
SpecCheck – Specification-Based Testing for
Isabelle/ML

Kevin Kappelmann, Lukas Bulwahn, and Sebastian Willenbrink

March 19, 2025

Abstract

SpecCheck is a QuickCheck-like testing framework for Isabelle/ML.
You can use it to write specifications for ML functions. SpecCheck
then checks whether your specification holds by testing your function
against a given number of generated inputs. It helps you to identify
bugs by printing counterexamples on failure and provides you timing
information.

SpecCheck is customisable and allows you to specify your own input
generators, test output formats, as well as pretty printers and shrinking
functions for counterexamples among other things.

Contents
1 SpecCheck Base 1

2 Generators 1

3 Show 2

4 Output Styles 2

5 Shrinkers 3

6 SpecCheck 3

7 Dynamic Generators 3

1 SpecCheck Base
theory SpecCheck-Base
imports Pure
begin

1

https://en.wikipedia.org/wiki/QuickCheck


Summary Basic setup for SpecCheck.
ML-file ‹speccheck-base.ML›
ML-file ‹property.ML›
ML-file ‹configuration.ML›

ML-file ‹random.ML›

end

2 Generators
theory SpecCheck-Generators
imports SpecCheck-Base
begin

Summary Generators for SpecCheck take a state and return a pair con-
sisting of a generated value and a new state. Refer to gen_base.ML for the
most basic combinators.
ML-file ‹gen-types.ML›
ML-file ‹gen-base.ML›
ML-file ‹gen-text.ML›
ML-file ‹gen-int.ML›
ML-file ‹gen-real.ML›
ML-file ‹gen-function.ML›
ML-file ‹gen-term.ML›
ML-file ‹gen.ML›

end

3 Show
theory SpecCheck-Show
imports Pure
begin

Summary Show functions (pretty-printers) for SpecCheck take a value
and return a Pretty.T representation of the value. Refer to show_base.ML
for some basic examples.
ML-file ‹show-types.ML›
ML-file ‹show-base.ML›
ML-file ‹show-term.ML›
ML-file ‹show.ML›

end

2



4 Output Styles
theory SpecCheck-Output-Style
imports

SpecCheck-Base
SpecCheck-Show

begin

Summary Output styles for SpecCheck take the result of a test run and
process it accordingly, e.g. by printing it or storing it to a file.
ML-file ‹output-style-types.ML›
ML-file ‹output-style-perl.ML›
ML-file ‹output-style-custom.ML›
ML-file ‹output-style.ML›

end

5 Shrinkers
theory SpecCheck-Shrink
imports SpecCheck-Generators
begin

Summary Shrinkers for SpecCheck take a value and return a sequence
of smaller values derived from it. Refer to shrink_base.ML for some basic
examples.
ML-file ‹shrink-types.ML›
ML-file ‹shrink-base.ML›
ML-file ‹shrink.ML›

end

6 SpecCheck
theory SpecCheck
imports

SpecCheck-Generators
SpecCheck-Show
SpecCheck-Shrink
SpecCheck-Output-Style

begin

Summary The SpecCheck (specification based) testing environment and
Lecker testing framework.
ML-file ‹lecker .ML›
ML-file ‹speccheck.ML›

3



end

7 Dynamic Generators
theory SpecCheck-Dynamic
imports SpecCheck
begin

Summary Generators and show functions for SpecCheck that are dynam-
ically derived from a given ML input string. This approach can be handy to
quickly test a function during development, but it lacks customisability and
is very brittle. See ../Examples/SpecCheck_Examples.thy for some exam-
ples contrasting this approach to the standard one (specifying generators as
ML code).
ML-file ‹dynamic-construct.ML›
ML-file ‹speccheck-dynamic.ML›

end

4


	SpecCheck Base
	Generators
	Show
	Output Styles
	Shrinkers
	SpecCheck
	Dynamic Generators

