski. No stable matching mechanism is obviously strategy-proof. CoRR,
abs/1511.00452, 2015. URL http://arxiv.org/abs/1511.00452.

O. Aygün and T. Sönmez. The importance of irrelevance of rejected contracts in matching under weakened
substitutes conditions. Working Paper, June 2012a.

O. Aygün and T. Sönmez. Matching with contracts: The critical role of irrelevance of rejected contracts. Working
Paper. Abridged in AER 103(5) as “Matching with Contracts: Comment” in 2013., May 2012b.

77

http://www.dcs.gla.ac.uk/~rwi/
http://ssrn.com/abstract=2478418
http://ssrn.com/abstract=2653751
http://ssrn.com/abstract=2653751
http://project.nek.lu.se/publications/workpap/papers/wp16_18.pdf
http://arxiv.org/abs/1511.00452

H. Aziz, H. G. Seedig, and J. K. von Wedel. On the susceptibility of the deferred acceptance algorithm. In G. Weiss,
P. Yolum, R. H. Bordini, and E. Elkind, editors, AAMAS 2015, pages 939–947. ACM, 2015.

L. Bijlsma. Formal derivation of a stable marriage algorithm. In W.H.J. Feijen and A.J.M van Gastreren, editors,
C.S. Scholten dedicata: van oude machines en nieuwe rekenwijzen. Academic Service Schoonhoven, 1991.

J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED. J. Formalized Reasoning, 9
(1):101–148, 2016. doi: 10.6092/issn.1972-5787/4593.

K. C. Border. Introductory notes on preference and rational choice, April 2012. URL http://people.hss.caltech.
edu/~kcb/Notes.shtml.

F. Brandt and C. Geist. Finding strategyproof social choice functions via SAT solving. In A. L. C. Bazzan, M. N.
Huhns, A. Lomuscio, and P. Scerri, editors, AAMAS ’14, pages 1193–1200. IFAAMAS/ACM, 2014.

L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews. Imperative functional programming with
Isabelle/HOL. In O. A. Mohamed, C. Muñoz, and S. Tahar, editors, TPHOLs ’08, volume 5170 of LNCS, pages
352–367. Springer, 2008.

M. B. Caminati, M. Kerber, C. Lange, and C. Rowat. VCG — combinatorial Vickrey-Clarke-Groves auctions.
Archive of Formal Proofs, 2015, 2015a. URL https://isa-afp.org/entries/Vickrey_Clarke_Groves.shtml.

M. B. Caminati, M. Kerber, C. Lange, and C. Rowat. Sound auction specification and implementation. In
T. Roughgarden, M. Feldman, and M. Schwarz, editors, EC ’15, pages 547–564, New York, NY, USA, 2015b.
ACM. doi: 10.1145/2764468.2764511.

C. P. Chambers and M. B. Yenmez. Choice and matching. Under review, July 2013. URL http://econweb.ucsd.
edu/~cpchambers/papers.html.

P. Chen, M. Egesdal, M. Pycia, and M. B. Yenmez. Manipulability of stable mechanisms. American Economic
Journal: Microeconomics, 8(2):202–14, May 2016. doi: 10.1257/mic.20150035.

A. Ciupan, J. W. Hatfield, and S. D. Kominers. An elementary proof of the lone wolf theorem. Unpublished,
August 2016.

Y. Deng, W. Shen, and P. Tang. Coalition manipulations of the gale-shapley algorithm. CoRR, abs/1502.07823,
2016. URL http://arxiv.org/abs/1502.07823.

P. Dworczak. Deferred acceptance with compensation chains. In V. Conitzer, D. Bergemann, and Y. Chen, editors,
Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16, Maastricht, The Netherlands,
July 24-28, 2016, pages 65–66. ACM, 2016. doi: 10.1145/2940716.2940727.

F. Echenique. Contracts versus salaries in matching. American Economic Review, 102(1):594–601, 2012. doi:
10.1257/aer.102.1.594.

T. Fleiner. Stable and Crossing Structures. PhD thesis, Technische Universiteit Eindhoven, 2000.

T. Fleiner. Some results on stable matchings and fixed points. Technical Report tr-2002-08, Egerváry Research
Group on Combinatorial Optimization, Budapest, Hungary, March 2002. URL http://www.cs.elte.hu/egres/
www/tr-02-08.html.

T. Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics of Operations Research,
28(1):103–126, 2003. doi: 10.1287/moor.28.1.103.14256. URL http://www.cs.elte.hu/egres/www/tr-01-01.html.

D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American Mathematical Monthly,
69(1):9–15, January 1962.

Y. A. Gonczarowski. Manipulation of stable matchings using minimal blacklists. In M. Babaioff, V. Conitzer, and
D. Easley, editors, ACM Conference on Economics and Computation, EC ’14, Stanford , CA, USA, June 8-12,
2014, page 449. ACM, 2014. doi: 10.1145/2600057.2602840.

D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge,
MA, USA, 1989.

78

http://people.hss.caltech.edu/~kcb/Notes.shtml
http://people.hss.caltech.edu/~kcb/Notes.shtml
https://isa-afp.org/entries/Vickrey_Clarke_Groves.shtml
http://econweb.ucsd.edu/~cpchambers/papers.html
http://econweb.ucsd.edu/~cpchambers/papers.html
http://arxiv.org/abs/1502.07823
http://www.cs.elte.hu/egres/www/tr-02-08.html
http://www.cs.elte.hu/egres/www/tr-02-08.html
http://www.cs.elte.hu/egres/www/tr-01-01.html

F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In M. Blume, N. Kobayashi, and
G. Vidal, editors, FLOPS, volume 6009 of LNCS. Springer, 2010.

N. A. Hamid and C. Castleberry. Formally certified stable marriages. In H. C. Cunningham, P. Ruth, and N. A.
Kraft, editors, Proceedings of the 48th Annual Southeast Regional Conference, 2010, Oxford, MS, USA, April
15-17, 2010, page 34. ACM, 2010. doi: 10.1145/1900008.1900056.

S. O. Hansson and T. Grüne-Yanoff. Preferences. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Stanford, winter 2012 edition, 2012. URL http://plato.stanford.edu/archives/win2012/entries/preferences/.

J. W. Hatfield and F. Kojima. Matching with contracts: Comment. American Economic Review, 98(3):1189–94,
2008. doi: 10.1257/aer.98.3.1189.

J. W. Hatfield and F. Kojima. Group incentive compatibility for matching with contracts. Games and Economic
Behavior, 67(2):745–749, 2009. doi: 10.1016/j.geb.2009.01.007.

J. W. Hatfield and F. Kojima. Substitutes and stability for matching with contracts. Journal of Economic Theory,
145(5):1704–1723, 2010. doi: 10.1016/j.jet.2010.01.007.

J. W. Hatfield and P. R. Milgrom. Matching with contracts. American Economic Review, 95(4):913–935, 2005. doi:
10.1257/0002828054825466.

J. W. Hatfield, S. D. Kominers, and A. Westkamp. Stability, strategy-proofness, and cumulative offer mechanisms.
presented at MATCHUP 2015, July 2016.

J.W. Hatfield and S.D. Kominers. Contract design and stability in many-to-many matching. Games and Economic
Behavior, 2016. doi: 10.1016/j.geb.2016.01.002.

D. Hirata and Y. Kasuya. Cumulative offer process is order-independent. Economics Letters, 124(1):37 – 40, 2014.
doi: 10.1016/j.econlet.2014.04.008.

D. Hirata and Y. Kasuya. On stable and strategy-proof rules in matching markets with contracts. Unpublished,
August 2016.

A. S. Kelso and V. P. Crawford. Job matching, coalition formation, and gross substitutes. Econometrica, 50(6):
1483–1504, November 1982.

F. Kojima. Impossibility of stable and nonbossy matching mechanisms. Economics Letters, 107(1):69 – 70, 2010.
doi: 10.1016/j.econlet.2009.12.029.

F. Kojima and P. A. Pathak. Incentives and stability in large two-sided matching markets. American Economic
Review, 99(3):608–627, 2009. doi: 10.1257/aer.99.3.608.

D. F. Manlove. Algorithmics of Matching Under Preferences, volume 2 of Series on Theoretical Computer Science.
WorldScientific, 2013. doi: 10.1142/8591.

H. Moulin. Choice functions over a finite set: a summary. Social Choice and Welfare, 2(2):147–160, September
1985. doi: 10.1007/BF00437315. URL http://eprints.gla.ac.uk/92191/.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, Berlin, 2002.

C. R. Plott. Path independence, rationality and social choice. Econometrica, 41(6):1075–1091, 1973.

A. E. Roth. Who gets what – and why: the new economics of matchmaking and market design. Houghton Mifflin
Harcourt, 2015.

A. E. Roth and M. A. Sotomayor. Two-sided matching: A Study in Game-Theoretic Modeling and Analysis.
Econometric society monographs. Cambridge University Press, Cambridge, United Kingdom, 1990.

Alvin Roth. Deferred acceptance algorithms: history, theory, practice, and open questions. International Journal
of Game Theory, 36(3):537–569, March 2008. URL http://www.nber.org/papers/w13225.

J. C. Schlegel. Contracts versus salaries in matching: A general result. Journal of Economic Theory, 159, Part A:
552–573, 2015. doi: 10.1016/j.jet.2015.07.015.

79

http://plato.stanford.edu/archives/win2012/entries/preferences/
http://eprints.gla.ac.uk/92191/
http://www.nber.org/papers/w13225

A. K. Sen. Collective Choice and Social Welfare. Holden Day, 1970.

A. K. Sen. Choice functions and revealed preference. The Review of Economic Studies, 38(3):307–317, July 1971.

L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical Economics, 1(1):23–37, 1974. doi:
10.1016/0304-4068(74)90033-0.

M. Sotomayor. A non-constructive elementary proof of the existence of stable marriages. Games and Economic
Behavior, 13(1):135 – 137, 1996. doi: 10.1006/game.1996.0029.

T. Sönmez and T. B. Switzer. Matching with (branch-of-choice) contracts at the United States Military Academy.
Econometrica, 81(2):451–488, 2013. doi: 10.3982/ECTA10570.

T. Sönmez and M. U. Ünver. House allocation with existing tenants: A characterization. Games and Economic
Behavior, 69(2):425 – 445, 2010. doi: 10.1016/j.geb.2009.10.010.

80

	Introduction
	Sotomayor:1996: A non-constructive proof of the existence of stable marriages
	Preliminaries
	MaxR: maximum elements of linear orders
	Linear orders from lists

	Choice Functions
	The substitutes condition, AKA independence of irrelevant alternatives AKA Chernoff
	The irrelevance of rejected contracts condition AKA consistency AKA Aizerman
	The law of aggregate demand condition aka size monotonicity
	The expansion condition
	Axioms of revealed preference
	The strong axiom of revealed preference ala AygunSonmez:2012-WP2

	Choice functions arising from linear orders
	Plott's path independence condition
	Path independence and decomposition into orderings

	HatfieldMilgrom:2005: Matching with contracts
	Theorem 1: Existence of stable pairs
	Theorem 1 does not hold AygunSonmez:2012-WP2
	Theorem 1 holds with independence of rejected contracts
	The converse of Theorem 1

	Theorem 3: Algorithmics
	Theorem 4: Optimality
	Theorem 5 does not hold HatfieldKojima:2008
	Theorem 6: ``Vacancy chain'' dynamics
	Theorems 8 and 9: A ``rural hospitals'' theorem
	Theorems 15 and 16: Cumulative Offer Processes
	Concluding remarks

	HatfieldKojima:2010: Substitutes and stability for matching with contracts
	Theorem 1: the COP yields a stable match under bilateral substitutes
	Theorem 3: pareto separability relates unilateral substitutes and substitutes
	AfacanTurhan:2015: doctor separability relates bi- and unilateral substitutes

	Theorems 4 and 5: Doctor optimality
	Theorem 6: A ``rural hospitals'' theorem
	Concluding remarks

	Kojima:2010: The non-existence of a stable and non-bossy mechanism
	Strategic results
	HatfieldMilgrom:2005: Theorems 10 and 11: Truthful revelation as a Dominant Strategy
	HatfieldKojima:2009,HatfieldKojima:2010: The doctor-optimal match is group strategy-proof

	Concluding remarks
	Related work

	Acknowledgements
	References

