Computing N-th Roots using the Babylonian
Method*

René Thiemann

March 19, 2025

Abstract

We implement the Babylonian method [1] to compute n-th roots
of numbers. We provide precise algorithms for naturals, integers and
rationals, and offer an approximation algorithm for square roots within
linear ordered fields. Moreover, there are precise algorithms to com-

pute the floor and the ceiling of n-th roots.

Contents

1 Auxiliary lemmas which might be moved into the Isabelle

distribution. 2
2 A Fast Logarithm Algorithm 3
3 Executable algorithms for p-th roots 5
3.1 Logarithm 5
3.2 Computing the p-th root of an integer number)
3.3 Floor and ceiling of roots oL 8
3.4 Downgrading algorithms to the naturals 9
3.5 Upgrading algorithms to the rationals 10
4 Executable algorithms for square roots 10
4.1 The Babylonian method 11
4.2 The Babylonian method using integer division 11
4.3 Square roots for the naturals 13
4.4 Square roots for the rationals 14
4.5 Approximating square roots 14
4.6 Some tests 16

*This research is supported by FWF (Austrian Science Fund) project P22767-N13.

1 Auxiliary lemmas which might be moved into

the Isabelle distribution.

theory Sqrt-Babylonian- Auxiliary
imports

Complex-Main
begin

lemma mod-div-equality-int: (n :: int) divz * £ = n — n mod
{proof)

lemma div-is-floor-divide-rat: n div y = |rat-of-int n / rat-of-int y|
(proof)

lemma div-is-floor-divide-real: n div y = |real-of-int n / of-int y|

(proof)

lemma floor-div-pos-int:
fixes r :: ‘a :: floor-ceiling
assumes n: n > 0
shows |r / of-int n] = |r] divn (is 7l = ?r)

(proof)

lemma floor-div-neg-int:
fixes r :: ‘a :: floor-ceiling
assumes n: n < 0
shows |r / of-int n] = [r] divn
(proof)

lemma divide-less-floorl: n / y < of-int (floor (n [y)) + 1
{proof)

context linordered-idom
begin

lemma sgn-int-pow-if [simp]:
sgn ~ p = (if even p then 1 else sgn x) if x # 0
(proof)

lemma compare-pow-le-iff: p > 0 = (z:: 'a) > 0 =y >0 = (z " p<y

p) =(z <y)
(proof)

o~

lemma compare-pow-less-iff: p > 0 = (z :: 'a) > 0 = y >0 = (¢ " p<y

“p)=(z<y)
{proof)

end

lemma quotient-of-int[simp|: quotient-of (of-int i) = (i,1)
(proof)

lemma quotient-of-nat[simp|: quotient-of (of-nat i) = (int i,1)
{proof)

lemma square-lesseq-square: \ zy. 0 < (z :: 'a :: linordered-field) = 0 < y =
(zrz<yx*y) =(x<y)
(proof)

lemma square-less-square: \ z y. 0 < (x :: 'a :: linordered-field) — 0 < y =
(zxz<yxy) =(z<y)
(proof)

lemma sqrt-sqrt[simpl: © > 0 = sqrt © * sqrt © = x
(proof)

lemma abs-lesseg-square: abs (z :: real) < absy +— xxx < yxy
{proof)

end

2 A Fast Logarithm Algorithm

theory Log-Impl

imports
Sqrt-Babylonian-Auziliary

begin

We implement the discrete logarithm function in a manner similar to a
repeated squaring exponentiation algorithm.

In order to prove termination of the algorithm without intermediate
checks we need to ensure that we only use proper bases, i.e., values of at
least 2. This will be encoded into a separate type.

typedef proper-base = {x :: int. x > 2} (proof)
setup-lifting type-definition-proper-base
lift-definition get-base :: proper-base = int is A\ z. x (proof)

lift-definition square-base :: proper-base = proper-base is A\ z. = * z
(proof)

lift-definition into-base :: int = proper-base is \ x. if x > 2 then x else 2 {(proof)

lemma square-base: get-base (square-base b) = get-base b * get-base b
(proof)

lemma get-base-2: get-base b > 2
(proof)

lemma b-less-square-base-b: get-base b < get-base (square-base b)
{proof)

lemma b-less-div-base-b: assumes zb: - = < get-base b
shows z div get-base b < z

{(proof)
We now state the main algorithm.

function log-main :: proper-base = int = nat X int where
log-main b x = (if x < get-base b then (0,1) else
case log-main (square-base b) x of
(z, bz) =
let I = 2 % z; bzl = bz % get-base b
in if © < bzl then (1,bz) else (Suc 1,bz1))
(proof)

termination (proof)

lemma log-main: © > 0 = log-main b © = (y,by) = by = (get-base b) y A
(get-base b) 7y < x A z < (get-base b) (Suc y)
{proof)

We then derive the floor- and ceiling-log functions.

definition log-floor :: int = int = nat where
log-floor b x = fst (log-main (into-base b) x)

definition log-ceiling :: int = int = nat where
log-ceiling b x = (case log-main (into-base b) = of
(y,by) = if x = by then y else Suc y)

lemma log-floor-sound: assumes b > 1 z > 0 log-floor b x = y
shows b7y < zz < b (Suc y)

(proof)

lemma log-ceiling-sound: assumes b > 1 x > 0 log-ceiling b = = y
showsz <byy#£0=>0(y— 1)<z
(proof)

Finally, we connect it to the log function working on real numbers.

lemma log-floor[simp]: assumes b: b > 1 and z: z > 0
shows log-floor b x = |log b x|

(proof)

lemma log-ceiling[simp]: assumes b: b > 1 and z: z > 0
shows log-ceiling b x = [log b z]

(proof)

end

3 Executable algorithms for p-th roots

theory NthRoot-Impl
imports

Log-Impl

Cauchy. CauchysMean Theorem
begin

We implemented algorithms to decide ¢/n € Q and to compute | ¢/n].
To this end, we use a variant of Newton iteration which works with inte-
ger division instead of floating point or rational division. To get suitable
starting values for the Newton iteration, we also implemented a function to
approximate logarithms.

3.1 Logarithm

For computing the p-th root of a number n, we must choose a starting value
in the iteration. Here, we use (2::'q)"at [of-int [log 2 n] / p],

We use a partial efficient algorithm, which does not terminate on corner-
cases, like b = 0 or p = 1, and invoke it properly afterwards. Then there
is a second algorithm which terminates on these corner-cases by additional
guards and on which we can perform induction.

3.2 Computing the p-th root of an integer number

Using the logarithm, we can define an executable version of the intended
starting value. Its main property is the inequality z < (start-value z p)P,
i.e., the start value is larger than the p-th root. This property is essential,
since our algorithm will abort as soon as we fall below the p-th root.

definition start-value :: int = nat = int where
start-value n p = 2 ~ (nat [of-nat (log-ceiling 2 n) / rat-of-nat p])

lemma start-value-main: assumes z: x > 0 and p: p > 0
shows = < (start-value x p) p A start-value z p > 0

(proof)

lemma start-value: assumes z: ¢ > 0 and p: p > 0 shows z < (start-value z p)
“p start-value T p > 0

{proof)

We now define the Newton iteration to compute the p-th root. We
are working on the integers, where every (/) is replaced by (div). We are

proving several things within a locale which ensures that p > 0, and where
pm=p—1.
locale fized-root =
fixes p pm :: nat
assumes p: p = Suc pm
begin

function root-newton-int-main :: int = int = int x bool where
root-newton-int-main x n = (if (x < 0 V n < 0) then (0,Fualse) else (if x ~p <
n then (z, x " p =n)
else root-newton-int-main ((n div (x = pm) + z * int pm) div (int p)) n))
(proof)

end

For the executable algorithm we omit the guard and use a let-construction

partial-function (tailrec) root-int-main’ :: nat = int = int = int = int = int
x bool where
[code]: root-int-main’ pm ipm ip © n = (let xpm = x pm; xp = zpm * x in if xp
< n then (z, zp = n)
else root-int-main’ pm ipm ip ((n div xpm + z % ipm) div ip) n)

In the following algorithm, we start the iteration. It will compute |root
p n| and a boolean to indicate whether the root is exact.

definition root-int-main :: nat = int = int x bool where
root-int-main p n = if p = 0 then (I,n = 1) else
letpm=p — 1
in root-int-main’ pm (int pm) (int p) (start-value n p) n

Once we have proven soundness of fized-root.root-newton-int-main and
equivalence to root-int-main, it is easy to assemble the following algorithm
which computes all roots for arbitrary integers.

definition root-int :: nat = int = int list where
root-int p x = if p = 0 then || else
if x = 0 then [0] else
let e = even p; s = sgn x; ' = abs x
inif © < 0 A e then [| else case root-int-main p z' of (y,True) = if e then
ly—y] else [s % 9] | - = [

We start with proving termination of fized-root.root-newton-int-main.

context fized-root

begin

lemma iteration-mono-eq: assumes an: x ~ p = (n :: int)
shows (n divx ~pm + x x int pm) divint p = x

(proof)

lemma p0: p # 0 (proof)

The following property is the essential property for proving termination
of root-newton-int-main.

lemma iteration-mono-less: assumes z: © > 0
and n: n > 0
and zn: x " p > (n :: int)
shows (n divx ~pm + x x int pm) divint p < z

(proof)

lemma iteration-mono-lesseq: assumes z: z > 0 and n: n > 0 and zn: z ~ p >
(n ::int)
shows (n divx ~pm + x x int pm) divint p < z

{(proof)

termination
(proof)

We next prove that root-int-main’is a correct implementation of root-newton-int-main.
We additionally prove that the result is always positive, a lower bound, and
that the returned boolean indicates whether the result has a root or not. We
prove all these results in one go, so that we can share the inductive proof.

abbreviation root-main’ where root-main’ = root-int-main’ pm (int pm) (int p)
lemmas root-main’-simps = root-int-main’.simps[of pm int pm int p]

lemma root-main’-newton-pos: x > 0 = n > () —

root-main’ © n = root-newton-int-main x n A (root-main’ z n = (y,b) — y > 0
ANy p<nAb=(yp=n)
(proof)

lemma root-main’s > 0 = n > 0 = root-main’ x n = root-newton-int-main
Tn

{proof)

lemma root-main’-pos: x > 0 = n > 0 = root-main’ z n = (y,b) = y > 0
(proof)

lemma root-main’-sound: x > 0 = n > 0 = root-main’ z n = (y,b) = b =
(y "p=n)
(proof)

In order to prove completeness of the algorithms, we provide sharp upper
and lower bounds for root-main’. For the upper bounds, we use Cauchy’s
mean theorem where we added the non-strict variant to Porter’s formaliza-
tion of this theorem.
lemma root-main’-lower: z > 0 = n > 0 = root-main’ z n = (y,b) = y " p
<n

(proof)

lemma root-newton-int-main-upper:
shows y "p>n = y > 0 = n > 0 = root-newton-int-main y n = (x,b)
=n<(z+1) p

(proof)

lemma root-main’-upper:
z T p>n=2>0= n>0= root-main’ zn=(yb) =n<(y+1)"
p

(proof)
end

Now we can prove all the nice properties of root-int-main.

lemma root-int-main-all: assumes n: n > 0
and rm: root-int-main p n = (y,b)
shows y > 0ANb=(y " p=n)A(p>0—y p<nAn<((y+1)p)
Ap>0—2z>0—z p=n—y=2zADb)

(proof)

lemma root-int-main: assumes n: n > 0

and rm: root-int-main p n = (y,b)

shows y > 0b=(y "p=n)p>0=y p<np>0=n<(y+1)p
p>0=z>0=1z p=n=y=2zAb

(proof)

lemma root-int[simp|: assumes p: p # 0 V x # 1
shows set (root-int pz) ={y .y ~p = z}
(proof)

lemma root-int-pos: assumes z: ¢ > 0 and 7i: root-int p x = y # ys
shows y > 0
(proof)

3.3 Floor and ceiling of roots

Using the bounds for root-int-main we can easily design algorithms which
compute |root p z| and [root p z|. To this end, we first develop algorithms
for non-negative z, and later on these are used for the general case.
definition root-int-floor-pos p x = (if p = 0 then 0 else fst (root-int-main p x))
definition root-int-ceiling-pos p x = (if p = 0 then 0 else (case root-int-main p x
of (y,b) = if b then y else y + 1))

lemma root-int-floor-pos-lower: assumes p0: p # 0 and z: © > 0
shows root-int-floor-pos px ~p < x
(proof)

lemma root-int-floor-pos-pos: assumes z: z > 0
shows root-int-floor-pos p x > 0
(proof)

lemma root-int-floor-pos-upper: assumes p0: p # 0 and z: x > 0
shows (root-int-floor-pos px + 1) " p > x
(proof)

lemma root-int-floor-pos: assumes z: x > 0
shows root-int-floor-pos p x = floor (root p (of-int x))

(proof)

lemma root-int-ceiling-pos: assumes z: © > 0
shows root-int-ceiling-pos p x = ceiling (root p (of-int x))
(proof)

definition root-int-floor p x = (if x > 0 then root-int-floor-pos p x else — root-int-ceiling-pos

p (= z))
definition root-int-ceiling p © = (if x > 0 then root-int-ceiling-pos p x else —
root-int-floor-pos p (— z))

lemma root-int-floor[simp]: root-int-floor p x = floor (root p (of-int x))

(proof)

lemma root-int-ceiling[simpl: root-int-ceiling p © = ceiling (root p (of-int z))
(proof)

3.4 Downgrading algorithms to the naturals

definition root-nat-floor :: nat = nat = int where
root-nat-floor p x = root-int-floor-pos p (int x)

definition root-nat-ceiling :: nat = nat = int where
root-nat-ceiling p x = root-int-ceiling-pos p (int x)

definition root-nat :: nat = nat = nat list where
root-nat p x = map nat (take 1 (root-int p x))

lemma root-nat-floor [simp]: root-nat-floor p x = floor (root p (real x))

(proof)

lemma root-nat-floor-lower: assumes p0: p # 0
shows root-nat-floor pz " p < z

{proof)

lemma root-nat-floor-upper: assumes p0: p # 0
shows (root-nat-floor p x + 1) "p > x
(proof)

lemma root-nat-ceiling [simp]: root-nat-ceiling p x = ceiling (root p x)
(proof)

lemma root-nat: assumes p0: p # 0 V z # 1
shows set (root-natpz) ={ y. y " p =z}
(proof)

3.5 Upgrading algorithms to the rationals

The main observation to lift everything from the integers to the rationals is

the fact, that one can reformulate %1/ P as M.

definition root-rat-floor :: nat = rat = int where
root-rat-floor p x = case quotient-of z of (a,b) = root-int-floor p (a x b (p — 1))
div b

definition root-rat-ceiling :: nat = rat = int where
root-rat-ceiling p x = — (root-rat-floor p (—z))

definition root-rat :: nat = rat = rat list where
root-rat p x = case quotient-of x of (a,b) = concat
(map (A rb. map (A ra. of-int ra / rat-of-int vb) (root-int p a)) (take 1 (root-int

p b))

lemma root-rat-reform: assumes q: quotient-of © = (a,b)
shows root p (real-of-rat) = root p (of-int (a x b ~(p — 1))) / of-int b
(proof)

lemma root-rat-floor [simp]: root-rat-floor p x = floor (root p (of-rat x))

{(proof)

lemma root-rat-ceiling [simp): root-rat-ceiling p x = ceiling (root p (of-rat x))
{proof)

lemma root-rat[simp]: assumes p: p # 0 V x # 1
shows set (root-rat p) ={ y. y ~p = z}
(proof)

end

theory Sqrt-Babylonian
imports
Sqrt-Babylonian- Auziliary
NthRoot-Impl
begin

4 Executable algorithms for square roots

This theory provides executable algorithms for computing square-roots of
numbers which are all based on the Babylonian method (which is also known
as Heron’s method or Newton’s method).

For integers / naturals / rationals precise algorithms are given, i.e., here

10

sqrt x delivers a list of all integers / naturals / rationals y where y? = .
To this end, the Babylonian method has been adapted by using integer-
divisions.

In addition to the precise algorithms, we also provide approximation al-
gorithms. One works for arbitrary linear ordered fields, where some number
y is computed such that |y?> — z| < e. Moreover, for the naturals, integers,
and rationals we provide algorithms to compute |sqrt | and [sqgrt x| which
are all based on the underlying algorithm that is used to compute the precise
square-roots on integers, if these exist.

The major motivation for developing the precise algorithms was given by
CeTA [2], a tool for certifiying termination proofs. Here, non-linear equations
of the form (ajx1 +. .. anxn)2 = p had to be solved over the integers, where
p is a concrete polynomial. For example, for the equation (azx + by)? =
422 — 122y + 9y? one easily figures out that a® = 4,0> = 9, and ab = —6,
which results in a possible solution a = V4 = 2,b= -9 =-3.

4.1 The Babylonian method
The Babylonian method for computing +/n iteratively computes
= T

2

until m? ~ n. Note that if ;3(2) > n, then for all ¢ we have both ajlz > n and
Ti 2 Xit1-

Tit1 =

4.2 The Babylonian method using integer division

First, the algorithm is developed for the non-negative integers. Here, the
division operation £ is replaced by z div y = |of-int © / of-int y|. Note
that replacing |of-int = / of-int y| by [of-int x / of-int y]| would lead to
non-termination in the following algorithm.

We explicititly develop the algorithm on the integers and not on the
naturals, as the calculations on the integers have been much easier. For
example, y—x+x = y on the integers, which would require the side-condition
y > x for the naturals. These conditions will make the reasoning much more
tedious—as we have experienced in an earlier state of this development where
everything was based on naturals.

Since the elements xg, x1, 2, ... are monotone decreasing, in the main
algorithm we abort as soon as z? < n.

Since in the meantime, all of these algorithms have been gen-
eralized to arbitrary p-th roots in Sqrt-Babylonian.NthRoot-Impl, we
just instantiate the general algorithms by p = 2 and then provide
specialized code equations which are more efficient than the gen-
eral purpose algorithms.

11

definition sgri-int-main’ :: int = int = int X bool where
[simp]: sqrt-int-main’ x n = root-int-main’ 1 1 2z n

lemma sqrt-int-main’-code|code]: sqrt-int-main’ x n = (let 2 = x x x in if 22 <
n then (x, 2 = n)
else sqrt-int-main’ ((n div z + x) div 2) n)
(proof)

definition sqrt-int-main :: int = int X bool where
[simp]: sqrt-int-main & = root-int-main 2 x

lemma sqrt-int-main-code|code]: sqrt-int-main ¢ = sqrt-int-main’ (start-value z 2)
T
{proof)

definition sqrt-int :: int = int list where
sqrt-int x = root-int 2 x

lemma sqrt-int-code[code]: sqri-int © = (if x < 0 then [] else case sqrt-int-main x
of (y,True) = if y = 0 then [0] else [y,—y] | - = [])
(proof)

lemma sqrt-int[simp|: set (sqrt-int x) = {y. y * y = z}

{proof)

lemma sgrt-int-pos: assumes res: sqrt-int © = Cons s ms
shows s > 0

(proof)
definition [simp]: sqrt-int-floor-pos © = root-int-floor-pos 2 x

lemma sqrit-int-floor-pos-code[codel: sqrt-int-floor-pos © = fst (sqrt-int-main x)
(proof)

lemma sqrt-int-floor-pos: assumes z: © > 0
shows sgrt-int-floor-pos © = | sqrt (of-int z) |
(proof)

definition [simp]: sqrt-int-ceiling-pos x = root-int-ceiling-pos 2 x

lemma sqrt-int-ceiling-pos-code|code]: sqrt-int-ceiling-pos © = (case sqrt-int-main
z of (y,b) = if b then y else y + 1)
{proof)

lemma sqrt-int-ceiling-pos: assumes x: z > 0

shows sgrt-int-ceiling-pos © = [sqrt (of-int z) |

(proof)

12

definition sqrt-int-floor x = root-int-floor 2 x

lemma sqri-int-floor-code[code]: sqrt-int-floor x = (if x > 0 then sqrt-int-floor-pos
z else — sqrt-int-ceiling-pos (— x))
(proof)

lemma sqrt-int-floor|[simp|: sqrt-int-floor = | sqrt (of-int z) |
(proof)

definition sqrt-int-ceiling x = root-int-ceiling 2 x

lemma sqri-int-ceiling-code[code]: sqrt-int-ceiling x = (if © > 0 then sqrt-int-ceiling-pos
x else — sqrit-int-floor-pos (— x))
(proof)

lemma sqrt-int-ceiling[simp]: sqrt-int-ceiling x = [sqrt (of-int)]
(proof)

lemma sqri-int-ceiling-bound: 0 < r = x < (sqrt-int-ceiling z) 2
(proof)

4.3 Square roots for the naturals

definition sqrt-nat :: nat = nat list
where sqrt-nat x = root-nat 2 x

lemma sqrt-nat-code[code]: sqrt-nat © = map nat (take 1 (sqri-int (int z)))
{proof)

lemma sqrt-nat[simp]: set (sqgrt-nat z) = { y. y * y = x}
(proof)

definition sqrt-nat-floor :: nat = int where
sqrt-nat-floor x = root-nat-floor 2 x

lemma sqrt-nat-floor-code[code]: sqrt-nat-floor x = sqrt-int-floor-pos (int x)
{proof)

lemma sqrt-nat-floor[simp|: sqrt-nat-floor x = | sqrt (real z) |
{proof)

definition sqrt-nat-ceiling :: nat = int where
sqrt-nat-ceiling x = root-nat-ceiling 2 x

lemma sqrt-nat-ceiling-code|code]: sqrt-nat-ceiling © = sqrt-int-ceiling-pos (int x)
(proof)

lemma sqri-nat-ceiling[simp]: sqrt-nat-ceiling x = | sqrt (real x) |
{proof)

13

4.4 Square roots for the rationals

definition sqrt-rat :: rat = rat list where
sqrt-rat x = root-rat 2 x

lemma sqrt-rat-code[codel: sqrt-rat x = (case quotient-of x of (z,n) = (case sqrt-int
n of
=1

| sn # xs = map (X sz. of-int sz / of-int sn) (sqrt-int z)))

(proof)

lemma sqrt-rat[simp]: set (sqri-rat ©) = { y. y x y = z}
{proof)

lemma sqrit-rat-pos: assumes sqrt: sqrt-rat x = Cons s ms
shows s > 0

(proof)

definition sqrt-rat-floor :: rat = int where
sqrt-rat-floor = root-rat-floor 2 x

lemma sqrt-rat-floor-code[codel: sqrt-rat-floor © = (case quotient-of x of (a,b) =
sqrt-int-floor (a * b) div b)
(proof)

lemma sqrt-rat-floor[simp|: sqrt-rat-floor x = | sqrt (of-rat) |
(proof)

definition sqrt-rat-ceiling :: rat = int where
sqrt-rat-ceiling x = root-rat-ceiling 2 x

lemma sqrt-rat-ceiling-code[code]: sqrt-rat-ceiling © = — (sqrt-rat-floor (—1))
(proof)

lemma sqrt-rat-ceiling: sqrt-rat-ceiling x = [sqrt (of-rat) |
(proof)

lemma sgr-rat-of-int: assumes x: © * x = rat-of-int 4
shows 3 j::int. jxj =1
(proof)

4.5 Approximating square roots

The difference to the previous algorithms is that now we abort, once the
distance is below €. Moreover, here we use standard division and not integer
division. This part is not yet generalized by Sqrt-Babylonian. NthRoot-Impl.

We first provide the executable version without guard 0 < z as par-
tial function, and afterwards prove termination and soundness for a similar
algorithm that is defined within the upcoming locale.

14

partial-function (tailrec) sqrt-approx-main-impl :: 'a :: linordered-field = 'a =
‘a = 'a where

[code]: sqrt-approz-main-impl e nx = (if z * x — n < & then z else sqrt-approz-main-impl
eEn

((n/z+2)/2)

We setup a locale where we ensure that we have standard assumptions:
positive € and positive n. We require sort floor-ceiling, since |z] is used for
the termination argument.

locale sqrt-approrimation =
fixes ¢ :: ‘a :: {linordered-field,floor-ceiling}
and n :: ‘a
assumes € : € > (
and n: n > 0

begin

function sqrt-approz-main :: 'a = 'a where
sqrt-approz-main x = (if x > 0 then (if x * x — n < € then x else sqrt-approx-main

((n/z+2x)/2) else 0)
(proof)

Termination essentially is a proof of convergence. Here, one complication
is the fact that the limit is not always defined. E.g., if ‘a is rat then there
is no square root of 2. Therefore, the error-rate % — 1 is not expressible.

22

Instead we use the expression 7- — 1 as error-rate which does not require

any square-root operation.

termination

(proof)

Once termination is proven, it is easy to show equivalence of sqrt-approz-main-impl
and sqrt-approx-main.
lemma sqrt-approz-main-impl: x > 0 = sqrt-appror-main-impl € n x = sqrt-appror-main
T
(proof)

Also soundness is not complicated.

lemma sqrt-approz-main-sound: assumes z: £ > 0 and zz: x x £ > n

shows sgrt-approzr-main x * sqrt-appror-main © > n A sqrt-appror-main T *
sqrt-appror-main T — n < €

(proof)

end

It remains to assemble everything into one algorithm.

definition sqrt-approzx :: 'a :: {linordered-field,floor-ceiling} = 'a = 'a where

sqrt-approx € x = if € > 0 then (if £ = 0 then 0 else let zpos = abs z in
sqrt-approz-main-impl € zpos (zpos + 1)) else 0

15

lemma sqrt-approz: assumes ¢: € > 0
shows |sqrt-approz € © * sqrt-approx ¢ x — |z|| < €

(proof)

4.6 Some tests

Testing executabity and show that sqrt 2 is irrational

lemma - (3 ¢ :: rat. i x i = 2)

(proof)
Testing speed

lemma — (3 ¢ ::int. ¢ x ¢ = 12845678901253456789012545678901234567890)
(proof)

The following test

value let ¢ = 1 / 100000000 :: rat; s = sqrt-approx € 2in (s, s x s — 2, |s x s —
2| < ¢e)

results in (1.4142135623731116, 4.738200762148612e-14, True).

end

Acknowledgements

We thank Bertram Felgenhauer for for mentioning Cauchy’s mean theorem
during the formalization of the algorithms for computing n-th roots.

References

[1] T. Heath. A History of Greek Mathematics, volume 2, pages 323-326.
Clarendon Press, 1921.

[2] R. Thiemann and C. Sternagel. Certification of termination proofs using
CelTA. In Proc. TPHOLs’09, volume 5674 of LNC'S, pages 452—468, 2009.

16

	Auxiliary lemmas which might be moved into the Isabelle distribution.
	A Fast Logarithm Algorithm
	Executable algorithms for p-th roots
	Logarithm
	Computing the p-th root of an integer number
	Floor and ceiling of roots
	Downgrading algorithms to the naturals
	Upgrading algorithms to the rationals

	Executable algorithms for square roots
	The Babylonian method
	The Babylonian method using integer division
	Square roots for the naturals
	Square roots for the rationals
	Approximating square roots
	Some tests

