Computing N-th Roots using the Babylonian ${\bf Method}^*$

René Thiemann

March 19, 2025

Abstract

We implement the Babylonian method [1] to compute n-th roots of numbers. We provide precise algorithms for naturals, integers and rationals, and offer an approximation algorithm for square roots within linear ordered fields. Moreover, there are precise algorithms to compute the floor and the ceiling of n-th roots.

Contents

1			_
	dist	ribution.	2
2	A F	ast Logarithm Algorithm	3
3	Executable algorithms for p -th roots		5
	3.1	Logarithm	5
	3.2	Computing the p -th root of an integer number \dots	5
	3.3	Floor and ceiling of roots	8
	3.4	Downgrading algorithms to the naturals	9
	3.5	Upgrading algorithms to the rationals	10
4	Exe	cutable algorithms for square roots	10
	4.1	The Babylonian method	11
	4.2	The Babylonian method using integer division	11
	4.3	Square roots for the naturals	13
	4.4	Square roots for the rationals	14
	4.5	Approximating square roots	14
	4.6	Some tests	16

 $^{^*{\}rm This}$ research is supported by FWF (Austrian Science Fund) project P22767-N13.

1 Auxiliary lemmas which might be moved into the Isabelle distribution.

```
theory Sqrt-Babylonian-Auxiliary
imports
  Complex\hbox{-}Main
begin
lemma mod-div-equality-int: (n :: int) div x * x = n - n mod x
  \langle proof \rangle
lemma div-is-floor-divide-rat: n \ div \ y = | rat-of-int \ n \ / \ rat-of-int \ y |
lemma div-is-floor-divide-real: n div y = |real-of-int n / of-int y|
  \langle proof \rangle
lemma floor-div-pos-int:
  fixes r :: 'a :: floor\text{-}ceiling
  assumes n: n > 0
  shows |r| of int n| = |r| div n (is ?l = ?r)
\langle proof \rangle
\mathbf{lemma}\ \mathit{floor-div-neg-int}\colon
  fixes r :: 'a :: floor-ceiling
  assumes n: n < 0
  shows |r / of -int n| = \lceil r \rceil div n
\langle proof \rangle
lemma divide-less-floor1: n / y < of-int (floor (n / y)) + 1
  \langle proof \rangle
context linordered-idom
begin
lemma sgn-int-pow-if [simp]:
  sgn \ x \cap p = (if \ even \ p \ then \ 1 \ else \ sgn \ x) \ if \ x \neq 0
  \langle proof \rangle
lemma compare-pow-le-iff: p > 0 \Longrightarrow (x :: 'a) \ge 0 \Longrightarrow y \ge 0 \Longrightarrow (x \hat{p} \le y \hat{p})
p) = (x \le y)
  \langle proof \rangle
lemma compare-pow-less-iff: p > 0 \Longrightarrow (x :: 'a) \ge 0 \Longrightarrow y \ge 0 \Longrightarrow (x \hat{p} < y)
\hat{p} = (x < y)
  \langle proof \rangle
```

end

```
 | \textbf{lemma} \  \, \textit{quotient-of-int}[\textit{simp}] \colon \textit{quotient-of} \  \, (\textit{of-int} \ i) = (i,1) \\  \, \langle \textit{proof} \rangle | \\ \textbf{lemma} \  \, \textit{quotient-of-nat}[\textit{simp}] \colon \textit{quotient-of} \  \, (\textit{of-nat} \ i) = (\textit{int} \ i,1) \\  \, \langle \textit{proof} \rangle | \\ \textbf{lemma} \  \, \textit{square-lesseq-square:} \  \, \bigwedge \  \, x \ y. \  \, 0 \leq (x :: 'a :: \textit{linordered-field}) \Longrightarrow 0 \leq y \Longrightarrow \\ (x * x \leq y * y) = (x \leq y) \\ \langle \textit{proof} \rangle | \\ \textbf{lemma} \  \, \textit{square-less-square:} \  \, \bigwedge \  \, x \ y. \  \, 0 \leq (x :: 'a :: \textit{linordered-field}) \Longrightarrow 0 \leq y \Longrightarrow \\ (x * x < y * y) = (x < y) \\ \langle \textit{proof} \rangle | \\ \textbf{lemma} \  \, \textit{sqrt-sqrt}[\textit{simp}] \colon x \geq 0 \Longrightarrow \textit{sqrt} \  \, x * \textit{sqrt} \  \, x = x \\ \langle \textit{proof} \rangle | \\ \textbf{lemma} \  \, \textit{abs-lesseq-square:} \  \, \textit{abs} \  \, (x :: \textit{real}) \leq \textit{abs} \  \, y \longleftrightarrow x * x \leq y * y \\ \langle \textit{proof} \rangle | \\ \textbf{end} | \\ \textbf{end}
```

2 A Fast Logarithm Algorithm

```
theory Log-Impl
imports
Sqrt-Babylonian-Auxiliary
begin
```

We implement the discrete logarithm function in a manner similar to a repeated squaring exponentiation algorithm.

In order to prove termination of the algorithm without intermediate checks we need to ensure that we only use proper bases, i.e., values of at least 2. This will be encoded into a separate type.

```
typedef proper-base = \{x :: int. \ x \geq 2\} \ \langle proof \rangle

setup-lifting type-definition-proper-base

lift-definition get-base :: proper-base \Rightarrow int is \lambda x. x \ \langle proof \rangle

lift-definition square-base :: proper-base \Rightarrow proper-base is \lambda x. x * x \ \langle proof \rangle

lift-definition into-base :: int \Rightarrow proper-base is \lambda x. if x \geq 2 then x else 2 \langle proof \rangle

lemma square-base: get-base (square-base b) = get-base b * get-base b \ \langle proof \rangle
```

```
lemma get-base-2: get-base b \ge 2
     \langle proof \rangle
lemma b-less-square-base-b: get-base b < get-base (square-base b)
     \langle proof \rangle
lemma b-less-div-base-b: assumes xb: \neg x < get-base b
    shows x \ div \ get\text{-}base \ b < x
\langle proof \rangle
           We now state the main algorithm.
function log\text{-}main :: proper-base \Rightarrow int \Rightarrow nat \times int  where
     log-main b x = (if x < qet-base b then (0,1) else
         case log-main (square-base b) x of
             (z, bz) \Rightarrow
         let l = 2 * z; bz1 = bz * get-base b
              in if x < bz1 then (l,bz) else (Suc\ l,bz1))
     \langle proof \rangle
termination \langle proof \rangle
lemma log-main: x > 0 \implies log-main b \ x = (y,by) \implies by = (get-base b) \hat{y} \land by = (get
(get\text{-}base\ b)^y \le x \land x < (get\text{-}base\ b)^(Suc\ y)
\langle proof \rangle
           We then derive the floor- and ceiling-log functions.
definition log-floor :: int \Rightarrow int \Rightarrow nat where
     log-floor \ b \ x = fst \ (log-main \ (into-base \ b) \ x)
definition log\text{-}ceiling :: int \Rightarrow int \Rightarrow nat  where
     log\text{-}ceiling\ b\ x = (case\ log\text{-}main\ (into\text{-}base\ b)\ x\ of
           (y,by) \Rightarrow if x = by then y else Suc y)
lemma log-floor-sound: assumes b > 1 x > 0 log-floor b x = y
    shows b\hat{\ }y \le x \ x < b\widehat{\ }(Suc\ y)
\langle proof \rangle
lemma log-ceiling-sound: assumes b > 1 x > 0 log-ceiling b x = y
    shows x \le b^y y \ne 0 \Longrightarrow b^y - 1 < x
\langle proof \rangle
          Finally, we connect it to the log function working on real numbers.
lemma log-floor[simp]: assumes b: b > 1 and x: x > 0
    shows log-floor b x = |log b x|
\langle proof \rangle
lemma log\text{-}ceiling[simp]: assumes b: b > 1 and x: x > 0
    shows log\text{-}ceiling\ b\ x = \lceil log\ b\ x \rceil
```

```
\langle proof \rangle
```

 \mathbf{end}

3 Executable algorithms for p-th roots

```
theory NthRoot-Impl
imports
Log-Impl
Cauchy.CauchysMeanTheorem
begin
```

We implemented algorithms to decide $\sqrt[p]{n} \in \mathbb{Q}$ and to compute $\lfloor \sqrt[p]{n} \rfloor$. To this end, we use a variant of Newton iteration which works with integer division instead of floating point or rational division. To get suitable starting values for the Newton iteration, we also implemented a function to approximate logarithms.

3.1 Logarithm

For computing the p-th root of a number n, we must choose a starting value in the iteration. Here, we use $(2::'a)^{nat} \lceil of - int \lceil log \ 2 \ n \rceil \ / \ p \rceil$.

We use a partial efficient algorithm, which does not terminate on cornercases, like b=0 or p=1, and invoke it properly afterwards. Then there is a second algorithm which terminates on these corner-cases by additional guards and on which we can perform induction.

3.2 Computing the p-th root of an integer number

Using the logarithm, we can define an executable version of the intended starting value. Its main property is the inequality $x \leq (start\text{-}value\ x\ p)^p$, i.e., the start value is larger than the p-th root. This property is essential, since our algorithm will abort as soon as we fall below the p-th root.

```
definition start-value :: int \Rightarrow nat \Rightarrow int where start-value n \ p = 2 \ \widehat{} \ (nat \ [of\text{-}nat \ (log\text{-}ceiling \ 2 \ n) \ / \ rat\text{-}of\text{-}nat \ p])
lemma start-value-main: assumes x: \ x \geq 0 and p: \ p > 0 shows x \leq (start\text{-}value \ x \ p) \ \widehat{} \ p \wedge start\text{-}value \ x \ p \geq 0 \langle proof \rangle
lemma start-value: assumes x: \ x \geq 0 and p: \ p > 0 shows x \leq (start\text{-}value \ x \ p) \ \widehat{} \ p \ start\text{-}value \ x \ p \geq 0 \langle proof \rangle
```

We now define the Newton iteration to compute the p-th root. We are working on the integers, where every (/) is replaced by (div). We are

```
proving several things within a locale which ensures that p > 0, and where pm = p - 1.
```

```
\begin{array}{l} \textbf{locale} \ \textit{fixed-root} = \\ \textbf{fixes} \ \textit{p} \ \textit{pm} :: \textit{nat} \\ \textbf{assumes} \ \textit{p:} \ \textit{p} = \textit{Suc} \ \textit{pm} \\ \textbf{begin} \end{array}
```

```
function root-newton-int-main :: int \Rightarrow int \Rightarrow int \times bool where root-newton-int-main x n = (if (x < 0 \lor n < 0) then (0,False) else (if <math>x \mathbin{\widehat{\hspace{1ex}}} p \le n then (x, x \mathbin{\widehat{\hspace{1ex}}} p = n) else root-newton-int-main ((n \ div (x \mathbin{\widehat{\hspace{1ex}}} pm) + x * int \ pm) \ div (int \ p)) \ n)) \langle proof \rangle end
```

For the executable algorithm we omit the guard and use a let-construction partial-function (tailrec) root-int-main':: $nat \Rightarrow int \Rightarrow int \Rightarrow int \Rightarrow int \Rightarrow int$

```
partial-runction (taurec) root-int-main :: nat \Rightarrow int \Rightarrow int
```

```
[code]. Foot-int-matti pin tipli tip x n = (tet xpin = x pin, xp = xpin * x tit tj xp <math>\le n \text{ then } (x, xp = n)
```

else root-int-main' pm ipm ip $((n \ div \ xpm + x * ipm) \ div \ ip) \ n)$

In the following algorithm, we start the iteration. It will compute $\lfloor root p \ n \rfloor$ and a boolean to indicate whether the root is exact.

```
definition root-int-main :: nat \Rightarrow int \Rightarrow int \times bool where root-int-main p n \equiv if p = 0 then (1, n = 1) else let pm = p - 1 in root-int-main' pm (int pm) (int p) (start-value n p) n
```

Once we have proven soundness of *fixed-root.root-newton-int-main* and equivalence to *root-int-main*, it is easy to assemble the following algorithm which computes all roots for arbitrary integers.

```
definition root-int :: nat \Rightarrow int \Rightarrow int list where
root-int p \ x \equiv if \ p = 0 \ then \ [] \ else
if x = 0 \ then \ [0] \ else
let e = even \ p; \ s = sgn \ x; \ x' = abs \ x
in if x < 0 \ \land \ e \ then \ [] \ else \ case \ root-int-main \ p \ x' \ of \ (y,True) <math>\Rightarrow if e \ then \ [y,-y] \ else \ [s * y] \ | \ - \Rightarrow []
```

We start with proving termination of fixed-root.root-newton-int-main.

```
context fixed-root
begin
lemma iteration-mono-eq: assumes xn: x \hat{p} = (n :: int)
shows (n \ div \ x \hat{p}m + x * int \ pm) \ div \ int \ p = x
\langle proof \rangle
```

lemma $p\theta$: $p \neq \theta \ \langle proof \rangle$

The following property is the essential property for proving termination of *root-newton-int-main*.

```
lemma iteration-mono-less: assumes x: x \geq 0
  and n: n \geq 0
  and xn: x \hat{p} > (n :: int)
  shows (n \ div \ x \cap pm + x * int \ pm) \ div \ int \ p < x
\langle proof \rangle
lemma iteration-mono-lesseq: assumes x: x \geq 0 and n: n \geq 0 and xn: x \cap p \geq 0
 shows (n \ div \ x \cap pm + x * int \ pm) \ div \ int \ p \le x
\langle proof \rangle
termination
\langle proof \rangle
    We next prove that root-int-main' is a correct implementation of root-newton-int-main.
We additionally prove that the result is always positive, a lower bound, and
that the returned boolean indicates whether the result has a root or not. We
prove all these results in one go, so that we can share the inductive proof.
abbreviation root-main' where root-main' \equiv root-int-main' pm (int pm) (int p)
lemmas root-main'-simps = root-int-main'.simps[of pm int pm int p]
lemma root-main'-newton-pos: x \ge 0 \Longrightarrow n \ge 0 \Longrightarrow
 root-main' x n = root-newton-int-main x n \land (root-main' x n = (y,b) \longrightarrow y \ge 0
\land \ y \hat{\ } p \le n \land b = (y \hat{\ } p = n))
lemma root-main': x \ge 0 \implies n \ge 0 \implies root-main' x n = root-newton-int-main
x n
  \langle proof \rangle
lemma root-main'-pos: x \geq 0 \Longrightarrow n \geq 0 \Longrightarrow root-main' x \mid n = (y,b) \Longrightarrow y \geq 0
lemma root-main'-sound: x \ge 0 \implies n \ge 0 \implies root-main' x \ n = (y,b) \implies b = (y,b) \implies b = (y,b)
(y \hat{p} = n)
  \langle proof \rangle
    In order to prove completeness of the algorithms, we provide sharp upper
and lower bounds for root-main'. For the upper bounds, we use Cauchy's
mean theorem where we added the non-strict variant to Porter's formaliza-
tion of this theorem.
lemma root-main'-lower: x \ge 0 \Longrightarrow n \ge 0 \Longrightarrow root\text{-main'} \ x \ n = (y,b) \Longrightarrow y \ \hat{p}
\leq n
 \langle proof \rangle
lemma root-newton-int-main-upper:
 shows y \cap p \ge n \Longrightarrow y \ge 0 \Longrightarrow n \ge 0 \Longrightarrow root\text{-}newton\text{-}int\text{-}main} \ y \ n = (x,b)
\implies n < (x+1) \hat{p}
```

```
\langle proof \rangle
lemma root-main'-upper:
 x \hat{p} \ge n \Longrightarrow x \ge 0 \Longrightarrow n \ge 0 \Longrightarrow root\text{-main'} \ x \ n = (y,b) \Longrightarrow n < (y+1) \hat{p}
  \langle proof \rangle
end
    Now we can prove all the nice properties of root-int-main.
lemma root-int-main-all: assumes n: n \geq 0
  and rm: root-int-main p n = (y,b)
  shows y \ge 0 \land b = (y \hat{p} = n) \land (p > 0 \longrightarrow y \hat{p} \le n \land n < (y + 1)\hat{p})
   \land (p > 0 \longrightarrow x \ge 0 \longrightarrow x \hat{p} = n \longrightarrow y = x \land b)
\langle proof \rangle
lemma root-int-main: assumes n: n \ge 0
 and rm: root-int-main p n = (y,b)
 shows y \ge 0 b = (y \hat{p} = n) p > 0 \Longrightarrow y \hat{p} \le n p > 0 \Longrightarrow n < (y + 1)\hat{p}
   p > 0 \Longrightarrow x \ge 0 \Longrightarrow x \hat{p} = n \Longrightarrow y = x \land b
  \langle proof \rangle
lemma root-int[simp]: assumes p: p \neq 0 \lor x \neq 1
  shows set (root-int p(x) = \{y : y \cap p = x\}
\langle proof \rangle
lemma root-int-pos: assumes x: x \ge 0 and ri: root-int p = y \# ys
 shows y > 0
\langle proof \rangle
        Floor and ceiling of roots
3.3
Using the bounds for root-int-main we can easily design algorithms which
compute |root p x| and [root p x]. To this end, we first develop algorithms
for non-negative x, and later on these are used for the general case.
definition root-int-floor-pos p = (if p = 0 then 0 else fst (root-int-main p x))
definition root-int-ceiling-pos p x = (if p = 0 then 0 else (case root-int-main p x))
of (y,b) \Rightarrow if b then y else y + 1)
lemma root-int-floor-pos-lower: assumes p\theta: p \neq \theta and x: x \geq \theta
 shows root-int-floor-pos p \ x \cap p \le x
  \langle proof \rangle
lemma root-int-floor-pos-pos: assumes x: x \geq 0
  shows root-int-floor-pos p \ x \ge 0
  \langle proof \rangle
lemma root-int-floor-pos-upper: assumes p\theta: p \neq \theta and x: x \geq \theta
  shows (root-int-floor-pos p x + 1) \hat{p} > x
```

 $\langle proof \rangle$

```
lemma root-int-floor-pos: assumes x: x \geq 0
  shows root-int-floor-pos p \ x = floor \ (root \ p \ (of\text{-}int \ x))
\langle proof \rangle
lemma root-int-ceiling-pos: assumes x: x \ge 0
  shows root-int-ceiling-pos p \ x = ceiling \ (root \ p \ (of-int \ x))
\langle proof \rangle
definition root-int-floor p \ x = (if \ x \ge 0 \ then \ root-int-floor-pos \ p \ x \ else - root-int-ceiling-pos
definition root-int-ceiling p \ x = (if \ x \ge 0 \ then \ root-int-ceiling-pos \ p \ x \ else
root-int-floor-pos p <math>(-x))
lemma root-int-floor[simp]: root-int-floor p(x) = floor(root p(of-int(x)))
\langle proof \rangle
lemma root-int-ceiling[simp]: root-int-ceiling p = ceiling \pmod{p \pmod{p}}
\langle proof \rangle
3.4
        Downgrading algorithms to the naturals
definition root-nat-floor :: nat \Rightarrow nat \Rightarrow int where
  root-nat-floor p \ x = root-int-floor-pos p \ (int \ x)
definition root-nat-ceiling :: nat \Rightarrow nat \Rightarrow int where
  root-nat-ceiling p \ x = root-int-ceiling-pos p \ (int \ x)
definition root-nat :: nat \Rightarrow nat \ bist \ \mathbf{where}
  root-nat p \ x = map \ nat \ (take 1 \ (root-int p \ x))
lemma root-nat-floor [simp]: root-nat-floor p = floor (root \ p \ (real \ x))
  \langle proof \rangle
lemma root-nat-floor-lower: assumes p\theta: p \neq \theta
 shows root-nat-floor p \ x \cap p \le x
  \langle proof \rangle
lemma root-nat-floor-upper: assumes p\theta: p \neq \theta
  shows (root-nat-floor p \ x + 1) \hat{p} > x
  \langle proof \rangle
lemma root-nat-ceiling [simp]: root-nat-ceiling p = ceiling (root p = x)
lemma root-nat: assumes p\theta: p \neq \theta \lor x \neq 1
  shows set (root-nat p(x) = \{ y, y \cap p = x \}
\langle proof \rangle
```

3.5 Upgrading algorithms to the rationals

The main observation to lift everything from the integers to the rationals is the fact, that one can reformulate $\frac{a}{b}^{1/p}$ as $\frac{(ab^{p-1})^{1/p}}{b}$.

```
definition root-rat-floor :: nat \Rightarrow rat \Rightarrow int where
  \textit{root-rat-floor} \ p \ x \equiv \textit{case} \ \textit{quotient-of} \ x \ \textit{of} \ (a,b) \Rightarrow \textit{root-int-floor} \ p \ (a * b \ \widehat{\ \ } (p-1))
div b
definition root-rat-ceiling :: nat \Rightarrow rat \Rightarrow int where
  root-rat-ceiling p \ x \equiv - (root-rat-floor p \ (-x))
definition root-rat :: nat \Rightarrow rat \Rightarrow rat \ list \ \mathbf{where}
  root-rat p \ x \equiv case \ quotient-of \ x \ of \ (a,b) \Rightarrow concat
  (map\ (\lambda\ rb.\ map\ (\lambda\ ra.\ of\ int\ ra\ /\ rat\ of\ int\ rb)\ (root\ int\ p\ a))\ (take\ 1\ (root\ int\ ra))
(p \ b)))
lemma root-rat-reform: assumes q: quotient-of x = (a,b)
  shows root p (real-of-rat x) = root p (of-int (a * b \cap (p-1))) / of-int b
\langle proof \rangle
lemma root-rat-floor [simp]: root-rat-floor p(x) = floor (root p(of-rat x))
\langle proof \rangle
lemma root-rat-ceiling [simp]: root-rat-ceiling p \ x = ceiling \ (root \ p \ (of-rat \ x))
lemma root-rat[simp]: assumes p: p \neq 0 \lor x \neq 1
  shows set (root\text{-}rat\ p\ x) = \{\ y.\ y \ \widehat{\ } p = x\}
\langle proof \rangle
end
theory Sqrt-Babylonian
imports
  Sqrt-Babylonian-Auxiliary
  NthRoot-Impl
```

4 Executable algorithms for square roots

begin

This theory provides executable algorithms for computing square-roots of numbers which are all based on the Babylonian method (which is also known as Heron's method or Newton's method).

For integers / naturals / rationals precise algorithms are given, i.e., here

 $sqrt\ x$ delivers a list of all integers / naturals / rationals y where $y^2=x$. To this end, the Babylonian method has been adapted by using integer-divisions.

In addition to the precise algorithms, we also provide approximation algorithms. One works for arbitrary linear ordered fields, where some number y is computed such that $|y^2 - x| < \varepsilon$. Moreover, for the naturals, integers, and rationals we provide algorithms to compute $\lfloor sqrt \ x \rfloor$ and $\lceil sqrt \ x \rceil$ which are all based on the underlying algorithm that is used to compute the precise square-roots on integers, if these exist.

The major motivation for developing the precise algorithms was given by CeTA [2], a tool for certifiying termination proofs. Here, non-linear equations of the form $(a_1x_1 + \dots a_nx_n)^2 = p$ had to be solved over the integers, where p is a concrete polynomial. For example, for the equation $(ax + by)^2 = 4x^2 - 12xy + 9y^2$ one easily figures out that $a^2 = 4, b^2 = 9$, and ab = -6, which results in a possible solution $a = \sqrt{4} = 2, b = -\sqrt{9} = -3$.

4.1 The Babylonian method

The Babylonian method for computing \sqrt{n} iteratively computes

$$x_{i+1} = \frac{\frac{n}{x_i} + x_i}{2}$$

until $x_i^2 \approx n$. Note that if $x_0^2 \geq n$, then for all i we have both $x_i^2 \geq n$ and $x_i \geq x_{i+1}$.

4.2 The Babylonian method using integer division

First, the algorithm is developed for the non-negative integers. Here, the division operation $\frac{x}{y}$ is replaced by $x \ div \ y = \lfloor of\text{-}int \ x \ / \ of\text{-}int \ y \rfloor$. Note that replacing $\lfloor of\text{-}int \ x \ / \ of\text{-}int \ y \rfloor$ by $\lceil of\text{-}int \ x \ / \ of\text{-}int \ y \rceil$ would lead to non-termination in the following algorithm.

We explicitly develop the algorithm on the integers and not on the naturals, as the calculations on the integers have been much easier. For example, y-x+x=y on the integers, which would require the side-condition $y \geq x$ for the naturals. These conditions will make the reasoning much more tedious—as we have experienced in an earlier state of this development where everything was based on naturals.

Since the elements x_0, x_1, x_2, \ldots are monotone decreasing, in the main algorithm we abort as soon as $x_i^2 \leq n$.

Since in the meantime, all of these algorithms have been generalized to arbitrary p-th roots in Sqrt-Babylonian.NthRoot-Impl, we just instantiate the general algorithms by p=2 and then provide specialized code equations which are more efficient than the general purpose algorithms.

```
definition sqrt-int-main' :: int \Rightarrow int \times bool where
    [simp]: sqrt-int-main' x n = root-int-main' 1 1 2 x n
lemma sqrt-int-main'-code[code]: sqrt-int-main' x n = (let <math>x2 = x * x in if x2 \le x * x 
n \ then \ (x, x2 = n)
          else sqrt-int-main' ((n \ div \ x + x) \ div \ 2) \ n)
     \langle proof \rangle
definition sqrt-int-main :: int \Rightarrow int \times bool where
    [simp]: sqrt-int-main x = root-int-main 2x
lemma sqrt-int-main-code[code]: sqrt-int-main x = sqrt-int-main' (start-value x 2)
     \langle proof \rangle
definition sqrt-int :: int \Rightarrow int \ list \ where
    sqrt-int x = root-int 2x
lemma sgrt-int-code[code]: sgrt-int x = (if x < 0 then [] else case <math>sgrt-int-main x
of (y, True) \Rightarrow if y = 0 then [0] else [y, -y] | - \Rightarrow [])
\langle proof \rangle
lemma sqrt-int[simp]: set (sqrt-int x) = \{y. y * y = x\}
lemma sqrt-int-pos: assumes res: sqrt-int x = Cons \ s \ ms
    shows s \geq \theta
\langle proof \rangle
definition [simp]: sqrt-int-floor-pos x = root-int-floor-pos 2x
lemma sqrt-int-floor-pos-code[code]: sqrt-int-floor-pos x = fst (sqrt-int-main x)
    \langle proof \rangle
lemma sqrt-int-floor-pos: assumes x: x > \theta
    shows sqrt-int-floor-pos x = | sqrt (of-int x) |
     \langle proof \rangle
definition [simp]: sqrt-int-ceiling-pos x = root-int-ceiling-pos 2x
lemma sqrt-int-ceiling-pos-code[code]: sqrt-int-ceiling-pos x = (case <math>sqrt-int-main
x 	ext{ of } (y,b) \Rightarrow if b 	ext{ then } y 	ext{ else } y+1)
    \langle proof \rangle
lemma sqrt-int-ceiling-pos: assumes x: x \ge 0
    shows sqrt-int-ceiling-pos x = [ sqrt (of-int x) ]
     \langle proof \rangle
```

```
definition sqrt-int-floor x = root-int-floor 2 x
lemma sqrt-int-floor-code[code]: sqrt-int-floor x = (if \ x \ge 0 \ then \ sqrt-int-floor-pos
x \ else - sqrt-int-ceiling-pos \ (-x))
  \langle proof \rangle
lemma sqrt-int-floor[simp]: sqrt-int-floor <math>x = | sqrt (of-int x) |
definition sqrt-int-ceiling x = root-int-ceiling 2x
lemma sqrt-int-ceiling-code[code]: sqrt-int-ceiling x = (if \ x \ge 0 \ then \ sqrt-int-ceiling-pos
x \ else - sqrt-int-floor-pos (-x)
  \langle proof \rangle
lemma sgrt-int-ceiling[simp]: sgrt-int-ceiling x = [sgrt (of-int x)]
lemma sqrt-int-ceiling-bound: 0 \le x \Longrightarrow x \le (sqrt\text{-int-ceiling } x)^2
  \langle proof \rangle
4.3
         Square roots for the naturals
definition sqrt-nat :: nat \Rightarrow nat \ list
  where sqrt-nat x = root-nat 2 x
lemma sqrt-nat-code[code]: sqrt-nat x \equiv map nat (take 1 (sqrt-int (int x)))
  \langle proof \rangle
lemma sqrt-nat[simp]: set (sqrt-nat x) = { y. y * y = x}
  \langle proof \rangle
definition sqrt-nat-floor :: nat \Rightarrow int where
  sqrt-nat-floor x = root-nat-floor 2 x
\mathbf{lemma} \ \mathit{sqrt-nat-floor-code}[\mathit{code}] \colon \mathit{sqrt-nat-floor} \ \mathit{x} = \mathit{sqrt-int-floor-pos} \ (\mathit{int} \ \mathit{x})
  \langle proof \rangle
lemma sqrt-nat-floor[simp]: sqrt-nat-floor <math>x = | sqrt (real x) |
  \langle proof \rangle
\textbf{definition} \ \textit{sqrt-nat-ceiling} :: \textit{nat} \Rightarrow \textit{int} \ \textbf{where}
  sqrt-nat-ceiling x = root-nat-ceiling 2x
lemma sqrt-nat-ceiling-code[code]: sqrt-nat-ceiling x = sqrt-int-ceiling-pos (int x)
  \langle proof \rangle
lemma sqrt-nat-ceiling[simp]: sqrt-nat-ceiling <math>x = [sqrt (real \ x)]
  \langle proof \rangle
```

4.4 Square roots for the rationals

```
definition sqrt-rat :: rat \Rightarrow rat \ list \ \mathbf{where}
  sqrt-rat x = root-rat 2 x
lemma sqrt-rat-code[code]: sqrt-rat x = (case quotient-of x of (z,n) \Rightarrow (case sqrt-int
n of
    [] \Rightarrow []
  | sn \# xs \Rightarrow map (\lambda sz. of-int sz / of-int sn) (sqrt-int z)))
\langle proof \rangle
lemma sqrt-rat[simp]: set(sqrt-rat(x) = \{ y. y * y = x \}
  \langle proof \rangle
lemma sqrt-rat-pos: assumes sqrt: sqrt-rat x = Cons s ms
  shows s \geq \theta
\langle proof \rangle
definition sqrt-rat-floor :: rat \Rightarrow int where
  sqrt-rat-floor x = root-rat-floor 2 x
lemma sqrt-rat-floor-code[code]: sqrt-rat-floor x = (case \ quotient-of x \ of \ (a,b) \Rightarrow
sqrt-int-floor (a * b) div b)
  \langle proof \rangle
lemma sqrt-rat-floor[simp]: sqrt-rat-floor x = | sqrt (of-rat x) |
definition sqrt-rat-ceiling :: rat <math>\Rightarrow int where
  sqrt-rat-ceiling x = root-rat-ceiling 2x
lemma sqrt-rat-ceiling-code[code]: sqrt-rat-ceiling x = - (sqrt-rat-floor (-x))
  \langle proof \rangle
lemma sqrt-rat-ceiling: sqrt-rat-ceiling x = [sqrt (of-rat x)]
  \langle proof \rangle
lemma sqr-rat-of-int: assumes x: x * x = rat-of-int i
  shows \exists j :: int. j * j = i
\langle proof \rangle
```

4.5 Approximating square roots

The difference to the previous algorithms is that now we abort, once the distance is below ϵ . Moreover, here we use standard division and not integer division. This part is not yet generalized by Sqrt-Babylonian.NthRoot-Impl.

We first provide the executable version without guard $\theta < x$ as partial function, and afterwards prove termination and soundness for a similar algorithm that is defined within the upcoming locale.

```
partial-function (tailrec) sqrt-approx-main-impl :: 'a :: linordered-field \Rightarrow 'a \Rightarrow 'a where [code]: sqrt-approx-main-impl \varepsilon n x = (if x * x - n < \varepsilon then x else sqrt-approx-main-impl <math>\varepsilon n ((n / x + x) / 2))
```

We setup a locale where we ensure that we have standard assumptions: positive ϵ and positive n. We require sort floor-ceiling, since $\lfloor x \rfloor$ is used for the termination argument.

```
locale sqrt-approximation = fixes \varepsilon :: 'a :: {linordered-field,floor-ceiling} and n :: 'a assumes \varepsilon : \varepsilon > 0 and n: n > 0 begin function sqrt-approx-main :: 'a \Rightarrow 'a where sqrt-approx-main x = (if x > 0 then (if x * x - n < \varepsilon then x else <math>sqrt-approx-main ((n / x + x) / 2)) else 0) \langle proof \rangle
```

Termination essentially is a proof of convergence. Here, one complication is the fact that the limit is not always defined. E.g., if 'a is rat then there is no square root of 2. Therefore, the error-rate $\frac{x}{\sqrt{n}} - 1$ is not expressible.

Instead we use the expression $\frac{x^2}{n} - 1$ as error-rate which does not require any square-root operation.

termination

 $\langle proof \rangle$

Once termination is proven, it is easy to show equivalence of sqrt-approx-main-impl and sqrt-approx-main.

```
lemma sqrt-approx-main-impl: x>0\Longrightarrow sqrt-approx-main-impl \varepsilon n x= sqrt-approx-main x \langle proof \rangle
```

Also soundness is not complicated.

```
lemma sqrt-approx-main-sound: assumes x: x > 0 and xx: x * x > n shows sqrt-approx-main x * sqrt-approx-main x > n \land sqrt-approx-main x * sqrt-approx-main x - n < \varepsilon \land proof \land
```

end

It remains to assemble everything into one algorithm.

```
definition sqrt-approx :: 'a :: \{linordered-field, floor-ceiling\} <math>\Rightarrow 'a \Rightarrow 'a where sqrt-approx <math>\varepsilon x \equiv if \varepsilon > 0 then (if x = 0 \text{ then } 0 \text{ else let } xpos = abs x \text{ in } sqrt-approx-main-impl \varepsilon xpos (xpos + 1)) else 0
```

```
lemma sqrt-approx: assumes \varepsilon: \varepsilon > 0 shows |sqrt-approx \varepsilon x * sqrt-approx \varepsilon x - |x|| < \varepsilon \langle proof \rangle
```

4.6 Some tests

```
Testing executabity and show that sqrt 2 is irrational
```

```
 \begin{array}{l} \mathbf{lemma} \neg (\exists \ i :: \mathit{rat.} \ i * i = 2) \\ \langle \mathit{proof} \rangle \end{array}
```

Testing speed

```
lemma ¬ (∃ i :: int. \ i * i = 1234567890123456789012345678901234567890) \langle proof \rangle
```

The following test

```
value let \varepsilon = 1 / 1000000000 :: rat; s = sqrt-approx \varepsilon 2 in (s, s * s - 2, |s * s - 2| < \varepsilon)
```

results in (1.4142135623731116, 4.738200762148612e-14, True).

end

Acknowledgements

We thank Bertram Felgenhauer for for mentioning Cauchy's mean theorem during the formalization of the algorithms for computing n-th roots.

References

- [1] T. Heath. A History of Greek Mathematics, volume 2, pages 323–326. Clarendon Press, 1921.
- [2] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In *Proc. TPHOLs'09*, volume 5674 of *LNCS*, pages 452–468, 2009.