
Computing N-th Roots using the Babylonian
Method∗

René Thiemann

March 19, 2025

Abstract

We implement the Babylonian method [1] to compute n-th roots
of numbers. We provide precise algorithms for naturals, integers and
rationals, and offer an approximation algorithm for square roots within
linear ordered fields. Moreover, there are precise algorithms to com-
pute the floor and the ceiling of n-th roots.

Contents
1 Auxiliary lemmas which might be moved into the Isabelle

distribution. 2

2 A Fast Logarithm Algorithm 4

3 Executable algorithms for p-th roots 8
3.1 Logarithm . 8
3.2 Computing the p-th root of an integer number 9
3.3 Floor and ceiling of roots . 20
3.4 Downgrading algorithms to the naturals 23
3.5 Upgrading algorithms to the rationals 25

4 Executable algorithms for square roots 28
4.1 The Babylonian method . 28
4.2 The Babylonian method using integer division 28
4.3 Square roots for the naturals 31
4.4 Square roots for the rationals 31
4.5 Approximating square roots 33
4.6 Some tests . 36

∗This research is supported by FWF (Austrian Science Fund) project P22767-N13.

1

1 Auxiliary lemmas which might be moved into
the Isabelle distribution.

theory Sqrt-Babylonian-Auxiliary
imports

Complex-Main
begin

lemma mod-div-equality-int: (n :: int) div x ∗ x = n − n mod x
using div-mult-mod-eq[of n x] by arith

lemma div-is-floor-divide-rat: n div y = brat-of-int n / rat-of-int yc
unfolding Fract-of-int-quotient[symmetric] floor-Fract by simp

lemma div-is-floor-divide-real: n div y = breal-of-int n / of-int yc
unfolding div-is-floor-divide-rat[of n y]
by (metis Ratreal-def of-rat-divide of-rat-of-int-eq real-floor-code)

lemma floor-div-pos-int:
fixes r :: ′a :: floor-ceiling
assumes n: n > 0
shows br / of-int nc = brc div n (is ?l = ?r)

proof −
let ?of-int = of-int :: int ⇒ ′a
define rhs where rhs = brc div n
let ?n = ?of-int n
define m where m = brc mod n
let ?m = ?of-int m
from div-mult-mod-eq[of floor r n] have dm: rhs ∗ n + m = brc unfolding

rhs-def m-def by simp
have mn: m < n and m0 : m ≥ 0 using n m-def by auto
define e where e = r − ?of-int brc
have e0 : e ≥ 0 unfolding e-def

by (metis diff-self eq-iff floor-diff-of-int zero-le-floor)
have e1 : e < 1 unfolding e-def

by (metis diff-self dual-order .refl floor-diff-of-int floor-le-zero)
have r = ?of-int brc + e unfolding e-def by simp
also have brc = rhs ∗ n + m using dm by simp
finally have r = ?of-int (rhs ∗ n + m) + e .
hence r / ?n = ?of-int (rhs ∗ n) / ?n + (e + ?m) / ?n using n by (simp add:

field-simps)
also have ?of-int (rhs ∗ n) / ?n = ?of-int rhs using n by auto
finally have ∗: r / ?of-int n = (e + ?of-int m) / ?of-int n + ?of-int rhs by

simp
have ?l = rhs + floor ((e + ?m) / ?n) unfolding ∗ by simp
also have floor ((e + ?m) / ?n) = 0
proof (rule floor-unique)

show ?of-int 0 ≤ (e + ?m) / ?n using e0 m0 n
by (metis add-increasing2 divide-nonneg-pos of-int-0 of-int-0-le-iff of-int-0-less-iff)

2

show (e + ?m) / ?n < ?of-int 0 + 1
proof (rule ccontr)

from n have n ′: ?n > 0 ?n ≥ 0 by simp-all
assume ¬ ?thesis
hence (e + ?m) / ?n ≥ 1 by auto
from mult-right-mono[OF this n ′(2)]
have ?n ≤ e + ?m using n ′(1) by simp
also have ?m ≤ ?n − 1 using mn

by (metis of-int-1 of-int-diff of-int-le-iff zle-diff1-eq)
finally have ?n ≤ e + ?n − 1 by auto
with e1 show False by arith

qed
qed
finally show ?thesis unfolding rhs-def by simp

qed

lemma floor-div-neg-int:
fixes r :: ′a :: floor-ceiling
assumes n: n < 0
shows br / of-int nc = dre div n

proof −
from n have n ′: − n > 0 by auto
have br / of-int nc = b − r / of-int (− n)c using n

by (metis floor-of-int floor-zero less-int-code(1) minus-divide-left minus-minus
nonzero-minus-divide-right of-int-minus)

also have . . . = b − r c div (− n) by (rule floor-div-pos-int[OF n ′])
also have . . . = d r e div n using n
by (metis ceiling-def div-minus-right)
finally show ?thesis .

qed

lemma divide-less-floor1 : n / y < of-int (floor (n / y)) + 1
by (metis floor-less-iff less-add-one of-int-1 of-int-add)

context linordered-idom
begin

lemma sgn-int-pow-if [simp]:
sgn x ^ p = (if even p then 1 else sgn x) if x 6= 0
using that by (induct p) simp-all

lemma compare-pow-le-iff : p > 0 =⇒ (x :: ′a) ≥ 0 =⇒ y ≥ 0 =⇒ (x ^ p ≤ y ^
p) = (x ≤ y)

by (rule power-mono-iff)

lemma compare-pow-less-iff : p > 0 =⇒ (x :: ′a) ≥ 0 =⇒ y ≥ 0 =⇒ (x ^ p < y
^ p) = (x < y)

using compare-pow-le-iff [of p x y]

3

using local.dual-order .order-iff-strict local.power-strict-mono by blast

end

lemma quotient-of-int[simp]: quotient-of (of-int i) = (i,1)
by (metis Rat.of-int-def quotient-of-int)

lemma quotient-of-nat[simp]: quotient-of (of-nat i) = (int i,1)
by (metis Rat.of-int-def Rat.quotient-of-int of-int-of-nat-eq)

lemma square-lesseq-square:
∧

x y. 0 ≤ (x :: ′a :: linordered-field) =⇒ 0 ≤ y =⇒
(x ∗ x ≤ y ∗ y) = (x ≤ y)

by (metis mult-mono mult-strict-mono ′ not-less)

lemma square-less-square:
∧

x y. 0 ≤ (x :: ′a :: linordered-field) =⇒ 0 ≤ y =⇒
(x ∗ x < y ∗ y) = (x < y)

by (metis mult-mono mult-strict-mono ′ not-less)

lemma sqrt-sqrt[simp]: x ≥ 0 =⇒ sqrt x ∗ sqrt x = x
by (metis real-sqrt-pow2 power2-eq-square)

lemma abs-lesseq-square: abs (x :: real) ≤ abs y ←→ x ∗ x ≤ y ∗ y
using square-lesseq-square[of abs x abs y] by auto

end

2 A Fast Logarithm Algorithm
theory Log-Impl
imports

Sqrt-Babylonian-Auxiliary
begin

We implement the discrete logarithm function in a manner similar to a
repeated squaring exponentiation algorithm.

In order to prove termination of the algorithm without intermediate
checks we need to ensure that we only use proper bases, i.e., values of at
least 2. This will be encoded into a separate type.
typedef proper-base = {x :: int. x ≥ 2} by auto

setup-lifting type-definition-proper-base

lift-definition get-base :: proper-base ⇒ int is λ x. x .

lift-definition square-base :: proper-base ⇒ proper-base is λ x. x ∗ x
proof −

fix i :: int
assume i: 2 ≤ i

4

have 2 ∗ 2 ≤ i ∗ i
by (rule mult-mono[OF i i], insert i, auto)

thus 2 ≤ i ∗ i by auto
qed

lift-definition into-base :: int ⇒ proper-base is λ x. if x ≥ 2 then x else 2 by auto

lemma square-base: get-base (square-base b) = get-base b ∗ get-base b
by (transfer , auto)

lemma get-base-2 : get-base b ≥ 2
by (transfer , auto)

lemma b-less-square-base-b: get-base b < get-base (square-base b)
unfolding square-base using get-base-2 [of b] by simp

lemma b-less-div-base-b: assumes xb: ¬ x < get-base b
shows x div get-base b < x

proof −
from get-base-2 [of b] have b: get-base b ≥ 2 .
with xb have x2 : x ≥ 2 by auto
with b int-div-less-self [of x (get-base b)]
show ?thesis by auto

qed

We now state the main algorithm.
function log-main :: proper-base ⇒ int ⇒ nat × int where

log-main b x = (if x < get-base b then (0 ,1) else
case log-main (square-base b) x of
(z, bz) ⇒

let l = 2 ∗ z; bz1 = bz ∗ get-base b
in if x < bz1 then (l,bz) else (Suc l,bz1))

by pat-completeness auto

termination by (relation measure (λ (b,x). nat (1 + x − get-base b)),
insert b-less-square-base-b, auto)

lemma log-main: x > 0 =⇒ log-main b x = (y,by) =⇒ by = (get-base b)^y ∧
(get-base b)^y ≤ x ∧ x < (get-base b)^(Suc y)
proof (induct b x arbitrary: y by rule: log-main.induct)

case (1 b x y by)
note x = 1 (2)
note y = 1 (3)
note IH = 1 (1)
let ?b = get-base b
show ?case
proof (cases x < ?b)

case True
with x y show ?thesis by auto

5

next
case False
obtain z bz where zz: log-main (square-base b) x = (z,bz)

by (cases log-main (square-base b) x, auto)
have id: get-base (square-base b) ^ k = ?b ^ (2 ∗ k) for k unfolding square-base

by (simp add: power-mult semiring-normalization-rules(29))
from IH [OF False x zz, unfolded id]
have z: ?b ^ (2 ∗ z) ≤ x x < ?b ^ (2 ∗ Suc z) and bz: bz = get-base b ^ (2 ∗

z) by auto
from y[unfolded log-main.simps[of b x] Let-def zz split] bz False
have yy: (if x < bz ∗ ?b then (2 ∗ z, bz) else (Suc (2 ∗ z), bz ∗ ?b)) =
(y, by) by auto

show ?thesis
proof (cases x < bz ∗ ?b)

case True
with yy have yz: y = 2 ∗ z by = bz by auto
from True z(1) bz show ?thesis unfolding yz by (auto simp: ac-simps)

next
case False
with yy have yz: y = Suc (2 ∗ z) by = ?b ∗ bz by auto
from False have ?b ^ Suc (2 ∗ z) ≤ x by (auto simp: bz ac-simps)
with z(2) bz show ?thesis unfolding yz by auto

qed
qed

qed

We then derive the floor- and ceiling-log functions.
definition log-floor :: int ⇒ int ⇒ nat where

log-floor b x = fst (log-main (into-base b) x)

definition log-ceiling :: int ⇒ int ⇒ nat where
log-ceiling b x = (case log-main (into-base b) x of

(y,by) ⇒ if x = by then y else Suc y)

lemma log-floor-sound: assumes b > 1 x > 0 log-floor b x = y
shows b^y ≤ x x < b^(Suc y)

proof −
from assms(1 ,3) have id: get-base (into-base b) = b by transfer auto
obtain yy bb where log: log-main (into-base b) x = (yy,bb)

by (cases log-main (into-base b) x, auto)
from log-main[OF assms(2) log] assms(3)[unfolded log-floor-def log] id
show b^y ≤ x x < b^(Suc y) by auto

qed

lemma log-ceiling-sound: assumes b > 1 x > 0 log-ceiling b x = y
shows x ≤ b^y y 6= 0 =⇒ b^(y − 1) < x

proof −
from assms(1 ,3) have id: get-base (into-base b) = b by transfer auto
obtain yy bb where log: log-main (into-base b) x = (yy,bb)

6

by (cases log-main (into-base b) x, auto)
from log-main[OF assms(2) log, unfolded id] assms(3)[unfolded log-ceiling-def

log split]
have bnd: b ^ yy ≤ x x < b ^ Suc yy and

y: y = (if x = b ^ yy then yy else Suc yy) by auto
have x ≤ b^y ∧ (y 6= 0 −→ b^(y − 1) < x)
proof (cases x = b ^ yy)

case True
with y bnd assms(1) show ?thesis by (cases yy, auto)

next
case False
with y bnd show ?thesis by auto

qed
thus x ≤ b^y y 6= 0 =⇒ b^(y − 1) < x by auto

qed

Finally, we connect it to the log function working on real numbers.
lemma log-floor [simp]: assumes b: b > 1 and x: x > 0

shows log-floor b x = blog b xc
proof −

obtain y where y: log-floor b x = y by auto
note main = log-floor-sound[OF assms y]
from b x have ∗: 1 < real-of-int b 0 < real-of-int (b ^ y) 0 < real-of-int x

and ∗∗: 1 < real-of-int b 0 < real-of-int x 0 < real-of-int (b ^ Suc y)
by auto

show ?thesis unfolding y
proof (rule sym, rule floor-unique)

show real-of-int (int y) ≤ log (real-of-int b) (real-of-int x)
using main(1)[folded log-le-cancel-iff [OF ∗, unfolded of-int-le-iff]]
using log-pow-cancel[of b y] b by auto

show log (real-of-int b) (real-of-int x) < real-of-int (int y) + 1
using main(2)[folded log-less-cancel-iff [OF ∗∗, unfolded of-int-less-iff]]
using log-pow-cancel[of b Suc y] b by auto

qed
qed

lemma log-ceiling[simp]: assumes b: b > 1 and x: x > 0
shows log-ceiling b x = dlog b xe

proof −
obtain y where y: log-ceiling b x = y by auto
note main = log-ceiling-sound[OF assms y]
from b x have ∗: 1 < real-of-int b 0 < real-of-int (b ^ (y − 1)) 0 < real-of-int

x
and ∗∗: 1 < real-of-int b 0 < real-of-int x 0 < real-of-int (b ^ y)
by auto

show ?thesis unfolding y
proof (rule sym, rule ceiling-unique)

show log (real-of-int b) (real-of-int x) ≤ real-of-int (int y)
using main(1)[folded log-le-cancel-iff [OF ∗∗, unfolded of-int-le-iff]]

7

using log-pow-cancel[of b y] b by auto
from x have x: x ≥ 1 by auto
show real-of-int (int y) − 1 < log (real-of-int b) (real-of-int x)
proof (cases y = 0)

case False
thus ?thesis

using main(2)[folded log-less-cancel-iff [OF ∗, unfolded of-int-less-iff]]
using log-pow-cancel[of b y − 1] b x by auto

next
case True
have real-of-int (int y) − 1 = log b (1/b) using True b

by (subst log-divide, auto)
also have . . . < log b 1

by (subst log-less-cancel-iff , insert b, auto)
also have . . . ≤ log b x

by (subst log-le-cancel-iff , insert b x, auto)
finally show real-of-int (int y) − 1 < log (real-of-int b) (real-of-int x) .

qed
qed

qed

end

3 Executable algorithms for p-th roots
theory NthRoot-Impl
imports

Log-Impl
Cauchy.CauchysMeanTheorem

begin

We implemented algorithms to decide p
√
n ∈ Q and to compute b p

√
nc.

To this end, we use a variant of Newton iteration which works with inte-
ger division instead of floating point or rational division. To get suitable
starting values for the Newton iteration, we also implemented a function to
approximate logarithms.

3.1 Logarithm
For computing the p-th root of a number n, we must choose a starting value
in the iteration. Here, we use (2 :: ′a)nat dof-int dlog 2 ne / pe.

We use a partial efficient algorithm, which does not terminate on corner-
cases, like b = 0 or p = 1, and invoke it properly afterwards. Then there
is a second algorithm which terminates on these corner-cases by additional
guards and on which we can perform induction.

8

3.2 Computing the p-th root of an integer number
Using the logarithm, we can define an executable version of the intended
starting value. Its main property is the inequality x ≤ (start-value x p)p,
i.e., the start value is larger than the p-th root. This property is essential,
since our algorithm will abort as soon as we fall below the p-th root.
definition start-value :: int ⇒ nat ⇒ int where

start-value n p = 2 ^ (nat dof-nat (log-ceiling 2 n) / rat-of-nat pe)

lemma start-value-main: assumes x: x ≥ 0 and p: p > 0
shows x ≤ (start-value x p)^p ∧ start-value x p ≥ 0

proof (cases x = 0)
case True
with p show ?thesis unfolding start-value-def True by simp

next
case False
with x have x: x > 0 by auto
define l2x where l2x = dlog 2 xe
define pow where pow = nat drat-of-int l2x / of-nat pe
have root p x = x powr (1 / p) by (rule root-powr-inverse, insert x p, auto)
also have . . . = (2 powr (log 2 x)) powr (1 / p) using powr-log-cancel[of 2 x] x

by auto
also have . . . = 2 powr (log 2 x ∗ (1 / p)) by (rule powr-powr)
also have log 2 x ∗ (1 / p) = log 2 x / p using p by auto
finally have r : root p x = 2 powr (log 2 x / p) .
have lp: log 2 x ≥ 0 using x by auto
hence l2pos: l2x ≥ 0 by (auto simp: l2x-def)
have log 2 x / p ≤ l2x / p using x p unfolding l2x-def

by (metis divide-right-mono le-of-int-ceiling of-nat-0-le-iff)
also have . . . ≤ dl2x / (p :: real)e by (simp add: ceiling-correct)
also have l2x / real p = l2x / real-of-rat (of-nat p)

by (metis of-rat-of-nat-eq)
also have of-int l2x = real-of-rat (of-int l2x)

by (metis of-rat-of-int-eq)
also have real-of-rat (of-int l2x) / real-of-rat (of-nat p) = real-of-rat (rat-of-int

l2x / of-nat p)
by (metis of-rat-divide)

also have dreal-of-rat (rat-of-int l2x / rat-of-nat p)e = drat-of-int l2x / of-nat pe
by simp

also have drat-of-int l2x / of-nat pe ≤ real pow unfolding pow-def by auto
finally have le: log 2 x / p ≤ pow .
from powr-mono[OF le, of 2 , folded r]
have root p x ≤ 2 powr pow by auto
also have . . . = 2 ^ pow by (rule powr-realpow, auto)
also have . . . = of-int ((2 :: int) ^ pow) by simp
also have pow = (nat dof-int (log-ceiling 2 x) / rat-of-nat pe)

unfolding pow-def l2x-def using x by simp
also have real-of-int ((2 :: int) ^ . . .) = start-value x p unfolding start-value-def

by simp

9

finally have less: root p x ≤ start-value x p .
have 0 ≤ root p x using p x by auto
also have . . . ≤ start-value x p by (rule less)
finally have start: 0 ≤ start-value x p by simp
from power-mono[OF less, of p] have root p (of-int x) ^ p ≤ of-int (start-value

x p) ^ p using p x by auto
also have . . . = start-value x p ^ p by simp
also have root p (of-int x) ^ p = x using p x by force
finally have x ≤ (start-value x p) ^ p by presburger
with start show ?thesis by auto

qed

lemma start-value: assumes x: x ≥ 0 and p: p > 0 shows x ≤ (start-value x p)
^ p start-value x p ≥ 0

using start-value-main[OF x p] by auto

We now define the Newton iteration to compute the p-th root. We
are working on the integers, where every (/) is replaced by (div). We are
proving several things within a locale which ensures that p > 0, and where
pm = p− 1.
locale fixed-root =

fixes p pm :: nat
assumes p: p = Suc pm

begin

function root-newton-int-main :: int ⇒ int ⇒ int × bool where
root-newton-int-main x n = (if (x < 0 ∨ n < 0) then (0 ,False) else (if x ^ p ≤

n then (x, x ^ p = n)
else root-newton-int-main ((n div (x ^ pm) + x ∗ int pm) div (int p)) n))
by pat-completeness auto

end

For the executable algorithm we omit the guard and use a let-construction
partial-function (tailrec) root-int-main ′ :: nat ⇒ int ⇒ int ⇒ int ⇒ int ⇒ int
× bool where
[code]: root-int-main ′ pm ipm ip x n = (let xpm = x^pm; xp = xpm ∗ x in if xp
≤ n then (x, xp = n)

else root-int-main ′ pm ipm ip ((n div xpm + x ∗ ipm) div ip) n)

In the following algorithm, we start the iteration. It will compute broot
p nc and a boolean to indicate whether the root is exact.
definition root-int-main :: nat ⇒ int ⇒ int × bool where

root-int-main p n ≡ if p = 0 then (1 ,n = 1) else
let pm = p − 1

in root-int-main ′ pm (int pm) (int p) (start-value n p) n

Once we have proven soundness of fixed-root.root-newton-int-main and
equivalence to root-int-main, it is easy to assemble the following algorithm
which computes all roots for arbitrary integers.

10

definition root-int :: nat ⇒ int ⇒ int list where
root-int p x ≡ if p = 0 then [] else

if x = 0 then [0] else
let e = even p; s = sgn x; x ′ = abs x
in if x < 0 ∧ e then [] else case root-int-main p x ′ of (y,True) ⇒ if e then

[y,−y] else [s ∗ y] | - ⇒ []

We start with proving termination of fixed-root.root-newton-int-main.
context fixed-root
begin
lemma iteration-mono-eq: assumes xn: x ^ p = (n :: int)

shows (n div x ^ pm + x ∗ int pm) div int p = x
proof −

have [simp]:
∧

n. (x + x ∗ n) = x ∗ (1 + n) by (auto simp: field-simps)
show ?thesis unfolding xn[symmetric] p by simp

qed

lemma p0 : p 6= 0 unfolding p by auto

The following property is the essential property for proving termination
of root-newton-int-main.
lemma iteration-mono-less: assumes x: x ≥ 0

and n: n ≥ 0
and xn: x ^ p > (n :: int)
shows (n div x ^ pm + x ∗ int pm) div int p < x

proof −
let ?sx = (n div x ^ pm + x ∗ int pm) div int p
from xn have xn-le: x ^ p ≥ n by auto
from xn x n have x0 : x > 0

using not-le p by fastforce
from p have xp: x ^ p = x ∗ x ^ pm by auto
from x n have n div x ^ pm ∗ x ^ pm ≤ n

by (auto simp add: minus-mod-eq-div-mult [symmetric] mod-int-pos-iff not-less
power-le-zero-eq)

also have . . . ≤ x ^ p using xn by auto
finally have le: n div x ^ pm ≤ x using x x0 unfolding xp by simp
have ?sx ≤ (x^p div x ^ pm + x ∗ int pm) div int p

by (rule zdiv-mono1 , insert le p0 , unfold xp, auto)
also have x^p div x ^ pm = x unfolding xp by auto
also have x + x ∗ int pm = x ∗ int p unfolding p by (auto simp: field-simps)
also have x ∗ int p div int p = x using p by force
finally have le: ?sx ≤ x .
{

assume ?sx = x
from arg-cong[OF this, of λ x. x ∗ int p]
have x ∗ int p ≤ (n div x ^ pm + x ∗ int pm) div (int p) ∗ int p using p0 by

simp
also have . . . ≤ n div x ^ pm + x ∗ int pm

unfolding mod-div-equality-int using p by auto

11

finally have n div x^pm ≥ x by (auto simp: p field-simps)
from mult-right-mono[OF this, of x ^ pm]
have ge: n div x^pm ∗ x^pm ≥ x^p unfolding xp using x by auto
from div-mult-mod-eq[of n x^pm] have n div x^pm ∗ x^pm = n − n mod x^pm

by arith
from ge[unfolded this]
have le: x^p ≤ n − n mod x^pm .
from x n have ge: n mod x ^ pm ≥ 0

by (auto simp add: mod-int-pos-iff not-less power-le-zero-eq)
from le ge
have n ≥ x^p by auto
with xn have False by auto

}
with le show ?thesis unfolding p by fastforce

qed

lemma iteration-mono-lesseq: assumes x: x ≥ 0 and n: n ≥ 0 and xn: x ^ p ≥
(n :: int)

shows (n div x ^ pm + x ∗ int pm) div int p ≤ x
proof (cases x ^ p = n)

case True
from iteration-mono-eq[OF this] show ?thesis by simp

next
case False
with assms have x ^ p > n by auto
from iteration-mono-less[OF x n this]
show ?thesis by simp

qed

termination
proof −

let ?mm = λ x n :: int. nat x
let ?m1 = λ (x,n). ?mm x n
let ?m = measures [?m1]
show ?thesis
proof (relation ?m)

fix x n :: int
assume ¬ x ^ p ≤ n
hence x: x ^ p > n by auto
assume ¬ (x < 0 ∨ n < 0)
hence x-n: x ≥ 0 n ≥ 0 by auto
from x x-n have x0 : x > 0 using p by (cases x = 0 , auto)
from iteration-mono-less[OF x-n x] x0
show (((n div x ^ pm + x ∗ int pm) div int p, n), x, n) ∈ ?m by auto

qed auto
qed

We next prove that root-int-main ′ is a correct implementation of root-newton-int-main.
We additionally prove that the result is always positive, a lower bound, and
that the returned boolean indicates whether the result has a root or not. We

12

prove all these results in one go, so that we can share the inductive proof.
abbreviation root-main ′ where root-main ′ ≡ root-int-main ′ pm (int pm) (int p)

lemmas root-main ′-simps = root-int-main ′.simps[of pm int pm int p]

lemma root-main ′-newton-pos: x ≥ 0 =⇒ n ≥ 0 =⇒
root-main ′ x n = root-newton-int-main x n ∧ (root-main ′ x n = (y,b) −→ y ≥ 0
∧ y^p ≤ n ∧ b = (y^p = n))
proof (induct x n rule: root-newton-int-main.induct)

case (1 x n)
have pm-x[simp]: x ^ pm ∗ x = x ^ p unfolding p by simp
from 1 have id: (x < 0 ∨ n < 0) = False by auto
note d = root-main ′-simps[of x n] root-newton-int-main.simps[of x n] id if-False

Let-def
show ?case
proof (cases x ^ p ≤ n)

case True
thus ?thesis unfolding d using 1 (2) by auto

next
case False
hence id: (x ^ p ≤ n) = False by simp
from 1 (3) 1 (2) have not: ¬ (x < 0 ∨ n < 0) by auto
then have x: x > 0 ∨ x = 0

by auto
with ‹0 ≤ n› have 0 ≤ (n div x ^ pm + x ∗ int pm) div int p

by (auto simp add: p algebra-simps pos-imp-zdiv-nonneg-iff power-0-left)
then show ?thesis unfolding d id pm-x

by (rule 1 (1)[OF not False - 1 (3)])
qed

qed

lemma root-main ′: x ≥ 0 =⇒ n ≥ 0 =⇒ root-main ′ x n = root-newton-int-main
x n

using root-main ′-newton-pos by blast

lemma root-main ′-pos: x ≥ 0 =⇒ n ≥ 0 =⇒ root-main ′ x n = (y,b) =⇒ y ≥ 0
using root-main ′-newton-pos by blast

lemma root-main ′-sound: x ≥ 0 =⇒ n ≥ 0 =⇒ root-main ′ x n = (y,b) =⇒ b =
(y ^ p = n)

using root-main ′-newton-pos by blast

In order to prove completeness of the algorithms, we provide sharp upper
and lower bounds for root-main ′. For the upper bounds, we use Cauchy’s
mean theorem where we added the non-strict variant to Porter’s formaliza-
tion of this theorem.
lemma root-main ′-lower : x ≥ 0 =⇒ n ≥ 0 =⇒ root-main ′ x n = (y,b) =⇒ y ^ p
≤ n

using root-main ′-newton-pos by blast

13

lemma root-newton-int-main-upper :
shows y ^ p ≥ n =⇒ y ≥ 0 =⇒ n ≥ 0 =⇒ root-newton-int-main y n = (x,b)

=⇒ n < (x + 1) ^ p
proof (induct y n rule: root-newton-int-main.induct)

case (1 y n)
from 1 (3) have y0 : y ≥ 0 .
then have y > 0 ∨ y = 0

by auto
from 1 (4) have n0 : n ≥ 0 .
define y ′ where y ′ = (n div (y ^ pm) + y ∗ int pm) div (int p)
from ‹y > 0 ∨ y = 0 › ‹n ≥ 0 › have y ′0 : y ′ ≥ 0

by (auto simp add: y ′-def p algebra-simps pos-imp-zdiv-nonneg-iff power-0-left)
let ?rt = root-newton-int-main
from 1 (5) have rt: ?rt y n = (x,b) by auto
from y0 n0 have not: ¬ (y < 0 ∨ n < 0) (y < 0 ∨ n < 0) = False by auto
note rt = rt[unfolded root-newton-int-main.simps[of y n] not(2) if-False, folded

y ′-def]
note IH = 1 (1)[folded y ′-def , OF not(1) - - y ′0 n0]
show ?case
proof (cases y ^ p ≤ n)

case False note yyn = this
with rt have rt: ?rt y ′ n = (x,b) by simp
show ?thesis
proof (cases n ≤ y ′ ^ p)

case True
show ?thesis

by (rule IH [OF False True rt])
next

case False
with rt have x: x = y ′ unfolding root-newton-int-main.simps[of y ′ n]

using n0 y ′0 by simp
from yyn have yyn: y^p > n by simp
from False have yyn ′: n > y ′ ^ p by auto
{

assume pm: pm = 0
have y ′: y ′ = n unfolding y ′-def p pm by simp
with yyn ′ have False unfolding p pm by auto

}
hence pm0 : pm > 0 by auto
show ?thesis
proof (cases n = 0)

case True
thus ?thesis unfolding p

by (metis False y ′0 zero-le-power)
next

case False note n00 = this
let ?y = of-int y :: real
let ?n = of-int n :: real

14

from yyn n0 have y00 : y 6= 0 unfolding p by auto
from y00 y0 have y0 : ?y > 0 by auto
from n0 False have n0 : ?n > 0 by auto
define Y where Y = ?y ∗ of-int pm
define NY where NY = ?n / ?y ^ pm
note pos-intro = divide-nonneg-pos add-nonneg-nonneg mult-nonneg-nonneg
have NY0 : NY > 0 unfolding NY-def using y0 n0

by (metis NY-def zero-less-divide-iff zero-less-power)
let ?ls = NY # replicate pm ?y
have prod:

∏
:replicate pm ?y = ?y ^ pm

by (induct pm, auto)
have sum:

∑
:replicate pm ?y = Y unfolding Y-def

by (induct pm, auto simp: field-simps)
have pos: pos ?ls unfolding pos-def using NY0 y0 by auto
have root p ?n = gmean ?ls unfolding gmean-def using y0

by (auto simp: p NY-def prod)
also have . . . < mean ?ls
proof (rule CauchysMeanTheorem-Less[OF pos het-gt-0I])

show NY ∈ set ?ls by simp
from pm0 show ?y ∈ set ?ls by simp
have NY < ?y
proof −

from yyn have less: ?n < ?y ^ Suc pm unfolding p
by (metis of-int-less-iff of-int-power)

have NY < ?y ^ Suc pm / ?y ^ pm unfolding NY-def
by (rule divide-strict-right-mono[OF less], insert y0 , auto)

thus ?thesis using y0 by auto
qed
thus NY 6= ?y by blast

qed
also have . . . = (NY + Y) / real p

by (simp add: mean-def sum p)
finally have ∗: root p ?n < (NY + Y) / real p .
have ?n = (root p ?n)^p using n0

by (metis neq0-conv p0 real-root-pow-pos)
also have . . . < ((NY + Y) / real p)^p

by (rule power-strict-mono[OF ∗], insert n0 p, auto)
finally have ineq1 : ?n < ((NY + Y) / real p)^p by auto
{

define s where s = n div y ^ pm + y ∗ int pm
define S where S = NY + Y
have Y0 : Y ≥ 0 using y0 unfolding Y-def

by (metis 1 .prems(2) mult-nonneg-nonneg of-int-0-le-iff of-nat-0-le-iff)
have S0 : S > 0 using NY0 Y0 unfolding S-def by auto
from p have p0 : p > 0 by auto
have ?n / ?y ^ pm < of-int (floor (?n / ?y^pm)) + 1

by (rule divide-less-floor1)
also have floor (?n / ?y ^ pm) = n div y^pm

unfolding div-is-floor-divide-real by (metis of-int-power)

15

finally have NY < of-int (n div y ^ pm) + 1 unfolding NY-def by simp
hence less: S < of-int s + 1 unfolding Y-def s-def S-def by simp
{

have f1 : ∀ x0. rat-of-int brat-of-nat x0c = rat-of-nat x0

using of-int-of-nat-eq by simp
have f2 : ∀ x0. real-of-int brat-of-nat x0c = real x0

using of-int-of-nat-eq by auto
have f3 : ∀ x0 x1. brat-of-int x0 / rat-of-int x1c = breal-of-int x0 /

real-of-int x1c
using div-is-floor-divide-rat div-is-floor-divide-real by simp

have f4 : 0 < brat-of-nat pc
using p by simp

have bSc ≤ s using less floor-le-iff by auto
hence brat-of-int bSc / rat-of-nat pc ≤ brat-of-int s / rat-of-nat pc

using f1 f3 f4 by (metis div-is-floor-divide-real zdiv-mono1)
hence bS / real pc ≤ brat-of-int s / rat-of-nat pc

using f1 f2 f3 f4 by (metis div-is-floor-divide-real floor-div-pos-int)
hence S / real p ≤ real-of-int (s div int p) + 1

using f1 f3 by (metis div-is-floor-divide-real floor-le-iff floor-of-nat
less-eq-real-def)

}
hence S / real p ≤ of-int(s div p) + 1 .
note this[unfolded S-def s-def]

}
hence ge: of-int y ′ + 1 ≥ (NY + Y) / p unfolding y ′-def

by simp
have pos1 : (NY + Y) / p ≥ 0 unfolding Y-def NY-def

by (intro divide-nonneg-pos add-nonneg-nonneg mult-nonneg-nonneg,
insert y0 n0 p0 , auto)

have pos2 : of-int y ′ + (1 :: rat) ≥ 0 using y ′0 by auto
have ineq2 : (of-int y ′ + 1) ^ p ≥ ((NY + Y) / p) ^ p

by (rule power-mono[OF ge pos1])
from order .strict-trans2 [OF ineq1 ineq2]
have ?n < of-int ((x + 1) ^ p) unfolding x

by (metis of-int-1 of-int-add of-int-power)
thus n < (x + 1) ^ p using of-int-less-iff by blast

qed
qed

next
case True
with rt have x: x = y by simp
with 1 (2) True have n: n = y ^ p by auto
show ?thesis unfolding n x using y0 unfolding p
by (metis add-le-less-mono add-less-cancel-left lessI less-add-one add.right-neutral

le-iff-add power-strict-mono)
qed

qed

lemma root-main ′-upper :

16

x ^ p ≥ n =⇒ x ≥ 0 =⇒ n ≥ 0 =⇒ root-main ′ x n = (y,b) =⇒ n < (y + 1) ^
p

using root-newton-int-main-upper [of n x y b] root-main ′[of x n] by auto
end

Now we can prove all the nice properties of root-int-main.
lemma root-int-main-all: assumes n: n ≥ 0

and rm: root-int-main p n = (y,b)
shows y ≥ 0 ∧ b = (y ^ p = n) ∧ (p > 0 −→ y ^ p ≤ n ∧ n < (y + 1)^p)
∧ (p > 0 −→ x ≥ 0 −→ x ^ p = n −→ y = x ∧ b)

proof (cases p = 0)
case True
with rm[unfolded root-int-main-def]
have y: y = 1 and b: b = (n = 1) by auto
show ?thesis unfolding True y b using n by auto

next
case False
from False have p-0 : p > 0 by auto
from False have (p = 0) = False by simp
from rm[unfolded root-int-main-def this Let-def]
have rm: root-int-main ′ (p − 1) (int (p − 1)) (int p) (start-value n p) n = (y,b)

by simp
from start-value[OF n p-0] have start: n ≤ (start-value n p)^p 0 ≤ start-value

n p by auto
interpret fixed-root p p − 1

by (unfold-locales, insert False, auto)
from root-main ′-pos[OF start(2) n rm] have y: y ≥ 0 .
from root-main ′-sound[OF start(2) n rm] have b: b = (y ^ p = n) .
from root-main ′-lower [OF start(2) n rm] have low: y ^ p ≤ n .
from root-main ′-upper [OF start n rm] have up: n < (y + 1) ^ p .
{

assume n: x ^ p = n and x: x ≥ 0
with low up have low: y ^ p ≤ x ^ p and up: x ^ p < (y+1) ^ p by auto
from power-strict-mono[of x y, OF - x p-0] low have x: x ≥ y by arith
from power-mono[of (y + 1) x p] y up have y: y ≥ x by arith
from x y have x = y by auto
with b n
have y = x ∧ b by auto

}
thus ?thesis using b low up y by auto

qed

lemma root-int-main: assumes n: n ≥ 0
and rm: root-int-main p n = (y,b)
shows y ≥ 0 b = (y ^ p = n) p > 0 =⇒ y ^ p ≤ n p > 0 =⇒ n < (y + 1)^p

p > 0 =⇒ x ≥ 0 =⇒ x ^ p = n =⇒ y = x ∧ b
using root-int-main-all[OF n rm, of x] by blast+

lemma root-int[simp]: assumes p: p 6= 0 ∨ x 6= 1

17

shows set (root-int p x) = {y . y ^ p = x}
proof (cases p = 0)

case True
with p have x 6= 1 by auto
thus ?thesis unfolding root-int-def True by auto

next
case False
hence p: (p = 0) = False and p0 : p > 0 by auto
note d = root-int-def p if-False Let-def
show ?thesis
proof (cases x = 0)

case True
thus ?thesis unfolding d using p0 by auto

next
case False
hence x: (x = 0) = False by auto
show ?thesis
proof (cases x < 0 ∧ even p)

case True
hence left: set (root-int p x) = {} unfolding d by auto
{

fix y
assume x: y ^ p = x
with True have y ^ p < 0 ∧ even p by auto
hence False by presburger

}
with left show ?thesis by auto

next
case False
with x p have cond: (x = 0) = False (x < 0 ∧ even p) = False by auto
obtain y b where rt: root-int-main p |x| = (y,b) by force
have abs x ≥ 0 by auto
note rm = root-int-main[OF this rt]
have ?thesis =

(set (case root-int-main p |x| of (y, True) ⇒ if even p then [y, − y] else
[sgn x ∗ y] | (y, False) ⇒ []) =

{y. y ^ p = x}) unfolding d cond by blast
also have (case root-int-main p |x| of (y, True) ⇒ if even p then [y, − y]

else [sgn x ∗ y] | (y, False) ⇒ [])
= (if b then if even p then [y, − y] else [sgn x ∗ y] else []) (is - = ?lhs)
unfolding rt by auto

also have set ?lhs = {y. y ^ p = x} (is - = ?rhs)
proof −

{
fix z
assume idx: z ^ p = x
hence eq: (abs z) ^ p = abs x by (metis power-abs)
from idx x p0 have z: z 6= 0 unfolding p by auto
have (y, b) = (|z|, True)

18

using rm(5)[OF p0 - eq] by auto
hence id: y = abs z b = True by auto
have z ∈ set ?lhs unfolding id using z by (auto simp: idx[symmetric],

cases z < 0 , auto)
}
moreover
{

fix z
assume z: z ∈ set ?lhs
hence b: b = True by (cases b, auto)
note z = z[unfolded b if-True]
from rm(2) b have yx: y ^ p = |x| by auto
from rm(1) have y: y ≥ 0 .
from False have odd p ∨ even p ∧ x ≥ 0 by auto
hence z ∈ ?rhs
proof

assume odd: odd p
with z have z = sgn x ∗ y by auto
hence z ^ p = (sgn x ∗ y) ^ p by auto
also have . . . = sgn x ^ p ∗ y ^ p unfolding power-mult-distrib by auto
also have . . . = sgn x ^ p ∗ abs x unfolding yx by simp
also have sgn x ^ p = sgn x using x odd by auto
also have sgn x ∗ abs x = x by (rule mult-sgn-abs)
finally show z ∈ ?rhs by auto

next
assume even: even p ∧ x ≥ 0
from z even have z = y ∨ z = −y by auto
hence id: abs z = y using y by auto
with yx x even have z: z 6= 0 using p0 by (cases y = 0 , auto)
have z ^ p = (sgn z ∗ abs z) ^ p by (simp add: mult-sgn-abs)
also have . . . = (sgn z ∗ y) ^ p using id by auto

also have . . . = (sgn z)^p ∗ y ^ p unfolding power-mult-distrib by
simp

also have . . . = sgn z ^ p ∗ x unfolding yx using even by auto
also have sgn z ^ p = 1 using even z by (auto)
finally show z ∈ ?rhs by auto

qed
}
ultimately show ?thesis by blast

qed
finally show ?thesis by auto

qed
qed

qed

lemma root-int-pos: assumes x: x ≥ 0 and ri: root-int p x = y # ys
shows y ≥ 0

proof −
from x have abs: abs x = x by auto

19

note ri = ri[unfolded root-int-def Let-def abs]
from ri have p: (p = 0) = False by (cases p, auto)
note ri = ri[unfolded p if-False]
show ?thesis
proof (cases x = 0)

case True
with ri show ?thesis by auto

next
case False
hence (x = 0) = False (x < 0 ∧ even p) = False using x by auto
note ri = ri[unfolded this if-False]
obtain y ′ b ′ where r : root-int-main p x = (y ′,b ′) by force
note ri = ri[unfolded this]
hence y: y = (if even p then y ′ else sgn x ∗ y ′) by (cases b ′, auto)
from root-int-main(1)[OF x r] have y ′: 0 ≤ y ′ .
thus ?thesis unfolding y using x False by auto

qed
qed

3.3 Floor and ceiling of roots
Using the bounds for root-int-main we can easily design algorithms which
compute broot p xc and droot p xe. To this end, we first develop algorithms
for non-negative x, and later on these are used for the general case.
definition root-int-floor-pos p x = (if p = 0 then 0 else fst (root-int-main p x))
definition root-int-ceiling-pos p x = (if p = 0 then 0 else (case root-int-main p x
of (y,b) ⇒ if b then y else y + 1))

lemma root-int-floor-pos-lower : assumes p0 : p 6= 0 and x: x ≥ 0
shows root-int-floor-pos p x ^ p ≤ x
using root-int-main(3)[OF x, of p] p0 unfolding root-int-floor-pos-def
by (cases root-int-main p x , auto)

lemma root-int-floor-pos-pos: assumes x: x ≥ 0
shows root-int-floor-pos p x ≥ 0
using root-int-main(1)[OF x, of p]
unfolding root-int-floor-pos-def
by (cases root-int-main p x , auto)

lemma root-int-floor-pos-upper : assumes p0 : p 6= 0 and x: x ≥ 0
shows (root-int-floor-pos p x + 1) ^ p > x
using root-int-main(4)[OF x, of p] p0 unfolding root-int-floor-pos-def
by (cases root-int-main p x , auto)

lemma root-int-floor-pos: assumes x: x ≥ 0
shows root-int-floor-pos p x = floor (root p (of-int x))

proof (cases p = 0)
case True
thus ?thesis by (simp add: root-int-floor-pos-def)

20

next
case False
hence p: p > 0 by auto
let ?s1 = real-of-int (root-int-floor-pos p x)
let ?s2 = root p (of-int x)
from x have s1 : ?s1 ≥ 0

by (metis of-int-0-le-iff root-int-floor-pos-pos)
from x have s2 : ?s2 ≥ 0

by (metis of-int-0-le-iff real-root-pos-pos-le)
from s1 have s11 : ?s1 + 1 ≥ 0 by auto
have id: ?s2 ^ p = of-int x using x

by (metis p of-int-0-le-iff real-root-pow-pos2)
show ?thesis
proof (rule floor-unique[symmetric])

show ?s1 ≤ ?s2
unfolding compare-pow-le-iff [OF p s1 s2 , symmetric]
unfolding id
using root-int-floor-pos-lower [OF False x]
by (metis of-int-le-iff of-int-power)

show ?s2 < ?s1 + 1
unfolding compare-pow-less-iff [OF p s2 s11 , symmetric]
unfolding id
using root-int-floor-pos-upper [OF False x]
by (metis of-int-add of-int-less-iff of-int-power of-int-1)

qed
qed

lemma root-int-ceiling-pos: assumes x: x ≥ 0
shows root-int-ceiling-pos p x = ceiling (root p (of-int x))

proof (cases p = 0)
case True
thus ?thesis by (simp add: root-int-ceiling-pos-def)

next
case False
hence p: p > 0 by auto
obtain y b where s: root-int-main p x = (y,b) by force
note rm = root-int-main[OF x s]
note rm = rm(1−2) rm(3−5)[OF p]
from rm(1) have y: y ≥ 0 by simp
let ?s = root-int-ceiling-pos p x
let ?sx = root p (of-int x)
note d = root-int-ceiling-pos-def
show ?thesis
proof (cases b)

case True
hence id: ?s = y unfolding s d using p by auto
from rm(2) True have xy: x = y ^ p by auto
show ?thesis unfolding id unfolding xy using y

by (simp add: p real-root-power-cancel)

21

next
case False
hence id: ?s = root-int-floor-pos p x + 1 unfolding d root-int-floor-pos-def

using s p by simp
from False have x0 : x 6= 0 using rm(5)[of 0] using s unfolding root-int-main-def

Let-def using p
by (cases x = 0 , auto)

show ?thesis unfolding id root-int-floor-pos[OF x]
proof (rule ceiling-unique[symmetric])

show ?sx ≤ real-of-int (broot p (of-int x)c + 1)
by (metis of-int-add real-of-int-floor-add-one-ge of-int-1)

let ?l = real-of-int (broot p (of-int x)c + 1) − 1
let ?m = real-of-int broot p (of-int x)c
have ?l = ?m by simp
also have . . . < ?sx
proof −

have le: ?m ≤ ?sx by (rule of-int-floor-le)
have neq: ?m 6= ?sx
proof

assume ?m = ?sx
hence ?m ^ p = ?sx ^ p by auto
also have . . . = of-int x using x False

by (metis p real-root-ge-0-iff real-root-pow-pos2 root-int-floor-pos root-int-floor-pos-pos
zero-le-floor zero-less-Suc)

finally have xs: x = broot p (of-int x)c ^ p
by (metis floor-power floor-of-int)

hence broot p (of-int x)c ∈ set (root-int p x) using p by simp
hence root-int p x 6= [] by force
with s False ‹p 6= 0 › x x0 show False unfolding root-int-def

by (cases p, auto)
qed
from le neq show ?thesis by arith

qed
finally show ?l < ?sx .

qed
qed

qed

definition root-int-floor p x = (if x ≥ 0 then root-int-floor-pos p x else − root-int-ceiling-pos
p (− x))
definition root-int-ceiling p x = (if x ≥ 0 then root-int-ceiling-pos p x else −
root-int-floor-pos p (− x))

lemma root-int-floor [simp]: root-int-floor p x = floor (root p (of-int x))
proof −

note d = root-int-floor-def
show ?thesis
proof (cases x ≥ 0)

22

case True
with root-int-floor-pos[OF True, of p] show ?thesis unfolding d by simp

next
case False
hence − x ≥ 0 by auto
from False root-int-ceiling-pos[OF this] show ?thesis unfolding d

by (simp add: real-root-minus ceiling-minus)
qed

qed

lemma root-int-ceiling[simp]: root-int-ceiling p x = ceiling (root p (of-int x))
proof −

note d = root-int-ceiling-def
show ?thesis
proof (cases x ≥ 0)

case True
with root-int-ceiling-pos[OF True] show ?thesis unfolding d by simp

next
case False
hence − x ≥ 0 by auto
from False root-int-floor-pos[OF this, of p] show ?thesis unfolding d

by (simp add: real-root-minus floor-minus)
qed

qed

3.4 Downgrading algorithms to the naturals
definition root-nat-floor :: nat ⇒ nat ⇒ int where

root-nat-floor p x = root-int-floor-pos p (int x)

definition root-nat-ceiling :: nat ⇒ nat ⇒ int where
root-nat-ceiling p x = root-int-ceiling-pos p (int x)

definition root-nat :: nat ⇒ nat ⇒ nat list where
root-nat p x = map nat (take 1 (root-int p x))

lemma root-nat-floor [simp]: root-nat-floor p x = floor (root p (real x))
unfolding root-nat-floor-def using root-int-floor-pos[of int x p]
by auto

lemma root-nat-floor-lower : assumes p0 : p 6= 0
shows root-nat-floor p x ^ p ≤ x
using root-int-floor-pos-lower [OF p0 , of x] unfolding root-nat-floor-def by auto

lemma root-nat-floor-upper : assumes p0 : p 6= 0
shows (root-nat-floor p x + 1) ^ p > x
using root-int-floor-pos-upper [OF p0 , of x] unfolding root-nat-floor-def by auto

lemma root-nat-ceiling [simp]: root-nat-ceiling p x = ceiling (root p x)

23

unfolding root-nat-ceiling-def using root-int-ceiling-pos[of x p]
by auto

lemma root-nat: assumes p0 : p 6= 0 ∨ x 6= 1
shows set (root-nat p x) = { y. y ^ p = x}

proof −
{

fix y
assume y ∈ set (root-nat p x)
note y = this[unfolded root-nat-def]
then obtain yi ys where ri: root-int p x = yi # ys by (cases root-int p x,

auto)
with y have y: y = nat yi by auto
from root-int-pos[OF - ri] have yi: 0 ≤ yi by auto
from root-int[of p int x] p0 ri have yi ^ p = x by auto
from arg-cong[OF this, of nat] yi have nat yi ^ p = x

by (metis nat-int nat-power-eq)
hence y ∈ {y. y ^ p = x} using y by auto

}
moreover
{

fix y
assume yx: y ^ p = x
hence y: int y ^ p = int x

by (metis of-nat-power)
hence set (root-int p (int x)) 6= {} using root-int[of p int x] p0
by (metis (mono-tags) One-nat-def ‹y ^ p = x› empty-Collect-eq nat-power-eq-Suc-0-iff)
then obtain yi ys where ri: root-int p (int x) = yi # ys

by (cases root-int p (int x), auto)
from root-int-pos[OF - this] have yip: yi ≥ 0 by auto
from root-int[of p int x, unfolded ri] p0 have yi: yi ^ p = int x by auto
with y have int y ^ p = yi ^ p by auto
from arg-cong[OF this, of nat] have id: y ^ p = nat yi ^ p

by (metis ‹y ^ p = x› nat-int nat-power-eq yi yip)
{

assume p: p 6= 0
hence p0 : p > 0 by auto
obtain yy b where rm: root-int-main p (int x) = (yy,b) by force
from root-int-main(5)[OF - rm p0 - y] have yy = int y and b = True by

auto
note rm = rm[unfolded this]
hence y ∈ set (root-nat p x)

unfolding root-nat-def p root-int-def using p0 p yx
by auto

}
moreover
{

assume p: p = 0
with p0 have x 6= 1 by auto

24

with y p have False by auto
}
ultimately have y ∈ set (root-nat p x) by auto

}
ultimately show ?thesis by blast

qed

3.5 Upgrading algorithms to the rationals
The main observation to lift everything from the integers to the rationals is
the fact, that one can reformulate a

b
1/p as (abp−1)1/p

b .
definition root-rat-floor :: nat ⇒ rat ⇒ int where

root-rat-floor p x ≡ case quotient-of x of (a,b) ⇒ root-int-floor p (a ∗ b^(p − 1))
div b

definition root-rat-ceiling :: nat ⇒ rat ⇒ int where
root-rat-ceiling p x ≡ − (root-rat-floor p (−x))

definition root-rat :: nat ⇒ rat ⇒ rat list where
root-rat p x ≡ case quotient-of x of (a,b) ⇒ concat
(map (λ rb. map (λ ra. of-int ra / rat-of-int rb) (root-int p a)) (take 1 (root-int

p b)))

lemma root-rat-reform: assumes q: quotient-of x = (a,b)
shows root p (real-of-rat x) = root p (of-int (a ∗ b ^ (p − 1))) / of-int b

proof (cases p = 0)
case False
from quotient-of-denom-pos[OF q] have b: 0 < b by auto
hence b: 0 < real-of-int b by auto
from quotient-of-div[OF q] have x: root p (real-of-rat x) = root p (a / b)

by (metis of-rat-divide of-rat-of-int-eq)
also have a / b = a ∗ real-of-int b ^ (p − 1) / of-int b ^ p using b False

by (cases p, auto simp: field-simps)
also have root p . . . = root p (a ∗ real-of-int b ^ (p − 1)) / root p (of-int b ^ p)

by (rule real-root-divide)
also have root p (of-int b ^ p) = of-int b using False b

by (metis neq0-conv real-root-pow-pos real-root-power)
also have a ∗ real-of-int b ^ (p − 1) = of-int (a ∗ b ^ (p − 1))

by (metis of-int-mult of-int-power)
finally show ?thesis .

qed auto

lemma root-rat-floor [simp]: root-rat-floor p x = floor (root p (of-rat x))
proof −

obtain a b where q: quotient-of x = (a,b) by force
from quotient-of-denom-pos[OF q] have b: b > 0 .
show ?thesis

unfolding root-rat-floor-def q split root-int-floor

25

unfolding root-rat-reform[OF q] floor-div-pos-int[OF b] ..
qed

lemma root-rat-ceiling [simp]: root-rat-ceiling p x = ceiling (root p (of-rat x))
unfolding

root-rat-ceiling-def
ceiling-def
real-root-minus
root-rat-floor
of-rat-minus
..

lemma root-rat[simp]: assumes p: p 6= 0 ∨ x 6= 1
shows set (root-rat p x) = { y. y ^ p = x}

proof (cases p = 0)
case False
note p = this
obtain a b where q: quotient-of x = (a,b) by force
note x = quotient-of-div[OF q]
have b: b > 0 by (rule quotient-of-denom-pos[OF q])
note d = root-rat-def q split set-concat set-map
{

fix q
assume q ∈ set (root-rat p x)
note mem = this[unfolded d]
from mem obtain rb xs where rb: root-int p b = Cons rb xs by (cases root-int

p b, auto)
note mem = mem[unfolded this]
from mem obtain ra where ra: ra ∈ set (root-int p a) and q: q = of-int ra /

of-int rb
by (cases root-int p a, auto)

from rb have rb ∈ set (root-int p b) by auto
with ra p have rb: b = rb ^ p and ra: a = ra ^ p by auto
have q ∈ {y. y ^ p = x} unfolding q x ra rb

by (auto simp: power-divide)
}
moreover
{

fix q
assume q ∈ {y. y ^ p = x}
hence q ^ p = of-int a / of-int b unfolding x by auto
hence eq: of-int b ∗ q ^ p = of-int a using b by auto
obtain z n where quo: quotient-of q = (z,n) by force
note qzn = quotient-of-div[OF quo]
have n: n > 0 using quotient-of-denom-pos[OF quo] .
from eq[unfolded qzn] have rat-of-int b ∗ of-int z^p / of-int n^p = of-int a

unfolding power-divide by simp
from arg-cong[OF this, of λ x. x ∗ of-int n^p] n have rat-of-int b ∗ of-int z^p

= of-int a ∗ of-int n ^ p

26

by auto
also have rat-of-int b ∗ of-int z^p = rat-of-int (b ∗ z^p) unfolding of-int-mult

of-int-power ..
also have of-int a ∗ rat-of-int n ^ p = of-int (a ∗ n ^ p) unfolding of-int-mult

of-int-power ..
finally have id: a ∗ n ^ p = b ∗ z ^ p by linarith
from quotient-of-coprime[OF quo] have cop: coprime (z ^ p) (n ^ p)

by simp
from coprime-crossproduct-int[OF quotient-of-coprime[OF q] this] arg-cong[OF

id, of abs]
have |n ^ p| = |b|

by (simp add: field-simps abs-mult)
with n b have bnp: b = n ^ p by auto
hence rn: n ∈ set (root-int p b) using p by auto
then obtain rb rs where rb: root-int p b = Cons rb rs by (cases root-int p b,

auto)
from id[folded bnp] b have a = z ^ p by auto
hence a: z ∈ set (root-int p a) using p by auto
from root-int-pos[OF - rb] b have rb0 : rb ≥ 0 by auto
from root-int[OF disjI1 [OF p], of b] rb have rb ^ p = b by auto
with bnp have id: rb ^ p = n ^ p by auto
have rb = n by (rule power-eq-imp-eq-base[OF id], insert n rb0 p, auto)
with rb have b: n ∈ set (take 1 (root-int p b)) by auto
have q ∈ set (root-rat p x) unfolding d qzn using b a by auto

}
ultimately show ?thesis by blast

next
case True
with p have x: x 6= 1 by auto
obtain a b where q: quotient-of x = (a,b) by force
show ?thesis unfolding True root-rat-def q split root-int-def using x

by auto
qed

end

theory Sqrt-Babylonian
imports

Sqrt-Babylonian-Auxiliary
NthRoot-Impl

begin

27

4 Executable algorithms for square roots
This theory provides executable algorithms for computing square-roots of
numbers which are all based on the Babylonian method (which is also known
as Heron’s method or Newton’s method).

For integers / naturals / rationals precise algorithms are given, i.e., here
sqrt x delivers a list of all integers / naturals / rationals y where y2 = x.
To this end, the Babylonian method has been adapted by using integer-
divisions.

In addition to the precise algorithms, we also provide approximation al-
gorithms. One works for arbitrary linear ordered fields, where some number
y is computed such that |y2 − x| < ε. Moreover, for the naturals, integers,
and rationals we provide algorithms to compute bsqrt xc and dsqrt xe which
are all based on the underlying algorithm that is used to compute the precise
square-roots on integers, if these exist.

The major motivation for developing the precise algorithms was given by
CeTA [2], a tool for certifiying termination proofs. Here, non-linear equations
of the form (a1x1 + . . . anxn)

2 = p had to be solved over the integers, where
p is a concrete polynomial. For example, for the equation (ax + by)2 =
4x2 − 12xy + 9y2 one easily figures out that a2 = 4, b2 = 9, and ab = −6,
which results in a possible solution a =

√
4 = 2, b = −

√
9 = −3.

4.1 The Babylonian method
The Babylonian method for computing

√
n iteratively computes

xi+1 =
n
xi

+ xi

2

until x2i ≈ n. Note that if x20 ≥ n, then for all i we have both x2i ≥ n and
xi ≥ xi+1.

4.2 The Babylonian method using integer division
First, the algorithm is developed for the non-negative integers. Here, the
division operation x

y is replaced by x div y = bof-int x / of-int yc. Note
that replacing bof-int x / of-int yc by dof-int x / of-int ye would lead to
non-termination in the following algorithm.

We explicititly develop the algorithm on the integers and not on the
naturals, as the calculations on the integers have been much easier. For
example, y−x+x = y on the integers, which would require the side-condition
y ≥ x for the naturals. These conditions will make the reasoning much more
tedious—as we have experienced in an earlier state of this development where
everything was based on naturals.

28

Since the elements x0, x1, x2, . . . are monotone decreasing, in the main
algorithm we abort as soon as x2i ≤ n.

Since in the meantime, all of these algorithms have been gen-
eralized to arbitrary p-th roots in Sqrt-Babylonian.NthRoot-Impl, we
just instantiate the general algorithms by p = 2 and then provide
specialized code equations which are more efficient than the gen-
eral purpose algorithms.
definition sqrt-int-main ′ :: int ⇒ int ⇒ int × bool where
[simp]: sqrt-int-main ′ x n = root-int-main ′ 1 1 2 x n

lemma sqrt-int-main ′-code[code]: sqrt-int-main ′ x n = (let x2 = x ∗ x in if x2 ≤
n then (x, x2 = n)

else sqrt-int-main ′ ((n div x + x) div 2) n)
using root-int-main ′.simps[of 1 1 2 x n]
unfolding Let-def by auto

definition sqrt-int-main :: int ⇒ int × bool where
[simp]: sqrt-int-main x = root-int-main 2 x

lemma sqrt-int-main-code[code]: sqrt-int-main x = sqrt-int-main ′ (start-value x 2)
x

by (simp add: root-int-main-def Let-def)

definition sqrt-int :: int ⇒ int list where
sqrt-int x = root-int 2 x

lemma sqrt-int-code[code]: sqrt-int x = (if x < 0 then [] else case sqrt-int-main x
of (y,True) ⇒ if y = 0 then [0] else [y,−y] | - ⇒ [])
proof −

interpret fixed-root 2 1 by (unfold-locales, auto)
obtain b y where res: root-int-main 2 x = (b,y) by force
show ?thesis

unfolding sqrt-int-def root-int-def Let-def
using root-int-main[OF - res]
using res
by simp

qed

lemma sqrt-int[simp]: set (sqrt-int x) = {y. y ∗ y = x}
unfolding sqrt-int-def by (simp add: power2-eq-square)

lemma sqrt-int-pos: assumes res: sqrt-int x = Cons s ms
shows s ≥ 0

proof −
note res = res[unfolded sqrt-int-code Let-def , simplified]
from res have x0 : x ≥ 0 by (cases ?thesis, auto)
obtain ss b where call: sqrt-int-main x = (ss,b) by force

29

from res[unfolded call] x0 have ss = s
by (cases b, cases ss = 0 , auto)

from root-int-main(1)[OF x0 call[unfolded this sqrt-int-main-def]]
show ?thesis .

qed

definition [simp]: sqrt-int-floor-pos x = root-int-floor-pos 2 x

lemma sqrt-int-floor-pos-code[code]: sqrt-int-floor-pos x = fst (sqrt-int-main x)
by (simp add: root-int-floor-pos-def)

lemma sqrt-int-floor-pos: assumes x: x ≥ 0
shows sqrt-int-floor-pos x = b sqrt (of-int x) c
using root-int-floor-pos[OF x, of 2] by (simp add: sqrt-def)

definition [simp]: sqrt-int-ceiling-pos x = root-int-ceiling-pos 2 x

lemma sqrt-int-ceiling-pos-code[code]: sqrt-int-ceiling-pos x = (case sqrt-int-main
x of (y,b) ⇒ if b then y else y + 1)

by (simp add: root-int-ceiling-pos-def)

lemma sqrt-int-ceiling-pos: assumes x: x ≥ 0
shows sqrt-int-ceiling-pos x = d sqrt (of-int x) e
using root-int-ceiling-pos[OF x, of 2] by (simp add: sqrt-def)

definition sqrt-int-floor x = root-int-floor 2 x

lemma sqrt-int-floor-code[code]: sqrt-int-floor x = (if x ≥ 0 then sqrt-int-floor-pos
x else − sqrt-int-ceiling-pos (− x))

unfolding sqrt-int-floor-def root-int-floor-def by simp

lemma sqrt-int-floor [simp]: sqrt-int-floor x = b sqrt (of-int x) c
by (simp add: sqrt-int-floor-def sqrt-def)

definition sqrt-int-ceiling x = root-int-ceiling 2 x

lemma sqrt-int-ceiling-code[code]: sqrt-int-ceiling x = (if x ≥ 0 then sqrt-int-ceiling-pos
x else − sqrt-int-floor-pos (− x))

unfolding sqrt-int-ceiling-def root-int-ceiling-def by simp

lemma sqrt-int-ceiling[simp]: sqrt-int-ceiling x = d sqrt (of-int x) e
by (simp add: sqrt-int-ceiling-def sqrt-def)

lemma sqrt-int-ceiling-bound: 0 ≤ x =⇒ x ≤ (sqrt-int-ceiling x)^2
unfolding sqrt-int-ceiling using le-of-int-ceiling sqrt-le-D
by (metis of-int-power-le-of-int-cancel-iff)

30

4.3 Square roots for the naturals
definition sqrt-nat :: nat ⇒ nat list

where sqrt-nat x = root-nat 2 x

lemma sqrt-nat-code[code]: sqrt-nat x ≡ map nat (take 1 (sqrt-int (int x)))
unfolding sqrt-nat-def root-nat-def sqrt-int-def by simp

lemma sqrt-nat[simp]: set (sqrt-nat x) = { y. y ∗ y = x}
unfolding sqrt-nat-def using root-nat[of 2 x] by (simp add: power2-eq-square)

definition sqrt-nat-floor :: nat ⇒ int where
sqrt-nat-floor x = root-nat-floor 2 x

lemma sqrt-nat-floor-code[code]: sqrt-nat-floor x = sqrt-int-floor-pos (int x)
unfolding sqrt-nat-floor-def root-nat-floor-def by simp

lemma sqrt-nat-floor [simp]: sqrt-nat-floor x = b sqrt (real x) c
unfolding sqrt-nat-floor-def by (simp add: sqrt-def)

definition sqrt-nat-ceiling :: nat ⇒ int where
sqrt-nat-ceiling x = root-nat-ceiling 2 x

lemma sqrt-nat-ceiling-code[code]: sqrt-nat-ceiling x = sqrt-int-ceiling-pos (int x)
unfolding sqrt-nat-ceiling-def root-nat-ceiling-def by simp

lemma sqrt-nat-ceiling[simp]: sqrt-nat-ceiling x = d sqrt (real x) e
unfolding sqrt-nat-ceiling-def by (simp add: sqrt-def)

4.4 Square roots for the rationals
definition sqrt-rat :: rat ⇒ rat list where

sqrt-rat x = root-rat 2 x

lemma sqrt-rat-code[code]: sqrt-rat x = (case quotient-of x of (z,n)⇒ (case sqrt-int
n of

[] ⇒ []
| sn # xs ⇒ map (λ sz. of-int sz / of-int sn) (sqrt-int z)))

proof −
obtain z n where q: quotient-of x = (z,n) by force
show ?thesis
unfolding sqrt-rat-def root-rat-def q split sqrt-int-def
by (cases root-int 2 n, auto)

qed

lemma sqrt-rat[simp]: set (sqrt-rat x) = { y. y ∗ y = x}
unfolding sqrt-rat-def using root-rat[of 2 x]
by (simp add: power2-eq-square)

lemma sqrt-rat-pos: assumes sqrt: sqrt-rat x = Cons s ms

31

shows s ≥ 0
proof −

obtain z n where q: quotient-of x = (z,n) by force
note sqrt = sqrt[unfolded sqrt-rat-code q, simplified]
let ?sz = sqrt-int z
let ?sn = sqrt-int n
from q have n: n > 0 by (rule quotient-of-denom-pos)
from sqrt obtain sz mz where sz: ?sz = sz # mz by (cases ?sn, auto)
from sqrt obtain sn mn where sn: ?sn = sn # mn by (cases ?sn, auto)
from sqrt-int-pos[OF sz] sqrt-int-pos[OF sn] have pos: 0 ≤ sz 0 ≤ sn by auto
from sqrt sz sn have s: s = of-int sz / of-int sn by auto
show ?thesis unfolding s using pos

by (metis of-int-0-le-iff zero-le-divide-iff)
qed

definition sqrt-rat-floor :: rat ⇒ int where
sqrt-rat-floor x = root-rat-floor 2 x

lemma sqrt-rat-floor-code[code]: sqrt-rat-floor x = (case quotient-of x of (a,b) ⇒
sqrt-int-floor (a ∗ b) div b)

unfolding sqrt-rat-floor-def root-rat-floor-def by (simp add: sqrt-def)

lemma sqrt-rat-floor [simp]: sqrt-rat-floor x = b sqrt (of-rat x) c
unfolding sqrt-rat-floor-def by (simp add: sqrt-def)

definition sqrt-rat-ceiling :: rat ⇒ int where
sqrt-rat-ceiling x = root-rat-ceiling 2 x

lemma sqrt-rat-ceiling-code[code]: sqrt-rat-ceiling x = − (sqrt-rat-floor (−x))
unfolding sqrt-rat-ceiling-def sqrt-rat-floor-def root-rat-ceiling-def by simp

lemma sqrt-rat-ceiling: sqrt-rat-ceiling x = d sqrt (of-rat x) e
unfolding sqrt-rat-ceiling-def by (simp add: sqrt-def)

lemma sqr-rat-of-int: assumes x: x ∗ x = rat-of-int i
shows ∃ j :: int. j ∗ j = i

proof −
from x have mem: x ∈ set (sqrt-rat (rat-of-int i)) by simp
from x have rat-of-int i ≥ 0 by (metis zero-le-square)
hence ∗: quotient-of (rat-of-int i) = (i,1) by (metis quotient-of-int)
have 1 : sqrt-int 1 = [1 ,−1] by code-simp
from mem sqrt-rat-code ∗ split 1
have x: x ∈ rat-of-int ‘ {y. y ∗ y = i} by auto
thus ?thesis by auto

qed

32

4.5 Approximating square roots
The difference to the previous algorithms is that now we abort, once the
distance is below ε. Moreover, here we use standard division and not integer
division. This part is not yet generalized by Sqrt-Babylonian.NthRoot-Impl.

We first provide the executable version without guard 0 < x as par-
tial function, and afterwards prove termination and soundness for a similar
algorithm that is defined within the upcoming locale.
partial-function (tailrec) sqrt-approx-main-impl :: ′a :: linordered-field ⇒ ′a ⇒
′a ⇒ ′a where
[code]: sqrt-approx-main-impl ε n x = (if x ∗ x − n < ε then x else sqrt-approx-main-impl

ε n
((n / x + x) / 2))

We setup a locale where we ensure that we have standard assumptions:
positive ε and positive n. We require sort floor-ceiling, since bxc is used for
the termination argument.
locale sqrt-approximation =

fixes ε :: ′a :: {linordered-field,floor-ceiling}
and n :: ′a
assumes ε : ε > 0
and n: n > 0

begin

function sqrt-approx-main :: ′a ⇒ ′a where
sqrt-approx-main x = (if x > 0 then (if x ∗ x − n < ε then x else sqrt-approx-main

((n / x + x) / 2)) else 0)
by pat-completeness auto

Termination essentially is a proof of convergence. Here, one complication
is the fact that the limit is not always defined. E.g., if ′a is rat then there
is no square root of 2. Therefore, the error-rate x√

n
− 1 is not expressible.

Instead we use the expression x2

n − 1 as error-rate which does not require
any square-root operation.
termination
proof −

define er where er x = (x ∗ x / n − 1) for x
define c where c = 2 ∗ n / ε
define m where m x = nat b c ∗ er x c for x
have c: c > 0 unfolding c-def using n ε by auto
show ?thesis
proof

show wf (measures [m]) by simp
next

fix x
assume x: 0 < x and xe: ¬ x ∗ x − n < ε

33

define y where y = (n / x + x) / 2
show ((n / x + x) / 2 ,x) ∈ measures [m] unfolding y-def [symmetric]
proof (rule measures-less)

from n have inv-n: 1 / n > 0 by auto
from xe have x ∗ x − n ≥ ε by simp
from this[unfolded mult-le-cancel-left-pos[OF inv-n, of ε, symmetric]]

have erxen: er x ≥ ε / n unfolding er-def using n by (simp add: field-simps)
have en: ε / n > 0 and ne: n / ε > 0 using ε n by auto
from en erxen have erx: er x > 0 by linarith
have pos: er x ∗ 4 + er x ∗ (er x ∗ 4) > 0 using erx

by (auto intro: add-pos-nonneg)
have er y = 1 / 4 ∗ (n / (x ∗ x) − 2 + x ∗ x / n) unfolding er-def y-def

using x n
by (simp add: field-simps)

also have . . . = 1 / 4 ∗ er x ∗ er x / (1 + er x) unfolding er-def using x n
by (simp add: field-simps)

finally have er y = 1 / 4 ∗ er x ∗ er x / (1 + er x) .
also have . . . < 1 / 4 ∗ (1 + er x) ∗ er x / (1 + er x) using erx erx pos

by (auto simp: field-simps)
also have . . . = er x / 4 using erx by (simp add: field-simps)
finally have er-y-x: er y ≤ er x / 4 by linarith
from erxen have c ∗ er x ≥ 2 unfolding c-def mult-le-cancel-left-pos[OF ne,

of - er x, symmetric]
using n ε by (auto simp: field-simps)

hence pos: bc ∗ er xc > 0 bc ∗ er xc ≥ 2 by auto
show m y < m x unfolding m-def nat-mono-iff [OF pos(1)]
proof −

have bc ∗ er yc ≤ bc ∗ (er x / 4)c
by (rule floor-mono, unfold mult-le-cancel-left-pos[OF c], rule er-y-x)

also have . . . < bc ∗ er x / 4 + 1 c by auto
also have . . . ≤ bc ∗ er xc

by (rule floor-mono, insert pos(2), simp add: field-simps)
finally show bc ∗ er yc < bc ∗ er xc .

qed
qed

qed
qed

Once termination is proven, it is easy to show equivalence of sqrt-approx-main-impl
and sqrt-approx-main.
lemma sqrt-approx-main-impl: x > 0 =⇒ sqrt-approx-main-impl ε n x = sqrt-approx-main
x
proof (induct x rule: sqrt-approx-main.induct)

case (1 x)
hence x: x > 0 by auto
hence nx: 0 < (n / x + x) / 2 using n by (auto intro: pos-add-strict)
note simps = sqrt-approx-main-impl.simps[of - - x] sqrt-approx-main.simps[of x]
show ?case
proof (cases x ∗ x − n < ε)

34

case True
thus ?thesis unfolding simps using x by auto

next
case False
show ?thesis using 1 (1)[OF x False nx] unfolding simps using x False by

auto
qed

qed

Also soundness is not complicated.
lemma sqrt-approx-main-sound: assumes x: x > 0 and xx: x ∗ x > n

shows sqrt-approx-main x ∗ sqrt-approx-main x > n ∧ sqrt-approx-main x ∗
sqrt-approx-main x − n < ε

using assms
proof (induct x rule: sqrt-approx-main.induct)

case (1 x)
from 1 have x: x > 0 (x > 0) = True by auto
note simp = sqrt-approx-main.simps[of x, unfolded x if-True]
show ?case
proof (cases x ∗ x − n < ε)

case True
with 1 show ?thesis unfolding simp by simp

next
case False
let ?y = (n / x + x) / 2
from False simp have simp: sqrt-approx-main x = sqrt-approx-main ?y by

simp
from n x have y: ?y > 0 by (auto intro: pos-add-strict)
note IH = 1 (1)[OF x(1) False y]
from x have x4 : 4 ∗ x ∗ x > 0 by (auto intro: mult-sign-intros)
show ?thesis unfolding simp
proof (rule IH)

show n < ?y ∗ ?y
unfolding mult-less-cancel-left-pos[OF x4 , of n, symmetric]

proof −
have id: 4 ∗ x ∗ x ∗ (?y ∗ ?y) = 4 ∗ x ∗ x ∗ n + (n − x ∗ x) ∗ (n − x ∗

x) using x(1)
by (simp add: field-simps)

from 1 (3) have x ∗ x − n > 0 by auto
from mult-pos-pos[OF this this]
show 4 ∗ x ∗ x ∗ n < 4 ∗ x ∗ x ∗ (?y ∗ ?y) unfolding id

by (simp add: field-simps)
qed

qed
qed

qed

end

It remains to assemble everything into one algorithm.

35

definition sqrt-approx :: ′a :: {linordered-field,floor-ceiling} ⇒ ′a ⇒ ′a where
sqrt-approx ε x ≡ if ε > 0 then (if x = 0 then 0 else let xpos = abs x in

sqrt-approx-main-impl ε xpos (xpos + 1)) else 0

lemma sqrt-approx: assumes ε: ε > 0
shows |sqrt-approx ε x ∗ sqrt-approx ε x − |x|| < ε

proof (cases x = 0)
case True
with ε show ?thesis unfolding sqrt-approx-def by auto

next
case False
let ?x = |x|
let ?sqrti = sqrt-approx-main-impl ε ?x (?x + 1)
let ?sqrt = sqrt-approximation.sqrt-approx-main ε ?x (?x + 1)
define sqrt where sqrt = ?sqrt
from False have x: ?x > 0 ?x + 1 > 0 by auto
interpret sqrt-approximation ε ?x

by (unfold-locales, insert x ε, auto)
from False ε have sqrt-approx ε x = ?sqrti unfolding sqrt-approx-def by (simp

add: Let-def)
also have ?sqrti = ?sqrt

by (rule sqrt-approx-main-impl, auto)
finally have id: sqrt-approx ε x = sqrt unfolding sqrt-def .
have sqrt: sqrt ∗ sqrt > ?x ∧ sqrt ∗ sqrt − ?x < ε unfolding sqrt-def
by (rule sqrt-approx-main-sound[OF x(2)], insert x mult-pos-pos[OF x(1) x(1)],

auto simp: field-simps)
show ?thesis unfolding id using sqrt by auto

qed

4.6 Some tests
Testing executabity and show that sqrt 2 is irrational
lemma ¬ (∃ i :: rat. i ∗ i = 2)
proof −

have set (sqrt-rat 2) = {} by eval
thus ?thesis by simp

qed

Testing speed
lemma ¬ (∃ i :: int. i ∗ i = 1234567890123456789012345678901234567890)
proof −

have set (sqrt-int 1234567890123456789012345678901234567890) = {} by eval
thus ?thesis by simp

qed

The following test
value let ε = 1 / 100000000 :: rat; s = sqrt-approx ε 2 in (s, s ∗ s − 2 , |s ∗ s −
2 | < ε)

36

results in (1.4142135623731116, 4.738200762148612e-14, True).
end

Acknowledgements
We thank Bertram Felgenhauer for for mentioning Cauchy’s mean theorem
during the formalization of the algorithms for computing n-th roots.

References
[1] T. Heath. A History of Greek Mathematics, volume 2, pages 323–326.

Clarendon Press, 1921.

[2] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Proc. TPHOLs’09, volume 5674 of LNCS, pages 452–468, 2009.

37

	Auxiliary lemmas which might be moved into the Isabelle distribution.
	A Fast Logarithm Algorithm
	Executable algorithms for p-th roots
	Logarithm
	Computing the p-th root of an integer number
	Floor and ceiling of roots
	Downgrading algorithms to the naturals
	Upgrading algorithms to the rationals

	Executable algorithms for square roots
	The Babylonian method
	The Babylonian method using integer division
	Square roots for the naturals
	Square roots for the rationals
	Approximating square roots
	Some tests

