
Smooth Manifolds

Fabian Immler and Bohua Zhan

March 19, 2025

Abstract
We formalize the definition and basic properties of smooth mani-

folds [1] in Isabelle/HOL. Concepts covered include partition of unity,
tangent and cotangent spaces, and the fundamental theorem of path
integrals. We also examine some concrete manifolds such as spheres
and projective spaces. The formalization makes extensive use of the
analysis and linear algebra libraries in Isabelle/HOL, in particular its
“types-to-sets” mechanism.
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1 Library Additions
theory Analysis-More

imports HOL−Analysis.Equivalence-Lebesgue-Henstock-Integration
HOL−Library.Function-Algebras
HOL−Types-To-Sets.Linear-Algebra-On

begin

lemma openin-open-Int ′[intro]:
open S =⇒ openin (top-of-set U ) (S ∩ U )
by (auto simp: openin-open)

1.1 Parametricity rules for topology

TODO: also check with theory Transfer-Euclidean-Space-Vector in AFP/ODE...
context includes lifting-syntax begin

lemma Sigma-transfer [transfer-rule]:
(rel-set A ===> (A ===> rel-set B) ===> rel-set (rel-prod A B)) Sigma

Sigma
unfolding Sigma-def
by transfer-prover
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lemma filterlim-transfer [transfer-rule]:
((A ===> B) ===> rel-filter B ===> rel-filter A ===> (=)) filterlim filterlim
if [transfer-rule]: bi-unique B
unfolding filterlim-iff
by transfer-prover

lemma nhds-transfer [transfer-rule]:
(A ===> rel-filter A) nhds nhds
if [transfer-rule]: bi-unique A bi-total A (rel-set A ===> (=)) open open
unfolding nhds-def
by transfer-prover

lemma at-within-transfer [transfer-rule]:
(A ===> rel-set A ===> rel-filter A) at-within at-within
if [transfer-rule]: bi-unique A bi-total A (rel-set A ===> (=)) open open
unfolding at-within-def
by transfer-prover

lemma continuous-on-transfer [transfer-rule]:
(rel-set A ===> (A ===> B) ===> (=)) continuous-on continuous-on
if [transfer-rule]: bi-unique A bi-total A (rel-set A ===> (=)) open open

bi-unique B bi-total B (rel-set B ===> (=)) open open
unfolding continuous-on-def
by transfer-prover

lemma continuous-on-transfer-right-total[transfer-rule]:
(rel-set A ===> (A ===> B) ===> (=)) (λX :: ′a::t2-space set. continuous-on

(X ∩ Collect AP)) (λY :: ′b::t2-space set. continuous-on Y )
if DomainA: Domainp A = AP
and [folded DomainA, transfer-rule]: bi-unique A right-total A (rel-set A ===>

(=)) (openin (top-of-set (Collect AP))) open
bi-unique B bi-total B (rel-set B ===> (=)) open open

unfolding DomainA[symmetric]
proof (intro rel-funI )

fix X Y f g
assume H [transfer-rule]: rel-set A X Y (A ===> B) f g
from H (1 ) have XA: x ∈ X =⇒ Domainp A x for x

by (auto simp: rel-set-def )
then have ∗: X ∩ Collect (Domainp A) = X by auto
have openin (top-of-set (Collect (Domainp A))) (Collect (Domainp A)) by auto
show continuous-on (X ∩ Collect (Domainp A)) f = continuous-on Y g

unfolding continuous-on-eq-continuous-within continuous-within-topological ∗
apply transfer
apply safe
subgoal for x B

apply (drule bspec, assumption, drule spec, drule mp, assumption, drule mp,
assumption)

apply clarsimp
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subgoal for AA
apply (rule exI [where x=AA ∩ Collect (Domainp A)])
by (auto intro: XA)

done
subgoal using XA by (force simp: openin-subtopology)
done

qed

lemma continuous-on-transfer-right-total2 [transfer-rule]:
(rel-set A ===> (A ===> B) ===> (=)) (λX :: ′a::t2-space set. continuous-on

X) (λY :: ′b::t2-space set. continuous-on Y )
if DomainB: Domainp B = BP
and [folded DomainB, transfer-rule]: bi-unique A bi-total A (rel-set A ===>

(=)) open open
bi-unique B right-total B (rel-set B ===> (=)) ((openin (top-of-set (Collect

BP)))) open
unfolding DomainB[symmetric]

proof (intro rel-funI )
fix X Y f g
assume H [transfer-rule]: rel-set A X Y (A ===> B) f g
show continuous-on X f = continuous-on Y g

unfolding continuous-on-eq-continuous-within continuous-within-topological
apply transfer
apply safe
subgoal for x C

apply (clarsimp simp: openin-subtopology)
apply (drule bspec, assumption, drule spec, drule mp, assumption, drule mp,

assumption)
apply clarsimp
by (meson Domainp-applyI H (1 ) H (2 ) rel-setD1 )

subgoal for x C
proof −

let ?sub = top-of-set (Collect (Domainp B))
assume cont: ∀ x∈X . ∀Ba∈{A. Ball A (Domainp B)}.

openin (top-of-set (Collect (Domainp B))) Ba −→ f x ∈ Ba −→ (∃Aa.
open Aa ∧ x ∈ Aa ∧ (∀ y∈X . y ∈ Aa −→ f y ∈ Ba))

and x: x ∈ X open C f x ∈ C
let ?B = C ∩ Collect (Domainp B)
have ?B ∈ {A. Ball A (Domainp B)} by auto
have openin ?sub (Collect (Domainp B)) by auto
then have openin ?sub ?B using ‹open C › by auto
moreover have f x ∈ ?B using x

apply transfer apply auto
by (meson Domainp-applyI H (1 ) H (2 ) rel-setD1 )

ultimately obtain D where open D ∧ x ∈ D ∧ (∀ y∈X . y ∈ D −→ f y ∈
?B)

using cont x
by blast

then show ∃A. open A ∧ x ∈ A ∧ (∀ y∈X . y ∈ A −→ f y ∈ C ) by auto
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qed
done

qed

lemma generate-topology-transfer [transfer-rule]:
includes lifting-syntax
assumes [transfer-rule]: right-total A bi-unique A
shows (rel-set (rel-set A) ===> rel-set A ===> (=)) (generate-topology o

(insert (Collect (Domainp A)))) generate-topology
proof (intro rel-funI )

fix B C X Y assume t[transfer-rule]: rel-set (rel-set A) B C rel-set A X Y
then have X ⊆ Collect (Domainp A) by (auto simp: rel-set-def )
with t have rI : rel-set A (X ∩ Collect (Domainp A)) Y

by (auto simp: inf-absorb1 )
have eq-UNIV-I : Z = UNIV if [transfer-rule]: rel-set A {a. Domainp A a} Z

for Z
using that assms
apply (auto simp: right-total-def rel-set-def )
using bi-uniqueDr by fastforce

show (generate-topology ◦ insert (Collect (Domainp A))) B X = generate-topology
C Y

unfolding o-def
proof (rule iffI )

fix x
assume generate-topology (insert (Collect (Domainp A)) B) X
then show generate-topology C Y unfolding o-def

using rI
proof (induction X arbitrary: Y )

case [transfer-rule]: UNIV
with eq-UNIV-I [of Y ] show ?case

by (simp add: generate-topology.UNIV )
next

case (Int a b)
note [transfer-rule] = Int(5 )
obtain a ′ where a ′[transfer-rule]: rel-set A (a ∩ Collect (Domainp A)) a ′

by (metis Domainp-iff Domainp-set Int-Collect)
obtain b ′ where b ′[transfer-rule]: rel-set A (b ∩ Collect (Domainp A)) b ′

by (metis Domainp-iff Domainp-set Int-Collect)
from Int.IH (1 )[OF a ′] Int.IH (2 )[OF b ′]
have generate-topology C a ′ generate-topology C b ′ by auto
from generate-topology.Int[OF this] have generate-topology C (a ′ ∩ b ′) .
also have a ′ ∩ b ′ = Y

by transfer auto
finally show ?case

by (simp add: generate-topology.Int)
next

case (UN K )
note [transfer-rule] = UN (3 )
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have ∃K ′. ∀ k. rel-set A (k ∩ Collect (Domainp A)) (K ′ k)
by (rule choice) (metis Domainp-iff Domainp-set Int-Collect)

then obtain K ′ where K ′:
∧

k. rel-set A (k ∩ Collect (Domainp A)) (K ′ k)
by metis

from UN .IH [OF - this] have generate-topology C k ′ if k ′ ∈ K ′‘K for k ′ using
that by auto

from generate-topology.UN [OF this] have generate-topology C (
⋃
(K ′ ‘ K )) .

also
from K ′ have [transfer-rule]: (rel-set (=) ===> rel-set A) (λx. x ∩ Collect

(Domainp A)) K ′

by (fastforce simp: rel-fun-def rel-set-def )
have

⋃
(K ′ ‘ K ) = Y

by transfer auto
finally show ?case

by (simp add: generate-topology.UN )
next

case (Basis s)
from this(1 ) show ?case
proof

assume s = Collect (Domainp A)
with eq-UNIV-I [of Y ] Basis(2 )
show ?case

by (simp add: generate-topology.UNIV )
next

assume s ∈ B
with Basis(2 ) obtain t where [transfer-rule]: rel-set A (s ∩ Collect

(Domainp A)) t by auto
from Basis(1 ) t(1 ) have s: s ∩ Collect (Domainp A) = s

by (force simp: rel-set-def )
have t ∈ C using ‹s ∈ B› s

by transfer auto
also note [transfer-rule] = Basis(2 )
have t = Y

by transfer auto
finally show ?case

by (rule generate-topology.Basis)
qed

qed
next

assume generate-topology C Y
then show generate-topology (insert (Collect (Domainp A)) B) X

using ‹rel-set A X Y ›
proof (induction arbitrary: X)

case [transfer-rule]: UNIV
have UNIV = (UNIV :: ′b set) by auto
then have X = {a. Domainp A a} by transfer
then show ?case by (intro generate-topology.Basis) auto

next
case (Int a b)
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obtain a ′ b ′ where [transfer-rule]: rel-set A a ′ a rel-set A b ′ b
by (meson assms(1 ) right-total-def right-total-rel-set)

from generate-topology.Int[OF Int.IH (1 )[OF this(1 )] Int.IH (2 )[OF this(2 )]]
have generate-topology (insert {a. Domainp A a} B) (a ′ ∩ b ′) by simp
also
define I where I = a ∩ b
from ‹rel-set A X (a ∩ b)› have [transfer-rule]: rel-set A X I by (simp add:

I-def )
from I-def
have a ′ ∩ b ′ = X by transfer simp
finally show ?case .

next
case (UN K )
have ∃K ′. ∀ k. rel-set A (K ′ k) k

by (rule choice) (meson assms(1 ) right-total-def right-total-rel-set)
then obtain K ′ where K ′:

∧
k. rel-set A (K ′ k) k by metis

from UN .IH [OF - this] have generate-topology (insert {a. Domainp A a} B)
k

if k ∈ K ′‘K for k using that by auto
from generate-topology.UN [OF this]
have generate-topology (insert {a. Domainp A a} B) (

⋃
(K ′‘K )) by auto

also
from K ′ have [transfer-rule]: (rel-set (=) ===> rel-set A) K ′ id

by (fastforce simp: rel-fun-def rel-set-def )
define U where U = (

⋃
(id ‘ K ))

from ‹rel-set A X -› have [transfer-rule]: rel-set A X U by (simp add: U-def )
from U-def have

⋃
(K ′ ‘ K ) = X by transfer simp

finally show ?case .
next

case (Basis s)
note [transfer-rule] = ‹rel-set A X s›
from ‹s ∈ C › have X ∈ B by transfer
then show ?case by (intro generate-topology.Basis) auto

qed
qed

qed

end

1.2 Miscellaneous
lemmas [simp del] = mem-ball

lemma in-closureI [intro, simp]: x ∈ X =⇒ x ∈ closure X
using closure-subset by auto

lemmas open-continuous-vimage = continuous-on-open-vimage[THEN iffD1 , rule-format]
lemma open-continuous-vimage ′: open s =⇒ continuous-on s f =⇒ open B =⇒
open (s ∩ f −‘ B)
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using open-continuous-vimage[of s f B] by (auto simp: Int-commute)

lemma support-on-mono: support-on carrier f ⊆ support-on carrier g
if

∧
x. x ∈ carrier =⇒ f x 6= 0 =⇒ g x 6= 0

using that
by (auto simp: support-on-def )

lemma image-prod: (λ(x, y). (f x, g y)) ‘ (A × B) = f ‘ A × g ‘ B by auto

1.3 Closed support
definition csupport-on X S = closure (support-on X S)

lemma closed-csupport-on[intro, simp]: closed (csupport-on carrier ϕ)
by (auto simp: csupport-on-def )

lemma not-in-csupportD: x /∈ csupport-on carrier ϕ =⇒ x ∈ carrier =⇒ ϕ x = 0
by (auto simp: csupport-on-def support-on-def )

lemma csupport-on-mono: csupport-on carrier f ⊆ csupport-on carrier g
if

∧
x. x ∈ carrier =⇒ f x 6= 0 =⇒ g x 6= 0

unfolding csupport-on-def
apply (rule closure-mono)
using that
by (rule support-on-mono)

1.4 Homeomorphism
lemma homeomorphism-empty[simp]:

homeomorphism {} t f f ′←→ t = {}
homeomorphism s {} f f ′←→ s = {}
by (auto simp: homeomorphism-def )

lemma homeomorphism-add:
homeomorphism UNIV UNIV (λx. x + c) (λx. x − c)
for c::-::real-normed-vector
unfolding homeomorphism-def
by (auto simp: algebra-simps continuous-intros intro!: image-eqI [where x=x −

c for x])

lemma in-range-scaleR-iff : x ∈ range ((∗R) c) ←→ c = 0 −→ x = 0
for x::-::real-vector
by (auto simp: intro!: image-eqI [where x=x /R c])

lemma homeomorphism-scaleR:
homeomorphism UNIV UNIV (λx. c ∗R x::-::real-normed-vector) (λx. x /R c)
if c 6= 0
using that
unfolding homeomorphism-def
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by (auto simp: in-range-scaleR-iff algebra-simps intro!: continuous-intros)

lemma homeomorphism-prod:
homeomorphism (a × b) (c × d) (λ(x, y). (f x, g y)) (λ(x, y). (f ′ x, g ′ y))
if homeomorphism a c f f ′

homeomorphism b d g g ′

using that by (simp add: homeomorphism-def image-prod)
(auto simp add: split-beta intro!: continuous-intros elim: continuous-on-compose2 )

1.5 Generalizations
lemma openin-subtopology-eq-generate-topology:

openin (top-of-set S) x = generate-topology (insert S ((λB. B ∩ S) ‘ BB)) x
if open-gen: open = generate-topology BB and subset: x ⊆ S

proof −
have generate-topology (insert S ((λB. B ∩ S) ‘ BB)) (T ∩ S)

if generate-topology BB T
for T
using that

proof (induction)
case UNIV
then show ?case by (auto intro!: generate-topology.Basis)

next
case (Int a b)
have generate-topology (insert S ((λB. B ∩ S) ‘ BB)) (a ∩ S ∩ (b ∩ S))

by (rule generate-topology.Int) (use Int in auto)
then show ?case by (simp add: ac-simps)

next
case (UN K )
then have generate-topology (insert S ((λB. B ∩ S) ‘ BB)) (

⋃
k∈K . k ∩ S)

by (intro generate-topology.UN ) auto
then show ?case by simp

next
case (Basis s)
then show ?case

by (intro generate-topology.Basis) auto
qed
moreover
have ∃T . generate-topology BB T ∧ x = T ∩ S

if generate-topology (insert S ((λB. B ∩ S) ‘ BB)) x x 6= UNIV
using that

proof (induction)
case UNIV
then show ?case by simp

next
case (Int a b)
then show ?case

using generate-topology.Int
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by auto
next

case (UN K )
from UN .IH have ∀ k∈K−{UNIV }. ∃T . generate-topology BB T ∧ k = T ∩

S by auto
from this[THEN bchoice] obtain T where T :

∧
k. k ∈ T ‘ (K − {UNIV })

=⇒ generate-topology BB k
∧

k. k ∈ K − {UNIV } =⇒ k = (T k) ∩ S
by auto

from generate-topology.UN [OF T (1 )]
have generate-topology BB (

⋃
(T ‘ (K − {UNIV }))) by auto

moreover have
⋃

K = (
⋃
(T ‘ (K − {UNIV }))) ∩ S if UNIV /∈ K using

T (2 ) UN that by auto
ultimately show ?case

apply (cases UNIV ∈ K ) subgoal using UN by auto
subgoal by auto
done

next
case (Basis s)
then show ?case

using generate-topology.UNIV generate-topology.Basis by blast
qed
moreover
have ∃T . generate-topology BB T ∧ UNIV = T ∩ S if generate-topology (insert

S ((λB. B ∩ S) ‘ BB)) x
x = UNIV

proof −
have S = UNIV

using that ‹x ⊆ S›
by auto

then show ?thesis by (simp add: generate-topology.UNIV )
qed
ultimately show ?thesis

by (metis open-gen open-openin openin-open-Int ′ openin-subtopology)
qed

1.6 Equal topologies
lemma topology-eq-iff : t = s ←→ (topspace t = topspace s ∧
(∀ x⊆topspace t. openin t x = openin s x))
by (metis (full-types) openin-subset topology-eq)

1.7 Finer topologies
definition finer-than (infix ‹(finer ′-than)› 50 )

where T1 finer-than T2 ←→ continuous-map T1 T2 (λx. x)

lemma finer-than-iff-nhds:
T1 finer-than T2 ←→ (∀X . openin T2 X −→ openin T1 (X ∩ topspace T1 )) ∧

(topspace T1 ⊆ topspace T2 )
by (auto simp: finer-than-def continuous-map-alt)
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lemma continuous-on-finer-topo:
continuous-map s t f
if continuous-map s ′ t f s finer-than s ′

using that
by (auto simp: finer-than-def o-def dest: continuous-map-compose)

lemma continuous-on-finer-topo2 :
continuous-map s t f
if continuous-map s t ′ f t ′ finer-than t
using that
by (auto simp: finer-than-def o-def dest: continuous-map-compose)

lemma antisym-finer-than: S = T if S finer-than T T finer-than S
using that
by (metis finer-than-iff-nhds openin-subtopology subset-antisym subtopology-topspace

topology-eq-iff )

lemma subtopology-finer-than[simp]: top-of-set X finer-than euclidean
by (auto simp: finer-than-iff-nhds openin-subtopology)

1.8 Support
lemma support-on-nonneg-sum:

support-on X (λx.
∑

i∈S . f i x) = (
⋃

i∈S . support-on X (f i))
if finite S

∧
x i . x ∈ X =⇒ i ∈ S =⇒ f i x ≥ 0

for f ::-⇒-⇒-::ordered-comm-monoid-add
using that by (auto simp: support-on-def sum-nonneg-eq-0-iff )

lemma support-on-nonneg-sum-subset:
support-on X (λx.

∑
i∈S . f i x) ⊆ (

⋃
i∈S . support-on X (f i))

for f ::-⇒-⇒-::ordered-comm-monoid-add
by (cases finite S) (auto simp: support-on-def , meson sum.neutral)

lemma support-on-nonneg-sum-subset ′:
support-on X (λx.

∑
i∈S x. f i x) ⊆ (

⋃
x∈X . (

⋃
i∈S x. support-on X (f i)))

for f ::-⇒-⇒-::ordered-comm-monoid-add
by (auto simp: support-on-def , meson sum.neutral)

1.9 Final topology (Bourbaki, General Topology I, 4.)
definition final-topology X Y f =

topology (λU . U ⊆ X ∧
(∀ i. openin (Y i) (f i −‘ U ∩ topspace (Y i))))

lemma openin-final-topology:
openin (final-topology X Y f ) =
(λU . U ⊆ X ∧ (∀ i. openin (Y i) (f i −‘ U ∩ topspace (Y i))))

unfolding final-topology-def
apply (rule topology-inverse ′)
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unfolding istopology-def
proof safe

fix S T i
assume ∀ i. openin (Y i) (f i −‘ S ∩ topspace (Y i))
∀ i. openin (Y i) (f i −‘ T ∩ topspace (Y i))

then have openin (Y i) (f i −‘ S ∩ topspace (Y i) ∩ (f i −‘ T ∩ topspace (Y
i)))

(is openin - ?I )
by auto

also have ?I = f i −‘ (S ∩ T ) ∩ topspace (Y i)
(is - = ?R)
by auto

finally show openin (Y i) ?R .
next

fix K i
assume ∀U∈K . U ⊆ X ∧ (∀ i. openin (Y i) (f i −‘ U ∩ topspace (Y i)))
then have openin (Y i) (

⋃
X∈K . f i −‘ X ∩ topspace (Y i))

by (intro openin-Union) auto
then show openin (Y i) (f i −‘

⋃
K ∩ topspace (Y i))

by (auto simp: vimage-Union)
qed force+

lemma topspace-final-topology:
topspace (final-topology X Y f ) = X
if

∧
i. f i ∈ topspace (Y i) → X

proof −
have ∗: f i −‘ X ∩ topspace (Y i) = topspace (Y i) for i

using that
by auto

show ?thesis
unfolding topspace-def
unfolding openin-final-topology
apply (rule antisym)
apply force

apply (rule subsetI )
apply (rule UnionI [where X=X ])
using that
by (auto simp: ∗)

qed

lemma continuous-on-final-topologyI2 :
continuous-map (Y i) (final-topology X Y f ) (f i)
if

∧
i. f i ∈ topspace (Y i) → X

using that
by (auto simp: openin-final-topology continuous-map-alt topspace-final-topology)

lemma continuous-on-final-topologyI1 :
continuous-map (final-topology X Y f ) Z g
if hyp:

∧
i. continuous-map (Y i) Z (g o f i)

13



and that:
∧

i. f i ∈ topspace (Y i) → X g ∈ X → topspace Z
unfolding continuous-map-alt

proof safe
fix V assume V : openin Z V
have oV : openin (Y i) (f i −‘ g −‘ V ∩ topspace (Y i))

for i
using hyp[rule-format, of i] V
by (auto simp: continuous-map-alt vimage-comp dest!: spec[where x=V ])

have ∗: f i −‘ g −‘ V ∩ f i −‘ X ∩ topspace (Y i) =
f i −‘ g −‘ V ∩ topspace (Y i)

(is - = ?rhs i)
for i using that
by auto

show openin (final-topology X Y f ) (g −‘ V ∩ topspace (final-topology X Y f ))
by (auto simp: openin-final-topology oV topspace-final-topology that ∗)

qed (use that in ‹auto simp: topspace-final-topology›)

lemma continuous-on-final-topology-iff :
continuous-map (final-topology X Y f ) Z g ←→ (∀ i. continuous-map (Y i) Z (g

o f i))
if

∧
i. f i ∈ topspace (Y i) → X g ∈ X → topspace Z

using that
by (auto intro!: continuous-on-final-topologyI1 [OF - that]

intro: continuous-map-compose[OF continuous-on-final-topologyI2 [OF that(1 )]])

1.10 Quotient topology
definition map-topology :: ( ′a ⇒ ′b) ⇒ ′a topology ⇒ ′b topology where

map-topology p X = final-topology (p ‘ topspace X) (λ-. X) (λ(-::unit). p)

lemma openin-map-topology:
openin (map-topology p X) = (λU . U ⊆ p ‘ topspace X ∧ openin X (p −‘ U ∩

topspace X))
by (auto simp: map-topology-def openin-final-topology)

lemma topspace-map-topology[simp]: topspace (map-topology f T ) = f ‘ topspace T
unfolding map-topology-def
by (subst topspace-final-topology) auto

lemma continuous-on-map-topology:
continuous-map T (map-topology f T ) f
unfolding continuous-map-alt openin-map-topology
by auto

lemma continuous-map-composeD:
continuous-map T X (g ◦ f ) =⇒ g ∈ f ‘ topspace T → topspace X
by (auto simp: continuous-map-def )
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lemma continuous-on-map-topology2 :
continuous-map T X (g ◦ f ) ←→ continuous-map (map-topology f T ) X g
unfolding map-topology-def
apply safe
subgoal

apply (rule continuous-on-final-topologyI1 )
subgoal by assumption
subgoal by force
subgoal by (rule continuous-map-composeD)
done

subgoal
apply (erule continuous-map-compose[rotated])
apply (rule continuous-on-final-topologyI2 )
by force

done

lemma map-sub-finer-than-commute:
map-topology f (subtopology T (f −‘ X)) finer-than subtopology (map-topology f

T ) X
by (auto simp: finer-than-def continuous-map-def openin-subtopology openin-map-topology

topspace-subtopology)

lemma sub-map-finer-than-commute:
subtopology (map-topology f T ) X finer-than map-topology f (subtopology T (f −‘

X))
if openin T (f −‘ X)— this is more or less the condition from https://math.

stackexchange.com/questions/705840/quotient-topology-vs-subspace-topology
unfolding finer-than-def continuous-map-alt

proof (rule conjI , clarsimp)
fix U
assume openin (map-topology f (subtopology T (f −‘ X))) U
then obtain W where W : U ⊆ f ‘ (topspace T ∩ f −‘ X) openin T W f −‘ U
∩ (topspace T ∩ f −‘ X) = W ∩ f −‘ X

by (auto simp: topspace-subtopology openin-subtopology openin-map-topology)
have (f −‘ f ‘ W ∩ f −‘ X) ∩ topspace T = W ∩ topspace T ∩ f −‘ X

apply auto
by (metis Int-iff W (3 ) vimage-eq)

also have openin T . . .
by (auto intro!: W that)

finally show openin (subtopology (map-topology f T ) X) (U ∩ (f ‘ topspace T ∩
X))

using W
unfolding topspace-subtopology topspace-map-topology openin-subtopology openin-map-topology
by (intro exI [where x=(f ‘ W ∩ X)]) auto

qed auto

lemma subtopology-map-topology:
subtopology (map-topology f T ) X = map-topology f (subtopology T (f −‘ X))
if openin T (f −‘ X)
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apply (rule antisym-finer-than)
using sub-map-finer-than-commute[OF that] map-sub-finer-than-commute[of f T

X ]
by auto

lemma quotient-map-map-topology:
quotient-map X (map-topology f X) f
by (auto simp: quotient-map-def openin-map-topology ac-simps)
(simp-all add: vimage-def Int-def )

lemma topological-space-quotient: class.topological-space (openin (map-topology f
euclidean))

if surj f
apply standard

apply auto
using that
by (auto simp: openin-map-topology)

lemma t2-space-quotient: class.t2-space (open:: ′b set ⇒ bool)
if open-def : open = (openin (map-topology (p:: ′a::t2-space⇒ ′b::topological-space)

euclidean))
surj p and open-p:

∧
X . open X =⇒ open (p ‘ X) and closed {(x, y). p x = p

y} (is closed ?R)
apply (rule class.t2-space.intro)
subgoal by (unfold open-def , rule topological-space-quotient; fact)

proof standard
fix a b:: ′b
obtain x y where a-def : a = p x and b-def : b = p y using ‹surj p› by fastforce
assume a 6= b
with ‹closed ?R› have open (−?R) (x, y) ∈ −?R by (auto simp add: a-def b-def )
from open-prod-elim[OF this]
obtain N x N y where open N x open N y (x, y) ∈ N x × N y N x × N y ⊆ −?R .
then have p ‘ N x ∩ p ‘ N y = {} by auto
moreover
from ‹open N x› ‹open N y› have open (p ‘ N x) open (p ‘ N y)

using open-p by blast+
moreover have a ∈ p ‘ N x b ∈ p ‘ N y using ‹(x, y) ∈ - × -› by (auto simp:

a-def b-def )
ultimately show ∃U V . open U ∧ open V ∧ a ∈ U ∧ b ∈ V ∧ U ∩ V = {}

by blast
qed

lemma second-countable-topology-quotient: class.second-countable-topology (open:: ′b
set ⇒ bool)
if open-def : open = (openin (map-topology (p:: ′a::second-countable-topology⇒ ′b::topological-space)

euclidean))
surj p and open-p:

∧
X . open X =⇒ open (p ‘ X)

apply (rule class.second-countable-topology.intro)
subgoal by (unfold open-def , rule topological-space-quotient; fact)
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proof standard
have euclidean-def : euclidean = map-topology p euclidean

by (simp add: openin-inverse open-def )
have continuous-on: continuous-on UNIV p
using continuous-map-iff-continuous2 continuous-on-map-topology euclidean-def

by fastforce
from ex-countable-basis[where ′a= ′a] obtain A:: ′a set set where countable A

topological-basis A
by auto

define B where B = (λX . p ‘ X) ‘ A
have countable (B:: ′b set set)

by (auto simp: B-def intro!: ‹countable A›)
moreover have topological-basis B
proof (rule topological-basisI )

fix B ′ assume B ′ ∈ B then show open B ′ using ‹topological-basis A›
by (auto simp: B-def topological-basis-open intro!: open-p)

next
fix x:: ′b and O ′ assume open O ′ x ∈ O ′

have open (p −‘ O ′)
using ‹open O ′›
by (rule open-vimage) (auto simp: continuous-on)

obtain y where y: y ∈ p −‘ {x}
using ‹x ∈ O ′›
by auto (metis UNIV-I open-def (2 ) rangeE)

then have y ∈ p −‘ O ′ using ‹x ∈ O ′› by auto
from topological-basisE [OF ‹topological-basis A› ‹open (p −‘ O ′)› this]
obtain C where C ∈ A y ∈ C C ⊆ p −‘ O ′ .
let ?B ′ = p ‘ C
have ?B ′ ∈ B

using ‹C ∈ A› by (auto simp: B-def )
moreover
have x ∈ ?B ′ using y ‹y ∈ C › ‹x ∈ O ′›

by auto
moreover
have ?B ′ ⊆ O ′

using ‹C ⊆ -› by auto
ultimately show ∃B ′∈B. x ∈ B ′ ∧ B ′ ⊆ O ′ by metis

qed
ultimately show ∃B:: ′b set set. countable B ∧ open = generate-topology B

by (auto simp: topological-basis-imp-subbasis)
qed

1.11 Closure
lemma closure-Union: closure (

⋃
X) = (

⋃
x∈X . closure x) if finite X

using that
by (induction X) auto
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1.12 Compactness
lemma compact-if-closed-subset-of-compact:

compact S if closed S compact T S ⊆ T
proof (rule compactI )

fix UU assume UU : ∀ t∈UU . open t S ⊆
⋃

UU
have T ⊆

⋃
(insert (− S) (UU ))

∧
B. B ∈ insert (− S) UU =⇒ open B

using UU ‹S ⊆ T ›
by (auto simp: open-Compl ‹closed S›)

from compactE [OF ‹compact T › this]
obtain T ′ where T : T ′ ⊆ insert (− S) UU finite T ′ T ⊆

⋃
T ′

by metis
show ∃C ′⊆UU . finite C ′ ∧ S ⊆

⋃
C ′

apply (rule exI [where x=T ′ − {−S}])
using T UU
apply auto

proof −
fix x assume x ∈ S
with T ‹S ⊆ T › obtain U where x ∈ U U ∈ T ′ using T

by auto
then show ∃X∈T ′ − {− S}. x ∈ X

using T UU ‹x ∈ S›
apply −
apply (rule bexI [where x=U ])
by auto

qed
qed

1.13 Locally finite
definition locally-finite-on X I U ←→ (∀ p∈X . ∃N . p∈N ∧ open N ∧ finite {i∈I .
U i ∩ N 6= {}})

lemmas locally-finite-onI = locally-finite-on-def [THEN iffD2 , rule-format]

lemma locally-finite-onE :
assumes locally-finite-on X I U
assumes p ∈ X
obtains N where p ∈ N open N finite {i∈I . U i ∩ N 6= {}}
using assms
by (auto simp: locally-finite-on-def )

lemma locally-finite-onD:
assumes locally-finite-on X I U
assumes p ∈ X
shows finite {i∈I . p ∈ U i}
apply (rule locally-finite-onE [OF assms])
apply (rule finite-subset)
by auto

18



lemma locally-finite-on-open-coverI : locally-finite-on X I U
if fin:

∧
j. j ∈ I =⇒ finite {i∈I . U i ∩ U j 6= {}}

and open-cover : X ⊆ (
⋃

i∈I . U i)
∧

i. i ∈ I =⇒ open (U i)
proof (rule locally-finite-onI )

fix p assume p ∈ X
then obtain i where i: i ∈ I p ∈ U i open (U i)

using open-cover
by blast

show ∃N . p ∈ N ∧ open N ∧ finite {i ∈ I . U i ∩ N 6= {}}
by (intro exI [where x=U i] conjI i fin)

qed

lemma locally-finite-compactD:
finite {i∈I . U i ∩ V 6= {}}
if lf : locally-finite-on X I U

and compact: compact V
and subset: V ⊆ X

proof −
have ∃N . ∀ p ∈ X . p ∈ N p ∧ open (N p) ∧ finite {i∈I . U i ∩ N p 6= {}}

by (rule bchoice) (auto elim!: locally-finite-onE [OF lf , rule-format])
then obtain N where N :

∧
p. p ∈ X =⇒ p ∈ N p∧

p. p ∈ X =⇒ open (N p)∧
p. p ∈ X =⇒ finite {i∈I . U i ∩ N p 6= {}}

by blast
have V ⊆ (

⋃
p∈X . N p)

∧
B. B ∈ N ‘ X =⇒ open B

using N subset by force+
from compactE [OF compact this]
obtain C where C : C ⊆ X finite C V ⊆

⋃
(N ‘ C )

by (metis finite-subset-image)
then have {i∈I . U i ∩ V 6= {}} ⊆ {i∈I . U i ∩

⋃
(N ‘ C ) 6= {}}

by force
also have . . . ⊆ (

⋃
c∈C . {i∈I . U i ∩ N c 6= {}})

by force
also have finite . . .

apply (rule finite-Union)
using C by (auto intro!: C N )

finally (finite-subset) show ?thesis .
qed

lemma closure-Int-open-eq-empty: open S =⇒ (closure T ∩ S) = {} ←→ T ∩ S
= {}

by (auto simp: open-Int-closure-eq-empty ac-simps)

lemma locally-finite-on-subset:
assumes locally-finite-on X J U
assumes

∧
i. i ∈ I =⇒ V i ⊆ U i I ⊆ J

shows locally-finite-on X I V
proof (rule locally-finite-onI )

fix p assume p ∈ X
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from locally-finite-onE [OF assms(1 ) this]
obtain N where p ∈ N open N finite {i ∈ J . U i ∩ N 6= {}} .
then show ∃N . p ∈ N ∧ open N ∧ finite {i ∈ I . V i ∩ N 6= {}}

apply (intro exI [where x=N ])
using assms
by (auto elim!: finite-subset[rotated])

qed

lemma locally-finite-on-closure:
locally-finite-on X I (λx. closure (U x))
if locally-finite-on X I U

proof (rule locally-finite-onI )
fix p assume p ∈ X
from locally-finite-onE [OF that this] obtain N

where p ∈ N open N finite {i ∈ I . U i ∩ N 6= {}} .
then show ∃N . p ∈ N ∧ open N ∧ finite {i ∈ I . closure (U i) ∩ N 6= {}}

by (auto intro!: exI [where x=N ] simp: closure-Int-open-eq-empty)
qed

lemma locally-finite-on-closedin-Union-closure:
closedin (top-of-set X) (

⋃
i∈I . closure (U i))

if locally-finite-on X I U
∧

i. i ∈ I =⇒ closure (U i) ⊆ X
unfolding closedin-def
apply safe
subgoal using that(2 ) by auto
subgoal

apply (subst openin-subopen)
proof clarsimp

fix x
assume x: x ∈ X ∀ i∈I . x /∈ closure (U i)
from locally-finite-onE [OF that(1 ) ‹x ∈ X›]
obtain N where N : x ∈ N open N finite {i ∈ I . U i ∩ N 6= {}} (is finite ?I ).
define N ′ where N ′ = N − (

⋃
i ∈ ?I . closure (U i))

have open N ′

by (auto simp: N ′-def intro!: N )
then have openin (top-of-set X) (X ∩ N ′)

by (rule openin-open-Int)
moreover
have x ∈ X ∩ N ′ using x

by (auto simp: N ′-def N )
moreover
have X ∩ N ′ ⊆ X − (

⋃
i∈I . closure (U i))

using x that(2 )
apply (auto simp: N ′-def )
by (meson N (2 ) closure-iff-nhds-not-empty dual-order .refl)

ultimately show ∃T . openin (top-of-set X) T ∧ x ∈ T ∧ T ⊆ X − (
⋃

i∈I .
closure (U i))

by auto
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qed
done

lemma closure-subtopology-minimal:
S ⊆ T =⇒ closedin (top-of-set X) T =⇒ closure S ∩ X ⊆ T
apply (auto simp: closedin-closed)
using closure-minimal by blast

lemma locally-finite-on-closure-Union:
(
⋃

i∈I . closure (U i)) = closure (
⋃

i∈I . (U i)) ∩ X
if locally-finite-on X I U

∧
i. i ∈ I =⇒ closure (U i) ⊆ X

proof (rule antisym)
show (

⋃
i∈I . closure (U i)) ⊆ closure (

⋃
i∈I . U i) ∩ X

using that
apply auto

by (metis (no-types, lifting) SUP-le-iff closed-closure closure-minimal clo-
sure-subset subsetCE)

show closure (
⋃

i∈I . U i) ∩ X ⊆ (
⋃

i∈I . closure (U i))
apply (rule closure-subtopology-minimal)
apply auto
using that
by (auto intro!: locally-finite-on-closedin-Union-closure)

qed

1.14 Refinement of cover
definition refines :: ′a set set ⇒ ′a set set ⇒ bool (infix ‹refines› 50 )

where A refines B ←→ (∀ s∈A. (∃ t. t ∈ B ∧ s ⊆ t))

lemma refines-subset: x refines y if z refines y x ⊆ z
using that by (auto simp: refines-def )

1.15 Functions as vector space
instantiation fun :: (type, scaleR) scaleR begin

definition scaleR-fun :: real ⇒ ( ′a ⇒ ′b) ⇒ ′a ⇒ ′b where
scaleR-fun r f = (λx. r ∗R f x)

lemma scaleR-fun-beta[simp]: (r ∗R f ) x = r ∗R f x
by (simp add: scaleR-fun-def )

instance ..

end

instance fun :: (type, real-vector) real-vector
by standard (auto simp: scaleR-fun-def algebra-simps)

21



1.16 Additional lemmas
lemmas [simp del] = vimage-Un vimage-Int

lemma finite-Collect-imageI : finite {U ∈ f ‘ X . P U} if finite {x∈X . P (f x)}
proof −

have {d ∈ f ‘ X . P d} ⊆ f ‘ {c ∈ X . P (f c)}
by blast

then show ?thesis
using finite-surj that by blast

qed

lemma plus-compose: (x + y) ◦ f = (x ◦ f ) + (y ◦ f )
by auto

lemma mult-compose: (x ∗ y) ◦ f = (x ◦ f ) ∗ (y ◦ f )
by auto

lemma scaleR-compose: (c ∗R x) ◦ f = c ∗R (x ◦ f )
by (auto simp:)

lemma image-scaleR-ball:
fixes a :: ′a::real-normed-vector
shows c 6= 0 =⇒ (∗R) c ‘ ball a r = ball (c ∗R a) (abs c ∗R r)

proof (auto simp: mem-ball dist-norm, goal-cases)
case (1 b)
have norm (c ∗R a − c ∗R b) = abs c ∗ norm (a − b)

by (auto simp: norm-scaleR[symmetric] algebra-simps simp del: norm-scaleR)
also have . . . < abs c ∗ r

apply (rule mult-strict-left-mono)
using 1 by auto

finally show ?case .
next

case (2 x)
have norm (a − x /R c) < r
proof −

have norm (a − x /R c) = abs c ∗R norm (a − x /R c) /R abs c
using 2 by auto

also have abs c ∗R norm (a − x /R c) = norm (c ∗R a − x)
using 2
by (auto simp: norm-scaleR[symmetric] algebra-simps simp del: norm-scaleR)

also have . . . < |c| ∗ r
by fact

also have |c| ∗ r /R |c| = r using 2 by auto
finally show ?thesis using 2 by auto

qed
then have xdc: x /R c ∈ ball a r

by (auto simp: mem-ball dist-norm)
show ?case

apply (rule image-eqI [OF - xdc])
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using 2 by simp
qed

1.17 Continuity
lemma continuous-within-topologicalE :

assumes continuous (at x within s) f
open B f x ∈ B

obtains A where open A x ∈ A
∧

y. y ∈ s =⇒ y ∈ A =⇒ f y ∈ B
using assms continuous-within-topological by metis

lemma continuous-within-topologicalE ′:
assumes continuous (at x) f

open B f x ∈ B
obtains A where open A x ∈ A f ‘ A ⊆ B
using assms continuous-within-topologicalE [OF assms]
by (metis UNIV-I image-subsetI )

lemma continuous-on-inverse: continuous-on S f =⇒ 0 /∈ f ‘ S =⇒ continuous-on
S (λx. inverse (f x))

for f ::-⇒-::real-normed-div-algebra
by (auto simp: continuous-on-def intro!: tendsto-inverse)

1.18 (has-derivative)
lemma has-derivative-plus-fun[derivative-intros]:
(x + y has-derivative x ′ + y ′) (at a within A)
if [derivative-intros]:
(x has-derivative x ′) (at a within A)
(y has-derivative y ′) (at a within A)

by (auto simp: plus-fun-def intro!: derivative-eq-intros)

lemma has-derivative-scaleR-fun[derivative-intros]:
(x ∗R y has-derivative x ∗R y ′) (at a within A)
if [derivative-intros]:
(y has-derivative y ′) (at a within A)

by (auto simp: scaleR-fun-def intro!: derivative-eq-intros)

lemma has-derivative-times-fun[derivative-intros]:
(x ∗ y has-derivative (λh. x a ∗ y ′ h + x ′ h ∗ y a)) (at a within A)
if [derivative-intros]:
(x has-derivative x ′) (at a within A)
(y has-derivative y ′) (at a within A)

for x y::-⇒ ′a::real-normed-algebra
by (auto simp: times-fun-def intro!: derivative-eq-intros)

lemma real-sqrt-has-derivative-generic:
x 6= 0 =⇒ (sqrt has-derivative (∗) ((if x > 0 then 1 else −1 ) ∗ inverse (sqrt x)

/ 2 )) (at x within S)
apply (rule has-derivative-at-withinI )
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using DERIV-real-sqrt-generic[of x (if x > 0 then 1 else −1 ) ∗ inverse (sqrt x)
/ 2 ] at-within-open[of x UNIV − {0}]

by (auto simp: has-field-derivative-def open-delete ac-simps split: if-splits)

lemma sqrt-has-derivative:
((λx. sqrt (f x)) has-derivative (λxa. (if 0 < f x then 1 else − 1 ) / (2 ∗ sqrt (f

x)) ∗ f ′ xa)) (at x within S)
if (f has-derivative f ′) (at x within S) f x 6= 0
by (rule has-derivative-eq-rhs[OF has-derivative-compose[OF that(1 ) real-sqrt-has-derivative-generic,

OF that(2 )]])
(auto simp: divide-simps)

lemmas has-derivative-norm-compose[derivative-intros] = has-derivative-compose[OF
- has-derivative-norm]

1.19 Differentiable
lemmas differentiable-on-empty[simp]

lemma differentiable-transform-eventually: f differentiable (at x within X)
if g differentiable (at x within X)

f x = g x
∀ F x in (at x within X). f x = g x

using that
apply (auto simp: differentiable-def )
subgoal for D

apply (rule exI [where x=D])
apply (auto simp: has-derivative-within)
by (simp add: eventually-mono Lim-transform-eventually)

done

lemma differentiable-within-eqI : f differentiable at x within X
if g differentiable at x within X

∧
x. x ∈ X =⇒ f x = g x

x ∈ X open X
apply (rule differentiable-transform-eventually)

apply (rule that)
apply (auto simp: that)

proof −
have ∀ F x in at x within X . x ∈ X

using ‹open X›
using eventually-at-topological by blast

then show ∀ F x in at x within X . f x = g x
by eventually-elim (auto simp: that)

qed

lemma differentiable-eqI : f differentiable at x
if g differentiable at x

∧
x. x ∈ X =⇒ f x = g x x ∈ X open X

using that
unfolding at-within-open[OF that(3 ,4 ), symmetric]
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by (rule differentiable-within-eqI )

lemma differentiable-on-eqI :
f differentiable-on S
if g differentiable-on S

∧
x. x ∈ S =⇒ f x = g x open S

using that differentiable-eqI [of g - S f ]
by (auto simp: differentiable-on-eq-differentiable-at)

lemma differentiable-on-comp: (f o g) differentiable-on S
if g differentiable-on S f differentiable-on (g ‘ S)
using that
by (auto simp: differentiable-on-def intro: differentiable-chain-within)

lemma differentiable-on-comp2 : (f o g) differentiable-on S
if f differentiable-on T g differentiable-on S g ‘ S ⊆ T
apply (rule differentiable-on-comp)
apply (rule that)

apply (rule differentiable-on-subset)
apply (rule that)
apply (rule that)
done

lemmas differentiable-on-compose2 = differentiable-on-comp2 [unfolded o-def ]

lemma differentiable-on-openD: f differentiable at x
if f differentiable-on X open X x ∈ X
using differentiable-on-eq-differentiable-at that by blast

lemma differentiable-on-add-fun[intro, simp]:
x differentiable-on UNIV =⇒ y differentiable-on UNIV =⇒ x + y differentiable-on

UNIV
by (auto simp: plus-fun-def )

lemma differentiable-on-mult-fun[intro, simp]:
x differentiable-on UNIV =⇒ y differentiable-on UNIV =⇒ x ∗ y differentiable-on

UNIV
for x y::-⇒ ′a::real-normed-algebra
by (auto simp: times-fun-def )

lemma differentiable-on-scaleR-fun[intro, simp]:
y differentiable-on UNIV =⇒ x ∗R y differentiable-on UNIV
by (auto simp: scaleR-fun-def )

lemma sqrt-differentiable:
(λx. sqrt (f x)) differentiable (at x within S)
if f differentiable (at x within S) f x 6= 0
using that
using sqrt-has-derivative[of f - x S ]
by (auto simp: differentiable-def )
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lemma sqrt-differentiable-on: (λx. sqrt (f x)) differentiable-on S
if f differentiable-on S 0 /∈ f ‘ S
using sqrt-differentiable[of f - S ] that
by (force simp: differentiable-on-def )

lemma differentiable-on-inverse: f differentiable-on S =⇒ 0 /∈ f ‘ S =⇒ (λx. in-
verse (f x)) differentiable-on S

for f ::-⇒-::real-normed-field
by (auto simp: differentiable-on-def intro!: differentiable-inverse)

lemma differentiable-on-openI :
f differentiable-on S
if open S

∧
x. x ∈ S =⇒ ∃ f ′. (f has-derivative f ′) (at x)

using that
by (auto simp: differentiable-on-def at-within-open[where S=S ] differentiable-def )

lemmas differentiable-norm-compose-at = differentiable-compose[OF differentiable-norm-at]

lemma differentiable-on-Pair :
f differentiable-on S =⇒ g differentiable-on S =⇒ (λx. (f x , g x)) differentiable-on

S
unfolding differentiable-on-def
using differentiable-Pair [of f - S g] by auto

lemma differentiable-at-fst:
(λx. fst (f x)) differentiable at x within X if f differentiable at x within X
using that
by (auto simp: differentiable-def dest!: has-derivative-fst)

lemma differentiable-at-snd:
(λx. snd (f x)) differentiable at x within X if f differentiable at x within X
using that
by (auto simp: differentiable-def dest!: has-derivative-snd)

lemmas frechet-derivative-worksI = frechet-derivative-works[THEN iffD1 ]

lemma sin-differentiable-at: (λx. sin (f x::real)) differentiable at x within X
if f differentiable at x within X
using differentiable-def has-derivative-sin that by blast

lemma cos-differentiable-at: (λx. cos (f x::real)) differentiable at x within X
if f differentiable at x within X
using differentiable-def has-derivative-cos that by blast

1.20 Frechet derivative
lemmas frechet-derivative-transform-within-open-ext =

fun-cong[OF frechet-derivative-transform-within-open]
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lemmas frechet-derivative-at ′ = frechet-derivative-at[symmetric]

lemma frechet-derivative-plus-fun:
x differentiable at a =⇒ y differentiable at a =⇒
frechet-derivative (x + y) (at a) =

frechet-derivative x (at a) + frechet-derivative y (at a)
by (rule frechet-derivative-at ′)
(auto intro!: derivative-eq-intros frechet-derivative-worksI )

lemmas frechet-derivative-plus = frechet-derivative-plus-fun[unfolded plus-fun-def ]

lemma frechet-derivative-zero-fun: frechet-derivative 0 (at a) = 0
by (auto simp: frechet-derivative-const zero-fun-def )

lemma frechet-derivative-sin:
frechet-derivative (λx. sin (f x)) (at x) = (λxa. frechet-derivative f (at x) xa ∗

cos (f x))
if f differentiable (at x)
for f ::-⇒real
by (rule frechet-derivative-at ′[OF has-derivative-sin[OF frechet-derivative-worksI [OF

that]]])

lemma frechet-derivative-cos:
frechet-derivative (λx. cos (f x)) (at x) = (λxa. frechet-derivative f (at x) xa ∗ −

sin (f x))
if f differentiable (at x)
for f ::-⇒real
by (rule frechet-derivative-at ′[OF has-derivative-cos[OF frechet-derivative-worksI [OF

that]]])

lemma differentiable-sum-fun:
(
∧

i. i ∈ I =⇒ (f i differentiable at a)) =⇒ sum f I differentiable at a
by (induction I rule: infinite-finite-induct) (auto simp: zero-fun-def plus-fun-def )

lemma frechet-derivative-sum-fun:
(
∧

i. i ∈ I =⇒ (f i differentiable at a)) =⇒
frechet-derivative (

∑
i∈I . f i) (at a) = (

∑
i∈I . frechet-derivative (f i) (at a))

by (induction I rule: infinite-finite-induct)
(auto simp: frechet-derivative-zero-fun frechet-derivative-plus-fun differentiable-sum-fun)

lemma sum-fun-def : (
∑

i∈I . f i) = (λx.
∑

i∈I . f i x)
by (induction I rule: infinite-finite-induct) auto

lemmas frechet-derivative-sum = frechet-derivative-sum-fun[unfolded sum-fun-def ]

lemma frechet-derivative-times-fun:
f differentiable at a =⇒ g differentiable at a =⇒
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frechet-derivative (f ∗ g) (at a) =
(λx. f a ∗ frechet-derivative g (at a) x + frechet-derivative f (at a) x ∗ g a)
for f g::-⇒ ′a::real-normed-algebra
by (rule frechet-derivative-at ′) (auto intro!: derivative-eq-intros frechet-derivative-worksI )

lemmas frechet-derivative-times = frechet-derivative-times-fun[unfolded times-fun-def ]

lemma frechet-derivative-scaleR-fun:
y differentiable at a =⇒
frechet-derivative (x ∗R y) (at a) =

x ∗R frechet-derivative y (at a)
by (rule frechet-derivative-at ′)
(auto intro!: derivative-eq-intros frechet-derivative-worksI )

lemmas frechet-derivative-scaleR = frechet-derivative-scaleR-fun[unfolded scaleR-fun-def ]

lemma frechet-derivative-compose:
frechet-derivative (f o g) (at x) = frechet-derivative (f ) (at (g x)) o frechet-derivative

g (at x)
if g differentiable at x f differentiable at (g x)
by (meson diff-chain-at frechet-derivative-at ′ frechet-derivative-works that)

lemma frechet-derivative-compose-eucl:
frechet-derivative (f o g) (at x) =
(λv.

∑
i∈Basis. ((frechet-derivative g (at x) v) · i) ∗R frechet-derivative f (at

(g x)) i)
(is ?l = ?r)
if g differentiable at x f differentiable at (g x)

proof (rule ext)
fix v
interpret g: linear frechet-derivative g (at x)

using that(1 )
by (rule linear-frechet-derivative)

interpret f : linear frechet-derivative f (at (g x))
using that(2 )
by (rule linear-frechet-derivative)

have frechet-derivative (f o g) (at x) v =
frechet-derivative f (at (g x)) (

∑
i∈Basis. (frechet-derivative g (at x) v · i) ∗R

i)
unfolding frechet-derivative-compose[OF that] o-apply
by (simp add: euclidean-representation)

also have . . . = ?r v
by (auto simp: g.sum g.scaleR f .sum f .scaleR)

finally show ?l v = ?r v .
qed

lemma frechet-derivative-works-on-open:
f differentiable-on X =⇒ open X =⇒ x ∈ X =⇒
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(f has-derivative frechet-derivative f (at x)) (at x)
and frechet-derivative-works-on:
f differentiable-on X =⇒ x ∈ X =⇒
(f has-derivative frechet-derivative f (at x within X)) (at x within X)

by (auto simp: differentiable-onD differentiable-on-openD frechet-derivative-worksI )

lemma frechet-derivative-inverse: frechet-derivative (λx. inverse (f x)) (at x) =
(λh. − 1 / (f x)2 ∗ frechet-derivative f (at x) h)

if f differentiable at x f x 6= 0 for f ::-⇒-::real-normed-field
apply (rule frechet-derivative-at ′)
using that
by (auto intro!: derivative-eq-intros frechet-derivative-worksI

simp: divide-simps algebra-simps power2-eq-square)

lemma frechet-derivative-sqrt: frechet-derivative (λx. sqrt (f x)) (at x) =
(λv. (if f x > 0 then 1 else −1 ) / (2 ∗ sqrt (f x)) ∗ frechet-derivative f (at x) v)
if f differentiable at x f x 6= 0
apply (rule frechet-derivative-at ′)
apply (rule sqrt-has-derivative[THEN has-derivative-eq-rhs])
by (auto intro!: frechet-derivative-worksI that simp: divide-simps)

lemma frechet-derivative-norm: frechet-derivative (λx. norm (f x)) (at x) =
(λv. frechet-derivative f (at x) v · sgn (f x))

if f differentiable at x f x 6= 0
for f ::-⇒-::real-inner
apply (rule frechet-derivative-at ′)
by (auto intro!: derivative-eq-intros frechet-derivative-worksI that simp: divide-simps)

lemma (in bounded-linear) frechet-derivative:
frechet-derivative f (at x) = f
apply (rule frechet-derivative-at ′)
apply (rule has-derivative-eq-rhs)
apply (rule has-derivative)

by (auto intro!: derivative-eq-intros)

bundle matrix-mult
begin
notation matrix-matrix-mult (infixl ‹∗∗› 70 )
end

lemma (in bounded-bilinear) frechet-derivative:
includes no matrix-mult
shows

x differentiable at a =⇒ y differentiable at a =⇒
frechet-derivative (λa. x a ∗∗ y a) (at a) =
(λh. x a ∗∗ frechet-derivative y (at a) h + frechet-derivative x (at a) h ∗∗ y

a)
by (rule frechet-derivative-at ′) (auto intro!: FDERIV frechet-derivative-worksI )
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lemma frechet-derivative-divide: frechet-derivative (λx. f x / g x) (at x) =
(λh. frechet-derivative f (at x) h / (g x) −frechet-derivative g (at x) h ∗ f x /

(g x)2)
if f differentiable at x g differentiable at x g x 6= 0 for f ::-⇒-::real-normed-field
using that
by (auto simp: divide-inverse-commute bounded-bilinear .frechet-derivative[OF bounded-bilinear-mult]

frechet-derivative-inverse)

lemma frechet-derivative-pair :
frechet-derivative (λx. (f x, g x)) (at x) = (λv. (frechet-derivative f (at x) v,

frechet-derivative g (at x) v))
if f differentiable (at x) g differentiable (at x)
by (metis (no-types) frechet-derivative-at frechet-derivative-works has-derivative-Pair

that)

lemma frechet-derivative-fst:
frechet-derivative (λx. fst (f x)) (at x) = (λxa. fst (frechet-derivative f (at x) xa))
if (f differentiable at x)
for f ::-⇒(-::real-normed-vector × -::real-normed-vector)
by (metis frechet-derivative-at frechet-derivative-works has-derivative-fst that)

lemma frechet-derivative-snd:
frechet-derivative (λx. snd (f x)) (at x) = (λxa. snd (frechet-derivative f (at x)

xa))
if (f differentiable at x)
for f ::-⇒(-::real-normed-vector × -::real-normed-vector)
by (metis frechet-derivative-at frechet-derivative-worksI has-derivative-snd that)

lemma frechet-derivative-eq-vector-derivative-1 :
assumes f differentiable at t
shows frechet-derivative f (at t) 1 = vector-derivative f (at t)
by (simp add: assms frechet-derivative-eq-vector-derivative)

1.21 Linear algebra
lemma (in vector-space) dim-pos-finite-dimensional-vector-spaceE :

assumes dim (UNIV :: ′b set) > 0
obtains basis where finite-dimensional-vector-space scale basis

proof −
from assms obtain b where b: local.span b = local.span UNIV local.independent

b
by (auto simp: dim-def split: if-splits)

then have dim UNIV = card b
by (rule dim-eq-card)

with assms have finite b by (auto simp: card-ge-0-finite)
then have finite-dimensional-vector-space scale b

by unfold-locales (auto simp: b)
then show ?thesis ..

qed
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context vector-space-on begin

context includes lifting-syntax assumes ∃ (Rep:: ′s⇒ ′b) (Abs:: ′b⇒ ′s). type-definition
Rep Abs S begin

interpretation local-typedef-vector-space-on S scale TYPE( ′s) by unfold-locales
fact

lemmas-with [var-simplified explicit-ab-group-add,
unoverload-type ′d,
OF type.ab-group-add-axioms type-vector-space-on-with,
folded dim-S-def ,
untransferred,
var-simplified implicit-ab-group-add]:

lt-dim-pos-finite-dimensional-vector-spaceE = vector-space.dim-pos-finite-dimensional-vector-spaceE

end

lemmas-with [cancel-type-definition,
OF S-ne,
folded subset-iff ′,
simplified pred-fun-def , folded finite-dimensional-vector-space-on-with,
simplified— too much?]:

dim-pos-finite-dimensional-vector-spaceE = lt-dim-pos-finite-dimensional-vector-spaceE

end

1.22 Extensional function space

f is zero outside A. We use such functions to canonically represent functions
whose domain is A
definition extensional0 :: ′a set ⇒ ( ′a ⇒ ′b::zero) ⇒ bool

where extensional0 A f = (∀ x. x /∈ A −→ f x = 0 )

lemma extensional0-0 [intro, simp]: extensional0 X 0
by (auto simp: extensional0-def )

lemma extensional0-UNIV [intro, simp]: extensional0 UNIV f
by (auto simp: extensional0-def )

lemma ext-extensional0 :
f = g if extensional0 S f extensional0 S g

∧
x. x ∈ S =⇒ f x = g x

using that by (force simp: extensional0-def fun-eq-iff )

lemma extensional0-add[intro, simp]:
extensional0 S f =⇒ extensional0 S g =⇒ extensional0 S (f + g::-⇒ ′a::comm-monoid-add)
by (auto simp: extensional0-def )
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lemma extensinoal0-mult[intro, simp]:
extensional0 S x =⇒ extensional0 S y =⇒ extensional0 S (x ∗ y)
for x y::-⇒ ′a::mult-zero
by (auto simp: extensional0-def )

lemma extensional0-scaleR[intro, simp]: extensional0 S f =⇒ extensional0 S (c
∗R f ::-⇒ ′a::real-vector)

by (auto simp: extensional0-def )

lemma extensional0-outside: x /∈ S =⇒ extensional0 S f =⇒ f x = 0
by (auto simp: extensional0-def )

lemma subspace-extensional0 : subspace (Collect (extensional0 X))
by (auto simp: subspace-def )

Send the function f to its canonical representative as a function with domain
A
definition restrict0 :: ′a set ⇒ ( ′a ⇒ ′b::zero) ⇒ ′a ⇒ ′b

where restrict0 A f x = (if x ∈ A then f x else 0 )

lemma restrict0-UNIV [simp]: restrict0 UNIV = (λx. x)
by (intro ext) (auto simp: restrict0-def )

lemma extensional0-restrict0 [intro, simp]: extensional0 A (restrict0 A f )
by (auto simp: extensional0-def restrict0-def )

lemma restrict0-times: restrict0 A (x ∗ y) = restrict0 A x ∗ restrict0 A y
for x:: ′a⇒ ′b::mult-zero
by (auto simp: restrict0-def [abs-def ])

lemma restrict0-apply-in[simp]: x ∈ A =⇒ restrict0 A f x = f x
by (auto simp: restrict0-def )

lemma restrict0-apply-out[simp]: x /∈ A =⇒ restrict0 A f x = 0
by (auto simp: restrict0-def )

lemma restrict0-scaleR: restrict0 A (c ∗R f ::-⇒ ′a::real-vector) = c ∗R restrict0 A
f

by (auto simp: restrict0-def [abs-def ])

lemma restrict0-add: restrict0 A (f + g::-⇒ ′a::real-vector) = restrict0 A f + re-
strict0 A g

by (auto simp: restrict0-def [abs-def ])

lemma restrict0-restrict0 : restrict0 X (restrict0 Y f ) = restrict0 (X ∩ Y ) f
by (auto simp: restrict0-def )

end

32



2 Smooth Functions between Normed Vector Spaces
theory Smooth

imports
Analysis-More

begin

2.1 From/To Multivariate-Taylor .thy
lemma multivariate-Taylor-integral:

fixes f :: ′a::real-normed-vector ⇒ ′b::banach
and Df :: ′a ⇒ nat ⇒ ′a ⇒ ′b

assumes n > 0
assumes Df-Nil:

∧
a x. Df a 0 H = f a

assumes Df-Cons:
∧

a i d. a ∈ closed-segment X (X + H ) =⇒ i < n =⇒
((λa. Df a i H ) has-derivative (Df a (Suc i))) (at a within G)

assumes cs: closed-segment X (X + H ) ⊆ G
defines i ≡ λx.

((1 − x) ^ (n − 1 ) / fact (n − 1 )) ∗R Df (X + x ∗R H ) n H
shows multivariate-Taylor-has-integral:
(i has-integral f (X + H ) − (

∑
i<n. (1 / fact i) ∗R Df X i H )) {0 ..1}

and multivariate-Taylor :
f (X + H ) = (

∑
i<n. (1 / fact i) ∗R Df X i H ) + integral {0 ..1} i

and multivariate-Taylor-integrable:
i integrable-on {0 ..1}

proof goal-cases
case 1
let ?G = closed-segment X (X + H )
define line where line t = X + t ∗R H for t
have segment-eq: closed-segment X (X + H ) = line ‘ {0 .. 1}

by (auto simp: line-def closed-segment-def algebra-simps)
have line-deriv:

∧
x. (line has-derivative (λt. t ∗R H )) (at x)

by (auto intro!: derivative-eq-intros simp: line-def [abs-def ])
define g where g = f o line
define Dg where Dg n t = Df (line t) n H for n :: nat and t :: real
note ‹n > 0 ›
moreover
have Dg0 : Dg 0 = g by (auto simp add: Dg-def Df-Nil g-def )
moreover
have DgSuc: (Dg m has-vector-derivative Dg (Suc m) t) (at t within {0 ..1})

if m < n 0 ≤ t t ≤ 1 for m::nat and t::real
proof −

from that have [intro]: line t ∈ ?G using assms
by (auto simp: segment-eq)

note [derivative-intros] = has-derivative-in-compose[OF - has-derivative-subset[OF
Df-Cons]]

interpret Df : linear (λd. Df (line t) (Suc m) d)
by (auto intro!: has-derivative-linear derivative-intros ‹m < n›)

note [derivative-intros] =
has-derivative-compose[OF - line-deriv]
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show ?thesis
using Df .scaleR ‹m < n›
by (auto simp: Dg-def [abs-def ] has-vector-derivative-def g-def segment-eq

intro!: derivative-eq-intros subsetD[OF cs])
qed
ultimately
have g-Taylor : (i has-integral g 1 − (

∑
i<n. ((1 − 0 ) ^ i / fact i) ∗R Dg i 0 ))

{0 .. 1}
unfolding i-def Dg-def [abs-def ] line-def
by (rule Taylor-has-integral) auto

then show c: ?case using ‹n > 0 › by (auto simp: g-def line-def Dg-def )
case 2 show ?case using c

by (simp add: integral-unique add.commute)
case 3 show ?case using c by force

qed

2.2 Higher-order differentiable
fun higher-differentiable-on ::

′a::real-normed-vector set ⇒ ( ′a ⇒ ′b::real-normed-vector) ⇒ nat ⇒ bool where
higher-differentiable-on S f 0 ←→ continuous-on S f
| higher-differentiable-on S f (Suc n) ←→

(∀ x∈S . f differentiable (at x)) ∧
(∀ v. higher-differentiable-on S (λx. frechet-derivative f (at x) v) n)

lemma ball-differentiable-atD: ∀ x∈S . f differentiable at x =⇒ f differentiable-on S
by (auto simp: differentiable-on-def differentiable-at-withinI )

lemma higher-differentiable-on-imp-continuous-on:
continuous-on S f if higher-differentiable-on S f n
using that
by (cases n) (auto simp: differentiable-imp-continuous-on ball-differentiable-atD)

lemma higher-differentiable-on-imp-differentiable-on:
f differentiable-on S if higher-differentiable-on S f k k > 0
using that
by (cases k) (auto simp: ball-differentiable-atD)

lemma higher-differentiable-on-congI :
assumes open S higher-differentiable-on S g n

and
∧

x. x ∈ S =⇒ f x = g x
shows higher-differentiable-on S f n
using assms(2 ,3 )

proof (induction n arbitrary: f g)
case 0
then show ?case by auto

next
case (Suc n)
have 1 : ∀ x∈S . g differentiable (at x) and
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2 : higher-differentiable-on S (λx. frechet-derivative g (at x) v) n for v
using Suc by auto

have 3 : ∀ x∈S . f differentiable (at x) using 1 Suc(3 ) assms(1 )
by (metis differentiable-eqI )

have 4 : frechet-derivative f (at x) v = frechet-derivative g (at x) v if x ∈ S for
x v

using 3 Suc.prems(2 ) assms(1 ) frechet-derivative-transform-within-open-ext
that by blast

from 2 3 4 show ?case
using Suc.IH [OF 2 4 ] by auto

qed

lemma higher-differentiable-on-cong:
assumes open S S = T

and
∧

x. x ∈ T =⇒ f x = g x
shows higher-differentiable-on S f n ←→ higher-differentiable-on T g n
using higher-differentiable-on-congI assms by auto

lemma higher-differentiable-on-SucD:
higher-differentiable-on S f n if higher-differentiable-on S f (Suc n)
using that
by (induction n arbitrary: f ) (auto simp: differentiable-imp-continuous-on ball-differentiable-atD)

lemma higher-differentiable-on-addD:
higher-differentiable-on S f n if higher-differentiable-on S f (n + m)
using that
by (induction m arbitrary: f n)
(auto simp del: higher-differentiable-on.simps dest!: higher-differentiable-on-SucD)

lemma higher-differentiable-on-le:
higher-differentiable-on S f n if higher-differentiable-on S f m n ≤ m
using higher-differentiable-on-addD[of S f n m − n] that
by auto

lemma higher-differentiable-on-open-subsetsI :
higher-differentiable-on S f n
if

∧
x. x ∈ S =⇒ ∃T . x ∈ T ∧ open T ∧ higher-differentiable-on T f n

using that
proof (induction n arbitrary: f )

case 0
show ?case

by (force simp: continuous-on-def
dest!: 0
dest: at-within-open
intro!: Lim-at-imp-Lim-at-within[where S=S ])

next
case (Suc n)
have f differentiable at x if x ∈ S for x
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using Suc.prems[OF ‹x ∈ S›]
by (auto simp: differentiable-on-def dest: at-within-open dest!: bspec)

then have f differentiable-on S
by (auto simp: differentiable-on-def intro!: differentiable-at-withinI [where s=S ])

with Suc show ?case
by fastforce

qed

lemma higher-differentiable-on-const: higher-differentiable-on S (λx. c) n
by (induction n arbitrary: c) (auto simp: continuous-intros frechet-derivative-const)

lemma higher-differentiable-on-id: higher-differentiable-on S (λx. x) n
by (cases n) (auto simp: frechet-derivative-works higher-differentiable-on-const)

lemma higher-differentiable-on-add:
higher-differentiable-on S (λx. f x + g x) n
if higher-differentiable-on S f n

higher-differentiable-on S g n
open S

using that
proof (induction n arbitrary: f g)

case 0
then show ?case by (auto intro!: continuous-intros)

next
case (Suc n)
from Suc.prems have

f :
∧

x. x∈S =⇒ f differentiable (at x)
and hf : higher-differentiable-on S (λx. frechet-derivative f (at x) v) n
and g:

∧
x. x∈S =⇒ g differentiable (at x)

and hg: higher-differentiable-on S (λx. frechet-derivative g (at x) v) n
for v
by auto

show ?case
using f g ‹open S›
by (auto simp: frechet-derivative-plus

intro!: derivative-intros f g Suc.IH hf hg
cong: higher-differentiable-on-cong)

qed

lemma (in bounded-bilinear) differentiable:
(λx. prod (f x) (g x)) differentiable at x within S
if f differentiable at x within S

g differentiable at x within S
by (blast intro: differentiableI frechet-derivative-worksI that FDERIV )

context begin
private lemmas d = bounded-bilinear .differentiable
lemmas differentiable-inner = bounded-bilinear-inner [THEN d]
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and differentiable-scaleR = bounded-bilinear-scaleR[THEN d]
and differentiable-mult = bounded-bilinear-mult[THEN d]

end

lemma (in bounded-bilinear) differentiable-on:
(λx. prod (f x) (g x)) differentiable-on S
if f differentiable-on S g differentiable-on S
using that by (auto simp: differentiable-on-def differentiable)

context begin
private lemmas do = bounded-bilinear .differentiable-on
lemmas differentiable-on-inner = bounded-bilinear-inner [THEN do]

and differentiable-on-scaleR = bounded-bilinear-scaleR[THEN do]
and differentiable-on-mult = bounded-bilinear-mult[THEN do]

end

lemma (in bounded-bilinear) higher-differentiable-on:
higher-differentiable-on S (λx. prod (f x) (g x)) n
if

higher-differentiable-on S f n
higher-differentiable-on S g n
open S

using that
proof (induction n arbitrary: f g)

case 0
then show ?case by (auto intro!: continuous-intros continuous-on)

next
case (Suc n)
from Suc.prems have

f :
∧

x. x∈S =⇒ f differentiable (at x)
and hf : higher-differentiable-on S (λx. frechet-derivative f (at x) v) n
and g:

∧
x. x∈S =⇒ g differentiable (at x)

and hg: higher-differentiable-on S (λx. frechet-derivative g (at x) v) n
for v
by auto

show ?case
using f g ‹open S› Suc
by (auto simp: frechet-derivative

intro!: derivative-intros f g differentiable higher-differentiable-on-add Suc.IH
intro: higher-differentiable-on-SucD
cong: higher-differentiable-on-cong)

qed

context begin
private lemmas hdo = bounded-bilinear .higher-differentiable-on
lemmas higher-differentiable-on-inner = bounded-bilinear-inner [THEN hdo]

and higher-differentiable-on-scaleR = bounded-bilinear-scaleR[THEN hdo]
and higher-differentiable-on-mult = bounded-bilinear-mult[THEN hdo]

end
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lemma higher-differentiable-on-sum:
higher-differentiable-on S (λx.

∑
i∈F . f i x) n

if
∧

i. i ∈ F =⇒ finite F =⇒ higher-differentiable-on S (f i) n open S
using that
by (induction F rule: infinite-finite-induct)
(auto intro!: higher-differentiable-on-const higher-differentiable-on-add)

lemma higher-differentiable-on-subset:
higher-differentiable-on S f n
if higher-differentiable-on T f n S ⊆ T
using that
by (induction n arbitrary: f ) (auto intro: continuous-on-subset differentiable-on-subset)

lemma higher-differentiable-on-compose:
higher-differentiable-on S (f o g) n
if higher-differentiable-on T f n higher-differentiable-on S g n g ‘ S ⊆ T open S

open T
for g::-⇒-::euclidean-space— TODO: can we get around this restriction?
using that(1−3 )

proof (induction n arbitrary: f g)
case 0
then show ?case using that(4−)

by (auto simp: continuous-on-compose2 )
next

case (Suc n)
from Suc.prems
have

f :
∧

x. x ∈ T =⇒ f differentiable (at x)
and g:

∧
x. x ∈ S =⇒ g differentiable (at x)

and hf : higher-differentiable-on T (λx. frechet-derivative f (at x) v) n
and hg: higher-differentiable-on S (λx. frechet-derivative g (at x) w) n
for v w
by auto

show ?case
using ‹g ‘ - ⊆ -› ‹open S› f g ‹open T › Suc

Suc.IH [where f=λx. frechet-derivative f (at x) v
and g = λx. g x for v, unfolded o-def ]

higher-differentiable-on-SucD[OF Suc.prems(2 )]
by (auto

simp: frechet-derivative-compose-eucl subset-iff
simp del: o-apply
intro!: differentiable-chain-within higher-differentiable-on-sum

higher-differentiable-on-scaleR higher-differentiable-on-inner
higher-differentiable-on-const

intro: differentiable-at-withinI
cong: higher-differentiable-on-cong)

qed
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lemma higher-differentiable-on-uminus:
higher-differentiable-on S (λx. − f x) n
if higher-differentiable-on S f n open S
using higher-differentiable-on-scaleR[of S λx. −1 n f ] that
by (auto simp: higher-differentiable-on-const)

lemma higher-differentiable-on-minus:
higher-differentiable-on S (λx. f x − g x) n
if higher-differentiable-on S f n

higher-differentiable-on S g n
open S

using higher-differentiable-on-add[OF - higher-differentiable-on-uminus, OF that(1 ,2 ,3 ,3 )]
by simp

lemma higher-differentiable-on-inverse:
higher-differentiable-on S (λx. inverse (f x)) n
if higher-differentiable-on S f n 0 /∈ f ‘ S open S
for f ::-⇒-::real-normed-field
using that

proof (induction n arbitrary: f )
case 0
then show ?case by (auto simp: continuous-on-inverse)

next
case (Suc n)
from Suc.prems(1 ) have fn: higher-differentiable-on S f n by (rule higher-differentiable-on-SucD)
from Suc show ?case

by (auto simp: continuous-on-inverse image-iff power2-eq-square
frechet-derivative-inverse divide-inverse

intro!: differentiable-inverse higher-differentiable-on-uminus higher-differentiable-on-mult
Suc.IH fn

cong: higher-differentiable-on-cong)
qed

lemma higher-differentiable-on-divide:
higher-differentiable-on S (λx. f x / g x) n
if

higher-differentiable-on S f n
higher-differentiable-on S g n∧

x. x ∈ S =⇒ g x 6= 0
open S

for f ::-⇒-::real-normed-field
using higher-differentiable-on-mult[OF - higher-differentiable-on-inverse, OF that(1 ,2 )

- that(4 ,4 )]
that(3 )

by (auto simp: divide-inverse image-iff )

lemma differentiable-on-open-Union:
f differentiable-on

⋃
S
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if
∧

s. s ∈ S =⇒ f differentiable-on s∧
s. s ∈ S =⇒ open s

using that
unfolding differentiable-on-def
by (metis Union-iff at-within-open open-Union)

lemma higher-differentiable-on-open-Union: higher-differentiable-on (
⋃

S) f n
if

∧
s. s ∈ S =⇒ higher-differentiable-on s f n∧

s. s ∈ S =⇒ open s
using that

proof (induction n arbitrary: f )
case 0
then show ?case by (auto simp: continuous-on-open-Union)

next
case (Suc n)
then show ?case

by (auto simp: differentiable-on-open-Union)
qed

lemma differentiable-on-open-Un:
f differentiable-on S ∪ T
if f differentiable-on S

f differentiable-on T
open S open T

using that differentiable-on-open-Union[of {S , T} f ]
by auto

lemma higher-differentiable-on-open-Un: higher-differentiable-on (S ∪ T ) f n
if higher-differentiable-on S f n

higher-differentiable-on T f n
open S open T

using higher-differentiable-on-open-Union[of {S , T} f n] that
by auto

lemma higher-differentiable-on-sqrt: higher-differentiable-on S (λx. sqrt (f x)) n
if higher-differentiable-on S f n 0 /∈ f ‘ S open S
using that

proof (induction n arbitrary: f )
case 0
then show ?case by (auto simp: continuous-intros)

next
case (Suc n)
from Suc.prems(1 ) have fn: higher-differentiable-on S f n by (rule higher-differentiable-on-SucD)
then have continuous-on S f

by (rule higher-differentiable-on-imp-continuous-on)
with ‹open S› have op: open (S ∩ f −‘ {0<..}) (is open ?op)

by (rule open-continuous-vimage ′) simp
from ‹open S› ‹continuous-on S f › have on: open (S ∩ f −‘ {..<0}) (is open

?on)
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by (rule open-continuous-vimage ′) simp
have op ′: higher-differentiable-on ?op (λx. 1 ) n and on ′: higher-differentiable-on

?on (λx. −1 ) n
by (rule higher-differentiable-on-const)+

then have i: higher-differentiable-on (?op ∪ ?on) (λx. if 0 < f x then 1 ::real
else − 1 ) n

by (auto intro!: higher-differentiable-on-open-Un op on
higher-differentiable-on-congI [OF - op ′] higher-differentiable-on-congI [OF

- on ′])
also have ?op ∪ ?on = S using Suc by auto
finally have i: higher-differentiable-on S (λx. if 0 < f x then 1 ::real else − 1 ) n

.
from fn i Suc show ?case

by (auto simp: sqrt-differentiable-on image-iff frechet-derivative-sqrt
intro!: sqrt-differentiable higher-differentiable-on-mult higher-differentiable-on-inverse

higher-differentiable-on-divide higher-differentiable-on-const
cong: higher-differentiable-on-cong)

qed

lemma higher-differentiable-on-frechet-derivativeI :
higher-differentiable-on X (λx. frechet-derivative f (at x) h) i
if higher-differentiable-on X f (Suc i) open X x ∈ X
using that(1 )
by (induction i arbitrary: f h) auto

lemma higher-differentiable-on-norm:
higher-differentiable-on S (λx. norm (f x)) n
if higher-differentiable-on S f n 0 /∈ f ‘ S open S
for f ::-⇒-::real-inner
using that

proof (induction n arbitrary: f )
case 0
then show ?case by (auto simp: continuous-on-norm)

next
case (Suc n)
from Suc.prems(1 ) have fn: higher-differentiable-on S f n by (rule higher-differentiable-on-SucD)
from Suc show ?case
by (auto simp: continuous-on-norm frechet-derivative-norm image-iff sgn-div-norm

cong: higher-differentiable-on-cong
intro!: differentiable-norm-compose-at higher-differentiable-on-inner

higher-differentiable-on-inverse
higher-differentiable-on-mult Suc.IH fn)

qed

declare higher-differentiable-on.simps [simp del]

lemma higher-differentiable-on-Pair :
higher-differentiable-on S f k =⇒ higher-differentiable-on S g k =⇒
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higher-differentiable-on S (λx. (f x, g x)) k
if open S

proof (induction k arbitrary: f g)
case 0
then show ?case

unfolding higher-differentiable-on.simps
by (auto intro!: continuous-intros)

next
case (Suc k)
then show ?case using that

unfolding higher-differentiable-on.simps
by (auto simp: frechet-derivative-pair [of f - g] cong: higher-differentiable-on-cong)

qed

lemma higher-differentiable-on-compose ′:
higher-differentiable-on S (λx. f (g x)) n
if higher-differentiable-on T f n higher-differentiable-on S g n g ‘ S ⊆ T open S

open T
for g::-⇒-::euclidean-space
using higher-differentiable-on-compose[of T f n S g] comp-def that
by (metis (no-types, lifting) higher-differentiable-on-cong)

lemma higher-differentiable-on-fst:
higher-differentiable-on (S × T ) fst k

proof (induction k)
case (Suc k)
then show ?case

unfolding higher-differentiable-on.simps
by (auto simp: differentiable-at-fst frechet-derivative-fst frechet-derivative-id

higher-differentiable-on-const)
qed (auto simp: higher-differentiable-on.simps continuous-on-fst)

lemma higher-differentiable-on-snd:
higher-differentiable-on (S × T ) snd k

proof (induction k)
case (Suc k)
then show ?case

unfolding higher-differentiable-on.simps
by (auto intro!: continuous-intros

simp: differentiable-at-snd frechet-derivative-snd frechet-derivative-id higher-differentiable-on-const)
qed (auto simp: higher-differentiable-on.simps continuous-on-snd)

lemma higher-differentiable-on-fst-comp:
higher-differentiable-on S (λx. fst (f x)) k
if higher-differentiable-on S f k open S
using that
by (induction k arbitrary: f )
(auto intro!: continuous-intros differentiable-at-fst

cong: higher-differentiable-on-cong
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simp: higher-differentiable-on.simps frechet-derivative-fst)

lemma higher-differentiable-on-snd-comp:
higher-differentiable-on S (λx. snd (f x)) k
if higher-differentiable-on S f k open S
using that
by (induction k arbitrary: f )
(auto intro!: continuous-intros differentiable-at-snd

cong: higher-differentiable-on-cong
simp: higher-differentiable-on.simps frechet-derivative-snd)

lemma higher-differentiable-on-Pair ′:
higher-differentiable-on S f k =⇒ higher-differentiable-on T g k =⇒
higher-differentiable-on (S × T ) (λx. (f (fst x), g (snd x))) k

if S : open S and T : open T
for f ::-::euclidean-space⇒- and g::-::euclidean-space⇒-
by (auto intro!: higher-differentiable-on-Pair open-Times S T

higher-differentiable-on-fst
higher-differentiable-on-snd
higher-differentiable-on-compose ′[where f=f and T=S ]
higher-differentiable-on-compose ′[where f=g and T=T ])

lemma higher-differentiable-on-sin: higher-differentiable-on S (λx. sin (f x::real))
n

and higher-differentiable-on-cos: higher-differentiable-on S (λx. cos (f x::real)) n
if f : higher-differentiable-on S f n and S : open S
unfolding atomize-conj
using f

proof (induction n)
case (Suc n)
then have higher-differentiable-on S f n

higher-differentiable-on S (λx. sin (f x)) n
higher-differentiable-on S (λx. cos (f x)) n∧

x. x ∈ S =⇒ f differentiable at x
using higher-differentiable-on-SucD
by (auto simp: higher-differentiable-on.simps)

with Suc show ?case
by (auto simp: higher-differentiable-on.simps sin-differentiable-at cos-differentiable-at

frechet-derivative-sin frechet-derivative-cos S
intro!: higher-differentiable-on-mult higher-differentiable-on-uminus
cong: higher-differentiable-on-cong[OF S ])

qed (auto simp: higher-differentiable-on.simps intro!: continuous-intros)

2.3 Higher directional derivatives
primrec nth-derivative :: nat ⇒ ( ′a::real-normed-vector ⇒ ′b::real-normed-vector)
⇒ ′a ⇒ ′a ⇒ ′b where

nth-derivative 0 f x h = f x
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| nth-derivative (Suc i) f x h = nth-derivative i (λx. frechet-derivative f (at x) h)
x h

lemma frechet-derivative-nth-derivative-commute:
frechet-derivative (λx. nth-derivative i f x h) (at x) h =

nth-derivative i (λx. frechet-derivative f (at x) h) x h
by (induction i arbitrary: f ) auto

lemma nth-derivative-funpow:
nth-derivative i f x h = ((λf x. frechet-derivative f (at x) h) ^^ i) f x
by (induction i arbitrary: f ) (auto simp del: funpow.simps simp: funpow-Suc-right)

lemma nth-derivative-exists:
∃ f ′. ((λx. nth-derivative i f x h) has-derivative f ′) (at x) ∧

f ′ h = nth-derivative (Suc i) f x h
if higher-differentiable-on X f (Suc i) open X x ∈ X
using that(1 )

proof (induction i arbitrary: f )
case 0
with that show ?case
by (auto simp: higher-differentiable-on.simps that dest!: frechet-derivative-worksI )

next
case (Suc i)
from Suc.prems
have

∧
x. x ∈ X =⇒ f differentiable at x higher-differentiable-on X (λx. frechet-derivative

f (at x) h) (Suc i)
unfolding higher-differentiable-on.simps(2 )[where n = Suc i]
by auto

from Suc.IH [OF this(2 )] show ?case
by auto

qed

lemma higher-derivatives-exists:
assumes higher-differentiable-on X f n open X
obtains Df where∧

a h. Df a 0 h = f a∧
a h i. i < n =⇒ a ∈ X =⇒ ((λa. Df a i H ) has-derivative Df a (Suc i)) (at

a) ∧
a i. i ≤ n =⇒ a ∈ X =⇒ Df a i H = nth-derivative i f a H

proof −
have higher-differentiable-on X f (Suc i) if i < n for i

apply (rule higher-differentiable-on-le[OF assms(1 )])
using that by simp

from nth-derivative-exists[OF this assms(2 )]
have ∀ i∈{..<n}. ∀ x ∈ X . ∃ f ′. ((λx. nth-derivative i f x H ) has-derivative f ′)

(at x) ∧ f ′ H = nth-derivative (Suc i) f x H
by blast

from this[unfolded bchoice-iff ]
obtain f ′ where f ′: i < n =⇒ x ∈ X =⇒ ((λx. nth-derivative i f x H )
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has-derivative f ′ x i) (at x)
i < n =⇒ x ∈ X =⇒ f ′ x i H = nth-derivative (Suc i) f x H for x i
by force

define Df where Df a i h = (if i = 0 then f a else f ′ a (i − 1 ) h) for a i h
have Df a 0 h = f a for a h

by (auto simp: Df-def )
moreover have i < n =⇒ a ∈ X =⇒ ((λa. Df a i H ) has-derivative Df a (Suc

i)) (at a)
for i a
apply (auto simp: Df-def [abs-def ])
using - ‹open X›
apply (rule has-derivative-transform-within-open)

apply (rule f ′)
apply (auto simp: f ′)

done
moreover have i ≤ n =⇒ a ∈ X =⇒ Df a i H = nth-derivative i f a H for i a

by (auto simp: Df-def f ′)
ultimately show ?thesis ..

qed

lemma nth-derivative-differentiable:
assumes higher-differentiable-on S f (Suc n) x ∈ S
shows (λx. nth-derivative n f x v) differentiable at x
using assms
by (induction n arbitrary: f ) (auto simp: higher-differentiable-on.simps)

lemma higher-differentiable-on-imp-continuous-nth-derivative:
assumes higher-differentiable-on S f n
shows continuous-on S (λx. nth-derivative n f x v)
using assms
by (induction n arbitrary: f ) (auto simp: higher-differentiable-on.simps)

lemma frechet-derivative-at-real-eq-scaleR:
frechet-derivative f (at x) v = v ∗R frechet-derivative f (at x) 1
if f differentiable (at x) NO-MATCH 1 v
by (simp add: frechet-derivative-eq-vector-derivative that)

lemma higher-differentiable-on-real-Suc:
higher-differentiable-on S f (Suc n) ←→

(∀ x∈S . f differentiable (at x)) ∧
(higher-differentiable-on S (λx. frechet-derivative f (at x) 1 ) n)

if open S
for S ::real set
using ‹open S›
by (auto simp: higher-differentiable-on.simps frechet-derivative-at-real-eq-scaleR

intro!: higher-differentiable-on-scaleR higher-differentiable-on-const
cong: higher-differentiable-on-cong)

lemma higher-differentiable-on-real-SucI :
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fixes S ::real set
assumes∧

x. x ∈ S =⇒ (λx. nth-derivative n f x 1 ) differentiable at x
continuous-on S (λx. nth-derivative (Suc n) f x 1 )
higher-differentiable-on S f n
and o: open S

shows higher-differentiable-on S f (Suc n)
using assms

proof (induction n arbitrary: f )
case 0
then show ?case

by (auto simp: higher-differentiable-on-real-Suc higher-differentiable-on.simps(1 )
o)
qed (fastforce simp: higher-differentiable-on-real-Suc)

lemma higher-differentiable-on-real-Suc ′:
open S =⇒ higher-differentiable-on S f (Suc n) ←→
(∀ v. continuous-on S (λx. nth-derivative (Suc n) f x 1 )) ∧
(∀ x∈S . ∀ v. (λx. nth-derivative n f x 1 ) differentiable (at x)) ∧ higher-differentiable-on

S f n
for S ::real set
apply (auto simp: nth-derivative-differentiable

dest: higher-differentiable-on-SucD
intro: higher-differentiable-on-real-SucI )

by (auto simp: higher-differentiable-on-real-Suc higher-differentiable-on.simps(1 )
higher-differentiable-on-imp-continuous-nth-derivative)

lemma closed-segment-subsetD:
0 ≤ x =⇒ x ≤ 1 =⇒ (X + x ∗R H ) ∈ S
if closed-segment X (X + H ) ⊆ S
using that
by (rule subsetD) (auto simp: closed-segment-def algebra-simps intro!: exI [where

x=x])

lemma higher-differentiable-Taylor :
fixes f :: ′a::real-normed-vector ⇒ ′b::banach

and H :: ′a
and Df :: ′a ⇒ nat ⇒ ′a ⇒ ′a ⇒ ′b

assumes n > 0
assumes hd: higher-differentiable-on S f n open S
assumes cs: closed-segment X (X + H ) ⊆ S
defines i ≡ λx. ((1 − x) ^ (n − 1 ) / fact (n − 1 )) ∗R nth-derivative n f (X +

x ∗R H ) H
shows (i has-integral f (X + H ) − (

∑
i<n. (1 / fact i) ∗R nth-derivative i f X

H )) {0 ..1} (is ?th1 )
and f (X + H ) = (

∑
i<n. (1 / fact i) ∗R nth-derivative i f X H ) + integral

{0 ..1} i (is ?th2 )
and i integrable-on {0 ..1} (is ?th3 )
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proof −
from higher-derivatives-exists[OF hd]
obtain Df where Df : (

∧
a h. Df a 0 h = f a)

(
∧

a h i. i < n =⇒ a ∈ S =⇒ ((λa. Df a i H ) has-derivative Df a (Suc i)) (at
a))∧

a i. i ≤ n =⇒ a ∈ S =⇒ Df a i H = nth-derivative i f a H
by blast

from multivariate-Taylor-integral[OF ‹n > 0 ›, of Df H f X , OF Df (1 ,2 )] cs
have mt: ((λx. ((1 − x) ^ (n − 1 ) / fact (n − 1 )) ∗R Df (X + x ∗R H ) n H )

has-integral
f (X + H ) − (

∑
i<n. (1 / fact i) ∗R Df X i H ))

{0 ..1}
by force

from cs have X ∈ S by auto
show ?th1

apply (rule has-integral-eq-rhs)
unfolding i-def
using negligible-empty - mt
apply (rule has-integral-spike)

using closed-segment-subsetD[OF cs]
by (auto simp: Df ‹X ∈ S›)

then show ?th2 ?th3
unfolding has-integral-iff
by auto

qed

lemma frechet-derivative-componentwise:
frechet-derivative f (at a) v = (

∑
i∈Basis. (v · i) ∗ (frechet-derivative f (at a)

i))
if f differentiable at a
for f :: ′a::euclidean-space ⇒ real

proof −
have linear (frechet-derivative f (at a))

using that
by (rule linear-frechet-derivative)

from Linear-Algebra.linear-componentwise[OF this, of v 1 ]
show ?thesis

by simp
qed

lemma second-derivative-componentwise:
nth-derivative 2 f a v =
(
∑

i∈Basis. (
∑

j∈Basis. frechet-derivative (λa. frechet-derivative f (at a) j) (at
a) i ∗ (v · j)) ∗ (v · i))

if higher-differentiable-on S f 2 and S : open S a ∈ S
for f :: ′a::euclidean-space ⇒ real

proof −
have diff : (λx. frechet-derivative f (at x) v) differentiable at a for v

using that
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by (auto simp: numeral-2-eq-2 higher-differentiable-on.simps differentiable-on-openD
dest!: spec[where x=v])

have d1 : x ∈ S =⇒ f differentiable at x for x
using that
by (auto simp: numeral-2-eq-2 higher-differentiable-on.simps dest!: differen-

tiable-on-openD)
have eq:

∧
x. x ∈ Basis =⇒

frechet-derivative
(λx.

∑
i∈Basis. v · i ∗ frechet-derivative f (at x) i) (at a) x =

(
∑

j∈Basis. frechet-derivative (λa. frechet-derivative f (at a) j) (at a) x ∗
(v · j))

apply (subst frechet-derivative-sum)
subgoal by (auto intro!: differentiable-mult diff )
apply (rule sum.cong)
apply simp

apply (subst frechet-derivative-times)
subgoal by simp
subgoal by (rule diff )
by (simp add: frechet-derivative-const)

show ?thesis
apply (simp add: numeral-2-eq-2 )
apply (subst frechet-derivative-componentwise[OF diff ])
apply (rule sum.cong)
apply simp

apply simp
apply (rule disjI2 )
apply (rule trans)
apply (rule frechet-derivative-transform-within-open-ext [OF - S frechet-derivative-componentwise])
apply (simp add: diff )

apply (rule d1 , assumption)
apply (simp add: eq)
done

qed

lemma higher-differentiable-Taylor1 :
fixes f :: ′a::real-normed-vector ⇒ ′b::banach
assumes hd: higher-differentiable-on S f 2 open S
assumes cs: closed-segment X (X + H ) ⊆ S
defines i ≡ λx. ((1 − x)) ∗R nth-derivative 2 f (X + x ∗R H ) H
shows (i has-integral f (X + H ) − (f X + nth-derivative 1 f X H )) {0 ..1}

and f (X + H ) = f X + nth-derivative 1 f X H + integral {0 ..1} i
and i integrable-on {0 ..1}

using higher-differentiable-Taylor [OF - hd cs]
by (auto simp: numeral-2-eq-2 i-def )

lemma differentiable-on-open-blinfunE :
assumes f differentiable-on S open S
obtains f ′ where

∧
x. x ∈ S =⇒ (f has-derivative blinfun-apply (f ′ x)) (at x)

proof −
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{
fix x assume x ∈ S
with assms obtain f ′ where f ′: (f has-derivative f ′) (at x)

by (auto dest!: differentiable-on-openD simp: differentiable-def )
then have bounded-linear f ′

by (rule has-derivative-bounded-linear)
then obtain bf ′ where f ′ = blinfun-apply bf ′

by (metis bounded-linear-Blinfun-apply)
then have ∃ bf ′. (f has-derivative blinfun-apply bf ′) (at x) using f ′

by blast
} then obtain f ′ where

∧
x. x ∈ S =⇒ (f has-derivative blinfun-apply (f ′ x))

(at x)
by metis

then show ?thesis ..
qed

lemma continuous-on-blinfunI1 :
continuous-on X f
if

∧
i. i ∈ Basis =⇒ continuous-on X (λx. blinfun-apply (f x) i)

using that
by (auto simp: continuous-on-def intro: tendsto-componentwise1 )

lemma c1-euclidean-blinfunE :
fixes f :: ′a::euclidean-space⇒ ′b::real-normed-vector
assumes

∧
x. x ∈ S =⇒ (f has-derivative f ′ x) (at x within S)

assumes
∧

i. i ∈ Basis =⇒ continuous-on S (λx. f ′ x i)
obtains bf ′ where∧

x. x ∈ S =⇒ (f has-derivative blinfun-apply (bf ′ x)) (at x within S)
continuous-on S bf ′∧

x. x ∈ S =⇒ blinfun-apply (bf ′ x) = f ′ x
proof −

from assms have bounded-linear (f ′ x) if x ∈ S for x
by (auto intro!: has-derivative-bounded-linear that)

then obtain bf ′ where bf ′: ∀ x ∈ S . f ′ x = blinfun-apply (bf ′ x)
apply atomize-elim
apply (rule bchoice)
apply auto
by (metis bounded-linear-Blinfun-apply)

with assms have
∧

x. x ∈ S =⇒ (f has-derivative blinfun-apply (bf ′ x)) (at x
within S)

by simp
moreover
have f-tendsto: ((λn. f ′ n j) −−−→ f ′ x j) (at x within S)

if x ∈ S j ∈ Basis
for x j
using assms by (auto simp: continuous-on-def that)

have continuous-on S bf ′

by (rule continuous-on-blinfunI1 ) (simp add: bf ′[rule-format, symmetric] assms)
moreover have

∧
x. x ∈ S =⇒ blinfun-apply (bf ′ x) = f ′ x using bf ′ by auto
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ultimately show ?thesis ..
qed

lemma continuous-Sigma:
assumes defined: y ∈ Pi T X
assumes f-cont: continuous-on (Sigma T X) (λ(t, x). f t x)
assumes y-cont: continuous-on T y
shows continuous-on T (λx. f x (y x))
using

defined
continuous-on-compose2 [OF

continuous-on-subset[where t=(λx. (x, y x)) ‘ T , OF f-cont]
continuous-on-Pair [OF continuous-on-id y-cont]]

by auto

lemma continuous-on-Times-swap:
continuous-on (X × Y ) (λ(x, y). f x y)
if continuous-on (Y × X) (λ(y, x). f x y)
using continuous-on-compose2 [OF that continuous-on-swap, where s=X × Y ]
by (auto simp: split-beta ′ product-swap)

lemma leibniz-rule ′:∧
x. x ∈ S =⇒
((λx. integral (cbox a b) (f x)) has-derivative (λv. integral (cbox a b) (λt. fx x

t v)))
(at x within S)

(λx. integral (cbox a b) (f x)) differentiable-on S
if convex S

and c1 :
∧

t x. t ∈ cbox a b =⇒ x ∈ S =⇒ ((λx. f x t) has-derivative fx x t) (at
x within S)∧

i. i ∈ Basis =⇒ continuous-on (S × cbox a b) (λ(x, t). fx x t i)
and i:

∧
x. x ∈ S =⇒ f x integrable-on cbox a b

for S :: ′a::euclidean-space set
and f :: ′a ⇒ ′b::euclidean-space ⇒ ′c::euclidean-space

proof −
have fx1 : continuous-on S (λx. fx x t i) if t ∈ cbox a b i ∈ Basis for i t

by (rule continuous-Sigma[OF - c1 (2 ), where y=λ-. t]) (auto simp: continu-
ous-intros that)

{
fix x assume x ∈ S
have fx2 : continuous-on (cbox a b) (λt. fx x t i) if i ∈ Basis for i

by (rule continuous-Sigma[OF - continuous-on-Times-swap[OF c1 (2 )]])
(auto simp: continuous-intros that ‹x ∈ S›)

{
fix t
assume t ∈ cbox a b

have ∃ f ′. (∀ x ∈ S . ((λx. f x t) has-derivative blinfun-apply (f ′ x)) (at x within
S) ∧

blinfun-apply (f ′ x) = fx x t) ∧
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continuous-on S f ′

by (rule c1-euclidean-blinfunE [OF c1 (1 )[OF ‹t ∈ -›] fx1 [OF ‹t ∈ -›]]) (auto,
metis)

} then obtain fx ′ where
fx ′:∧

t x. t ∈ cbox a b =⇒ x ∈ S =⇒ ((λx. f x t) has-derivative blinfun-apply (fx ′

t x)) (at x within S)∧
t x. t ∈ cbox a b =⇒ x ∈ S =⇒ blinfun-apply (fx ′ t x) = fx x t∧
t. t ∈ cbox a b =⇒ continuous-on S (fx ′ t)

by metis
have c: continuous-on (S × cbox a b) (λ(x, t). fx ′ t x)

apply (rule continuous-on-blinfunI1 )
using c1 (2 )
apply (rule continuous-on-eq) apply assumption
by (auto simp: fx ′ split-beta ′)

from leibniz-rule[of S a b f λx t. fx ′ t x x, OF fx ′(1 ) i c ‹x ∈ S› ‹convex S›]
have ((λx. integral (cbox a b) (f x)) has-derivative blinfun-apply (integral (cbox

a b) (λt. fx ′ t x))) (at x within S)
by auto

then have ((λx. integral (cbox a b) (f x)) has-derivative blinfun-apply (integral
(cbox a b) (λt. fx ′ t x))) (at x within S)

by auto
also
have fx ′xi: (λt. fx ′ t x) integrable-on cbox a b

apply (rule integrable-continuous)
apply (rule continuous-on-blinfunI1 )
by (simp add: fx ′ ‹x ∈ S› fx2 )

have blinfun-apply (integral (cbox a b) (λt. fx ′ t x)) = (λv. integral (cbox a b)
(λxb. fx x xb v))

apply (rule ext)
apply (subst blinfun-apply-integral)
apply (rule fx ′xi)

by (simp add: ‹x ∈ S› fx ′ cong: integral-cong)
finally show ((λx. integral (cbox a b) (f x)) has-derivative (λc. integral (cbox

a b) (λxb. fx x xb c))) (at x within S)
by simp

} then show (λx. integral (cbox a b) (f x)) differentiable-on S
by (auto simp: differentiable-on-def differentiable-def )

qed

lemmas leibniz-rule ′-interval = leibniz-rule ′[where ′b=-::ordered-euclidean-space,
unfolded cbox-interval]

lemma leibniz-rule ′-higher :
higher-differentiable-on S (λx. integral (cbox a b) (f x)) k
if convex S open S

and c1 : higher-differentiable-on (S×cbox a b) (λ(x, t). f x t) k
— this condition is actually too strong: it would suffice if higher partial derivatives

(w.r.t. x) are continuous w.r.t. t. but it makes the statement short and no need to
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introduce new constants
for S :: ′a::euclidean-space set

and f :: ′a ⇒ ′b::euclidean-space ⇒ ′c::euclidean-space
using c1

proof (induction k arbitrary: f )
case 0
then show ?case
by (auto simp: higher-differentiable-on.simps intro!: integral-continuous-on-param)

next
case (Suc k)
define D where D x = frechet-derivative (λ(x, y). f x y) (at x) for x
note [continuous-intros] =

Suc.prems[THEN higher-differentiable-on-imp-continuous-on, THEN continu-
ous-on-compose2 ,

of - λx. (f x, g x) for f g, unfolded split-beta ′ fst-conv snd-conv]
from Suc.prems have prems:∧

xt. xt ∈ S × cbox a b =⇒ (λ(x, y). f x y) differentiable at xt
higher-differentiable-on (S × cbox a b) (λx. D x (dx, dt)) k
for dx dt
by (auto simp: higher-differentiable-on.simps D-def )

from frechet-derivative-worksI [OF this(1 ), folded D-def ]
have D: x ∈ S =⇒ t ∈ cbox a b =⇒ ((λ(x, y). f x y) has-derivative D (x, t)) (at

(x, t)) for x t
by auto

have p1 : ((λx. (x, t:: ′b)) has-derivative (λh. (h, 0 ))) (at x within S) for x t
by (auto intro!: derivative-eq-intros)

have Dx: x ∈ S =⇒ t ∈ cbox a b =⇒ ((λx. f x t) has-derivative (λdx. D (x, t)
(dx, 0 ))) (at x within S) for x t

by (drule has-derivative-compose[OF p1 D], assumption) auto
have cD: continuous-on (S × cbox a b) (λ(x, t). D (x, t) v) for v

apply (rule higher-differentiable-on-imp-continuous-on[where n=k])
using prems(2 )[of fst v snd v]
by (auto simp: split-beta ′)

have fi: x ∈ S =⇒ f x integrable-on cbox a b for x
by (rule integrable-continuous) (auto intro!: continuous-intros)

from leibniz-rule ′[OF ‹convex S› Dx cD fi]
have ihd: x ∈ S =⇒ ((λx. integral (cbox a b) (f x)) has-derivative (λv. integral

(cbox a b) (λt. D (x, t) (v, 0 ))))
(at x within S)

and (λx. integral (cbox a b) (f x)) differentiable-on S
for x
by auto

then have x ∈ S =⇒ (λx. integral (cbox a b) (f x)) differentiable at x for x
using ‹open S›
by (auto simp: differentiable-on-openD)

moreover
have higher-differentiable-on S (λx. frechet-derivative (λx. integral (cbox a b) (f

x)) (at x) v) k for v
proof −
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have ∗: frechet-derivative (λx. integral (cbox a b) (f x)) (at x) =
(λv. integral (cbox a b) (λt. D (x, t) (v, 0 )))
if x ∈ S
for x
apply (rule frechet-derivative-at ′)
using ihd(1 )[OF that] at-within-open[OF that ‹open S›]
by auto

have ∗∗: higher-differentiable-on S (λx. integral (cbox a b) (λt. D (x, t) (v, 0 )))
k

apply (rule Suc.IH )
using prems by auto

show ?thesis
using ‹open S›
by (auto simp: ∗ ∗∗ cong: higher-differentiable-on-cong)

qed
ultimately
show ?case

by (auto simp: higher-differentiable-on.simps)
qed

lemmas leibniz-rule ′-higher-interval = leibniz-rule ′-higher [where ′b=-::ordered-euclidean-space,
unfolded cbox-interval]

2.4 Smoothness
definition k-smooth-on :: enat ⇒ ′a::real-normed-vector set ⇒ ( ′a⇒ ′b::real-normed-vector)
⇒ bool
(‹-−smooth ′-on› [1000 ]) where

smooth-on-def : k−smooth-on S f = (∀n≤k. higher-differentiable-on S f n)

abbreviation smooth-on S f ≡ ∞−smooth-on S f

lemma derivative-is-smooth ′:
assumes (k+1 )−smooth-on S f
shows k−smooth-on S (λx. frechet-derivative f (at x) v)
unfolding smooth-on-def

proof (intro allI impI )
fix n assume enat n ≤ k then have Suc n ≤ k + 1

unfolding plus-1-eSuc
by (auto simp: eSuc-def split: enat.splits)

then have higher-differentiable-on S f (Suc n)
using assms(1 ) by (auto simp: smooth-on-def )

then show higher-differentiable-on S (λx. frechet-derivative f (at x) v) n
by (auto simp: higher-differentiable-on.simps(2 ))

qed

lemma derivative-is-smooth: smooth-on S f =⇒ smooth-on S (λx. frechet-derivative
f (at x) v)

using derivative-is-smooth ′[of ∞ S f ] by simp
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lemma smooth-on-imp-continuous-on: continuous-on S f if k−smooth-on S f
apply (rule higher-differentiable-on-imp-continuous-on[where n=0 ])
using that
by (simp add: smooth-on-def enat-0 )

lemma smooth-on-imp-differentiable-on[simp]: f differentiable-on S if k−smooth-on
S f k 6= 0

using that
by (auto simp: smooth-on-def Suc-ile-eq enat-0

dest!: spec[where x=1 ]
intro!: higher-differentiable-on-imp-differentiable-on[where k=1 ])

lemma smooth-on-cong:
assumes k−smooth-on S g open S

and
∧

x. x ∈ S =⇒ f x = g x
shows k−smooth-on S f
using assms unfolding smooth-on-def
by (auto cong: higher-differentiable-on-cong)

lemma smooth-on-open-Un:
k−smooth-on S f =⇒ k−smooth-on T f =⇒ open S =⇒ open T =⇒ k−smooth-on

(S ∪ T ) f
by (auto simp: smooth-on-def higher-differentiable-on-open-Un)

lemma smooth-on-open-subsetsI :
k−smooth-on S f
if

∧
x. x ∈ S =⇒ ∃T . x ∈ T ∧ open T ∧ k−smooth-on T f

using that
unfolding smooth-on-def
by (force intro: higher-differentiable-on-open-subsetsI )

lemma smooth-on-const[intro]: k−smooth-on S (λx. c)
by (auto simp: smooth-on-def higher-differentiable-on-const)

lemma smooth-on-id[intro]: k−smooth-on S (λx. x)
by (auto simp: smooth-on-def higher-differentiable-on-id)

lemma smooth-on-add-fun: k−smooth-on S f =⇒ k−smooth-on S g =⇒ open S
=⇒ k−smooth-on S (f + g)

by (auto simp: smooth-on-def higher-differentiable-on-add plus-fun-def )

lemmas smooth-on-add = smooth-on-add-fun[unfolded plus-fun-def ]

lemma smooth-on-sum:
n−smooth-on S (λx.

∑
i∈F . f i x)

if
∧

i. i ∈ F =⇒ finite F =⇒ n−smooth-on S (f i) open S
using that
by (auto simp: smooth-on-def higher-differentiable-on-sum)
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lemma (in bounded-bilinear) smooth-on:
includes no matrix-mult
assumes k−smooth-on S f k−smooth-on S g open S
shows k−smooth-on S (λx. (f x) ∗∗ (g x))
using assms
by (auto simp: smooth-on-def higher-differentiable-on)

lemma smooth-on-compose2 :
fixes g::-⇒-::euclidean-space
assumes k−smooth-on T f k−smooth-on S g open U open T g ‘ U ⊆ T U ⊆ S
shows k−smooth-on U (f o g)
using assms
by (auto simp: smooth-on-def intro!: higher-differentiable-on-compose intro: higher-differentiable-on-subset)

lemma smooth-on-compose:
fixes g::-⇒-::euclidean-space
assumes k−smooth-on T f k−smooth-on S g open S open T g ‘ S ⊆ T
shows k−smooth-on S (f o g)
using assms by (rule smooth-on-compose2 ) auto

lemma smooth-on-subset:
k−smooth-on S f
if k−smooth-on T f S ⊆ T
using higher-differentiable-on-subset[of T f - S ] that
by (auto simp: smooth-on-def )

context begin
private lemmas s = bounded-bilinear .smooth-on
lemmas smooth-on-inner = bounded-bilinear-inner [THEN s]

and smooth-on-scaleR = bounded-bilinear-scaleR[THEN s]
and smooth-on-mult = bounded-bilinear-mult[THEN s]

end

lemma smooth-on-divide:k−smooth-on S f =⇒ k−smooth-on S g =⇒ open S =⇒(
∧

x.
x ∈ S =⇒ g x 6= 0 ) =⇒

k−smooth-on S (λx. f x / g x)
for f ::-⇒-::real-normed-field
by (auto simp: smooth-on-def higher-differentiable-on-divide)

lemma smooth-on-scaleR-fun: k−smooth-on S g =⇒ open S =⇒ k−smooth-on S
(c ∗R g)

by (auto simp: scaleR-fun-def intro!: smooth-on-scaleR )

lemma smooth-on-uminus-fun: k−smooth-on S g =⇒ open S =⇒ k−smooth-on S
(− g)

using smooth-on-scaleR-fun[where c=−1 , of k S g]
by auto
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lemmas smooth-on-uminus = smooth-on-uminus-fun[unfolded fun-Compl-def ]

lemma smooth-on-minus-fun: k−smooth-on S f =⇒ k−smooth-on S g =⇒ open S
=⇒ k−smooth-on S (f − g)

unfolding diff-conv-add-uminus
apply (rule smooth-on-add-fun)

apply assumption
apply (rule smooth-on-uminus-fun)

by auto

lemmas smooth-on-minus = smooth-on-minus-fun[unfolded fun-diff-def ]

lemma smooth-on-times-fun: k−smooth-on S f =⇒ k−smooth-on S g =⇒ open S
=⇒ k−smooth-on S (f ∗ g)

for f g::- ⇒-::real-normed-algebra
by (auto simp: times-fun-def intro!: smooth-on-mult)

lemma smooth-on-le:
l−smooth-on S f
if k−smooth-on S f l ≤ k
using that
by (auto simp: smooth-on-def )

lemma smooth-on-inverse: k−smooth-on S (λx. inverse (f x))
if k−smooth-on S f 0 /∈ f ‘ S open S
for f ::- ⇒-::real-normed-field
using that
by (auto simp: smooth-on-def intro!: higher-differentiable-on-inverse)

lemma smooth-on-norm: k−smooth-on S (λx. norm (f x))
if k−smooth-on S f 0 /∈ f ‘ S open S
for f ::- ⇒-::real-inner
using that
by (auto simp: smooth-on-def intro!: higher-differentiable-on-norm)

lemma smooth-on-sqrt: k−smooth-on S (λx. sqrt (f x))
if k−smooth-on S f 0 /∈ f ‘ S open S
using that
by (auto simp: smooth-on-def intro!: higher-differentiable-on-sqrt)

lemma smooth-on-frechet-derivative:
∞−smooth-on UNIV (λx. frechet-derivative f (at x) v)
if ∞−smooth-on UNIV f

— TODO: generalize
using that
apply (auto simp: smooth-on-def )
apply (rule higher-differentiable-on-frechet-derivativeI )
by auto
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lemmas smooth-on-frechet-derivivative-comp = smooth-on-compose2 [OF smooth-on-frechet-derivative,
unfolded o-def ]

lemma smooth-onD: higher-differentiable-on S f n if m−smooth-on S f enat n ≤
m

using that
by (auto simp: smooth-on-def )

lemma (in bounded-linear) higher-differentiable-on: higher-differentiable-on S f n
proof (induction n)

case 0
then show ?case
by (auto simp: higher-differentiable-on.simps linear-continuous-on bounded-linear-axioms)

next
case (Suc n)
then show ?case
apply (auto simp: higher-differentiable-on.simps frechet-derivative higher-differentiable-on-const)
using bounded-linear-axioms apply (rule bounded-linear-imp-differentiable)
done

qed

lemma (in bounded-linear) smooth-on: k−smooth-on S f
by (auto simp: smooth-on-def higher-differentiable-on)

lemma smooth-on-snd:
k−smooth-on S (λx. snd (f x))
if k−smooth-on S f open S
using higher-differentiable-on-snd-comp that
by (auto simp: smooth-on-def )

lemma smooth-on-fst:
k−smooth-on S (λx. fst (f x))
if k−smooth-on S f open S
using higher-differentiable-on-fst-comp that
by (auto simp: smooth-on-def )

lemma smooth-on-sin: n−smooth-on S (λx. sin (f x::real)) if n−smooth-on S f
open S

using that
by (auto simp: smooth-on-def intro!: higher-differentiable-on-sin)

lemma smooth-on-cos: n−smooth-on S (λx. cos (f x::real)) if n−smooth-on S f
open S

using that
by (auto simp: smooth-on-def intro!: higher-differentiable-on-cos)

lemma smooth-on-Taylor2E :
fixes f :: ′a::euclidean-space ⇒ real
assumes hd: ∞−smooth-on UNIV f
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obtains g where
∧

Y .
f Y = f X + frechet-derivative f (at X) (Y − X) + (

∑
i∈Basis. (

∑
j∈Basis.

((Y − X) · j) ∗ ((Y − X) · i) ∗ g i j Y ))∧
i j. i ∈ Basis =⇒ j ∈ Basis =⇒ ∞−smooth-on UNIV (g i j)

— TODO: generalize
proof −

define S :: ′a set where S = UNIV
have open S and convex S X ∈ S by (auto simp: S-def )
have hd: ∞−smooth-on S f

using hd by (auto simp: S-def )
define i where i H x = ((1 − x)) ∗R nth-derivative 2 f (X + x ∗R H ) H for x

H
define d2 where d2 v v ′ = (λx. frechet-derivative (λx. frechet-derivative f (at

x) v ′) (at x) v) for v v ′

define g where g H x i j = d2 i j (X + x ∗R H ) for i j x H
define g ′ where g ′ i j H = integral {0 .. 1} (λx. (1 − x) ∗ g H x i j) for i j H
have higher-differentiable-on S f 2

using hd(1 ) by (auto simp: smooth-on-def dest!: spec[where x=2 ])
note hd2 = this ‹open S›

have d2-cont: continuous-on S (d2 i j) for i j
using hd2 (1 )
by (auto simp: g-def numeral-2-eq-2 higher-differentiable-on.simps d2-def )

note [continuous-intros] = continuous-on-compose2 [OF d2-cont]

have hdiff2 : ∞−smooth-on S (d2 v v ′) for v v ′

apply (auto simp: d2-def )
apply (rule smooth-on-frechet-derivivative-comp)
apply (rule smooth-on-frechet-derivivative-comp)
by (auto simp: S-def assms)

{
fix Y
assume Y ∈ S
define H where H = Y − X
from ‹Y ∈ S› have X + H ∈ S by (simp add: H-def )
with ‹X ∈ S› have cs: closed-segment X (X + H ) ⊆ S

using ‹convex S›
by (rule closed-segment-subset)

have i: (i H has-integral f (X + H ) − (f X + nth-derivative 1 f X H )) {0 ..1}
f (X + H ) = f X + nth-derivative 1 f X H + integral {0 ..1} (i H )
i H integrable-on {0 ..1}
unfolding i-def
using higher-differentiable-Taylor1 [OF hd2 cs]
by auto

note i(2 )
also

have integrable: (λx.
∑

n∈Basis. (1 − x) ∗ (g H x a n ∗ (H · n) ∗ (H · a)))

58



integrable-on {0 ..1}
(λx. (1 − x) ∗ (g H x n a ∗ (H · a) ∗ (H · n))) integrable-on {0 ..1}
for a n

by (auto intro!: integrable-continuous-interval continuous-intros closed-segment-subsetD
cs simp: g-def )

have i-eq: i H x = (1 − x) ∗R (
∑

i∈Basis. (
∑

j∈Basis. g H x i j ∗ (H · j)) ∗
(H · i))

if 0 ≤ x x ≤ 1
for x
unfolding i-def
apply (subst second-derivative-componentwise[OF hd2 ])
apply (rule closed-segment-subsetD, rule cs, rule that, rule that)

by (simp add: g-def d2-def )

have integral {0 .. 1} (i H ) = integral {0 ..1} (λx. (1 − x) ∗ (
∑

i∈Basis.
(
∑

j∈Basis. g H x i j ∗ (H · j)) ∗ (H · i)))
apply (subst integral-spike[OF negligible-empty])
apply (rule sym)
apply (rule i-eq)

by (auto simp: that)
also
have . . . = (

∑
i∈Basis. (

∑
j∈Basis. (H · j) ∗ (H · i) ∗ g ′ i j H ))

apply (simp add: sum-distrib-left sum-distrib-right integral-sum integrable
g ′-def )

apply (simp add: integral-mult-right[symmetric] del: integral-mult-right)
by (simp only: ac-simps)
finally have f (X + H ) = f X + nth-derivative 1 f X H + (

∑
i∈Basis.∑

j∈Basis. H · j ∗ (H · i) ∗ g ′ i j H ) .
} note ∗ = this
have f Y = f X + frechet-derivative f (at X) (Y − X) + (

∑
i∈Basis.

∑
j∈Basis.

(Y − X) · j ∗ ((Y − X) · i) ∗ g ′ i j (Y − X))
for Y
using ∗[of Y ]
by (auto simp: S-def )

moreover
define T ::real set where T = {− 1<..<2}
have open T

by (auto simp: T-def )
have {0 .. 1} ⊆ T

by (auto simp: T-def )
have T-small: a ∈ S =⇒ b ∈ T =⇒ X + b ∗R (a − X) ∈ S for a b

by (auto simp: S-def )
have open (S × T )

by (auto intro: open-Times ‹open S› ‹open T ›)
have smooth-on S (λY . g ′ i j (Y − X)) if i: i ∈ Basis and j: j ∈ Basis for i j

unfolding smooth-on-def
apply safe
apply (simp add: g ′-def )
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apply (rule leibniz-rule ′-higher-interval)
apply fact

apply fact
apply (rule higher-differentiable-on-subset[where T=S × T ])
apply (auto intro!: higher-differentiable-on-mult simp: split-beta ′)

apply (subst diff-conv-add-uminus)
apply (rule higher-differentiable-on-add)

apply (rule higher-differentiable-on-const)
apply (subst scaleR-minus1-left[symmetric])
apply (rule higher-differentiable-on-scaleR)

apply (rule higher-differentiable-on-const)
apply (rule higher-differentiable-on-snd-comp)
apply (rule higher-differentiable-on-id)

apply fact apply fact apply fact
apply (auto simp: g-def )
apply (rule smooth-onD)
apply (rule smooth-on-compose2 [OF hdiff2 , unfolded o-def ])

using ‹open S› ‹open T ›
using T-small ‹- ⊆ T ›
by (auto intro!: open-Times smooth-on-add smooth-on-scaleR smooth-on-snd

smooth-on-minus smooth-on-fst)
ultimately show ?thesis unfolding S-def ..

qed

lemma smooth-on-Pair :
k−smooth-on S (λx. (f x, g x))
if open S k−smooth-on S f k−smooth-on S g

proof (auto simp: smooth-on-def )
fix n assume n: enat n ≤ k
have 1 : higher-differentiable-on S f n

using that(2 ) n unfolding smooth-on-def by auto
have 2 : higher-differentiable-on S g n

using that(3 ) n unfolding smooth-on-def by auto
show higher-differentiable-on S (λx. (f x, g x)) n

by (rule higher-differentiable-on-Pair [OF that(1 ) 1 2 ])
qed

lemma smooth-on-Pair ′:
k−smooth-on (S × T ) (λx. (f (fst x), g (snd x)))
if open S open T k−smooth-on S f k−smooth-on T g
for f ::-::euclidean-space⇒- and g::-::euclidean-space⇒-

proof (auto simp: smooth-on-def )
fix n assume n: enat n ≤ k
have 1 : higher-differentiable-on S f n

using that(3 ) n unfolding smooth-on-def by auto
have 2 : higher-differentiable-on T g n

using that(4 ) n unfolding smooth-on-def by auto
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show higher-differentiable-on (S × T ) (λx. (f (fst x), g (snd x))) n
by (rule higher-differentiable-on-Pair ′[OF that(1 ,2 ) 1 2 ])

qed

2.5 Diffeomorphism
definition diffeomorphism k S T p p ′←→

k−smooth-on S p ∧ k−smooth-on T p ′ ∧ homeomorphism S T p p ′

lemma diffeomorphism-imp-homeomorphism:
assumes diffeomorphism k s t p p ′

shows homeomorphism s t p p ′

using assms
by (auto simp: diffeomorphism-def )

lemma diffeomorphismD:
assumes diffeomorphism k S T f g
shows diffeomorphism-smoothD: k−smooth-on S f k−smooth-on T g

and diffeomorphism-inverseD:
∧

x. x ∈ S =⇒ g (f x) = x
∧

y. y ∈ T =⇒ f (g
y) = y

and diffeomorphism-image-eq: (f ‘ S = T ) (g ‘ T = S)
using assms by (auto simp: diffeomorphism-def homeomorphism-def )

lemma diffeomorphism-compose:
diffeomorphism n S T f g =⇒ diffeomorphism n T U h k =⇒ open S =⇒ open T

=⇒ open U =⇒
diffeomorphism n S U (h ◦ f ) (g ◦ k)

for f ::-⇒-::euclidean-space
by (auto simp: diffeomorphism-def intro!: smooth-on-compose homeomorphism-compose)
(auto simp: homeomorphism-def )

lemma diffeomorphism-add: diffeomorphism k UNIV UNIV (λx. x + c) (λx. x −
c)

by (auto simp: diffeomorphism-def homeomorphism-add intro!: smooth-on-minus
smooth-on-add)

lemma diffeomorphism-scaleR: diffeomorphism k UNIV UNIV (λx. c ∗R x) (λx.
x /R c)

if c 6= 0
by (auto simp: that diffeomorphism-def homeomorphism-scaleR

intro!: smooth-on-minus smooth-on-scaleR)

end

3 Bump Functions
theory Bump-Function

imports Smooth
HOL−Analysis.Weierstrass-Theorems
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begin

3.1 Construction
context begin

qualified definition f :: real ⇒ real where
f t = (if t > 0 then exp(−inverse t) else 0 )

lemma f-nonpos[simp]: x ≤ 0 =⇒ f x = 0
by (auto simp: f-def )

lemma exp-inv-limit-0-right:
((λ(t::real). exp(−inverse t)) −−−→ 0 ) (at-right 0 )
apply (rule filterlim-compose[where g = exp])
apply (rule exp-at-bot)

apply (rule filterlim-compose[where g = uminus])
apply (rule filterlim-uminus-at-bot-at-top)

by (rule filterlim-inverse-at-top-right)

lemma ∀ F t in at-right 0 . ((λx. inverse (x ^ Suc k)) has-real-derivative
− (inverse (t ^ Suc k) ∗ ((1 + real k) ∗ t ^ k) ∗ inverse (t ^ Suc k))) (at t)
unfolding eventually-at-filter
by (auto simp del: power-Suc intro!: derivative-eq-intros eventuallyI )

lemma exp-inv-limit-0-right-gen ′:
((λ(t::real). inverse (t ^ k) / exp(inverse t)) −−−→ 0 ) (at-right 0 )

proof (induct k)
case 0
then show ?case

using exp-inv-limit-0-right
by (auto simp: exp-minus inverse-eq-divide)

next
case (Suc k)
have df : ∀ F t in at-right 0 . ((λx. inverse (x ^ Suc k)) has-real-derivative
− (inverse (t ^ k) ∗ ((1 + real k)) ∗ (inverse t ^ 2 ))) (at t)
unfolding eventually-at-filter
apply (auto simp del: power-Suc intro!: derivative-eq-intros eventuallyI )
by (auto simp: power2-eq-square)

have dg: ∀ F t in at-right 0 . ((λx. exp (inverse x)) has-real-derivative
− (exp (inverse t) ∗ (inverse t ^ 2 ))) (at t)
unfolding eventually-at-filter

by (auto simp del: power-Suc intro!: derivative-eq-intros eventuallyI simp:
power2-eq-square)

show ?case
apply (rule lhopital-right-0-at-top [OF - - df dg])

apply (rule filterlim-compose[where g = exp])
apply (rule exp-at-top)

apply (rule filterlim-inverse-at-top-right)
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subgoal by (auto simp: eventually-at-filter)
subgoal

apply (rule Lim-transform-eventually[where f = λx. (1 + real k) ∗ (inverse
(x ^ k) / exp (inverse x))])

using Suc.hyps tendsto-mult-right-zero apply blast
by (auto simp: eventually-at-filter)

done
qed

lemma exp-inv-limit-0-right-gen:
((λ(t::real). exp(−inverse t) / t ^ k) −−−→ 0 ) (at-right 0 )
using exp-inv-limit-0-right-gen ′[of k]
by (metis (no-types, lifting) Groups.mult-ac(2 ) Lim-cong-within divide-inverse

exp-minus)

lemma f-limit-0-right: (f −−−→ 0 ) (at-right 0 )
proof −

have ∀ F t in at-right 0 . (t::real) > 0
by (rule eventually-at-right-less)

then have ∀ F t in at-right 0 . exp(−inverse t) = f t
by (eventually-elim) (auto simp: f-def )

moreover have ((λ(t::real). exp(−inverse t)) −−−→ 0 ) (at-right 0 )
by (rule exp-inv-limit-0-right)

ultimately show ?thesis
by (blast intro: Lim-transform-eventually)

qed

lemma f-limit-0 : (f −−−→ 0 ) (at 0 )
using - f-limit-0-right

proof (rule filterlim-split-at-real)
have ∀ F t in at-left 0 . 0 = f t

by (auto simp: f-def eventually-at-filter)
then show (f −−−→ 0 ) (at-left 0 )

by (blast intro: Lim-transform-eventually)
qed

lemma f-tendsto: (f −−−→ f x) (at x)
proof −

consider x = 0 | x < 0 | x > 0 by arith
then show ?thesis
proof cases

case 1
then show ?thesis by (auto simp: f-limit-0 f-def )

next
case 2
have ∀ F t in at x. t < 0

apply (rule order-tendstoD)
by (rule tendsto-intros) fact

then have ∀ F t in at x. 0 = f t
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by (eventually-elim) (auto simp: f-def )
then show ?thesis

using ‹x < 0 › by (auto simp: f-def intro: Lim-transform-eventually)
next

case 3
have ∀ F t in at x. t > 0

apply (rule order-tendstoD)
by (rule tendsto-intros) fact

then have ∀ F t in at x. exp(−inverse t) = f t
by (eventually-elim) (auto simp: f-def )

moreover have (λt. exp (− inverse t)) −x→ f x
using ‹x > 0 › by (auto simp: f-def tendsto-intros )

ultimately show ?thesis
by (blast intro: Lim-transform-eventually)

qed
qed

lemma f-continuous: continuous-on S f
using f-tendsto continuous-on continuous-on-subset subset-UNIV by metis

lemma continuous-on-real-polynomial-function:
continuous-on S p if real-polynomial-function p
using that
by induction (auto intro: continuous-intros linear-continuous-on)

lemma f-nth-derivative-is-poly:
higher-differentiable-on {0<..} f k ∧
(∃ p. real-polynomial-function p ∧ (∀ t>0 . nth-derivative k f t 1 = p t / (t ^ (2

∗ k)) ∗ exp(−inverse t)))
proof (induction k)

case 0
then show ?case

apply (auto simp: higher-differentiable-on.simps f-continuous)
by (auto simp: f-def )

next
case (Suc k)
obtain p where fk: higher-differentiable-on {0<..} f k

and p1 : real-polynomial-function p
and p2 : ∀ t>0 . nth-derivative k f t 1 = p t / t ^ (2 ∗ k) ∗ exp (− inverse t)
using Suc by auto

obtain p ′ where p ′1 : real-polynomial-function p ′

and p ′2 : ∀ t. (p has-real-derivative (p ′ t)) (at t)
using has-real-derivative-polynomial-function[of p] p1 by auto

define rp where rp t = (t2 ∗ p ′ t − 2 ∗ real k ∗ t ∗ p t + p t) for t
have rp: real-polynomial-function rp

unfolding rp-def
by (auto intro!: real-polynomial-function.intros(2−) real-polynomial-function-diff

p1 p ′1 simp: power2-eq-square)
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moreover
have fk ′: (λx. nth-derivative k f x 1 ) differentiable at t (is ?a)

frechet-derivative (λx. nth-derivative k f x 1 ) (at t) 1 =
rp t ∗ (exp (−inverse t) / t^(2∗k+2 )) (is ?b)

if 0 < t for t
proof −

from p ′2 that have dp: (p has-derivative ((∗) (p ′ t))) (at t within {0<..})
by (auto simp: at-within-open[of - {0<..}] has-field-derivative-def ac-simps)

have ((λt. p t / t ^ (2 ∗ k) ∗ exp (− inverse t)) has-derivative
(λv. v ∗ rp t ∗ (exp (−inverse t) / t^(2∗k+2 )))) (at t within {0<..})
using that
apply (auto intro!: derivative-eq-intros dp ext)
apply (simp add: divide-simps algebra-simps rp-def power2-eq-square)
by (metis Suc-pred mult-is-0 neq0-conv power-Suc zero-neq-numeral)

then have ((λx. nth-derivative k f x 1 ) has-derivative
(λv. v ∗ rp t ∗ (exp (−inverse t) / t^(2∗k+2 )))) (at t within {0<..})
apply (rule has-derivative-transform-within[OF - zero-less-one])
using that p2 by auto

then have ((λx. nth-derivative k f x 1 ) has-derivative
(λv. v ∗ rp t ∗ (exp (−inverse t) / t^(2∗k+2 )))) (at t)
using that
by (auto simp: at-within-open[of - {0<..}])

from frechet-derivative-at ′[OF this] this
show ?a ?b

by (auto simp: differentiable-def )
qed
have hdS : higher-differentiable-on {0<..} f (Suc k)

apply (subst higher-differentiable-on-real-Suc ′)
apply (auto simp: fk fk ′ frechet-derivative-nth-derivative-commute[symmetric])
apply (subst continuous-on-cong[OF refl])
apply (rule fk ′)

by (auto intro!: continuous-intros p ′1 p1 rp
intro: continuous-on-real-polynomial-function)

moreover
have nth-derivative (Suc k) f t 1 = rp t / t ^ (2 ∗ (Suc k)) ∗ exp (− inverse t)

if t > 0 for t
proof −

have nth-derivative (Suc k) f t 1 = frechet-derivative (λx. nth-derivative k f x
1 ) (at t) 1

by (simp add: frechet-derivative-nth-derivative-commute)

also have . . . = rp t / t^(2∗k+2 ) ∗ (exp (−inverse t))
using fk ′[OF ‹t > 0 ›] by simp

finally show ?thesis by simp
qed
ultimately show ?case by blast

qed

lemma f-has-derivative-at-neg:
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x < 0 =⇒ (f has-derivative (λx. 0 )) (at x)
by (rule has-derivative-transform-within-open[where f=λx. 0 and s={..<0}])
(auto simp: f-def )

lemma f-differentiable-at-neg:
x < 0 =⇒ f differentiable at x
using f-has-derivative-at-neg
by (auto simp: differentiable-def )

lemma frechet-derivative-f-at-neg:
x ∈ {..<0} =⇒ frechet-derivative f (at x) = (λx. 0 )
by (rule frechet-derivative-at ′) (rule f-has-derivative-at-neg, simp)

lemma f-nth-derivative-lt-0 :
higher-differentiable-on {..<0} f k ∧ (∀ t<0 . nth-derivative k f t 1 = 0 )

proof (induction k)
case 0
have rewr : a ∈ {..<0} =⇒ ¬0 < a for a::real by simp
show ?case

by (auto simp: higher-differentiable-on.simps f-def rewr
simp del: lessThan-iff
cong: continuous-on-cong)

next
case (Suc k)
have t < 0 =⇒ (λx. nth-derivative k f x 1 ) differentiable at t for t

by (rule differentiable-eqI [where g=0 and X={..<0}])
(auto simp: zero-fun-def frechet-derivative-const Suc.IH )

then have frechet-derivative (λx. nth-derivative k f x 1 ) (at t) 1 = 0 if t < 0
for t

using that Suc.IH
by (subst frechet-derivative-transform-within-open[where X={..<0} and g

=0 ])
(auto simp: frechet-derivative-zero-fun)

with Suc show ?case
by (auto simp: higher-differentiable-on.simps f-differentiable-at-neg

frechet-derivative-f-at-neg zero-fun-def
simp flip: frechet-derivative-nth-derivative-commute
simp del: lessThan-iff
intro!: higher-differentiable-on-const
cong: higher-differentiable-on-cong)

qed

lemma netlimit-at-left: netlimit (at-left x) = x for x::real
by (rule Lim-ident-at) simp

lemma netlimit-at-right: netlimit (at-right x) = x for x::real
by (rule Lim-ident-at) simp
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lemma has-derivative-split-at:
(g has-derivative g ′) (at x)
if
(g has-derivative g ′) (at-left x)
(g has-derivative g ′) (at-right x)

for x::real
using that
unfolding has-derivative-def netlimit-at netlimit-at-right netlimit-at-left
by (auto intro: filterlim-split-at)

lemma has-derivative-at-left-at-right ′:
(g has-derivative g ′) (at x)
if
(g has-derivative g ′) (at x within {..x})
(g has-derivative g ′) (at x within {x..})

for x::real
apply (rule has-derivative-split-at)
subgoal by (rule has-derivative-subset) (fact, auto)
subgoal by (rule has-derivative-subset) (fact, auto)
done

lemma real-polynomial-function-tendsto:
(p −−−→ p x) (at x within X) if real-polynomial-function p
using that
by (induction p) (auto intro!: tendsto-eq-intros intro: bounded-linear .tendsto)

lemma f-nth-derivative-cases:
higher-differentiable-on UNIV f k ∧
(∀ t≤0 . nth-derivative k f t 1 = 0 ) ∧
(∃ p. real-polynomial-function p ∧

(∀ t>0 . nth-derivative k f t 1 = p t / (t ^ (2 ∗ k)) ∗ exp(−inverse t)))
proof (induction k)

case 0
then show ?case

apply (auto simp: higher-differentiable-on.simps f-continuous)
by (auto simp: f-def )

next
case (Suc k)
from Suc.IH obtain pk where IH :

higher-differentiable-on UNIV f k∧
t. t ≤ 0 =⇒ nth-derivative k f t 1 = 0

real-polynomial-function pk∧
t. t > 0 =⇒ nth-derivative k f t 1 = pk t / t ^ (2 ∗ k) ∗ exp (− inverse t)

by auto
from f-nth-derivative-lt-0 [of Suc k]

local.f-nth-derivative-is-poly[of Suc k]
obtain p where neg: higher-differentiable-on {..<0} f (Suc k)

and neg0 : (∀ t<0 . nth-derivative (Suc k) f t 1 = 0 )
and pos: higher-differentiable-on {0<..} f (Suc k)
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and p: real-polynomial-function p∧
t. t > 0 =⇒ nth-derivative (Suc k) f t 1 = p t / t ^ (2 ∗ Suc k) ∗ exp (−

inverse t)
by auto

moreover
have at-within-eq-at-right: (at 0 within {0 ..}) = at-right (0 ::real)

apply (auto simp: filter-eq-iff eventually-at-filter )
apply (simp add: eventually-mono)

apply (simp add: eventually-mono)
done

have [simp]: {0 ..} − {0} = {0 ::real<..} by auto
have [simp]: (at (0 ::real) within {0 ..}) 6= bot

by (auto simp: at-within-eq-bot-iff )
have k-th-has-derivative-at-left:
((λx. nth-derivative k f x 1 ) has-derivative (λx. 0 )) (at 0 within {..0})
apply (rule has-derivative-transform-within[OF - zero-less-one])

prefer 2
apply force

prefer 2
apply (simp add: IH )

by (rule derivative-intros)
have k-th-has-derivative-at-right:
((λx. nth-derivative k f x 1 ) has-derivative (λx. 0 )) (at 0 within {0 ..})
apply (rule has-derivative-transform-within[where

f=λx ′. if x ′ = 0 then 0 else pk x ′ / x ′ ^ (2 ∗ k) ∗ exp (− inverse x ′), OF
- zero-less-one])

subgoal
unfolding has-derivative-def
apply (auto simp: Lim-ident-at)
apply (rule Lim-transform-eventually[where f=λx. (pk x ∗ (exp (− inverse

x) / x ^ (2 ∗ k + 1 )))])
apply (rule tendsto-eq-intros)

apply (rule real-polynomial-function-tendsto[THEN tendsto-eq-rhs])
apply fact

apply (rule refl)
apply (subst at-within-eq-at-right)
apply (rule exp-inv-limit-0-right-gen)

apply (auto simp add: eventually-at-filter divide-simps)
done

subgoal by force
subgoal by (auto simp: IH (2 ) IH (4 ))
done

have k-th-has-derivative: ((λx. nth-derivative k f x 1 ) has-derivative (λx. 0 )) (at
0 )

apply (rule has-derivative-at-left-at-right ′)
apply (rule k-th-has-derivative-at-left)

apply (rule k-th-has-derivative-at-right)
done

have nth-Suc-zero: nth-derivative (Suc k) f 0 1 = 0
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apply (auto simp: frechet-derivative-nth-derivative-commute[symmetric])
apply (subst frechet-derivative-at ′)
apply (rule k-th-has-derivative)

by simp
moreover have higher-differentiable-on UNIV f (Suc k)
proof −

have continuous-on UNIV (λx. nth-derivative (Suc k) f x 1 )
unfolding continuous-on-eq-continuous-within

proof
fix x::real
consider x < 0 | x > 0 | x = 0 by arith
then show isCont (λx. nth-derivative (Suc k) f x 1 ) x
proof cases

case 1
then have at-eq: at x = at x within {..<0}

using at-within-open[of x {..<0}] by auto
show ?thesis

unfolding at-eq
apply (rule continuous-transform-within[OF - zero-less-one])
using neg0 1 by (auto simp: at-eq)

next
case 2
then have at-eq: at x = at x within {0<..}

using at-within-open[of x {0<..}] by auto
show ?thesis

unfolding at-eq
apply (rule continuous-transform-within[OF - zero-less-one])
using p 2 by (auto intro!: continuous-intros
intro: continuous-real-polymonial-function continuous-at-imp-continuous-within)

next
case 3
have ((λx. nth-derivative (Suc k) f x 1 ) −−−→ 0 ) (at-left 0 )
proof −

have ∀ F x in at-left 0 . 0 = nth-derivative (Suc k) f x 1
using neg0
by (auto simp: eventually-at-filter)

then show ?thesis
by (blast intro: Lim-transform-eventually)

qed
moreover have ((λx. nth-derivative (Suc k) f x 1 ) −−−→ 0 ) (at-right 0 )
proof −
have ((λx. p x ∗ (exp (− inverse x) / x ^ (2 ∗ Suc k))) −−−→ 0 ) (at-right

0 )
apply (rule tendsto-eq-intros)

apply (rule real-polynomial-function-tendsto)
apply fact

apply (rule exp-inv-limit-0-right-gen)
by simp

moreover
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have ∀ F x in at-right 0 . p x ∗ (exp (− inverse x) / x ^ (2 ∗ Suc k)) =
nth-derivative (Suc k) f x 1
using p
by (auto simp: eventually-at-filter)

ultimately show ?thesis
by (rule Lim-transform-eventually)

qed
ultimately show ?thesis

by (auto simp: continuous-def nth-Suc-zero 3 filterlim-split-at
simp del: nth-derivative.simps)

qed
qed
moreover have (λx. nth-derivative k f x 1 ) differentiable at x for x
proof −

consider x = 0 | x < 0 | x > 0by arith
then show ?thesis
proof cases

case 1
then show ?thesis

using k-th-has-derivative by (auto simp: differentiable-def )
next

case 2
with neg show ?thesis

by (subst (asm) higher-differentiable-on-real-Suc ′) auto
next

case 3
with pos show ?thesis

by (subst (asm) higher-differentiable-on-real-Suc ′) auto
qed

qed
moreover have higher-differentiable-on UNIV f k by fact
ultimately
show ?thesis

by (subst higher-differentiable-on-real-Suc ′[OF open-UNIV ]) auto
qed
ultimately
show ?case

by (auto simp: less-eq-real-def )
qed

lemma f-smooth-on: k−smooth-on S f
and f-higher-differentiable-on: higher-differentiable-on S f n
using f-nth-derivative-cases
by (auto simp: smooth-on-def higher-differentiable-on-subset[OF - subset-UNIV ])

lemma f-compose-smooth-on: k−smooth-on S (λx. f (g x))
if k−smooth-on S g open S
using smooth-on-compose[OF f-smooth-on that open-UNIV subset-UNIV ]
by (auto simp: o-def )
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lemma f-nonneg: f x ≥ 0
by (auto simp: f-def )

lemma f-pos-iff : f x > 0 ←→ x > 0
by (auto simp: f-def )

lemma f-eq-zero-iff : f x = 0 ←→ x ≤ 0
by (auto simp: f-def )

3.2 Cutoff function
definition h t = f (2 − t) / (f (2 − t) + f (t − 1 ))

lemma denominator-pos: f (2 − t) + f (t − 1 ) > 0
by (auto simp: f-def add-pos-pos)

lemma denominator-nonzero: f (2 − t) + f (t − 1 ) = 0 ←→ False
using denominator-pos[of t] by auto

lemma h-range: 0 ≤ h t h t ≤ 1
by (auto simp: h-def f-nonneg denominator-pos)

lemma h-pos: t < 2 =⇒ 0 < h t
and h-less-one: 1 < t =⇒ h t < 1
by (auto simp: h-def f-pos-iff denominator-pos)

lemma h-eq-0 : h t = 0 if t ≥ 2
using that
by (auto simp: h-def )

lemma h-eq-1 : h t = 1 if t ≤ 1
using that
by (auto simp: h-def f-eq-zero-iff )

lemma h-compose-smooth-on: k−smooth-on S (λx. h (g x))
if k−smooth-on S g open S
by (auto simp: h-def [abs-def ] denominator-nonzero

intro!: smooth-on-divide f-compose-smooth-on smooth-on-minus smooth-on-add
that)

3.3 Bump function
definition H ::-::real-inner ⇒ real where H x = h (norm x)

lemma H-range: 0 ≤ H x H x ≤ 1
by (auto simp: H-def h-range)

lemma H-eq-one: H x = 1 if x ∈ cball 0 1
using that
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by (auto simp: H-def h-eq-1 )

lemma H-pos: H x > 0 if x ∈ ball 0 2
using that
by (auto simp: H-def h-pos)

lemma H-eq-zero: H x = 0 if x /∈ ball 0 2
using that
by (auto simp: H-def h-eq-0 )

lemma H-neq-zeroD: H x 6= 0 =⇒ x ∈ ball 0 2
using H-eq-zero by blast

lemma H-smooth-on: k−smooth-on UNIV H
proof −

have 1 : k−smooth-on (ball 0 1 ) H
by (rule smooth-on-cong[where g=λx. 1 ]) (auto simp: H-eq-one)

have 2 : k−smooth-on (UNIV − cball 0 (1/2 )) H
by (auto simp: H-def [abs-def ]

intro!: h-compose-smooth-on smooth-on-norm)
have O: open (ball 0 1 ) open (UNIV − cball 0 (1 / 2 ))

by auto
have ∗: ball 0 1 ∪ (UNIV − cball 0 (1 / 2 )) = UNIV by (auto simp: mem-ball)
from smooth-on-open-Un[OF 1 2 O, unfolded ∗]
show ?thesis

by (rule smooth-on-subset) auto
qed

lemma H-compose-smooth-on: k−smooth-on S (λx. H (g x)) if k−smooth-on S g
open S

for g :: - ⇒ -::euclidean-space
using smooth-on-compose[OF H-smooth-on that]
by (auto simp: o-def )

end

end

4 Charts
theory Chart

imports Analysis-More
begin

4.1 Definition

A chart on M is a homeomorphism from an open subset of M to an open
subset of some Euclidean space E. Here d and d ′ are open subsets of M and
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E, respectively, f : d → d ′ is the mapping, and f ′: d ′ → d is the inverse
mapping.
typedef (overloaded) ( ′a::topological-space, ′e::euclidean-space) chart =
{(d:: ′a set, d ′:: ′e set, f , f ′).

open d ∧ open d ′ ∧ homeomorphism d d ′ f f ′}
by (rule exI [where x=({}, {}, (λx. undefined), (λx. undefined))]) simp

setup-lifting type-definition-chart

lift-definition apply-chart::( ′a::topological-space, ′e::euclidean-space) chart ⇒ ′a
⇒ ′e

is λ(d, d ′, f , f ′). f .

declare [[coercion apply-chart]]

lift-definition inv-chart::( ′a::topological-space, ′e::euclidean-space) chart ⇒ ′e ⇒
′a

is λ(d, d ′, f , f ′). f ′ .

lift-definition domain::( ′a::topological-space, ′e::euclidean-space) chart ⇒ ′a set
is λ(d, d ′, f , f ′). d .

lift-definition codomain::( ′a::topological-space, ′e::euclidean-space) chart ⇒ ′e set
is λ(d, d ′, f , f ′). d ′ .

4.2 Properties
lemma open-domain[intro, simp]: open (domain c)

and open-codomain[intro, simp]: open (codomain c)
and chart-homeomorphism: homeomorphism (domain c) (codomain c) c (inv-chart

c)
by (transfer , auto)+

lemma at-within-domain: at x within domain c = at x if x ∈ domain c
by (rule at-within-open[OF that open-domain])

lemma at-within-codomain: at x within codomain c = at x if x ∈ codomain c
by (rule at-within-open[OF that open-codomain])

lemma
chart-in-codomain[intro, simp]: x ∈ domain c =⇒ c x ∈ codomain c
and inv-chart-inverse[simp]: x ∈ domain c =⇒ inv-chart c (c x) = x
and inv-chart-in-domain[intro, simp]:y ∈ codomain c =⇒ inv-chart c y ∈ domain

c
and chart-inverse-inv-chart[simp]: y ∈ codomain c =⇒ c (inv-chart c y) = y
and image-domain-eq: c ‘ (domain c) = codomain c
and inv-image-codomain-eq[simp]: inv-chart c ‘ (codomain c) = domain c
and continuous-on-domain: continuous-on (domain c) c
and continuous-on-codomain: continuous-on (codomain c) (inv-chart c)
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using chart-homeomorphism[of c]
by (auto simp: homeomorphism-def )

lemma chart-eqI : c = d
if domain c = domain d

codomain c = codomain d∧
x. c x = d x∧
x. inv-chart c x = inv-chart d x

using that
by transfer auto

lemmas continuous-on-chart[continuous-intros] =
continuous-on-compose2 [OF continuous-on-domain]
continuous-on-compose2 [OF continuous-on-codomain]

lemma continuous-apply-chart: continuous (at x within X) c if x ∈ domain c
apply (rule continuous-at-imp-continuous-within)
using continuous-on-domain[of c] that at-within-domain[OF that]
by (auto simp: continuous-on-eq-continuous-within)

lemma continuous-inv-chart: continuous (at x within X) (inv-chart c) if x ∈
codomain c

apply (rule continuous-at-imp-continuous-within)
using continuous-on-codomain[of c] that at-within-codomain[OF that]
by (auto simp: continuous-on-eq-continuous-within)

lemmas apply-chart-tendsto[tendsto-intros] = isCont-tendsto-compose[OF contin-
uous-apply-chart, rotated]
lemmas inv-chart-tendsto[tendsto-intros] = isCont-tendsto-compose[OF continu-
ous-inv-chart, rotated]

lemma continuous-within-compose2 ′:
continuous (at (f x) within t) g =⇒ f ‘ s ⊆ t =⇒

continuous (at x within s) f =⇒
continuous (at x within s) (λx. g (f x))

by (simp add: continuous-within-compose2 continuous-within-subset)

lemmas continuous-chart[continuous-intros] =
continuous-within-compose2 ′[OF continuous-apply-chart]
continuous-within-compose2 ′[OF continuous-inv-chart]

lemma continuous-on-chart-inv:
assumes continuous-on s (apply-chart c o f )

f ‘ s ⊆ domain c
shows continuous-on s f

proof −
have continuous-on s (inv-chart c o apply-chart c o f )

using assms by (auto intro!: continuous-on-chart(2 ))
moreover have

∧
x. x ∈ s =⇒ (inv-chart c o apply-chart c o f ) x = f x
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using assms by auto
ultimately show ?thesis by auto

qed

lemma continuous-on-chart-inv ′:
assumes continuous-on (apply-chart c ‘ s) (f o inv-chart c)

s ⊆ domain c
shows continuous-on s f

proof −
have continuous-on s (apply-chart c)

using assms continuous-on-domain continuous-on-subset by blast
then have continuous-on s (f o inv-chart c o apply-chart c)

apply (rule continuous-on-compose) using assms by auto
moreover have (f o inv-chart c o apply-chart c) x = f x if x ∈ s for x

using assms that by auto
ultimately show ?thesis by auto

qed

lemma inj-on-apply-chart: inj-on (apply-chart f ) (domain f )
by (auto simp: intro!: inj-on-inverseI [where g=inv-chart f ])

lemma apply-chart-Int: f ‘ (X ∩ Y ) = f ‘ X ∩ f ‘ Y if X ⊆ domain f Y ⊆ domain
f

using inj-on-apply-chart that
by (rule inj-on-image-Int)

lemma chart-image-eq-vimage: c ‘ X = inv-chart c −‘ X ∩ codomain c
if X ⊆ domain c
using that
by force

lemma open-chart-image[simp, intro]: open (c ‘ X)
if open X X ⊆ domain c

proof −
have c ‘ X = inv-chart c −‘ X ∩ codomain c

using that(2 )
by (rule chart-image-eq-vimage)

also have open . . .
using that
by (metis continuous-on-codomain continuous-on-open-vimage open-codomain)

finally show ?thesis .
qed

lemma open-inv-chart-image[simp, intro]: open (inv-chart c ‘ X)
if open X X ⊆ codomain c

proof −
have inv-chart c ‘ X = c −‘ X ∩ domain c

using that(2 )
apply auto
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using image-iff by fastforce
also have open . . .

using that
by (metis continuous-on-domain continuous-on-open-vimage open-domain)

finally show ?thesis .
qed

lemma homeomorphism-UNIV-imp-open-map:
homeomorphism UNIV UNIV p p ′ =⇒ open f ′ =⇒ open (p ‘ f ′)
by (auto dest: homeomorphism-imp-open-map[where U=f ′])

4.3 Restriction
lemma homeomorphism-restrict:

homeomorphism (a ∩ s) (b ∩ f ′ −‘ s) f f ′ if homeomorphism a b f f ′

using that
by (fastforce simp: homeomorphism-def intro: continuous-on-subset intro!: im-

ageI )

lift-definition restrict-chart:: ′a set ⇒ ( ′a::t2-space, ′e::euclidean-space) chart ⇒
( ′a, ′e) chart

is λS . λ(d, d ′, f , f ′). if open S then (d ∩ S , d ′ ∩ f ′ −‘ S , f , f ′) else ({}, {}, f ,
f ′)
by (auto simp: split: if-splits intro!: open-continuous-vimage ′ homeomorphism-restrict

intro: homeomorphism-cont2 homeomorphism-cont1 )

lemma restrict-chart-restrict-chart:
restrict-chart X (restrict-chart Y c) = restrict-chart (X ∩ Y ) c
if open X open Y
using that
by transfer auto

lemma domain-restrict-chart[simp]: open S =⇒ domain (restrict-chart S c) =
domain c ∩ S

and domain-restrict-chart-if : domain (restrict-chart S c) = (if open S then do-
main c ∩ S else {})

and codomain-restrict-chart[simp]: open S =⇒ codomain (restrict-chart S c) =
codomain c ∩ inv-chart c −‘ S

and codomain-restrict-chart-if : codomain (restrict-chart S c) = (if open S then
codomain c ∩ inv-chart c −‘ S else {})
and apply-chart-restrict-chart[simp]: apply-chart (restrict-chart S c) = apply-chart

c
and inv-chart-restrict-chart[simp]: inv-chart (restrict-chart S c) = inv-chart c
by (transfer , auto)+

4.4 Composition
lift-definition compose-chart::( ′e⇒ ′e) ⇒ ( ′e⇒ ′e) ⇒
( ′a::topological-space, ′e::euclidean-space) chart ⇒ ( ′a, ′e) chart
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is λp p ′. λ(d, d ′, f , f ′). if homeomorphism UNIV UNIV p p ′ then (d, p ‘ d ′, p o
f , f ′ o p ′)

else ({}, {}, f , f ′)
by (auto split: if-splits)

(auto intro: homeomorphism-UNIV-imp-open-map homeomorphism-compose
homeomorphism-of-subsets)

lemma compose-chart-apply-chart[simp]: apply-chart (compose-chart p p ′ c) = p
o apply-chart c

and compose-chart-inv-chart[simp]: inv-chart (compose-chart p p ′ c) = inv-chart
c o p ′

and domain-compose-chart[simp]: domain (compose-chart p p ′ c) = domain c
and codomain-compose-chart[simp]: codomain (compose-chart p p ′ c) = p ‘

codomain c
if homeomorphism UNIV UNIV p p ′

using that by (transfer , auto)+

end

5 Topological Manifolds
theory Topological-Manifold

imports Chart
begin

Definition of topological manifolds. Existence of locally finite cover.

5.1 Defintition

We define topological manifolds as a second-countable Hausdorff space,
where every point in the carrier set has a neighborhood that is homeomor-
phic to an open subset of the Euclidean space. Here topological manifolds
are specified by a set of charts, and the carrier set is simply defined to be
the union of the domain of the charts.
locale manifold =

fixes charts::( ′a::{second-countable-topology, t2-space}, ′e::euclidean-space) chart
set
begin

definition carrier = (
⋃
(domain ‘ charts))

lemma open-carrier [intro, simp]: open carrier
by (auto simp: carrier-def )

lemma carrierE :
assumes x ∈ carrier
obtains c where c ∈ charts x ∈ domain c

77



using assms by (auto simp: carrier-def )

lemma domain-subset-carrier [simp]: domain c ⊆ carrier if c ∈ charts
using that
by (auto simp: carrier-def )

lemma in-domain-in-carrier [intro, simp]: c ∈ charts =⇒ x ∈ domain c =⇒ x ∈
carrier

by (auto simp: carrier-def )

5.2 Existence of locally finite cover

Every point has a precompact neighborhood.
lemma precompact-neighborhoodE :

assumes x ∈ carrier
obtains C where x ∈ C open C compact (closure C ) closure C ⊆ carrier

proof −
from carrierE [OF assms] obtain c where c: c ∈ charts x ∈ domain c by auto
then have c x ∈ codomain c by auto
with open-contains-cball[of codomain c]
obtain e where e: 0 < e cball (apply-chart c x) e ⊆ codomain c

by auto
then have e ′: ball (apply-chart c x) e ⊆ codomain c

by (auto simp: mem-ball)
define C where C = inv-chart c ‘ ball (c x) e
have x ∈ C

using c ‹e > 0 ›
unfolding C-def
by (auto intro!: image-eqI [where x=apply-chart c x])

moreover have open C
using e ′

by (auto simp: C-def )
moreover
have compact: compact (inv-chart c ‘ cball (apply-chart c x) e)

using e
by (intro compact-continuous-image continuous-on-chart) auto

have closure-subset: closure C ⊆ inv-chart c ‘ cball (apply-chart c x) e
apply (rule closure-minimal)
subgoal by (auto simp: C-def mem-ball)
subgoal by (rule compact-imp-closed) (rule compact)
done

have compact (closure C )
apply (rule compact-if-closed-subset-of-compact[where T=inv-chart c ‘ cball

(c x) e])
subgoal by simp
subgoal by (rule compact)
subgoal by (rule closure-subset)
done

moreover have closure C ⊆ carrier
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using closure-subset c e
by force

ultimately show ?thesis ..
qed

There exists a covering of the carrier by precompact sets.
lemma precompact-open-coverE :

obtains U ::nat⇒ ′a set
where (

⋃
i. U i) = carrier

∧
i. open (U i)

∧
i. compact (closure (U i))∧

i. closure (U i) ⊆ carrier
proof cases

assume carrier = {}
then have (

⋃
i. {}) = carrier open {} compact (closure {}) closure {} ⊆ carrier

by auto
then show ?thesis ..

next
assume carrier 6= {}
have ∃ b. x ∈ b ∧ open b ∧ compact (closure b) ∧ closure b ⊆ carrier if x ∈

carrier for x
using that
by (rule precompact-neighborhoodE) auto

then obtain balls where balls:∧
x. x ∈ carrier =⇒ x ∈ balls x∧
x. x ∈ carrier =⇒ open (balls x)∧
x. x ∈ carrier =⇒ compact (closure (balls x))∧
x. x ∈ carrier =⇒ closure (balls x) ⊆ carrier

by metis
let ?balls = balls ‘ carrier
have ∗:

∧
x:: ′a set. x ∈ ?balls =⇒ open x by (auto simp: balls)

from Lindelof [of ?balls, OF this]
obtain F ′ where F ′: F ′ ⊆ ?balls countable F ′ ⋃F ′ =

⋃
?balls

by auto
have F ′ 6= {} using F ′ balls ‹carrier 6= {}›

by auto
define U where U = from-nat-into F ′

have into-range-balls: U i ∈ ?balls for i
proof −

have from-nat-into F ′ i ∈ F ′ for i
by (rule from-nat-into) fact

also have F ′ ⊆ ?balls by fact
finally show ?thesis by (simp add: U-def )

qed
have U : open (U i) compact (closure (U i)) closure (U i) ⊆ carrier for i

using balls into-range-balls[of i]
by force+

then have U i ⊆ carrier for i using closure-subset by force
have (

⋃
i. U i) = carrier

proof (rule antisym)
show (

⋃
i. U i) ⊆ carrier using ‹U - ⊆ carrier› by force
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next
show carrier ⊆ (

⋃
i. U i)

proof safe
fix x:: ′a
assume x ∈ carrier
then have x ∈ balls x by fact
with ‹x ∈ carrier› F ′ obtain F where x ∈ F F ∈ F ′ by blast
with from-nat-into-surj[OF ‹countable F ′› ‹F ∈ F ′›]
obtain i where x ∈ U i by (auto simp: U-def )
then show x ∈ (

⋃
i. U i) by auto

qed
qed
then show ?thesis using U ..

qed

There exists a locally finite covering of the carrier by precompact sets.
lemma precompact-locally-finite-open-coverE :

obtains W ::nat⇒ ′a set
where carrier = (

⋃
i. W i)

∧
i. open (W i)

∧
i. compact (closure (W i))∧

i. closure (W i) ⊆ carrier
locally-finite-on carrier UNIV W

proof −
from precompact-open-coverE obtain U

where U : (
⋃

i::nat. U i) = carrier
∧

i. open (U i)
∧

i. compact (closure (U i))∧
i. closure (U i) ⊆ carrier

by auto
have ∃V . ∀ j.
(open (V j) ∧
compact (closure (V j)) ∧
U j ⊆ V j ∧
closure (V j) ⊆ carrier) ∧
closure (V j) ⊆ V (Suc j)
(is ∃V . ∀ j. ?P j (V j) ∧ ?Q j (V j) (V (Suc j)))

proof (rule dependent-nat-choice)
show ∃ x. ?P 0 x using U by (force intro!: exI [where x=U 0 ])

next
fix X n
assume P: ?P n X
have closure X ⊆ (

⋃
c. U c)

unfolding U using P by auto
have compact (closure X) using P by auto
from compactE-image[OF this, of UNIV U , OF ‹open (U -)› ‹closure X ⊆ -›]
obtain M where M : M ⊆ UNIV finite M closure X ⊆ (

⋃
c∈M . U c)

by auto
show ∃ y. ?P (Suc n) y ∧ ?Q n X y
proof (intro exI [where x=U (Suc n) ∪ (

⋃
c∈M . U c)] impI conjI )

show open (U (Suc n) ∪
⋃
(U ‘ M ))

by (auto intro!: U )
show compact (closure (U (Suc n) ∪

⋃
(U ‘ M )))
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using ‹finite M ›
by (auto simp add: closure-Union intro!: U )

show U (Suc n) ⊆ U (Suc n) ∪
⋃
(U ‘ M ) by auto

show closure (U (Suc n) ∪
⋃
(U ‘ M )) ⊆ carrier

using U ‹finite M ›
by (force simp: closure-Union)

show closure X ⊆ U (Suc n) ∪ (
⋃

c∈M . U c)
using M by auto

qed
qed
then obtain V where V :∧

j. closure (V j) ⊆ V (Suc j)∧
j. open (V j)∧
j. compact (closure (V j))∧
j. U j ⊆ V j∧
j. closure (V j) ⊆ carrier

by metis
have V-mono-Suc:

∧
j. V j ⊆ V (Suc j)

using V by auto
have V-mono: V l ⊆ V m if l ≤ m for l m

using V-mono-Suc that
by (rule lift-Suc-mono-le[of V ])

have V-cover : carrier =
⋃
(V ‘ UNIV )

proof (rule antisym)
show carrier ⊆

⋃
(V ‘ UNIV )

unfolding U (1 )[symmetric]
using V (4 )
by auto

show
⋃
(V ‘ UNIV ) ⊆ carrier

using V (5 ) by force
qed
define W where W j = (if j < 2 then V j else V j − closure (V (j − 2 ))) for j
have compact (closure (W j)) for j

apply (rule compact-if-closed-subset-of-compact[where T=closure (V j)])
subgoal by simp
subgoal by (simp add: V )
subgoal

apply (rule closure-mono)
using V (1 )[of j] V (1 )[of Suc j]
by (auto simp: W-def )

done
have open-W : open (W j) for j

by (auto simp: W-def V )
have W-cover : p ∈

⋃
(W ‘ UNIV ) if p ∈ carrier for p

proof −
have p ∈

⋃
(V ‘ UNIV ) using that V-cover

by auto
then have ex: ∃ i. p ∈ V i by auto
define k where k = (LEAST i. p ∈ V i)
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from LeastI-ex[OF ex]
have k: p ∈ V k by (auto simp: k-def )
have p ∈ W k
proof cases

assume k < 2
then show ?thesis using k

by (auto simp: W-def )
next

assume k2 : ¬k < 2
have False if p ∈ closure (V (k − 2 ))
proof −

have Suc (k − 2 ) = k − 1 using k2 by arith
then have p ∈ V (k − 1 )

using k2 that V (1 )[of k − 2 ]
by auto

moreover
have k − 1 < k using k2 by arith
from not-less-Least[OF this[unfolded k-def ], folded k-def ]
have p /∈ V (k − 1 ) .
ultimately show ?thesis by simp

qed
then show ?thesis

using k
by (auto simp: W-def )

qed
then show ?thesis by auto

qed
have W-eq-carrier : carrier = (

⋃
i. W i)

proof (rule antisym)
show carrier ⊆ (

⋃
i. W i)

using W-cover by auto
have (

⋃
i. W i) ⊆ (

⋃
i. V i)

by (auto simp: W-def split: if-splits)
also have . . . = carrier by (simp add: V-cover)
finally show (

⋃
i. W i) ⊆ carrier .

qed
have W-disjoint: W k ∩ W l = {} if less: l < k − 1 for l k
proof −

from less have k ≥ 2 by arith
then have W k = V k − closure (V (k − 2 ))

by (auto simp: W-def )
moreover have W l ⊆ V (k − 2 )
proof −

have W l ⊆ V l
by (auto simp: W-def )

also have . . . ⊆ V (k − 2 )
by (rule V-mono) (use less in arith)

finally show ?thesis .
qed
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ultimately show ?thesis
by auto

qed
have locally-finite-on carrier UNIV W
proof (rule locally-finite-on-open-coverI )

show carrier ⊆
⋃
(W ‘ UNIV ) unfolding W-eq-carrier by simp

show open (W i) for i by (auto simp: open-W )
fix k
have {i. W i ∩ W k 6= {}} ⊆ {(k − 1 ) .. (k + 1 )}
proof (rule subsetI )

fix l
assume l ∈ {i. W i ∩ W k 6= {}}
then have l: W l ∩ W k 6= {}

by auto
consider l < k − 1 | l > k + 1 | k−1 ≤ l l ≤ k+1 by arith
then show l ∈ {(k − 1 ) .. (k + 1 )}
proof cases

case 1
from W-disjoint[OF this] l
show ?thesis by auto

next
case 2
then have k < l − 1 by arith
from W-disjoint[OF this] l
show ?thesis by auto

next
case 3
then show ?thesis

by (auto simp: l)
qed

qed
also have finite . . . by simp
finally (finite-subset)
show finite {i∈UNIV . W i ∩ W k 6= {}} by simp

qed
have closure (W i) ⊆ carrier for i

using V closure-mono
apply (auto simp: W-def )
using Diff-subset subsetD by blast

have carrier = (
⋃

i. W i)
∧

i. open (W i)
∧

i. compact (closure (W i))∧
i. closure (W i) ⊆ carrier

locally-finite-on carrier UNIV W
by fact+

then show ?thesis ..
qed

end

end
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6 Differentiable/Smooth Manifolds
theory Differentiable-Manifold

imports
Smooth
Topological-Manifold

begin

6.1 Smooth compatibility
definition smooth-compat::enat ⇒ ( ′a::topological-space, ′e::euclidean-space)chart⇒( ′a,
′e)chart⇒bool
(‹-−smooth ′-compat› [1000 ])
where
smooth-compat k c1 c2 ←→
(k−smooth-on (c1 ‘ (domain c1 ∩ domain c2 )) (c2 ◦ inv-chart c1 ) ∧
k−smooth-on (c2 ‘ (domain c1 ∩ domain c2 )) (c1 ◦ inv-chart c2 ) )

lemma smooth-compat-D1 :
k−smooth-on (c1 ‘ (domain c1 ∩ domain c2 )) (c2 ◦ inv-chart c1 )
if k−smooth-compat c1 c2

proof −
have open (c1 ‘ (domain c1 ∩ domain c2 ))

by (rule open-chart-image) auto
moreover have k−smooth-on (c1 ‘ (domain c1 ∩ domain c2 )) (c2 ◦ inv-chart

c1 )
using that(1 ) by (auto simp: smooth-compat-def )

ultimately show ?thesis by blast
qed

lemma smooth-compat-D2 :
k−smooth-on (c2 ‘ (domain c1 ∩ domain c2 )) (c1 ◦ inv-chart c2 )
if k−smooth-compat c1 c2

proof −
have open (c2 ‘ (domain c1 ∩ domain c2 ))

by (rule open-chart-image) auto
moreover have k−smooth-on (c2 ‘ (domain c1 ∩ domain c2 )) (c1 ◦ inv-chart

c2 )
using that(1 ) by (auto simp: smooth-compat-def )

ultimately show ?thesis by blast
qed

lemma smooth-compat-refl: k−smooth-compat x x
unfolding smooth-compat-def
by (auto intro: smooth-on-cong[where g=λx. x] simp: smooth-on-id)

lemma smooth-compat-commute: k−smooth-compat x y ←→ k−smooth-compat y
x

by (auto simp: smooth-compat-def inf-commute)
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lemma smooth-compat-restrict-chartI :
k−smooth-compat (restrict-chart S c) c ′

if k−smooth-compat c c ′

using that
by (auto simp: smooth-compat-def domain-restrict-chart-if intro: smooth-on-subset)

lemma smooth-compat-restrict-chartI2 :
k−smooth-compat c ′ (restrict-chart S c)
if k−smooth-compat c ′ c
using smooth-compat-restrict-chartI [of k c c ′] that
by (auto simp: smooth-compat-commute)

lemma smooth-compat-restrict-chartD:
domain c1 ⊆ U =⇒ open U =⇒ k−smooth-compat c1 (restrict-chart U c2 ) =⇒

k−smooth-compat c1 c2
by (auto simp: smooth-compat-def domain-restrict-chart-if intro: smooth-on-subset)

lemma smooth-compat-restrict-chartD2 :
domain c1 ⊆ U =⇒ open U =⇒ k−smooth-compat (restrict-chart U c2 ) c1 =⇒

k−smooth-compat c2 c1
using smooth-compat-restrict-chartD[of c1 U k c2 ]
by (auto simp: smooth-compat-commute)

lemma smooth-compat-le:
l−smooth-compat c1 c2 if k−smooth-compat c1 c2 l ≤ k
using that
by (auto simp: smooth-compat-def smooth-on-le)

6.2 C^k-Manifold
locale c-manifold = manifold +

fixes k::enat
assumes pairwise-compat: c1 ∈ charts =⇒ c2 ∈ charts =⇒ k−smooth-compat

c1 c2
begin

6.2.1 Atlas
definition atlas :: ( ′a, ′b) chart set where

atlas = {c. domain c ⊆ carrier ∧ (∀ c ′ ∈ charts. k−smooth-compat c c ′)}

lemma charts-subset-atlas: charts ⊆ atlas
by (auto simp: atlas-def pairwise-compat)

lemma in-charts-in-atlas[intro]: x ∈ charts =⇒ x ∈ atlas
by (auto simp: atlas-def pairwise-compat)

lemma maximal-atlas:
c ∈ atlas
if

∧
c ′. c ′ ∈ atlas =⇒ k−smooth-compat c c ′
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domain c ⊆ carrier
using that charts-subset-atlas
by (auto simp: atlas-def )

lemma chart-compose-lemma:
fixes c1 c2
defines [simp]: U ≡ domain c1
defines [simp]: V ≡ domain c2
assumes subsets: U ∩ V ⊆ carrier
assumes

∧
c. c ∈ charts =⇒ k−smooth-compat c1 c∧

c. c ∈ charts =⇒ k−smooth-compat c2 c
shows k−smooth-on (c1 ‘ (U ∩ V )) (c2 ◦ inv-chart c1 )

proof (rule smooth-on-open-subsetsI )
fix w ′ assume w ′ ∈ c1 ‘ (U ∩ V )
then obtain w where w ′: w ′ = c1 w and w ∈ U w ∈ V by auto
then have w ∈ carrier using subsets

by auto
then obtain c3 where c3 : w ∈ domain c3 c3 ∈ charts

by (rule carrierE)
then have c13 : k−smooth-compat c1 c3 and c23 : k−smooth-compat c2 c3

using assms by auto
define W where [simp]: W = domain c3
have diff1 : k−smooth-on (c1 ‘ (U ∩ W )) (c3 ◦ inv-chart c1 )
proof −

have 1 : open (c1 ‘ (U ∩ W ))
by (rule open-chart-image) auto

have 2 : w ′ ∈ c1 ‘ (U ∩ W )
using ‹w ∈ U › by (auto simp: c3 w ′)

from c13 show ?thesis
by (auto simp: smooth-compat-def )

qed

define y where y = (c3 ◦ inv-chart c1 ) w ′

have diff2 : k−smooth-on (c3 ‘ (V ∩ W )) (c2 ◦ inv-chart c3 )
proof −

have 1 : open (c3 ‘ (V ∩ W ))
by (rule open-chart-image) auto

have 2 : y ∈ c3 ‘ (V ∩ W )
using ‹w ∈ U › ‹w ∈ V › by (auto simp: y-def c3 w ′)

from c23 show ?thesis
by (auto simp: smooth-compat-def )

qed

have k−smooth-on (c1 ‘ (U ∩ V ∩ W )) ((c2 ◦ inv-chart c3 ) o (c3 ◦ inv-chart
c1 ))

using diff2 diff1
by (rule smooth-on-compose2 ) auto

then have k−smooth-on (c1 ‘ (U ∩ V ∩ W )) (c2 ◦ inv-chart c1 )
by (rule smooth-on-cong) auto
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moreover have w ′ ∈ c1 ‘ (U ∩ V ∩ W ) open (c1 ‘ (U ∩ V ∩ W ))
using ‹w ∈ U › ‹w ∈ V ›
by (auto simp: w ′ c3 )

ultimately show ∃T . w ′ ∈ T ∧ open T ∧ k−smooth-on T (apply-chart c2 ◦
inv-chart c1 )

by (intro exI [where x=c1 ‘ (U ∩ V ∩ W )]) simp
qed

lemma smooth-compat-trans: k−smooth-compat c1 c2
if

∧
c. c ∈ charts =⇒ k−smooth-compat c1 c∧

c. c ∈ charts =⇒ k−smooth-compat c2 c
domain c1 ∩ domain c2 ⊆ carrier

unfolding smooth-compat-def
proof

show k−smooth-on (c1 ‘ (domain c1 ∩ domain c2 )) (c2 ◦ inv-chart c1 )
by (auto intro!: that chart-compose-lemma)

show k−smooth-on (c2 ‘ (domain c1 ∩ domain c2 )) (c1 ◦ inv-chart c2 )
using that
by (subst inf-commute) (auto intro!: chart-compose-lemma)

qed

lemma maximal-atlas ′:
c ∈ atlas
if

∧
c ′. c ′ ∈ charts =⇒ k−smooth-compat c c ′

domain c ⊆ carrier
proof (rule maximal-atlas)

fix c ′ assume c ′ ∈ atlas
show k−smooth-compat c c ′

apply (rule smooth-compat-trans)
apply (rule that(1 )) apply assumption

using atlas-def ‹c ′ ∈ atlas› by auto
qed fact

lemma atlas-is-atlas: k−smooth-compat a1 a2
if a1 ∈ atlas a2 ∈ atlas
using that atlas-def smooth-compat-trans by blast

lemma domain-atlas-subset-carrier : c ∈ atlas =⇒ domain c ⊆ carrier
and in-carrier-atlasI [intro, simp]: c ∈ atlas =⇒ x ∈ domain c =⇒ x ∈ carrier
by (auto simp: atlas-def )

lemma atlasE :
assumes x ∈ carrier
obtains c where c ∈ atlas x ∈ domain c
using carrierE [OF assms] charts-subset-atlas
by blast

lemma restrict-chart-in-atlas: restrict-chart S c ∈ atlas if c ∈ atlas
proof (rule maximal-atlas)
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fix c ′ assume c ′ ∈ atlas
then have k−smooth-compat c c ′ using ‹c ∈ atlas› by (auto simp: atlas-is-atlas)
then show k−smooth-compat (restrict-chart S c) c ′

by (rule smooth-compat-restrict-chartI )
next

have domain (restrict-chart S c) ⊆ domain c
by (simp add: domain-restrict-chart-if )

also have . . . ⊆ carrier
using that
by (rule domain-atlas-subset-carrier)

finally
show domain (restrict-chart S c) ⊆ carrier

by auto
qed

lemma atlas-restrictE :
assumes x ∈ carrier x ∈ X open X
obtains c where c ∈ atlas x ∈ domain c domain c ⊆ X

proof −
from assms(1 ) obtain c where c: c ∈ atlas x ∈ domain c

by (blast elim!: carrierE)
define d where d = restrict-chart X c
from c have d ∈ atlas x ∈ domain d domain d ⊆ X

using assms(2 ,3 )
by (auto simp: d-def restrict-chart-in-atlas)

then show ?thesis ..
qed

lemma open-ball-chartE :
assumes x ∈ U open U U ⊆ carrier
obtains c r where

c ∈ atlas
x ∈ domain c domain c ⊆ U codomain c = ball (c x) r r > 0

proof −
from assms have x ∈ carrier by auto
from carrierE [OF this] obtain c where c: c ∈ charts x ∈ domain c by auto
then have x ∈ domain c ∩ U using assms by auto
then have open (apply-chart c ‘ (domain c ∩ U )) c x ∈ c ‘ (domain c ∩ U )

by (auto intro!: assms)
from openE [OF this]
obtain e where e: 0 < e ball (c x) e ⊆ c ‘ (domain c ∩ U )

by auto
define C where C = inv-chart c ‘ ball (c x) e
have open C

using e
by (auto simp: C-def )

define c ′ where c ′ = restrict-chart C c
from c have c ∈ atlas by auto
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then have c ′ ∈ atlas by (auto simp: c ′-def restrict-chart-in-atlas)
moreover
have x ∈ C

using c ‹e > 0 ›
unfolding C-def
by (auto intro!: image-eqI [where x=apply-chart c x])

have x ∈ domain c ′

by (auto simp: c ′-def ‹open C › c ‹x ∈ C ›)
moreover
have C ⊆ U

using e by (auto simp: C-def )
then have domain c ′ ⊆ U

by (auto simp: c ′-def ‹open C ›)
moreover have codomain c ′ = ball (c ′ x) e

using e ‹open C ›
by (force simp: c ′-def codomain-restrict-chart-if C-def )

moreover
have e > 0

by fact
ultimately show ?thesis ..

qed

lemma smooth-compat-compose-chart:
fixes c ′

assumes k−smooth-compat c c ′

assumes diffeo: diffeomorphism k UNIV UNIV p p ′

shows k−smooth-compat (compose-chart p p ′ c) c ′

proof −
note dD[simp] = diffeomorphismD[OF diffeo]
note homeo[simp] = diffeomorphism-imp-homeomorphism[OF diffeo]
from assms(1 ) have c: k−smooth-on (apply-chart c ‘ (domain c ∩ domain c ′))

(apply-chart c ′ ◦ inv-chart c)
and c ′: k−smooth-on (apply-chart c ′ ‘ (domain c ∩ domain c ′)) (apply-chart c

◦ inv-chart c ′)
by (auto simp: smooth-compat-def )

from homeo have ∗: open (p ‘ apply-chart c ‘ (domain c ∩ domain c ′))
by (rule homeomorphism-UNIV-imp-open-map) auto

have k−smooth-on ((p ◦ apply-chart c) ‘ (domain c ∩ domain c ′)) (apply-chart
c ′ ◦ inv-chart c ◦ p ′)

apply (rule smooth-on-compose2 ) prefer 2
apply (rule dD)

apply (rule c)
apply (auto simp add: assms image-comp [symmetric] ∗ cong del: im-

age-cong-simp)
done

moreover
have k−smooth-on (apply-chart c ′ ‘ (domain c ∩ domain c ′)) (p ◦ (apply-chart

c ◦ inv-chart c ′))
apply (rule smooth-on-compose2 )
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apply (rule dD)
apply fact

by (auto simp: assms image-comp[symmetric])
ultimately show ?thesis

unfolding smooth-compat-def
by (auto intro!: simp: o-assoc)

qed

lemma compose-chart-in-atlas:
assumes c ∈ atlas
assumes diffeo: diffeomorphism k UNIV UNIV p p ′

shows compose-chart p p ′ c ∈ atlas
proof (rule maximal-atlas)

note [simp] = diffeomorphism-imp-homeomorphism[OF diffeo]
show domain (compose-chart p p ′ c) ⊆ carrier

using assms
by auto

fix c ′ assume c ′ ∈ atlas
with ‹c ∈ atlas› have k−smooth-compat c c ′

by (rule atlas-is-atlas)
then show k−smooth-compat (compose-chart p p ′ c) c ′

using diffeo
by (rule smooth-compat-compose-chart)

qed

lemma open-centered-ball-chartE :
assumes x ∈ U open U U ⊆ carrier e > 0
obtains c where

c ∈ atlas x ∈ domain c c x = x0 domain c ⊆ U codomain c = ball x0 e
proof −

from open-ball-chartE [OF assms(1−3 )] obtain c r where c:
c ∈ atlas
x ∈ domain c domain c ⊆ U codomain c = ball (c x) r
and r : r > 0
by auto

have nz: e / r 6= 0 using ‹e > 0 › ‹r > 0 › by auto
have 1 : diffeomorphism k UNIV UNIV (λy. y + (− c x)) (λy. y − (− c x))

using diffeomorphism-add[of k (− c x)] by auto
have 2 : diffeomorphism k UNIV UNIV (λy. (e / r) ∗R y) (λy. y /R (e / r))

using diffeomorphism-scaleR[of e / r k] ‹e > 0 › ‹r > 0 › by auto
have 3 : diffeomorphism k UNIV UNIV (λy. y + x0 ) (λy. y − x0 )

using diffeomorphism-add[of k x0 ] by auto
define t where t = (λy. (e / r) ∗R (y + − c x) + x0 )
define t ′ where t ′ = (λy. (y − x0 ) /R (e / r) + c x)
from diffeomorphism-compose[OF diffeomorphism-compose[OF 1 2 ] 3 , unfolded

o-def ]
have diffeo: diffeomorphism k UNIV UNIV t t ′

by (auto simp: t-def t ′-def o-def )
from compose-chart-in-atlas[OF ‹c ∈ atlas› this]
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have compose-chart t t ′ c ∈ atlas .
moreover
note [simp] = diffeomorphism-imp-homeomorphism[OF diffeo]
have x ∈ domain (compose-chart t t ′ c) by (auto simp: ‹x ∈ domain c›)
moreover
have t (c x) = x0

by (auto simp: t-def )
then have compose-chart t t ′ c x = x0

by simp
moreover have domain (compose-chart t t ′ c) ⊆ U

using ‹domain c ⊆ U ›
by auto

moreover
have t ‘ codomain c = ball x0 e
proof −

have t ‘ codomain c = (+) x0 ‘ (∗R) (e / r) ‘ (λy. − apply-chart c x + y) ‘
ball (c x) r

by (auto simp add: c t-def image-image)
also have . . . = ball x0 e

using ‹e > 0 › ‹r > 0 ›
unfolding image-add-ball image-scaleR-ball[OF nz]
by simp

finally show ?thesis .
qed
then have codomain (compose-chart t t ′ c) = ball x0 e

by auto
ultimately show ?thesis ..

qed

end

6.2.2 Submanifold
definition (in manifold) charts-submanifold S = (restrict-chart S ‘ charts)

locale c-manifold ′ = c-manifold

locale submanifold = c-manifold ′ charts k — breaks infinite loop for sublocale sub
for charts::( ′a::{t2-space,second-countable-topology}, ′b::euclidean-space) chart set

and k +
fixes S :: ′a set
assumes open-submanifold: open S

begin

lemma charts-submanifold: c-manifold (charts-submanifold S) k
by unfold-locales
(auto simp: charts-submanifold-def atlas-is-atlas in-charts-in-atlas restrict-chart-in-atlas)

sublocale sub: c-manifold (charts-submanifold S) k
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by (rule charts-submanifold)

lemma carrier-submanifold[simp]: sub.carrier = S ∩ carrier
using open-submanifold
by (auto simp: manifold.carrier-def charts-submanifold-def domain-restrict-chart-if

split: if-splits)

lemma restrict-chart-carrier [simp]:
restrict-chart carrier x = x
if x ∈ charts
using that
by (auto intro!: chart-eqI )

lemma charts-submanifold-carrier [simp]: charts-submanifold carrier = charts
by (force simp: charts-submanifold-def )

lemma charts-submanifold-Int-carrier :
charts-submanifold (S ∩ carrier) = charts-submanifold S
using open-submanifold
by (force simp: charts-submanifold-def restrict-chart-restrict-chart[symmetric])

lemma submanifold-atlasE :
assumes c ∈ sub.atlas
shows c ∈ atlas

proof (rule maximal-atlas ′)
have dc: domain c ⊆ S ∩ carrier

using assms sub.domain-atlas-subset-carrier
by auto

then show domain c ⊆ carrier
using open-submanifold by auto

fix c ′ assume c ′ ∈ charts
then have restrict-chart S c ′ ∈ (charts-submanifold S)

by (auto simp: charts-submanifold-def )
then have restrict-chart S c ′ ∈ sub.atlas

by auto
have k−smooth-compat c (restrict-chart S c ′)

by (rule sub.atlas-is-atlas) fact+
show k−smooth-compat c c ′

apply (rule smooth-compat-restrict-chartD[where U=S ])
subgoal using dc by auto
subgoal by (rule open-submanifold)
subgoal by fact
done

qed

lemma submanifold-atlasI :
restrict-chart S c ∈ sub.atlas
if c ∈ atlas

proof (rule sub.maximal-atlas ′)

92



fix c ′ assume c ′ ∈ (charts-submanifold S)
then obtain c ′′ where c ′′: c ′ = restrict-chart S c ′′ c ′′ ∈ charts

unfolding charts-submanifold-def by auto
show k−smooth-compat (restrict-chart S c) c ′

unfolding c ′′

apply (rule smooth-compat-restrict-chartI )
apply (rule smooth-compat-restrict-chartI2 )
apply (rule atlas-is-atlas)
apply fact using ‹c ′′ ∈ charts› by auto

next
show domain (restrict-chart S c) ⊆ sub.carrier

using domain-atlas-subset-carrier [OF that]
by (auto simp: open-submanifold )

qed

end

lemma (in c-manifold) restrict-chart-carrier [simp]:
restrict-chart carrier x = x
if x ∈ charts
using that
by (auto intro!: chart-eqI )

lemma (in c-manifold) charts-submanifold-carrier [simp]: charts-submanifold car-
rier = charts

by (force simp: charts-submanifold-def )

6.3 Differentiable maps
locale c-manifolds =

src: c-manifold charts1 k +
dest: c-manifold charts2 k for k charts1 charts2

locale diff = c-manifolds k charts1 charts2
for k

and charts1 :: ( ′a::{t2-space,second-countable-topology}, ′e::euclidean-space)
chart set

and charts2 :: ( ′b::{t2-space,second-countable-topology}, ′f ::euclidean-space)
chart set

+
fixes f :: ( ′a ⇒ ′b)
assumes exists-smooth-on: x ∈ src.carrier =⇒
∃ c1∈src.atlas. ∃ c2∈dest.atlas.

x ∈ domain c1 ∧
f ‘ domain c1 ⊆ domain c2 ∧
k−smooth-on (codomain c1 ) (c2 ◦ f ◦ inv-chart c1 )

begin
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lemma defined: f ‘ src.carrier ⊆ dest.carrier
using exists-smooth-on
by auto

end

context c-manifolds begin

lemma diff-iff : diff k charts1 charts2 f ←→
(∀ x∈src.carrier . ∃ c1∈src.atlas. ∃ c2∈dest.atlas.

x ∈ domain c1 ∧
f ‘ domain c1 ⊆ domain c2 ∧
k−smooth-on (codomain c1 ) (apply-chart c2 ◦ f ◦ inv-chart c1 ))

(is ?l ←→ (∀ x∈-. ?r x))
proof safe

assume ?l
interpret diff k charts1 charts2 f by fact
show x ∈ src.carrier =⇒ ?r x for x

by (rule exists-smooth-on)
next

assume ∀ x∈src.carrier . ?r x
then show ?l

by unfold-locales auto
qed

end

context diff begin

lemma diffE :
assumes x ∈ src.carrier
obtains c1 ::( ′a, ′e) chart

and c2 ::( ′b, ′f ) chart
where

c1 ∈ src.atlas c2 ∈ dest.atlas x ∈ domain c1 f ‘ domain c1 ⊆ domain c2
k−smooth-on (codomain c1 ) (apply-chart c2 ◦ f ◦ inv-chart c1 )

using exists-smooth-on assms by force

lemma continuous-at: continuous (at x within T ) f if x ∈ src.carrier
proof −

from that obtain c1 c2 where c1 ∈ src.atlas c2 ∈ dest.atlas x ∈ domain c1
f ‘ domain c1 ⊆ domain c2
k−smooth-on (codomain c1 ) (apply-chart c2 ◦ f ◦ inv-chart c1 )
by (rule diffE)

from smooth-on-imp-continuous-on[OF this(5 )]
have continuous-on (codomain c1 ) (apply-chart c2 ◦ f ◦ inv-chart c1 ) .
then have continuous-on (c1 ‘ domain c1 ) (f ◦ inv-chart c1 )
using ‹f ‘ domain c1 ⊆ domain c2 › continuous-on-chart-inv by (fastforce simp:
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image-domain-eq)
then have continuous-on (domain c1 ) f

by (rule continuous-on-chart-inv ′) simp
then have isCont f x

using ‹x ∈ domain c1 ›
unfolding continuous-on-eq-continuous-at[OF open-domain]
by auto

then show continuous (at x within T ) f
by (simp add: ‹isCont f x› continuous-at-imp-continuous-within)

qed

lemma continuous-on: continuous-on src.carrier f
unfolding continuous-on-eq-continuous-within
by (auto intro: continuous-at)

lemmas continuous-on-intro[continuous-intros] = continuous-on-compose2 [OF con-
tinuous-on -]

lemmas continuous-within[continuous-intros] = continuous-within-compose3 [OF
continuous-at]

lemmas tendsto[tendsto-intros] = isCont-tendsto-compose[OF continuous-at]

lemma diff-chartsD:
assumes d1 ∈ src.atlas d2 ∈ dest.atlas
shows k−smooth-on (codomain d1 ∩ inv-chart d1 −‘ (src.carrier ∩ f −‘ domain

d2 ))
(apply-chart d2 ◦ f ◦ inv-chart d1 )

proof (rule smooth-on-open-subsetsI )
fix y assume y ∈ codomain d1 ∩ inv-chart d1 −‘ (src.carrier ∩ f −‘ domain

d2 )
then have y: f (inv-chart d1 y) ∈ domain d2 y ∈ codomain d1

by auto
then obtain x where x: d1 x = y x ∈ domain d1

by force
then have x ∈ src.carrier using assms by force
obtain c1 c2 where c1 ∈ src.atlas c2 ∈ dest.atlas

and fc1 : f ‘ domain c1 ⊆ domain c2
and xc1 : x ∈ domain c1
and d: k−smooth-on (codomain c1 ) (apply-chart c2 ◦ f ◦ inv-chart c1 )
using diffE [OF ‹x ∈ src.carrier›]
by metis

have [simp]: x ∈ domain c1 =⇒ f x ∈ domain c2 for x using fc1 by auto
have r1 : k−smooth-on (d1 ‘ (domain d1 ∩ domain c1 )) (c1 ◦ inv-chart d1 )
using src.atlas-is-atlas[OF ‹d1 ∈ src.atlas› ‹c1 ∈ src.atlas›, THEN smooth-compat-D1 ]

.
have r2 : k−smooth-on (c2 ‘ (domain d2 ∩ domain c2 )) (d2 ◦ inv-chart c2 )
using dest.atlas-is-atlas[OF ‹d2 ∈ dest.atlas› ‹c2 ∈ dest.atlas›, THEN smooth-compat-D2 ]

.
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define T where T = (d1 ‘ (domain d1 ∩ domain c1 ) ∩ inv-chart d1 −‘
(src.carrier ∩ (f −‘ domain d2 )))

have open T
unfolding T-def
by (rule open-continuous-vimage ′)
(auto intro!: continuous-intros open-continuous-vimage ′ src.open-carrier)

have T-subset: T ⊆ apply-chart d1 ‘ (domain d1 ∩ domain c1 )
by (auto simp: T-def )

have opens: open (c1 ‘ inv-chart d1 ‘ T ) open (c2 ‘ (domain d2 ∩ domain c2 ))
using fc1 ‹open T ›
by (force simp: T-def )+

have k−smooth-on ((apply-chart c1 ◦ inv-chart d1 ) ‘ T ) (d2 ◦ inv-chart c2 ◦
(c2 ◦ f ◦ inv-chart c1 ))

using r2 d opens
unfolding image-comp[symmetric]
by (rule smooth-on-compose2 ) (auto simp: T-def )

from this r1 ‹open T › opens(1 ) have k−smooth-on T
((d2 ◦ inv-chart c2 ) ◦ (c2 ◦ f ◦ inv-chart c1 ) ◦ (c1 ◦ inv-chart d1 ))

unfolding image-comp[symmetric]
by (rule smooth-on-compose2 ) (force simp: T-def )+

then have k−smooth-on T (d2 ◦ f ◦ inv-chart d1 )
using ‹open T ›
by (rule smooth-on-cong) (auto simp: T-def )

moreover have y ∈ T
using x xc1 fc1 y ‹c1 ∈ src.atlas›
by (auto simp: T-def )

ultimately show ∃T . y ∈ T ∧ open T ∧ k−smooth-on T (apply-chart d2 ◦ f
◦ inv-chart d1 )

using ‹open T ›
by metis

qed

lemma diff-between-chartsE :
assumes d1 ∈ src.atlas d2 ∈ dest.atlas
assumes y ∈ domain d1 y ∈ src.carrier f y ∈ domain d2
obtains X where

k−smooth-on X (apply-chart d2 ◦ f ◦ inv-chart d1 )
d1 y ∈ X
open X
X = codomain d1 ∩ inv-chart d1 −‘ (src.carrier ∩ f −‘ domain d2 )

proof −
define X where X = (codomain d1 ∩ inv-chart d1 −‘ (src.carrier ∩ f −‘ domain

d2 ))
from diff-chartsD[OF assms(1 ,2 )]
have k−smooth-on X (apply-chart d2 ◦ f ◦ inv-chart d1 )

by (simp add: X-def )
moreover have d1 y ∈ X

using assms(3−5 )
by (auto simp: X-def )
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moreover have open X
unfolding X-def
by (auto intro!: open-continuous-vimage ′ continuous-intros src.open-carrier)

moreover note X-def
ultimately show ?thesis ..

qed

end

lemma diff-compose:
diff k M1 M3 (g ◦ f )
if diff k M1 M2 f diff k M2 M3 g

proof −
interpret f : diff k M1 M2 f by fact
interpret g: diff k M2 M3 g by fact
interpret fg: c-manifolds k M1 M3 by unfold-locales
show ?thesis

unfolding fg.diff-iff
proof safe

fix x assume x ∈ f .src.carrier
then obtain c1 c2 where c1 : c1 ∈ f .src.atlas

and c2 : c2 ∈ f .dest.atlas
and fc1 : f ‘ domain c1 ⊆ domain c2
and x: x ∈ domain c1
and df : k−smooth-on (codomain c1 ) (apply-chart c2 ◦ f ◦ inv-chart c1 )
using f .diffE by metis

have f x ∈ f .dest.carrier using f .defined ‹x ∈ f .src.carrier› by auto
then obtain c2 ′ c3 where c2 ′: c2 ′ ∈ f .dest.atlas

and c3 : c3 ∈ g.dest.atlas
and gc2 ′: g ‘ domain c2 ′ ⊆ domain c3
and fx: f x ∈ domain c2 ′

and dg: k−smooth-on (codomain c2 ′) (apply-chart c3 ◦ g ◦ inv-chart c2 ′)
using g.diffE by metis

define D where D = (g ◦ f ) −‘ domain c3 ∩ domain c1
have open D

using f .defined c1
by (auto intro!: continuous-intros open-continuous-vimage simp: D-def )

have x ∈ D
using fc1 fx gc2 ′

by (auto simp: D-def ‹x ∈ domain c1 ›)

define d1 where d1 = restrict-chart D c1

have d1 ∈ f .src.atlas
by (auto simp: d1-def intro!: f .src.restrict-chart-in-atlas c1 )

moreover have c3 ∈ g.dest.atlas by fact
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moreover have x ∈ domain d1 by (auto simp: d1-def ‹open D› ‹x ∈ D› x)
moreover have sub-c3 : (g ◦ f ) ‘ domain d1 ⊆ domain c3

using ‹open D› by (auto simp: d1-def D-def )
moreover have k−smooth-on (codomain d1 ) (c3 ◦ (g ◦ f ) ◦ inv-chart d1 )
proof (rule smooth-on-open-subsetsI )

fix y assume y: y ∈ codomain d1
then obtain iy where y-def : y = d1 iy and iy: iy ∈ domain d1 by force
note iy
also note f .src.domain-atlas-subset-carrier [OF ‹d1 ∈ f .src.atlas›]
finally have iS : iy ∈ f .src.carrier .
then have f iy ∈ f .dest.carrier

using f .defined by (auto simp: d1-def )
with f .dest.atlasE obtain d2 where d2 : d2 ∈ f .dest.atlas

and fy: f iy ∈ domain d2
by blast

from f .diff-between-chartsE [OF ‹d1 ∈ f .src.atlas› ‹d2 ∈ f .dest.atlas› iy iS
fy]

obtain T where 1 : k−smooth-on T (apply-chart d2 ◦ f ◦ inv-chart d1 )
and T : d1 iy ∈ T open T

and T-def : T = codomain d1 ∩ inv-chart d1 −‘ (f .src.carrier ∩ f −‘ domain
d2 )

by auto

have gf : g (f (iy)) ∈ domain c3 using sub-c3 iy by auto
from iS f .defined have f (iy) ∈ f .dest.carrier by auto
from g.diff-between-chartsE [OF ‹d2 ∈ f .dest.atlas› ‹c3 ∈ g.dest.atlas› fy this

gf ]
obtain X where 2 : k−smooth-on X (apply-chart c3 ◦ g ◦ inv-chart d2 )

and X : apply-chart d2 (f iy) ∈ X open X
and X-def : X = codomain d2 ∩ inv-chart d2 −‘ (f .dest.carrier ∩ g −‘

domain c3 )
by auto

have y ∈ T using T by (simp add: y-def )
moreover
note ‹open T ›
moreover
have k−smooth-on T (apply-chart c3 ◦ g ◦ inv-chart d2 ◦ (apply-chart d2 ◦

f ◦ inv-chart d1 ))
using 2 1 ‹open T › ‹open X›

by (rule smooth-on-compose) (use sub-c3 f .defined in ‹force simp: T-def
X-def ›)

then have k−smooth-on T (apply-chart c3 ◦ (g ◦ f ) ◦ inv-chart d1 )
using ‹open T ›
by (rule smooth-on-cong) (auto simp: T-def )

ultimately show ∃T . y ∈ T ∧ open T ∧ k−smooth-on T (apply-chart c3 ◦
(g ◦ f ) ◦ inv-chart d1 )

by metis
qed
ultimately show ∃ c1∈f .src.atlas.
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∃ c2∈g.dest.atlas.
x ∈ domain c1 ∧

(g ◦ f ) ‘ domain c1 ⊆ domain c2 ∧ k−smooth-on (codomain c1 )
(apply-chart c2 ◦ (g ◦ f ) ◦ inv-chart c1 )

by blast
qed

qed

context diff begin

lemma diff-submanifold: diff k (src.charts-submanifold S) charts2 f
if open S

proof −
interpret submanifold charts1 k S

by unfold-locales (auto intro!: that)
show ?thesis

unfolding that src.charts-submanifold-def [symmetric]
proof unfold-locales

fix x assume x ∈ sub.carrier
then have x ∈ src.carrier x ∈ S using that

by auto
from diffE [OF ‹x ∈ src.carrier›] obtain c1 c2 where c1c2 :

c1 ∈ src.atlas c2 ∈ dest.atlas x ∈ domain c1
f ‘ domain c1 ⊆ domain c2 k−smooth-on (codomain c1 ) (apply-chart c2 ◦ f

◦ inv-chart c1 )
by auto

have rc1 : restrict-chart S c1 ∈ sub.atlas
using c1c2 (1 ) by (rule submanifold-atlasI )

show ∃ c1∈sub.atlas. ∃ c2∈dest.atlas. x ∈ domain c1 ∧ f ‘ domain c1 ⊆ domain
c2 ∧

k−smooth-on (codomain c1 ) (c2 ◦ f ◦ inv-chart c1 )
using rc1
apply (rule rev-bexI )
using c1c2 (2 )
apply (rule rev-bexI )
using c1c2 ‹x ∈ S› ‹open S›
by (auto simp: smooth-on-subset)

qed
qed

lemma diff-submanifold2 : diff k charts1 (dest.charts-submanifold S) f
if open S f ‘ src.carrier ⊆ S

proof −
interpret submanifold charts2 k S

by unfold-locales (auto intro!: that)
show ?thesis

unfolding that src.charts-submanifold-def [symmetric]
proof unfold-locales

fix x assume x ∈ src.carrier
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from diffE [OF this]
obtain c1 c2 where c1c2 :

c1 ∈ src.atlas c2 ∈ dest.atlas x ∈ domain c1
f ‘ domain c1 ⊆ domain c2 k−smooth-on (codomain c1 ) (apply-chart c2 ◦ f

◦ inv-chart c1 )
by auto

have r : restrict-chart S c2 ∈ sub.atlas
using c1c2 (2 ) by (rule submanifold-atlasI )

show ∃ c1∈src.atlas. ∃ c2∈sub.atlas. x ∈ domain c1 ∧ f ‘ domain c1 ⊆ domain
c2 ∧

k−smooth-on (codomain c1 ) (c2 ◦ f ◦ inv-chart c1 )
using c1c2 (1 )
apply (rule rev-bexI )
using r
apply (rule rev-bexI )
using c1c2 ‹open S› that(2 )
by (auto simp: smooth-on-subset)

qed
qed

end

context c-manifolds begin

lemma diff-localI : diff k charts1 charts2 f
if

∧
x. x ∈ src.carrier =⇒ diff k (src.charts-submanifold (U x)) charts2 f∧

x. x ∈ src.carrier =⇒ open (U x)∧
x. x ∈ src.carrier =⇒ x ∈ (U x)

proof unfold-locales
fix x assume x: x ∈ src.carrier
have open-U [simp]: open (U x) by (rule that) fact
have in-U [simp]: x ∈ U x by (rule that) fact
interpret submanifold charts1 k U x

using that x
by unfold-locales auto

from x interpret l: diff k src.charts-submanifold (U x) charts2 f
by (rule that)

have x ∈ sub.carrier using x
by auto

from l.diffE [OF this] obtain c1 c2 where c1c2 : c1 ∈ sub.atlas
c2 ∈ dest.atlas x ∈ domain c1 f ‘ domain c1 ⊆ domain c2
k−smooth-on (codomain c1 ) (apply-chart c2 ◦ f ◦ inv-chart c1 )
by auto

have c1 ∈ src.atlas
by (rule submanifold-atlasE [OF c1c2 (1 )])

show ∃ c1∈src.atlas. ∃ c2∈dest.atlas. x ∈ domain c1 ∧ f ‘ domain c1 ⊆ domain
c2 ∧

k−smooth-on (codomain c1 ) (apply-chart c2 ◦ f ◦ inv-chart c1 )
by (intro bexI [where x=c1 ] bexI [where x=c2 ] conjI ‹c1 ∈ src.atlas› ‹c2 ∈
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dest.atlas› c1c2 )
qed

lemma diff-open-coverI : diff k charts1 charts2 f
if diff :

∧
u. u ∈ U =⇒ diff k (src.charts-submanifold u) charts2 f

and op:
∧

u. u ∈ U =⇒ open u
and cover : src.carrier ⊆

⋃
U

proof −
obtain V where V : ∀ x∈src.carrier . V x ∈ U ∧ x ∈ V x

apply (atomize-elim, rule bchoice)
using cover
by blast

have diff k (src.charts-submanifold (V x)) charts2 f
open (V x)
x ∈ V x
if x ∈ src.carrier for x
using that diff op V
by auto

then show ?thesis
by (rule diff-localI )

qed

lemma diff-open-Un: diff k charts1 charts2 f
if diff k (src.charts-submanifold U ) charts2 f

diff k (src.charts-submanifold V ) charts2 f
and open U open V src.carrier ⊆ U ∪ V

using diff-open-coverI [of {U , V } f ] that
by auto

end

context c-manifold begin

sublocale self : c-manifolds k charts charts
by unfold-locales

lemma diff-id: diff k charts charts (λx. x)
by (force simp: self .diff-iff elim!: atlasE intro: smooth-on-cong)

lemma c-manifold-order-le: c-manifold charts l if l ≤ k
by unfold-locales (use pairwise-compat smooth-compat-le[OF - ‹l ≤ k›] in blast)

lemma in-atlas-order-le: c ∈ c-manifold.atlas charts l if l ≤ k c ∈ atlas
proof −

interpret l: c-manifold charts l
using ‹l ≤ k›
by (rule c-manifold-order-le)

show ?thesis
using that
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by (auto simp: l.atlas-def atlas-def smooth-compat-le[OF - ‹l ≤ k›])
qed

end

context c-manifolds begin

lemma c-manifolds-order-le: c-manifolds l charts1 charts2 if l ≤ k
by unfold-locales
(use src.pairwise-compat dest.pairwise-compat smooth-compat-le[OF - that] in

blast)+

end

context diff begin

lemma diff-order-le: diff l charts1 charts2 f if l ≤ k
proof −

interpret l: c-manifolds l charts1 charts2
by (rule c-manifolds-order-le) fact

show diff l charts1 charts2 f
using diff-axioms
unfolding l.diff-iff diff-iff
by (auto dest!: smooth-on-le[OF - that] src.in-atlas-order-le[OF that]

dest.in-atlas-order-le[OF that] dest!: bspec)
qed

end

6.4 Differentiable functions
lift-definition chart-eucl::( ′a::euclidean-space, ′a) chart is
(UNIV , UNIV , λx. x, λx. x)
by (auto simp: homeomorphism-def )

abbreviation charts-eucl ≡ {chart-eucl}

lemma chart-eucl-simps[simp]:
domain chart-eucl = UNIV
codomain chart-eucl = UNIV
apply-chart chart-eucl = (λx. x)
inv-chart chart-eucl = (λx. x)
by (transfer , simp)+

locale diff-fun = diff k charts charts-eucl f
for k charts and f :: ′a::{t2-space,second-countable-topology} ⇒ ′b::euclidean-space

lemma diff-fun-compose:
diff-fun k M1 (g ◦ f )
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if diff k M1 M2 f diff-fun k M2 g
unfolding diff-fun-def
by (rule diff-compose[OF that[unfolded diff-fun-def ]])

lemma c1-manifold-atlas-eucl: c-manifold charts-eucl k
by unfold-locales (auto simp: smooth-compat-refl)

interpretation manifold-eucl: c-manifold charts-eucl k
by (rule c1-manifold-atlas-eucl)

lemma chart-eucl-in-atlas[intro,simp]: chart-eucl ∈ manifold-eucl.atlas k
using manifold-eucl.charts-subset-atlas
by auto

lemma apply-chart-smooth-on:
k−smooth-on (domain c) c if c ∈ manifold-eucl.atlas k

proof −
have k−smooth-compat c chart-eucl

using that
by (auto intro!: manifold-eucl.atlas-is-atlas)

from smooth-compat-D2 [OF this]
show ?thesis

by (auto simp: o-def )
qed

lemma inv-chart-smooth-on: k−smooth-on (codomain c) (inv-chart c) if c ∈ man-
ifold-eucl.atlas k
proof −

have k−smooth-compat c chart-eucl
using that
by (auto intro!: manifold-eucl.atlas-is-atlas)

from smooth-compat-D1 [OF this]
show ?thesis

by (auto simp: o-def image-domain-eq)
qed

lemma smooth-on-chart-inv:
fixes c::( ′a::euclidean-space, ′a) chart
assumes k−smooth-on X (apply-chart c ◦ f )
assumes continuous-on X f
assumes c ∈ manifold-eucl.atlas k open X f ‘ X ⊆ domain c
shows k−smooth-on X f

proof −
have k−smooth-on X (inv-chart c ◦ (apply-chart c ◦ f ))

using assms
by (auto intro!: smooth-on-compose inv-chart-smooth-on)

with assms show ?thesis
by (force intro!: open-continuous-vimage intro: smooth-on-cong)

qed
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lemma smooth-on-chart-inv2 :
fixes c::( ′a::euclidean-space, ′a) chart
assumes k−smooth-on (c ‘ X) (f o inv-chart c)
assumes c ∈ manifold-eucl.atlas k open X X ⊆ domain c
shows k−smooth-on X f

proof −
have k−smooth-on X ((f o inv-chart c) ◦ apply-chart c)

using assms(1 ) apply-chart-smooth-on
by (rule smooth-on-compose2 ) (auto simp: assms)

with assms show ?thesis
by (force intro!: open-continuous-vimage intro: smooth-on-cong)

qed

context diff-fun begin

lemma diff-fun-order-le: diff-fun l charts f if l ≤ k
using diff-order-le[OF that]
by (simp add: diff-fun-def )

end

6.5 Diffeormorphism
locale diffeomorphism = diff k charts1 charts2 f + inv: diff k charts2 charts1 f ′

for k charts1 charts2 f f ′ +
assumes f-inv[simp]:

∧
x. x ∈ src.carrier =⇒ f ′ (f x) = x

and f ′-inv[simp]:
∧

y. y ∈ dest.carrier =⇒ f (f ′ y) = y

context c-manifold begin

sublocale manifold-eucl: c-manifolds k charts {chart-eucl}
rewrites diff k charts {chart-eucl} = diff-fun k charts
by unfold-locales (simp add: diff-fun-def [abs-def ])

lemma diff-funI :
diff-fun k charts f
if (

∧
x. x∈carrier =⇒ ∃ c1∈atlas. x ∈ domain c1 ∧ (k−smooth-on (codomain

c1 ) (f ◦ inv-chart c1 )))
unfolding manifold-eucl.diff-iff
by (auto dest!: that intro!: bexI [where x=chart-eucl] simp: o-def )

end

lemma (in diff ) diff-cong: diff k charts1 charts2 g if
∧

x. x ∈ src.carrier =⇒ f x
= g x

unfolding diff-iff
proof (rule ballI )

fix x assume x ∈ src.carrier
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from diff-axioms[unfolded diff-iff , rule-format, OF this]
obtain c1 ::( ′a, ′e) chart and c2 ::( ′b, ′f ) chart where

c1∈src.atlas c2 ∈ dest.atlas
x ∈ domain c1 f ‘ domain c1 ⊆ domain c2 k−smooth-on (codomain c1 )

(apply-chart c2 ◦ f ◦ inv-chart c1 )
by auto

then show ∃ c1∈src.atlas. ∃ c2∈dest.atlas.
x ∈ domain c1 ∧ g ‘ domain c1 ⊆ domain c2 ∧ k−smooth-on (codomain c1 )

(apply-chart c2 ◦ g ◦ inv-chart c1 )
using that

by (intro bexI [where x=c1 ] bexI [where x=c2 ]) (auto simp: intro: smooth-on-cong)
qed

context diff-fun begin

lemma diff-fun-cong: diff-fun k charts g if
∧

x. x ∈ src.carrier =⇒ f x = g x
using diff-cong[OF that]
by (auto simp: diff-fun-def )

lemma diff-funD:
∃ c1∈src.atlas. x ∈ domain c1 ∧ (k−smooth-on (codomain c1 ) (f ◦ inv-chart

c1 ))
if x: x ∈ src.carrier

proof −
from diff-fun-axioms[unfolded src.manifold-eucl.diff-iff , rule-format, OF x]
obtain c1 c2 where a: c1 ∈ src.atlas c2 ∈ manifold-eucl.atlas k x ∈ domain c1

f ‘ domain c1 ⊆ domain c2
and s: k−smooth-on (codomain c1 ) (apply-chart c2 ◦ (f ◦ inv-chart c1 ))
by (auto simp: o-assoc)

from smooth-on-chart-inv[OF s] a
show ?thesis

by (force intro!: bexI [where x=c1 ] a continuous-intros)
qed

lemma diff-funE :
assumes x ∈ src.carrier
obtains c1 where

c1∈src.atlas x ∈ domain c1 k−smooth-on (codomain c1 ) (f ◦ inv-chart c1 )
using diff-funD[OF assms]
by blast

lemma diff-fun-between-chartsD:
assumes c ∈ src.atlas x ∈ domain c
shows k−smooth-on (codomain c) (f ◦ inv-chart c)

proof −
have x ∈ src.carrier f x ∈ domain chart-eucl using assms by auto
from diff-between-chartsE [OF assms(1 ) chart-eucl-in-atlas assms(2 ) this]
obtain X where s: k−smooth-on X (f ◦ inv-chart c)
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and X-def : X = codomain c ∩ inv-chart c −‘ (src.carrier ∩ f −‘ UNIV )
by (auto simp: o-def )

then have X-def : X = codomain c using assms
by (auto simp: X-def )

with s show ?thesis by auto
qed

lemma diff-fun-submanifold: diff-fun k (src.charts-submanifold S) f
if [simp]: open S
using diff-submanifold
unfolding diff-fun-def
by simp

end

context c-manifold begin

lemma diff-fun-zero: diff-fun k charts 0
by (rule diff-funI ) (auto simp: o-def elim!: carrierE)

lemma diff-fun-const: diff-fun k charts (λx. c)
by (rule diff-funI ) (auto simp: o-def elim!: carrierE)

lemma diff-fun-add: diff-fun k charts (a + b) if diff-fun k charts a diff-fun k charts
b
proof (rule diff-funI )

fix x
assume x: x ∈ carrier
interpret a: diff-fun k charts a by fact
interpret b: diff-fun k charts b by fact
from a.diff-funE [OF x]
obtain c where ca: c ∈ atlas x ∈ domain c k−smooth-on (codomain c) (a ◦

inv-chart c)
by blast

show ∃ c1∈atlas. x ∈ domain c1 ∧ k−smooth-on (codomain c1 ) (a + b ◦
inv-chart c1 )

using ca
by (auto intro!: bexI [where x=c] ca smooth-on-add-fun simp: plus-compose

b.diff-fun-between-chartsD)
qed

lemma diff-fun-sum: diff-fun k charts (λx.
∑

i∈S . f i x) if
∧

i. i ∈ S =⇒ diff-fun
k charts (f i)

using that
apply (induction S rule: infinite-finite-induct)
subgoal by (simp add: diff-fun-const)
subgoal by (simp add: diff-fun-const)
subgoal by (simp add: diff-fun-add[unfolded plus-fun-def ])
done
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lemma diff-fun-scaleR: diff-fun k charts (λx. a x ∗R b x)
if diff-fun k charts a diff-fun k charts b

proof (rule diff-funI )
fix x
assume x: x ∈ carrier
interpret a: diff-fun k charts a by fact
interpret b: diff-fun k charts b by fact
from a.diff-funE [OF x]
obtain c where ca: c ∈ atlas x ∈ domain c k−smooth-on (codomain c) (a ◦

inv-chart c)
by blast

have ∗: (λx. a x ∗R b x) ◦ inv-chart c = (λx. (a o inv-chart c) x ∗R (b o inv-chart
c) x)

by auto
show ∃ c1∈atlas. x ∈ domain c1 ∧ k−smooth-on (codomain c1 ) ((λx. a x ∗R b

x) ◦ inv-chart c1 )
using ca
by (auto intro!: bexI [where x=c] smooth-on-scaleR

simp: mult-compose b.diff-fun-between-chartsD[unfolded o-def ] ∗ o-def )
qed

lemma diff-fun-scaleR-left: diff-fun k charts (c ∗R b)
if diff-fun k charts b
by (auto simp: scaleR-fun-def intro!: diff-fun-scaleR that diff-fun-const)

lemma diff-fun-times: diff-fun k charts (a ∗ b) if diff-fun k charts a diff-fun k
charts b

for a b::- ⇒ -::real-normed-algebra
proof (rule diff-funI )

fix x
assume x: x ∈ carrier
interpret a: diff-fun k charts a by fact
interpret b: diff-fun k charts b by fact
from a.diff-funE [OF x]
obtain c where ca: c ∈ atlas x ∈ domain c k−smooth-on (codomain c) (a ◦

inv-chart c)
by blast

show ∃ c1∈atlas. x ∈ domain c1 ∧ k−smooth-on (codomain c1 ) (a ∗ b ◦ inv-chart
c1 )

using ca
by (auto intro!: bexI [where x=c] ca smooth-on-times-fun simp: mult-compose

b.diff-fun-between-chartsD)
qed

lemma diff-fun-divide: diff-fun k charts (λx. a x / b x)
if diff-fun k charts a diff-fun k charts b

and nz:
∧

x. x ∈ carrier =⇒ b x 6= 0
for a b::- ⇒ -::real-normed-field
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proof (rule diff-funI )
fix x
assume x: x ∈ carrier
interpret a: diff-fun k charts a by fact
interpret b: diff-fun k charts b by fact
from a.diff-funE [OF x]
obtain c where ca: c ∈ atlas x ∈ domain c k−smooth-on (codomain c) (a ◦

inv-chart c)
by blast

show ∃ c1∈atlas. x ∈ domain c1 ∧ k−smooth-on (codomain c1 ) ((λx. a x / b x)
◦ inv-chart c1 )

using ca nz
by (auto intro!: bexI [where x=c] ca smooth-on-mult smooth-on-inverse

dest: b.diff-fun-between-chartsD
simp: mult-compose o-def
divide-inverse)

qed

lemma subspace-Collect-diff-fun:
subspace (Collect (diff-fun k charts))
by (auto simp: subspace-def diff-fun-zero diff-fun-add diff-fun-scaleR-left)

end

lemma manifold-eucl-carrier [simp]: manifold-eucl.carrier = UNIV
by (simp add: manifold-eucl.carrier-def )

lemma diff-fun-charts-euclD: k−smooth-on UNIV g if diff-fun k charts-eucl g
proof (rule smooth-on-open-subsetsI )

fix x:: ′a
interpret diff-fun k charts-eucl g by fact
have x ∈ manifold-eucl.carrier by simp
from diff-funE [OF this] obtain c1

where c: c1 ∈ manifold-eucl.atlas k x ∈ domain c1
k−smooth-on (codomain c1 ) (g ◦ inv-chart c1 ) by auto

have k−smooth-on (domain c1 ) g
apply (rule smooth-on-chart-inv2 )

apply (rule smooth-on-subset)
apply (rule c)

using c by auto
then show ∃T . x ∈ T ∧ open T ∧ k−smooth-on T g

using c by auto
qed

lemma diff-fun-charts-euclI : diff-fun k charts-eucl g if k−smooth-on UNIV g
apply (rule manifold-eucl.diff-funI )
apply auto
apply (rule bexI [where x=chart-eucl])
using that
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by (auto simp: o-def )

end

7 Partitions Of Unity
theory Partition-Of-Unity

imports Bump-Function Differentiable-Manifold
begin

7.1 Regular cover
context c-manifold begin

A cover is regular if, in addition to being countable and locally finite, the
codomain of every chart is the open ball of radius 3, such that the inverse
image of open balls of radius 1 also cover the manifold.
definition regular-cover I (ψ:: ′i⇒( ′a, ′b) chart) ←→

countable I ∧
carrier = (

⋃
i∈I . domain (ψ i)) ∧

locally-finite-on carrier I (domain o ψ) ∧
(∀ i∈I . codomain (ψ i) = ball 0 3 ) ∧
carrier = (

⋃
i∈I . inv-chart (ψ i) ‘ ball 0 1 )

Every covering has a refinement that is a regular cover.
lemma reguler-refinementE :

fixes X :: ′i ⇒ ′a set
assumes cover : carrier ⊆ (

⋃
i∈I . X i) and open-cover :

∧
i. i ∈ I =⇒ open (X

i)
obtains N ::nat set and ψ::nat ⇒ ( ′a, ′b) chart
where

∧
i. i ∈ N =⇒ ψ i ∈ atlas (domain o ψ) ‘ N refines X ‘ I regular-cover

N ψ
proof −

from precompact-locally-finite-open-coverE
obtain V ::nat⇒- where V :

carrier = (
⋃

i. V i)∧
i. open (V i)∧
i. compact (closure (V i))∧
i. closure (V i) ⊆ carrier

locally-finite-on carrier UNIV V
by auto

define intersecting where intersecting v = {i. V i ∩ v 6= {}} for v
have intersecting-closure: intersecting (closure x) = intersecting x for x

using open-Int-closure-eq-empty[OF V (2 ), of - x]
by (auto simp: intersecting-def )

from locally-finite-compactD[OF V (5 ) V (3 ) V (4 )]
have finite (intersecting (closure (V x))) for x
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by (simp add: intersecting-def )
then have finite-intersecting: finite (intersecting (V x)) for x

by (simp add: intersecting-closure)

have ∃ψ::( ′a, ′b) chart.
ψ ∈ atlas ∧
codomain ψ = ball 0 3 ∧
(∃ c∈I . domain ψ ⊆ X c) ∧
(∀ j. p ∈ V j −→ domain ψ ⊆ V j) ∧
p ∈ domain ψ ∧
ψ p = 0

if p ∈ carrier for p
proof −

from cover that open-cover obtain c where c: p ∈ X c open (X c) c ∈ I
by force

define VS where VS = {U . p ∈ V U}
have open-VS :

∧
T . T ∈ VS =⇒ open (V T )

by (auto simp: VS-def V )
from locally-finite-onD[OF V (5 ) that]
have finite VS by (simp add: VS-def )
from atlasE [OF that] obtain ψ ′ where ψ ′: ψ ′ ∈ atlas p ∈ domain ψ ′ .
define W where W = (

⋂
i∈VS . V i) ∩ domain ψ ′ ∩ X c

have open W
by (force simp: W-def open-VS intro!: c ‹finite VS›)

have p ∈ W by (auto simp: W-def c ψ ′ VS-def )
have W ⊆ carrier

using ψ ′

by (auto simp: W-def )
have 0 < (3 ::real) by auto
from open-centered-ball-chartE [OF ‹p ∈ W › ‹open W › ‹W ⊆ carrier› ‹0 <

3 ›]
obtain ψ where ψ: ψ ∈ atlas p ∈ domain ψ ψ p = 0 domain ψ ⊆ W codomain

ψ = ball 0 3
by auto

moreover have ∃ x∈I . domain ψ ⊆ X x
using c ψ by (auto simp: W-def )

moreover have p ∈ V j =⇒ domain ψ ⊆ V j for j
using c ψ by (auto simp: W-def VS-def )

ultimately show ?thesis
by (intro exI [where x=ψ]) auto

qed
then have ∀ p2 ∈ carrier .
∃ψ::( ′a, ′b) chart. ψ ∈ atlas ∧ codomain ψ = ball 0 3 ∧

(∃ c∈I . domain ψ ⊆ X c) ∧ (∀ j. p2 ∈ V j −→ domain ψ ⊆ V j) ∧ p2 ∈
domain ψ ∧

apply-chart ψ p2 = 0
by blast

then obtain ψ:: ′a ⇒ ( ′a, ′b) chart where ψ:∧
p. p ∈ carrier =⇒ codomain (ψ p) = ball 0 3
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∧
p. p ∈ carrier =⇒ (∃ c∈I . domain (ψ p) ⊆ X c)∧
p j. p ∈ V j =⇒ domain (ψ p) ⊆ V j∧
p j. p ∈ carrier =⇒ p ∈ domain (ψ p)∧
p. p ∈ carrier =⇒ (ψ p) p = 0∧
p. p ∈ carrier =⇒ ψ p ∈ atlas

unfolding bchoice-iff
apply atomize-elim
apply auto
subgoal for f

apply (rule exI [where x=f ])
using V
by auto

done

define U where U p = inv-chart (ψ p) ‘ ball 0 1 for p
have U-open: open (U p) if p ∈ carrier for p

using that ψ
by (auto simp: U-def )

have U-subset-domain: x ∈ U p =⇒ x ∈ domain (ψ p) if p ∈ carrier for x p
using ψ(1 ) that
by (auto simp: U-def )

have ∃M . M ⊆ closure (V l) ∧ finite M ∧ closure (V l) ⊆
⋃
(U ‘ M ) for l

proof −
have clcover : closure (V l) ⊆

⋃
(U ‘ closure (V l))

using ψ
apply (auto simp: U-def )
apply (rule bexI )
prefer 2 apply assumption

apply (rule image-eqI )
apply (rule inv-chart-inverse[symmetric])
apply (rule ψ)
apply auto

using V (4 ) apply force
by (metis V (4 ) less-irrefl norm-numeral norm-one norm-zero one-less-numeral-iff

subsetCE
zero-less-norm-iff zero-neq-numeral)

have B ∈ U ‘ closure (V l) =⇒ open B for B
using V (4 ) by (auto intro!: U-open)

from compactE [OF V (3 ) clcover this]
obtain Um where Um: Um ⊆ U ‘ closure (V l) finite Um closure (V l) ⊆⋃

Um
by auto

from Um(1 ) have ∀ t∈Um. ∃ p∈closure (V l). t = U p
by auto

then obtain p-of where p-of :
∧

t. t ∈ Um =⇒ p-of t ∈ closure (V l)∧
t. t ∈ Um =⇒ t = U (p-of t)

by metis
have p-of ‘ Um ⊆ closure (V l)
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using p-of
by auto

moreover have finite (p-of ‘ Um) using ‹finite Um› by auto
moreover have closure (V l) ⊆

⋃
(U ‘ p-of ‘ Um)

using Um p-of by auto
ultimately show ?thesis by blast

qed
then obtain M ′ where M ′:

∧
l. M ′ l ⊆ closure (V l)

∧
l. finite (M ′ l)

∧
l.

closure (V l) ⊆
⋃
(U ‘ M ′ l)

by metis
define M where M v = M ′ (LEAST l. V l = v) for v
have V-Least: V (LEAST la. V la = V l) = V l for l

by (rule LeastI-ex) auto
have M : M (V l) ⊆ closure (V l) finite (M v) closure (V l) ⊆

⋃
(U ‘ M (V l))

for v l
subgoal

unfolding M-def
apply (rule order-trans)
apply (rule M ′)

by (auto simp: V-Least)
subgoal using M ′ by (auto simp: M-def )
subgoal

unfolding M-def
apply (subst V-Least[symmetric])
by (rule M ′)

done

from M (1 ) V (4 ) have M-carrier : x ∈ M (V l) =⇒ x ∈ carrier for x l by auto

have countable (
⋃

l. M (V l))
using M (2 ) by (auto simp: countable-finite)

from countableE-bij[OF this]
obtain m and N ::nat set where n: bij-betw m N (

⋃
l. M (V l)) .

define m ′ where m ′ = the-inv-into N m
have m-inverse[simp]:

∧
i. i ∈ N =⇒ m ′ (m i) = i

and m ′-inverse[simp]:
∧

x l. x ∈ M (V l) =⇒ m (m ′ x) = x
using n
by (force simp: bij-betw-def m ′-def the-inv-into-f-f )+

have m-in: m i ∈ (
⋃

l. M (V l)) if i ∈ N for i
using n that
by (auto dest!: bij-betwE)

have m ′-in: m ′ x ∈ N if x ∈ M (V l) for x l
using that n
by (auto simp: m ′-def bij-betw-def intro!: the-inv-into-into)

from m-in have m-in-carrier : m i ∈ carrier if i ∈ N for i
using that M-carrier
by auto
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then have
∧

i. i ∈ N =⇒ ψ (m i) ∈ atlas
by (rule ψ(6 ))

moreover
have (domain o (λi. (ψ (m i)))) ‘ N refines X ‘ I

by (auto simp: refines-def dest!: m-in-carrier ψ(2 ))
moreover
have regular-cover N (λi. ψ (m i))
proof −

have countable N by simp
moreover
have carrier-subset: carrier ⊆ (

⋃
i ∈ N . inv-chart (ψ (m i)) ‘ ball 0 1 )

unfolding V
proof safe

fix x i
assume x ∈ V i
with M obtain p where p: p ∈ M (V i) x ∈ U p by blast
from p show x ∈ (

⋃
i∈N . inv-chart (ψ (m i)) ‘ ball 0 1 )

by (auto simp: U-def intro!: bexI [where x=m ′ p] m ′-in)
qed
have carrier-eq-W : carrier = (

⋃
i∈N . domain (ψ (m i))) (is - = ?W )

proof (rule antisym)
note carrier-subset
also have . . . ⊆ ?W

using U-subset-domain ψ(1 ) M-carrier m-in
by (force simp: V )

finally show carrier ⊆ ?W
by auto

show ?W ⊆ carrier using M-carrier ψ(6 )
by (auto dest!: m-in)

qed
moreover have locally-finite-on carrier N (λi. domain (ψ (m i)))
proof (rule locally-finite-on-open-coverI )

show open (domain (ψ (m i))) for i by auto
show carrier ⊆ (

⋃
i∈N . domain (ψ (m i)))

unfolding carrier-eq-W by auto
fix ki
assume ki ∈ N
from m-in[OF this]
obtain k where k: m ki ∈ M (V k) by auto
have pkc: m ki ∈ closure (V k)

using k M (1 ) by force
obtain j where j: m ki ∈ V j

using M-carrier [of m ki k] V (1 ) k by force
have kj: V k ∩ V j 6= {}

using open-Int-closure-eq-empty[OF V (2 )]
using pkc j by auto

then have jinterk: j ∈ intersecting (V k) by (auto simp: intersecting-def )

have 1 : compact (closure (V k)) by (rule V )
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have 2 : closure (V k) ⊆
⋃
(range V ) unfolding V (1 )[symmetric] by (rule

V )
have 3 : B ∈ range V =⇒ open B for B by (auto simp: V )
from compactE [OF 1 2 3 ]
obtain Vj where Vj ⊆ range V finite Vj closure (V k) ⊆

⋃
Vj by auto

then obtain J where finite J closure (V k) ⊆
⋃

(V ‘ J )
apply atomize-elim
by (metis finite-subset-image)

{
fix ki ′ assume ki ′ ∈ N
assume H : domain (ψ (m ki ′)) ∩ domain (ψ (m ki)) 6= {}
obtain k ′ where ki ′: m ki ′ ∈ M (V k ′) using m-in[OF ‹ki ′ ∈ N ›] by auto
have k ′: domain (ψ (m ki ′)) ∩ domain (ψ (m ki)) 6= {} m ki ′ ∈ M (V k ′)

using ki ′ H by auto
have pkc ′: m ki ′ ∈ closure (V k ′)

using k ′ M (1 ) by force
obtain j ′ where j ′: m ki ′ ∈ V j ′

using M-carrier V (1 ) k ′ by force
have kj ′: (V k ′) ∩ V j ′ 6= {}

using open-Int-closure-eq-empty[OF V (2 )]
using pkc ′ j ′ by auto

then have j ′interk ′: k ′ ∈ intersecting (V j ′) by (auto simp: intersecting-def )

have j ′interj: j ′ ∈ intersecting (V j)
using k ′ ψ(3 )[OF j ′] ψ(3 )[OF j]
by (auto simp: intersecting-def )

have k ′ ∈
⋃
(intersecting ‘ V ‘

⋃
(intersecting ‘ V ‘ intersecting (V k)))

using jinterk j ′interk ′ j ′interj
by blast

then have m ki ′ ∈
⋃
((λx. M (V x)) ‘

⋃
(intersecting ‘ V ‘

⋃
(intersecting

‘ V ‘ intersecting (V k))))
using ki ′
by auto
from m-inverse[symmetric] this have ki ′ ∈ m ′ ‘

⋃
((λx. M (V x)) ‘⋃

(intersecting ‘ V ‘
⋃
(intersecting ‘ V ‘ intersecting (V k))))

by (rule image-eqI ) fact
} note ∗ = this
show finite {i ∈ N . domain (ψ (m i)) ∩ domain (ψ (m ki)) 6= {}}

apply (rule finite-subset[where B=m ′ ‘
⋃

((λx. M (V x)) ‘
⋃
(intersecting

‘ V ‘
⋃
(intersecting ‘ V ‘ intersecting (V k))))])
apply clarsimp

subgoal by (drule ∗, assumption, force)
using finite-intersecting intersecting-def M by auto

qed
moreover have (∀ i ∈ N . codomain (ψ (m i)) = ball 0 3 )

using ψ(1 ) M-carrier m-in
by force

moreover have carrier = (
⋃

i ∈ N . inv-chart (ψ (m i)) ‘ ball 0 1 )
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proof (rule antisym)
show (

⋃
i∈N . inv-chart (ψ (m i)) ‘ ball 0 1 ) ⊆ carrier

using ψ(6 )[OF M-carrier ] M-carrier m-in
by (force simp: ψ(1 ))

qed (rule carrier-subset)
ultimately show ?thesis

by (auto simp: regular-cover-def o-def )
qed
ultimately
show ?thesis ..

qed

lemma diff-apply-chart:
diff k (charts-submanifold (domain ψ)) charts-eucl ψ if ψ ∈ atlas

proof −
interpret submanifold charts k domain ψ

by unfold-locales auto
show ?thesis
proof (unfold-locales)

fix x assume x: x ∈ sub.carrier
show ∃ c1∈sub.atlas.

∃ c2∈manifold-eucl.dest.atlas.
x ∈ domain c1 ∧ ψ ‘ domain c1 ⊆ domain c2 ∧ k−smooth-on (codomain

c1 ) (c2 ◦ ψ ◦ inv-chart c1 )
apply (rule bexI [where x = restrict-chart (domain ψ) ψ])
apply (rule bexI [where x = chart-eucl])

subgoal
proof safe

show x ∈ domain (restrict-chart (domain ψ) ψ)
using x ‹ψ ∈ atlas›
by auto

show k−smooth-on (codomain (restrict-chart (domain ψ) ψ)) (chart-eucl ◦
ψ ◦ inv-chart (restrict-chart (domain ψ) ψ))

apply (auto simp: o-def )
apply (rule smooth-on-cong[where g=λx. x])
by (auto intro!: open-continuous-vimage ′ continuous-on-codomain)

qed simp
subgoal by auto
subgoal by (rule submanifold-atlasI ) fact
done

qed
qed

lemma diff-inv-chart:
diff k (manifold-eucl.charts-submanifold (codomain c)) charts (inv-chart c) if c
∈ atlas
proof −

interpret submanifold charts-eucl k codomain c
by unfold-locales auto
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show ?thesis
proof (unfold-locales)

fix x assume x: x ∈ sub.carrier
show ∃ c1∈sub.atlas.

∃ c2∈atlas.
x ∈ domain c1 ∧ inv-chart c ‘ domain c1 ⊆ domain c2 ∧
k−smooth-on (codomain c1 ) (c2 ◦ inv-chart c ◦ inv-chart c1 )

apply (rule bexI [where x = restrict-chart (codomain c) chart-eucl])
apply (rule bexI [where x = c])

subgoal
proof safe

show x ∈ domain (restrict-chart (codomain c) chart-eucl)
using x ‹c ∈ atlas›
by auto

show k−smooth-on (codomain (restrict-chart (codomain c) chart-eucl)) (c
◦ inv-chart c ◦ inv-chart (restrict-chart (codomain c) chart-eucl))

apply (auto simp: o-def )
apply (rule smooth-on-cong[where g=λx. x])
by (auto intro!: open-continuous-vimage ′ continuous-on-codomain)

qed simp
subgoal using that by simp
subgoal

by (rule submanifold-atlasI ) auto
done

qed
qed

lemma chart-inj-on [simp]:
fixes c :: ( ′a, ′b) chart
assumes x ∈ domain c y ∈ domain c
shows c x = c y ←→ x = y

proof −
have inj-on c (domain c) by (rule inj-on-apply-chart)
with assms show ?thesis by (auto simp: inj-on-def )

qed

7.2 Partition of unity by smooth functions

Given any open cover X indexed by a set A, there exists a family of smooth
functions ϕ indexed by A, such that 0 ≤ ϕ ≤ 1, the (closed) support of each
ϕ i is contained in X i, the supports are locally finite, and the sum of ϕ i is
the constant function 1.
theorem partitions-of-unityE :

fixes A:: ′i set and X :: ′i ⇒ ′a set
assumes carrier ⊆ (

⋃
i∈A. X i)

assumes
∧

i. i ∈ A =⇒ open (X i)
obtains ϕ:: ′i ⇒ ′a ⇒ real
where

∧
i. i ∈ A =⇒ diff-fun k charts (ϕ i)
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and
∧

i x. i ∈ A =⇒ x ∈ carrier =⇒ 0 ≤ ϕ i x
and

∧
i x. i ∈ A =⇒ x ∈ carrier =⇒ ϕ i x ≤ 1

and
∧

x. x ∈ carrier =⇒ (
∑

i∈{i∈A. ϕ i x 6= 0}. ϕ i x) = 1
and

∧
i. i ∈ A =⇒ csupport-on carrier (ϕ i) ∩ carrier ⊆ X i

and locally-finite-on carrier A (λi. csupport-on carrier (ϕ i))
proof −

from reguler-refinementE [OF assms]
obtain N and ψ::nat ⇒ ( ′a, ′b) chart where ψ:∧

i. i ∈ N =⇒ ψ i ∈ atlas
(domain o ψ) ‘ N refines X ‘ A
regular-cover N ψ by blast

define U where U i = inv-chart (ψ i) ‘ ball 0 1 for i::nat
define V where V i = inv-chart (ψ i) ‘ ball 0 2 for i::nat
define W where W i = inv-chart (ψ i) ‘ ball 0 3 for i::nat

from ‹regular-cover N ψ› have regular-cover :
countable N
(
⋃

i∈N . U i) = (
⋃

i∈N . domain (ψ i))
locally-finite-on carrier N (domain ◦ ψ)∧

i. i ∈ N =⇒ codomain (ψ i) = ball 0 3
carrier = (

⋃
i∈N . U i)

by (auto simp: regular-cover-def U-def )

have open-W : open (W i) if i ∈ N for i
using that
by (auto simp: W-def regular-cover)

have W-eq: domain (ψ i) = W i if i ∈ N for i
using W-def regular-cover(4 ) that by force

have carrier-W : carrier = (
⋃

i∈N . W i)
by (auto simp: regular-cover W-eq)

have V-subset-W : closure (V i) ⊆ W i if i ∈ N for i
proof −

have closure (V i) ⊆ closure (inv-chart (ψ i) ‘ cball 0 2 )
unfolding V-def
by (rule closure-mono) auto

also have . . . = inv-chart (ψ i) ‘ cball 0 2
apply (rule closure-closed)
apply (rule compact-imp-closed)
apply (rule compact-continuous-image)
by (auto intro!: continuous-intros simp: regular-cover that)

also have . . . ⊆ W i
by (auto simp: W-def )

finally show ?thesis .
qed

have carrier-V : carrier = (
⋃

i∈N . V i)
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apply (rule antisym)
subgoal unfolding regular-cover(5 ) by (auto simp: U-def V-def )
subgoal unfolding carrier-W using V-subset-W by auto
done

define f where f i x = (if x ∈ W i then H (ψ i x) else 0 ) for i x
have f-simps: x ∈ W i =⇒ f i x = H (ψ i x)

x /∈ W i =⇒ f i x = 0
for i x
by (auto simp: f-def )

have f-eq-one: f j y = 1 if j ∈ N y ∈ U j for j y
proof −

from that have y ∈ W j by (auto simp: U-def W-def )
from ‹y ∈ U j› have norm (ψ j y) ≤ 1

by (auto simp: U-def W-eq[symmetric] ‹j ∈ N › regular-cover(4 ))
then show ?thesis

by (auto simp: f-def ‹y ∈ W j› intro!: H-eq-one)
qed

have f-diff : diff-fun k charts (f i) if i: i ∈ N for i
proof (rule manifold-eucl.diff-open-Un, unfold diff-fun-def [symmetric])

note W-eq = W-eq[OF that]
have W i ⊆ carrier

unfolding W-eq[symmetric] regular-cover using that by auto
interpret W : submanifold - - W i

by unfold-locales (auto simp: open-W i)

have diff-fun k (charts-submanifold (W i)) (H ◦ (ψ i))
apply (rule diff-fun-compose[where ?M2 .0 = charts-eucl])
apply (rule diff-apply-chart[of ψ i, unfolded W-eq])

subgoal using ψ ‹i ∈ N › by auto
apply (rule diff-fun-charts-euclI )
by (rule H-smooth-on)

then show diff-fun k (charts-submanifold (W i)) (f i)
by (rule diff-fun.diff-fun-cong) (auto simp: f-def )

interpret V ′: submanifold - - carrier − closure (V i)
by unfold-locales auto

have diff-fun k (charts-submanifold (carrier − closure (V i))) 0
by (rule V ′.sub.diff-fun-zero)

then show diff-fun k (charts-submanifold (carrier − closure (V i))) (f i)
apply (rule diff-fun.diff-fun-cong)
unfolding f-def
apply auto
apply (rule H-eq-zero)
unfolding V-def by (metis W-eq image-eqI in-closureI inv-chart-inverse)

show open (W i) by (auto simp: W-def regular-cover i)
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show open (carrier − closure (V i)) by auto
show carrier ⊆ W i ∪ (carrier − closure (V i))

using V-subset-W [OF i] by auto
qed

define g where g ψ x = f ψ x / (
∑

i∈{j∈N . x ∈ W j}. f i x) for ψ x

have ∀ p∈carrier . ∃ I . p ∈ I ∧ open I ∧finite {i ∈ N . W i ∩ I 6= {}}
(is ∀ p∈carrier . ?P p)

proof (rule ballI )
fix p assume p ∈ carrier
from locally-finite-onE [OF regular-cover(3 ) this]
obtain I where p ∈ I open I finite {i ∈ N . (domain ◦ ψ) i ∩ I 6= {}}.
moreover have {i ∈ N . (domain ◦ ψ) i ∩ I 6= {}} = {i ∈ N . W i ∩ I 6= {}}

by (auto simp: W-eq)
ultimately show ?P p by auto

qed
from bchoice[OF this] obtain I where I :∧

x. x ∈ carrier =⇒ x ∈ I x∧
x. x ∈ carrier =⇒ open (I x)∧
x. x ∈ carrier =⇒ finite {i ∈ N . W i ∩ I x 6= {}}

by blast

have subset-W : {j ∈ N . y ∈ W j} ⊆ {j ∈ N . W j ∩ I x 6= {}} if y ∈ I x x ∈
carrier for x y

by (auto simp: that W-eq)
have finite-W : finite {j ∈ N . y ∈ W j} if y ∈ carrier for y

apply (rule finite-subset)
apply (rule subset-W [OF - that])
apply (rule I [OF that])

apply (rule I [unfolded o-def , OF that])
done

have g: diff-fun k charts (g i) if i: i ∈ N for i
proof (rule manifold-eucl.diff-localI , unfold diff-fun-def [symmetric])

fix x assume x: x ∈ carrier
show open (I x) x ∈ I x using I x by auto
then interpret submanifold - - I x

by unfold-locales
interpret df : diff-fun k charts f i by (rule f-diff ) fact
have diff-fun k (charts-submanifold (I x)) (λy. f i y / (

∑
j∈{j∈N . W j ∩ I x

6= {}}. f j y))
apply (rule sub.diff-fun-divide)
subgoal

apply (rule df .diff-submanifold[folded diff-fun-def ])
by (rule I ) fact

subgoal
proof (rule sub.diff-fun-sum, clarsimp)

fix j assume j ∈ N W j ∩ I x 6= {}
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interpret df ′: diff-fun k charts f j by (rule f-diff ) fact
show diff-fun k (charts-submanifold (I x)) (f j)

apply (rule df ′.diff-fun-submanifold)
by (rule I ) fact

qed
subgoal for y

apply (subst sum-nonneg-eq-0-iff )
subgoal using I (3 )[OF x] by auto
subgoal using H-range by (auto simp: f-def )
subgoal
proof clarsimp

assume y: y ∈ I x y ∈ carrier
then obtain j where j ∈ N y ∈ U j

unfolding regular-cover(5 ) by auto
then have y ∈ W j

by (auto simp: U-def W-def )
moreover
have W j ∩ I x 6= {}

using W-eq ‹j ∈ N › ‹open (I x)› ‹y ∈ W j› ‹y ∈ carrier› ‹y ∈ I x›
by auto

moreover
note f-eq-one[OF ‹j ∈ N › ‹y ∈ U j›]
ultimately show ∃ xa. xa ∈ N ∧ W xa ∩ I x 6= {} ∧ f xa y 6= 0

by (intro exI [where x=j]) (auto simp: ‹j ∈ N ›)
qed
done

done
then show diff-fun k (charts-submanifold (I x)) (g i)

apply (rule diff-fun.diff-fun-cong)
unfolding g-def
apply simp
apply (rule disjI2 )
apply (rule sum.mono-neutral-right)
subgoal using I [OF ‹x ∈ carrier›] unfolding o-def by simp
subgoal for y

apply (rule subset-W )
using carrier-submanifold I ‹x ∈ carrier› by auto

subgoal by (auto simp: f-def )
done

qed

have f-nonneg: 0 ≤ f i x for i x
by (auto simp: f-def H-range intro!: sum-nonneg)

have U-sub-W : x ∈ U i =⇒ x ∈ W i for x i
by (auto simp: U-def W-def )

have sumf-pos: (
∑

i∈{j ∈ N . x ∈ W j}. f i x) > 0 if x ∈ carrier for x
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using that
apply (auto simp: regular-cover(5 ))
subgoal for i

apply (rule sum-pos2 [where i=i])
using finite-W [OF that]
by (auto simp: f-nonneg f-eq-one U-sub-W )

done

have sumf-nonneg: (
∑

i∈{j ∈ N . x ∈ W j}. f i x) ≥ 0 for x
by (auto simp: f-nonneg intro!: sum-nonneg)

have g-nonneg: 0 ≤ g i x if i ∈ N x ∈ carrier for i x
by (auto simp: g-def intro!: divide-nonneg-nonneg sumf-nonneg f-nonneg)

have g-le-one: g i x ≤ 1 if i ∈ N x ∈ carrier for i x
apply (auto simp add: g-def )
apply (cases (

∑
i∈{j ∈ N . x ∈ W j}. f i x) = 0 )

subgoal by simp
apply (subst divide-le-eq-1-pos)
subgoal using sumf-nonneg[of x] by auto
apply (cases x ∈ W i)
subgoal

apply (rule member-le-sum)
subgoal using ‹i ∈ N › by simp
subgoal by (rule f-nonneg)
using sum.infinite by blast

subgoal by (simp add: f-simps sum-nonneg H-range)
done

have sum-g: (
∑

i | i ∈ N ∧ x ∈ W i. g i x) = 1 if x ∈ carrier for x
unfolding g-def
apply (subst sum-divide-distrib[symmetric])
using sumf-pos[OF that]
by auto

have ∃ a. ∀ i∈N . W i ⊆ X (a i) ∧ a i ∈ A
using ψ(2 ) by (intro bchoice) (auto simp: refines-def W-eq)

then obtain a where a:
∧

i. i ∈ N =⇒ W i ⊆ X (a i)
∧

i. i ∈ N =⇒ a i ∈ A
by force

define ϕ where ϕ α x = (
∑

i | i ∈ N ∧ a i = α ∧ x ∈ W i. g i x) for α x

have diff-fun k charts (ϕ α) if α ∈ A for α
proof (rule manifold-eucl.diff-localI , unfold diff-fun-def [symmetric])

fix x assume x: x ∈ carrier
show open (I x) x ∈ I x using I x by auto
then interpret submanifold - - I x

by unfold-locales
have diff-fun k (charts-submanifold (I x)) (λy. (

∑
i | i ∈ N ∧ a i = α ∧ W i
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∩ I x 6= {}. g i y))
apply (rule sub.diff-fun-sum, clarsimp)
subgoal premises prems for i
proof −

interpret dg: diff-fun k charts g i by (rule g) fact
show ?thesis

apply (rule dg.diff-fun-submanifold)
by (rule I ) fact

qed
done

then show diff-fun k (charts-submanifold (I x)) (ϕ α)
apply (rule diff-fun.diff-fun-cong)
unfolding ϕ-def
apply (rule sum.mono-neutral-right)
subgoal using - I (3 )[OF ‹x ∈ carrier›] by (rule finite-subset) (auto simp:)
subgoal using ‹open (I x)› carrier-submanifold by auto
subgoal by (auto simp: g-def f-def )
done

qed
moreover
have 0 ≤ ϕ α x if x ∈ carrier for α x

by (auto simp: ϕ-def intro!: sum-nonneg g-nonneg that)
moreover
have ϕ α x ≤ 1 if α ∈ A x ∈ carrier for α x
proof −

have ϕ α x ≤ (
∑

i | i ∈ N ∧ x ∈ W i. g i x)
unfolding ϕ-def

by (rule sum-mono2 [OF finite-W ]) (auto simp: intro!: g-nonneg ‹x ∈ carrier›)
also have . . . = 1

by (rule sum-g) fact
finally show ?thesis .

qed
moreover
have (

∑
α∈{α∈A. ϕ α x 6= 0}. ϕ α x) = 1 if x ∈ carrier for x

proof −
have (

∑
α | α ∈ A ∧ ϕ α x 6= 0 . ϕ α x) =

(
∑
α | α ∈ A ∧ ϕ α x 6= 0 .

∑
i | i ∈ N ∧ a i = α ∧ x ∈ W i. g i x)

unfolding ϕ-def ..
also have . . . = (

∑
(α, i)∈(SIGMA xa:{α ∈ A. ϕ α x 6= 0}. {i ∈ N . a i = xa

∧ x ∈ W i}). g i x)
apply (rule sum.Sigma)
subgoal

apply (rule finite-subset[where B=a ‘ {j ∈ N . x ∈ W j}])
subgoal

apply (auto simp: ϕ-def )
apply (subst (asm) sum-nonneg-eq-0-iff )
subgoal using - finite-W [OF ‹x ∈ carrier›] by (rule finite-subset) auto
subgoal by (rule g-nonneg[OF - ‹x ∈ carrier›]) auto
subgoal by auto
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done
subgoal

using finite-W [OF ‹x ∈ carrier›] by (rule finite-imageI )
done

subgoal
apply (auto)
using - finite-W [OF ‹x ∈ carrier›]
by (rule finite-subset) auto

done
also have . . . = (

∑
i∈snd ‘ (SIGMA xa:{α ∈ A. ϕ α x 6= 0}. {i ∈ N . a i =

xa ∧ x ∈ W i}). g i x)
apply (rule sum.reindex-cong[where l=λi. (a i, i)])
subgoal by (auto simp: inj-on-def )
subgoal

apply (auto simp: a)
apply (auto simp: ϕ-def )
apply (subst (asm) sum-nonneg-eq-0-iff )
subgoal

using - finite-W [OF ‹x ∈ carrier›]
by (rule finite-subset) auto

subgoal by (auto intro!: g-nonneg ‹x ∈ carrier›)
subgoal for i

apply auto
subgoal for yy

apply (rule imageI )
apply (rule image-eqI [where x=(a i, i)])
apply (auto intro!: a)

apply (subst (asm) sum-nonneg-eq-0-iff )
subgoal using - finite-W [OF ‹x ∈ carrier›] by (rule finite-subset) auto
subgoal by (rule g-nonneg[OF - ‹x ∈ carrier›]) auto
subgoal by auto
done

done
done

subgoal by auto
done

also have . . . = (
∑

i | i ∈ N ∧ x ∈ W i. g i x)
apply (rule sum.mono-neutral-left)
subgoal by (rule finite-W ) fact
subgoal by auto
subgoal

apply (auto simp: Sigma-def image-iff a)
apply (auto simp: ϕ-def )
subgoal

apply (subst (asm) sum-nonneg-eq-0-iff )
subgoal using - finite-W [OF ‹x ∈ carrier›] by (rule finite-subset) auto
subgoal by (rule g-nonneg[OF - ‹x ∈ carrier›]) auto
subgoal by auto
done
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done
done

also have . . . = 1 by (rule sum-g) fact
finally show ?thesis .

qed
moreover
have g-supp-le-V : support-on carrier (g i) ⊆ V i if i ∈ N for i

apply (auto simp: support-on-def g-def f-def V-def dest!: H-neq-zeroD)
apply (rule image-eqI [OF ])
apply (rule inv-chart-inverse[symmetric])
apply (simp add: W-eq that)

apply simp
done

then have clsupp-g-le-W : closure (support-on carrier (g i)) ⊆ W i if i ∈ N for
i

unfolding csupport-on-def
using V-subset-W closure-mono that
by blast

then have csupp-g-le-W : csupport-on carrier (g i) ⊆ W i if i ∈ N for i
using that
by (auto simp: csupport-on-def )

have ∗: {i ∈ N . domain (ψ i) ∩ Na 6= {}} = {i ∈ N . W i ∩ Na 6= {}} for Na
by (auto simp: W-eq)

then have lfW : locally-finite-on carrier N W
using regular-cover(3 ) by (simp add: locally-finite-on-def )

then have lf-supp-g: locally-finite-on carrier {i ∈ N . a i = α} (λi. support-on
carrier (g i)) if α ∈ A for α

apply (rule locally-finite-on-subset)
using g-supp-le-V V-subset-W
by force+

have csupport-on carrier (ϕ α) ∩ carrier ⊆ X α if α ∈ A for α
proof −

have ∗: closure (
⋃

i∈{i ∈ N . a i = α}. support-on carrier (g i)) ⊆ closure
(
⋃

i∈N . V i)
by (rule closure-mono) (use g-supp-le-V in auto)

have support-on carrier (ϕ α) ⊆ (
⋃

i∈{i ∈ N . a i = α}. support-on carrier (g
i))

unfolding ϕ-def [abs-def ]
apply (rule order-trans)
apply (rule support-on-nonneg-sum-subset ′)

using g-supp-le-V
by (auto simp: carrier-V )

then have csupport-on carrier (ϕ α) ∩ carrier ⊆ closure . . . ∩ carrier
unfolding csupport-on-def using closure-mono by auto

also have . . . = (
⋃

i∈{i ∈ N . a i = α}. closure (support-on carrier (g i)))
apply (rule locally-finite-on-closure-Union[OF lf-supp-g[OF that], symmetric])
using closure-mono[OF g-supp-le-V ] V-subset-W
by (force simp: carrier-W )

also have . . . ⊆ (
⋃

i∈{i ∈ N . a i = α}. W i)
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apply (rule UN-mono)
using clsupp-g-le-W
by auto

also have . . . ⊆ X α
using a
by auto

finally show ?thesis .
qed
moreover
have locally-finite-on carrier A (λi. support-on carrier (ϕ i))
proof (rule locally-finite-onI )

fix p assume p ∈ carrier
from locally-finite-onE [OF lfW this] obtain Nhd where Nhd: p ∈ Nhd open

Nhd finite {i ∈ N . W i ∩ Nhd 6= {}} .
show ∃Nhd. p ∈ Nhd ∧ open Nhd ∧ finite {i ∈ A. support-on carrier (ϕ i) ∩

Nhd 6= {}}
apply (rule exI [where x=Nhd])
apply (auto simp: Nhd)
apply (rule finite-subset[where B=a ‘ {i ∈ N . W i ∩ Nhd 6= {}}])
subgoal

apply (auto simp: support-on-def ϕ-def )
apply (subst (asm) sum-nonneg-eq-0-iff )

apply (auto simp: intro!: g-nonneg)
using - finite-W by (rule finite-subset) auto

by (rule finite-imageI ) fact
qed
then have locally-finite-on carrier A (λi. csupport-on carrier (ϕ i))

unfolding csupport-on-def
by (rule locally-finite-on-closure)

ultimately show ?thesis ..
qed

Given A ⊆ U ⊆ carrier, where A is closed and U is open, there exists a
differentiable function ψ such that 0 ≤ ψ ≤ 1, ψ = 1 on A, and the support
of ψ is contained in U.
lemma smooth-bump-functionE :

assumes closedin (top-of-set carrier) A
and A ⊆ U U ⊆ carrier open U

obtains ψ:: ′a ⇒ real where
diff-fun k charts ψ∧

x. x ∈ carrier =⇒ 0 ≤ ψ x∧
x. x ∈ carrier =⇒ ψ x ≤ 1∧
x. x ∈ A =⇒ ψ x = 1

csupport-on carrier ψ ∩ carrier ⊆ U
proof −

define V where V x = (if x = 0 then U else carrier − A) for x::nat
have open (carrier − A)

using assms
by (metis closedin-def open-Int open-carrier openin-open topspace-euclidean-subtopology)
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then have V : carrier ⊆ (
⋃

i∈{0 , 1}. V i) i ∈ {0 , 1} =⇒ open (V i) for i
using assms
by (auto simp: V-def )

obtain ϕ::nat ⇒ ′a ⇒ real where ϕ:
(
∧

i. i ∈ {0 , 1} =⇒ diff-fun k charts (ϕ i))
(
∧

i x. i ∈ {0 , 1} =⇒ x ∈ carrier =⇒ 0 ≤ ϕ i x)
(
∧

i x. i ∈ {0 , 1} =⇒ x ∈ carrier =⇒ ϕ i x ≤ 1 )
(
∧

x. x ∈ carrier =⇒ (
∑

i | i ∈ {0 , 1} ∧ ϕ i x 6= 0 . ϕ i x) = 1 )
(
∧

i. i ∈ {0 , 1} =⇒ csupport-on carrier (ϕ i) ∩ carrier ⊆ V i)
locally-finite-on carrier {0 , 1} (λi. csupport-on carrier (ϕ i))
by (rule partitions-of-unityE [OF V ]) auto

from this(1−3 ,5 )[of 0 ] this(6 )
have diff-fun k charts (ϕ 0 )∧

x. x ∈ carrier =⇒ 0 ≤ ϕ 0 x∧
x. x ∈ carrier =⇒ ϕ 0 x ≤ 1

csupport-on carrier (ϕ 0 ) ∩ carrier ⊆ U
by (auto simp: V-def )

moreover have ϕ 0 x = 1 if x ∈ A for x
proof −

from that have x ∈ carrier using assms by auto
from ϕ(4 )[OF this]
have 1 = (

∑
i | i ∈ {0 , 1} ∧ ϕ i x 6= 0 . ϕ i x)

by auto
moreover have {i. i ∈ {0 , 1} ∧ ϕ i x 6= 0} =
(if ϕ 0 x 6= 0 then {0} else {}) ∪ (if ϕ 1 x 6= 0 then {1} else {})
apply auto
using neq0-conv by blast

moreover have x /∈ V 1
using that
by (auto simp: V-def )

then have ϕ (Suc 0 ) x = 0
using ϕ(5 )[of 1 ] assms that
by (auto simp: support-on-def csupport-on-def )

ultimately show ?thesis by (auto split: if-splits)
qed
ultimately show ?thesis by (blast intro: that)

qed

definition diff-fun-on A f ←→
(∃W . A ⊆ W ∧ W ⊆ carrier ∧ open W ∧
(∃ f ′. diff-fun k (charts-submanifold W ) f ′ ∧ (∀ x∈A. f x = f ′ x)))

lemma diff-fun-onE :
assumes diff-fun-on A f
obtains W f ′ where

A ⊆ W W ⊆ carrier open W diff-fun k (charts-submanifold W ) f ′∧
x. x ∈ A =⇒ f x = f ′ x

using assms by (auto simp: diff-fun-on-def )
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lemma diff-fun-onI :
assumes A ⊆ W W ⊆ carrier open W diff-fun k (charts-submanifold W ) f ′∧

x. x ∈ A =⇒ f x = f ′ x
shows diff-fun-on A f
using assms by (auto simp: diff-fun-on-def )

Extension lemma:
Given A ⊆ U ⊆ carrier, where A is closed and U is open, and a differentiable
function f on A, there exists a differentiable function f ′ agreeing with f on
A, and where the support of f ′ is contained in U.
lemma extension-lemmaE :

fixes f :: ′a ⇒ ′e::euclidean-space
assumes closedin (top-of-set carrier) A
assumes diff-fun-on A f A ⊆ U U ⊆ carrier open U
obtains f ′ where

diff-fun k charts f ′∧
x. x ∈ A =⇒ f ′ x = f x

csupport-on carrier f ′ ∩ carrier ⊆ U
proof −

from diff-fun-onE [OF assms(2 )]
obtain W ′ f ′ where W ′: A ⊆W ′ W ′⊆ carrier open W ′ diff-fun k (charts-submanifold

W ′) f ′

(
∧

x. x ∈ A =⇒ f x = f ′ x)
by blast

define W where W = W ′ ∩ U

interpret W ′: diff-fun k charts-submanifold W ′ f ′ using W ′ by auto
have ∗: open (W ′ ∩ U )

using W ′ assms by auto
with W ′.diff-fun-submanifold[of W ]
have diff-fun k (W ′.src.charts-submanifold (W ′ ∩ U )) f ′

by (auto simp: W-def )
also have W ′.src.charts-submanifold (W ′ ∩ U ) = charts-submanifold (W ′ ∩ U )

unfolding W ′.src.charts-submanifold-def
unfolding charts-submanifold-def
using W ′ ∗
by (auto simp: image-image restrict-chart-restrict-chart ac-simps)

finally have diff-fun k (charts-submanifold (W ′ ∩ U )) f ′ .
with W ′ assms
have W : A ⊆ W W ⊆ carrier open W diff-fun k (charts-submanifold W ) f ′

(
∧

x. x ∈ A =⇒ f x = f ′ x)
by (auto simp: W-def )

interpret submanifold - - W by unfold-locales fact
interpret W : diff-fun k (charts-submanifold W ) f ′ using W by auto
have [simp]: sub.carrier = W using ‹W ⊆ carrier› by auto
have W ⊆ U by (auto simp: W-def )

from smooth-bump-functionE [OF assms(1 ) ‹A ⊆ W › ‹W ⊆ carrier› ‹open W ›]
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obtain ϕ:: ′a⇒real where ϕ: diff-fun k charts ϕ
(
∧

x. x ∈ carrier =⇒ 0 ≤ ϕ x) (
∧

x. x ∈ carrier =⇒ ϕ x ≤ 1 ) (
∧

x. x ∈ A =⇒
ϕ x = 1 )

csupport-on carrier ϕ ∩ carrier ⊆ W by blast

interpret ϕ: diff-fun k charts ϕ by fact

define g where g p = (if p ∈ W then ϕ p ∗R f ′ p else 0 ) for p

thm sub.diff-fun-scaleR
have diff-fun k charts g
proof (rule manifold-eucl.diff-open-Un, unfold diff-fun-def [symmetric])

have diff-fun k (charts-submanifold W ) (λp. ϕ p ∗R f ′ p)
by (auto intro!: sub.diff-fun-scaleR ϕ.diff-fun-submanifold W )

then show diff-fun k (charts-submanifold W ) g
by (rule diff-fun.diff-fun-cong) (auto simp: g-def )

interpret C : submanifold - - carrier − csupport-on carrier ϕ
by unfold-locales auto

have sub-carrier [simp]: C .sub.carrier = carrier − csupport-on carrier ϕ
by auto

have diff-fun k (charts-submanifold (carrier − csupport-on carrier ϕ)) 0
by (rule C .sub.diff-fun-zero)

then show diff-fun k (charts-submanifold (carrier − csupport-on carrier ϕ)) g
by (rule diff-fun.diff-fun-cong) (auto simp: g-def not-in-csupportD)

show open W by fact
show open (carrier − csupport-on carrier ϕ)

by (auto)
show carrier ⊆ W ∪ (carrier − csupport-on carrier ϕ)

using ϕ
by auto

qed
moreover have

∧
x. x ∈ A =⇒ g x = f x

using ‹A ⊆ W ›
by (auto simp: g-def ϕ W ′)

moreover have csupport-on carrier g ∩ carrier ⊆ U
proof −

have csupport-on carrier g ⊆ csupport-on carrier ϕ
by (rule csupport-on-mono) (auto simp: g-def [abs-def ] split: if-splits)

also have . . . ∩ carrier ⊆ U
using ϕ(5 ) ‹W ⊆ U › ‹W ⊆ carrier› ‹U ⊆ carrier›
by auto

finally show ?thesis by auto
qed
ultimately show ?thesis ..

qed

end
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end

8 Tangent Space
theory Tangent-Space
imports Partition-Of-Unity
begin

lemma linear-imp-linear-on: linear-on A B scaleR scaleR f if linear f
subspace A subspace B

proof −
interpret linear f by fact
show ?thesis using that

by unfold-locales (auto simp: add scaleR algebra-simps subspace-def )
qed

lemma (in vector-space-pair-on)
linear-sum ′:
∀ x. x ∈ S1 −→ f x ∈ S2 =⇒
∀ x. x ∈ S −→ g x ∈ S1 =⇒
linear-on S1 S2 scale1 scale2 f =⇒
f (sum g S) = (

∑
a∈S . f (g a))

using linear-sum[of f λx. if x ∈ S then g x else 0 S ]
by (auto simp: if-distrib if-distribR m1 .mem-zero cong: if-cong)

8.1 Real vector (sub)spaces
locale real-vector-space-on = fixes S assumes subspace: subspace S
begin

sublocale vector-space-on S scaleR
rewrites span-eq-real: local.span = real-vector .span

and dependent-eq-real: local.dependent = real-vector .dependent
and subspace-eq-real: local.subspace = real-vector .subspace

proof −
show vector-space-on S (∗R)

by unfold-locales (use subspace[unfolded subspace-def ] in ‹auto simp: alge-
bra-simps›)

then interpret subspace: vector-space-on S scaleR .
show 1 : subspace.span = span

unfolding subspace.span-on-def span-explicit by auto
show 2 : subspace.dependent = dependent

unfolding subspace.dependent-on-def dependent-explicit by auto
show 3 : subspace.subspace = subspace

unfolding subspace.subspace-on-def subspace-def by auto
qed

lemma dim-eq: local.dim X = real-vector .dim X if X ⊆ S
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proof −
have ∗: b ⊆ S ∧ independent b ∧ span b = span X ←→ independent b ∧ span b

= span X
for b
using that
by auto (metis local.subspace-UNIV real-vector .span-base real-vector .span-eq-iff

real-vector .span-mono subsetCE)
show ?thesis

using that
unfolding local.dim-def real-vector .dim-def ∗
by auto

qed

end

locale real-vector-space-pair-on = vs1 : real-vector-space-on S + vs2 : real-vector-space-on
T for S T
begin

sublocale vector-space-pair-on S T scaleR scaleR
rewrites span-eq-real1 : module-on.span scaleR = vs1 .span

and dependent-eq-real1 : module-on.dependent scaleR = vs1 .dependent
and subspace-eq-real1 : module-on.subspace scaleR = vs1 .subspace
and span-eq-real2 : module-on.span scaleR = vs2 .span
and dependent-eq-real2 : module-on.dependent scaleR = vs2 .dependent
and subspace-eq-real2 : module-on.subspace scaleR = vs2 .subspace

by unfold-locales (simp-all add: vs1 .span-eq-real vs1 .dependent-eq-real vs1 .subspace-eq-real
vs2 .span-eq-real vs2 .dependent-eq-real vs2 .subspace-eq-real)

end

locale finite-dimensional-real-vector-space-on = real-vector-space-on S for S +
fixes basis :: ′a set
assumes finite-dimensional-basis: finite basis ¬ dependent basis span basis = S

basis ⊆ S
begin

sublocale finite-dimensional-vector-space-on S scaleR basis
rewrites span-eq-real: local.span = real-vector .span

and dependent-eq-real: local.dependent = real-vector .dependent
and subspace-eq-real: local.subspace = real-vector .subspace

by unfold-locales (simp-all add: finite-dimensional-basis dependent-eq-real span-eq-real)

end

locale finite-dimensional-real-vector-space-pair-1-on =
vs1 : finite-dimensional-real-vector-space-on S1 basis +
vs2 : real-vector-space-on S2
for S1 S2 basis

130



begin

sublocale finite-dimensional-vector-space-pair-1-on S1 S2 scaleR scaleR basis
rewrites span-eq-real1 : module-on.span scaleR = vs1 .span

and dependent-eq-real1 : module-on.dependent scaleR = vs1 .dependent
and subspace-eq-real1 : module-on.subspace scaleR = vs1 .subspace
and span-eq-real2 : module-on.span scaleR = vs2 .span
and dependent-eq-real2 : module-on.dependent scaleR = vs2 .dependent
and subspace-eq-real2 : module-on.subspace scaleR = vs2 .subspace

apply unfold-locales
subgoal using real-vector-space-on.span-eq-real vs1 .real-vector-space-on-axioms

by blast
subgoal using real-vector-space-on.dependent-eq-real vs1 .real-vector-space-on-axioms

by blast
subgoal using real-vector-space-on.subspace-eq-real vs1 .real-vector-space-on-axioms

by blast
subgoal using real-vector-space-on.span-eq-real vs2 .real-vector-space-on-axioms

by blast
subgoal using real-vector-space-on.dependent-eq-real vs2 .real-vector-space-on-axioms

by blast
subgoal using real-vector-space-on.subspace-eq-real vs2 .real-vector-space-on-axioms

by blast
done

end

locale finite-dimensional-real-vector-space-pair-on =
vs1 : finite-dimensional-real-vector-space-on S1 Basis1 +
vs2 : finite-dimensional-real-vector-space-on S2 Basis2
for S1 S2 Basis1 Basis2

begin

sublocale finite-dimensional-real-vector-space-pair-1-on S1 S2 Basis1
by unfold-locales

sublocale finite-dimensional-vector-space-pair-on S1 S2 scaleR scaleR Basis1 Ba-
sis2

rewrites module-on.span scaleR = vs1 .span
and module-on.dependent scaleR = vs1 .dependent
and module-on.subspace scaleR = vs1 .subspace
and module-on.span scaleR = vs2 .span
and module-on.dependent scaleR = vs2 .dependent
and module-on.subspace scaleR = vs2 .subspace

apply unfold-locales
subgoal by (simp add: span-eq-real1 )
subgoal by (simp add: dependent-eq-real1 )
subgoal by (simp add: subspace-eq-real1 )
subgoal by (simp add: span-eq-real2 )
subgoal by (simp add: dependent-eq-real2 )
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subgoal by (simp add: subspace-eq-real2 )
done

end

8.2 Derivations
context c-manifold begin

Set of C^k differentiable functions on carrier, where the smooth structure is
given by charts. We assume f is zero outside carrier
definition diff-fun-space :: ( ′a ⇒ real) set where

diff-fun-space = {f . diff-fun k charts f ∧ extensional0 carrier f }

lemma diff-fun-spaceD: diff-fun k charts f if f ∈ diff-fun-space
using that by (auto simp: diff-fun-space-def )

lemma diff-fun-space-order-le: diff-fun-space ⊆ c-manifold.diff-fun-space charts l
if l ≤ k
proof −

interpret l: c-manifold charts l
by (rule c-manifold-order-le) fact

show ?thesis
unfolding diff-fun-space-def l.diff-fun-space-def
using diff-fun.diff-fun-order-le[OF - that]
by auto

qed

lemma diff-fun-space-extensionalD:
g ∈ diff-fun-space =⇒ extensional0 carrier g
by (auto simp: diff-fun-space-def )

lemma diff-fun-space-eq: diff-fun-space = {f . diff-fun k charts f } ∩ {f . extensional0
carrier f }

by (auto simp: diff-fun-space-def )

lemma subspace-diff-fun-space[intro, simp]:
subspace diff-fun-space
unfolding diff-fun-space-eq
by (intro subspace-inter subspace-Collect-diff-fun subspace-extensional0 )

lemma diff-fun-space-times: f ∗ g ∈ diff-fun-space
if f ∈ diff-fun-space g ∈ diff-fun-space
using that by (auto simp: diff-fun-space-def intro!: diff-fun-times)

lemma diff-fun-space-add: f + g ∈ diff-fun-space
if f ∈ diff-fun-space g ∈ diff-fun-space
using that by (auto simp: diff-fun-space-def intro!: diff-fun-add)

Set of differentiable functions is a vector space

132



sublocale diff-fun-space: vector-space-pair-on diff-fun-space UNIV ::real set scaleR
scaleR

by unfold-locales
(use subspace-diff-fun-space[unfolded subspace-def ] in

‹auto simp: diff-fun-space-add algebra-simps scaleR-fun-def ›)

Linear functional from differentiable functions to real numbers
abbreviation linear-diff-fun ≡ linear-on diff-fun-space (UNIV ::real set) scaleR
scaleR

Definition of a derivation.
A linear functional X is a derivation if it additionally satisfies the property
X (f ∗ g) = f p ∗ X g + g p ∗ X f. This is suppose to represent the product
rule.
definition is-derivation :: (( ′a ⇒ real) ⇒ real) ⇒ ′a ⇒ bool where

is-derivation X p ←→ (linear-diff-fun X ∧
(∀ f g. f ∈ diff-fun-space −→ g ∈ diff-fun-space −→ X (f ∗ g) = f p ∗ X g + g

p ∗ X f ))

lemma is-derivationI :
is-derivation X p
if linear-diff-fun X∧

f g. f ∈ diff-fun-space =⇒ g ∈ diff-fun-space =⇒ X (f ∗ g) = f p ∗ X g + g
p ∗ X f

using that
unfolding is-derivation-def
by blast

lemma is-derivationD:
assumes is-derivation X p
shows is-derivation-linear-on: linear-diff-fun X

and is-derivation-derivation:
∧

f g. f ∈ diff-fun-space =⇒ g ∈ diff-fun-space
=⇒ X (f ∗ g) = f p ∗ X g + g p ∗ X f

using assms
unfolding is-derivation-def
by blast+

Differentiable functions on the Euclidean space
lemma manifold-eucl-diff-fun-space-iff [simp]:

g ∈ manifold-eucl.diff-fun-space k ←→ k−smooth-on UNIV g
by (auto simp: manifold-eucl.diff-fun-space-def differentiable-on-def

diff-fun-charts-euclI diff-fun-charts-euclD)

8.3 Tangent space

Definition of the tangent space.
The tangent space at a point p is defined to be the set of derivations. Note
we need to restrict the domain of the functional to differentiable functions.
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definition tangent-space :: ′a ⇒ (( ′a ⇒ real) ⇒ real) set where
tangent-space p = {X . is-derivation X p ∧ extensional0 diff-fun-space X}

lemma tangent-space-eq: tangent-space p = {X . is-derivation X p} ∩ {X . exten-
sional0 diff-fun-space X}

by (auto simp: tangent-space-def )

lemma mem-tangent-space: X ∈ tangent-space p ←→ is-derivation X p ∧ exten-
sional0 diff-fun-space X

by (auto simp: tangent-space-def )

lemma tangent-spaceI :
X ∈ tangent-space p
if

extensional0 diff-fun-space X
linear-diff-fun X∧

f g. f ∈ diff-fun-space =⇒ g ∈ diff-fun-space =⇒ X (f ∗ g) = f p ∗ X g + g
p ∗ X f

using that
unfolding tangent-space-def is-derivation-def
by blast

lemma tangent-spaceD:
assumes X ∈ tangent-space p
shows tangent-space-linear-on: linear-diff-fun X

and tangent-space-restrict: extensional0 diff-fun-space X
and tangent-space-derivation:

∧
f g. f ∈ diff-fun-space =⇒ g ∈ diff-fun-space

=⇒ X (f ∗ g) = f p ∗ X g + g p ∗ X f
using assms
unfolding tangent-space-def is-derivation-def
by blast+

lemma is-derivation-0 : is-derivation 0 p
by (simp add: is-derivation-def diff-fun-space.linear-zero zero-fun-def )

lemma is-derivation-add: is-derivation (x + y) p
if x: is-derivation x p and y: is-derivation y p
apply (rule is-derivationI )
subgoal using x y by (auto dest!: is-derivation-linear-on simp: diff-fun-space.linear-compose-add

plus-fun-def )
subgoal by (simp add: is-derivation-derivation[OF x] is-derivation-derivation[OF

y] algebra-simps)
done

lemma is-derivation-scaleR: is-derivation (c ∗R x) p
if x: is-derivation x p
apply (rule is-derivationI )
subgoal using x diff-fun-space.linear-compose-scale-right[of x c]

by (auto dest!: is-derivation-linear-on simp:scaleR-fun-def )
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subgoal by (simp add: is-derivation-derivation[OF x] algebra-simps)
done

lemma subspace-is-derivation: subspace {X . is-derivation X p}
by (auto simp: subspace-def is-derivation-0 is-derivation-add is-derivation-scaleR)

lemma subspace-tangent-space: subspace (tangent-space p)
unfolding tangent-space-eq
by (simp add: subspace-inter subspace-is-derivation subspace-extensional0 )

sublocale tangent-space: real-vector-space-on tangent-space p
by unfold-locales (rule subspace-tangent-space)

lemma tangent-space-dim-eq: tangent-space.dim p X = dim X
if X ⊆ tangent-space p

proof −
have ∗: b ⊆ tangent-space p ∧ independent b ∧ span b = span X ←→ independent

b ∧ span b = span X
for b
using that

by auto (metis (no-types, lifting) c-manifold.subspace-tangent-space c-manifold-axioms
span-base span-eq-iff span-mono subsetCE)

show ?thesis
using that
unfolding tangent-space.dim-def dim-def ∗
by auto

qed

properties of derivations
lemma restrict0-in-fun-space: restrict0 carrier f ∈ diff-fun-space

if diff-fun k charts f
by (auto simp: diff-fun-space-def intro!: diff-fun.diff-fun-cong[OF that])

lemma restrict0-const-diff-fun-space: restrict0 carrier (λx. c) ∈ diff-fun-space
by (rule restrict0-in-fun-space) (rule diff-fun-const)

lemma derivation-one-eq-zero: X (restrict0 carrier (λx. 1 )) = 0 (is X ?f1 = -)
if X ∈ tangent-space p p ∈ carrier

proof −
have X ?f1 = X (?f1 ∗ ?f1 ) by (simp add: restrict0-times[symmetric]) (simp

add: times-fun-def )
also have . . . = 1 ∗ X (restrict0 carrier (λx. 1 )) + 1 ∗ X (restrict0 carrier

(λx. 1 ))
apply (subst tangent-space-derivation[OF that(1 )])
apply (rule restrict0-const-diff-fun-space)

using that
by simp

finally show ?thesis
by auto
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qed

lemma derivation-const-eq-zero: X (restrict0 carrier (λx. c)) = 0
if X ∈ tangent-space p p ∈ carrier

proof −
note scaleR = diff-fun-space.linear-scale[OF - - tangent-space-linear-on[OF that(1 )]]
have X (c ∗R (restrict0 carrier (λx. 1 ))) = c ∗R X (restrict0 carrier (λx. 1 ))

by (rule scaleR) (auto intro!: restrict0-const-diff-fun-space)
also note derivation-one-eq-zero[OF that]
also note restrict0-scaleR[symmetric]
finally show ?thesis

by (auto simp: scaleR-fun-def )
qed

lemma derivation-times-eq-zeroI : X (f ∗ g) = 0 if X :X ∈ tangent-space p
and d: f ∈ diff-fun-space g ∈ diff-fun-space
and z: f p = 0 g p = 0
using tangent-space-derivation[OF X d]
by (simp add: z)

lemma derivation-zero-localI : X f = 0
if open W p ∈ W W ⊆ carrier

X ∈ tangent-space p
f ∈ diff-fun-space∧

x. x ∈ W =⇒ f x = 0
proof −

define A where A = carrier − W
have clA: closedin (top-of-set carrier) A

using ‹open W ›
apply (auto simp: A-def )
using closedin-def openin-open by fastforce

have ‹A ⊆ carrier› by (auto simp: A-def )
have d1 : diff-fun-on A (λx. 1 )

unfolding diff-fun-on-def
using ‹A ⊆ carrier›
by (auto intro!:exI [where x=carrier ] exI [where x=λx. 1 ] diff-fun-const)

define U where U = carrier − {p}
have open U

by (auto simp: U-def )

have A ⊆ U using that by (auto simp: A-def U-def )
have U ⊆ carrier by (auto simp: U-def )

from extension-lemmaE [of A λx. 1 U , OF clA d1 ‹A ⊆ U › ‹U ⊆ carrier› ‹open
U ›]

obtain u:: ′a⇒real where u: diff-fun k charts u (
∧

x. x ∈ A =⇒ u x = 1 )
csupport-on carrier u ∩ carrier ⊆ U

by blast
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have u-in-df : restrict0 carrier u ∈ diff-fun-space
by (rule restrict0-in-fun-space) fact

have f p = 0
using that by auto

have p /∈ U by (auto simp: U-def )
then have restrict0 carrier u p = 0

using u(3 )
by (auto simp: restrict0-def ) (meson IntI not-in-csupportD subsetCE)

have X (f ∗ restrict0 carrier u) = 0
using ‹X ∈ tangent-space p› ‹f ∈ diff-fun-space› u-in-df ‹f p = 0 ›
by (rule derivation-times-eq-zeroI ) fact

also have f ∗ restrict0 carrier u = f
proof (rule ext, cases)

fix x assume x ∈ W
then show (f ∗ restrict0 carrier u) x = f x

by (auto simp: that)
next

fix x assume x /∈ W
show (f ∗ restrict0 carrier u) x = f x
proof cases

assume x ∈ carrier
with ‹x /∈ W › have x ∈ A by (auto simp: A-def )
then show ?thesis using ‹x ∈ carrier›

by (auto simp: u)
next

assume x /∈ carrier
then show ?thesis

using ‹f ∈ diff-fun-space›
by (auto dest!: diff-fun-space-extensionalD simp: extensional0-outside)

qed
qed
finally show ?thesis .

qed

lemma derivation-eq-localI : X f = X g
if open U p ∈ U U ⊆ carrier

X ∈ tangent-space p
f ∈ diff-fun-space
g ∈ diff-fun-space∧

x. x ∈ U =⇒ f x = g x
proof −
note minus = diff-fun-space.linear-diff [OF - - - tangent-space-linear-on[OF that(4 )]]
have f − g ∈ diff-fun-space

using subspace-diff-fun-space ‹f ∈ -› ‹g ∈ -›
by (rule subspace-diff )

have X f − X g = X (f − g)
using that
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by (simp add: minus)
also have . . . = 0

using ‹open U › ‹p ∈ U › ‹U ⊆ -› ‹X ∈ -› ‹f − g ∈ -›
by (rule derivation-zero-localI ) (simp add: that)

finally show ?thesis by simp
qed

end

8.4 Push-forward on the tangent space
context diff begin

Push-forward on tangent spaces.
Given an element of the tangent space at src, considered as a functional X,
the push-forward of X is a functional at dest, mapping g to X (g ◦ f ).
definition push-forward :: (( ′a ⇒ real) ⇒ real) ⇒ ( ′b ⇒ real) ⇒ real where

push-forward X = restrict0 dest.diff-fun-space (λg. X (restrict0 src.carrier (g ◦
f )))

lemma extensional-push-forward: extensional0 dest.diff-fun-space (push-forward X)
by (auto simp: push-forward-def )

lemma linear-push-forward: linear push-forward
by (auto simp: push-forward-def [abs-def ] o-def restrict0-def intro!: linearI )

Properties of push-forwards
lemma restrict-compose-in-diff-fun-space:

x ∈ dest.diff-fun-space =⇒ restrict0 src.carrier (x ◦ f ) ∈ src.diff-fun-space
apply (rule src.restrict0-in-fun-space)
apply (rule diff-fun-compose)
apply (rule diff-axioms)

apply (rule dest.diff-fun-spaceD)
by assumption

Push-forward of a linear functional is a linear
lemma linear-on-diff-fun-push-forward:

dest.linear-diff-fun (push-forward X)
if src.linear-diff-fun X

proof unfold-locales
note add = src.diff-fun-space.linear-add[OF - - - that]
note scale = src.diff-fun-space.linear-scale[OF - - that]
fix x y:: ′b ⇒ real and c::real
assume dfx: x ∈ dest.diff-fun-space
then have dx: diff-fun k charts2 x and ex: extensional0 dest.carrier x

by (auto simp: dest.diff-fun-space-def )
show push-forward X (c ∗R x) = c ∗R push-forward X x

unfolding push-forward-def
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using defined dfx
by (auto simp: subspace-mul scaleR-compose restrict0-scaleR

restrict-compose-in-diff-fun-space scale)
assume dfy: y ∈ dest.diff-fun-space
then have dy: diff-fun k charts2 y and ey: extensional0 dest.carrier y

by (auto simp: dest.diff-fun-space-def )
show push-forward X (x + y) = push-forward X x + push-forward X y

unfolding push-forward-def
using defined dfy dfx

by (auto simp: subspace-add plus-compose restrict0-add restrict-compose-in-diff-fun-space
add)
qed

Push-forward preserves the product rule
lemma push-forward-is-derivation:

push-forward X (x ∗ y) = x (f p) ∗ push-forward X y + y (f p) ∗ push-forward X
x
(is ?l = ?r)
if deriv:

∧
x y. x ∈ src.diff-fun-space =⇒ y ∈ src.diff-fun-space =⇒ X (x ∗ y) =

x p ∗ X y + y p ∗ X x
and dx: x ∈ dest.diff-fun-space
and dy: y ∈ dest.diff-fun-space
and p: p ∈ src.carrier

proof −
have x ∗ y ∈ dest.diff-fun-space

using dx dy
by (auto simp: dest.diff-fun-space-def dest.diff-fun-times)

then have ?l = X (restrict0 src.carrier (x ◦ f ) ∗ restrict0 src.carrier (y ◦ f ))
by (simp add: push-forward-def mult-compose restrict0-times)

also have . . . = restrict0 src.carrier (x ◦ f ) p ∗ X (restrict0 src.carrier (y ◦ f ))
+

restrict0 src.carrier (y ◦ f ) p ∗ X (restrict0 src.carrier (x ◦ f ))
using dx dy
by (simp add: deriv restrict-compose-in-diff-fun-space)

also have . . . = ?r
using dx dy
by (simp add: push-forward-def p)

finally show ?thesis .
qed

Combining, we show that the push-forward of a derivation is a derivation
lemma push-forward-in-tangent-space:

push-forward ‘ (src.tangent-space p) ⊆ dest.tangent-space (f p)
if p ∈ src.carrier
unfolding src.is-derivation-def dest.is-derivation-def src.tangent-space-def dest.tangent-space-def
apply safe
subgoal

by (rule linear-on-diff-fun-push-forward)
subgoal by (blast intro: dest.diff-fun-spaceD that push-forward-is-derivation)
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subgoal by (simp add: push-forward-def )
done

end

Functoriality of push-forward: identity
context c-manifold begin

lemma push-forward-id:
diff .push-forward k charts charts f X = X
if

∧
x. x ∈ carrier =⇒ f x = x

X ∈ tangent-space p p ∈ carrier
apply (subst diff .push-forward-def )
apply (rule diff .diff-cong[where f=λx. x])
apply (rule diff-id)

apply (rule that(1 )[symmetric], assumption)
apply (rule ext-extensional0 )
apply (rule extensional0-restrict0 )
apply (rule tangent-space-restrict)
apply (rule that)

apply auto
apply (rule arg-cong[where f=X ])
apply (rule ext-extensional0 )

apply (rule extensional0-restrict0 )
apply (rule diff-fun-space-extensionalD, assumption)

apply (simp add: that)
done

end

Functoriality of push-forward: composition
lemma push-forward-compose:
diff .push-forward k M2 M3 g (diff .push-forward k M1 M2 f X) = diff .push-forward

k M1 M3 (g o f ) X
if X ∈ c-manifold.tangent-space M1 k p p ∈ manifold.carrier M1

and df : diff k M1 M2 f and dg: diff k M2 M3 g
proof −

interpret d12 : diff k M1 M2 f by fact
interpret d23 : diff k M2 M3 g by fact
interpret d13 : diff k M1 M3 g o f

by (rule diff-compose; fact)
show ?thesis

apply (rule ext-extensional0 )
apply (rule d23 .extensional-push-forward)
apply (rule d13 .extensional-push-forward)

proof −
fix x
assume x: x ∈ d23 .dest.diff-fun-space
show d23 .push-forward (d12 .push-forward X) x = d13 .push-forward X x
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using x
unfolding d12 .push-forward-def d23 .push-forward-def d13 .push-forward-def
apply (simp add: d23 .restrict-compose-in-diff-fun-space)
apply (rule arg-cong[where f=X ])
apply (rule ext-extensional0 [OF extensional0-restrict0 ])
apply (rule d12 .src.diff-fun-space-extensionalD)
apply (rule d13 .restrict-compose-in-diff-fun-space, assumption)

using d12 .defined
by auto

qed
qed

context diffeomorphism begin

If f is a diffeomorphism, then the push-forward f ∗ is a bijection
lemma inv-push-forward-inverse: push-forward (inv.push-forward X) = X

if X ∈ dest.tangent-space p p ∈ dest.carrier
apply (subst push-forward-compose[OF that inv.diff-axioms diff-axioms])
apply (rule dest.push-forward-id[OF - that])
by auto

lemma push-forward-inverse: inv.push-forward (push-forward X) = X
if X ∈ src.tangent-space p p ∈ src.carrier
apply (subst push-forward-compose[OF that diff-axioms inv.diff-axioms])
apply (rule src.push-forward-id[OF - that])
by auto

lemma bij-betw-push-forward:
bij-betw push-forward (src.tangent-space p) (dest.tangent-space (f p))
if p: p ∈ src.carrier

proof (rule bij-betwI [where g=inv.push-forward])
show push-forward ∈ src.tangent-space p → dest.tangent-space (f p)

using push-forward-in-tangent-space[OF p] by auto
show inv.push-forward ∈ dest.tangent-space (f p) → src.tangent-space p

using inv.push-forward-in-tangent-space[of f p] that defined by auto
show inv.push-forward (push-forward x) = x if x ∈ src.tangent-space p for x

by (rule push-forward-inverse[OF that p])
show push-forward (inv.push-forward y) = y if y ∈ dest.tangent-space (f p) for

y
apply (rule inv-push-forward-inverse[OF that])
using defined p by auto

qed

lemma dim-tangent-space-src-dest-eq: dim (src.tangent-space p) = dim (dest.tangent-space
(f p))

if p: p ∈ src.carrier and dim (dest.tangent-space (f p)) > 0
proof −

from dest.tangent-space.dim-pos-finite-dimensional-vector-spaceE [
unfolded dest.tangent-space-dim-eq[OF order-refl],
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OF that(2 )]
obtain basis where basis ⊆ dest.tangent-space (f p)

finite-dimensional-vector-space-on-with (dest.tangent-space (f p)) (+) (−) umi-
nus 0 (∗R) basis

by auto
then interpret finite-dimensional-vector-space-on (dest.tangent-space (f p)) scaleR

basis
unfolding finite-dimensional-vector-space-on-with-def
by unfold-locales
(auto simp: implicit-ab-group-add dest.tangent-space.dependent-eq-real dest.tangent-space.span-eq-real)

interpret rev: finite-dimensional-vector-space-pair-1-on
dest.tangent-space (f p) src.tangent-space p scaleR scaleR basis

by unfold-locales
from bij-betw-push-forward[OF p]
have inj-on push-forward (src.tangent-space p)

dest.tangent-space (f p) = push-forward ‘ src.tangent-space p
unfolding bij-betw-def by auto

have dim (dest.tangent-space (f p)) = src.tangent-space.dim p (inv.push-forward
‘ dest.tangent-space (f p))

apply (rule rev.dim-image-eq[OF - order-refl, of inv.push-forward, symmetric,
unfolded dest.tangent-space-dim-eq[OF order-refl]])

subgoal
by (metis (no-types) contra-subsetD defined f-inv image-eqI inv.push-forward-in-tangent-space

p)
subgoal

apply (rule linear-imp-linear-on)
apply (rule inv.linear-push-forward)

apply (rule dest.subspace-tangent-space)
apply (rule src.subspace-tangent-space)
done

subgoal
unfolding inj-on-def dest.tangent-space.span-eq-real
apply auto

proof −
fix x :: ( ′c ⇒ real) ⇒ real and y :: ( ′c ⇒ real) ⇒ real
assume a1 : y ∈ span (dest.tangent-space (f p))
assume a2 : x ∈ span (dest.tangent-space (f p))
assume a3 : inv.push-forward x = inv.push-forward y
have f p ∈ dest.carrier

by (meson contra-subsetD defined image-eqI p)
then show x = y

using a3 a2 a1 by (metis (no-types) c-manifold.subspace-tangent-space
c-manifolds-axioms c-manifolds-def inv-push-forward-inverse span-eq-iff )

qed
done

also
have f p ∈ dest.carrier

using defined p by auto
then have inv.push-forward ‘ dest.tangent-space (f p) = src.tangent-space p
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using inv.push-forward-in-tangent-space[of f p] that(1 )
apply auto
subgoal for x

apply (rule image-eqI [where x=push-forward x])
apply (auto simp: push-forward-inverse)
using ‹dest.tangent-space (f p) = push-forward ‘ src.tangent-space p› by blast

done
also have src.tangent-space.dim p . . . = dim . . .

by (rule src.tangent-space-dim-eq) simp
finally show ?thesis ..

qed

lemma dim-tangent-space-src-dest-eq2 : dim (src.tangent-space p) = dim (dest.tangent-space
(f p))

if p: p ∈ src.carrier and dim (src.tangent-space p) > 0
proof −

interpret rev: diffeomorphism k charts2 charts1 f ′ f
by unfold-locales auto

from that rev.dim-tangent-space-src-dest-eq[of f p]
show ?thesis

by auto (metis contra-subsetD defined image-eqI )
qed

end

8.5 Smooth inclusion map
context submanifold begin

lemma diff-inclusion: diff k (charts-submanifold S) charts (λx. x)
using diff-id
apply (rule diff .diff-submanifold)
unfolding charts-submanifold-def using open-submanifold
by auto

sublocale inclusion: diff k charts-submanifold S charts λx. x
by (rule diff-inclusion)

lemma linear-on-push-forward-inclusion:
linear-on (sub.tangent-space p) (tangent-space p) scaleR scaleR inclusion.push-forward
apply (rule linear-imp-linear-on)

apply (rule inclusion.linear-push-forward)
apply (rule sub.subspace-tangent-space)
apply (rule subspace-tangent-space)

done

Extension lemma: given a differentiable function on S, and a closed set B ⊆
S, there exists a function f ′ agreeing with f on B, such that the support of
f ′ is contained in S .
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lemma extension-lemma-submanifoldE :
fixes f :: ′a⇒ ′e::euclidean-space
assumes f : diff-fun k (charts-submanifold S) f

and B: closed B B ⊆ sub.carrier
obtains f ′ where

diff-fun k charts f ′

(
∧

x. x ∈ B =⇒ f ′ x = f x)
csupport-on carrier f ′ ∩ carrier ⊆ sub.carrier

proof −
have 1 : closedin (top-of-set carrier) B

using B by (auto intro!: closed-subset)
have 2 : diff-fun-on B f
proof (rule diff-fun-onI )

show B ⊆ sub.carrier by fact
show sub.carrier ⊆ carrier by auto
show open sub.carrier using open-submanifold by auto
have ∗: charts-submanifold sub.carrier = charts-submanifold S

unfolding carrier-submanifold charts-submanifold-Int-carrier ..
from f show diff-fun k (charts-submanifold sub.carrier) f unfolding ∗ .

qed simp
from extension-lemmaE [OF 1 2 ‹B ⊆ sub.carrier›] open-submanifold
obtain f ′ where f ′: diff-fun k charts f ′ (

∧
x. x ∈ B =⇒ f ′ x = f x)

csupport-on carrier f ′ ∩ carrier ⊆ sub.carrier
by auto

then show ?thesis ..
qed

lemma inj-on-push-forward-inclusion: inj-on inclusion.push-forward (sub.tangent-space
p)

if p: p ∈ sub.carrier
proof −

interpret sub: vector-space-pair-on sub.tangent-space p tangent-space p scaleR
scaleR

by unfold-locales
show ?thesis
proof (subst sub.linear-inj-iff-eq-0 [OF - linear-on-push-forward-inclusion], safe)

fix v assume v: v ∈ sub.tangent-space p
then show inclusion.push-forward v ∈ tangent-space p

using inclusion.push-forward-in-tangent-space[OF p]
by auto

assume dv: inclusion.push-forward v = 0
have extensional0 sub.diff-fun-space v using v[THEN sub.tangent-space-restrict]

.
then show v = 0
proof (rule ext-extensional0 )

show extensional0 sub.diff-fun-space (0 :: ( ′a ⇒ real) ⇒ real)
by auto

fix f assume f : f ∈ sub.diff-fun-space
from sub.precompact-neighborhoodE [OF p]
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obtain B where B: p ∈ B open B compact (closure B) closure B ⊆ sub.carrier
.

with extension-lemma-submanifoldE [of f closure B, OF sub.diff-fun-spaceD[OF
f ]]

obtain f ′ where f ′: diff-fun k charts f ′

(
∧

x. x ∈ closure B =⇒ f ′ x = f x)
csupport-on carrier f ′ ∩ carrier ⊆ sub.carrier by blast

have rf ′: restrict0 sub.carrier f ′ ∈ sub.diff-fun-space
apply (rule sub.restrict0-in-fun-space)
apply (rule diff-fun.diff-fun-submanifold)
apply (rule f ′)

apply (rule open-submanifold)
done

have supp-f ′: support-on carrier f ′ ∩ carrier ⊆ sub.carrier
using f ′(3 )
by (auto simp: csupport-on-def )

from f ′(1 )
have df ′: diff-fun k charts (restrict0 sub.carrier f ′)

apply (rule diff-fun.diff-fun-cong)
using supp-f ′

by (auto simp: restrict0-def support-on-def )
have rf ′-diff-fun: restrict0 sub.carrier f ′ ∈ diff-fun-space

using f ′ df ′

by (auto simp: diff-fun-space-def extensional0-def )
have v f = v (restrict0 sub.carrier f ′)

apply (rule sub.derivation-eq-localI [where X=v and U=B and p=p])
subgoal by (rule B)
subgoal by (rule B)
subgoal using B by auto
subgoal by (rule v)
subgoal by (rule f )
subgoal by (rule rf ′)
subgoal using f ′ B

by (auto simp: restrict0-def )
done

also have . . . = inclusion.push-forward v (restrict0 sub.carrier f ′)
using rf ′ rf ′-diff-fun
by (auto simp: inclusion.push-forward-def o-def restrict0-restrict0 )

also have . . . = 0
by (simp add: dv)

finally show v f = 0 f by auto
qed

qed
qed

lemma surj-on-push-forward-inclusion:
inclusion.push-forward ‘ sub.tangent-space p ⊇ tangent-space p
if p: p ∈ sub.carrier

proof safe
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fix w
assume w: w ∈ tangent-space p

from sub.precompact-neighborhoodE [OF p]
obtain B where B: p ∈ B open B compact (closure B) closure B ⊆ sub.carrier

.
have w-eqI : w a = w b if a ∈ diff-fun-space b ∈ diff-fun-space and

∧
x. x ∈ B

=⇒ a x = b x for a b
apply (rule derivation-eq-localI [where X=w and U=B and p=p])
using w B that by auto

from tangent-space-linear-on[OF w]
have linear-w: linear-on diff-fun-space UNIV (∗R) (∗R) w .
note w-add = diff-fun-space.linear-add[OF - - - linear-w]
note w-scale = diff-fun-space.linear-scale[OF - - linear-w]
note subspaceI = sub.subspace-diff-fun-space[THEN subspace-add]

sub.subspace-diff-fun-space[THEN subspace-mul]
subspace-diff-fun-space[THEN subspace-add]
subspace-diff-fun-space[THEN subspace-mul]

let ?P = λf f ′. f ′ ∈ diff-fun-space ∧ (∀ x∈closure B. f x = f ′ x)
define extend where extend f = (SOME f ′. ?P f f ′) for f
have ex: ∃ f ′. ?P f f ′ if f ∈ sub.diff-fun-space for f
proof −

from that have diff-fun k (charts-submanifold S) f
by (rule sub.diff-fun-spaceD)

from extension-lemma-submanifoldE [OF this closed-closure ‹closure B ⊆ sub.carrier›]
obtain f ′ where f ′: diff-fun k charts f ′ (

∧
x. x ∈ closure B =⇒ f ′ x = f x)

csupport-on carrier f ′ ∩ carrier ⊆ sub.carrier
by auto

show ?thesis
apply (rule exI [where x=restrict0 carrier f ′])
using f ′ B
by (auto intro!: restrict0-in-fun-space)

qed
have extend: ?P f (extend f ) if f ∈ sub.diff-fun-space for f

using ex[OF that]
unfolding extend-def
by (rule someI-ex)

note extend = extend[THEN conjunct1 ] extend[THEN conjunct2 , rule-format]
have extend2 : f ∈ sub.diff-fun-space =⇒ x ∈ B =⇒ extend f x = f x for f x

using extend by auto

define v where v f = w (extend f ) for f

have ext-w: extensional0 diff-fun-space w
using w by (rule tangent-space-restrict)

have w = inclusion.push-forward (restrict0 sub.diff-fun-space v)
unfolding inclusion.push-forward-def o-def
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using ext-w extensional0-restrict0
proof (rule ext-extensional0 )

fix g
assume g: g ∈ diff-fun-space
then have diff-fun k charts g

by (rule diff-fun-spaceD)
then have diff-fun k (charts-submanifold S) g

using open-submanifold
by (rule diff-fun.diff-fun-submanifold)

have rgsd: restrict0 sub.carrier g ∈ sub.diff-fun-space
by (rule sub.restrict0-in-fun-space) fact

have w g = v (restrict0 sub.carrier g)
unfolding v-def
apply (rule w-eqI )
subgoal by fact
subgoal by (rule extend) fact
subgoal for x

using extend(2 )[of restrict0 sub.carrier g x] B(4 ) rgsd
by (auto simp: restrict0-def split: if-splits)

done
with g rgsd show w g = restrict0 diff-fun-space (λg. restrict0 sub.diff-fun-space

v (restrict0 sub.carrier g)) g
by auto

qed
moreover have restrict0 sub.diff-fun-space v ∈ sub.tangent-space p

using extensional0-restrict0
proof (rule sub.tangent-spaceI )

have v (x + y) = v x + v y if x ∈ sub.diff-fun-space y ∈ sub.diff-fun-space for
x y

using that
unfolding v-def
by (subst w-add[symmetric]) (auto intro!: w-eqI simp: extend2 subspaceI ex-

tend(1 ))
moreover have v (c ∗R x) = c ∗R v x if x ∈ sub.diff-fun-space for x c

using that
unfolding v-def

by (subst w-scale[symmetric]) (auto intro!: w-eqI simp: extend2 subspaceI
extend(1 ))

ultimately show linear-on sub.diff-fun-space UNIV (∗R) (∗R) (restrict0 sub.diff-fun-space
v)

apply unfold-locales
using sub.subspace-diff-fun-space[THEN subspace-add]

sub.subspace-diff-fun-space[THEN subspace-mul]
by auto

fix f g assume f : f ∈ sub.diff-fun-space and g: g ∈ sub.diff-fun-space
then have [simp]: f ∗ g ∈ sub.diff-fun-space by (rule sub.diff-fun-space-times)
have restrict0 sub.diff-fun-space v (f ∗ g) = w (extend (f ∗ g)) by (simp add:

v-def )
also have . . . = w (extend f ∗ extend g)
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apply (rule w-eqI )
subgoal by (simp add: extend)
subgoal by (simp add: diff-fun-space-times extend f g)
subgoal using f g by (auto simp: extend2 )
done

also have . . . = extend f p ∗ w (extend g) + extend g p ∗ w (extend f )
apply (rule is-derivation-derivation)
subgoal using w by (auto simp: tangent-space-def )
by (auto intro!: extend f g)
also have . . . = f p ∗ restrict0 sub.diff-fun-space v g + g p ∗ restrict0

sub.diff-fun-space v f
by (simp add: f g v-def extend2 ‹p ∈ B›)

finally show restrict0 sub.diff-fun-space v (f ∗ g) = f p ∗ restrict0 sub.diff-fun-space
v g + g p ∗ restrict0 sub.diff-fun-space v f .

qed
ultimately
show w ∈ inclusion.push-forward ‘ sub.tangent-space p ..

qed

end

8.6 Tangent space of submanifold
lemma span-idem: span X = X if subspace X

using that by auto

context submanifold begin

lemma dim-tangent-space: dim (tangent-space p) = dim (sub.tangent-space p)
if p ∈ sub.carrier dim (sub.tangent-space p) > 0

proof −
from that(2 ) obtain basis where basis: independent basis span basis = span

(sub.tangent-space p)
by (auto simp: dim-def split: if-splits)

have basis-sub: basis ⊆ sub.tangent-space p
using basis
apply auto
by (metis basis(2 ) span-base span-eq-iff sub.subspace-tangent-space)

have dim (sub.tangent-space p) = card basis
apply (rule dim-unique[OF - - - refl])
using basis span-base
apply auto

proof −
fix x :: ( ′a ⇒ real) ⇒ real
assume a1 : x ∈ basis
have sub.tangent-space p = span basis

by (metis basis(2 ) span-eq-iff sub.subspace-tangent-space)
then show x ∈ sub.tangent-space p

using a1 by (metis span-base)
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qed
with that have finite basis

using card-ge-0-finite by auto
interpret sub: finite-dimensional-vector-space-on sub.tangent-space p scaleR basis

apply unfold-locales
unfolding tangent-space.dependent-eq-real tangent-space.span-eq-real
subgoal by fact
subgoal by fact
subgoal using basis by (simp add: sub.subspace-tangent-space)
subgoal by fact
done

interpret sub: finite-dimensional-vector-space-pair-1-on sub.tangent-space p tan-
gent-space p scaleR scaleR basis

by unfold-locales
have dim (tangent-space p) = tangent-space.dim p (tangent-space p)

using order-refl by (rule tangent-space-dim-eq[symmetric])
also have . . . = tangent-space.dim p (inclusion.push-forward ‘ sub.tangent-space

p)
using surj-on-push-forward-inclusion[OF that(1 )] inclusion.push-forward-in-tangent-space[OF

that(1 )]
by auto

also have tangent-space.dim p (inclusion.push-forward ‘ sub.tangent-space p) =
sub.tangent-space.dim p (sub.tangent-space p)
apply (rule sub.dim-image-eq[of inclusion.push-forward, OF - order-refl lin-

ear-on-push-forward-inclusion])
subgoal using inclusion.push-forward-in-tangent-space[of p] that by auto

subgoal unfolding tangent-space.span-eq-real span-idem[OF sub.subspace-tangent-space]
apply (rule inj-on-push-forward-inclusion)
apply (rule that)
done

done
also have . . . = dim (sub.tangent-space p)

using order-refl
by (rule sub.tangent-space-dim-eq)

finally show ?thesis .
qed

lemma dim-tangent-space2 : dim (tangent-space p) = dim (sub.tangent-space p)
if p ∈ sub.carrier dim (tangent-space p) > 0

proof −
from that(2 ) obtain basis where basis: independent basis span basis = span

(tangent-space p)
by (auto simp: dim-def split: if-splits)

have basis-sub: basis ⊆ tangent-space p
using basis
apply auto

using c-manifold.subspace-tangent-space c-manifold-axioms span-base span-eq-iff
by blast

have dim (tangent-space p) = card basis
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apply (rule dim-unique[OF - - - refl])
using basis span-base
apply auto

proof −
fix x :: ( ′a ⇒ real) ⇒ real
assume a1 : x ∈ basis
have tangent-space p = span basis

by (metis basis(2 ) span-eq-iff subspace-tangent-space)
then show x ∈ tangent-space p

using a1 by (metis span-base)
qed
with that have finite basis

using card-ge-0-finite by auto
interpret sub: finite-dimensional-vector-space-on tangent-space p scaleR basis

apply unfold-locales
unfolding tangent-space.dependent-eq-real tangent-space.span-eq-real
subgoal by fact
subgoal by fact
subgoal using basis by (simp add: subspace-tangent-space)
subgoal by fact
done

interpret vector-space-pair-on sub.tangent-space p tangent-space p scaleR scaleR
by unfold-locales
interpret finite-dimensional-vector-space-pair-1-on tangent-space p sub.tangent-space

p scaleR scaleR basis
by unfold-locales

from linear-injective-left-inverse[OF - linear-on-push-forward-inclusion inj-on-push-forward-inclusion[OF
‹p ∈ sub.carrier›]]

inclusion.push-forward-in-tangent-space[OF ‹p ∈ sub.carrier›]
obtain g where g:

∧
x. x ∈ tangent-space p =⇒ g x ∈ sub.tangent-space p

linear-on (tangent-space p) (sub.tangent-space p) (∗R) (∗R) g∧
x. x ∈ sub.tangent-space p =⇒ g (inclusion.push-forward x) = x

by (auto simp: subset-eq)
have inj-on-g: inj-on g (tangent-space p)

using inj-on-push-forward-inclusion[OF ‹p ∈ sub.carrier›] g
apply (auto simp: inj-on-def )
by (metis (no-types, lifting) ‹inclusion.push-forward ‘ sub.tangent-space p ⊆

tangent-space p›
imageE subset-antisym surj-on-push-forward-inclusion that(1 ))

have dim (tangent-space p) = tangent-space.dim p (tangent-space p)
using order-refl by (rule tangent-space.dim-eq[symmetric])

also have . . . = sub.tangent-space.dim p (g ‘ tangent-space p)
apply (rule dim-image-eq[OF - order-refl, symmetric])
subgoal using g by auto
subgoal using g by auto
subgoal using inj-on-g by (auto simp: tangent-space.span-eq-real span-idem

subspace-tangent-space)
done

also have g ‘ tangent-space p = sub.tangent-space p
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using g inj-on-g using inj-on-push-forward-inclusion[OF ‹p ∈ sub.carrier›]
g

apply (auto simp: inj-on-def )
by (metis (no-types, lifting) ‹inclusion.push-forward ‘ sub.tangent-space p ⊆

tangent-space p›
contra-subsetD image-eqI )

also have sub.tangent-space.dim p . . . = dim . . .
using order-refl by (rule sub.tangent-space-dim-eq)

finally show ?thesis .
qed

end

8.7 Directional derivatives

When the manifold is the Euclidean space, The Frechet derivative at a in
the direction of v is an element of the tangent space at a.
definition directional-derivative::enat ⇒ ′a ⇒ ′a::euclidean-space ⇒
( ′a ⇒ real) ⇒ real where
directional-derivative k a v = restrict0 (manifold-eucl.diff-fun-space k) (λf . frechet-derivative

f (at a) v)

lemma extensional0-directional-derivative:
extensional0 (manifold-eucl.diff-fun-space k) (directional-derivative k a v)
unfolding directional-derivative-def
by simp

lemma extensional0-directional-derivative-le:
extensional0 (manifold-eucl.diff-fun-space k) (directional-derivative k ′ a v)
if k ≤ k ′

using that
unfolding directional-derivative-def
by (auto simp: extensional0-def restrict0-def manifold-eucl.diff-fun-space-def

dest!: diff-fun.diff-fun-order-le[OF - that])

lemma directional-derivative-add[simp]: directional-derivative k a (x + y) = di-
rectional-derivative k a x + directional-derivative k a y

and directional-derivative-scaleR[simp]: directional-derivative k a (c ∗R x) = c
∗R directional-derivative k a x

if k 6= 0
using that
by (auto simp: directional-derivative-def restrict0-def [abs-def ] fun-eq-iff

differentiable-on-def linear-iff that
dest!: linear-frechet-derivative spec[where x=a] smooth-on-imp-differentiable-on)

lemma linear-directional-derivative: k 6= 0 =⇒ linear (directional-derivative k a)
by unfold-locales simp-all

lemma frechet-derivative-inner [simp]:
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frechet-derivative (λx. x · j) (at a) = (λx. x · j)
apply (rule sym)
apply (rule frechet-derivative-at)
by (auto intro!: derivative-eq-intros)

lemma smooth-on-inner-const[simp]: k−smooth-on UNIV (λx. x · j)
by (auto intro!: smooth-on-inner)

lemma directional-derivative-inner [simp]: directional-derivative k a x (λx. x · j)
= x · j

unfolding directional-derivative-def
by (auto simp: restrict0-def differentiable-on-def )

lemma sum-apply: sum f X i = sum (λx. f x i) X
by (induction rule: infinite-finite-induct) auto

lemma inj-on-directional-derivative: inj-on (directional-derivative k a) S if k 6= 0
apply (rule inj-on-subset[OF - subset-UNIV ])
unfolding linear-injective-0 [OF linear-directional-derivative[OF that]]

proof safe
fix v
assume 0 : directional-derivative k a v = 0
interpret linear directional-derivative k a using that by (rule linear-directional-derivative)
show v = 0
proof (rule euclidean-eqI )

fix j:: ′a
assume j ∈ Basis
have 0 = directional-derivative k a v (λx. x · j)

using 0 by simp
also have . . . = directional-derivative k a (

∑
i∈Basis. (v · i) ∗R i) (λx. x · j)

by (simp add: euclidean-representation)
also have . . . = (

∑
i∈Basis. (v · i) ∗ frechet-derivative (λx. x · j) (at a) i)

unfolding sum
by (auto simp: sum-apply intro!: sum.cong)

also have . . . = (v · j)
using ‹j ∈ Basis›
by (auto simp: inner-Basis if-distrib cong: if-cong)

finally show v · j = 0 · j by simp
qed

qed

lemma directional-derivative-eq-frechet-derivative:
directional-derivative k a v f = frechet-derivative f (at a) v
if k−smooth-on UNIV f
using that
by (auto simp: directional-derivative-def )

lemma directional-derivative-linear-on-diff-fun-space:
k 6= 0 =⇒ manifold-eucl.linear-diff-fun k (directional-derivative k a x)
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by unfold-locales
(auto simp: directional-derivative-eq-frechet-derivative differentiable-onD

smooth-on-add-fun smooth-on-scaleR-fun
frechet-derivative-plus-fun frechet-derivative-scaleR-fun)

lemma directional-derivative-is-derivation:
directional-derivative k a x (f ∗ g) = f a ∗ directional-derivative k a x g + g a ∗

directional-derivative k a x f
if f ∈ manifold-eucl.diff-fun-space k g ∈ manifold-eucl.diff-fun-space k k 6= 0
using that
by (auto simp: directional-derivative-eq-frechet-derivative smooth-on-times-fun

frechet-derivative-times-fun differentiable-onD)

lemma directional-derivative-in-tangent-space[intro, simp]:
k 6= 0 =⇒ directional-derivative k a x ∈ manifold-eucl.tangent-space k a for x
apply (rule manifold-eucl.tangent-spaceI )

apply (rule extensional0-directional-derivative)
apply (rule directional-derivative-linear-on-diff-fun-space)

apply assumption
by (rule directional-derivative-is-derivation)

context c-manifold begin

lemma is-derivation-order-le:
is-derivation X p
if l ≤ k c-manifold.is-derivation charts l X p

proof −
interpret l: c-manifold charts l

by (rule c-manifold-order-le) fact
show ?thesis

using that(2 ) subspace-diff-fun-space
using diff-fun-space-order-le[OF that(1 )]

by (auto simp: is-derivation-def l.is-derivation-def linear-on-def module-hom-on-def
module-hom-on-axioms-def module-on-def subspace-def
subset-iff )

qed

end

lemma smooth-on-imp-differentiable-on: f differentiable-on S
if k−smooth-on S f k > 0
using that
by auto

Key result: for the Euclidean space, the Frechet derivatives are the only
elements of the tangent space.
This result only holds for smooth manifolds, not for C^k differentiable man-
ifolds. Smoothness is used at a key point in the proof.
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lemma surj-directional-derivative:
range (directional-derivative k a) = manifold-eucl.tangent-space k a
if k = ∞

proof −
have k 6= 0 using that by auto
have X ∈ range (directional-derivative k a) if X ∈ manifold-eucl.tangent-space

k a for X
proof −

define v where v i = X (λx. (x − a) · i) for i
have linear-X : manifold-eucl.linear-diff-fun k X

by (rule manifold-eucl.tangent-space-linear-on) fact
note X-sum = manifold-eucl.diff-fun-space.linear-sum ′[OF - - linear-X ]
note X-add = manifold-eucl.diff-fun-space.linear-add[OF - - - linear-X ]
note X-scale = manifold-eucl.diff-fun-space.linear-scale[OF - - linear-X ]
have X = directional-derivative k a (

∑
i∈Basis. v i ∗R i)

apply (rule ext-extensional0 )
using that

apply (rule manifold-eucl.tangent-space-restrict)
apply (rule extensional0-directional-derivative)

proof −
fix f :: ′a ⇒ real
assume f : f ∈ manifold-eucl.diff-fun-space k
then have smooth-on UNIV f using ‹k = ∞›

by simp
from smooth-on-Taylor2E [OF this, of a]
obtain g where f-exp:∧

x. f x = f a + frechet-derivative f (at a) (x − a) +
(
∑

i∈Basis.
∑

j∈Basis. (x − a) · j ∗ ((x − a) · i) ∗ g i j x)
and g:

∧
i j. i ∈ Basis =⇒ j ∈ Basis =⇒ smooth-on UNIV (g i j)

by auto
note [simp] = ‹k = -›
have ∗: X (λx.

∑
i∈Basis.

∑
j∈Basis. (x − a) · j ∗ ((x − a) · i) ∗ g i j x)

= 0
thm X-sum[unfolded sum-fun-def ]
apply (subst X-sum[unfolded sum-fun-def ], safe)
subgoal by auto
subgoal for i

by (auto intro!: smooth-on-sum smooth-on-mult smooth-on-inner smooth-on-minus
simp: g)

apply (intro sum.neutral ballI )
apply (subst X-sum[unfolded sum-fun-def ])
subgoal by (auto intro!: smooth-on-mult smooth-on-inner smooth-on-minus

g)
subgoal by (auto intro!: smooth-on-mult smooth-on-inner smooth-on-minus

g)
proof (intro sum.neutral ballI )

fix i j:: ′a
assume ij: i ∈ Basis j ∈ Basis
have X (λxb. (xb − a) · j ∗ ((xb − a) · i) ∗ g i j xb) =
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X ((λxb. (xb − a) · j) ∗ (λxb. ((xb − a) · i) ∗ g i j xb))
by (auto simp: times-fun-def ac-simps)

also have . . . = 0
apply (rule manifold-eucl.derivation-times-eq-zeroI )

apply fact
subgoal

by (auto intro!: smooth-on-sum smooth-on-mult smooth-on-inner
smooth-on-minus)

subgoal
by (auto intro!: smooth-on-mult smooth-on-inner smooth-on-minus g ij)

apply auto
done

finally
show X (λxb. (xb − a) · j ∗ ((xb − a) · i) ∗ g i j xb) = 0

by simp
qed
from f have smooth-on UNIV f

by (auto )
have f differentiable at a

apply (rule differentiable-onD)
apply (rule smooth-on-imp-differentiable-on)
apply fact

by auto
interpret Df : linear frechet-derivative f (at a)

apply (rule linear-frechet-derivative)
by fact

have X-mult-right: k−smooth-on UNIV xx =⇒ X (λx. xx x ∗ cc) = X xx ∗
cc for xx cc

using X-scale[unfolded scaleR-fun-def , simplified, of xx cc]
by (auto simp: ac-simps)

have blf : bounded-linear (frechet-derivative f (at a))
apply (rule has-derivative-bounded-linear)
apply (rule frechet-derivative-worksI )
apply fact
done

note smooth-on-frechet = smooth-on-compose[OF bounded-linear .smooth-on[OF
blf ], unfolded o-def , OF - - open-UNIV subset-UNIV ]

have ∗∗: X (λx. frechet-derivative f (at a) (x − a)) = frechet-derivative f (at
a) (

∑
i∈Basis. v i ∗R i)
unfolding v-def
apply (subst frechet-derivative-componentwise)
subgoal by fact
apply (subst X-sum[unfolded sum-fun-def ])
subgoal by (auto intro!: smooth-on-sum smooth-on-mult smooth-on-inner

smooth-on-minus)
subgoal by (auto intro!: smooth-on-frechet smooth-on-minus smooth-on-mult

smooth-on-inner)
apply (subst X-mult-right)
subgoal by (auto intro!: smooth-on-sum smooth-on-mult smooth-on-inner
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smooth-on-minus)
apply (subst Df .sum)
apply (rule sum.cong, rule refl)
apply (subst Df .scaleR)
apply auto
done

show X f = directional-derivative k a (
∑

i∈Basis. v i ∗R i) f
apply (subst f-exp[abs-def ])
apply (subst X-add[unfolded plus-fun-def ])
subgoal by simp

subgoal by (auto intro!: smooth-on-add smooth-on-frechet smooth-on-minus)
subgoal

by (auto intro!: smooth-on-add smooth-on-sum smooth-on-mult smooth-on-inner
g smooth-on-minus)

apply (subst X-add[unfolded plus-fun-def ])
subgoal by auto

subgoal by (auto intro!: smooth-on-add smooth-on-frechet smooth-on-minus)
subgoal by (auto intro!: smooth-on-frechet smooth-on-minus)

apply (subst manifold-eucl.derivation-const-eq-zero[where c=f a and X=X ,
simplified], fact)

apply (subst ∗)
apply simp
using f
by (simp add: directional-derivative-def ∗∗)

qed
then show ?thesis

by (rule image-eqI ) simp
qed
with directional-derivative-in-tangent-space[OF ‹k 6= 0 ›] show ?thesis by auto

qed

lemma span-directional-derivative:
span (directional-derivative ∞ a ‘ Basis) = manifold-eucl.tangent-space ∞ a
by (subst span-linear-image)
(simp-all add: linear-directional-derivative surj-directional-derivative)

lemma directional-derivative-in-span:
directional-derivative ∞ a x ∈ span (directional-derivative ∞ a ‘ Basis)
unfolding span-directional-derivative
using surj-directional-derivative
by blast

lemma linear-on-directional-derivative:
k 6= 0 =⇒ linear-on UNIV (manifold-eucl.tangent-space k a) (∗R) (∗R) (directional-derivative

k a)
apply (rule linear-imp-linear-on)

apply (rule linear-directional-derivative)
by (auto simp: manifold-eucl.subspace-tangent-space)
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The directional derivatives at Basis forms a basis of the tangent space at a
interpretation manifold-eucl: finite-dimensional-real-vector-space-on

manifold-eucl.tangent-space ∞ a directional-derivative ∞ a ‘ Basis
apply unfold-locales
subgoal by auto
subgoal
proof

assume 4 : manifold-eucl.tangent-space.dependent (directional-derivative ∞ a ‘
Basis)

interpret rvo: real-vector-space-pair-on
UNIV :: ′a set
manifold-eucl.tangent-space ∞ a

by unfold-locales simp
have 1 : ∀ x. x ∈ UNIV −→ directional-derivative∞ a x ∈ manifold-eucl.tangent-space

∞ a
by auto

have 2 : Basis ⊆ UNIV by auto
have 5 : inj-on (directional-derivative ∞ a) (span Basis)

by (rule inj-on-directional-derivative) simp-all
from rvo.linear-dependent-inj-imageD[OF 1 2 linear-on-directional-derivative 4

5 ]
show False using independent-Basis

by auto
qed
subgoal by (simp add: span-directional-derivative)
subgoal

using surj-directional-derivative[of ∞ a]
by auto

done

lemma independent-directional-derivative:
k 6= 0 =⇒ independent (directional-derivative k a ‘ Basis)
by (rule linear-independent-injective-image)
(auto simp: independent-Basis linear-directional-derivative inj-on-directional-derivative)

8.8 Dimension

For the Euclidean space, the dimension of the tangent space equals the
dimension of the original space.
lemma dim-eucl-tangent-space:

dim (manifold-eucl.tangent-space ∞ a) = DIM ( ′a) for a:: ′a::euclidean-space
proof −

interpret finite-dimensional-real-vector-space-pair-on
UNIV :: ′a set
manifold-eucl.tangent-space ∞ a
Basis directional-derivative ∞ a ‘ Basis
by unfold-locales (auto simp: independent-Basis)

have manifold-eucl.tangent-space.dim ∞ a (manifold-eucl.tangent-space ∞ a) =
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manifold-eucl.tangent-space.dim ∞ a (range (directional-derivative ∞ a))
by (simp add: surj-directional-derivative)

also have . . . = vs1 .dim (UNIV :: ′a set)
by (rule dim-image-eq)

(auto simp: linear-on-directional-derivative inj-on-directional-derivative)
also have . . . = DIM ( ′a)

by (simp add: vs1 .dim-UNIV )
finally have ∗: DIM ( ′a) = manifold-eucl.tangent-space.dim ∞ a (manifold-eucl.tangent-space
∞ a) ..

also have . . . = dim (manifold-eucl.tangent-space ∞ a)
using manifold-eucl.basis-subset - independent-directional-derivative

proof (rule dim-unique[symmetric])
show manifold-eucl.tangent-space ∞ a ⊆ span (directional-derivative ∞ a ‘

Basis)
by (simp add: span-directional-derivative)

have card (directional-derivative ∞ a ‘ Basis) = DIM ( ′a)
apply (rule card-image)
by (rule inj-on-directional-derivative) simp

also note ∗
finally show card (directional-derivative ∞ a ‘ Basis) =

manifold-eucl.tangent-space.dim ∞ a (manifold-eucl.tangent-space ∞ a) .
qed simp
finally show ?thesis ..

qed

context c-manifold begin

For a general manifold, the dimension of the tangent space at point p equals
the dimension of the manifold.
lemma dim-tangent-space: dim (tangent-space p) = DIM ( ′b) if p: p ∈ carrier and
smooth: k = ∞
proof −

from carrierE [OF p] obtain c where c ∈ charts p ∈ domain c .
interpret a: submanifold charts k domain c

by unfold-locales simp
let ?a = charts-submanifold (domain c)
let ?b = manifold-eucl.charts-submanifold (codomain c)
interpret a: diff k ?a ?b c

apply (rule diff .diff-submanifold2 )
apply (rule diff-apply-chart)

using ‹c ∈ charts›
by auto

interpret b: diff k ?b ?a inv-chart c
apply (rule diff .diff-submanifold2 )

apply (rule diff-inv-chart)
using ‹c ∈ charts›
apply auto

by (metis Int-iff a.dest.carrierE domain-restrict-chart image-empty image-insert
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inv-chart-in-domain manifold-eucl.dest.charts-submanifold-def open-codomain
singletonD)

interpret b: submanifold charts-eucl k codomain c
by unfold-locales simp

interpret diffeomorphism k ?a ?b c inv-chart c
by unfold-locales auto

have ∗: DIM ( ′b) = dim (a.dest.tangent-space (c p))
proof −

have ∗: DIM ( ′b) = dim (manifold-eucl.tangent-space k (c p))
unfolding smooth dim-eucl-tangent-space ..

also have . . . = dim (a.dest.tangent-space (c p))
apply (rule b.dim-tangent-space2 [of c p])
subgoal

using ‹p ∈ domain c› that
by auto

subgoal unfolding ∗[symmetric] by simp
done

finally show ?thesis .
qed
also have ∗∗: . . . = dim (a.sub.tangent-space p)

apply (rule dim-tangent-space-src-dest-eq[symmetric])
unfolding ∗[symmetric]
using ‹p ∈ domain c› that
by auto

also have . . . = dim (tangent-space p)
apply (rule a.dim-tangent-space[symmetric])
unfolding ∗[symmetric] ∗∗[symmetric]
using ‹p ∈ domain c› that
by auto

finally show ?thesis ..
qed

end

end

9 Cotangent Space
theory Cotangent-Space

imports Tangent-Space
begin

9.1 Dual of a vector space
abbreviation linear-fun-on S ≡ linear-on S (UNIV ::real set) scaleR scaleR

definition dual-space :: ′a::real-vector set ⇒ ( ′a ⇒ real) set where
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dual-space S = {E . linear-fun-on S E ∧ extensional0 S E}

lemma dual-space-eq:
dual-space S = {E . linear-fun-on S E} ∩ {E . extensional0 S E}
by (auto simp: dual-space-def )

lemma mem-dual-space:
E ∈ dual-space S ←→ linear-fun-on S E ∧ extensional0 S E
by (auto simp: dual-space-def )

lemma dual-spaceI :
E ∈ dual-space S
if extensional0 S E linear-fun-on S E
using that
by (auto simp: dual-space-def )

lemma dual-spaceD:
assumes E ∈ dual-space S
shows dual-space-linear-on: linear-fun-on S E

and dual-space-restrict[simp]: extensional0 S E
using assms by (auto simp: dual-space-def )

lemma linear-fun-on-zero:
linear-fun-on S 0
if subspace S
by (unfold-locales, auto simp add: algebra-simps that[unfolded subspace-def ])

lemma linear-fun-on S x =⇒ a ∈ S =⇒ b ∈ S =⇒ x (a + b) = x a + x b
using linear-on.axioms module-hom-on.add by blast

lemma linear-fun-on-add:
linear-fun-on S (x + y)
if x: linear-fun-on S x and y: linear-fun-on S y and S : subspace S
using x that
by (unfold-locales, auto dest!: linear-on.axioms

simp add: algebra-simps module-hom-on.add module-hom-on.scale subspace-def )

lemma linear-fun-on-scaleR:
linear-fun-on S (c ∗R x)
if x: linear-fun-on S x and S : subspace S
using x that
by (unfold-locales, auto dest!: linear-on.axioms

simp add: module-hom-on.add module-hom-on.scale algebra-simps subspace-def )

lemma subspace-linear-fun-on:
subspace {E . linear-fun-on S E}
if subspace S
by (auto simp: subspace-def linear-fun-on-zero[OF that]

linear-fun-on-add[OF - - that] linear-fun-on-scaleR[OF - that])
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lemma subspace-dual-space:
subspace (dual-space S)
if subspace S
unfolding dual-space-eq
apply (rule subspace-inter)
apply (rule subspace-linear-fun-on[OF that])

apply (rule subspace-extensional0 )
done

9.2 Dimension of dual space

Mapping from S to the dual of S
context fixes B S assumes B: independent B span B = S
begin

definition inner-Basis a b = (
∑

i∈B. representation B a i ∗ representation B b
i)

— TODO: move to library

definition std-dual :: ′a::real-vector ⇒ ( ′a ⇒ real) where
std-dual a = restrict0 S (restrict0 S (λb. inner-Basis a b))

lemma inner-Basis-add:
b1 ∈ S =⇒ b2 ∈ S =⇒ inner-Basis (b1 + b2 ) v = inner-Basis b1 v + inner-Basis

b2 v
by (auto simp: std-dual-def restrict0-def algebra-simps representation-add repre-

sentation-scale
B inner-Basis-def
sum.distrib sum-distrib-left)

lemma inner-Basis-add2 :
b1 ∈ S =⇒ b2 ∈ S =⇒ inner-Basis v (b1 + b2 ) = inner-Basis v b1 + inner-Basis

v b2
by (auto simp: std-dual-def restrict0-def algebra-simps representation-add repre-

sentation-scale
B inner-Basis-def
sum.distrib sum-distrib-left)

lemma inner-Basis-scale:
b1 ∈ S =⇒ inner-Basis (c ∗R b1 ) v = c ∗ inner-Basis b1 v
by (auto simp: std-dual-def restrict0-def algebra-simps representation-add repre-

sentation-scale
B inner-Basis-def sum.distrib sum-distrib-left)

lemma inner-Basis-scale2 :
b1 ∈ S =⇒ inner-Basis v (c ∗R b1 ) = c ∗ inner-Basis v b1
by (auto simp: std-dual-def restrict0-def algebra-simps representation-add repre-

sentation-scale
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B inner-Basis-def sum.distrib sum-distrib-left)

lemma inner-Basis-minus:
b1 ∈ S =⇒ b2 ∈ S =⇒ inner-Basis (b1 − b2 ) v = inner-Basis b1 v − inner-Basis

b2 v
and inner-Basis-minus2 :
b1 ∈ S =⇒ b2 ∈ S =⇒ inner-Basis v (b1 − b2 ) = inner-Basis v b1 − inner-Basis

v b2
by (auto simp: std-dual-def restrict0-def algebra-simps representation-diff repre-

sentation-scale
B inner-Basis-def
sum-subtractf sum-distrib-left)

lemma sum-zero-representation:
v = 0
if

∧
b. b ∈ B =⇒ representation B v b = 0 and v: v ∈ S

proof −
have empty: {b. representation B v b 6= 0} = {}

using that(1 ) representation-ne-zero by auto
have v ∈ span B using B v by simp
from sum-nonzero-representation-eq[OF B(1 ) this]
show ?thesis

by (simp add: empty)
qed

lemma inner-Basis-0 [simp]: inner-Basis 0 a = 0 inner-Basis a 0 = 0
by (auto simp: inner-Basis-def representation-zero)

lemma inner-Basis-eq-zeroI : a = 0 if inner-Basis a a = 0
and finite B a ∈ S
by (rule sum-zero-representation)
(use that in ‹auto simp: inner-Basis-def that sum-nonneg-eq-0-iff ›)

lemma inner-Basis-zero: inner-Basis a a = 0 ←→ a = 0
if finite B a ∈ S
by (auto simp: inner-Basis-eq-zeroI that)

lemma subspace-S : subspace S
using B by auto

interpretation S : real-vector-space-on S
using subspace-S
by unfold-locales

interpretation dual: real-vector-space-on dual-space S
using subspace-dual-space[OF subspace-S ]
by unfold-locales

lemma std-dual-linear :
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linear-on S (dual-space S) scaleR scaleR std-dual
by unfold-locales
(auto simp add: subspace-S [unfolded subspace-def ] subspace-dual-space[unfolded

subspace-def ] algebra-simps
std-dual-def inner-Basis-scale inner-Basis-add restrict0-def )

lemma image-std-dual:
std-dual ‘ S ⊆ dual-space S
if subspace S

proof safe
fix y assume y ∈ S
show std-dual y ∈ dual-space S
proof (rule dual-spaceI )

show extensional0 S (std-dual y)
by (auto simp: std-dual-def )

show linear-fun-on S (std-dual y)
by (unfold-locales, auto simp: std-dual-def algebra-simps that[unfolded sub-

space-def ]
inner-Basis-add2 inner-Basis-scale2 B)

qed
qed

lemma inj-std-dual:
inj-on std-dual S
if subspace S finite B

proof (intro inj-onI )
fix x y assume x: x ∈ S and y: y ∈ S and eq: std-dual x = std-dual y
have 1 : inner-Basis x b = inner-Basis y b if b: b ∈ S for b
proof −

have std-dual x b = inner-Basis x b std-dual y b = inner-Basis y b
unfolding std-dual-def restrict0-def
using b by auto

then show ?thesis using eq by auto
qed
have 2 : x − y ∈ S using that(1 ) x y by (rule subspace-diff )
have inner-Basis x (x − y) − inner-Basis y (x − y) = 0 using 1 2 by auto
then have inner-Basis (x − y) (x − y) = 0

by (auto simp: inner-Basis-minus inner-Basis-minus2 2 B x y algebra-simps)
then show x = y

by (auto simp: inner-Basis-zero B that 2 )
qed

lemma inner-Basis-sum:
(
∧

i. i ∈ I =⇒ x i ∈ S) =⇒ inner-Basis (
∑

i∈I . x i) v = (
∑

i∈I . inner-Basis
(x i) v)

apply (induction I rule: infinite-finite-induct)
apply auto

apply (subst inner-Basis-add)
apply auto
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by (metis B(2 ) subspace-span subspace-sum)

lemma inner-Basis-sum2 :
(
∧

i. i ∈ I =⇒ x i ∈ S) =⇒ inner-Basis v (
∑

i∈I . x i) = (
∑

i∈I . inner-Basis
v (x i))

apply (induction I rule: infinite-finite-induct)
apply auto

apply (subst inner-Basis-add2 )
apply auto
by (metis B(2 ) subspace-span subspace-sum)

lemma B-sub-S : B ⊆ S
using B(2 ) span-eq by auto

lemma inner-Basis-eq-representation:
inner-Basis i x = representation B x i
if i ∈ B finite B
unfolding inner-Basis-def
by (simp add: B that representation-basis if-distrib if-distribR cong: if-cong)

lemma surj-std-dual:
std-dual ‘ S ⊇ dual-space S if subspace S finite B

proof safe
fix y
assume y: y ∈ dual-space S
show y ∈ std-dual ‘ S
proof −

let ?x =
∑

i∈B. (y i) ∗R i
have x: ?x ∈ S

using that(1 ) apply (rule subspace-sum) using that(1 ) apply (rule sub-
space-scale)

using B span-superset
by auto

from dual-space-linear-on[OF y]
have linear-y: linear-fun-on S y .
then interpret linear-on S UNIV scaleR scaleR y .
interpret vector-space-pair-on S UNIV ::real set scaleR scaleR by unfold-locales
have y = std-dual ?x

apply (rule ext-extensional0 [of S ])
subgoal using y dual-space-def by auto
subgoal by (auto simp: std-dual-def )
unfolding std-dual-def restrict0-def apply auto
apply (subst inner-Basis-sum) subgoal

using B(2 ) span-base subspace-scale by blast
subgoal for x
proof goal-cases

case 1
have (

∑
i∈B. inner-Basis (y i ∗R i) x) = (

∑
i∈B. y (inner-Basis i x ∗R
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i))
proof (rule sum.cong[OF refl])

fix i assume i: i ∈ B
then have i : S using B-sub-S by auto
have inner-Basis (y i ∗R i) x = y i ∗ inner-Basis i x

apply (subst inner-Basis-scale)
subgoal using B-sub-S i by auto
apply (rule refl)
done

also have . . . = y i ∗R inner-Basis i x by simp
also have . . . = y (inner-Basis i x ∗R i)

by (auto simp: ‹i ∈ S› scale)
finally show inner-Basis (y i ∗R i) x = y (inner-Basis i x ∗R i) .

qed
also have . . . = y (

∑
i∈B. (inner-Basis i x ∗R i)) (is - = y ?sum)

apply (subst linear-sum ′[OF - - linear-y])
apply (auto simp: inner-Basis-eq-representation)

using B(2 ) S .mem-scale span-base by blast
also have ?sum = x

apply (subst sum.cong[OF refl])
apply (subst inner-Basis-eq-representation, assumption, rule that, rule

refl)
apply (subst sum-representation-eq)
by (auto simp: that B ‹x : S›)

finally show ?thesis by simp
qed
done

then show ?thesis
using x by auto

qed
qed

lemma std-dual-bij-betw:
bij-betw (std-dual) S (dual-space S)
if finite B
unfolding bij-betw-def
using subspace-S inj-std-dual image-std-dual surj-std-dual that by blast

lemma std-dual-eq-dual-space: finite B =⇒ std-dual ‘ S = dual-space S
using image-std-dual surj-std-dual subspace-S by auto

lemma dim-dual-space:
assumes finite B
shows dim (dual-space S) = dim S

proof −
interpret finite-dimensional-real-vector-space-pair-1-on S dual-space S B

using B assms span-superset
by unfold-locales auto

have ∗: span S = S using subspace-S by auto
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then have dual.dim (std-dual ‘ S) = S .dim S
apply (intro dim-image-eq[OF - order-refl std-dual-linear ])
using std-dual-bij-betw[OF assms]
by (auto simp: bij-betw-def ∗)

also have S .dim S = dim S
unfolding S .dim-eq[OF order-refl] ..

also have dual.dim (std-dual ‘ S) = dim (std-dual ‘ S)
using image-std-dual[OF subspace-S ]
by (rule dual.dim-eq)

also have std-dual ‘ S = dual-space S
using assms
by (rule std-dual-eq-dual-space)

finally show ?thesis .
qed

end

9.3 Dual map
context real-vector-space-pair-on begin

definition dual-map :: ( ′a ⇒ ′b) ⇒ ( ′b ⇒ real) ⇒ ( ′a ⇒ real) where
dual-map f y = restrict0 S (λx. y (f x))

lemma subspace-dual-S : subspace (dual-space S)
apply (rule subspace-dual-space)
apply (rule local.vs1 .subspace)
done

lemma subspace-dual-T : subspace (dual-space T )
apply (rule subspace-dual-space)
apply (rule local.vs2 .subspace)
done

lemma dual-map-linear :
linear-on (dual-space T ) (dual-space S) scaleR scaleR (dual-map f )
apply unfold-locales
by (auto simp add: dual-map-def restrict0-def subspace-dual-S [unfolded subspace-def ]

subspace-dual-T [unfolded subspace-def ] algebra-simps)

lemma image-dual-map:
dual-map f ‘ (dual-space T ) ⊆ dual-space S
if f : linear-on S T scaleR scaleR f and
defined: f ‘ S ⊆ T

proof safe
fix x assume x: x ∈ dual-space T
show dual-map f x ∈ dual-space S
proof (rule dual-spaceI )

have 1 : linear-fun-on T x
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using x by (rule dual-space-linear-on)
show extensional0 S (dual-map f x) by (auto simp: dual-map-def )
show linear-fun-on S (dual-map f x)

apply (unfold-locales, auto simp: dual-map-def restrict0-def linear-on-def
algebra-simps

local.vs1 .subspace[unfolded subspace-def ])
proof −

show x (f (b1 + b2 )) = x (f b1 ) + x (f b2 ) if b1 ∈ S b2 ∈ S for b1 b2
proof −

have f b1 ∈ T using ‹b1 ∈ S› defined by auto
have f b2 ∈ T using ‹b2 ∈ S› defined by auto
have x (f (b1 + b2 )) = x (f b1 + f b2 )
by (auto simp: f [THEN linear-on.axioms, THEN module-hom-on.add] that)
also have x (f b1 + f b2 ) = x (f b1 ) + x (f b2 )

by (auto simp: 1 [THEN linear-on.axioms, THEN module-hom-on.add] ‹f
b1 ∈ T › ‹f b2 ∈ T ›)

finally show ?thesis .
qed
show x (f (r ∗R b)) = r ∗ x (f b) if b ∈ S for r b
proof −

have f b ∈ T using ‹b ∈ S› defined by auto
have x (f (r ∗R b)) = x (r ∗R f b)

by (auto simp: f [THEN linear-on.axioms, THEN module-hom-on.scale]
that)

also have x (r ∗R f b) = r ∗ x (f b)
by (auto simp: 1 [THEN linear-on.axioms, THEN module-hom-on.scale] ‹f

b ∈ T ›)
finally show ?thesis .

qed
qed

qed
qed

end

Functoriality of dual map: identity
context real-vector-space-on begin

lemma dual-map-id:
real-vector-space-pair-on.dual-map S f y = y
if f :

∧
x. x ∈ S =⇒ f x = x and y: y ∈ dual-space S

proof (rule ext-extensional0 [of S ])
have 1 : real-vector-space-pair-on S S ..
show extensional0 S (real-vector-space-pair-on.dual-map S f y)

unfolding real-vector-space-pair-on.dual-map-def [OF 1 ] by auto
show extensional0 S y

using y by auto
fix x assume x: x ∈ S
show real-vector-space-pair-on.dual-map S f y x = y x
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proof −
have real-vector-space-pair-on.dual-map S f y x = y (f x)

by (auto simp: real-vector-space-pair-on.dual-map-def [OF 1 ] restrict0-def x)
also have y (f x) = y x

using f x by auto
finally show ?thesis .

qed
qed

end

abbreviation dual-map ≡ real-vector-space-pair-on.dual-map
lemmas dual-map-def = real-vector-space-pair-on.dual-map-def

Functoriality of dual map: composition
lemma dual-map-compose:

dual-map S f (dual-map T g x) = dual-map S (g ◦ f ) x
if x ∈ dual-space U and linear-on T U scaleR scaleR g
and f : linear-on S T scaleR scaleR f
and defined: f ‘ S ⊆ T
and ST : real-vector-space-pair-on S T
and TU : real-vector-space-pair-on T U

proof (rule ext)
have SU : real-vector-space-pair-on S U

using ST TU by (auto simp add: real-vector-space-pair-on-def )
fix v show dual-map S f (dual-map T g x) v = dual-map S (g ◦ f ) x v
unfolding dual-map-def [OF ST ] dual-map-def [OF TU ] dual-map-def [OF SU ]

restrict0-def
using defined by auto

qed

9.4 Definition of cotangent space
context c-manifold begin

definition cotangent-space :: ′a ⇒ ((( ′a ⇒ real) ⇒ real) ⇒ real) set where
cotangent-space p = dual-space (tangent-space p)

lemma subspace-cotangent-space:
subspace (cotangent-space p)
unfolding cotangent-space-def
apply (rule subspace-dual-space)
apply (rule subspace-tangent-space)
done

sublocale cotangent-space: real-vector-space-on cotangent-space p
by unfold-locales (rule subspace-cotangent-space)

168



lemma cotangent-space-dim-eq: cotangent-space.dim p X = dim X
if X ⊆ cotangent-space p

proof −
have ∗: b ⊆ cotangent-space p ∧ independent b ∧ span b = span X ←→ indepen-

dent b ∧ span b = span X
for b
using that

by auto (metis (no-types, lifting) c-manifold.subspace-cotangent-space c-manifold-axioms
span-base span-eq-iff span-mono subsetCE)

show ?thesis
using that
unfolding cotangent-space.dim-def dim-def ∗
by auto

qed

lemma dim-cotangent-space:
dim (cotangent-space p) = DIM ( ′b) if p ∈ carrier and k = ∞

proof −
from basis-exists[of tangent-space p]
obtain B where B: B ⊆ tangent-space p independent B tangent-space p ⊆ span

B
card B = dim (tangent-space p)
by auto

have finite B
apply (rule card-ge-0-finite)
unfolding B
apply (subst dim-tangent-space[OF that])
by simp

have dim (cotangent-space p) = dim (tangent-space p)
unfolding cotangent-space-def
apply (rule dim-dual-space[of B])
apply fact
using B span-minimal[OF B(1 ) subspace-tangent-space] ‹finite B›
by auto

also have dim (tangent-space p) = DIM ( ′b)
by (rule dim-tangent-space[OF that])

finally show ?thesis .
qed

end

9.5 Pullback of cotangent space
context diff begin

definition pull-back :: ′a ⇒ ((( ′b ⇒ real) ⇒ real) ⇒ real) ⇒ (( ′a ⇒ real) ⇒ real)
⇒ real where

pull-back p = dual-map (src.tangent-space p) push-forward
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lemma
linear-pullback: linear-on (dest.cotangent-space (f p)) (src.cotangent-space p) scaleR

scaleR (pull-back p) and
image-pullback: pull-back p ‘ (dest.cotangent-space (f p)) ⊆ src.cotangent-space p
if p ∈ src.carrier

proof −
interpret a: real-vector-space-pair-on src.tangent-space p dest.tangent-space (f p)

..
show linear-on (dest.cotangent-space (f p)) (src.cotangent-space p) (∗R) (∗R)

(pull-back p)
unfolding dest.cotangent-space-def src.cotangent-space-def pull-back-def
by (rule a.dual-map-linear)

show pull-back p ‘ (dest.cotangent-space (f p)) ⊆ src.cotangent-space p
unfolding dest.cotangent-space-def src.cotangent-space-def pull-back-def
apply (rule a.image-dual-map)
apply (rule linear-imp-linear-on)

apply (rule local.linear-push-forward)
apply (rule local.src.subspace-tangent-space)

apply (rule local.dest.subspace-tangent-space)
apply (rule local.push-forward-in-tangent-space)
by fact

qed

end

9.6 Cotangent field of a function
context c-manifold begin

Given a function f, the cotangent vector of f at a point p is defined as follows:
given a tangent vector X at p, considered as a functional, evaluate X on f.
definition cotangent-field :: ( ′a ⇒ real) ⇒ ′a ⇒ ((( ′a ⇒ real) ⇒ real) ⇒ real)
where

cotangent-field f p = restrict0 (tangent-space p) (λX . X f )

lemma cotangent-field-is-cotangent:
cotangent-field f p ∈ cotangent-space p
unfolding cotangent-space-def

proof (rule dual-spaceI )
show extensional0 (tangent-space p) (cotangent-field f p)

unfolding cotangent-field-def by auto
show linear-fun-on (tangent-space p) (cotangent-field f p)

apply unfold-locales unfolding cotangent-field-def apply auto
proof −

show restrict0 (tangent-space p) (λX . X f ) (b1 + b2 ) = b1 f + b2 f
if b1 : b1 ∈ tangent-space p and b2 : b2 ∈ tangent-space p for b1 b2

proof −
have b1 + b2 ∈ tangent-space p using b1 b2 subspace-tangent-space sub-

space-add by auto
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then show ?thesis by auto
qed
show restrict0 (tangent-space p) (λX . X f ) (r ∗R b) = r ∗ b f

if b: b ∈ tangent-space p for r b
proof −

have r ∗R b ∈ tangent-space p using b subspace-tangent-space subspace-scale
by auto

then show ?thesis by auto
qed

qed
qed

9.7 Tangent field of a path

Given a path c, the tangent vector of c at real number x (or at point c(x)) is
defined as follows: given a function f, take the derivative of the real-valued
function f ◦ c.
definition tangent-field :: (real ⇒ ′a) ⇒ real ⇒ (( ′a ⇒ real) ⇒ real) where

tangent-field c x = restrict0 diff-fun-space (λf . frechet-derivative (f ◦ c) (at x) 1 )

lemma tangent-field-is-tangent:
tangent-field c x ∈ tangent-space (c x)
if c-smooth: diff k charts-eucl charts c and smooth: k > 0

proof (rule tangent-spaceI )
show extensional0 diff-fun-space (tangent-field c x)

unfolding tangent-field-def by auto
have diff-fun-c-diff : (λx. b (c x)) differentiable at x

if b: b ∈ diff-fun-space
for b:: ′a ⇒ real and x

proof −
have diff-b: diff-fun k charts-eucl (b o c)

unfolding diff-fun-def
using c-smooth diff-fun-spaceD[OF b, THEN diff-fun.axioms]
by (rule diff-compose)

from diff-fun-charts-euclD[OF this] smooth
have (b o c) differentiable-on UNIV

by (rule smooth-on-imp-differentiable-on)
then show ?thesis by (auto simp: differentiable-on-def o-def )

qed
show linear-fun-on diff-fun-space (tangent-field c x)

apply unfold-locales unfolding cotangent-field-def apply auto
proof −

show tangent-field c x (b1 + b2 ) = tangent-field c x b1 + tangent-field c x b2
if b1 : b1 ∈ diff-fun-space and b2 : b2 ∈ diff-fun-space for b1 b2
unfolding tangent-field-def restrict0-def

by (auto simp: diff-fun-space-add o-def diff-fun-c-diff b1 b2 frechet-derivative-plus)
show tangent-field c x (r ∗R b) = r ∗ tangent-field c x b

if b: b ∈ diff-fun-space for r b
unfolding tangent-field-def restrict0-def
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by (auto simp: diff-fun-space.m1 .mem-scale o-def diff-fun-c-diff b frechet-derivative-times
frechet-derivative-const)

qed
show tangent-field c x (f ∗ g) = f (c x) ∗ tangent-field c x g + g (c x) ∗

tangent-field c x f
if f : f ∈ diff-fun-space and g: g ∈ diff-fun-space for f g
unfolding tangent-field-def restrict0-def
by (auto simp: f g diff-fun-space-times diff-fun-space-add o-def diff-fun-c-diff

frechet-derivative-plus frechet-derivative-times)
qed

9.8 Integral along a path
lemma fundamental-theorem-of-path-integral:
((λx. (cotangent-field f (c x)) (tangent-field c x)) has-integral f (c b) − f (c a))
{a..b}

if ab: a ≤ b and f : f ∈ diff-fun-space and c: diff k charts-eucl charts c and k: k
6= 0
proof −

from f have diff k charts charts-eucl f
by (auto simp: diff-fun-space-def diff-fun-def )

then have (diff-fun k charts-eucl (f o c))
unfolding diff-fun-def
using c diff-compose by blast

then have k−smooth-on UNIV (f o c)
by (rule diff-fun-charts-euclD)

then have (f o c) differentiable-on UNIV
by (rule smooth-on-imp-differentiable-on) (use k in simp)

then have fc: (λa. f (c a)) differentiable at x for x
by (auto simp: differentiable-on-def o-def )

then show ?thesis
using ab
unfolding cotangent-field-def
apply (auto simp: tangent-field-is-tangent c k)
unfolding tangent-field-def
apply (auto simp: f )
apply (rule fundamental-theorem-of-calculus)
apply assumption

apply (rule has-vector-derivative-at-within)
unfolding o-def has-vector-derivative-def
apply (subst frechet-derivative-at-real-eq-scaleR[symmetric])

apply simp
apply simp

apply (rule frechet-derivative-worksI )
apply simp
done

qed

end
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end

10 Product Manifold
theory Product-Manifold

imports Differentiable-Manifold
begin

locale c-manifold-prod =
m1 : c-manifold charts1 k +
m2 : c-manifold charts2 k for k charts1 charts2

begin

lift-definition prod-chart :: ( ′a, ′b) chart ⇒ ( ′c, ′d) chart ⇒ ( ′a × ′c, ′b × ′d)
chart

is λ(d:: ′a set, d ′:: ′b set, f :: ′a⇒ ′b, f ′:: ′b⇒ ′a).
λ(e:: ′c set, e ′:: ′d set, g:: ′c⇒ ′d, g ′:: ′d⇒ ′c).
(d × e, d ′ × e ′, λ(x,y). (f x, g y), λ(x,y). (f ′ x, g ′ y))

by (auto intro: open-Times simp: homeomorphism-prod)

lemma domain-prod-chart[simp]: domain (prod-chart c1 c2 ) = domain c1 × do-
main c2

and codomain-prod-chart[simp]: codomain (prod-chart c1 c2 ) = codomain c1 ×
codomain c2

and apply-prod-chart[simp]: apply-chart (prod-chart c1 c2 ) = (λ(x,y). (c1 x, c2
y))
and inv-chart-prod-chart[simp]: inv-chart (prod-chart c1 c2 ) = (λ(x,y). (inv-chart

c1 x, inv-chart c2 y))
by (transfer , auto)+

lemma prod-chart-compat:
k−smooth-compat (prod-chart c1 c2 ) (prod-chart d1 d2 )
if compat1 : k−smooth-compat c1 d1 and compat2 : k−smooth-compat c2 d2
unfolding smooth-compat-def
apply (auto simp add: comp-def case-prod-beta cong del: image-cong-simp)
apply (simp add: Times-Int-Times image-prod)
apply (rule smooth-on-Pair ′)

apply (auto intro!: continuous-intros)
apply (auto simp: compat1 [unfolded smooth-compat-def comp-def ])
apply (auto simp: compat2 [unfolded smooth-compat-def comp-def ])

apply (simp add: Times-Int-Times image-prod)
apply (rule smooth-on-Pair ′)

apply (auto intro!: continuous-intros)
apply (auto simp: compat2 [unfolded smooth-compat-def comp-def ])
apply (auto simp: compat1 [unfolded smooth-compat-def comp-def ])

done
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definition prod-charts :: ( ′a × ′c, ′b × ′d) chart set where
prod-charts = {prod-chart c1 c2 | c1 c2 . c1 ∈ charts1 ∧ c2 ∈ charts2}

lemma c-manifold-atlas-product: c-manifold prod-charts k
proof

fix c d assume c: c ∈ prod-charts and d: d ∈ prod-charts
obtain c1 c2 where c-def : c = prod-chart c1 c2 and c1 : c1 ∈ charts1 and c2 :

c2 ∈ charts2
using c prod-charts-def by auto

obtain d1 d2 where d-def : d = prod-chart d1 d2 and d1 : d1 ∈ charts1 and
d2 : d2 ∈ charts2

using d prod-charts-def by auto
have compat1 : k−smooth-compat c1 d1

using c1 d1 by (auto intro: m1 .pairwise-compat)
have compat2 : k−smooth-compat c2 d2

using c2 d2 by (auto intro: m2 .pairwise-compat)
show k−smooth-compat c d

unfolding c-def d-def
using compat1 compat2 by (rule prod-chart-compat)

qed

end

end

11 Sphere
theory Sphere

imports Differentiable-Manifold
begin

typedef (overloaded) ( ′a::real-normed-vector) sphere =
{a:: ′a×real. norm a = 1}

proof −
have norm (0 :: ′a,1 ::real) = 1 by simp
then show ?thesis by blast

qed

setup-lifting type-definition-sphere

lift-definition top-sphere :: ( ′a::real-normed-vector) sphere is (0 , 1 ) by simp

lift-definition st-proj1 :: ( ′a::real-normed-vector) sphere ⇒ ′a is
λ(x,z). x /R (1 − z) .

lift-definition st-proj1-inv :: ( ′a::real-normed-vector) ⇒ ′a sphere is
λx. ((2 / ((norm x) ^ 2 + 1 )) ∗R x, ((norm x) ^ 2 − 1 ) / ((norm x) ^ 2 + 1 ))
apply (auto simp: norm-prod-def divide-simps algebra-simps)
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apply (auto simp: add-nonneg-eq-0-iff )
by (auto simp: power2-eq-square algebra-simps)

lift-definition bot-sphere :: ( ′a::real-normed-vector) sphere is (0 , −1 ) by simp

lift-definition st-proj2 :: ( ′a::real-normed-vector) sphere ⇒ ′a is
λ(x,z). x /R (1 + z) .

lift-definition st-proj2-inv :: ( ′a::real-normed-vector) ⇒ ′a sphere is
λx. ((2 / ((norm x) ^ 2 + 1 )) ∗R x, (1 − (norm x) ^ 2 ) / ((norm x) ^ 2 + 1 ))
apply (auto simp: norm-prod-def divide-simps algebra-simps)
apply (auto simp: add-nonneg-eq-0-iff )

by (auto simp: power2-eq-square algebra-simps)

instantiation sphere :: (real-normed-vector) topological-space
begin

lift-definition open-sphere :: ′a sphere set ⇒ bool is
openin (subtopology (euclidean::( ′a×real) topology) {a. norm a = 1}) .

instance
apply standard
apply (transfer ; auto)
apply (transfer ; auto)
apply (transfer ; auto)
done

end

instance sphere :: (real-normed-vector) t2-space
apply standard
apply transfer
subgoal for x y

apply (drule hausdorff [of x y])
apply clarsimp
subgoal for U V

apply (rule exI [where x=U ∩ {a. norm a = 1}])
apply clarsimp
apply (rule conjI ) defer
apply (rule exI [where x=V ∩ {a. norm a = 1}])

by auto
done

done

instance sphere :: (euclidean-space) second-countable-topology
proof standard

obtain BB::( ′a×real) set set where BB: countable BB open = generate-topology
BB
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by (metis ex-countable-subbasis)
let ?B = (λB. B ∩ {x. norm x = 1}) ‘ BB
show ∃B:: ′a sphere set set. countable B ∧ open = generate-topology B

apply transfer
apply (rule bexI [where x = ?B])
apply (rule conjI )
subgoal using BB by force
subgoal using BB apply clarsimp

apply (subst openin-subtopology-eq-generate-topology[where BB=BB])
by (auto )

subgoal by auto
done

qed

lemma transfer-continuous-on1 [transfer-rule]:
includes lifting-syntax
shows (rel-set (=) ===> ((=) ===> pcr-sphere (=)) ===> (=)) (λX :: ′a::t2-space

set. continuous-on X) continuous-on
apply (rule continuous-on-transfer-right-total2 )

apply transfer-step
apply transfer-step

apply transfer-step
apply transfer-prover

apply transfer-step
apply transfer-step

apply transfer-prover
done

lemma transfer-continuous-on2 [transfer-rule]:
includes lifting-syntax
shows (rel-set (pcr-sphere (=)) ===> (pcr-sphere (=) ===> (=)) ===> (=))

(λX . continuous-on (X ∩ {x. norm x = 1})) (λX . continuous-on X)
apply (rule continuous-on-transfer-right-total)

apply transfer-step
apply transfer-step

apply transfer-step
apply transfer-prover

apply transfer-step
apply transfer-step

apply transfer-prover
done

lemma st-proj1-inv-continuous:
continuous-on UNIV st-proj1-inv
by transfer (auto intro!: continuous-intros simp: add-nonneg-eq-0-iff )

lemma st-proj1-continuous:
continuous-on (UNIV − {top-sphere}) st-proj1
by transfer (auto intro!: continuous-intros simp: add-nonneg-eq-0-iff split-beta ′
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norm-prod-def )

lemma st-proj1-inv: st-proj1-inv (st-proj1 x) = x
if x 6= top-sphere
using that
apply transfer

proof (clarsimp, rule conjI )
fix a:: ′a and b::real
assume ∗: norm (a, b) = 1 and ab: a = 0 −→ b 6= 1
then have b 6= 1 by (auto simp: norm-prod-def )
have na: (norm a)2 = 1 − b2

using ∗
unfolding norm-prod-def
by (auto simp: algebra-simps)

define S where S = norm (a /R (1 − b))
have b = (S2 − 1 ) / (S2 + 1 )

by (auto simp: S-def divide-simps ‹b 6= 1 › na)
(auto simp: power2-eq-square algebra-simps ‹b 6= 1 ›)

then show ((inverse |1 − b| ∗ norm a)2 − 1 ) / ((inverse |1 − b| ∗ norm a)2 +
1 ) = b

by (simp add: S-def )

have 1 = (2 / (1 − b) / (S2 + 1 ))
by (auto simp: S-def divide-simps ‹b 6= 1 › na) (auto simp: power2-eq-square

algebra-simps ‹b 6= 1 ›)
then have a = (2 / (1 − b) / (S2 + 1 )) ∗R a

by simp
then show (2 ∗ inverse (1 − b) / ((inverse |1 − b| ∗ norm a)2 + 1 )) ∗R a = a

by (auto simp: S-def divide-simps)
qed

lemma st-proj1-inv-inv: st-proj1 (st-proj1-inv x) = x
by transfer (auto simp: divide-simps add-nonneg-eq-0-iff )

lemma st-proj1-inv-ne-top: st-proj1-inv xa 6= top-sphere
by transfer (auto simp: divide-simps add-nonneg-eq-0-iff )

lemma homeomorphism-st-proj1 : homeomorphism (UNIV − {top-sphere}) UNIV
st-proj1 st-proj1-inv
apply (auto simp: homeomorphism-def st-proj1-continuous st-proj1-inv-continuous

st-proj1-inv-inv
st-proj1-inv st-proj1-inv-ne-top)

subgoal for x
by (rule image-eqI [where x=st-proj1-inv x]) (auto simp: st-proj1-inv-inv st-proj1-inv-ne-top)

by (metis rangeI st-proj1-inv)

lemma st-proj2-inv-continuous:
continuous-on UNIV st-proj2-inv
by transfer (auto intro!: continuous-intros simp: add-nonneg-eq-0-iff )
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lemma st-proj2-continuous:
continuous-on (UNIV − {bot-sphere}) st-proj2
apply (transfer ; auto intro!: continuous-intros simp: add-nonneg-eq-0-iff split-beta ′

norm-prod-def )
proof −

fix a b assume 1 : (norm a)^2 + b^2 = 1 and 2 : 1 + b = 0
have b = −1 using 2 by auto
then show a = 0

using 1 by auto
qed

lemma st-proj2-inv: st-proj2-inv (st-proj2 x) = x
if x 6= bot-sphere
using that
apply transfer

proof (clarsimp, rule conjI )
fix a:: ′a and b::real
assume ∗: norm (a, b) = 1 and ab: a = 0 −→ b 6= −1
then have b 6= −1 by (auto simp: norm-prod-def )
then have 1 + b 6= 0 by auto
then have 2 + b ∗ 2 6= 0 by auto
have na: (norm a)2 = 1 − b2

using ∗
unfolding norm-prod-def
by (auto simp: algebra-simps)

define S where S = norm (a /R (1 + b))
have b = (1 − S2) / (S2 + 1 )

by (auto simp: S-def divide-simps ‹b 6= −1 › na)
(auto simp: power2-eq-square algebra-simps ‹b 6= −1 › ‹1 + b 6= 0 › ‹2 + b ∗

2 6= 0 ›)
then show (1 − (inverse |1 + b| ∗ norm a)2) / ((inverse |1 + b| ∗ norm a)2 +

1 ) = b
by (simp add: S-def )

have 1 = (2 / (1 + b) / (S2 + 1 ))
by (auto simp: S-def divide-simps ‹b 6= −1 › na)

(auto simp: power2-eq-square algebra-simps ‹b 6= −1 › ‹1 + b 6= 0 › ‹2 + b ∗
2 6= 0 ›)

then have a = (2 / (1 + b) / (S2 + 1 )) ∗R a
by simp

then show (2 ∗ inverse (1 + b) / ((inverse |1 + b| ∗ norm a)2 + 1 )) ∗R a = a
by (auto simp: S-def divide-simps)

qed

lemma st-proj2-inv-inv: st-proj2 (st-proj2-inv x) = x
by transfer (auto simp: divide-simps add-nonneg-eq-0-iff )

lemma st-proj2-inv-ne-top: st-proj2-inv xa 6= bot-sphere
by transfer (auto simp: divide-simps add-nonneg-eq-0-iff )
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lemma homeomorphism-st-proj2 : homeomorphism (UNIV − {bot-sphere}) UNIV
st-proj2 st-proj2-inv
apply (auto simp: homeomorphism-def st-proj2-continuous st-proj2-inv-continuous

st-proj2-inv-inv
st-proj2-inv st-proj2-inv-ne-top)

subgoal for x
by (rule image-eqI [where x=st-proj2-inv x]) (auto simp: st-proj2-inv-inv st-proj2-inv-ne-top)

by (metis rangeI st-proj2-inv)

lift-definition st-proj1-chart :: ( ′a sphere, ′a::euclidean-space) chart
is (UNIV − {top-sphere:: ′a sphere}, UNIV :: ′a set, st-proj1 , st-proj1-inv)
using homeomorphism-st-proj1 by blast

lift-definition st-proj2-chart :: ( ′a sphere, ′a::euclidean-space) chart
is (UNIV − {bot-sphere:: ′a sphere}, UNIV :: ′a set, st-proj2 , st-proj2-inv)
using homeomorphism-st-proj2 by blast

lemma st-projs-compat:
includes lifting-syntax
shows ∞−smooth-compat st-proj1-chart st-proj2-chart
unfolding smooth-compat-def
apply (transfer ; auto)

proof goal-cases
case 1
have ∗: smooth-on ((λ(x:: ′a, z). x /R (1 − z)) ‘ (({a. norm a = 1} − {(0 , 1 )})
∩ ({a. norm a = 1} − {(0 , − 1 )})))

((λ(x, z). x /R (1 + z)) ◦ (λx. ((2 / ((norm x)2 + 1 )) ∗R x, ((norm x)2 − 1 )
/ ((norm x)2 + 1 ))))

apply (rule smooth-on-subset[where T=UNIV − {0}])
subgoal
by (auto intro!: smooth-on-divide smooth-on-inverse smooth-on-scaleR smooth-on-mult

smooth-on-add
smooth-on-minus smooth-on-norm simp: o-def power2-eq-square add-nonneg-eq-0-iff

divide-simps)
apply (auto simp: norm-prod-def power2-eq-square) apply sos
done

show ?case
by transfer (rule ∗)

next
case 2
have ∗: smooth-on ((λ(x:: ′a, z). x /R (1 + z)) ‘ (({a. norm a = 1} − {(0 , 1 )})
∩ ({a. norm a = 1} − {(0 , − 1 )})))

((λ(x, z). x /R (1 − z)) ◦ (λx. ((2 / ((norm x)2 + 1 )) ∗R x, (1 − (norm x)2)
/ ((norm x)2 + 1 ))))

apply (rule smooth-on-subset[where T=UNIV − {0}])
subgoal
by (auto intro!: smooth-on-divide smooth-on-inverse smooth-on-scaleR smooth-on-mult

smooth-on-add
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smooth-on-minus smooth-on-norm simp: o-def power2-eq-square add-nonneg-eq-0-iff
divide-simps)

apply (auto simp: norm-prod-def add-eq-0-iff ) apply sos
done

show ?case
by transfer (rule ∗)

qed

definition charts-sphere :: ( ′a::euclidean-space sphere, ′a) chart set where
charts-sphere ≡ {st-proj1-chart, st-proj2-chart}

lemma c-manifold-atlas-sphere: c-manifold charts-sphere ∞
apply (unfold-locales)
unfolding charts-sphere-def
using smooth-compat-commute smooth-compat-refl st-projs-compat by fastforce

end

12 Projective Space
theory Projective-Space

imports Differentiable-Manifold HOL−Library.Quotient-Set
begin

Some of the main things to note here: double transfer (-> nonzero -> quo-
tient)

12.1 Subtype of nonzero elements
lemma open-ne-zero: open {x:: ′a::t1-space. x 6= c}
proof −

have {x:: ′a. x 6= c} = UNIV − {c} by auto
also have open . . . by (rule open-delete; rule open-UNIV )
finally show ?thesis .

qed

typedef (overloaded) ′a::euclidean-space nonzero = UNIV − {0 :: ′a::euclidean-space}
by auto

setup-lifting type-definition-nonzero

instantiation nonzero :: (euclidean-space) topological-space
begin

lift-definition open-nonzero:: ′a nonzero set ⇒ bool is open:: ′a set ⇒ bool .

instance
apply standard
subgoal by transfer (auto simp: open-ne-zero)
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subgoal by transfer auto
subgoal by transfer auto
done

end

lemma open-nonzero-openin-transfer :
(rel-set (pcr-nonzero A) ===> (=)) (openin (top-of-set (Collect (Domainp (pcr-nonzero

A))))) open
if is-equality A
unfolding is-equality-def [THEN iffD1 , OF that]

proof
fix X :: ′a set and Y :: ′a nonzero set
assume t[transfer-rule]: rel-set (pcr-nonzero (=)) X Y
show openin (top-of-set (Collect (Domainp (pcr-nonzero (=))))) X = open Y

apply (auto simp: openin-subtopology)
subgoal by transfer (auto simp: nonzero.domain-eq open-ne-zero)
subgoal

apply transfer
apply (rule exI [where x=X ])
using t
by (auto simp: rel-set-def )

done
qed

instantiation nonzero :: (euclidean-space) scaleR
begin
lift-definition scaleR-nonzero::real ⇒ ′a nonzero ⇒ ′a nonzero is λc x . if c = 0
then One else c ∗R x

by auto
instance ..

end

instantiation nonzero :: (euclidean-space) plus
begin
lift-definition plus-nonzero:: ′a nonzero ⇒ ′a nonzero ⇒ ′a nonzero is λx y. if x
+ y = 0 then One else x + y

by auto
instance ..
end

instantiation nonzero :: (euclidean-space) minus
begin
lift-definition minus-nonzero:: ′a nonzero ⇒ ′a nonzero ⇒ ′a nonzero is λx y. if
x = y then One else x − y

by auto
instance ..
end
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instantiation nonzero :: (euclidean-space) dist
begin
lift-definition dist-nonzero:: ′a nonzero ⇒ ′a nonzero ⇒ real is dist .
instance ..
end

instantiation nonzero :: (euclidean-space) norm
begin
lift-definition norm-nonzero:: ′a nonzero ⇒ real is norm .
instance ..
end

instance nonzero :: (euclidean-space) t2-space
apply standard
apply transfer
subgoal for x y

using hausdorff [of x y]
apply clarsimp
subgoal for U V

apply (rule exI [where x=U − {0}])
apply clarsimp
apply (rule conjI ) defer
apply (rule exI [where x=V − {0}])

by auto
done

done

lemma scaleR-one-nonzero[simp]: 1 ∗R x = (x::- nonzero)
by transfer auto

lemma scaleR-scaleR-nonzero[simp]: b 6= 0 =⇒ scaleR a (scaleR b x) = scaleR (a
∗ b) (x::- nonzero)

by transfer auto

instance nonzero :: (euclidean-space) second-countable-topology
proof standard

from ex-countable-basis[where ′a= ′a] obtain A:: ′a set set where countable A
topological-basis A

by auto
define B where B = (λX . Abs-nonzero ‘ (X − {0})) ‘ A
have [transfer-rule]: rel-set (rel-set (pcr-nonzero (=))) ((λX . X − {0})‘A) B

by (clarsimp simp: B-def rel-set-def pcr-nonzero-def OO-def cr-nonzero-def )
(metis Abs-nonzero-inverse Diff-iff UNIV-I singleton-iff )

from ‹topological-basis A›
have topological-basis B

unfolding topological-basis-def
apply transfer
apply safe
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apply force
subgoal for X

apply (drule spec[where x=X ])
apply clarsimp
subgoal for B ′

apply (rule exI [where x=B ′])
by auto

done
done

then show ∃B:: ′a nonzero set set. countable B ∧ open = generate-topology B
apply (intro exI [where x=B])
by (auto simp add: B-def ‹countable A› topological-basis-imp-subbasis)

qed

12.2 Quotient
inductive proj-rel :: ′a::euclidean-space nonzero ⇒ ′a nonzero ⇒ bool for x where

c 6= 0 =⇒ proj-rel x (c ∗R x)

lemma proj-rel-parametric: (pcr-nonzero A ===> pcr-nonzero A ===> (=))
proj-rel proj-rel

if [transfer-rule]: ((=) ===> pcr-nonzero A ===> pcr-nonzero A) (∗R) (∗R)
bi-unique A

unfolding proj-rel.simps
by transfer-prover

quotient-type (overloaded) ′a proj-space = ( ′a::euclidean-space × real) nonzero
/ proj-rel

morphisms rep-proj Proj
parametric proj-rel-parametric

proof (rule equivpI )
show reflp proj-rel

using proj-rel.intros[where c=1 , simplified] by (auto simp: reflp-def )
show symp proj-rel

unfolding symp-def
apply (auto elim!: proj-rel.cases)
subgoal for x c

by (rule proj-rel.intros[of inverse c c ∗R x, simplified])
done

show transp proj-rel
unfolding transp-def
by (auto elim!: proj-rel.cases intro!: proj-rel.intros)

qed

lemma surj-Proj: surj Proj
apply safe
subgoal by force
subgoal for x by (induct x) auto
done
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definition proj-topology :: ′a::euclidean-space proj-space topology where
proj-topology = map-topology Proj euclidean

instantiation proj-space :: (euclidean-space) topological-space
begin

definition open-proj-space :: ′a proj-space set ⇒ bool where
open-proj-space = openin (map-topology Proj euclidean)

lemma topspace-map-Proj: topspace (map-topology Proj euclidean) = UNIV
using surj-Proj by auto

instance
apply (rule topological-space.intro-of-class)
unfolding open-proj-space-def
using surj-Proj
by (rule topological-space-quotient)

end

lemma open-vimage-ProjI : open T =⇒ open (Proj −‘ T )
by (metis inf-top.right-neutral open-openin open-proj-space-def openin-map-topology

topspace-euclidean)
lemma open-vimage-ProjD: open (Proj −‘ T ) =⇒ open T
by (metis inf-top.right-neutral open-openin open-proj-space-def openin-map-topology

top.extremum topspace-euclidean topspace-map-Proj topspace-map-topology)
lemma open-vimage-Proj-iff [simp]: open (Proj −‘ T ) = open T

by (auto simp: open-vimage-ProjI open-vimage-ProjD)

lemma euclidean-proj-space-def : euclidean = map-topology Proj euclidean
apply (auto simp: topology-eq-iff openin-map-topology)
subgoal for x by (induction x) auto
subgoal for - x by (induction x) auto
done

lemma continuous-on-proj-spaceI : continuous-on (S) f if continuous-on (Proj −‘
S) (f o Proj) open (S)

for f ::- proj-space ⇒ -
by (metis (no-types, opaque-lifting) continuous-on-open-vimage open-vimage-Proj-iff
that vimage-Int vimage-comp)

lemma saturate-eq: Proj −‘ Proj ‘ X = (
⋃

c∈UNIV−{0}. (∗R) c ‘ X)
apply auto
subgoal for x y
proof −

assume Proj x = Proj y y ∈ X
then have proj-rel x y using proj-space.abs-eq-iff by auto
then show ?thesis using ‹y ∈ X›
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by (force elim!: proj-rel.cases intro!: bexI [where x=inverse c for c])
qed
subgoal for c x

using proj-rel.intros[of c x]
by (metis imageI proj-space.abs-eq-iff )

done

lemma open-scaling-nonzero: c 6= 0 =⇒ open s =⇒ open ((∗R) c ‘ s:: ′a::euclidean-space
nonzero set)

by transfer auto

12.3 Proof of Hausdorff property
lemma Proj-open-map: open (Proj ‘ X) if open X
proof −

note saturate-eq[of X ]
also have open ((

⋃
c∈UNIV − {0}. (∗R) c ‘ X))

apply (rule open-Union)
apply (rule)
apply (erule imageE)
apply simp
apply (rule open-scaling-nonzero)
apply (simp)

apply (rule that)
done

finally show ?thesis by simp
qed

lemma proj-rel-transfer [transfer-rule]:
(pcr-nonzero A ===> pcr-nonzero A ===> (=)) (λx a. ∃ c. a = sr c x ∧ c 6=

0 ) proj-rel
if [transfer-rule]: ((=) ===> pcr-nonzero A ===> pcr-nonzero A) sr (∗R)

bi-unique A
unfolding proj-rel.simps
by (transfer-prover)

lemma bool-aux: a ∧ (a −→ b) ←→ a ∧ b by auto

lemma closed-proj-rel: closed {(x:: ′a::euclidean-space nonzero, y:: ′a nonzero). proj-rel
x y}
proof −

have closed-proj-rel-euclidean:
∃A B. 0 /∈ A ∧ 0 /∈ B ∧ open A ∧ open B ∧ a ∈ A ∧ b ∈ B ∧

A × B ⊆ − {(x, y). (x, y) 6= 0 ∧ (∃ c. c 6= 0 ∧ y = c ∗R x)}
if

∧
c. c 6= 0 =⇒ b 6= c ∗R a a 6= 0 b 6= 0

for a b:: ′a
proof −— explicitly constructing open “cones” that are disjoint

define a1 where a1 = a /R norm a
define b1 where b1 = b /R norm b
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have norm-a1 [simp]: norm a1 = 1 and norm-b1 [simp]: norm b1 = 1
using that
by (auto simp: a1-def b1-def divide-simps)

have a-alt-def : a = norm a ∗R a1 and b-alt-def : b = norm b ∗R b1
using that
by (auto simp: a1-def b1-def )

have a1-neq-b1 : a1 6= b1 a1 6= −b1
using that(1 )[of norm b / norm a] that(2−)
apply (auto simp: a1-def b1-def divide-simps)

apply (metis divideR-right divide-inverse inverse-eq-divide norm-eq-zero
scaleR-scaleR)

by (metis (no-types, lifting) add.inverse-inverse b1-def b-alt-def inverse-eq-divide
scaleR-scaleR scale-eq-0-iff scale-minus-left that(1 ))

define e where e = (1/2 ) ∗ (min 1 (min (dist a1 b1 ) (dist (−a1 ) b1 )))
have e-less: 2 ∗ e ≤ dist a1 b1 2 ∗ e ≤ dist (−a1 ) b1 e < 1

and e-pos: 0 < e
using that a1-neq-b1
by (auto simp: e-def min-def )

define A1 where A1 = ball a1 e ∩ {x. norm x = 1}
define B1 where B1 = ball b1 e ∩ {x. norm x = 1}
have disjoint: A1 ∩ B1 = {} uminus ‘ A1 ∩ B1 = {}

using e-less
apply (auto simp: A1-def B1-def mem-ball)
apply (smt (verit, best) dist-commute dist-triangle)

apply (smt (verit, ccfv-SIG) add-uminus-conv-diff diff-self dist-0-norm dist-add-cancel
dist-commute dist-norm

dist-triangle)
done

have norm-1 : x ∈ A1 =⇒ norm x = 1
x ∈ B1 =⇒ norm x = 1
for x
by (auto simp: A1-def B1-def )

define scales where scales X = {c ∗R x |c x. c 6= 0 ∧ x ∈ X} for X :: ′a set
have scales-mem: c ∗R x ∈ (scales X) ←→ x ∈ (scales X) if c 6= 0 for c x X

apply (auto simp: scales-def )
apply (metis eq-vector-fraction-iff that)
apply (metis divisors-zero that)
done

define A where A = scales A1
define B where B = scales B1

from disjoint have A ∩ B = {}
apply (auto simp: A-def B-def mem-ball scales-def , goal-cases)

by (smt (verit) disjoint-iff-not-equal imageI mult-cancel-right norm-1 (1 )
norm-1 (2 ) norm-scaleR

scaleR-left.minus scale-left-imp-eq scale-minus-right)
have 0 /∈ A 0 /∈ B using e-less ‹a 6= 0 › ‹b 6= 0 ›

by (auto simp: A-def B-def A1-def B1-def mem-ball a1-def b1-def scales-def )
moreover
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let ?S = top-of-set {x. norm x = 1}
have open-scales: open (scales X) if openin ?S X for X
proof −

have X1 : x ∈ X =⇒ norm x = 1 for x using that by (auto simp:
openin-subtopology)

have 0 /∈ X using that by (auto simp: openin-subtopology)
have scales X = (λx. x /R norm x) −‘ (X ∪ uminus ‘ X) ∩ (topspace

(top-of-set (UNIV − {0})))
apply (auto simp: scales-def )
subgoal for c x using ‹0 /∈ X›

apply (cases c > 0 )
by (auto simp: X1 )

subgoal by (metis X1 norm-zero zero-neq-one)
subgoal for x

apply (rule exI [where x=norm x])
apply (rule exI [where x=x /R norm x])
by auto
subgoal for x y apply (rule exI [where x=− norm x ]) apply (rule

exI [where x=y])
apply auto
by (metis divideR-right norm-eq-zero scale-minus-right)

done
also have openin (top-of-set (UNIV − {0})) . . .
proof −

have ∗: {y. inverse (norm y) ∗ norm y = 1} = UNIV − {0}
by auto

from that have openin ?S (uminus ‘ X)
apply (clarsimp simp: openin-subtopology)
by (auto simp: open-negations intro!: exI [where x=uminus ‘ T for T ])

then have openin ?S (X ∪ uminus ‘ X)
using ‹openin - X› by auto

from - this show ?thesis
apply (rule continuous-map-open)
apply (auto simp: continuous-map-def )
apply (subst(asm) openin-subtopology)
apply (auto simp: ∗)
apply (subst openin-subtopology)
apply clarsimp
subgoal for T

apply (rule exI [where x=(λx. x /R norm x) −‘ T ∩ UNIV − {0}])
apply (auto simp: Diff-eq)
apply (rule open-continuous-vimage)
by (auto intro!: continuous-intros)

done
qed
finally show ?thesis

apply (subst (asm) openin-subtopology)
by clarsimp auto

qed
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have openin ?S A1 openin ?S B1
by (auto simp: openin-subtopology A1-def B1-def )

from open-scales[OF this(1 )] open-scales[OF this(2 )]
have open A open B by (simp-all add: A-def B-def )
moreover
have a ∈ A b ∈ B
by (force simp: A-def B-def A1-def B1-def that e-pos scales-def intro: a-alt-def

b-alt-def )+
moreover
have False if c ∗R p ∈ B p ∈ A c 6= 0 for p c

using that ‹0 /∈ A› ‹0 /∈ B› ‹A ∩ B = {}›
by (auto simp: A-def B-def scales-mem)

then have A × B ⊆ − {(x, y). (x, y) 6= 0 ∧ (∃ c. c 6= 0 ∧ y = c ∗R x)}
by (auto simp: prod-eq-iff )

ultimately show ?thesis by blast
qed
show ?thesis

unfolding closed-def open-prod-def
apply transfer
apply (simp add: split-beta ′ bool-aux pred-prod.simps)
apply (rule ballI )
apply (clarsimp simp: pred-prod.simps[abs-def ])
subgoal for a b

apply (subgoal-tac (
∧

c. c 6= 0 =⇒ b 6= c ∗R a))
using closed-proj-rel-euclidean[of b a]
apply clarsimp

subgoal for A B
apply (rule exI [where x=A])
apply (auto intro!: exI [where x=B])
apply (auto simp: subset-iff prod-eq-iff )
by blast

subgoal by auto
done

done
qed

lemma closed-Proj-rel: closed {(x, y). Proj x = Proj y}
using closed-proj-rel
by (smt (verit) Collect-cong case-prodE case-prodI2 prod.inject proj-space.abs-eq-iff )

instance proj-space :: (euclidean-space) t2-space
apply (rule t2-space.intro-of-class)
using open-proj-space-def surj-Proj Proj-open-map closed-Proj-rel
by (rule t2-space-quotient)

instance proj-space :: (euclidean-space) second-countable-topology
apply (rule second-countable-topology.intro-of-class)
using open-proj-space-def surj-Proj Proj-open-map
by (rule second-countable-topology-quotient)
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12.4 Charts
12.4.1 Chart for last coordinate
lift-definition chart-last-nonzero :: ( ′a::euclidean-space × real) nonzero ⇒ ′a is
λ(x,c). x /R c .

lemma chart-last-nonzero-scaleR[simp]: c 6= 0 =⇒ chart-last-nonzero (c ∗R n) =
chart-last-nonzero n

by (transfer) auto

lift-definition chart-last :: ′a::euclidean-space proj-space⇒ ′a is chart-last-nonzero
by (erule proj-rel.cases) auto

lift-definition chart-last-inv-nonzero :: ′a ⇒ ( ′a::euclidean-space×real) nonzero is
λx. (x, 1 )
by (auto simp: zero-prod-def )

lift-definition chart-last-inv :: ′a⇒ ′a::euclidean-space proj-space is chart-last-inv-nonzero
.

lift-definition chart-last-domain-nonzeroP :: ( ′a::euclidean-space×real) nonzero
⇒ bool is
λx. snd x 6= 0 .

lift-definition chart-last-domainP :: ′a::euclidean-space proj-space⇒ bool is chart-last-domain-nonzeroP
unfolding rel-set-def
by (safe elim!: proj-rel.cases; (transfer ,simp))

lemma open-chart-last-domain: open (Collect chart-last-domainP)
unfolding open-proj-space-def
unfolding openin-map-topology
apply auto subgoal for x apply (induction x) by auto
subgoal

apply transfer
apply transfer
unfolding Collect-conj-eq
apply (rule open-Int)
by (auto intro!: open-Collect-neq continuous-on-snd)

done

lemma Proj-vimage-chart-last-domainP: Proj −‘ Collect chart-last-domainP =
Collect (chart-last-domain-nonzeroP)

apply safe
subgoal by transfer ′

subgoal for x
by auto transfer

done

lemma chart-last-continuous:
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notes [transfer-rule] = open-nonzero-openin-transfer
shows continuous-on (Collect chart-last-domainP) chart-last
apply (rule continuous-on-proj-spaceI )
unfolding o-def chart-last.abs-eq Proj-vimage-chart-last-domainP
apply transfer
subgoal by (auto intro!: continuous-intros simp: split-beta)
subgoal by (rule open-chart-last-domain)
done

lemma chart-last-inv-continuous:
notes [transfer-rule] = open-nonzero-openin-transfer
shows continuous-on UNIV chart-last-inv
unfolding chart-last-inv-def map-fun-def comp-id
apply (rule continuous-on-compose)
subgoal by transfer (auto intro!: continuous-intros)
subgoal

by (metis continuous-on-open-vimage continuous-on-subset inf-top.right-neutral
open-UNIV open-vimage-Proj-iff top-greatest)

done

lemma proj-rel-iff : proj-rel a b ←→ (∃ c 6=0 . b = c ∗R a)
by (auto elim!: proj-rel.cases intro!: proj-rel.intros)

lemma chart-last-inverse: chart-last-inv (chart-last x) = x if chart-last-domainP
x

using that
apply −
apply transfer
unfolding proj-rel-iff
apply transfer
apply (simp add: split-beta prod-eq-iff )
subgoal for x

by (rule exI [where x=snd x]) auto
done

lemma chart-last-inv-inverse: chart-last (chart-last-inv x) = x
apply transfer
apply transfer
by auto

lemma chart-last-domainP-chart-last-inv: chart-last-domainP (chart-last-inv x)
apply transfer apply transfer by auto

lemma homeomorphism-chart-last:
homeomorphism (Collect chart-last-domainP) UNIV chart-last chart-last-inv
apply (auto simp: homeomorphism-def chart-last-inverse chart-last-inv-inverse

chart-last-continuous chart-last-inv-continuous)
subgoal

apply transfer apply transfer apply (auto simp: split-beta ′)
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subgoal for x by (rule image-eqI [where x=(x, 1 )]) (auto simp: prod-eq-iff )
done

subgoal
apply transfer apply transfer by (auto simp: split-beta ′)

subgoal for x
by (rule image-eqI [where x=chart-last x]) (auto simp: chart-last-inverse)

done

lift-definition last-chart::( ′a::euclidean-space proj-space, ′a) chart is
(Collect chart-last-domainP, UNIV , chart-last, chart-last-inv)
using homeomorphism-chart-last open-chart-last-domain by auto

12.4.2 Charts for first DIM ( ′a) coordinates
lift-definition chart-basis-nonzero :: ′a ⇒ ( ′a::euclidean-space×real)nonzero ⇒ ′a
is
λb. λ(x,c). (x + (c − x · b) ∗R b) /R (x · b) .

lift-definition chart-basis :: ′a ⇒ ′a::euclidean-space proj-space ⇒ ′a is
chart-basis-nonzero
apply (erule proj-rel.cases)
apply transfer
by (auto simp add: divide-simps algebra-simps)

lift-definition chart-basis-domain-nonzeroP :: ′a⇒ ( ′a::euclidean-space×real) nonzero
⇒ bool is
λb (x, -). (x · b) 6= 0 .

lift-definition chart-basis-domainP :: ′a ⇒ ′a::euclidean-space proj-space ⇒ bool
is chart-basis-domain-nonzeroP

unfolding rel-set-def
apply (safe elim!: proj-rel.cases)
subgoal by transfer auto
subgoal by transfer auto
done

lemma Proj-vimage-chart-basis-domainP:
Proj −‘ Collect (chart-basis-domainP b) = Collect (chart-basis-domain-nonzeroP

b)
apply safe
subgoal by transfer ′

subgoal for x
by auto transfer

done

lemma open-chart-basis-domain: open (Collect (chart-basis-domainP b))
unfolding open-proj-space-def
unfolding openin-map-topology
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apply auto subgoal for x apply (induction x) by auto
subgoal

apply transfer
apply transfer
unfolding Collect-conj-eq
apply (rule open-Int)

apply (auto intro!: open-Collect-neq continuous-on-fst continuous-on-inner
simp: split-beta)

done
done

lemma chart-basis-continuous:
notes [transfer-rule] = open-nonzero-openin-transfer
shows continuous-on (Collect (chart-basis-domainP b)) (chart-basis b)
apply (rule continuous-on-proj-spaceI )
unfolding o-def chart-basis.abs-eq Proj-vimage-chart-basis-domainP
apply transfer

subgoal by (auto intro!: continuous-intros simp: split-beta)
subgoal by (rule open-chart-basis-domain)
done

context
fixes b:: ′a::euclidean-space
assumes b: b ∈ Basis

begin

lemma b-neq0 : b 6= 0 using b by auto

lift-definition chart-basis-inv-nonzero :: ′a ⇒ ( ′a::euclidean-space × real) nonzero
is
λx. (x + (1 − x · b) ∗R b, x · b)
apply (auto simp: zero-prod-def )
using b-neq0 using eq-neg-iff-add-eq-0 by force

lift-definition chart-basis-inv :: ′a ⇒ ′a::euclidean-space proj-space is
chart-basis-inv-nonzero .

lemma chart-basis-inv-continuous:
notes [transfer-rule] = open-nonzero-openin-transfer
shows continuous-on UNIV chart-basis-inv
unfolding chart-basis-inv-def map-fun-def comp-id
apply (rule continuous-on-compose)
subgoal by transfer (auto intro!: continuous-intros)
subgoal

unfolding continuous-map-iff-continuous euclidean-proj-space-def
using continuous-on-open-invariant open-vimage-Proj-iff by blast

done
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lemma chart-basis-inv-inverse: chart-basis b (chart-basis-inv x) = x
apply transfer
apply transfer
using b-neq0 b
by (auto simp: algebra-simps divide-simps)

lemma chart-basis-inverse: chart-basis-inv (chart-basis b x) = x if chart-basis-domainP
b x

using that
apply transfer
unfolding proj-rel-iff
apply transfer
apply (simp add: split-beta prod-eq-iff )
subgoal for x

apply (rule exI [where x=fst x · b])
using b
by (simp add: algebra-simps)

done

lemma chart-basis-domainP-chart-basis-inv: chart-basis-domainP b (chart-basis-inv
x)

apply transfer apply transfer by (use b in ‹auto simp: algebra-simps›)

lemma homeomorphism-chart-basis:
homeomorphism (Collect (chart-basis-domainP b)) UNIV (chart-basis b) chart-basis-inv
apply (auto simp: homeomorphism-def chart-basis-inverse chart-basis-inv-inverse

chart-basis-continuous chart-basis-inv-continuous)
subgoal

apply transfer apply transfer apply (auto simp: split-beta ′)
subgoal for x

apply (rule image-eqI [where x=(x + (1 − (x · b)) ∗R b, x · b)])
using b
apply (auto simp add: algebra-simps divide-simps prod-eq-iff )

by (metis add.right-neutral b-neq0 inner-commute inner-eq-zero-iff inner-right-distrib
inner-zero-right)

done
subgoal
apply transfer apply transfer using b by (auto simp: split-beta ′ algebra-simps)

subgoal for x
by (rule image-eqI [where x=chart-basis b x]) (auto simp: chart-basis-inverse)

done

lift-definition basis-chart::( ′a proj-space, ′a) chart
is (Collect (chart-basis-domainP b), UNIV , chart-basis b, chart-basis-inv)
using homeomorphism-chart-basis by (auto simp: open-chart-basis-domain)

end
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12.4.3 Atlas
definition charts-proj-space = insert last-chart (basis-chart ‘ Basis)

lemma chart-last-basis-defined:
chart-last-domainP xa =⇒ chart-basis-domainP b xa =⇒ chart-last xa · b 6= 0
apply transfer apply transfer by (auto simp: prod-eq-iff )

lemma chart-basis-last-defined:
b ∈ Basis =⇒ chart-last-domainP xa =⇒ chart-basis-domainP b xa =⇒ chart-basis

b xa · b 6= 0
apply transfer apply transfer
by (auto simp: prod-eq-iff algebra-simps)

lemma compat-last-chart: ∞−smooth-compat last-chart (basis-chart b)
if [transfer-rule]: b ∈ Basis
unfolding smooth-compat-def

proof (transfer ; auto)
have smooth-on {x. x · b 6= 0} (chart-basis b ◦ chart-last-inv)

apply transfer
apply transfer

by (auto simp: o-def intro!: smooth-on-inverse smooth-on-scaleR smooth-on-inner
smooth-on-add

smooth-on-minus open-Collect-neq continuous-intros)
then show smooth-on (chart-last ‘ (Collect chart-last-domainP ∩ Collect (chart-basis-domainP

b))) (chart-basis b ◦ chart-last-inv)
by (rule smooth-on-subset) (auto simp: chart-last-basis-defined)

next
have smooth-on {x. x · b 6= 0} (chart-last ◦ chart-basis-inv b)

apply transfer
apply transfer
by (auto simp: o-def intro!: smooth-on-add smooth-on-scaleR smooth-on-minus

smooth-on-inverse
smooth-on-inner open-Collect-neq continuous-intros)

then show smooth-on (chart-basis b ‘ (Collect chart-last-domainP ∩ Collect
(chart-basis-domainP b))) (chart-last ◦ chart-basis-inv b)

by (rule smooth-on-subset) (auto simp: chart-basis-last-defined that)
qed

lemma smooth-on-basis-comp-inv: smooth-on {x. (x + (1 − x · a) ∗R a) · b 6= 0}
(chart-basis b ◦ chart-basis-inv a)

if [transfer-rule]: a ∈ Basis b ∈ Basis
apply transfer
apply transfer
by (auto intro!: smooth-on-add smooth-on-scaleR smooth-on-minus smooth-on-inner

smooth-on-inverse
smooth-on-mult open-Collect-neq continuous-intros simp: o-def algebra-simps

inner-Basis)

lemma chart-basis-basis-defined:
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a 6= b =⇒ chart-basis-domainP a xa =⇒ chart-basis-domainP b xa =⇒ chart-basis
a xa · b 6= 0

if a ∈ Basis b ∈ Basis
using that
apply transfer
apply transfer
by (auto simp: algebra-simps inner-Basis prod-eq-iff )

lemma compat-basis-chart: ∞−smooth-compat (basis-chart a) (basis-chart b)
if [transfer-rule]: a ∈ Basis b ∈ Basis

proof (cases a = b)
case True
then show ?thesis

by (auto simp: smooth-compat-refl)
next

case False
then show ?thesis

unfolding smooth-compat-def
apply (transfer ; auto)
subgoal

using smooth-on-basis-comp-inv[OF that]
apply (rule smooth-on-subset)
by (auto simp: algebra-simps inner-Basis chart-basis-basis-defined that)

subgoal
using smooth-on-basis-comp-inv[OF that(2 ,1 )]
apply (rule smooth-on-subset)
by (auto simp: algebra-simps inner-Basis chart-basis-basis-defined that)

done
qed

lemma c-manifold-proj-space: c-manifold charts-proj-space ∞
by standard

(auto simp: charts-proj-space-def smooth-compat-refl smooth-compat-commute
compat-last-chart

compat-basis-chart)

end
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