Computing N-th Roots using the Babylonian Method*

René Thiemann

September 13, 2023

Abstract

We implement the Babylonian method [1] to compute n-th roots of numbers. We provide precise algorithms for naturals, integers and rationals, and offer an approximation algorithm for square roots within linear ordered fields. Moreover, there are precise algorithms to compute the floor and the ceiling of n -th roots.

Contents

1 Auxiliary lemmas which might be moved into the Isabelle distribution.

2 A Fast Logarithm Algorithm 4
3 Executable algorithms for p-th roots 8
3.1 Logarithm 8
3.2 Computing the p-th root of an integer number 9
3.3 Floor and ceiling of roots 20
3.4 Downgrading algorithms to the naturals 23
3.5 Upgrading algorithms to the rationals 25
4 Executable algorithms for square roots 28
4.1 The Babylonian method 28
4.2 The Babylonian method using integer division 28
4.3 Square roots for the naturals 31
4.4 Square roots for the rationals 31
4.5 Approximating square roots 33
4.6 Some tests 36

[^0]
1 Auxiliary lemmas which might be moved into the Isabelle distribution.

theory Sqrt-Babylonian-Auxiliary imports Complex-Main
begin

lemma mod-div-equality-int: $(n::$ int $)$ div $x * x=n-n \bmod x$ using div-mult-mod-eq[of $n x]$ by arith
lemma div-is-floor-divide-rat: n div $y=\lfloor$ rat-of-int $n /$ rat-of-int $y\rfloor$ unfolding Fract-of-int-quotient[symmetric] floor-Fract by simp
lemma div-is-floor-divide-real: n div $y=\lfloor$ real-of-int $n /$ of-int $y\rfloor$ unfolding div-is-floor-divide-rat[of $n y]$ by (metis Ratreal-def of-rat-divide of-rat-of-int-eq real-floor-code)
lemma floor-div-pos-int:
fixes r :: ' a :: floor-ceiling
assumes $n: n>0$
shows $\lfloor r /$ of-int $n\rfloor=\lfloor r\rfloor$ div n (is ?l $=? r$)
proof -
let ?of-int $=$ of-int $::$ int $\Rightarrow{ }^{\prime} a$
define rhs where rhs $=\lfloor r\rfloor$ div n
let ? $n=$? of-int n
define m where $m=\lfloor r\rfloor \bmod n$
let ? $m=$? of-int m
from div-mult-mod-eq[of floor $r n]$ have $d m$: rhs $* n+m=\lfloor r\rfloor$ unfolding rhs-def m-def by simp
have $m n: m<n$ and $m 0: m \geq 0$ using $n m$-def by auto
define e where $e=r-$?of-int $\lfloor r\rfloor$
have $e 0: e \geq 0$ unfolding e-def
by (metis diff-self eq-iff floor-diff-of-int zero-le-floor)
have $e 1: e<1$ unfolding e-def
by (metis diff-self dual-order.refl floor-diff-of-int floor-le-zero)
have $r=$?of-int $\lfloor r\rfloor+e$ unfolding e-def by simp
also have $\lfloor r\rfloor=r h s * n+m$ using $d m$ by simp
finally have $r=$? of-int ($r h s * n+m$) $+e$.
hence $r / ? n=$?of-int $(r h s * n) / ? n+(e+? m) / ? n$ using n by (simp add: field-simps)
also have ?of-int (rhs * n) / ? $n=$? of-int rhs using n by auto
finally have $*: r /$?of-int $n=(e+$?of-int $m) /$?of-int $n+$?of-int rhs by simp
have $? l=r h s+$ floor $((e+? m) / ? n)$ unfolding $*$ by simp
also have floor $((e+? m) / ? n)=0$
proof (rule floor-unique)
show ?of-int $0 \leq(e+$? m) / ?n using e0 m0 n
by (metis add-increasing2 divide-nonneg-pos of-int-0 of-int-0-le-iff of-int-0-less-iff)

```
    show (e+?m)/ ?n < ?of-int 0 + 1
    proof (rule ccontr)
        from n have n': ? n > 0? n \geq0 by simp-all
        assume \neg? thesis
        hence (e+?m) / ?n }\geq1\mathrm{ by auto
        from mult-right-mono[OF this n'(2)]
        have ?n}\leqe+\mathrm{ ?m using n'(1) by simp
        also have ?m}\leq?n-1 using m
            by (metis of-int-1 of-int-diff of-int-le-iff zle-diff1-eq)
        finally have ?n}\leqe+?n-1 by aut
        with e1 show False by arith
        qed
    qed
    finally show ?thesis unfolding rhs-def by simp
qed
lemma floor-div-neg-int:
    fixes r :: 'a :: floor-ceiling
    assumes n: n<0
    shows \lfloorr / of-int n\rfloor=\lceilr\rceil div n
proof -
    from n have n': - n>0 by auto
    have \lfloorr / of-int n\rfloor=\lfloor-r / of-int (-n)\rfloorusing n
    by (metis floor-of-int floor-zero less-int-code(1) minus-divide-left minus-minus
nonzero-minus-divide-right of-int-minus)
    also have ... = \-r\rfloordiv (-n) by (rule floor-div-pos-int[OF n\)
    also have ... = \lceilr\rceil div n using n
    by (metis ceiling-def div-minus-right)
    finally show ?thesis.
qed
lemma divide-less-floor1: n / y< of-int (floor ( }n/y))+
    by (metis floor-less-iff less-add-one of-int-1 of-int-add)
context linordered-idom
begin
lemma sgn-int-pow-if [simp]:
    sgn x ^ p = (if even p then 1 else sgn x) if x\not=0
    using that by (induct p) simp-all
lemma compare-pow-le-iff: p>0\Longrightarrow(x:: 'a)\geq0\Longrightarrowy\geq0\Longrightarrow(x^p\leq y^
p)=(x\leqy)
    by (rule power-mono-iff)
lemma compare-pow-less-iff: p>0\Longrightarrow(x:: 'a) \geq0\Longrightarrowy\geq0\Longrightarrow(x^p< y
    `p)=(x<y)
    using compare-pow-le-iff [of p x y]
```

using local.dual-order.order-iff-strict local.power-strict-mono by blast
end
lemma quotient-of-int[simp]: quotient-of (of-int $i)=(i, 1)$
by (metis Rat.of-int-def quotient-of-int)
lemma quotient-of-nat[simp]: quotient-of (of-nat $i)=($ int $i, 1)$
by (metis Rat.of-int-def Rat.quotient-of-int of-int-of-nat-eq)
lemma square-lesseq-square: $\bigwedge x y .0 \leq(x::$ ' a :: linordered-field $) \Longrightarrow 0 \leq y \Longrightarrow$ $(x * x \leq y * y)=(x \leq y)$
by (metis mult-mono mult-strict-mono' not-less)
lemma square-less-square: $\bigwedge x y .0 \leq(x:: ' a$: linordered-field $) \Longrightarrow 0 \leq y \Longrightarrow$ $(x * x<y * y)=(x<y)$
by (metis mult-mono mult-strict-mono' not-less)
lemma sqrt-sqrt[simp]: $x \geq 0 \Longrightarrow$ sqrt $x *$ sqrt $x=x$
by (metis real-sqrt-pow2 power2-eq-square)
lemma abs-lesseq-square: abs $(x::$ real $) \leq a b s y \longleftrightarrow x * x \leq y * y$
using square-lesseq-square[of abs x abs y] by auto
end

2 A Fast Logarithm Algorithm

```
theory Log-Impl
imports
    Sqrt-Babylonian-Auxiliary
begin
```

We implement the discrete logarithm function in a manner similar to a repeated squaring exponentiation algorithm.

In order to prove termination of the algorithm without intermediate checks we need to ensure that we only use proper bases, i.e., values of at least 2. This will be encoded into a separate type.
typedef proper-base $=\{x::$ int. $x \geq 2\}$ by auto
setup-lifting type-definition-proper-base
lift-definition get-base :: proper-base \Rightarrow int is $\lambda x . x$.
lift-definition square-base :: proper-base \Rightarrow proper-base is $\lambda x . x * x$
proof -
fix i :: int
assume i : $2 \leq i$

```
    have 2 * 2 \leqi*i
    by (rule mult-mono[OF i i], insert i, auto)
    thus 2\leqi*i by auto
qed
lift-definition into-base :: int }=>\mathrm{ proper-base is }\lambdax\mathrm{ . if }x\geq2\mathrm{ then x else 2 by auto
lemma square-base: get-base (square-base b) = get-base b* get-base b
    by (transfer, auto)
lemma get-base-2: get-base b \geq2
    by (transfer, auto)
lemma b-less-square-base-b: get-base b < get-base (square-base b)
    unfolding square-base using get-base-2[of b] by simp
lemma b-less-div-base-b: assumes xb: \neg x < get-base b
    shows x div get-base b < x
proof -
    from get-base-2[of b] have b: get-base b \geq2 .
    with xb have x2: x \geq 2 by auto
    with b int-div-less-self[of x (get-base b)]
    show ?thesis by auto
qed
We now state the main algorithm.
function log-main :: proper-base \(\Rightarrow\) int \(\Rightarrow\) nat \(\times\) int where
log-main b \(x=(\) if \(x<\) get-base \(b\) then \((0,1)\) else
case log-main (square-base b) \(x\) of
\((z, b z) \Rightarrow\)
let \(l=2 * z ; b z 1=b z *\) get-base \(b\) in if \(x<b z 1\) then \((l, b z)\) else (Suc l,bz1))
by pat-completeness auto
termination by (relation measure \((\lambda(b, x)\). nat \((1+x-\) get-base \(b)\) ), insert b-less-square-base-b, auto)
lemma log-main: \(x>0 \Longrightarrow\) log-main \(b x=(y, b y) \Longrightarrow b y=(\text { get-base b) })^{\wedge} y \wedge\) (get-base b) \(1 y \leq x \wedge x<(\) get-base b) \((\) Suc \(y)\)
proof (induct \(b x\) arbitrary: \(y\) by rule: log-main.induct)
case (1 b x y by)
note \(x=1\) (2)
note \(y=1\) (3)
note \(I H=1(1)\)
let \(? b=\) get-base \(b\)
show ?case
proof (cases \(x<? b\) )
case True
with \(x y\) show?thesis by auto
```

```
next
    case False
    obtain z bz where zz: log-main (square-base b) }x=(z,bz
        by (cases log-main (square-base b) x, auto)
    have id: get-base (square-base b)^k=?b` `(2*k) for k unfolding square-base
        by (simp add: power-mult semiring-normalization-rules(29))
    from IH[OF False x zz, unfolded id]
```



```
z) by auto
    from y[unfolded log-main.simps[of b x] Let-def zz split] bz False
    have yy:(if x<bz* ?b then (2*z,bz) else (Suc (2*z),bz*?b)) =
        (y,by) by auto
    show ?thesis
    proof (cases x<bz*?b)
        case True
        with yy have yz:y=2*z by=bz by auto
        from True z(1) bz show ?thesis unfolding yz by (auto simp: ac-simps)
    next
        case False
        with yy have yz:y=Suc (2*z) by=?b*bz by auto
        from False have ?b ^ Suc (2*z)\leqx by (auto simp: bz ac-simps)
        with z(2) bz show ?thesis unfolding yz by auto
    qed
    qed
qed
```

We then derive the floor- and ceiling-log functions.
definition log-floor :: int \Rightarrow int \Rightarrow nat where
log-floor $b x=f$ st $($ log-main $($ into-base $b) x)$
definition log-ceiling $::$ int \Rightarrow int \Rightarrow nat where
log-ceiling $b x=($ case log-main (into-base b) x of
$(y, b y) \Rightarrow$ if $x=$ by then y else Suc $y)$
lemma log-floor-sound: assumes $b>1 x>0 \log$-floor $b x=y$
shows $b \widehat{y} \leq x x<b \uparrow$ (Suc y)
proof -
from $\operatorname{assms}(1,3)$ have $i d$: get-base (into-base $b)=b$ by transfer auto
obtain $y y b b$ where log: log-main (into-base b) $x=(y y, b b)$
by (cases log-main (into-base b) x, auto)
from log-main[OF assms(2) log] assms(3)[unfolded log-floor-def log] id show $b \uparrow y \leq x x<b \uparrow(S u c y)$ by auto
qed
lemma log-ceiling-sound: assumes $b>1 x>0$ log-ceiling $b x=y$
shows $x \leq b \widehat{y} y \neq 0 \Longrightarrow b^{\wedge}(y-1)<x$
proof -
from $\operatorname{assms}(1,3)$ have id: get-base (into-base $b)=b$ by transfer auto
obtain yy bb where log: log-main (into-base b) $x=(y y, b b)$

```
    by (cases log-main (into-base b) x, auto)
    from log-main[OF assms(2) log, unfolded id] assms(3)[unfolded log-ceiling-def
log split]
    have bnd: b ^ yy \leqxx< b^ Suc yy and
    y: y = (if x = b^ yy then yy else Suc yy) by auto
    have }x\leqb\widehat{y}\wedge(y\not=0\longrightarrowb`(y-1)<x
    proof (cases x = b^ yy)
    case True
    with y bnd assms(1) show ?thesis by (cases yy, auto)
    next
        case False
        with y bnd show ?thesis by auto
    qed
    thus }x\leqb`y y =0\Longrightarrowb`(y-1)<x by aut
qed
```

Finally, we connect it to the log function working on real numbers.
lemma log-floor [simp]: assumes $b: b>1$ and $x: x>0$
shows log-floor $b x=\lfloor\log b x\rfloor$
proof -
obtain y where y : log-floor $b x=y$ by auto
note main $=$ log-floor-sound $[$ OF assms $y]$
from $b x$ have $*: 1<$ real-of-int $b 0<r e a l-o f-i n t(b \wedge y) 0<r e a l-o f-i n t x$
and $* *: 1<$ real-of-int b $0<$ real-of-int $x 0<r e a l-o f-i n t(b \wedge S u c y)$
by auto
show ?thesis unfolding y
proof (rule sym, rule floor-unique)
show real-of-int $($ int $y) \leq \log$ (real-of-int b) (real-of-int $x)$
using main(1)[folded log-le-cancel-iff[OF *, unfolded of-int-le-iff]]
using log-pow-cancel[of b y] by auto
show $\log ($ real-of-int $b)($ real-of-int $x)<$ real-of-int $($ int $y)+1$
using main(2)[folded log-less-cancel-iff[OF **, unfolded of-int-less-iff]]
using log-pow-cancel[of b Suc y] b by auto
qed
qed
lemma log-ceiling $[$ simp $]$: assumes $b: b>1$ and $x: x>0$
shows log-ceiling $b x=\lceil\log b x\rceil$
proof -
obtain y where y : log-ceiling $b x=y$ by auto
note main $=$ log-ceiling-sound $[$ OF assms $y]$
from $b x$ have $*: 1<$ real-of-int $b 0<$ real-of-int $(b \wedge(y-1)) 0<$ real-of-int
x
and $* *: 1<$ real-of-int $b 0<r e a l-o f-i n t x 0<r e a l-o f-i n t(b ` y)$
by auto
show ?thesis unfolding y
proof (rule sym, rule ceiling-unique)
show \log (real-of-int b) (real-of-int $x) \leq$ real-of-int (int $y)$
using main(1)[folded log-le-cancel-iff[OF **, unfolded of-int-le-iff]]

```
            using log-pow-cancel[of b y] b by auto
    from x have }x:x\geq1\mathrm{ by auto
    show real-of-int (int y) - 1<log (real-of-int b) (real-of-int x)
    proof (cases y = 0)
    case False
    thus ?thesis
                using main(2)[folded log-less-cancel-iff[OF *, unfolded of-int-less-iff]]
                using log-pow-cancel[of by-1]bx by auto
    next
        case True
        have real-of-int (int y) - 1 = log b (1/b) using True b
        by (subst log-divide, auto)
        also have ... < log b 1
        by (subst log-less-cancel-iff, insert b, auto)
        also have .. \leq log bx
            by (subst log-le-cancel-iff, insert b x, auto)
        finally show real-of-int (int y) - 1<log (real-of-int b) (real-of-int x).
    qed
    qed
qed
end
```


3 Executable algorithms for p-th roots

theory NthRoot-Impl
imports
Log-Impl
Cauchy.CauchysMeanTheorem
begin

We implemented algorithms to decide $\sqrt[p]{n} \in \mathbb{Q}$ and to compute $\lfloor\sqrt[p]{n}\rfloor$. To this end, we use a variant of Newton iteration which works with integer division instead of floating point or rational division. To get suitable starting values for the Newton iteration, we also implemented a function to approximate logarithms.

3.1 Logarithm

For computing the p-th root of a number n, we must choose a starting value in the iteration. Here, we use $\left(2::^{\prime} a\right)^{n a t}\lceil o f-i n t\lceil\log 2 n\rceil / p\rceil$.

We use a partial efficient algorithm, which does not terminate on cornercases, like $b=0$ or $p=1$, and invoke it properly afterwards. Then there is a second algorithm which terminates on these corner-cases by additional guards and on which we can perform induction.

3.2 Computing the p-th root of an integer number

Using the logarithm, we can define an executable version of the intended starting value. Its main property is the inequality $x \leq(\text { start-value } x p)^{p}$, i.e., the start value is larger than the p-th root. This property is essential, since our algorithm will abort as soon as we fall below the p-th root.

```
definition start-value \(::\) int \(\Rightarrow\) nat \(\Rightarrow\) int where
```



```
lemma start-value-main: assumes \(x: x \geq 0\) and \(p: p>0\)
    shows \(x \leq(\) start-value \(x p) \uparrow p \wedge\) start-value \(x p \geq 0\)
proof (cases \(x=0\) )
    case True
    with \(p\) show ?thesis unfolding start-value-def True by simp
next
    case False
    with \(x\) have \(x: x>0\) by auto
    define \(l 2 x\) where \(l 2 x=\lceil\log 2 x\rceil\)
    define pow where pow \(=\) nat \(\lceil\) rat-of-int \(l 2 x /\) of-nat \(p\rceil\)
    have root \(p x=x\) powr ( \(1 / p\) ) by (rule root-powr-inverse, insert \(x p\), auto)
    also have \(\ldots=(2\) powr \((\log 2 x)\) ) powr (1 / p) using powr-log-cancel[of \(2 x] x\)
by auto
    also have \(\ldots=2\) powr \((\log 2 x *(1 / p))\) by (rule powr-powr)
    also have \(\log 2 x *(1 / p)=\log 2 x / p\) using \(p\) by auto
    finally have \(r\) : root \(p x=2\) powr \((\log 2 x / p)\).
    have \(l p: \log 2 x \geq 0\) using \(x\) by auto
    hence l2pos: l2x \(\geq 0\) by (auto simp: l2x-def)
    have \(\log 2 x / p \leq l 2 x / p\) using \(x p\) unfolding \(l 2 x\)-def
        by (metis divide-right-mono le-of-int-ceiling of-nat-0-le-iff)
    also have \(\ldots \leq\lceil l 2 x /(p::\) real \()\rceil\) by (simp add: ceiling-correct)
    also have l2x / real \(p=l 2 x /\) real-of-rat (of-nat \(p\) )
        by (metis of-rat-of-nat-eq)
    also have of-int l2x \(=\) real-of-rat (of-int \(l 2 x\) )
        by (metis of-rat-of-int-eq)
    also have real-of-rat (of-int l2x) / real-of-rat (of-nat \(p\) ) real-of-rat (rat-of-int
l2x / of-nat p)
    by (metis of-rat-divide)
    also have \(\lceil\) real-of-rat (rat-of-int l2x \(/\) rat-of-nat \(p)\rceil=\lceil\) rat-of-int \(l 2 x /\) of-nat \(p\rceil\)
    by \(\operatorname{simp}\)
    also have \(\lceil\) rat-of-int l2x / of-nat \(p\rceil \leq\) real pow unfolding pow-def by auto
    finally have \(l e: \log 2 x / p \leq\) pow .
    from powr-mono[OF le, of 2, folded r]
    have root \(p x \leq 2\) powr pow by auto
    also have \(\ldots=2\) ^pow by (rule powr-realpow, auto)
    also have \(\ldots=\) of-int ((2 :: int) ^ pow) by simp
    also have pow \(=(\) nat \(\lceil\) of-int (log-ceiling 2 \(x) /\) rat-of-nat \(p\rceil)\)
    unfolding pow-def l2x-def using \(x\) by simp
    also have real-of-int ((2 :: int) ^...) = start-value x \(p\) unfolding start-value-def
by \(\operatorname{simp}\)
```

```
    finally have less: root \(p x \leq\) start-value \(x p\).
    have \(0 \leq\) root \(p x\) using \(p x\) by auto
    also have \(\ldots \leq\) start-value \(x p\) by (rule less)
    finally have start: \(0 \leq\) start-value \(x p\) by simp
    from power-mono[OF less, of \(p]\) have root \(p\) (of-int \(x){ }^{\wedge} p \leq o f-i n t\) (start-value
\(x p)^{\wedge} p\) using \(p x\) by auto
    also have \(\ldots=\) start-value \(x{ }^{\wedge} p\) by simp
    also have root \(p\) (of-int \(x)^{\wedge} p=x\) using \(p x\) by force
    finally have \(x \leq(\) start-value \(x p){ }^{\wedge} p\) by presburger
    with start show ?thesis by auto
qed
lemma start-value: assumes \(x: x \geq 0\) and \(p: p>0\) shows \(x \leq(\) start-value \(x p)\)
^ \(p\) start-value \(x p \geq 0\)
    using start-value-main \([O F x p]\) by auto
```

We now define the Newton iteration to compute the p-th root. We are working on the integers, where every (/) is replaced by (div). We are proving several things within a locale which ensures that $p>0$, and where $p m=p-1$.
locale fixed-root $=$
fixes $p p m$:: nat
assumes $p: p=$ Suc $p m$
begin

```
function root-newton-int-main :: int }=>\mathrm{ int }=>\mathrm{ int }\times\mathrm{ bool where
    root-newton-int-main x n = (if (x<0\vee n<0) then (0,False) else (if x^ p\leq
n then ( }x,x^~=n
    else root-newton-int-main ((ndiv (x^pm) +x*\operatorname{int pm) div (int p)) n))}
    by pat-completeness auto
end
```

For the executable algorithm we omit the guard and use a let-construction
partial-function (tailrec) root-int-main' $::$ nat \Rightarrow int \Rightarrow int \Rightarrow int \Rightarrow int \Rightarrow int \times bool where
[code]: root-int-main' pm ipm ip $x n=($ let $x p m=\widehat{x p m} ; x p=x p m * x$ in if $x p$ $\leq n$ then $(x, x p=n)$
else root-int-main' pm ipm ip ((n div xpm $+x * i p m)$ div ip) n)
In the following algorithm, we start the iteration. It will compute \lfloor root $p r n\rfloor$ and a boolean to indicate whether the root is exact.
definition root-int-main $::$ nat \Rightarrow int \Rightarrow int \times bool where
root-int-main $p n \equiv$ if $p=0$ then $(1, n=1)$ else
let $p m=p-1$
in root-int-main' $p m$ (int pm) (int p) (start-value n p) n
Once we have proven soundness of fixed-root.root-newton-int-main and equivalence to root-int-main, it is easy to assemble the following algorithm which computes all roots for arbitrary integers.
definition root-int :: nat \Rightarrow int \Rightarrow int list where

```
    root-int \(p x \equiv\) if \(p=0\) then [] else
        if \(x=0\) then \([0]\) else
        let \(e=\) even \(p ; s=\operatorname{sgn} x ; x^{\prime}=a b s x\)
        in if \(x<0 \wedge e\) then [] else case root-int-main \(p x^{\prime}\) of \((y\), True \() \Rightarrow\) if e then
\([y,-y]\) else \([s * y] \mid-\Rightarrow[]\)
```

We start with proving termination of fixed-root.root-newton-int-main.

```
context fixed-root
begin
lemma iteration-mono-eq: assumes xn: x^ p = ( n :: int)
    shows (n div x^ pm + x* int pm) div int p=x
proof -
    have [simp]: \ n. (x+x*n)=x*(1+n) by (auto simp: field-simps)
    show ?thesis unfolding xn[symmetric] p by simp
qed
```

lemma $p 0: p \neq 0$ unfolding p by auto
The following property is the essential property for proving termination of root-newton-int-main.

```
lemma iteration-mono-less: assumes \(x: x \geq 0\)
    and \(n: n \geq 0\)
    and \(x n: x \wedge p>(n::\) int \()\)
    shows ( \(n\) div \(x^{\wedge} p m+x *\) int \(p m\) ) div int \(p<x\)
proof -
    let ? \(s x=\left(n \operatorname{div} x{ }^{\wedge} p m+x *\right.\) int \(\left.p m\right)\) div int \(p\)
    from \(x n\) have \(x n\)-le: \(x{ }^{\wedge} p \geq n\) by auto
    from \(x n x n\) have \(x 0: x>0\)
        using not-le \(p\) by fastforce
    from \(p\) have \(x p: x^{\wedge} p=x * x \wedge p m\) by auto
    from \(x n\) have \(n\) div \(x \wedge p m * x \wedge p m \leq n\)
        by (auto simp add: minus-mod-eq-div-mult [symmetric] mod-int-pos-iff not-less
power-le-zero-eq)
    also have \(\ldots \leq x^{\wedge} p\) using \(x n\) by auto
    finally have le: \(n\) div \(x^{\wedge} p m \leq x\) using \(x x 0\) unfolding \(x p\) by simp
    have ? \(s x \leq(x \wedge p\) div \(x \wedge p m+x *\) int \(p m)\) div int \(p\)
    by (rule zdiv-mono1, insert le p0, unfold \(x p\), auto)
    also have \(\widehat{x p}\) div \(x^{\wedge} p m=x\) unfolding \(x p\) by auto
    also have \(x+x *\) int \(p m=x *\) int \(p\) unfolding \(p\) by (auto simp: field-simps)
    also have \(x *\) int \(p\) div int \(p=x\) using \(p\) by force
    finally have \(l e\) : \(s s \leq x\).
    \{
        assume \({ }^{2} s x=x\)
        from arg-cong[OF this, of \(\lambda x . x *\) int \(p]\)
        have \(x * \operatorname{int} p \leq\left(n\right.\) div \(\left.x^{\wedge} p m+x * \operatorname{int} p m\right)\) div (int \(\left.p\right) * \operatorname{int} p\) using \(p 0\) by
simp
    also have \(\ldots \leq n\) div \(x^{\wedge} p m+x *\) int \(p m\)
        unfolding mod-div-equality-int using \(p\) by auto
```

```
    finally have \(n\) div \(x^{\wedge} p m \geq x\) by (auto simp: \(p\) field-simps)
    from mult-right-mono[OF this, of \(x^{\wedge} p m\) ]
    have ge: \(n\) div \(\widehat{\wedge p m} * \widehat{x p m} \geq \widehat{x}\) unfolding \(x p\) using \(x\) by auto
    from div-mult-mod-eq[of \(n \widehat{x p m}\) ] have \(n\) div \(\widehat{x p m} * \widehat{x p m}=n-n \bmod x \widehat{p m}\)
by arith
    from ge[unfolded this]
    have \(l e: ~ x \wedge p \leq n-n \bmod x \wedge p\).
    from \(x n\) have ge: \(n \bmod x \wedge p m \geq 0\)
        by (auto simp add: mod-int-pos-iff not-less power-le-zero-eq)
    from le ge
    have \(n \geq \widehat{x} p\) by auto
    with \(x n\) have False by auto
    \}
    with le show?thesis unfolding \(p\) by fastforce
qed
lemma iteration-mono-lesseq: assumes \(x: x \geq 0\) and \(n: n \geq 0\) and \(x n: x \wedge p \geq\)
( \(n::\) int)
    shows ( \(n\) div \(x^{\wedge} p m+x *\) int \(p m\) ) div int \(p \leq x\)
proof (cases \(x \wedge p=n\) )
    case True
    from iteration-mono-eq[OF this] show ?thesis by simp
next
    case False
    with assms have \(x^{\wedge} p>n\) by auto
    from iteration-mono-less \([\) OF \(x\) n this]
    show ?thesis by simp
qed
termination
proof -
    let \(? m m=\lambda x \quad n::\) int. nat \(x\)
    let ? \(m 1=\lambda(x, n)\) ? ? \(m m x n\)
    let \(? m=\) measures \([? m 1]\)
    show ? thesis
    proof (relation ? \(m\) )
        fix \(x n\) :: int
        assume \(\neg x \wedge p \leq n\)
        hence \(x: x \wedge p>n\) by auto
        assume \(\neg(x<0 \vee n<0)\)
        hence \(x\)-n: \(x \geq 0 n \geq 0\) by auto
        from \(x x-n\) have \(x 0: x>0\) using \(p\) by (cases \(x=0\), auto)
    from iteration-mono-less \([\) OF \(x-n x]\) x0
    show \(\left(\left(\left(n\right.\right.\right.\) div \(x{ }^{\wedge} p m+x *\) int \(\left.p m\right)\) div int \(\left.\left.p, n\right), x, n\right) \in\) ? \(m\) by auto
    qed auto
qed
```

We next prove that root-int-main' is a correct implementation of root-newton-int-main. We additionally prove that the result is always positive, a lower bound, and that the returned boolean indicates whether the result has a root or not. We
prove all these results in one go, so that we can share the inductive proof.

```
abbreviation root-main' where root-main' \(\equiv\) root-int-main' \(p m\) (int pm) (int p)
lemmas root-main'-simps \(=\) root-int-main'. \(\operatorname{simps}[\) of \(p m\) int \(p m\) int \(p]\)
lemma root-main'-newton-pos: \(x \geq 0 \Longrightarrow n \geq 0 \Longrightarrow\)
    root-main' \(x n=\) root-newton-int-main \(x n \wedge(\) root-main' \(x n=(y, b) \longrightarrow y \geq 0\)
\(\left.\wedge y^{\widehat{p}} \leq n \wedge b=(y \widehat{p}=n)\right)\)
proof (induct \(x\) n rule: root-newton-int-main.induct)
    case (1 \(\begin{aligned} & x\end{aligned}\) n)
    have \(p m-x[s i m p]: x \wedge p m * x=x \wedge p\) unfolding \(p\) by simp
    from 1 have id: \((x<0 \vee n<0)=\) False by auto
    note \(d=\) root-main'-simps[of x n] root-newton-int-main.simps[of x n] id if-False
Let-def
    show? case
    proof (cases \(x{ }^{\wedge} p \leq n\) )
        case True
        thus ?thesis unfolding \(d\) using 1(2) by auto
    next
        case False
        hence id: \(\left(x^{\wedge} p \leq n\right)=\) False by simp
        from 1 (3) 1 (2) have not: \(\neg(x<0 \vee n<0)\) by auto
        then have \(x: x>0 \vee x=0\)
            by auto
        with \(\langle 0 \leq n\rangle\) have \(0 \leq(n \operatorname{div} x \wedge p m+x *\) int \(p m)\) div int \(p\)
            by (auto simp add: p algebra-simps pos-imp-zdiv-nonneg-iff power-0-left)
        then show ?thesis unfolding \(d\) id \(p m-x\)
        by (rule 1 (1)[OF not False - 1(3)])
    qed
qed
```

lemma root-main': $x \geq 0 \Longrightarrow n \geq 0 \Longrightarrow$ root-main' $x n=$ root-newton-int-main x n
using root-main'-newton-pos by blast
lemma root-main'-pos: $x \geq 0 \Longrightarrow n \geq 0 \Longrightarrow$ root-main' $x n=(y, b) \Longrightarrow y \geq 0$ using root-main'-newton-pos by blast
lemma root-main'-sound: $x \geq 0 \Longrightarrow n \geq 0 \Longrightarrow$ root-main' $x n=(y, b) \Longrightarrow b=$ ($y^{\wedge} p=n$)
using root-main'-newton-pos by blast
In order to prove completeness of the algorithms, we provide sharp upper and lower bounds for root-main'. For the upper bounds, we use Cauchy's mean theorem where we added the non-strict variant to Porter's formalization of this theorem.
lemma root-main'-lower: $x \geq 0 \Longrightarrow n \geq 0 \Longrightarrow$ root-main' $x n=(y, b) \Longrightarrow y^{\wedge} p$ $\leq n$
using root-main'-newton-pos by blast

```
lemma root-newton-int-main-upper:
    shows \(y{ }^{\wedge} p \geq n \Longrightarrow y \geq 0 \Longrightarrow n \geq 0 \Longrightarrow\) root-newton-int-main \(y n=(x, b)\)
\(\Longrightarrow n<(x+1)^{\wedge} p\)
proof (induct y \(n\) rule: root-newton-int-main.induct)
    case (1 y n)
    from 1(3) have \(y 0: y \geq 0\).
    then have \(y>0 \vee y=0\)
        by auto
    from 1 (4) have \(n 0: n \geq 0\).
    define \(y^{\prime}\) where \(y^{\prime}=\left(n \operatorname{div}\left(y^{\wedge} p m\right)+y * \operatorname{int} p m\right)\) div (int \(\left.p\right)\)
    from \(\langle y>0 \vee y=0\rangle\langle n \geq 0\rangle\) have \(y^{\prime} 0: y^{\prime} \geq 0\)
        by (auto simp add: \(y^{\prime}\)-def \(p\) algebra-simps pos-imp-zdiv-nonneg-iff power-0-left)
    let ? \(r t=\) root-newton-int-main
    from 1 (5) have \(r t\) : ? \(r t\) y \(n=(x, b)\) by auto
    from \(y 0 n 0\) have not: \(\neg(y<0 \vee n<0)(y<0 \vee n<0)=\) False by auto
```



```
\(\left.y^{\prime}-d e f\right]\)
    note \(I H=1(1)\left[\right.\) folded \(y^{\prime}\)-def, OF \(\left.\operatorname{not}(1)-y^{\prime} 0 n 0\right]\)
    show ? case
    proof (cases y^\(p \leq n\) )
    case False note yyn = this
    with \(r t\) have \(r t\) : ? \(r t y^{\prime} n=(x, b)\) by simp
    show ?thesis
    proof (cases \(n \leq y^{\prime}{ }^{\wedge} p\) )
        case True
        show ?thesis
            by (rule IH[OF False True rt])
    next
        case False
        with \(r t\) have \(x: x=y^{\prime}\) unfolding root-newton-int-main.simps \(\left[o f y^{\prime} n\right]\)
                using \(n 0 y^{\prime} 0\) by simp
        from yyn have \(y y n: ~ y \widehat{p}>n\) by \(\operatorname{simp}\)
        from False have \(y y n^{\prime}: n>y^{\prime} \uparrow p\) by auto
        \{
            assume \(p m: p m=0\)
            have \(y^{\prime}: y^{\prime}=n\) unfolding \(y^{\prime}\)-def \(p\) pm by \(\operatorname{simp}\)
            with \(y y n^{\prime}\) have False unfolding \(p \mathrm{pm}\) by auto
        \}
        hence \(p m 0: p m>0\) by auto
        show ?thesis
        proof (cases \(n=0\) )
            case True
            thus ?thesis unfolding \(p\)
                by (metis False y'0 zero-le-power)
        next
            case False note \(n 00=\) this
                let ? \(y=\) of-int \(y::\) real
                let ? \(n=\) of-int \(n::\) real
```

```
from yyn \(n 0\) have \(y 00: y \neq 0\) unfolding \(p\) by auto
from \(y 00 y 0\) have \(y 0: ? y>0\) by auto
from n0 False have n0: ? \(n>0\) by auto
define \(Y\) where \(Y=? y *\) of-int \(p m\)
define \(N Y\) where \(N Y=\) ? \(n /\) ? \(y\) ^ \(p m\)
note pos-intro \(=\) divide-nonneg-pos add-nonneg-nonneg mult-nonneg-nonneg
have \(N Y 0: N Y>0\) unfolding \(N Y\)-def using y0 no
    by (metis NY-def zero-less-divide-iff zero-less-power)
let ?ls \(=N Y\) \# replicate \(p m\) ?y
have prod: П: replicate pm ? \(y=\) ?y ^ \(p m\)
    by (induct pm, auto)
have sum: \(\sum\) :replicate \(p m ? y=Y\) unfolding \(Y\)-def
    by (induct pm, auto simp: field-simps)
have pos: pos ?ls unfolding pos-def using NYO y0 by auto
have root \(p ? n=\) gmean ?ls unfolding gmean-def using y0
    by (auto simp: p NY-def prod)
also have ... < mean?ls
proof (rule CauchysMeanTheorem-Less[OF pos het-gt-0I])
    show \(N Y \in\) set ?ls by simp
    from \(p m 0\) show ? \(y \in\) set ?ls by simp
    have \(N Y<\) ?y
    proof -
        from yyn have less: ? \(n<? y\) ^ Suc pm unfolding \(p\)
                by (metis of-int-less-iff of-int-power)
        have \(N Y<? y\) ^Suc pm / ? y ^pm unfolding \(N Y\)-def
            by (rule divide-strict-right-mono[OF less], insert y0, auto)
        thus ?thesis using \(y 0\) by auto
    qed
    thus \(N Y \neq ? y\) by blast
qed
also have \(\ldots=(N Y+Y) /\) real \(p\)
    by (simp add: mean-def sum \(p\) )
finally have \(*\) : root \(p\) ? \(n<(N Y+Y) /\) real \(p\).
have \(? n=(\) root \(p ? n) \uparrow p\) using \(n 0\)
    by (metis neq0-conv p0 real-root-pow-pos)
also have \(\ldots<((N Y+Y) /\) real \(p) \widehat{p}\)
    by (rule power-strict-mono[OF *], insert n0 p, auto)
finally have ineq1: ? \(n<((N Y+Y) /\) real \(p) \uparrow p\) by auto
\{
    define \(s\) where \(s=n\) div \(y{ }^{\wedge} p m+y *\) int \(p m\)
    define \(S\) where \(S=N Y+Y\)
    have \(Y 0: Y \geq 0\) using \(y 0\) unfolding \(Y\)-def
        by (metis 1.prems(2) mult-nonneg-nonneg of-int-0-le-iff of-nat-0-le-iff)
    have \(S 0: S>0\) using NYO YO unfolding \(S\)-def by auto
    from \(p\) have \(p 0: p>0\) by auto
    have ? \(n / ? y\) ^pm \(<\operatorname{of-int}(\) floor \((? n / ? y\) pm \())+1\)
        by (rule divide-less-floor1)
    also have floor (?n / ? y ^pm) \(=n\) div y \({ }^{\wedge} p m\)
        unfolding div-is-floor-divide-real by (metis of-int-power)
```

```
    finally have NY<of-int ( n div y^pm) + 1 unfolding NY-def by simp
    hence less: S<of-int s+1 unfolding Y-def s-def S-def by simp
    {
```



```
            using of-int-of-nat-eq by simp
        have f2: }\forall\mp@subsup{x}{0}{}\mathrm{ . real-of-int \rat-of-nat }\mp@subsup{x}{0}{}\rfloor=real \mp@subsup{x}{0}{
            using of-int-of-nat-eq by auto
            have f3: \forall }\mp@subsup{x}{0}{}\mp@subsup{x}{1}{}.\lfloor\mathrm{ rat-of-int }\mp@subsup{x}{0}{}/\mathrm{ rat-of-int }\mp@subsup{x}{1}{}\rfloor=\lfloor\mathrm{ real-of-int }\mp@subsup{x}{0}{}
real-of-int }\mp@subsup{x}{1}{
            using div-is-floor-divide-rat div-is-floor-divide-real by simp
            have f4:0<\lfloorrat-of-nat p\rfloor
            using p by simp
            have \lfloorS\rfloor\leqs using less floor-le-iff by auto
            hence \lfloorrat-of-int \lfloorS\rfloor/ rat-of-nat p\rfloor\leq \rat-of-int s / rat-of-nat p\rfloor
            using f1 f3 f4 by (metis div-is-floor-divide-real zdiv-mono1)
            hence \lfloorS / real p\rfloor\leq\lfloorrat-of-int s / rat-of-nat p\rfloor
            using f1 f2 f3 f4 by (metis div-is-floor-divide-real floor-div-pos-int)
            hence S / real p s real-of-int (s div int p) + 1
                    using f1 f3 by (metis div-is-floor-divide-real floor-le-iff floor-of-nat
less-eq-real-def)
            }
            hence S / real p\leqof-int(s div p)+1.
            note this[unfolded S-def s-def]
        }
        hence ge: of-int y'
            by simp
            have pos1: (NY+Y)/ p\geq0 unfolding Y-def NY-def
            by (intro divide-nonneg-pos add-nonneg-nonneg mult-nonneg-nonneg,
            insert y0 n0 p0, auto)
            have pos2: of-int y'}+(1:: rat) \geq0 using y'0 by aut
```



```
                by (rule power-mono[OF ge pos1])
            from order.strict-trans2[OF ineq1 ineq2]
            have ? n < of-int ((x+1) ^ p) unfolding x
            by (metis of-int-1 of-int-add of-int-power)
            thus n< (x+1) ^ p using of-int-less-iff by blast
        qed
    qed
    next
        case True
    with rt have x: x= y by simp
    with 1(2) True have n: n= y^ p by auto
    show ?thesis unfolding n x using y0 unfolding p
    by (metis add-le-less-mono add-less-cancel-left lessI less-add-one add.right-neutral
le-iff-add power-strict-mono)
    qed
qed
lemma root-main'-upper:
```

```
    \(x^{\wedge} p \geq n \Longrightarrow x \geq 0 \Longrightarrow n \geq 0 \Longrightarrow\) root-main \({ }^{\prime} x n=(y, b) \Longrightarrow n<(y+1)^{\wedge}\)
\(p\)
    using root-newton-int-main-upper \([\) of \(n x y b l]\) root-main' \([o f x n]\) by auto
end
```

Now we can prove all the nice properties of root-int-main.

```
lemma root-int-main-all: assumes \(n: n \geq 0\)
    and rm: root-int-main \(p n=(y, b)\)
    shows \(y \geq 0 \wedge b=(y \wedge p=n) \wedge(p>0 \longrightarrow y \wedge p \leq n \wedge n<(y+1) \wedge p)\)
    \(\wedge(p>0 \longrightarrow x \geq 0 \longrightarrow x \wedge p=n \longrightarrow y=x \wedge b)\)
proof (cases \(p=0\) )
    case True
    with rm[unfolded root-int-main-def]
    have \(y: y=1\) and \(b: b=(n=1)\) by auto
    show ? thesis unfolding True \(y b\) using \(n\) by auto
next
    case False
    from False have \(p-0: p>0\) by auto
    from False have \((p=0)=\) False by simp
    from rm[unfolded root-int-main-def this Let-def]
    have rm: root-int-main' \((p-1)(\) int \((p-1))(\) int \(p)(\) start-value \(n p) n=(y, b)\)
by simp
    from start-value \([\) OF \(n p-0]\) have start: \(n \leq(\) start-value \(n p) \uparrow p 0 \leq s t a r t-v a l u e\)
\(n p\) by auto
    interpret fixed-root p p-1
    by (unfold-locales, insert False, auto)
    from root-main'- pos[OF start(2) \(n \mathrm{rm}]\) have \(y: y \geq 0\).
    from root-main'-sound \([\) OF start(2) \(n \mathrm{rm}]\) have \(b: b=(y \wedge p=n)\).
    from root-main'-lower[OF start(2) \(n \mathrm{rm}\) ] have low: \(y\) ^ \(p \leq n\).
    from root-main'-upper [OF start \(n\) rm] have up: \(n<(y+1){ }^{\wedge} p\).
    \{
        assume \(n: x \curvearrowright p=n\) and \(x: x \geq 0\)
        with low up have low: \(y \wedge p \leq x \wedge p\) and up: \(x \wedge p<(y+1) \wedge p\) by auto
        from power-strict-mono[of \(x y\), OF - xp-0] low have \(x: x \geq y\) by arith
        from power-mono \([o f(y+1) x p] y\) up have \(y: y \geq x\) by arith
        from \(x y\) have \(x=y\) by auto
        with \(b n\)
        have \(y=x \wedge b\) by auto
    \}
    thus ?thesis using blow up \(y\) by auto
qed
lemma root-int-main: assumes \(n: n \geq 0\)
    and \(r m\) : root-int-main \(p n=(y, b)\)
    shows \(y \geq 0 b=\left(y^{\wedge} p=n\right) p>0 \Longrightarrow y \wedge p \leq n p>0 \Longrightarrow n<(y+1) \wedge p\)
        \(p>0 \Longrightarrow x \geq 0 \Longrightarrow x \wedge p=n \Longrightarrow y=x \wedge b\)
    using root-int-main-all \([\) OF \(n\) rm, of \(x]\) by blast +
lemma root-int[simp]: assumes \(p: p \neq 0 \vee x \neq 1\)
```

```
    shows set (root-int px)={y.y^p=x}
proof (cases p=0)
    case True
    with p have }x\not=1\mathrm{ by auto
    thus ?thesis unfolding root-int-def True by auto
next
    case False
    hence p:(p=0) = False and p0: p>0 by auto
    note d = root-int-def p if-False Let-def
    show ?thesis
    proof (cases x=0)
        case True
        thus ?thesis unfolding d using p0 by auto
    next
        case False
        hence x:(x=0) = False by auto
    show ?thesis
    proof (cases x < 0^ even p)
        case True
        hence left: set (root-int px)={} unfolding d by auto
        {
            fix }
            assume }x:y` p=
            with True have y^ p<0^ even p by auto
            hence False by presburger
        }
        with left show ?thesis by auto
    next
        case False
        with x p have cond: (x=0) = False (x<0^ even p)= False by auto
        obtain y b where rt: root-int-main p |x| = (y,b) by force
        have abs x \geq0 by auto
        note rm = root-int-main[OF this rt]
        have ?thesis =
            (set (case root-int-main p |x of (y,True) => if even p then [y, - y] else
[sgn x*y]|(y, False) =>[])=
            {y. y^ p=x}) unfolding d cond by blast
        also have (case root-int-main p |x| of (y,True) => if even p then [y, - y]
else [sgn x*y]|(y,False) => [])
        =(if b then if even p then [y,-y] else [sgn x*y] else []) (is - = ?lhs)
        unfolding rt by auto
    also have set ?lhs = {y. y^` p=x} (is - = ?rhs)
    proof -
                {
                    fix z
                    assume idx: z^ 
                hence eq:(abs z)^ }p=abs x by (metis power-abs
                from idx x p0 have z:z\not=0 unfolding p by auto
            have (y,b)=(|z|, True)
```

```
                    using rm(5)[OF p0-eq] by auto
                    hence id: y=abs zb=True by auto
                            have z\in set ?lhs unfolding id using z by (auto simp: idx[symmetric],
cases z<0,auto)
            }
            moreover
            {
                fix z
                assume z:z\in set ?lhs
                hence b: b= True by (cases b, auto)
                note z=z[unfolded b if-True]
            from rm(2) b have yx: y^ p = |x| by auto
            from rm(1) have y:y\geq0.
            from False have odd p\vee even p}\wedgex\geq0 by aut
            hence z\in? ?rhs
            proof
                    assume odd: odd p
                    with z have z=sgn x*y by auto
                    hence z^ p = (sgn x*y)^ p by auto
                    also have ... = sgn x^ p* y^ p unfolding power-mult-distrib by auto
                    also have ... = sgn x^ p *abs x unfolding yx by simp
                    also have sgn x^ p= sgn x using x odd by auto
                    also have sgn x*abs x=x by (rule mult-sgn-abs)
                    finally show z\in? ?rhs by auto
            next
                    assume even: even p}\wedgex\geq
                    from z even have z=y\veez=-y by auto
                    hence id: abs z=y using y by auto
                    with yx x even have z: z\not=0 using p0 by (cases y = 0, auto)
                    have z}\mp@subsup{}{}{`}p=(\operatorname{sgn}z*absz)^p by (simp add:mult-sgn-abs
                    also have ... = (sgn z*y)^p using id by auto
                    also have ... = (sgn z)^p* y^ p unfolding power-mult-distrib by
simp
            also have \ldots= sgn z^ p*x unfolding yx using even by auto
                    also have sgn z^ p=1 using even z by (auto)
                    finally show z\in? ?rhs by auto
                    qed
            }
            ultimately show ?thesis by blast
        qed
        finally show ?thesis by auto
        qed
    qed
qed
lemma root-int-pos: assumes }x:x\geq0\mathrm{ and ri: root-int p x = y # ys
    shows }y\geq
proof -
    from x have abs:abs x=x by auto
```

```
    note \(r i=\) ri[unfolded root-int-def Let-def abs]
    from \(r i\) have \(p:(p=0)=\) False by (cases \(p\), auto)
    note \(r i=\) ri[unfolded \(p i f\)-False]
    show ? thesis
    proof (cases \(x=0\) )
    case True
    with ri show ?thesis by auto
    next
    case False
    hence \((x=0)=\) False \((x<0 \wedge\) even \(p)=\) False using \(x\) by auto
    note \(r i=\) ri[unfolded this if-False]
    obtain \(y^{\prime} b^{\prime}\) where \(r\) : root-int-main \(p x=\left(y^{\prime}, b^{\prime}\right)\) by force
    note \(r i=r i[\) unfolded this]
    hence \(y: y=\left(\right.\) if even \(p\) then \(y^{\prime}\) else \(\left.\operatorname{sgn} x * y^{\prime}\right)\) by (cases \(b^{\prime}\), auto)
    from root-int-main(1)[OF \(x\) r \(]\) have \(y^{\prime}: 0 \leq y^{\prime}\).
    thus ?thesis unfolding \(y\) using \(x\) False by auto
    qed
qed
```


3.3 Floor and ceiling of roots

Using the bounds for root-int-main we can easily design algorithms which compute $\lfloor\operatorname{root} p x\rfloor$ and \lceil root $p x\rceil$. To this end, we first develop algorithms for non-negative x, and later on these are used for the general case.
definition root-int-floor-pos $p x=($ if $p=0$ then 0 else fst (root-int-main $p x))$ definition root-int-ceiling-pos $p x=($ if $p=0$ then 0 else (case root-int-main $p x$ of $(y, b) \Rightarrow$ if b then y else $y+1)$)
lemma root-int-floor-pos-lower: assumes $p 0: p \neq 0$ and $x: x \geq 0$
shows root-int-floor-pos $p x^{\wedge} p \leq x$
using root-int-main(3)[OF x, of p] p0 unfolding root-int-floor-pos-def
by (cases root-int-main $p x$, auto)
lemma root-int-floor-pos-pos: assumes $x: x \geq 0$
shows root-int-floor-pos p $x \geq 0$
using root-int-main(1)[OF x, of $p]$
unfolding root-int-floor-pos-def
by (cases root-int-main $p x$, auto)
lemma root-int-floor-pos-upper: assumes $p 0: p \neq 0$ and $x: x \geq 0$
shows (root-int-floor-pos $p x+1$) ^ $p>x$
using root-int-main(4)[OF x, of p] p0 unfolding root-int-floor-pos-def
by (cases root-int-main $p x$, auto)
lemma root-int-floor-pos: assumes $x: x \geq 0$
shows root-int-floor-pos p $x=$ floor $($ root $p(o f-i n t x))$
proof (cases $p=0$)
case True
thus ?thesis by (simp add: root-int-floor-pos-def)

```
next
    case False
    hence p:p>0 by auto
    let ?s1 = real-of-int (root-int-floor-pos p x)
    let ?s2 = root p (of-int x)
    from x have s1:?s1 \geq0
        by (metis of-int-0-le-iff root-int-floor-pos-pos)
    from x have s2: ?s2 }\geq
    by (metis of-int-0-le-iff real-root-pos-pos-le)
    from s1 have s11:?s1 + 1 \geq0 by auto
    have id:?s2 ^ }p=of-int x using x
        by (metis p of-int-0-le-iff real-root-pow-pos2)
    show ?thesis
    proof (rule floor-unique[symmetric])
        show ?s1 \leq ?s2
            unfolding compare-pow-le-iff[OF p s1 s2, symmetric]
            unfolding id
        using root-int-floor-pos-lower[OF False x]
        by (metis of-int-le-iff of-int-power)
    show ?s2 < ?s1 + 1
        unfolding compare-pow-less-iff[OF p s2 s11, symmetric]
        unfolding id
        using root-int-floor-pos-upper[OF False x]
        by (metis of-int-add of-int-less-iff of-int-power of-int-1)
    qed
qed
lemma root-int-ceiling-pos: assumes x: x\geq0
    shows root-int-ceiling-pos p x = ceiling (root p (of-int x))
proof (cases p=0)
    case True
    thus ?thesis by (simp add: root-int-ceiling-pos-def)
next
    case False
    hence p:p>0 by auto
    obtain yb}\mathrm{ where s: root-int-main px=(y,b) by force
    note rm = root-int-main[OF x s]
    note rm=rm(1-2) rm(3-5)[OF p]
    from rm(1) have y:y\geq0 by simp
    let ?s = root-int-ceiling-pos px
    let ?sx = root p (of-int x)
    note d = root-int-ceiling-pos-def
    show ?thesis
    proof (cases b)
    case True
    hence id: ?s = y unfolding s d using p by auto
    from rm(2) True have xy: x= y^ p by auto
    show ?thesis unfolding id unfolding xy using y
        by (simp add: p real-root-power-cancel)
```

```
    next
    case False
    hence id:?s = root-int-floor-pos px+1 unfolding d root-int-floor-pos-def
        using s p by simp
    from False have x0:x\not=0 using rm(5)[of 0] using s unfolding root-int-main-def
Let-def using p
        by (cases x = 0,auto)
    show ?thesis unfolding id root-int-floor-pos[OF x]
    proof (rule ceiling-unique[symmetric])
        show ?sx \leq real-of-int (\lfloorroot p (of-int x)\rfloor+1)
            by (metis of-int-add real-of-int-floor-add-one-ge of-int-1)
        let ?l = real-of-int (\lfloorroot p (of-int x) \rfloor+1) - 1
        let ?m = real-of-int \lfloorroot p (of-int x)\rfloor
        have ?l = ?m by simp
        also have ...<?sx
        proof -
            have le:?m \leq?sx by (rule of-int-floor-le)
            have neq: ?m}\not=\mathrm{ ?sx
            proof
                assume ?m}=\mathrm{ ? sx
                hence ?m^ 
                also have ... = of-int x using x False
            by (metis p real-root-ge-0-iff real-root-pow-pos2 root-int-floor-pos root-int-floor-pos-pos
zero-le-floor zero-less-Suc)
                    finally have xs: x=\lfloor\operatorname{root p (of-int x) \rfloor^p}
                        by (metis floor-power floor-of-int)
                    hence \lfloorroot p (of-int x)\rfloor\in set (root-int p x) using p by simp
                hence root-int p x\not= [] by force
                    with s False }\langlep\not=0\ranglexx0\mathrm{ show False unfolding root-int-def
                    by (cases p,auto)
            qed
            from le neq show ?thesis by arith
        qed
        finally show ?l < ?sx .
    qed
    qed
qed
```

definition root-int-floor $p x=($ if $x \geq 0$ then root-int-floor-pos $p x$ else - root-int-ceiling-pos $p(-x))$
definition root-int-ceiling $p x=$ (if $x \geq 0$ then root-int-ceiling-pos $p x$ else -
root-int-floor-pos $p(-x)$)
lemma root-int-floor[simp]: root-int-floor p $x=$ floor $($ root $p(o f-i n t x))$
proof -
note $d=$ root-int-floor-def
show ?thesis
proof (cases $x \geq 0$)

```
    case True
    with root-int-floor-pos[OF True, of p] show ?thesis unfolding d by simp
    next
    case False
    hence - x\geq0 by auto
    from False root-int-ceiling-pos[OF this] show ?thesis unfolding d
        by (simp add: real-root-minus ceiling-minus)
    qed
qed
lemma root-int-ceiling[simp]: root-int-ceiling p x = ceiling (root p (of-int x))
proof -
    note d = root-int-ceiling-def
    show ?thesis
    proof (cases x \geq0)
        case True
        with root-int-ceiling-pos[OF True] show ?thesis unfolding d by simp
    next
        case False
    hence - x \geq0 by auto
    from False root-int-floor-pos[OF this, of p] show ?thesis unfolding d
        by (simp add: real-root-minus floor-minus)
    qed
qed
```


3.4 Downgrading algorithms to the naturals

```
definition root-nat-floor :: nat \(\Rightarrow\) nat \(\Rightarrow\) int where root-nat-floor \(p x=\) root-int-floor-pos \(p\) (int \(x)\)
definition root-nat-ceiling \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) int where root-nat-ceiling \(p x=\) root-int-ceiling-pos \(p(\) int \(x)\)
definition root-nat \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat list where root-nat \(p x=\) map nat \((\) take 1 (root-int \(p x)\) )
lemma root-nat-floor [simp]: root-nat-floor \(p x=\) floor (root \(p(\) real \(x)\) )
unfolding root-nat-floor-def using root-int-floor-pos[of int x p]
by auto
lemma root-nat-floor-lower: assumes \(p 0: p \neq 0\)
shows root-nat-floor \(p x^{\wedge} p \leq x\)
using root-int-floor-pos-lower[OF p0, of x] unfolding root-nat-floor-def by auto
lemma root-nat-floor-upper: assumes \(p 0: p \neq 0\)
shows (root-nat-floor \(p x+1\) ) ^ \(p>x\)
using root-int-floor-pos-upper[OF p0, of \(x\) ] unfolding root-nat-floor-def by auto
lemma root-nat-ceiling \([\) simp \(]\) : root-nat-ceiling p \(x=\) ceiling \((\) root \(p x)\)
```

unfolding root-nat-ceiling-def using root-int-ceiling-pos[of x p] by auto

```
lemma root-nat: assumes \(p 0: p \neq 0 \vee x \neq 1\)
    shows set (root-nat \(p x)=\left\{y . y{ }^{\wedge} p=x\right\}\)
proof -
    \{
        fix \(y\)
        assume \(y \in \operatorname{set}\) (root-nat \(p x\) )
        note \(y=\) this[unfolded root-nat-def]
        then obtain yi ys where ri: root-int \(p x=y i \# y s\) by (cases root-int \(p x\),
auto)
    with \(y\) have \(y: y=n a t\) yi by auto
    from root-int-pos \([O F-r i]\) have \(y i: 0 \leq y i\) by auto
    from root-int [of \(p\) int \(x] p 0\) ri have \(y i \wedge p=x\) by auto
    from arg-cong[OF this, of nat \(]\) yi have nat \(y i{ }^{\wedge} p=x\)
        by (metis nat-int nat-power-eq)
    hence \(y \in\left\{y . y^{\wedge} p=x\right\}\) using \(y\) by auto
\}
moreover
\{
    fix \(y\)
    assume \(y x: y{ }^{\wedge} p=x\)
    hence \(y\) : int \(y \wedge ~ p=\) int \(x\)
        by (metis of-nat-power)
    hence set (root-int \(p(\) int \(x)) \neq\{ \}\) using root-int \([\) of \(p\) int \(x] p 0\)
    by (metis (mono-tags) One-nat-def \(\langle y \wedge p=x\rangle\) empty-Collect-eq nat-power-eq-Suc-0-iff)
    then obtain yi ys where ri: root-int \(p(\) int \(x)=y i \# y s\)
        by (cases root-int \(p\) (int \(x\) ), auto)
    from root-int-pos \([O F-t h i s]\) have yip: \(y i \geq 0\) by auto
    from root-int [of \(p\) int \(x\), unfolded ri] \(p 0\) have \(y i: y i \wedge p=\) int \(x\) by auto
    with \(y\) have int \(y{ }^{\wedge} p=y i{ }^{\wedge} p\) by auto
    from arg-cong[OF this, of nat] have \(i d: y \bigwedge p=n a t ~ y i ` p\)
        by (metis \(\langle y \wedge p=x\rangle\) nat-int nat-power-eq yi yip)
    \{
        assume \(p: p \neq 0\)
        hence \(p 0: p>0\) by auto
        obtain yy \(b\) where \(r m\) : root-int-main \(p(\) int \(x)=(y y, b)\) by force
        from root-int-main(5)[OF-rmp0-y] have \(y y=\) int \(y\) and \(b=\) True by
auto
    note \(r m=r m[\) unfolded this]
    hence \(y \in\) set (root-nat \(p x\) )
        unfolding root-nat-def \(p\) root-int-def using p0 p yx
        by auto
    \}
    moreover
    \{
        assume \(p: p=0\)
        with \(p 0\) have \(x \neq 1\) by auto
```

```
            with y p have False by auto
    }
    ultimately have }y\in\mathrm{ set (root-nat p x) by auto
    }
    ultimately show ?thesis by blast
qed
```


3.5 Upgrading algorithms to the rationals

The main observation to lift everything from the integers to the rationals is the fact, that one can reformulate $\frac{a 1^{1 / p}}{b}$ as $\frac{\left(a b^{p-1}\right)^{1 / p}}{b}$.
definition root-rat-floor :: nat \Rightarrow rat \Rightarrow int where root-rat-floor $p x \equiv$ case quotient-of x of $(a, b) \Rightarrow$ root-int-floor $p\left(a * b^{\wedge}(p-1)\right)$ div b
definition root-rat-ceiling :: nat \Rightarrow rat \Rightarrow int where
root-rat-ceiling p $x \equiv-($ root-rat-floor $p(-x))$
definition root-rat :: nat \Rightarrow rat \Rightarrow rat list where
root-rat $p x \equiv$ case quotient-of x of $(a, b) \Rightarrow$ concat
(map (λ rb. map (λ ra. of-int ra / rat-of-int rb) (root-int pa)) (take 1 (root-int $p b)$)

```
lemma root-rat-reform: assumes \(q\) : quotient-of \(x=(a, b)\)
    shows root \(p(\) real-of-rat \(x)=\) root \(p\left(\right.\) of-int \(\left.\left(a * b^{\wedge}(p-1)\right)\right) /\) of-int \(b\)
proof (cases \(p=0\) )
    case False
    from quotient-of-denom-pos[OF q] have \(b: 0<b\) by auto
    hence \(b: 0<\) real-of-int \(b\) by auto
    from quotient-of-div[OF q] have \(x\) : root \(p(\) real-of-rat \(x)=\) root \(p(a / b)\)
        by (metis of-rat-divide of-rat-of-int-eq)
    also have \(a / b=a *\) real-of-int \(b^{\wedge}(p-1) /\) of-int \(b^{\wedge} p\) using \(b\) False
        by (cases \(p\), auto simp: field-simps)
    also have root \(p \ldots=\) root \(p\left(a *\right.\) real-of-int \(\left.b^{\wedge}(p-1)\right) / \operatorname{root} p\left(o f-i n t b{ }^{\wedge} p\right)\)
by (rule real-root-divide)
    also have root \(p\left(o f\right.\)-int \(\left.b{ }^{\wedge} p\right)=o f\)-int \(b\) using False \(b\)
        by (metis neq0-conv real-root-pow-pos real-root-power)
    also have \(a *\) real-of-int \(b^{\wedge}(p-1)=o f-i n t(a * b へ(p-1))\)
        by (metis of-int-mult of-int-power)
    finally show? ?thesis.
qed auto
lemma root-rat-floor \([\) simp \(]\) : root-rat-floor p \(x=\) floor \((\) root \(p(o f-r a t ~ x))\)
proof -
    obtain \(a b\) where \(q\) : quotient-of \(x=(a, b)\) by force
    from quotient-of-denom-pos[OF \(q\) ] have \(b: b>0\).
    show ?thesis
        unfolding root-rat-floor-def q split root-int-floor
```

```
    unfolding root-rat-reform[OF q] floor-div-pos-int[OF b] ..
qed
lemma root-rat-ceiling [simp]: root-rat-ceiling p x = ceiling (root p (of-rat x))
    unfolding
    root-rat-ceiling-def
    ceiling-def
    real-root-minus
    root-rat-floor
    of-rat-minus
```

lemma root-rat $[\operatorname{simp}]$: assumes $p: p \neq 0 \vee x \neq 1$
shows set (root-rat $p x)=\{y . y \wedge p=x\}$
proof (cases $p=0$)
case False
note $p=$ this
obtain $a b$ where q : quotient-of $x=(a, b)$ by force
note $x=$ quotient-of-div $[O F q]$
have $b: b>0$ by (rule quotient-of-denom-pos[OF $q]$)
note $d=$ root-rat-def q split set-concat set-map
\{
fix q
assume $q \in$ set (root-rat $p x$)
note mem $=$ this[unfolded d]
from mem obtain rbxs where rb: root-int $p b=$ Cons rb xs by (cases root-int
p b, auto)
note $m e m=m e m[u n f o l d e d$ this]
from mem obtain $r a$ where $r a: r a \in \operatorname{set}(r o o t-i n t p a)$ and $q: q=o f-i n t r a /$
of-int rb
by (cases root-int p a, auto)
from $r b$ have $r b \in$ set (root-int $p b$) by auto
with $r a p$ have $r b: b=r b{ }^{\wedge} p$ and $r a: a=r a \wedge p$ by auto
have $q \in\left\{y . y^{\wedge} p=x\right\}$ unfolding $q x$ ra rb
by (auto simp: power-divide)
\}
moreover
\{
fix q
assume $q \in\left\{y . y^{\wedge} p=x\right\}$
hence q ^ $p=o f$-int $a /$ of-int b unfolding x by auto
hence eq: of-int $b * q \wedge p=o f-i n t a$ using b by auto
obtain $z n$ where quo: quotient-of $q=(z, n)$ by force
note $q z n=$ quotient-of-div[OF quo]
have $n: n>0$ using quotient-of-denom-pos[OF quo].
from eq[unfolded $q z n]$ have rat-of-int $b * o f$-int $\widehat{z p} /$ of-int $n \widehat{p}=o f$-int a
unfolding power-divide by simp
from arg-cong[OF this, of $\lambda x . x *$ of-int $n \widehat{p}] n$ have rat-of-int $b *$ of-int $z \widehat{p}$
$=$ of-int $a *$ of-int $n{ }^{\wedge} p$
by auto
also have rat-of-int $b * o f$-int $z^{\wedge} p=r a t-o f-i n t(b * z \widehat{z})$ unfolding of-int-mult of-int-power ..
also have of-int $a *$ rat-of-int $n \wedge p=o f-i n t(a * n \wedge p)$ unfolding of-int-mult of-int-power ..
finally have $i d: a * n \wedge p=b * z \wedge p$ by linarith
from quotient-of-coprime $\left[O F\right.$ quo] have cop: coprime $\left(z^{\wedge} p\right)\left(n^{\wedge} p\right)$
by simp
from coprime-crossproduct-int[OF quotient-of-coprime $[$ OF q] this] arg-cong[OF id, of abs]
have $\left|n^{\wedge} p\right|=|b|$
by (simp add: field-simps abs-mult)
with $n b$ have $b n p: b=n^{\wedge} p$ by auto
hence $r n: n \in$ set (root-int $p b$) using p by auto
then obtain rb rs where rb: root-int $p b=$ Cons rb rs by (cases root-int $p b$, auto)
from $i d[$ folded $b n p] b$ have $a=z^{\wedge} p$ by auto
hence $a: z \in$ set (root-int $p a$) using p by auto
from root-int-pos $[O F-r b] b$ have $r b 0: r b \geq 0$ by auto
from root-int[OF disjI1[OF p], of b] rb have $r b{ }^{\wedge} p=b$ by auto
with bnp have $i d: r b{ }^{\wedge} p=n{ }^{\wedge} p$ by auto
have $r b=n$ by (rule power-eq-imp-eq-base[OF id], insert n rb0 p, auto)
with $r b$ have $b: n \in \operatorname{set}$ (take 1 (root-int $p b$)) by auto
have $q \in$ set (root-rat $p x$) unfolding d qzn using $b a$ by auto
\}
ultimately show ?thesis by blast
next
case True
with p have $x: x \neq 1$ by auto
obtain $a b$ where q : quotient-of $x=(a, b)$ by force
show ?thesis unfolding True root-rat-def q split root-int-def using x by auto
qed
end

```
theory Sqrt-Babylonian
imports
    Sqrt-Babylonian-Auxiliary
    NthRoot-Impl
begin
```


4 Executable algorithms for square roots

This theory provides executable algorithms for computing square-roots of numbers which are all based on the Babylonian method (which is also known as Heron's method or Newton's method).

For integers / naturals / rationals precise algorithms are given, i.e., here sqrt x delivers a list of all integers / naturals / rationals y where $y^{2}=x$. To this end, the Babylonian method has been adapted by using integerdivisions.

In addition to the precise algorithms, we also provide approximation algorithms. One works for arbitrary linear ordered fields, where some number y is computed such that $\left|y^{2}-x\right|<\varepsilon$. Moreover, for the naturals, integers, and rationals we provide algorithms to compute \lfloor sqrt $x\rfloor$ and \lceil sqrt $x\rceil$ which are all based on the underlying algorithm that is used to compute the precise square-roots on integers, if these exist.

The major motivation for developing the precise algorithms was given by CeTA [2], a tool for certifiying termination proofs. Here, non-linear equations of the form $\left(a_{1} x_{1}+\ldots a_{n} x_{n}\right)^{2}=p$ had to be solved over the integers, where p is a concrete polynomial. For example, for the equation $(a x+b y)^{2}=$ $4 x^{2}-12 x y+9 y^{2}$ one easily figures out that $a^{2}=4, b^{2}=9$, and $a b=-6$, which results in a possible solution $a=\sqrt{4}=2, b=-\sqrt{9}=-3$.

4.1 The Babylonian method

The Babylonian method for computing \sqrt{n} iteratively computes

$$
x_{i+1}=\frac{\frac{n}{x_{i}}+x_{i}}{2}
$$

until $x_{i}^{2} \approx n$. Note that if $x_{0}^{2} \geq n$, then for all i we have both $x_{i}^{2} \geq n$ and $x_{i} \geq x_{i+1}$.

4.2 The Babylonian method using integer division

First, the algorithm is developed for the non-negative integers. Here, the division operation $\frac{x}{y}$ is replaced by x div $y=\lfloor$ of-int $x /$ of-int $y\rfloor$. Note that replacing $\lfloor o f$-int $x /$ of-int $y\rfloor$ by $\lceil o f$-int $x /$ of-int $y\rceil$ would lead to non-termination in the following algorithm.

We explicititly develop the algorithm on the integers and not on the naturals, as the calculations on the integers have been much easier. For example, $y-x+x=y$ on the integers, which would require the side-condition $y \geq x$ for the naturals. These conditions will make the reasoning much more tedious - as we have experienced in an earlier state of this development where everything was based on naturals.

Since the elements $x_{0}, x_{1}, x_{2}, \ldots$ are monotone decreasing, in the main algorithm we abort as soon as $x_{i}^{2} \leq n$.

Since in the meantime, all of these algorithms have been generalized to arbitrary p-th roots in Sqrt-Babylonian.NthRoot-Impl, we just instantiate the general algorithms by $p=2$ and then provide specialized code equations which are more efficient than the general purpose algorithms.

```
definition sqrt-int-main' :: int }=>\mathrm{ int }=>\mathrm{ int }\times\mathrm{ bool where
    [simp]: sqrt-int-main' x n = root-int-main'112 x n
```

lemma sqrt-int-main'-code[code]: sqrt-int-main' $x n=($ let $x 2=x * x$ in if $x 2 \leq$
n then $(x, x 2=n)$
else sqrt-int-main' $((n \operatorname{div} x+x)$ div 2) n)

unfolding Let-def by auto
definition sqrt-int-main $::$ int \Rightarrow int \times bool where
[simp]: sqrt-int-main $x=$ root-int-main $2 x$
lemma sqrt-int-main-code[code]: sqrt-int-main $x=$ sqrt-int-main' $^{\prime}($ start-value x 2)
x
by (simp add: root-int-main-def Let-def)
definition sqrt-int $::$ int \Rightarrow int list where
sqrt-int $x=$ root-int $2 x$
lemma sqrt-int-code[code]: sqrt-int $x=($ if $x<0$ then [] else case sqrt-int-main x
of $(y$, True $) \Rightarrow$ if $y=0$ then $[0]$ else $[y,-y] \mid-\Rightarrow[])$
proof -
interpret fixed-root 21 by (unfold-locales, auto)
obtain $b y$ where res: root-int-main $2 x=(b, y)$ by force
show ?thesis
unfolding sqrt-int-def root-int-def Let-def
using root-int-main[OF - res]
using res
by simp
qed
lemma sqrt-int $[$ simp $]:$ set $($ sqrt-int $x)=\{y . y * y=x\}$
unfolding sqrt-int-def by (simp add: power2-eq-square)
lemma sqrt-int-pos: assumes res: sqrt-int $x=$ Cons s ms
shows $s \geq 0$
proof -
note res $=$ res[unfolded sqrt-int-code Let-def, simplified]
from res have $x 0: x \geq 0$ by (cases ?thesis, auto)
obtain ss b where call: sqrt-int-main $x=(s s, b)$ by force

```
    from res[unfolded call] \(x 0\) have \(s s=s\)
    by (cases b, cases ss \(=0\), auto)
    from root-int-main(1)[OF x0 call[unfolded this sqrt-int-main-def]]
    show ?thesis .
qed
definition \([\) simp \(]\) : sqrt-int-floor-pos \(x=\) root-int-floor-pos \(2 x\)
lemma sqrt-int-floor-pos-code[code]: sqrt-int-floor-pos \(x=\) fst (sqrt-int-main \(x)\)
    by (simp add: root-int-floor-pos-def)
lemma sqrt-int-floor-pos: assumes \(x: x \geq 0\)
    shows sqrt-int-floor-pos \(x=\lfloor\) sqrt \((o f-i n t x)\rfloor\)
    using root-int-floor-pos[OF x, of 2] by (simp add: sqrt-def)
definition [simp]: sqrt-int-ceiling-pos \(x=\) root-int-ceiling-pos \(2 x\)
lemma sqrt-int-ceiling-pos-code[code]: sqrt-int-ceiling-pos \(x=\) (case sqrt-int-main
\(x\) of \((y, b) \Rightarrow\) if \(b\) then \(y\) else \(y+1)\)
    by (simp add: root-int-ceiling-pos-def)
lemma sqrt-int-ceiling-pos: assumes \(x: x \geq 0\)
    shows sqrt-int-ceiling-pos \(x=\lceil\) sqrt \((o f-i n t x)\rceil\)
    using root-int-ceiling-pos[OF x, of 2] by (simp add: sqrt-def)
definition sqrt-int-floor \(x=\) root-int-floor \(2 x\)
lemma sqrt-int-floor-code[code]: sqrt-int-floor \(x=(\) if \(x \geq 0\) then sqrt-int-floor-pos
\(x\) else - sqrt-int-ceiling-pos \((-x))\)
    unfolding sqrt-int-floor-def root-int-floor-def by simp
lemma sqrt-int-floor[simp]: sqrt-int-floor \(x=\lfloor\) sqrt (of-int \(x\) ) \(\rfloor\)
    by (simp add: sqrt-int-floor-def sqrt-def)
definition sqrt-int-ceiling \(x=\) root-int-ceiling \(2 x\)
lemma sqrt-int-ceiling-code[code]: sqrt-int-ceiling \(x=(\) if \(x \geq 0\) then sqrt-int-ceiling-pos
\(x\) else - sqrt-int-floor-pos \((-x)\) )
    unfolding sqrt-int-ceiling-def root-int-ceiling-def by simp
lemma sqrt-int-ceiling[simp]: sqrt-int-ceiling \(x=\lceil\) sqrt (of-int \(x)\rceil\)
    by (simp add: sqrt-int-ceiling-def sqrt-def)
lemma sqrt-int-ceiling-bound: \(0 \leq x \Longrightarrow x \leq(\text { sqrt-int-ceiling } x)^{\wedge}\) 2
    unfolding sqrt-int-ceiling using le-of-int-ceiling sqrt-le-D
    by (metis of-int-power-le-of-int-cancel-iff)
```


4.3 Square roots for the naturals

```
definition sqrt-nat :: nat }=>\mathrm{ nat list
    where sqrt-nat x = root-nat 2 }
lemma sqrt-nat-code[code]: sqrt-nat x \equiv map nat (take 1 (sqrt-int (int x)))
    unfolding sqrt-nat-def root-nat-def sqrt-int-def by simp
lemma sqrt-nat[simp]: set (sqrt-nat x)={y.y*y=x}
    unfolding sqrt-nat-def using root-nat[of 2 x] by (simp add: power2-eq-square)
definition sqrt-nat-floor :: nat }=>\mathrm{ int where
    sqrt-nat-floor x = root-nat-floor 2 }
lemma sqrt-nat-floor-code[code]: sqrt-nat-floor x = sqrt-int-floor-pos (int x)
    unfolding sqrt-nat-floor-def root-nat-floor-def by simp
lemma sqrt-nat-floor[simp]: sqrt-nat-floor x = \sqrt (real x) \rfloor
    unfolding sqrt-nat-floor-def by (simp add: sqrt-def)
definition sqrt-nat-ceiling :: nat => int where
    sqrt-nat-ceiling x = root-nat-ceiling 2 x
lemma sqrt-nat-ceiling-code[code]: sqrt-nat-ceiling x = sqrt-int-ceiling-pos (int x)
    unfolding sqrt-nat-ceiling-def root-nat-ceiling-def by simp
lemma sqrt-nat-ceiling[simp]: sqrt-nat-ceiling x = \ sqrt (real x)\rceil
    unfolding sqrt-nat-ceiling-def by (simp add: sqrt-def)
```


4.4 Square roots for the rationals

definition sqrt-rat :: rat \Rightarrow rat list where sqrt-rat $x=$ root-rat $2 x$
lemma sqrt-rat-code[code]: sqrt-rat $x=($ case quotient-of x of $(z, n) \Rightarrow$ (case sqrt-int n of
[] \Rightarrow []
$\mid s n \# x s \Rightarrow \operatorname{map}(\lambda$ sz. of-int sz / of-int sn) (sqrt-int z)))
proof -
obtain $z n$ where q : quotient-of $x=(z, n)$ by force
show ?thesis
unfolding sqrt-rat-def root-rat-def q split sqrt-int-def
by (cases root-int 2 n, auto)
qed
lemma sqrt-rat $[$ simp $]$: set $($ sqrt-rat $x)=\{y . y * y=x\}$
unfolding sqrt-rat-def using root-rat[of $2 x]$
by (simp add: power2-eq-square)
lemma sqrt-rat-pos: assumes sqrt: sqrt-rat $x=$ Cons s ms

```
    shows }s\geq
proof -
    obtain zn where q: quotient-of x = (z,n) by force
    note sqrt = sqrt[unfolded sqrt-rat-code q, simplified]
    let ?sz = sqrt-int z
    let ?sn = sqrt-int n
    from q have n:n>0 by (rule quotient-of-denom-pos)
    from sqrt obtain sz mz where sz: ?sz=sz # mz by (cases ?sn, auto)
    from sqrt obtain sn mn where sn:?sn = sn # mn by (cases ?sn,auto)
    from sqrt-int-pos[OF sz] sqrt-int-pos[OF sn] have pos: 0\leqsz 0\leqsn by auto
    from sqrt sz sn have s:s=of-int sz / of-int sn by auto
    show ?thesis unfolding s using pos
    by (metis of-int-0-le-iff zero-le-divide-iff)
qed
definition sqrt-rat-floor :: rat }=>\mathrm{ int where
    sqrt-rat-floor x = root-rat-floor 2 }
lemma sqrt-rat-floor-code[code]: sqrt-rat-floor x = (case quotient-of x of (a,b) =>
sqrt-int-floor ( }a*b)\mathrm{ div b)
    unfolding sqrt-rat-floor-def root-rat-floor-def by (simp add: sqrt-def)
lemma sqrt-rat-floor[simp]: sqrt-rat-floor x = \sqrt (of-rat x) \rfloor
    unfolding sqrt-rat-floor-def by (simp add: sqrt-def)
definition sqrt-rat-ceiling :: rat }=>\mathrm{ int where
    sqrt-rat-ceiling x = root-rat-ceiling 2 }
lemma sqrt-rat-ceiling-code[code]: sqrt-rat-ceiling x = - (sqrt-rat-floor (-x))
    unfolding sqrt-rat-ceiling-def sqrt-rat-floor-def root-rat-ceiling-def by simp
lemma sqrt-rat-ceiling: sqrt-rat-ceiling x = \ sqrt (of-rat x) \rceil
    unfolding sqrt-rat-ceiling-def by (simp add: sqrt-def)
lemma sqr-rat-of-int: assumes }x:x*x=rat-of-int i
    shows \existsj :: int. j*j=i
proof -
    from x have mem: }x\in\mathrm{ set (sqrt-rat (rat-of-int i)) by simp
    from x have rat-of-int i\geq0 by (metis zero-le-square)
    hence *: quotient-of (rat-of-int i)=(i,1) by (metis quotient-of-int)
    have 1: sqrt-int 1=[1,-1] by code-simp
    from mem sqrt-rat-code * split 1
    have x: x frat-of-int ' {y. y*y=i} by auto
    thus ?thesis by auto
qed
```


4.5 Approximating square roots

The difference to the previous algorithms is that now we abort, once the distance is below ϵ. Moreover, here we use standard division and not integer division. This part is not yet generalized by Sqrt-Babylonian.NthRoot-Impl.

We first provide the executable version without guard $\left(0::^{\prime} a\right)<x$ as partial function, and afterwards prove termination and soundness for a similar algorithm that is defined within the upcoming locale.
partial-function (tailrec) sqrt-approx-main-impl :: ' a :: linordered-field $\Rightarrow{ }^{\prime} a \Rightarrow$ ' $a \Rightarrow$ ' a where
[code]: sqrt-approx-main-impl $\varepsilon n x=($ if $x * x-n<\varepsilon$ then x else sqrt-approx-main-impl εn
(($n / x+x) / 2)$)
We setup a locale where we ensure that we have standard assumptions: positive ϵ and positive n. We require sort floor-ceiling, since $\lfloor x\rfloor$ is used for the termination argument.
locale sqrt-approximation $=$
fixes $\varepsilon::$ ' a :: \{linordered-field,floor-ceiling $\}$
and $n::{ }^{\prime} a$
assumes $\varepsilon: \varepsilon>0$
and $n: n>0$
begin
function sqrt-approx-main :: ' $a \Rightarrow{ }^{\prime} a$ where
sqrt-approx-main $x=($ if $x>0$ then (if $x * x-n<\varepsilon$ then x else sqrt-approx-main
$((n / x+x) /$ 2 $))$ else 0$)$
by pat-completeness auto
Termination essentially is a proof of convergence. Here, one complication is the fact that the limit is not always defined. E.g., if ' a is rat then there is no square root of 2 . Therefore, the error-rate $\frac{x}{\sqrt{n}}-1$ is not expressible. Instead we use the expression $\frac{x^{2}}{n}-1$ as error-rate which does not require any square-root operation.

```
termination
proof -
    define er where er x = (x*x/n-1) for x
    define c where c=2*n/\varepsilon
    define m}\mathrm{ where mx= nat \c*erx \ for x
    have c:c>0 unfolding c-def using n & by auto
    show ?thesis
    proof
        show wf (measures [m]) by simp
    next
    fix }
    assume x: 0<x and xe:\negx*x-n<\varepsilon
```

```
    define \(y\) where \(y=(n / x+x) / 2\)
    show \(((n / x+x) / 2, x) \in\) measures \([m]\) unfolding \(y\)-def[symmetric]
    proof (rule measures-less)
    from \(n\) have inv-n: \(1 / n>0\) by auto
    from \(x e\) have \(x * x-n \geq \varepsilon\) by simp
    from this[unfolded mult-le-cancel-left-pos[OF inv-n, of \(\varepsilon\), symmetric]]
    have erxen: er \(x \geq \varepsilon / n\) unfolding er-def using \(n\) by (simp add: field-simps)
    have en: \(\varepsilon / n>0\) and ne: \(n / \varepsilon>0\) using \(\varepsilon n\) by auto
    from en erxen have erx: er \(x>0\) by linarith
    have pos: er \(x * 4+\operatorname{er} x *(e r x * 4)>0\) using erx
        by (auto intro: add-pos-nonneg)
    have \(\operatorname{er} y=1 / 4 *(n /(x * x)-2+x * x / n)\) unfolding er-def \(y\)-def
using \(x n\)
        by (simp add: field-simps)
    also have \(\ldots=1 / 4 * \operatorname{er} x * \operatorname{er} x /(1+\operatorname{er} x)\) unfolding er-def using \(x n\)
        by (simp add: field-simps)
    finally have er \(y=1 / 4 * \operatorname{er} x *\) er \(x /(1+\operatorname{er} x)\).
    also have \(\ldots<1 / 4 *(1+\operatorname{er} x) *\) er \(x /(1+\) er \(x)\) using erx erx pos
        by (auto simp: field-simps)
    also have \(\ldots=\operatorname{er} x / 4\) using erx by (simp add: field-simps)
    finally have er-y-x: er \(y \leq e r x / 4\) by linarith
    from erxen have \(c *\) er \(x \geq 2\) unfolding \(c\)-def mult-le-cancel-left-pos[OF ne,
of - er \(x\), symmetric]
        using \(n \varepsilon\) by (auto simp: field-simps)
    hence pos: \(\lfloor c *\) er \(x\rfloor>0\lfloor c * e r x\rfloor \geq 2\) by auto
    show \(m y<m x\) unfolding \(m\)-def nat-mono-iff[OF \(\operatorname{pos}(1)]\)
    proof -
        have \(\lfloor c *\) er \(y\rfloor \leq\lfloor c *(e r x / 4)\rfloor\)
            by (rule floor-mono, unfold mult-le-cancel-left-pos[OF c], rule er-y-x)
            also have \(\ldots<\lfloor c * \operatorname{er} x / 4+1\rfloor\) by auto
            also have \(\ldots \leq\lfloor c *\) er \(x\rfloor\)
                by (rule floor-mono, insert pos(2), simp add: field-simps)
            finally show \(\lfloor c * e r y\rfloor<\lfloor c * e r x\rfloor\).
        qed
    qed
    qed
qed
```

Once termination is proven, it is easy to show equivalence of sqrt-approx-main-impl and sqrt-approx-main.
lemma sqrt-approx-main-impl: $x>0 \Longrightarrow$ sqrt-approx-main-impl ε n $x=$ sqrt-approx-main x
proof (induct x rule: sqrt-approx-main.induct)
case (1 x)
hence $x: x>0$ by auto
hence $n x: 0<(n / x+x) / 2$ using n by (auto intro: pos-add-strict)
note simps $=$ sqrt-approx-main-impl.simps $[o f-x]$ sqrt-approx-main.simps $[o f x]$
show ?case
proof (cases $x * x-n<\varepsilon$)

```
        case True
        thus ?thesis unfolding simps using x by auto
    next
        case False
        show ?thesis using 1(1)[OF x False nx] unfolding simps using x False by
auto
    qed
qed
Also soundness is not complicated.
lemma sqrt-approx-main-sound: assumes \(x: x>0\) and \(x x: x * x>n\)
    shows sqrt-approx-main x* sqrt-approx-main x>n^ sqrt-approx-main x *
sqrt-approx-main x - n< \varepsilon
    using assms
proof (induct x rule: sqrt-approx-main.induct)
    case (1 x)
    from 1 have x: x>0 (x>0)= True by auto
    note simp = sqrt-approx-main.simps[of x, unfolded x if-True]
    show ?case
    proof (cases x*x-n<\varepsilon)
        case True
        with 1 show ?thesis unfolding simp by simp
    next
        case False
        let ?y = (n/x+x)/2
            from False simp have simp: sqrt-approx-main x = sqrt-approx-main ?y by
simp
            from n x have y:?y>0 by (auto intro: pos-add-strict)
            note IH=1(1)[OF x(1) False y]
            from x have x4:4*x*x>0 by (auto intro: mult-sign-intros)
            show ?thesis unfolding simp
            proof (rule IH)
            show n<?y * ?y
                unfolding mult-less-cancel-left-pos[OF x4, of n, symmetric]
            proof -
                have id: 4*x*x*(?y*?y)=4*x*x*n+(n-x*x)*(n-x*
x) using x(1)
                by (simp add: field-simps)
                from 1(3) have x*x-n>0 by auto
                from mult-pos-pos[OF this this]
                show 4*x*x*n<4*x*x*(?y*?y) unfolding id
                    by (simp add: field-simps)
            qed
        qed
    qed
qed
end
```

It remains to assemble everything into one algorithm.
definition sqrt-approx :: ' a :: \{linordered-field,floor-ceiling $\} \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ where
sqrt-approx $\varepsilon x \equiv$ if $\varepsilon>0$ then (if $x=0$ then 0 else let xpos $=a b s x$ in sqrt-approx-main-impl ε xpos (xpos +1$)$) else 0
lemma sqrt-approx: assumes $\varepsilon: \varepsilon>0$
shows \mid sqrt-approx $\varepsilon x *$ sqrt-approx $\varepsilon x-|x| \mid<\varepsilon$
proof (cases $x=0$)
case True
with ε show ?thesis unfolding sqrt-approx-def by auto
next
case False
let ? $x=|x|$
let ?sqrti $=$ sqrt-approx-main-impl $\varepsilon ? x(? x+1)$
let ?sqrt $=$ sqrt-approximation.sqrt-approx-main $\varepsilon ? x(? x+1)$
define sqrt where $s q r t=$?sqrt
from False have $x: ? x>0 ? x+1>0$ by auto
interpret sqrt-approximation ε ? x
by (unfold-locales, insert x, auto)
from False ε have sqrt-approx $\varepsilon x=$?sqrti unfolding sqrt-approx-def by (simp add: Let-def)
also have ?sqrti = ?sqrt
by (rule sqrt-approx-main-impl, auto)
finally have $i d$: sqrt-approx $\varepsilon x=$ sqrt unfolding sqrt-def.
have sqrt: sqrt $*$ sqrt $>$? $x \wedge$ sqrt $*$ sqrt - ? $x<\varepsilon$ unfolding sqrt-def
by (rule sqrt-approx-main-sound[OF x(2)], insert x mult-pos-pos[OF x(1) x(1)], auto simp: field-simps)
show ?thesis unfolding id using sqrt by auto
qed

4.6 Some tests

Testing executabity and show that sqrt 2 is irrational

```
lemma \(\neg(\exists i::\) rat. \(i * i=2)\)
proof -
    have set (sqrt-rat 2) \(=\{ \}\) by eval
    thus ?thesis by simp
qed
```

 Testing speed
 lemma $\neg(\exists i::$ int. $i * i=1234567890123456789012345678901234567890)$
proof -
have set (sqrt-int 1234567890123456789012345678901234567890) $=\{ \}$ by eval
thus ?thesis by simp
qed

The following test
value let $\varepsilon=1 / 100000000::$ rat; s = sqrt-approx $\varepsilon 2$ in $(s, s * s-2, \mid s * s-$ $2 \mid<\varepsilon$)
results in (1.4142135623731116, 4.738200762148612e-14, True).
end

Acknowledgements

We thank Bertram Felgenhauer for for mentioning Cauchy's mean theorem during the formalization of the algorithms for computing n-th roots.

References

[1] T. Heath. A History of Greek Mathematics, volume 2, pages 323-326. Clarendon Press, 1921.
[2] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc. TPHOLs'09, volume 5674 of $L N C S$, pages 452-468, 2009.

[^0]: ${ }^{*}$ This research is supported by FWF (Austrian Science Fund) project P22767-N13.

