Formalization of an Algorithm for
Greedily Computing Associative Aggregations on Sliding
Windows

Lukas Heimes Dmitriy Traytel Joshua Schneider
March 19, 2025

Abstract

Basin et al’s sliding window algorithm (SWA) [1] is an algorithm for combining the ele-
ments of subsequences of a sequence with an associative operator. It is greedy and minimizes
the number of operator applications. We formalize the algorithm and verify its functional
correctness. We extend the algorithm with additional operations and provide an alternative
interface to the slide operation that does not require the entire input sequence.

Contents
1 Sliding Window Algorithm

2 Correctness
2.1 Correctness of the Slide Function
2.2 Correctness of the Sliding Window Algorithm
2.3 Summary of the Correctness Proof

3 Alternative Slide Interface and Additional Operations
3.1 Alternative Slide Interface Lo
3.2 Updating all Values in the Tree
3.3 Updating the Rightmost Leaf of the Tree

1 Sliding Window Algorithm

datatype 'a tree =

Leaf
| Node (I: nat) (r: nat) (val: 'a option) (Ichild: 'a tree) (rchild: 'a tree)
where

[Leaf = 0
| 7 Leaf = 0

| val Leaf = None
| lchild Leaf = Leaf
| rchild Leaf = Leaf

lemma neq Leaf if | gt0: 0 < It = t # Leaf
(proof)

primrec discharge :: 'a tree = 'a tree where
discharge Leaf = Leaf
| discharge (Node i j __ t u) = Node i j None t u

~N = ot

© 0 I

instantiation option :: (semigroup__add) semigroup add begin

fun plus_option :: 'a option = ’a option = 'a option where
plus_option None _ = None

| plus_option __ None = None

| plus_option (Some a) (Some b) = Some (a + b)

instance (proof)
end

fun combine :: 'a :: semigroup _add tree = 'a tree = 'a tree where
combine t Leaf = t

| combine Leaf t = ¢

| combine t u = Node (1 t) (r u) (val t + val u) (discharge t) u

lemma combine_non_ Leaves: [t # Leaf; u # Leaf] = combine t u = Node (I t) (r u) (val t + val u)
(discharge t) u
(proof)

lemma r_combine_non__Leaves: [t # Leaf; u # Leaf] = r (combine t u) = r u
(proof)

type__synonym window = nat X nat

definition window :: 'a list = window = bool where
window as = (A\(l, 7). 0 < I A1 <71 A7 < length as)

definition windows :: 'a list = window list = bool where
windows as ws = ((Vw € set ws. window as w) A
sorted (map fst ws) A sorted (map snd ws))

function reusables :: ‘a tree = window = ’a tree list where
reusables t w = (if fst w > r t then || else if fst w = 1 t then [t]
else let v = Ichild t; uw = rchild t in if fst w > | u then
reusables u w else u # reusables v w)
(proof)
termination

(proof)
declare reusables.simps[simp del]

lemma reusables Leaf[simp]: 0 < fst w = reusables Leaf w = ||
(proof)

primrec well_shaped :: 'a tree = bool where
well_shaped Leaf = True
| well_shaped (Node ij __ tu) = (i < jA(i=j— t= Leaf AN u= Leaf) A
(i <j—> t# Leaf N u # Leaf N well_shaped t N\ well_shaped u N
i=1tANj=ruA Suc(rt)=1u))

lemma [_Ichild _eq 1 _if well shaped[simp]:
[well _shaped t; 1t < rt] = 1 (lchild t) =1t
(proof)

lemma r_rchild_eq_r_if well shaped[simp]:
[well_shaped t; 1t < rit] => r (rchild t) = rt
(proof)

lemma r_Ichild _eq 1 rchild_if well shaped:
[well _shaped t; 1 t < r t] = r (lchild t) = 1 (rchild t) — 1
(proof)

lemma r_Ichild_le_r: well _shaped t = v (lchild t) < r ¢
(proof)

lemma well_shaped__lchild[simp]: well _shaped t = well__shaped (Ichild t)
(proof)

lemma well_shaped__rchild[simp]: well_shaped t = well_shaped (rchild t)
(proof)

definition adjacent where
adjacent w ts = (Leaf ¢ set ts N
list_all2 (At u. 1t = Suc (r u)) (butlast ts) (¢ ts) A
(ts =1V (I (last ts) = fst w A v (hd ts) = snd w)))

lemma adjacent_Nil[simp]: adjacent w ||
(proof)

lemma adjacent _Cons: adjacent w (t # ts) =
(t # Leaf ANrt=sndwA (case ts of [= It = fstw
| u # us = adjacent (fst w, r u) ts A 1t = Suc (r u)))

(proof)

lemma adjacent_Consl: [t # Leaf; r t = snd w;
(case ts of [| = 1t = fstw
| u # us = adjacent (fst w, r u) ts A Lt = Suc (r u))] =
adjacent w (t # ts)
(proof)

lemma adjacent_singleton: t # Leaf = adjacent (1 ¢, rt) [t]
(proof)

lemma append_Cons_eq append__append: zs @ y # ys = xs @ [y] Q ys
(proof)

lemma list_all2 append_singletonl: [list_all2 P xs ys; P x y| = list_all2 P (zs @ [z]) (ys Q [y])
(proof)

lemma list _all2 Cons_append_singletonl: [zs # [|; list_all2 P (xz # butlast zs) ys; P (last zs) y] =
list_all2 P (z # zs) (ys Q [y])
(proof)

lemma adjacent__appendl: [0 < fst w; fst w < snd w;
(case us of [| = adjacent w ts
| u # us’ = adjacent (Suc (r u), snd w) ts A adjacent (fst w, (case ts of [| = snd w | ts = r u)) (u
us'))] =
adjacent w (ts Q us)
(proof)

lemma adjacent_Cons_implies _adjacent: adjacent (a, b) (¢t # ts) = adjacent (a, | t — Suc 0) ts

(proof)

lemma (in semigroup__add) fold_add__add: fold (+) zs (x + y) = fold (+) zsz + y
(proof)

context
fixes as :: 'a :: semigroup_ add list
and ws :: window list

begin

abbreviation atomic where
atomic ¢ = Node i i (Some (nth as (¢ — 1))) Leaf Leaf

definition atomics :: nat = nat = 'a tree list where
atomics i j = map atomic (rev [i ..< Suc j])

definition slide :: 'a tree = window = ’a tree where
slide t w =
(let
ts = atomics (maz (fst w) (Suc (r t))) (snd w);
ts' = reusables t w
in fold combine (ts @Q ts’) Leaf)

primrec iterate :: 'a tree = window list = 'a list where
iterate ¢ [| = ||
| iterate t (w # xs) = (let t’' = slide t w in the (val t') # iterate t’ xs)

definition sliding window :: 'a list where
sliding_window = iterate Leaf ws

2 Correctness

abbreviation sum where
sum i j = fold (+) (rev (map (nth as) [i — 1 ..< j — 1])) (nthas (j — 1))

primrec well _wvalued0 :: 'a tree = bool where
well_valued0 Leaf = True
| well_valued0 (Node ijatu) = (0 < i A j<length as A (a # None — a = Some (sum i j)) A
well_valued0 t N well_valued0 u A (v = Leaf V val u # None))

abbreviation well valued :: 'a tree = bool where
well_valued t = (well_valued0 t N (t # Leaf — val t # None))

definition valid :: 'a tree = bool where
valid t = (well_shaped t N well_valued t)

lemma wvalid_ Leaf: valid Leaf
(proof)

lemma add_sum:
assumes { > 0j >tk >j
shows sum i j + sum (Suc j) k = sum i k

(proof)

lemma well_valued0_rchild_if well valued0[simp]: well valued0 t = well_valued0 (rchild t)
(proof)

lemma well_valued0_lchild_if well _valued0[simp]: well valued0 t = well_valued0 (Ichild t)
(proof)

lemma valid_rchild_if wvalid: valid ¢ = wvalid (rchild t)
(proof)

lemma val eq Some_ sum_if wvalid neq Leaf: [valid t; t # Leaf] = val t = Some (sum (I t) (rt))
(proof)

2.1 Correctness of the Slide Function

lemma adjacent _atomics: adjacent (i, j) (atomics i j)
(proof)

lemma valid_atomics: [t € set (atomics i j); 0 < i; j < length as] = valid t
(proof)

lemma reusables _neq Nil _if well shaped__and_overlapping:
[well _shaped t; 1t < fst w; r ¢t < snd w; fst w < rt] = reusables t w # |]

(proof)

lemma reusables_lchild_neq Nil under__some__conditions:
[well _shaped t; 1t < fst w; vt < snd w; fst w # L t; rt > fst w; | (rchild t) > fst w] =
reusables (lchild t) w # ||
(proof)

lemma adjacent _reusables: [0 < fst w; well _shaped t; 1 t < fst w; r t < snd w] =
adjacent (fst w, r t) (reusables t w)

(proof)

lemma valid_rchild_if _well _valued0: [well _shaped t; well_valued0 t] = valid (rchild t)
(proof)

lemma valid_reusables _under some__conditions:
[0 < fst w; well valued0 t; well_shaped t; 1 t < fst w; rt < snd w] =
V' € set (reusables t w). valid t'
(proof)

lemma valid_reusables:
assumes 0 < fst wwvalid t [t < fst wrt < snd w
shows V¢’ € set (reusables t w). valid ¢’

(proof)

lemma combine wvalid Nodes aux:
assumes prems: 0 < l a a # Leaf z # Leaf | z = Suc (r a) well_shaped a well_shaped z
well _wvalued0 a val a = Some va well valued0 z val z = Some vz
shows va + vz = fold (+) (rev (map ((!) as) [l @ — Suc 0..<r z — Suc 0])) (as! (r z — Suc 0))
(proof)

lemma discharge_is_Leaf[simp]: discharge a = Leaf +— a = Leaf
(proof)

lemma well _shaped__discharge[simp]: well _shaped a = well_shaped (discharge a)
(proof)

lemma well valued0 _discharge[simp|: well valued) a = well _valued0 (discharge a)
(proof)

lemma [_discharge[simp]: | (discharge a) =l a
(proof)

lemma r_discharge[simp]: r (discharge a) = r a
(proof)

lemma well shaped_lr: well_shaped a = la < 1 a
(proof)

lemma well_valued0__r: well _valued) a = a # Leaf = r a < length as
(proof)

lemma valid__combine__if wvalid: [0 < 1 a; valid a; valid z; a # Leaf; z # Leaf; | z = Suc (r a)] =
valid (combine a z)

(proof)

lemma combine_neq_Leaf if both_non_Leaf: [a # Leaf; z # Leaf] =
combine a z # Leaf
(proof)

lemma valid_fold__combine: [0 < fst w; ts = h # ts'; Vt € set ts. valid t; adjacent (fst w, L h — 1) ts’;
valid z; z # Leaf; | z = (case ts' of [| = fst w | t1 # ts"' = Suc (r t1)); 7 z = snd w] =
valid (fold combine ts' z) A
I (fold combine ts' z) = fst w A r (fold combine ts’ 2) = snd w

(proof)

lemma wvalid_ fold combine_Leaf:
assumes 0 < fst wts = h # ts' Vt € set ts. valid t adjacent w ts
shows wvalid (fold combine ts Leaf) A
I (fold combine ts Leaf) = fst w A r (fold combine ts Leaf) = snd w

(proof)

lemma adjacent__atomics_nonempty reusables:

fixes z :: ‘a tree and zs :: ‘a tree list

assumes al: 0 < fst w
and a2: [t < fst w
and a3: rt < snd w
and a4: valid t
and ad: reusables t w = ¢ # xs

shows adjacent (Suc (r z), snd w) (atomics (maz (fst w) (Suc (r t))) (snd w))

(proof)

lemma adjacent_Cons_r: adjacent (a, v t) (z # xzs) = adjacent (a, r z) (z # xs)
(proof)

lemma adjacent__Cons_r2:
adjacent (fst w, rt) (z # xs) = 0 < fst w = fst w < snd w = rt < snd w =
atomics (maz (fst w) (Suc (rt))) (snd w) = [| =
adjacent w (x # xs)
(proof)

lemma adjacent__append__atomics__reusables:
[0 < fst w; fst w < snd w; valid t; 1t < fst w; vt < snd w] =
adjacent w (atomics (mazx (fst w) (Suc (r t))) (snd w) Q reusables t w)

(proof)

lemma valid__append__atomics_reusables: [0 < fst w; valid t; 1t < fst w; vt < snd w; snd w < length
as] =

Vit € set (atomics (maz (fst w) (Suc (rt))) (snd w) Q reusables t w). valid t
(proof)

lemma append_atomics_reusables _neq Nil: [0 < fst w; fst w < snd w; valid ¢; 1t < fst w; r ¢t < snd
w] =

atomics (maz (fst w) (Suc (rt))) (snd w) @ reusables t w # []

(proof)

lemma valid_slide:
assumes 0 < fst w fst w < snd wvalid t 1t < fst wr ¢t < snd w snd w < length as
shows valid (slide t w) A [(slide t w) = fst w A r (slide t w) = snd w

(proof)

2.2 Correctness of the Sliding Window Algorithm

lemma iterate__eq_map__sum: [valid t; windows as zs; (case xs of [| = True | z # zs' = 1t < fstx A T
t < snd z)] =
iterate t s = map (Aw. sum (fst w) (snd w)) zs

{proof)

theorem correctness: windows as ws = sliding_window = map (Aw. sum (fst w) (snd w)) ws
(proof)

end

2.3 Summary of the Correctness Proof
We closely follow Basin et al’s proof outline [1].

1. Lemma 1, the correctness result about the function slide, is formalized by SWA.valid__slide.
It follows from the following auxiliary facts:
o Fact (a) is formalized by SWA.adjacent_reusables and SWA.valid_reusables.
o Fact (b) is formalized by SWA.adjacent__atomics and SWA.valid__atomics.
o Fact (c) is formalized by SWA.valid_fold_combine _Leaf.

2. Theorem 2, the correctness result about the function sliding window, is formalized by
SWA. correctness.

3 Alternative Slide Interface and Additional Operations

3.1 Alternative Slide Interface

The slide operation above takes the entire input sequence as a parameter. This is often impractical.
We provide an alternative interface to the slide operation that takes only the new elements as a
parameter.

abbreviation atomic’ where
atomic’ as b idt = Node b b (Some (nth as idzx)) Leaf Leaf

abbreviation atomics’ :: ‘a list = nat = nat = nat = ’a tree list where
atomics’ as i j side = map (Ab. atomic’ as b (b — sidz)) (rev [i ..< Suc j])

definition slide’ :: ‘a :: semigroup_add list = 'a tree = window = ’a tree where
slide’ as t w =
(let
ts = atomics’ as (maz (fst w) (Suc (rt))) (snd w) (Suc (r t));
ts’ = reusables t w
in fold combine (ts @Q ts’) Leaf)

lemma slide_eq slide”:

assumes 0 < fst w fst w < snd w valid as t rt = length as 1 t < fst wrt < snd w snd w < length (
Q as’)

shows slide (as @Q as’) t w = slide’ as’ t w
(proof)

lemma sum__eq_sum__append: [0 < i; i < j; j < length as] = sum as i j = sum (as Q as’) i j

(proof)

lemma well_valued0_append: [well_shaped t; well_valued0 as t] = well_valued0 (as Q as’) ¢

(proof)

lemma valid__append: valid as t = wvalid (as Q as’) ¢
(proof)

lemma valid_slide__append: [0 < fst w; fst w < snd w; valid as t; 1t < fst w; vt < snd w; snd w
length as + length as’] =

valid (as @ as’) (slide (as @ as’) t w) A 1 (slide (as @Q as’) t w) = fst w A r (slide (as @Q as’) t w)
snd w

(proof)

theorem wvalid_slide”:

assumes 0 < fst w fst w < snd w valid as t length as = r t length as’ > snd w — rt 1t < fstwrt
snd w

shows wvalid (as @ as’) (slide’ as’ t w) A I (slide’ as’ t w) = fst w A r (slide’ as’ t w) = snd w

(proof)

3.2 Updating all Values in the Tree

as

IN

So far, we have assumed that the sequence is fixed. However, under certain conditions, SWA
can be applied even if the sequence changes. In particular, if a function that distributes over
the associative operation is mapped onto the sequence, validity of the tree can be preserved by

mapping the same function onto the tree using map_ tree.

lemma map_tree_eq Leaf iff: map_tree ft = Leaf +— t = Leaf
{proof)

lemma | _map_tree_eq l[simp]: | (map_tree ft) =1t
(proof)

lemma r_map_ tree_eq _r[simp]: r (map_tree ft) =1t
(proof)

lemma val _map_tree_neq None: val t # None = wval (map__tree f t) # None
(proof)

lemma well shaped__map__tree: well _shaped t =—> well_shaped (map__tree f t)
(proof)

lemma fold_distr: Vzy. f (z +y) = fx + fy) = f (fold (+) list €) = fold (+) (map f list) (f e)

(proof)

lemma map__rev_map_nth_eq: Vz € set zs. z < length as => map f (rev (map ((!) as) zs)) = rev (map
((") (map f as)) ws)
(proof)

lemma f nth _eq map_f nth: [as # [|; length as > n] = f (as ! (n — Suc 0)) = map fas! (n — Suc
0)
(proof)

lemma well _valued0_map__map__ tree:
Vzy. f(z+y) =fz+ fy; well_shaped t; well _valued0 as t; v t < length as; as # []] =
well_shaped (map__tree f t) A\ well _valued0 (map f as) (map_tree f t)
(proof)

lemma valid_map_map_tree:
assumes Vz y. f (z + y) = fx + fywvalid as t rt < length as
shows valid (map f as) (map_tree f t)

(proof)

lemma valid_Nil_iff: valid || t +— t = Leaf
(proof)

3.3 Updating the Rightmost Leaf of the Tree

We provide a function to update the rightmost leaf of the tree. This may be used in an online
setting where the input sequence is not known in advance to update the latest observed element
using the same associative operation used in SWA. We show that validity of the tree is preserved
in this case.

fun update_rightmost :: (‘a = 'a) = 'a tree = 'a tree where

update__rightmost __ Leaf = Leaf
| update__rightmost f (Node i j a t u) = Node i j (map__option f a) t (update_rightmost f u)

lemma update rightmost_eq Leaf iff: update_rightmost f t = Leaf <— t = Leaf
(proof)

lemma [_update_rightmost__eq_l[simp]: | (update_rightmost ft) = 1t
(proof)

lemma r_update_rightmost_eq_r[simp]: v (update_rightmost ft) = rt
(proof)

lemma val _update_rightmost_neq None: val t # None =—> val (update_rightmost f t) # None
{proof)

lemma well _shaped_update_rightmost: well _shaped t =—> well__shaped (update_rightmost f t)
(proof)

lemma sum__eq sum_prepend: [0 < i; i < j; length xs < i; length ys = length zs] = sum (zs Q as) ¢
j=sum (ys @Q as) ij
{proof)

lemma well valued0_prepend: [length zs < It — 1; length ys = length xs; well _shaped t; well_valued0
(zs Q as) t] = well_valued0 (ys Q as) ¢

(proof)

lemma valid_prepend: [length zs < It — 1; length ys = length zs; valid (zs Q as) t] = valid (ys @ as)
t

(proof)

lemma take eq append_take take drop: m < n = take n zs = take m zs Q take (n—m) (drop m xs)

(proof)

lemma well _valued0 take r: [well shaped t; well valued0 as t] = well _valued0 (take (rt) as) t

(proof)

lemma valid_take r: valid as t = wvalid (take (r t) as) t

(proof)

lemma well _valued0_butlast: [well _shaped t; well _valued0 as t; r t < length as] = well _valued0
(butlast as) t

(proof)

lemma well valued0 _append_butlast_Ichild: Jwell shaped t; well valued0 as t] =
well_valued0 (butlast as Q [last as + z]) (lchild t)
(proof)

lemma sum__update_rightmost: [0 < i; i < j; length as = j] =
sum as i j + z = sum (butlast as Q [last as + z]) 7 j
(proof)

lemma well_valued0__update_rightmost: [well _shaped t; well _valued0 as t; length as = r t] =
well_valued0 (butlast as @ [last as + z]) (update_rightmost (Aa. a +) t)

(proof)

lemma valid_update_rightmost: [valid as t; length as = r t] =
valid (butlast as Q [last as + z]) (update_rightmost (Aa. a + z) t)
(proof)

References

[1] D. Basin, F. Klaedtke, and E. Zilinescu. Greedily computing associative aggregations on
sliding windows. Information Processing Letters, 115(2):186 — 192, 2015.

10

	Sliding Window Algorithm
	Correctness
	Correctness of the Slide Function
	Correctness of the Sliding Window Algorithm
	Summary of the Correctness Proof

	Alternative Slide Interface and Additional Operations
	Alternative Slide Interface
	Updating all Values in the Tree
	Updating the Rightmost Leaf of the Tree

