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Abstract
This article provides a brief formalisation of the two equations

known as the Sophomore’s Dream, first discovered by Johann Bernoulli [1]
in 1697:∫ 1

0

x−x dx =

∞∑
n=1

n−n and
∫ 1

0

xx dx = −
∞∑

n=1

(−n)−n
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1 The Sophomore’s Dream
theory Sophomores-Dream

imports HOL−Analysis.Analysis HOL−Real-Asymp.Real-Asymp
begin

This formalisation mostly follows the very clear proof sketch from Wikipedia [3].
That article also provides an interesting historical perspective. A more de-
tailed exploration of Bernoulli’s historical proof can be found in the book
by Dunham [2].
The name ‘Sophomore’s Dream’ apparently comes from a book by Borwein
et al., in analogy to the ‘Freshman’s Dream’ equation (x + y)n = xn + yn

(which is generally not true except in rings of characteristic n).

1.1 Continuity and bounds for x log x

lemma x-log-x-continuous: continuous-on {0 ..1} (λx::real. x ∗ ln x)
proof −

have continuous (at x within {0 ..1}) (λx::real. x ∗ ln x) if x ∈ {0 ..1} for x
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proof (cases x = 0 )
case True
have ((λx::real. x ∗ ln x) −−−→ 0 ) (at-right 0 )

by real-asymp
thus ?thesis using True

by (simp add: continuous-def Lim-ident-at at-within-Icc-at-right)
qed (auto intro!: continuous-intros)
thus ?thesis

using continuous-on-eq-continuous-within by blast
qed

lemma x-log-x-within-01-le:
assumes x ∈ {0 ..(1 ::real)}
shows x ∗ ln x ∈ {−exp (−1 )..0}

proof −
have x ∗ ln x ≤ 0

using assms by (cases x = 0 ) (auto simp: mult-nonneg-nonpos)
let ?f = λx::real. x ∗ ln x
have diff : (?f has-field-derivative (ln x + 1 )) (at x) if x > 0 for x

using that by (auto intro!: derivative-eq-intros)
have diff ′: ?f differentiable at x if x > 0 for x

using diff [OF that] real-differentiable-def by blast

consider x = 0 | x = 1 | x = exp (−1 ) | 0 < x x < exp (−1 ) | exp (−1 ) < x x
< 1

using assms unfolding atLeastAtMost-iff by linarith
hence x ∗ ln x ≥ −exp (−1 )
proof cases

assume x: 0 < x x < exp (−1 )
have ∃ l z. x < z ∧ z < exp (−1 ) ∧ (?f has-real-derivative l) (at z) ∧

?f (exp (−1 )) − ?f x = (exp (−1 ) − x) ∗ l
using x by (intro MVT continuous-on-subset [OF x-log-x-continuous] diff ′)

auto
then obtain l z where lz:

x < z z < exp (−1 ) (?f has-real-derivative l) (at z)
?f x = −exp (−1 ) − (exp (−1 ) − x) ∗ l
by (auto simp: algebra-simps)

have [simp]: l = ln z + 1
using DERIV-unique[OF diff [of z] lz(3 )] lz(1 ) x by auto

have ln z ≤ ln (exp (−1 ))
using lz x by (subst ln-le-cancel-iff ) auto

hence (exp (− 1 ) − x) ∗ l ≤ 0
using x lz by (intro mult-nonneg-nonpos) auto

with lz show ?thesis
by linarith

next
assume x: exp (−1 ) < x x < 1
have ∃ l z. exp (−1 ) < z ∧ z < x ∧ (?f has-real-derivative l) (at z) ∧

?f x − ?f (exp (−1 )) = (x − exp (−1 )) ∗ l
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proof (intro MVT continuous-on-subset [OF x-log-x-continuous] diff ′)
fix t :: real assume t: exp (−1 ) < t
show t > 0

by (rule less-trans [OF - t]) auto
qed (use x in auto)
then obtain l z where lz:

exp (−1 ) < z z < x (?f has-real-derivative l) (at z)
?f x = −exp (−1 ) − (exp (−1 ) − x) ∗ l
by (auto simp: algebra-simps)

have z > 0
by (rule less-trans [OF - lz(1 )]) auto

have [simp]: l = ln z + 1
using DERIV-unique[OF diff [of z] lz(3 )] ‹z > 0 › by auto

have ln z ≥ ln (exp (−1 ))
using lz ‹z > 0 › by (subst ln-le-cancel-iff ) auto

hence (exp (− 1 ) − x) ∗ l ≤ 0
using x lz by (intro mult-nonpos-nonneg) auto

with lz show ?thesis
by linarith

qed auto

with ‹x ∗ ln x ≤ 0 › show ?thesis
by auto

qed

1.2 Convergence, Summability, Integrability

As a first result we can show that the two sums that occur in the two
different versions of the Sophomore’s Dream are absolutely summable. This
is achieved by a simple comparison test with the series

∑∞
k=1 k

−2, as k−k ∈
O(k−2).
theorem abs-summable-sophomores-dream: summable (λk. 1 / real (k ^ k))
proof (rule summable-comparison-test-bigo)

show (λk. 1 / real (k ^ k)) ∈ O(λk. 1 / real k ^ 2 )
by real-asymp

show summable (λn. norm (1 / real n ^ 2 ))
using inverse-power-summable[of 2 , where ? ′a = real] by (simp add: field-simps)

qed

The existence of the integral is also fairly easy to show since the integrand is
continuous and the integration domain is compact. There is, however, one
hiccup: The integrand is not actually continuous.
We have limx→0 x

x = 1, but in Isabelle 00 is defined as 0 (for real numbers).
Thus, there is a discontinuity at x = 0
However, this is a removable discontinuity since for any x > 0 we have
xx = ex log x, and as we have just shown, ex log x is continuous on [0, 1]. Since
the two integrands differ only for x = 0 (which is negligible), the integral
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still exists.
theorem integrable-sophomores-dream: (λx::real. x powr x) integrable-on {0 ..1}
proof −

have (λx::real. exp (x ∗ ln x)) integrable-on {0 ..1}
by (intro integrable-continuous-real continuous-on-exp x-log-x-continuous)

also have ?this ←→ (λx::real. exp (x ∗ ln x)) integrable-on {0<..<1}
by (simp add: integrable-on-Icc-iff-Ioo)

also have . . . ←→ (λx::real. x powr x) integrable-on {0<..<1}
by (intro integrable-cong) (auto simp: powr-def )

also have . . . ←→ ?thesis
by (simp add: integrable-on-Icc-iff-Ioo)

finally show ?thesis .
qed

Next, we have to show the absolute convergence of the two auxiliary sums
that will occur in our proofs so that we can exchange the order of integration
and summation. This is done with a straightforward application of the
Weierstraß M test.
lemma uniform-limit-sophomores-dream1 :

uniform-limit {0 ..(1 ::real)}
(λn x.

∑
k<n. (x ∗ ln x) ^ k / fact k)

(λx.
∑

k. (x ∗ ln x) ^ k / fact k)
sequentially

proof (rule Weierstrass-m-test)
show summable (λk. exp (−1 ) ^ k / fact k :: real)

using summable-exp[of exp (−1 )] by (simp add: field-simps)
next

fix k :: nat and x :: real
assume x: x ∈ {0 ..1}
have norm ((x ∗ ln x) ^ k / fact k) = norm (x ∗ ln x) ^ k / fact k

by (simp add: power-abs)
also have . . . ≤ exp (−1 ) ^ k / fact k

by (intro divide-right-mono power-mono) (use x-log-x-within-01-le [of x] x in
auto)

finally show norm ((x ∗ ln x) ^ k / fact k) ≤ exp (− 1 ) ^ k / fact k .
qed

lemma uniform-limit-sophomores-dream2 :
uniform-limit {0 ..(1 ::real)}

(λn x.
∑

k<n. (−(x ∗ ln x)) ^ k / fact k)
(λx.

∑
k. (−(x ∗ ln x)) ^ k / fact k)

sequentially
proof (rule Weierstrass-m-test)

show summable (λk. exp (−1 ) ^ k / fact k :: real)
using summable-exp[of exp (−1 )] by (simp add: field-simps)

next
fix k :: nat and x :: real
assume x: x ∈ {0 ..1}
have norm ((−x ∗ ln x) ^ k / fact k) = norm (x ∗ ln x) ^ k / fact k
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by (simp add: power-abs)
also have . . . ≤ exp (−1 ) ^ k / fact k

by (intro divide-right-mono power-mono) (use x-log-x-within-01-le [of x] x in
auto)

finally show norm ((−(x ∗ ln x)) ^ k / fact k) ≤ exp (− 1 ) ^ k / fact k by
simp
qed

1.3 An auxiliary integral

Next we compute the integral∫ 1

0
(x log x)n dx =

(−1)n n!
(n+ 1)n+1

,

which is a key ingredient in our proof.
lemma sophomores-dream-aux-integral:
((λx. (x ∗ ln x) ^ n) has-integral (− 1 ) ^ n ∗ fact n / real ((n + 1 ) ^ (n + 1 )))
{0<..<1}
proof −

have ((λt. t powr real n / exp t) has-integral fact n) {0 ..}
using Gamma-integral-real[of n + 1 ] by (auto simp: Gamma-fact powr-realpow)

also have ?this ←→ ((λt. t powr real n / exp t) has-integral fact n) {0<..}
proof (rule has-integral-spike-set-eq)

have eq: {x ∈ {0<..} − {0 ..}. x powr real n / exp x 6= 0} = {}
by auto

thus negligible {x ∈ {0<..} − {0 ..}. x powr real n / exp x 6= 0}
by (subst eq) auto

have {x ∈ {0 ..} − {0<..}. x powr real n / exp x 6= 0} ⊆ {0}
by auto

moreover have negligible {0 ::real}
by simp

ultimately show negligible {x ∈ {0 ..} − {0<..}. x powr real n / exp x 6= 0}
by (meson negligible-subset)

qed
also have . . . ←→ ((λt::real. t ^ n / exp t) has-integral fact n) {0<..}

by (intro has-integral-spike-eq) (auto simp: powr-realpow)
finally have 1 : ((λt::real. t ^ n / exp t) has-integral fact n) {0<..} .

have (λx::real. |x| ^ n / exp x) integrable-on {0<..} ←→
(λx::real. x ^ n / exp x) integrable-on {0<..}

by (intro integrable-cong) auto
hence 2 : (λt::real. t ^ n / exp t) absolutely-integrable-on {0<..}

using 1 by (simp add: absolutely-integrable-on-def power-abs has-integral-iff )

define g :: real ⇒ real where g = (λx. −ln x ∗ (n + 1 ))
define g ′ :: real ⇒ real where g ′ = (λx. −(n + 1 ) / x)
define h :: real ⇒ real where h = (λu. exp (−u / (n + 1 )))
have bij: bij-betw g {0<..<1} {0<..}
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by (rule bij-betwI [of - - - h]) (auto simp: g-def h-def mult-neg-pos)
have deriv: (g has-real-derivative g ′ x) (at x within {0<..<1})

if x ∈ {0<..<1} for x
unfolding g-def g ′-def using that by (auto intro!: derivative-eq-intros simp:

field-simps)

have (λt::real. t ^ n / exp t) absolutely-integrable-on g ‘ {0<..<1} ∧
integral (g ‘ {0<..<1}) (λt::real. t ^ n / exp t) = fact n

using 1 2 bij by (simp add: bij-betw-def has-integral-iff )
also have ?this ←→ ((λx. |g ′ x| ∗R (g x ^ n / exp (g x))) absolutely-integrable-on
{0<..<1} ∧

integral {0<..<1} (λx. |g ′ x| ∗R (g x ^ n / exp (g x))) = fact n)
by (intro has-absolute-integral-change-of-variables-1 ′ [symmetric] deriv)

(auto simp: inj-on-def g-def )
finally have ((λx. |g ′ x| ∗R (g x ^ n / exp (g x))) has-integral fact n) {0<..<1}

using eq-integralD set-lebesgue-integral-eq-integral(1 ) by blast
also have ?this ←→

((λx::real. ((−1 )^n∗(n+1 )^(n+1 )) ∗R (ln x ^ n ∗ x ^ n)) has-integral fact n)
{0<..<1}

proof (rule has-integral-cong)
fix x :: real assume x: x ∈ {0<..<1}
have |g ′ x| ∗R (g x ^ n / exp (g x)) =

(−1 ) ^ n ∗ (real n + 1 ) ^ (n + 1 ) ∗ ln x ^ n ∗ (exp (ln x ∗ (n + 1 )) /
x)

using x by (simp add: g-def g ′-def exp-minus power-minus ′ divide-simps
add-ac)

also have exp (ln x ∗ (n + 1 )) = x powr real (n + 1 )
using x by (simp add: powr-def )

also have . . . / x = x ^ n
using x by (subst powr-realpow) auto

finally show |g ′ x| ∗R (g x ^ n / exp (g x)) =
((−1 )^n∗(n+1 )^(n+1 )) ∗R (ln x ^ n ∗ x ^ n)

by (simp add: algebra-simps)
qed
also have . . . ←→ ((λx::real. ln x ^ n ∗ x ^ n) has-integral

fact n /R real-of-int ((− 1 ) ^ n ∗ int ((n + 1 ) ^ (n + 1 ))))
{0<..<1}

by (intro has-integral-cmul-iff ′) (auto simp del: power-Suc)
also have fact n /R real-of-int ((− 1 ) ^ n ∗ int ((n + 1 ) ^ (n + 1 ))) =

(−1 ) ^ n ∗ fact n / (n+1 ) ^ (n+1 )
by (auto simp: divide-simps)

finally show ?thesis
by (simp add: power-mult-distrib mult-ac)

qed

1.4 Main proofs

We can now show the first formula:
∫ 1
0 x−x dx =

∑∞
n=1 n

−n

lemma sophomores-dream-aux1 :
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summable (λk. 1 / real ((k+1 )^(k+1 )))
integral {0 ..1} (λx. x powr (−x)) = (

∑
n. 1 / (n+1 )^(n+1 ))

proof −
define S where S = (λx::real.

∑
k. (−(x ∗ ln x)) ^ k / fact k)

have S-eq: S x = x powr (−x) if x > 0 for x
proof −

have S x = exp (−x ∗ ln x)
by (simp add: S-def exp-def field-simps)

also have . . . = x powr (−x)
using ‹x > 0 › by (simp add: powr-def )

finally show ?thesis .
qed

have cont: continuous-on {0 ..1} (λx::real.
∑

k<n. (−(x ∗ ln x)) ^ k / fact k)
for n

by (intro continuous-on-sum continuous-on-divide x-log-x-continuous continu-
ous-on-power

continuous-on-const continuous-on-minus) auto

obtain I J where IJ :
∧

n. ((λx.
∑

k<n. (−(x ∗ ln x)) ^ k / fact k) has-integral
I n) {0 ..1}

(S has-integral J ) {0 ..1} I −−−−→ J
using uniform-limit-integral [OF uniform-limit-sophomores-dream2 cont] by

(auto simp: S-def )

note ‹(S has-integral J ) {0 ..1}›
also have (S has-integral J ) {0 ..1} ←→ (S has-integral J ) {0<..<1}

by (simp add: has-integral-Icc-iff-Ioo)
also have . . . ←→ ((λx. x powr (−x)) has-integral J ) {0<..<1}

by (intro has-integral-cong) (use S-eq in auto)
also have . . . ←→ ((λx. x powr (−x)) has-integral J ) {0 ..1}

by (simp add: has-integral-Icc-iff-Ioo)
finally have integral: ((λx. x powr (−x)) has-integral J ) {0 ..1} .

have I-eq: I = (λn.
∑

k<n. 1 / real ((k+1 )^(k+1 )))
proof

fix n :: nat
have ((λx::real.

∑
k<n. (−1 )^k ∗ ((x ∗ ln x) ^ k / fact k)) has-integral

(
∑

k<n. (−1 )^k ∗ ((−1 )^k ∗ fact k / real ((k + 1 ) ^ (k + 1 )) / fact
k))) {0<..<1}

by (intro has-integral-sum[OF - has-integral-mult-right] has-integral-divide
sophomores-dream-aux-integral) auto

also have (λx::real.
∑

k<n. (−1 )^k ∗ ((x ∗ ln x) ^ k / fact k)) =
(λx::real.

∑
k<n. (−(x ∗ ln x)) ^ k / fact k)

by (simp add: power-minus ′)
also have (

∑
k<n. (−1 )^k ∗ ((−1 ) ^ k ∗ fact k / real ((k + 1 ) ^ (k + 1 )) /

fact k)) =
(
∑

k<n. 1 / real ((k + 1 ) ^ (k + 1 )))
by simp
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also note has-integral-Icc-iff-Ioo [symmetric]
finally show I n = (

∑
k<n. 1 / real ((k+1 )^(k+1 )))

by (rule has-integral-unique [OF IJ (1 )[of n]])
qed
hence sums: (λk. 1 / real ((k + 1 ) ^ (k + 1 ))) sums J

using IJ (3 ) I-eq by (simp add: sums-def )

from sums show summable (λk. 1 / real ((k+1 )^(k+1 )))
by (simp add: sums-iff )

from integral sums show integral {0 ..1} (λx. x powr (−x)) = (
∑

n. 1 / (n+1 )^(n+1 ))
by (simp add: sums-iff has-integral-iff )

qed

theorem sophomores-dream1 :
(λk::nat. norm (k powi (−k))) summable-on {1 ..}
integral {0 ..1} (λx. x powr (−x)) = (

∑
∞ k∈{(1 ::nat)..}. k powi (−k))

proof −
let ?I = integral {0 ..1} (λx. x powr (−x))
have (λk::nat. norm (k powi (−k))) summable-on UNIV

using abs-summable-sophomores-dream
by (intro norm-summable-imp-summable-on) (auto simp: power-int-minus field-simps)

thus (λk::nat. norm (k powi (−k))) summable-on {1 ..}
by (rule summable-on-subset-banach) auto

have (λn. 1 / (n+1 )^(n+1 )) sums ?I
using sophomores-dream-aux1 by (simp add: sums-iff )

moreover have summable (λn. norm (1 / real (Suc n ^ Suc n)))
by (subst summable-Suc-iff ) (use abs-summable-sophomores-dream in ‹auto

simp: field-simps›)
ultimately have ((λn::nat. 1 / (n+1 )^(n+1 )) has-sum ?I ) UNIV

by (intro norm-summable-imp-has-sum) auto
also have ?this ←→ (((λn::nat. 1 / n^n) ◦ Suc) has-sum ?I ) UNIV

by (simp add: o-def field-simps)
also have . . . ←→ ((λn::nat. 1 / n^n) has-sum ?I ) (Suc ‘ UNIV )

by (intro has-sum-reindex [symmetric]) auto
also have Suc ‘ UNIV = {1 ..}

using greaterThan-0 by auto
also have ((λn::nat. (1 / real (n ^ n))) has-sum ?I ) {1 ..} ←→

((λn::nat. n powi (−n)) has-sum ?I ) {1 ..}
by (intro has-sum-cong) (auto simp: power-int-minus field-simps power-minus ′)

finally show integral {0 ..1} (λx. x powr (−x)) = (
∑

∞k∈{(1 ::nat)..}. k powi
(−k))

by (auto dest!: infsumI simp: algebra-simps)
qed

Next, we show the second formula:
∫ 1
0 xx dx = −

∑∞
n=1(−n)−n

lemma sophomores-dream-aux2 :
summable (λk. (−1 ) ^ k / real ((k+1 )^(k+1 )))
integral {0 ..1} (λx. x powr x) = (

∑
n. (−1 )^n / (n+1 )^(n+1 ))
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proof −
define S where S = (λx::real.

∑
k. (x ∗ ln x) ^ k / fact k)

have S-eq: S x = x powr x if x > 0 for x
proof −

have S x = exp (x ∗ ln x)
by (simp add: S-def exp-def field-simps)

also have . . . = x powr x
using ‹x > 0 › by (simp add: powr-def )

finally show ?thesis .
qed

have cont: continuous-on {0 ..1} (λx::real.
∑

k<n. (x ∗ ln x) ^ k / fact k) for n
by (intro continuous-on-sum continuous-on-divide x-log-x-continuous continu-

ous-on-power
continuous-on-const) auto

obtain I J where IJ :
∧

n. ((λx.
∑

k<n. (x ∗ ln x) ^ k / fact k) has-integral I
n) {0 ..1}

(S has-integral J ) {0 ..1} I −−−−→ J
using uniform-limit-integral [OF uniform-limit-sophomores-dream1 cont] by

(auto simp: S-def )

note ‹(S has-integral J ) {0 ..1}›
also have (S has-integral J ) {0 ..1} ←→ (S has-integral J ) {0<..<1}

by (simp add: has-integral-Icc-iff-Ioo)
also have . . . ←→ ((λx. x powr x) has-integral J ) {0<..<1}

by (intro has-integral-cong) (use S-eq in auto)
also have . . . ←→ ((λx. x powr x) has-integral J ) {0 ..1}

by (simp add: has-integral-Icc-iff-Ioo)
finally have integral: ((λx. x powr x) has-integral J ) {0 ..1} .

have I-eq: I = (λn.
∑

k<n. (−1 ) ^ k / real ((k+1 )^(k+1 )))
proof

fix n :: nat
have ((λx::real.

∑
k<n. (x ∗ ln x) ^ k / fact k) has-integral

(
∑

k<n. (−1 ) ^ k ∗ fact k / real ((k + 1 ) ^ (k + 1 )) / fact k)) {0<..<1}
by (intro has-integral-sum has-integral-divide sophomores-dream-aux-integral)

auto
also have (

∑
k<n. (− 1 ) ^ k ∗ fact k / real ((k + 1 ) ^ (k + 1 )) / fact k) =

(
∑

k<n. (− 1 ) ^ k / real ((k + 1 ) ^ (k + 1 )))
by simp

also note has-integral-Icc-iff-Ioo [symmetric]
finally show I n = (

∑
k<n. (−1 ) ^ k / real ((k+1 )^(k+1 )))

by (rule has-integral-unique [OF IJ (1 )[of n]])
qed
hence sums: (λk. (−1 ) ^ k / real ((k + 1 ) ^ (k + 1 ))) sums J

using IJ (3 ) I-eq by (simp add: sums-def )

from sums show summable (λk. (−1 ) ^ k / real ((k+1 )^(k+1 )))
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by (simp add: sums-iff )
from integral sums show integral {0 ..1} (λx. x powr x) = (

∑
n. (−1 )^n /

(n+1 )^(n+1 ))
by (simp add: sums-iff has-integral-iff )

qed

theorem sophomores-dream2 :
(λk::nat. norm ((−k) powi (−k))) summable-on {1 ..}
integral {0 ..1} (λx. x powr x) = −(

∑
∞ k∈{(1 ::nat)..}. (−k) powi (−k))

proof −
let ?I = integral {0 ..1} (λx. x powr x)
have (λk::nat. norm ((−k) powi (−k))) summable-on UNIV

using abs-summable-sophomores-dream
by (intro norm-summable-imp-summable-on) (auto simp: power-int-minus field-simps)

thus (λk::nat. norm ((−k) powi (−k))) summable-on {1 ..}
by (rule summable-on-subset-banach) auto

have (λn. (−1 )^n / (n+1 )^(n+1 )) sums ?I
using sophomores-dream-aux2 by (simp add: sums-iff )

moreover have summable (λn. 1 / real (Suc n ^ Suc n))
by (subst summable-Suc-iff ) (use abs-summable-sophomores-dream in ‹auto

simp: field-simps›)
hence summable (λn. norm ((− 1 ) ^ n / real (Suc n ^ Suc n)))

by simp
ultimately have ((λn::nat. (−1 )^n / (n+1 )^(n+1 )) has-sum ?I ) UNIV

by (intro norm-summable-imp-has-sum) auto
also have ?this ←→ (((λn::nat. −((−1 )^n / n^n)) ◦ Suc) has-sum ?I ) UNIV

by (simp add: o-def field-simps)
also have . . . ←→ ((λn::nat. −((−1 )^n / n ^ n)) has-sum ?I ) (Suc ‘ UNIV )

by (intro has-sum-reindex [symmetric]) auto
also have Suc ‘ UNIV = {1 ..}

using greaterThan-0 by auto
also have ((λn::nat. −((− 1 ) ^ n / real (n ^ n))) has-sum ?I ) {1 ..} ←→

((λn::nat. −((−n) powi (−n))) has-sum ?I ) {1 ..}
by (intro has-sum-cong) (auto simp: power-int-minus field-simps power-minus ′)

also have . . . ←→ ((λn::nat. (−n) powi (−n)) has-sum (−?I )) {1 ..}
by (simp add: has-sum-uminus)

finally show integral {0 ..1} (λx. x powr x) = −(
∑

∞k∈{(1 ::nat)..}. (−k) powi
(−k))

by (auto dest!: infsumI simp: algebra-simps)
qed

end
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