
Randomised Skip Lists

Max W. Haslbeck, Manuel Eberl

March 19, 2025

Abstract

Skip lists are sorted linked lists enhanced with shortcuts and are an
alternative to binary search trees [2]. A skip lists consists of multiple
levels of sorted linked lists where a list on level n is a subsequence of
the list on level n− 1. In the ideal case, elements are skipped in such a
way that a lookup in a skip lists takes O(log n) time. In a randomised
skip list the skipped elements are choosen randomly.

This entry contains formalized proofs of the textbook results about
the expected height and the expected length of a search path in a
randomised skip list [1].

Contents
1 Indexed products of PMFs 2

1.1 Definition . 2
1.2 Dependent product sets with a default 4
1.3 Common PMF operations on products 7
1.4 Merging and splitting PMF products 11
1.5 Applications . 15

2 Auxiliary material 17

3 Theorems about the Geometric Distribution 21

4 Randomized Skip Lists 26
4.1 Preliminaries . 27
4.2 Definition of a Randomised Skip List 27
4.3 Height of Skip List . 27
4.4 Expected Length of Search Path 38

1

1 Indexed products of PMFs
theory Pi-pmf

imports HOL−Probability.Probability
begin

Conflicting notation from HOL−Analysis.Infinite-Sum
no-notation Infinite-Sum.abs-summable-on (infixr ‹abs ′-summable ′-on› 46)

1.1 Definition

In analogy to PiM , we define an indexed product of PMFs. In the literature,
this is typically called taking a vector of independent random variables. Note
that the components do not have to be identically distributed.
The operation takes an explicit index set A and a function f that maps
each element from A to a PMF and defines the product measure

⊗
i∈A f(i)

, which is represented as a (′a ⇒ ′b) pmf.
Note that unlike PiM , this only works for finite index sets. It could be
extended to countable sets and beyond, but the construction becomes some-
what more involved.
definition Pi-pmf :: ′a set ⇒ ′b ⇒ (′a ⇒ ′b pmf) ⇒ (′a ⇒ ′b) pmf where

Pi-pmf A dflt p =
embed-pmf (λf . if (∀ x. x /∈ A −→ f x = dflt) then

∏
x∈A. pmf (p x) (f x)

else 0)

A technical subtlety that needs to be addressed is this: Intuitively, the func-
tions in the support of a product distribution have domain A. However, since
HOL is a total logic, these functions must still return some value for inputs
outside A. The product measure PiM simply lets these functions return un-
defined in these cases. We chose a different solution here, which is to supply
a default value dflt that is returned in these cases.
As one possible application, one could model the result of n different inde-
pendent coin tosses as Pi-pmf .Pi-pmf {0 ..<n} False (λ-. bernoulli-pmf (1
/ 2)). This returns a function of type nat ⇒ bool that maps every natural
number below n to the result of the corresponding coin toss, and every other
natural number to False.
lemma pmf-Pi:

assumes A: finite A
shows pmf (Pi-pmf A dflt p) f =

(if (∀ x. x /∈ A −→ f x = dflt) then
∏

x∈A. pmf (p x) (f x) else 0)
unfolding Pi-pmf-def

proof (rule pmf-embed-pmf , goal-cases)
case 2
define S where S = {f . ∀ x. x /∈ A −→ f x = dflt}
define B where B = (λx. set-pmf (p x))

2

have neutral-left: (
∏

xa∈A. pmf (p xa) (f xa)) = 0
if f ∈ PiE A B − (λf . restrict f A) ‘ S for f

proof −
have restrict (λx. if x ∈ A then f x else dflt) A ∈ (λf . restrict f A) ‘ S

by (intro imageI) (auto simp: S-def)
also have restrict (λx. if x ∈ A then f x else dflt) A = f

using that by (auto simp: PiE-def Pi-def extensional-def fun-eq-iff)
finally show ?thesis using that by blast

qed
have neutral-right: (

∏
xa∈A. pmf (p xa) (f xa)) = 0

if f ∈ (λf . restrict f A) ‘ S − PiE A B for f
proof −

from that obtain f ′ where f ′: f = restrict f ′ A f ′ ∈ S by auto
moreover from this and that have restrict f ′ A /∈ PiE A B by simp
then obtain x where x ∈ A pmf (p x) (f ′ x) = 0 by (auto simp: B-def

set-pmf-eq)
with f ′ and A show ?thesis by auto

qed

have (λf .
∏

x∈A. pmf (p x) (f x)) abs-summable-on PiE A B
by (intro abs-summable-on-prod-PiE A) (auto simp: B-def)

also have ?this ←→ (λf .
∏

x∈A. pmf (p x) (f x)) abs-summable-on (λf . restrict
f A) ‘ S

by (intro abs-summable-on-cong-neutral neutral-left neutral-right) auto
also have . . . ←→ (λf .

∏
x∈A. pmf (p x) (restrict f A x)) abs-summable-on S

by (rule abs-summable-on-reindex-iff [symmetric]) (force simp: inj-on-def fun-eq-iff
S-def)

also have . . . ←→ (λf . if ∀ x. x /∈ A −→ f x = dflt then
∏

x∈A. pmf (p x) (f
x) else 0)

abs-summable-on UNIV
by (intro abs-summable-on-cong-neutral) (auto simp: S-def)

finally have summable:

have 1 = (
∏

x∈A. 1 ::real) by simp
also have (

∏
x∈A. 1) = (

∏
x∈A.

∑
ay∈B x. pmf (p x) y)

unfolding B-def by (subst infsetsum-pmf-eq-1) auto
also have (

∏
x∈A.

∑
ay∈B x. pmf (p x) y) = (

∑
af∈PiE A B.

∏
x∈A. pmf (p

x) (f x))
by (intro infsetsum-prod-PiE [symmetric] A) (auto simp: B-def)

also have . . . = (
∑

af∈(λf . restrict f A) ‘ S .
∏

x∈A. pmf (p x) (f x)) using A
by (intro infsetsum-cong-neutral neutral-left neutral-right refl)

also have . . . = (
∑

af∈S .
∏

x∈A. pmf (p x) (restrict f A x))
by (rule infsetsum-reindex) (force simp: inj-on-def fun-eq-iff S-def)

also have . . . = (
∑

af∈S .
∏

x∈A. pmf (p x) (f x))
by (intro infsetsum-cong) (auto simp: S-def)

also have . . . = (
∑

af . if ∀ x. x /∈ A −→ f x = dflt then
∏

x∈A. pmf (p x) (f
x) else 0)

by (intro infsetsum-cong-neutral) (auto simp: S-def)

3

also have ennreal . . . = (
∫

+f . ennreal (if ∀ x. x /∈ A −→ f x = dflt
then

∏
x∈A. pmf (p x) (f x) else 0) ∂count-space UNIV)

by (intro nn-integral-conv-infsetsum [symmetric] summable) (auto simp: prod-nonneg)
finally show ?case by simp

qed (auto simp: prod-nonneg)

lemma pmf-Pi ′:
assumes finite A

∧
x. x /∈ A =⇒ f x = dflt

shows pmf (Pi-pmf A dflt p) f = (
∏

x∈A. pmf (p x) (f x))
using assms by (subst pmf-Pi) auto

lemma pmf-Pi-outside:
assumes finite A ∃ x. x /∈ A ∧ f x 6= dflt
shows pmf (Pi-pmf A dflt p) f = 0
using assms by (subst pmf-Pi) auto

lemma pmf-Pi-empty [simp]: Pi-pmf {} dflt p = return-pmf (λ-. dflt)
by (intro pmf-eqI , subst pmf-Pi) (auto simp: indicator-def)

lemma set-Pi-pmf-subset: finite A =⇒ set-pmf (Pi-pmf A dflt p) ⊆ {f . ∀ x. x /∈
A −→ f x = dflt}

by (auto simp: set-pmf-eq pmf-Pi)

lemma Pi-pmf-cong [cong]:
assumes A = A ′ dflt = dflt ′ ∧x. x ∈ A =⇒ f x = f ′ x
shows Pi-pmf A dflt f = Pi-pmf A ′ dflt ′ f ′

proof −
have (λg.

∏
x∈A. pmf (f x) (g x)) = (λg.

∏
x∈A. pmf (f ′ x) (g x))

by (intro ext prod.cong) (auto simp: assms)
with assms show ?thesis by (simp add: Pi-pmf-def cong: if-cong)

qed

1.2 Dependent product sets with a default

The following describes a dependent product of sets where the functions are
required to return the default value dflt outside their domain, in analogy to
PiE , which uses undefined.
definition PiE-dflt

where PiE-dflt A dflt B = {f . ∀ x. (x ∈ A −→ f x ∈ B x) ∧ (x /∈ A −→ f x =
dflt)}

lemma restrict-PiE-dflt: (λh. restrict h A) ‘ PiE-dflt A dflt B = PiE A B
proof (intro equalityI subsetI)

fix h assume h ∈ (λh. restrict h A) ‘ PiE-dflt A dflt B
thus h ∈ PiE A B

by (auto simp: PiE-dflt-def)
next

fix h assume h: h ∈ PiE A B

4

hence restrict (λx. if x ∈ A then h x else dflt) A ∈ (λh. restrict h A) ‘ PiE-dflt
A dflt B

by (intro imageI) (auto simp: PiE-def extensional-def PiE-dflt-def)
also have restrict (λx. if x ∈ A then h x else dflt) A = h

using h by (auto simp: fun-eq-iff)
finally show h ∈ (λh. restrict h A) ‘ PiE-dflt A dflt B .

qed

lemma dflt-image-PiE : (λh x. if x ∈ A then h x else dflt) ‘ PiE A B = PiE-dflt
A dflt B
(is ?f ‘ ?X = ?Y)

proof (intro equalityI subsetI)
fix h assume h ∈ ?f ‘ ?X
thus h ∈ ?Y

by (auto simp: PiE-dflt-def PiE-def)
next

fix h assume h: h ∈ ?Y
hence ?f (restrict h A) ∈ ?f ‘ ?X

by (intro imageI) (auto simp: PiE-def extensional-def PiE-dflt-def)
also have ?f (restrict h A) = h

using h by (auto simp: fun-eq-iff PiE-dflt-def)
finally show h ∈ ?f ‘ ?X .

qed

lemma finite-PiE-dflt [intro]:
assumes finite A

∧
x. x ∈ A =⇒ finite (B x)

shows finite (PiE-dflt A d B)
proof −

have PiE-dflt A d B = (λf x. if x ∈ A then f x else d) ‘ PiE A B
by (rule dflt-image-PiE [symmetric])

also have finite . . .
by (intro finite-imageI finite-PiE assms)

finally show ?thesis .
qed

lemma card-PiE-dflt:
assumes finite A

∧
x. x ∈ A =⇒ finite (B x)

shows card (PiE-dflt A d B) = (
∏

x∈A. card (B x))
proof −

from assms have (
∏

x∈A. card (B x)) = card (PiE A B)
by (intro card-PiE [symmetric]) auto

also have PiE A B = (λf . restrict f A) ‘ PiE-dflt A d B
by (rule restrict-PiE-dflt [symmetric])

also have card . . . = card (PiE-dflt A d B)
by (intro card-image) (force simp: inj-on-def restrict-def fun-eq-iff PiE-dflt-def)

finally show ?thesis ..
qed

lemma PiE-dflt-empty-iff [simp]: PiE-dflt A dflt B = {} ←→ (∃ x∈A. B x = {})

5

by (simp add: dflt-image-PiE [symmetric] PiE-eq-empty-iff)

The probability of an independent combination of events is precisely the
product of the probabilities of each individual event.
lemma measure-Pi-pmf-PiE-dflt:

assumes [simp]: finite A
shows measure-pmf .prob (Pi-pmf A dflt p) (PiE-dflt A dflt B) =

(
∏

x∈A. measure-pmf .prob (p x) (B x))
proof −

define B ′ where B ′ = (λx. B x ∩ set-pmf (p x))
have measure-pmf .prob (Pi-pmf A dflt p) (PiE-dflt A dflt B) =

(
∑

ah∈PiE-dflt A dflt B. pmf (Pi-pmf A dflt p) h)
by (rule measure-pmf-conv-infsetsum)

also have . . . = (
∑

ah∈PiE-dflt A dflt B.
∏

x∈A. pmf (p x) (h x))
by (intro infsetsum-cong, subst pmf-Pi ′) (auto simp: PiE-dflt-def)

also have . . . = (
∑

ah∈(λh. restrict h A) ‘ PiE-dflt A dflt B.
∏

x∈A. pmf (p
x) (h x))

by (subst infsetsum-reindex) (force simp: inj-on-def PiE-dflt-def fun-eq-iff)+
also have (λh. restrict h A) ‘ PiE-dflt A dflt B = PiE A B

by (rule restrict-PiE-dflt)
also have (

∑
ah∈PiE A B.

∏
x∈A. pmf (p x) (h x)) = (

∑
ah∈PiE A B ′.

∏
x∈A.

pmf (p x) (h x))
by (intro infsetsum-cong-neutral) (auto simp: B ′-def set-pmf-eq)

also have (
∑

ah∈PiE A B ′.
∏

x∈A. pmf (p x) (h x)) = (
∏

x∈A. infsetsum (pmf
(p x)) (B ′ x))

by (intro infsetsum-prod-PiE) (auto simp: B ′-def)
also have . . . = (

∏
x∈A. infsetsum (pmf (p x)) (B x))

by (intro prod.cong infsetsum-cong-neutral) (auto simp: B ′-def set-pmf-eq)
also have . . . = (

∏
x∈A. measure-pmf .prob (p x) (B x))

by (subst measure-pmf-conv-infsetsum) (rule refl)
finally show ?thesis .

qed

lemma set-Pi-pmf-subset ′:
assumes finite A
shows set-pmf (Pi-pmf A dflt p) ⊆ PiE-dflt A dflt (set-pmf ◦ p)
using assms by (auto simp: set-pmf-eq pmf-Pi PiE-dflt-def)

lemma Pi-pmf-return-pmf [simp]:
assumes finite A
shows Pi-pmf A dflt (λx. return-pmf (f x)) = return-pmf (λx. if x ∈ A then f

x else dflt)
proof −

have set-pmf (Pi-pmf A dflt (λx. return-pmf (f x))) ⊆
PiE-dflt A dflt (set-pmf ◦ (λx. return-pmf (f x)))

by (intro set-Pi-pmf-subset ′ assms)
also have . . . ⊆ {λx. if x ∈ A then f x else dflt}

by (auto simp: PiE-dflt-def)
finally show ?thesis

6

by (simp add: set-pmf-subset-singleton)
qed

lemma Pi-pmf-return-pmf ′ [simp]:
assumes finite A
shows Pi-pmf A dflt (λ-. return-pmf dflt) = return-pmf (λ-. dflt)
using assms by simp

lemma measure-Pi-pmf-Pi:
fixes t::nat
assumes [simp]: finite A
shows measure-pmf .prob (Pi-pmf A dflt p) (Pi A B) =

(
∏

x∈A. measure-pmf .prob (p x) (B x)) (is ?lhs = ?rhs)
proof −

have ?lhs = measure-pmf .prob (Pi-pmf A dflt p) (PiE-dflt A dflt B)
by (intro measure-prob-cong-0)

(auto simp: PiE-dflt-def PiE-def intro!: pmf-Pi-outside)+
also have . . . = ?rhs

using assms by (simp add: measure-Pi-pmf-PiE-dflt)
finally show ?thesis

by simp
qed

1.3 Common PMF operations on products

Pi-pmf .Pi-pmf distributes over the ‘bind’ operation in the Giry monad:
lemma Pi-pmf-bind:

assumes finite A
shows Pi-pmf A d (λx. bind-pmf (p x) (q x)) =

do {f ← Pi-pmf A d ′ p; Pi-pmf A d (λx. q x (f x))} (is ?lhs = ?rhs)
proof (rule pmf-eqI , goal-cases)

case (1 f)
show ?case
proof (cases ∃ x∈−A. f x 6= d)

case False
define B where B = (λx. set-pmf (p x))
have [simp]: countable (B x) for x by (auto simp: B-def)

{
fix x :: ′a
have (λa. pmf (p x) a ∗ 1) abs-summable-on B x

by (simp add: pmf-abs-summable)
moreover have norm (pmf (p x) a ∗ 1) ≥ norm (pmf (p x) a ∗ pmf (q x

a) (f x)) for a
unfolding norm-mult by (intro mult-left-mono) (auto simp: pmf-le-1)

ultimately have (λa. pmf (p x) a ∗ pmf (q x a) (f x)) abs-summable-on B x
by (rule abs-summable-on-comparison-test)

} note summable = this

7

have pmf ?rhs f = (
∑

ag. pmf (Pi-pmf A d ′ p) g ∗ (
∏

x∈A. pmf (q x (g x))
(f x)))

by (subst pmf-bind, subst pmf-Pi ′)
(insert assms False, simp-all add: pmf-expectation-eq-infsetsum)

also have . . . = (
∑

ag∈PiE-dflt A d ′ B.
pmf (Pi-pmf A d ′ p) g ∗ (

∏
x∈A. pmf (q x (g x)) (f x)))

unfolding B-def
using assms by (intro infsetsum-cong-neutral) (auto simp: pmf-Pi PiE-dflt-def

set-pmf-eq)
also have . . . = (

∑
ag∈PiE-dflt A d ′ B.

(
∏

x∈A. pmf (p x) (g x) ∗ pmf (q x (g x)) (f x)))
using assms by (intro infsetsum-cong) (auto simp: pmf-Pi PiE-dflt-def

prod.distrib)
also have . . . = (

∑
ag∈(λg. restrict g A) ‘ PiE-dflt A d ′ B.

(
∏

x∈A. pmf (p x) (g x) ∗ pmf (q x (g x)) (f x)))
by (subst infsetsum-reindex) (force simp: PiE-dflt-def inj-on-def fun-eq-iff)+

also have (λg. restrict g A) ‘ PiE-dflt A d ′ B = PiE A B
by (rule restrict-PiE-dflt)

also have (
∑

ag∈. . . . (
∏

x∈A. pmf (p x) (g x) ∗ pmf (q x (g x)) (f x))) =
(
∏

x∈A.
∑

aa∈B x. pmf (p x) a ∗ pmf (q x a) (f x))
using assms summable by (subst infsetsum-prod-PiE) simp-all

also have . . . = (
∏

x∈A.
∑

aa. pmf (p x) a ∗ pmf (q x a) (f x))
by (intro prod.cong infsetsum-cong-neutral) (auto simp: B-def set-pmf-eq)

also have . . . = pmf ?lhs f
using False assms by (subst pmf-Pi ′) (simp-all add: pmf-bind pmf-expectation-eq-infsetsum)
finally show ?thesis ..

next
case True
have pmf ?rhs f =

measure-pmf .expectation (Pi-pmf A d ′ p) (λx. pmf (Pi-pmf A d (λxa. q
xa (x xa))) f)

using assms by (simp add: pmf-bind)
also have . . . = measure-pmf .expectation (Pi-pmf A d ′ p) (λx. 0)
using assms True by (intro Bochner-Integration.integral-cong pmf-Pi-outside)

auto
also have . . . = pmf ?lhs f

using assms True by (subst pmf-Pi-outside) auto
finally show ?thesis ..

qed
qed

Analogously any componentwise mapping can be pulled outside the product:
lemma Pi-pmf-map:

assumes [simp]: finite A and f dflt = dflt ′

shows Pi-pmf A dflt ′ (λx. map-pmf f (g x)) = map-pmf (λh. f ◦ h) (Pi-pmf A
dflt g)
proof −

have Pi-pmf A dflt ′ (λx. map-pmf f (g x)) =
Pi-pmf A dflt ′ (λx. g x >>= (λx. return-pmf (f x)))

8

using assms by (simp add: map-pmf-def Pi-pmf-bind)
also have . . . = Pi-pmf A dflt g >>= (λh. return-pmf (λx. if x ∈ A then f (h x)

else dflt ′))
by (subst Pi-pmf-bind[where d ′ = dflt]) auto

also have . . . = map-pmf (λh. f ◦ h) (Pi-pmf A dflt g)
unfolding map-pmf-def using set-Pi-pmf-subset ′[of A dflt g]
by (intro bind-pmf-cong refl arg-cong[of - - return-pmf])

(auto dest: simp: fun-eq-iff PiE-dflt-def assms(2))
finally show ?thesis .

qed

We can exchange the default value in a product of PMFs like this:
lemma Pi-pmf-default-swap:

assumes finite A
shows map-pmf (λf x. if x ∈ A then f x else dflt ′) (Pi-pmf A dflt p) =

Pi-pmf A dflt ′ p (is ?lhs = ?rhs)
proof (rule pmf-eqI , goal-cases)

case (1 f)
let ?B = (λf x. if x ∈ A then f x else dflt ′) −‘ {f } ∩ PiE-dflt A dflt (λ-. UNIV)
show ?case
proof (cases ∃ x∈−A. f x 6= dflt ′)

case False
let ?f ′ = λx. if x ∈ A then f x else dflt
from False have pmf ?lhs f = measure-pmf .prob (Pi-pmf A dflt p) ?B

using assms unfolding pmf-map
by (intro measure-prob-cong-0) (auto simp: PiE-dflt-def pmf-Pi-outside)

also from False have ?B = {?f ′}
by (auto simp: fun-eq-iff PiE-dflt-def)

also have measure-pmf .prob (Pi-pmf A dflt p) {?f ′} = pmf (Pi-pmf A dflt p)
?f ′

by (simp add: measure-pmf-single)
also have . . . = pmf ?rhs f

using False assms by (subst (1 2) pmf-Pi) auto
finally show ?thesis .

next
case True
have pmf ?lhs f = measure-pmf .prob (Pi-pmf A dflt p) ?B

using assms unfolding pmf-map
by (intro measure-prob-cong-0) (auto simp: PiE-dflt-def pmf-Pi-outside)

also from True have ?B = {} by auto
also have measure-pmf .prob (Pi-pmf A dflt p) . . . = 0

by simp
also have 0 = pmf ?rhs f

using True assms by (intro pmf-Pi-outside [symmetric]) auto
finally show ?thesis .

qed
qed

The following rule allows reindexing the product:

9

lemma Pi-pmf-bij-betw:
assumes finite A bij-betw h A B

∧
x. x /∈ A =⇒ h x /∈ B

shows Pi-pmf A dflt (λ-. f) = map-pmf (λg. g ◦ h) (Pi-pmf B dflt (λ-. f))
(is ?lhs = ?rhs)

proof −
have B: finite B

using assms bij-betw-finite by auto
have pmf ?lhs g = pmf ?rhs g for g
proof (cases ∀ a. a /∈ A −→ g a = dflt)

case True
define h ′ where h ′ = the-inv-into A h
have h ′: h ′ (h x) = x if x ∈ A for x
unfolding h ′-def using that assms by (auto simp add: bij-betw-def the-inv-into-f-f)
have h: h (h ′ x) = x if x ∈ B for x

unfolding h ′-def using that assms f-the-inv-into-f-bij-betw by fastforce
have pmf ?rhs g = measure-pmf .prob (Pi-pmf B dflt (λ-. f)) ((λg. g ◦ h) −‘

{g})
unfolding pmf-map by simp

also have . . . = measure-pmf .prob (Pi-pmf B dflt (λ-. f))
(((λg. g ◦ h) −‘ {g}) ∩ PiE-dflt B dflt (λ-. UNIV))

using B by (intro measure-prob-cong-0) (auto simp: PiE-dflt-def pmf-Pi-outside)
also have . . . = pmf (Pi-pmf B dflt (λ-. f)) (λx. if x ∈ B then g (h ′ x) else

dflt)
proof −

have (if h x ∈ B then g (h ′ (h x)) else dflt) = g x for x
using h ′ assms True by (cases x ∈ A) (auto simp add: bij-betwE)

then have (λg. g ◦ h) −‘ {g} ∩ PiE-dflt B dflt (λ-. UNIV) =
{(λx. if x ∈ B then g (h ′ x) else dflt)}

using assms h ′ h True unfolding PiE-dflt-def by auto
then show ?thesis

by (simp add: measure-pmf-single)
qed
also have . . . = pmf (Pi-pmf A dflt (λ-. f)) g

using B assms True h ′-def
by (auto simp add: pmf-Pi intro!: prod.reindex-bij-betw bij-betw-the-inv-into)

finally show ?thesis
by simp

next
case False
have pmf ?rhs g = infsetsum (pmf (Pi-pmf B dflt (λ-. f))) ((λg. g ◦ h) −‘ {g})

using assms by (auto simp add: measure-pmf-conv-infsetsum pmf-map)
also have . . . = infsetsum (λ-. 0) ((λg x. g (h x)) −‘ {g})

using B False assms by (intro infsetsum-cong pmf-Pi-outside) fastforce+
also have . . . = 0

by simp
finally show ?thesis

using assms False by (auto simp add: pmf-Pi pmf-map)
qed
then show ?thesis

10

by (rule pmf-eqI)
qed

A product of uniform random choices is again a uniform distribution.
lemma Pi-pmf-of-set:

assumes finite A
∧

x. x ∈ A =⇒ finite (B x)
∧

x. x ∈ A =⇒ B x 6= {}
shows Pi-pmf A d (λx. pmf-of-set (B x)) = pmf-of-set (PiE-dflt A d B) (is

?lhs = ?rhs)
proof (rule pmf-eqI , goal-cases)

case (1 f)
show ?case
proof (cases ∃ x. x /∈ A ∧ f x 6= d)

case True
hence pmf ?lhs f = 0

using assms by (intro pmf-Pi-outside) (auto simp: PiE-dflt-def)
also from True have f /∈ PiE-dflt A d B

by (auto simp: PiE-dflt-def)
hence 0 = pmf ?rhs f

using assms by (subst pmf-of-set) auto
finally show ?thesis .

next
case False
hence pmf ?lhs f = (

∏
x∈A. pmf (pmf-of-set (B x)) (f x))

using assms by (subst pmf-Pi ′) auto
also have . . . = (

∏
x∈A. indicator (B x) (f x) / real (card (B x)))

by (intro prod.cong refl, subst pmf-of-set) (use assms False in auto)
also have . . . = (

∏
x∈A. indicator (B x) (f x)) / real (

∏
x∈A. card (B x))

by (subst prod-dividef) simp-all
also have (

∏
x∈A. indicator (B x) (f x) :: real) = indicator (PiE-dflt A d B) f

using assms False by (auto simp: indicator-def PiE-dflt-def)
also have (

∏
x∈A. card (B x)) = card (PiE-dflt A d B)

using assms by (intro card-PiE-dflt [symmetric]) auto
also have indicator (PiE-dflt A d B) f / . . . = pmf ?rhs f

using assms by (intro pmf-of-set [symmetric]) auto
finally show ?thesis .

qed
qed

1.4 Merging and splitting PMF products

The following lemma shows that we can add a single PMF to a product:
lemma Pi-pmf-insert:

assumes finite A x /∈ A
shows Pi-pmf (insert x A) dflt p = map-pmf (λ(y,f). f (x:=y)) (pair-pmf (p

x) (Pi-pmf A dflt p))
proof (intro pmf-eqI)

fix f
let ?M = pair-pmf (p x) (Pi-pmf A dflt p)
have pmf (map-pmf (λ(y, f). f (x := y)) ?M) f =

11

measure-pmf .prob ?M ((λ(y, f). f (x := y)) −‘ {f })
by (subst pmf-map) auto

also have ((λ(y, f). f (x := y)) −‘ {f }) = (
⋃

y ′. {(f x, f (x := y ′))})
by (auto simp: fun-upd-def fun-eq-iff)

also have measure-pmf .prob ?M . . . = measure-pmf .prob ?M {(f x, f (x := dflt))}
using assms by (intro measure-prob-cong-0) (auto simp: pmf-pair pmf-Pi split:

if-splits)
also have . . . = pmf (p x) (f x) ∗ pmf (Pi-pmf A dflt p) (f (x := dflt))

by (simp add: measure-pmf-single pmf-pair pmf-Pi)
also have . . . = pmf (Pi-pmf (insert x A) dflt p) f
proof (cases ∀ y. y /∈ insert x A −→ f y = dflt)

case True
with assms have pmf (p x) (f x) ∗ pmf (Pi-pmf A dflt p) (f (x := dflt)) =

pmf (p x) (f x) ∗ (
∏

xa∈A. pmf (p xa) ((f (x := dflt)) xa))
by (subst pmf-Pi ′) auto

also have (
∏

xa∈A. pmf (p xa) ((f (x := dflt)) xa)) = (
∏

xa∈A. pmf (p xa) (f
xa))

using assms by (intro prod.cong) auto
also have pmf (p x) (f x) ∗ . . . = pmf (Pi-pmf (insert x A) dflt p) f

using assms True by (subst pmf-Pi ′) auto
finally show ?thesis .

qed (insert assms, auto simp: pmf-Pi)
finally show . . . = pmf (map-pmf (λ(y, f). f (x := y)) ?M) f ..

qed

lemma Pi-pmf-insert ′:
assumes finite A x /∈ A
shows Pi-pmf (insert x A) dflt p =

do {y ← p x; f ← Pi-pmf A dflt p; return-pmf (f (x := y))}
using assms
by (subst Pi-pmf-insert)

(auto simp add: map-pmf-def pair-pmf-def case-prod-beta ′ bind-return-pmf
bind-assoc-pmf)

lemma Pi-pmf-singleton:
Pi-pmf {x} dflt p = map-pmf (λa b. if b = x then a else dflt) (p x)

proof −
have Pi-pmf {x} dflt p = map-pmf (fun-upd (λ-. dflt) x) (p x)

by (subst Pi-pmf-insert) (simp-all add: pair-return-pmf2 pmf .map-comp o-def)
also have fun-upd (λ-. dflt) x = (λz y. if y = x then z else dflt)

by (simp add: fun-upd-def fun-eq-iff)
finally show ?thesis .

qed

Projecting a product of PMFs onto a component yields the expected result:
lemma Pi-pmf-component:

assumes finite A
shows map-pmf (λf . f x) (Pi-pmf A dflt p) = (if x ∈ A then p x else return-pmf

dflt)

12

proof (cases x ∈ A)
case True
define A ′ where A ′ = A − {x}
from assms and True have A ′: A = insert x A ′

by (auto simp: A ′-def)
from assms have map-pmf (λf . f x) (Pi-pmf A dflt p) = p x unfolding A ′

by (subst Pi-pmf-insert)
(auto simp: A ′-def pmf .map-comp o-def case-prod-unfold map-fst-pair-pmf)

with True show ?thesis by simp
next

case False
have map-pmf (λf . f x) (Pi-pmf A dflt p) = map-pmf (λ-. dflt) (Pi-pmf A dflt

p)
using assms False set-Pi-pmf-subset[of A dflt p]
by (intro pmf .map-cong refl) (auto simp: set-pmf-eq pmf-Pi-outside)

with False show ?thesis by simp
qed

We can take merge two PMF products on disjoint sets like this:
lemma Pi-pmf-union:

assumes finite A finite B A ∩ B = {}
shows Pi-pmf (A ∪ B) dflt p =

map-pmf (λ(f ,g) x. if x ∈ A then f x else g x)
(pair-pmf (Pi-pmf A dflt p) (Pi-pmf B dflt p)) (is - = map-pmf (?h A)

(?q A))
using assms(1 ,3)

proof (induction rule: finite-induct)
case (insert x A)
have map-pmf (?h (insert x A)) (?q (insert x A)) =

do {v ← p x; (f , g) ← pair-pmf (Pi-pmf A dflt p) (Pi-pmf B dflt p);
return-pmf (λy. if y ∈ insert x A then (f (x := v)) y else g y)}

by (subst Pi-pmf-insert)
(insert insert.hyps insert.prems,

simp-all add: pair-pmf-def map-bind-pmf bind-map-pmf bind-assoc-pmf
bind-return-pmf)

also have . . . = do {v ← p x; (f , g) ← ?q A; return-pmf ((?h A (f ,g))(x := v))}
by (intro bind-pmf-cong refl) (auto simp: fun-eq-iff)

also have . . . = do {v ← p x; f ← map-pmf (?h A) (?q A); return-pmf (f (x :=
v))}

by (simp add: bind-map-pmf map-bind-pmf case-prod-unfold cong: if-cong)
also have . . . = do {v ← p x; f ← Pi-pmf (A ∪ B) dflt p; return-pmf (f (x :=

v))}
using insert.hyps and insert.prems by (intro bind-pmf-cong insert.IH [symmetric]

refl) auto
also have . . . = Pi-pmf (insert x (A ∪ B)) dflt p

by (subst Pi-pmf-insert)
(insert assms insert.hyps insert.prems, auto simp: pair-pmf-def map-bind-pmf)

also have insert x (A ∪ B) = insert x A ∪ B
by simp

13

finally show ?case ..
qed (simp-all add: case-prod-unfold map-snd-pair-pmf)

We can also project a product to a subset of the indices by mapping all the
other indices to the default value:
lemma Pi-pmf-subset:

assumes finite A A ′ ⊆ A
shows Pi-pmf A ′ dflt p = map-pmf (λf x . if x ∈ A ′ then f x else dflt) (Pi-pmf

A dflt p)
proof −

let ?P = pair-pmf (Pi-pmf A ′ dflt p) (Pi-pmf (A − A ′) dflt p)
from assms have [simp]: finite A ′

by (blast dest: finite-subset)
from assms have A = A ′ ∪ (A − A ′)

by blast
also have Pi-pmf . . . dflt p = map-pmf (λ(f ,g) x. if x ∈ A ′ then f x else g x) ?P

using assms by (intro Pi-pmf-union) auto
also have map-pmf (λf x. if x ∈ A ′ then f x else dflt) . . . = map-pmf fst ?P

unfolding map-pmf-comp o-def case-prod-unfold
using set-Pi-pmf-subset[of A ′ dflt p] by (intro map-pmf-cong refl) (auto simp:

fun-eq-iff)
also have . . . = Pi-pmf A ′ dflt p

by (simp add: map-fst-pair-pmf)
finally show ?thesis ..

qed

lemma Pi-pmf-subset ′:
fixes f :: ′a ⇒ ′b pmf
assumes finite A B ⊆ A

∧
x. x ∈ A − B =⇒ f x = return-pmf dflt

shows Pi-pmf A dflt f = Pi-pmf B dflt f
proof −

have Pi-pmf (B ∪ (A − B)) dflt f =
map-pmf (λ(f , g) x. if x ∈ B then f x else g x)

(pair-pmf (Pi-pmf B dflt f) (Pi-pmf (A − B) dflt f))
using assms by (intro Pi-pmf-union) (auto dest: finite-subset)

also have Pi-pmf (A − B) dflt f = Pi-pmf (A − B) dflt (λ-. return-pmf dflt)
using assms by (intro Pi-pmf-cong) auto

also have . . . = return-pmf (λ-. dflt)
using assms by simp

also have map-pmf (λ(f , g) x. if x ∈ B then f x else g x)
(pair-pmf (Pi-pmf B dflt f) (return-pmf (λ-. dflt))) =

map-pmf (λf x. if x ∈ B then f x else dflt) (Pi-pmf B dflt f)
by (simp add: map-pmf-def pair-pmf-def bind-assoc-pmf bind-return-pmf bind-return-pmf ′)

also have . . . = Pi-pmf B dflt f
using assms by (intro Pi-pmf-default-swap) (auto dest: finite-subset)

also have B ∪ (A − B) = A
using assms by auto

finally show ?thesis .
qed

14

lemma Pi-pmf-if-set:
assumes finite A
shows Pi-pmf A dflt (λx. if b x then f x else return-pmf dflt) =

Pi-pmf {x∈A. b x} dflt f
proof −

have Pi-pmf A dflt (λx. if b x then f x else return-pmf dflt) =
Pi-pmf {x∈A. b x} dflt (λx. if b x then f x else return-pmf dflt)

using assms by (intro Pi-pmf-subset ′) auto
also have . . . = Pi-pmf {x∈A. b x} dflt f

by (intro Pi-pmf-cong) auto
finally show ?thesis .

qed

lemma Pi-pmf-if-set ′:
assumes finite A
shows Pi-pmf A dflt (λx. if b x then return-pmf dflt else f x) =

Pi-pmf {x∈A. ¬b x} dflt f
proof −

have Pi-pmf A dflt (λx. if b x then return-pmf dflt else f x) =
Pi-pmf {x∈A. ¬b x} dflt (λx. if b x then return-pmf dflt else f x)

using assms by (intro Pi-pmf-subset ′) auto
also have . . . = Pi-pmf {x∈A. ¬b x} dflt f

by (intro Pi-pmf-cong) auto
finally show ?thesis .

qed

Lastly, we can delete a single component from a product:
lemma Pi-pmf-remove:

assumes finite A
shows Pi-pmf (A − {x}) dflt p = map-pmf (λf . f (x := dflt)) (Pi-pmf A dflt

p)
proof −

have Pi-pmf (A − {x}) dflt p =
map-pmf (λf xa. if xa ∈ A − {x} then f xa else dflt) (Pi-pmf A dflt p)

using assms by (intro Pi-pmf-subset) auto
also have . . . = map-pmf (λf . f (x := dflt)) (Pi-pmf A dflt p)

using set-Pi-pmf-subset[of A dflt p] assms
by (intro map-pmf-cong refl) (auto simp: fun-eq-iff)

finally show ?thesis .
qed

1.5 Applications

Choosing a subset of a set uniformly at random is equivalent to tossing a
fair coin independently for each element and collecting all the elements that
came up heads.
lemma pmf-of-set-Pow-conv-bernoulli:

15

assumes finite (A :: ′a set)
shows map-pmf (λb. {x∈A. b x}) (Pi-pmf A P (λ-. bernoulli-pmf (1/2))) =

pmf-of-set (Pow A)
proof −

have Pi-pmf A P (λ-. bernoulli-pmf (1/2)) = pmf-of-set (PiE-dflt A P (λx.
UNIV))

using assms by (simp add: bernoulli-pmf-half-conv-pmf-of-set Pi-pmf-of-set)
also have map-pmf (λb. {x∈A. b x}) . . . = pmf-of-set (Pow A)
proof −

have bij-betw (λb. {x ∈ A. b x}) (PiE-dflt A P (λ-. UNIV)) (Pow A)
by (rule bij-betwI [of - - - λB b. if b ∈ A then b ∈ B else P]) (auto simp add:

PiE-dflt-def)
then show ?thesis

using assms by (intro map-pmf-of-set-bij-betw) auto
qed
finally show ?thesis

by simp
qed

A binomial distribution can be seen as the number of successes in n inde-
pendent coin tosses.
lemma binomial-pmf-altdef ′:

fixes A :: ′a set
assumes finite A and card A = n and p: p ∈ {0 ..1}
shows binomial-pmf n p =

map-pmf (λf . card {x∈A. f x}) (Pi-pmf A dflt (λ-. bernoulli-pmf p)) (is
?lhs = ?rhs)
proof −

from assms have ?lhs = binomial-pmf (card A) p
by simp

also have . . . = ?rhs
using assms(1)
proof (induction rule: finite-induct)

case empty
with p show ?case by (simp add: binomial-pmf-0)

next
case (insert x A)
from insert.hyps have card (insert x A) = Suc (card A)

by simp
also have binomial-pmf . . . p = do {

b ← bernoulli-pmf p;
f ← Pi-pmf A dflt (λ-. bernoulli-pmf p);

return-pmf ((if b then 1 else 0) + card {y ∈ A. f y})
}

using p by (simp add: binomial-pmf-Suc insert.IH bind-map-pmf)
also have . . . = do {

b ← bernoulli-pmf p;
f ← Pi-pmf A dflt (λ-. bernoulli-pmf p);
return-pmf (card {y ∈ insert x A. (f (x := b)) y})

16

}
proof (intro bind-pmf-cong refl, goal-cases)

case (1 b f)
have (if b then 1 else 0) + card {y∈A. f y} = card ((if b then {x} else {}) ∪

{y∈A. f y})
using insert.hyps by auto

also have (if b then {x} else {}) ∪ {y∈A. f y} = {y∈insert x A. (f (x := b))
y}

using insert.hyps by auto
finally show ?case by simp

qed
also have . . . = map-pmf (λf . card {y∈insert x A. f y})

(Pi-pmf (insert x A) dflt (λ-. bernoulli-pmf p))
using insert.hyps by (subst Pi-pmf-insert) (simp-all add: pair-pmf-def map-bind-pmf)
finally show ?case .

qed
finally show ?thesis .

qed

end

2 Auxiliary material
theory Misc

imports HOL−Analysis.Analysis
begin

Based on sorted-list-of-set and the-inv-into we construct a bijection between
a finite set A of type ’a::linorder and a set of natural numbers {..<card A}
lemma bij-betw-mono-on-the-inv-into:

fixes A:: ′a::linorder set and B:: ′b::linorder set
assumes b: bij-betw f A B and m: mono-on A f
shows mono-on B (the-inv-into A f)

proof (rule ccontr)
assume ¬ mono-on B (the-inv-into A f)
then have ∃ r s. r ∈ B ∧ s ∈ B ∧ r ≤ s ∧ ¬ the-inv-into A f s ≥ the-inv-into

A f r
unfolding mono-on-def by blast

then obtain r s where rs: r ∈ B s ∈ B r ≤ s the-inv-into A f s < the-inv-into
A f r

by fastforce
have f : f (the-inv-into A f b) = b if b ∈ B for b

using that assms f-the-inv-into-f-bij-betw by metis
have the-inv-into A f s ∈ A the-inv-into A f r ∈ A

using rs assms by (auto simp add: bij-betw-def the-inv-into-into)
then have f (the-inv-into A f s) ≤ f (the-inv-into A f r)
using rs by (intro mono-onD[OF m]) (auto)

then have r = s
using rs f by simp

17

then show False
using rs by auto

qed

lemma rev-removeAll-removeAll-rev: rev (removeAll x xs) = removeAll x (rev xs)
by (simp add: removeAll-filter-not-eq rev-filter)

lemma sorted-list-of-set-Min-Cons:
assumes finite A A 6= {}
shows sorted-list-of-set A = Min A # sorted-list-of-set (A − {Min A})

proof −
have ∗: A = insert (Min A) A

using assms Min-in by (auto)
then have sorted-list-of-set A = insort (Min A) (sorted-list-of-set (A − {Min

A}))
using assms by (subst ∗, intro sorted-list-of-set-insert-remove) auto

also have . . . = Min A # sorted-list-of-set (A − {Min A})
using assms by (intro insort-is-Cons) (auto)

finally show ?thesis
by simp

qed

lemma sorted-list-of-set-filter :
assumes finite A
shows sorted-list-of-set ({x∈A. P x}) = filter P (sorted-list-of-set A)
using assms proof (induction sorted-list-of-set A arbitrary: A)
case (Cons x xs)
have x: x ∈ A

using Cons sorted-list-of-set list.set-intros(1) by metis
have sorted-list-of-set A = Min A # sorted-list-of-set (A − {Min A})

using Cons by (intro sorted-list-of-set-Min-Cons) auto
then have 1 : x = Min A xs = sorted-list-of-set (A − {x})

using Cons by auto
{ assume Px: P x

have 2 : sorted-list-of-set {x ∈ A. P x} = Min {x ∈ A. P x} # sorted-list-of-set
({x ∈ A. P x} − {Min {x ∈ A. P x}})

using Px Cons 1 sorted-list-of-set-eq-Nil-iff
by (intro sorted-list-of-set-Min-Cons) fastforce+

also have 3 : Min {x ∈ A. P x} = x
using Cons 1 Px x by (auto intro!: Min-eqI)

also have 4 : {x ∈ A. P x} − {x} = {y ∈ A − {x}. P y}
by blast

also have 5 : sorted-list-of-set {y ∈ A − {x}. P y} = filter P (sorted-list-of-set
(A − {x}))

using 1 Cons by (intro Cons) (auto)
also have . . . = filter P xs

using 1 by simp
also have filter P (sorted-list-of-set A) = x # filter P xs

using Px by (simp flip: ‹x # xs = sorted-list-of-set A›)

18

finally have ?case
by auto }

moreover
{ assume Px: ¬ P x

then have {x ∈ A. P x} = {y ∈ A − {x}. P y}
by blast

also have sorted-list-of-set . . . = filter P (sorted-list-of-set (A − {x}))
using 1 Cons by (intro Cons) auto

also have filter P (sorted-list-of-set (A − {x})) = filter P (sorted-list-of-set
A)

using 1 Px by (simp flip: ‹x # xs = sorted-list-of-set A›)
finally have ?case

by simp }
ultimately show ?case

by blast
qed (use sorted-list-of-set-eq-Nil-iff in fastforce)

lemma sorted-list-of-set-Max-snoc:
assumes finite A A 6= {}
shows sorted-list-of-set A = sorted-list-of-set (A − {Max A}) @ [Max A]

proof −
have ∗: A = insert (Max A) A

using assms Max-in by (auto)
then have sorted-list-of-set A = insort (Max A) (sorted-list-of-set (A − {Max

A}))
using assms by (subst ∗, intro sorted-list-of-set-insert-remove) auto

also have . . . = sorted-list-of-set (A − {Max A}) @ [Max A]
using assms by (intro sorted-insort-is-snoc) (auto)

finally show ?thesis
by simp

qed

lemma sorted-list-of-set-image:
assumes mono-on A g inj-on g A
shows (sorted-list-of-set (g ‘ A)) = map g (sorted-list-of-set A)

proof (cases finite A)
case True
then show ?thesis

using assms proof (induction sorted-list-of-set A arbitrary: A)
case Nil
then show ?case

using sorted-list-of-set-eq-Nil-iff by fastforce
next

case (Cons x xs A)
have not-empty-A: A 6= {}

using Cons sorted-list-of-set-eq-Nil-iff by auto
have ∗: Min (g ‘ A) = g (Min A)
proof −

have g (Min A) ≤ g a if a ∈ A for a

19

using that Cons Min-in Min-le not-empty-A by (auto intro!: mono-onD[of
- g])

then show ?thesis
using Cons not-empty-A by (intro Min-eqI) auto

qed
have g ‘ A 6= {} finite (g ‘ A)

using Cons by auto
then have (sorted-list-of-set (g ‘ A)) =

Min (g ‘ A) # sorted-list-of-set ((g ‘ A) − {Min (g ‘ A)})
by (auto simp add: sorted-list-of-set-Min-Cons)

also have (g ‘ A) − {Min (g ‘ A)} = g ‘ (A − {Min A})
using Cons Min-in not-empty-A ∗ by (subst inj-on-image-set-diff [of - A])

auto
also have sorted-list-of-set (g ‘ (A − {Min A})) = map g (sorted-list-of-set (A

− {Min A}))
using not-empty-A Cons mono-on-subset[of A - A − {Min A}] inj-on-subset[of

- A A − {Min A}]
by (intro Cons) (auto simp add: sorted-list-of-set-Min-Cons)

finally show ?case
using Cons not-empty-A ∗ by (auto simp add: sorted-list-of-set-Min-Cons)

qed
next

case False
then show ?thesis

using assms by (simp add: finite-image-iff)
qed

lemma sorted-list-of-set-length: length (sorted-list-of-set A) = card A
using distinct-card sorted-list-of-set[of A] by (cases finite A) fastforce+

lemma sorted-list-of-set-bij-betw:
assumes finite A
shows bij-betw (λn. sorted-list-of-set A ! n) {..<card A} A
by (rule bij-betw-nth) (fastforce simp add: assms sorted-list-of-set-length)+

lemma nth-mono-on:
assumes sorted xs distinct xs set xs = A
shows mono-on {..<card A} (λn. xs ! n)
using assms by (intro mono-onI sorted-nth-mono) (auto simp add: distinct-card)

lemma sorted-list-of-set-mono-on:
finite A =⇒ mono-on {..<card A} (λn. sorted-list-of-set A ! n)
by (rule nth-mono-on) (auto)

definition bij-mono-map-set-to-nat :: ′a::linorder set ⇒ ′a ⇒ nat where
bij-mono-map-set-to-nat A =
(λx. if x ∈ A then the-inv-into {..<card A} ((!) (sorted-list-of-set A)) x

else card A)

20

lemma bij-mono-map-set-to-nat:
assumes finite A
shows bij-betw (bij-mono-map-set-to-nat A) A {..<card A}

mono-on A (bij-mono-map-set-to-nat A)
(bij-mono-map-set-to-nat A) ‘ A = {..<card A}

proof −
let ?f = bij-mono-map-set-to-nat A
have bij-betw (the-inv-into {..<card A} ((!) (sorted-list-of-set A))) A {..<card A}

using assms sorted-list-of-set-bij-betw bij-betw-the-inv-into by blast
moreover have bij-betw (the-inv-into {..<card A} ((!) (sorted-list-of-set A))) A
{..<card A}

= bij-betw ?f A {..<card A}
unfolding bij-mono-map-set-to-nat-def by (rule bij-betw-cong) simp

ultimately show ∗: bij-betw (bij-mono-map-set-to-nat A) A {..<card A}
by blast

have mono-on A (the-inv-into {..<card A} ((!) (sorted-list-of-set A)))
using assms sorted-list-of-set-bij-betw

sorted-list-of-set-mono-on by (intro bij-betw-mono-on-the-inv-into) auto
then show mono-on A (bij-mono-map-set-to-nat A)

unfolding bij-mono-map-set-to-nat-def using mono-onD by (intro mono-onI)
(auto)

show ?f ‘ A = {..<card A}
using assms bij-betw-imp-surj-on ∗ by blast

qed

end

3 Theorems about the Geometric Distribution
theory Geometric-PMF

imports
HOL−Probability.Probability
Pi-pmf
Monad-Normalisation.Monad-Normalisation

begin

lemma nn-integral-geometric-pmf :
assumes p ∈ {0<..1}
shows nn-integral (geometric-pmf p) real = (1 − p) / p

using assms expectation-geometric-pmf integrable-real-geometric-pmf
by (subst nn-integral-eq-integral) auto

lemma geometric-pmf-prob-atMost:
assumes p ∈ {0<..1}
shows measure-pmf .prob (geometric-pmf p) {..n} = (1 − (1 − p)^(n + 1))

proof −
have (

∑
x≤n. (1 − p) ^ x ∗ p) = 1 − (1 − p) ∗ (1 − p) ^ n

by (induction n) (auto simp add: algebra-simps)
then show ?thesis

21

using assms by (auto simp add: measure-pmf-conv-infsetsum)
qed

lemma geometric-pmf-prob-lessThan:
assumes p ∈ {0<..1}
shows measure-pmf .prob (geometric-pmf p) {..<n} = 1 − (1 − p) ^ n

proof −
have (

∑
x<n. (1 − p) ^ x ∗ p) = 1 − (1 − p) ^ n

by (induction n) (auto simp add: algebra-simps)
then show ?thesis
using assms by (auto simp add: measure-pmf-conv-infsetsum)

qed

lemma geometric-pmf-prob-greaterThan:
assumes p ∈ {0<..1}
shows measure-pmf .prob (geometric-pmf p) {n<..} = (1 − p)^(n + 1)

proof −
have (UNIV − {..n}) = {n<..}

by auto
moreover have measure-pmf .prob (geometric-pmf p) (UNIV − {..n}) = (1 −

p) ^ (n + 1)
using assms by (subst measure-pmf .finite-measure-Diff)

(auto simp add: geometric-pmf-prob-atMost)
ultimately show ?thesis

by auto
qed

lemma geometric-pmf-prob-atLeast:
assumes p ∈ {0<..1}
shows measure-pmf .prob (geometric-pmf p) {n..} = (1 − p)^n

proof −
have (UNIV − {..<n}) = {n..}

by auto
moreover have measure-pmf .prob (geometric-pmf p) (UNIV − {..<n}) = (1 −

p) ^ n
using assms by (subst measure-pmf .finite-measure-Diff)

(auto simp add: geometric-pmf-prob-lessThan)
ultimately show ?thesis

by auto
qed

lemma bernoulli-pmf-of-set ′:
assumes finite A
shows map-pmf (λb. {x ∈ A. ¬ b x}) (Pi-pmf A P (λ-. bernoulli-pmf (1/2)))

= pmf-of-set (Pow A)
proof −

have ∗: Pi-pmf A P (λ-. pmf-of-set (UNIV :: bool set)) = pmf-of-set (PiE-dflt
A P (λ-. UNIV :: bool set))

using assms by (intro Pi-pmf-of-set) auto

22

have map-pmf (λb. {x ∈ A. ¬ b x}) (Pi-pmf A P (λ-. bernoulli-pmf (1 / 2))) =
map-pmf (λb. {x ∈ A. ¬ b x}) (Pi-pmf A P (λ-. pmf-of-set UNIV))

using bernoulli-pmf-half-conv-pmf-of-set by auto
also have . . . = map-pmf (λb. {x ∈ A. ¬ b x}) (pmf-of-set (PiE-dflt A P (λ-.

UNIV)))
using assms by (subst Pi-pmf-of-set) (auto)

also have . . . = pmf-of-set (Pow A)
proof −

have bij-betw (λb. {x ∈ A. ¬ b x}) (PiE-dflt A P (λ-. UNIV)) (Pow A)
by (rule bij-betwI [of - - - λB b. if b ∈ A then ¬ (b ∈ B) else P]) (auto simp

add: PiE-dflt-def)
then show ?thesis

using assms by (intro map-pmf-of-set-bij-betw) auto
qed
finally show ?thesis

by simp
qed

lemma Pi-pmf-pmf-of-set-Suc:
assumes finite A
shows Pi-pmf A 0 (λ-. geometric-pmf (1/2)) =

do {
B ← pmf-of-set (Pow A);
Pi-pmf B 0 (λ-. map-pmf Suc (geometric-pmf (1/2))) }

proof −
have Pi-pmf A 0 (λ-. geometric-pmf (1/2)) =

Pi-pmf A 0 (λ-. bernoulli-pmf (1/2) >>=
(λb. if b then return-pmf 0 else map-pmf Suc (geometric-pmf (1/2))))

using assms by (subst geometric-bind-pmf-unfold) auto
also have . . . =

Pi-pmf A False (λ-. bernoulli-pmf (1/2)) >>=
(λb. Pi-pmf A 0 (λx. if b x then return-pmf 0 else map-pmf Suc

(geometric-pmf (1/2))))
using assms by (subst Pi-pmf-bind[of - - - - False]) auto

also have . . . =
do {b ← Pi-pmf A False (λ-. bernoulli-pmf (1/2));

Pi-pmf {x ∈ A. ∼b x} 0 (λx. map-pmf Suc (geometric-pmf (1/2)))}
using assms by (subst Pi-pmf-if-set ′) auto

also have . . . =
do {B ← map-pmf (λb. {x ∈ A. ¬ b x}) (Pi-pmf A False (λ-. bernoulli-pmf

(1/2)));
Pi-pmf B 0 (λx. map-pmf Suc (geometric-pmf (1/2)))}

unfolding map-pmf-def apply(subst bind-assoc-pmf) apply(subst bind-return-pmf)
by auto

also have . . . = pmf-of-set (Pow A) >>= (λB. Pi-pmf B 0 (λx. map-pmf Suc
(geometric-pmf (1 / 2))))

unfolding assms using assms by (subst bernoulli-pmf-of-set ′) auto
finally show ?thesis

by simp

23

qed

lemma Pi-pmf-pmf-of-set-Suc ′:
assumes finite A
shows Pi-pmf A 0 (λ-. geometric-pmf (1/2)) =

do {
B ← pmf-of-set (Pow A);
Pi-pmf B 0 (λ-. map-pmf Suc (geometric-pmf (1/2))) }

proof −
have Pi-pmf A 0 (λ-. geometric-pmf (1/2)) =

Pi-pmf A 0 (λ-. bernoulli-pmf (1/2) >>=
(λb. if b then return-pmf 0 else map-pmf Suc (geometric-pmf (1/2))))

using assms by (subst geometric-bind-pmf-unfold) auto
also have . . . =

Pi-pmf A False (λ-. bernoulli-pmf (1/2)) >>=
(λb. Pi-pmf A 0 (λx. if b x then return-pmf 0 else map-pmf Suc

(geometric-pmf (1/2))))
using assms by (subst Pi-pmf-bind[of - - - - False]) auto

also have . . . =
do {b ← Pi-pmf A False (λ-. bernoulli-pmf (1/2));

Pi-pmf {x ∈ A. ∼b x} 0 (λx. map-pmf Suc (geometric-pmf (1/2)))}
using assms by (subst Pi-pmf-if-set ′) auto

also have . . . =
do {B ← map-pmf (λb. {x ∈ A. ¬ b x}) (Pi-pmf A False (λ-. bernoulli-pmf

(1/2)));
Pi-pmf B 0 (λx. map-pmf Suc (geometric-pmf (1/2)))}

unfolding map-pmf-def by (auto simp add: bind-assoc-pmf bind-return-pmf)
also have . . . = pmf-of-set (Pow A) >>= (λB. Pi-pmf B 0 (λx. map-pmf Suc

(geometric-pmf (1 / 2))))
unfolding assms using assms by (subst bernoulli-pmf-of-set ′) auto

finally show ?thesis
by simp

qed

lemma binomial-pmf-altdef ′:
fixes A :: ′a set
assumes finite A and card A = n and p: p ∈ {0 ..1}
shows binomial-pmf n p =

map-pmf (λf . card {x∈A. f x}) (Pi-pmf A dflt (λ-. bernoulli-pmf p)) (is
?lhs = ?rhs)
proof −

from assms have ?lhs = binomial-pmf (card A) p
by simp

also have . . . = ?rhs
using assms(1)
proof (induction rule: finite-induct)

case empty
with p show ?case by (simp add: binomial-pmf-0)

next

24

case (insert x A)
from insert.hyps have card (insert x A) = Suc (card A)

by simp
also have binomial-pmf . . . p = do {

b ← bernoulli-pmf p;
f ← Pi-pmf A dflt (λ-. bernoulli-pmf p);

return-pmf ((if b then 1 else 0) + card {y ∈ A. f y})
}

using p by (simp add: binomial-pmf-Suc insert.IH bind-map-pmf)
also have . . . = do {

b ← bernoulli-pmf p;
f ← Pi-pmf A dflt (λ-. bernoulli-pmf p);
return-pmf (card {y ∈ insert x A. (f (x := b)) y})
}

proof (intro bind-pmf-cong refl, goal-cases)
case (1 b f)
have (if b then 1 else 0) + card {y∈A. f y} = card ((if b then {x} else {}) ∪

{y∈A. f y})
using insert.hyps by auto

also have (if b then {x} else {}) ∪ {y∈A. f y} = {y∈insert x A. (f (x := b))
y}

using insert.hyps by auto
finally show ?case by simp

qed
also have . . . = map-pmf (λf . card {y∈insert x A. f y})

(Pi-pmf (insert x A) dflt (λ-. bernoulli-pmf p))
using insert.hyps by (subst Pi-pmf-insert) (simp-all add: pair-pmf-def map-bind-pmf)
finally show ?case .

qed
finally show ?thesis .

qed

lemma bernoulli-pmf-Not:
assumes p ∈ {0 ..1}
shows bernoulli-pmf p = map-pmf Not (bernoulli-pmf (1 − p))

proof −
have ∗: (Not −‘ {True}) = {False} (Not −‘ {False}) = {True}

by blast+
have pmf (bernoulli-pmf p) b = pmf (map-pmf Not (bernoulli-pmf (1 − p))) b

for b
using assms by (cases b) (auto simp add: pmf-map ∗ measure-pmf-single)

then show ?thesis
by (rule pmf-eqI)

qed

lemma binomial-pmf-altdef ′′:
assumes p: p ∈ {0 ..1}
shows binomial-pmf n p =

map-pmf (λf . card {x. x < n ∧ f x}) (Pi-pmf {..<n} dflt (λ-. bernoulli-pmf

25

p))
using assms by (subst binomial-pmf-altdef ′[of {..<n}]) (auto)

context includes monad-normalisation
begin

lemma Pi-pmf-geometric-filter :
assumes finite A p ∈ {0<..1}
shows Pi-pmf A 0 (λ-. geometric-pmf p) =

do {
fb ← Pi-pmf A dflt (λ-. bernoulli-pmf p);
Pi-pmf {x ∈ A. ¬ fb x} 0 (λ-. map-pmf Suc (geometric-pmf p)) }

proof −
have Pi-pmf A 0 (λ-. geometric-pmf p) =

Pi-pmf A 0 (λ-. bernoulli-pmf p >>=
(λb. if b then return-pmf 0 else map-pmf Suc (geometric-pmf p)))

using assms by (subst geometric-bind-pmf-unfold) auto
also have . . . =

Pi-pmf A dflt (λ-. bernoulli-pmf p) >>=
(λb. Pi-pmf A 0 (λx. if b x then return-pmf 0 else map-pmf Suc

(geometric-pmf p)))
using assms by (subst Pi-pmf-bind[of - - - - dflt]) auto

also have . . . =
do {b ← Pi-pmf A dflt (λ-. bernoulli-pmf p);

Pi-pmf {x ∈ A. ¬ b x} 0 (λx. map-pmf Suc (geometric-pmf p))}
using assms by (subst Pi-pmf-if-set ′) (auto)

finally show ?thesis
by simp

qed

lemma Pi-pmf-geometric-filter ′:
assumes finite A p ∈ {0<..1}
shows Pi-pmf A 0 (λ-. geometric-pmf p) =

do {
fb ← Pi-pmf A dflt (λ-. bernoulli-pmf (1 − p));
Pi-pmf {x ∈ A. fb x} 0 (λ-. map-pmf Suc (geometric-pmf p)) }

using assms by (auto simp add: Pi-pmf-geometric-filter [of - - ¬ dflt] bernoulli-pmf-Not[of
p]

Pi-pmf-map[of - - dflt] map-pmf-def [of ((◦) Not)])

end

end

4 Randomized Skip Lists
theory Skip-List

imports Geometric-PMF
Misc

26

Monad-Normalisation.Monad-Normalisation
begin

Conflicting notation from HOL−Analysis.Infinite-Sum
no-notation Infinite-Sum.abs-summable-on (infixr ‹abs ′-summable ′-on› 46)

4.1 Preliminaries
lemma bind-pmf-if ′: (do {c ← C ;

ab ← (if c then A else B);
D ab}:: ′a pmf) =

do {c ← C ;
(if c then (A >>= D) else (B >>= D))}

by (metis (mono-tags, lifting))

abbreviation (input) Max0 where Max0 ≡ (λA. Max (A ∪ {0}))

4.2 Definition of a Randomised Skip List

Given a set A we assign a geometric random variable (counting the number
of failed Bernoulli trials before the first success) to every element in A. That
means an arbitrary element of A is on level n with probability (1 − p)np.
We define he height of the skip list as the maximum assigned level. So a
skip list with only one level has height 0 but the calculation of the expected
height is cleaner this way.
locale random-skip-list =

fixes p::real
begin

definition q where q = 1 − p

definition SL :: (′a::linorder) set ⇒ (′a ⇒ nat) pmf where SL A = Pi-pmf A 0
(λ-. geometric-pmf p)
definition SLN :: nat ⇒ (nat ⇒ nat) pmf where SLN n = SL {..<n}

4.3 Height of Skip List
definition H where H A = map-pmf (λf . Max0 (f ‘ A)) (SL A)
definition HN :: nat ⇒ nat pmf where HN n = H {..<n}

context includes monad-normalisation
begin

The height of a skip list is independent of the values in a set A. For simplicity
we can therefore work on the skip list over the set {..<card A}
lemma

assumes finite A
shows H A = HN (card A)

27

proof −
define f ′ where f ′ = (λx. if x ∈ A

then the-inv-into {..<card A} ((!) (sorted-list-of-set A)) x
else card A)

have bij-f ′: bij-betw f ′ A {..<card A}
proof −

have bij-betw (the-inv-into {..<card A} ((!) (sorted-list-of-set A))) A {..<card
A}

unfolding f ′-def using sorted-list-of-set-bij-betw assms bij-betw-the-inv-into
by blast

moreover have bij-betw (the-inv-into {..<card A} ((!) (sorted-list-of-set A)))
A {..<card A}

= bij-betw f ′ A {..<card A}
unfolding f ′-def by (rule bij-betw-cong) simp

ultimately show ?thesis
by blast

qed
have ∗: Max0 ((f ◦ f ′) ‘ A) = Max0 (f ‘ {..<card A}) for f :: nat ⇒ nat

using bij-betw-imp-surj-on bij-f ′ image-comp by metis
have H A = map-pmf (λf . Max0 (f ‘ A)) (map-pmf (λg. g ◦ f ′) (SLN (card A)))

using assms bij-f ′ unfolding H-def SL-def SLN -def
by (subst Pi-pmf-bij-betw[of - f ′ {..<card A}]) (auto simp add: f ′-def)

also have . . . = HN (card A)
unfolding HN -def H-def SLN -def using ∗ by (auto intro!: bind-pmf-cong simp

add: map-pmf-def)
finally show ?thesis

by simp
qed

The cumulative distribution function (CDF) of the height is the CDF of the
geometric PMF to the power of n
lemma prob-Max-IID-geometric-atMost:

assumes p ∈ {0 ..1}
shows measure-pmf .prob (HN n) {..i}

= (measure-pmf .prob (geometric-pmf p) {..i}) ^ n (is ?lhs = ?rhs)
proof −

note SL-def [simp] SLN -def [simp] H-def [simp] HN -def [simp]
have {f . Max0 (f ‘ {..<n}) ≤ i} = {..<n} → {..i}

by auto
then have ?lhs = measure-pmf .prob (SLN n) ({..<n} → {..i})

by (simp add: vimage-def)
also have . . . = measure-pmf .prob (SLN n) (PiE-dflt {..<n} 0 (λ-. {..i}))

by (intro measure-prob-cong-0) (auto simp add: PiE-dflt-def pmf-Pi split:
if-splits)

also have . . . = measure-pmf .prob (geometric-pmf p) {..i} ^ n
using assms by (auto simp add: measure-Pi-pmf-PiE-dflt)

finally show ?thesis
by simp

28

qed

lemma prob-Max-IID-geometric-greaterThan:
assumes p ∈ {0<..1}
shows measure-pmf .prob (HN n) {i<..} =

1 − (1 − q ^ (i + 1)) ^ n
proof −

have UNIV − {..i} = {i<..}
by auto

then have measure-pmf .prob (HN n) {i<..} = measure-pmf .prob (HN n) (space
(measure-pmf (HN n)) − {..i})

by (auto)
also have . . . = 1 − (measure-pmf .prob (geometric-pmf p) {..i}) ^ n
using assms by (subst measure-pmf .prob-compl) (auto simp add: prob-Max-IID-geometric-atMost)

also have . . . = 1 − (1 − q ^ (i + 1)) ^ n
using assms unfolding q-def by (subst geometric-pmf-prob-atMost) auto

finally show ?thesis
by simp

qed

end
end

An alternative definition of the expected value of a non-negative random
variable 1

lemma expectation-prob-atLeast:
assumes (λi. measure-pmf .prob N {i..}) abs-summable-on {1 ..}
shows measure-pmf .expectation N real = infsetsum (λi. measure-pmf .prob N
{i..}) {1 ..}

integrable N real
proof −

have (λ(x, y). pmf N y) abs-summable-on Sigma {Suc 0 ..} atLeast
using assms by (auto simp add: measure-pmf-conv-infsetsum abs-summable-on-Sigma-iff)
then have summable: (λ(x, y). pmf N x) abs-summable-on Sigma {Suc 0 ..}

(atLeastAtMost (Suc 0))
by (subst abs-summable-on-reindex-bij-betw[of λ(x,y). (y,x), symmetric])
(auto intro!: bij-betw-imageI simp add: inj-on-def case-prod-beta)

have measure-pmf .expectation N real = (
∑

ax. pmf N x ∗R real x)
by (auto simp add: infsetsum-def integral-density measure-pmf-eq-density)

also have . . . = (
∑

ax ∈ ({0} ∪ {Suc 0 ..}). pmf N x ∗R real x)
by (auto intro!: infsetsum-cong)

also have . . . = (
∑

ax∈{Suc 0 ..}. pmf N x ∗ real x)
proof −

have (λx. pmf N x ∗R real x) abs-summable-on {0} ∪ {Suc 0 ..}
using summable by (subst (asm) abs-summable-on-Sigma-iff) (auto simp add:

mult.commute)
then show ?thesis

1https://en.wikipedia.org/w/index.php?title=Expected_value&oldid=881384346#
Formula_for_non-negative_random_variables

29

https://en.wikipedia.org/w/index.php?title=Expected_value&oldid=881384346#Formula_for_non-negative_random_variables
https://en.wikipedia.org/w/index.php?title=Expected_value&oldid=881384346#Formula_for_non-negative_random_variables

by (subst infsetsum-Un-Int) auto
qed
also have . . . = (

∑
a(x, y)∈Sigma {Suc 0 ..} (atLeastAtMost (Suc 0)). pmf N

x)
using summable by (subst infsetsum-Sigma) (auto simp add: mult.commute)

also have . . . = (
∑

ax∈Sigma {Suc 0 ..} atLeast. pmf N (snd x))
by (subst infsetsum-reindex-bij-betw[of λ(x,y). (y,x), symmetric])
(auto intro!: bij-betw-imageI simp add: inj-on-def case-prod-beta)

also have . . . = infsetsum (λi. measure-pmf .prob N {i..}) {1 ..}
using assms
by (subst infsetsum-Sigma)
(auto simp add: measure-pmf-conv-infsetsum abs-summable-on-Sigma-iff inf-

setsum-Sigma ′)
finally show measure-pmf .expectation N real = infsetsum (λi. measure-pmf .prob

N {i..}) {1 ..}
by simp

have (λx. pmf N x ∗R real x) abs-summable-on {0} ∪ {Suc 0 ..}
using summable by (subst (asm) abs-summable-on-Sigma-iff) (auto simp add:

mult.commute)
then have (λx. pmf N x ∗R real x) abs-summable-on UNIV

by (simp add: atLeast-Suc)
then have integrable (count-space UNIV) (λx. pmf N x ∗R real x)

by (subst abs-summable-on-def [symmetric]) blast
then show integrable N real

by (subst measure-pmf-eq-density, subst integrable-density) auto
qed

The expected height of a skip list has no closed-form expression but we can
approximate it. We start by showing how we can calculate an infinite sum
over the natural numbers with an integral over the positive reals and the
floor function.
lemma infsetsum-set-nn-integral-reals:

assumes f abs-summable-on UNIV
∧

n. f n ≥ 0
shows infsetsum f UNIV = set-nn-integral lborel {0 ::real..} (λx. f (nat (floor

x)))
proof −

have x < 1 + (floor x)for x::real
by linarith

then have ∃n. real n ≤ x ∧ x < 1 + real n if x ≥ 0 for x
using that of-nat-floor by (intro exI [of - nat (floor x)]) auto

then have {0 ..} = (
⋃

n. {real n..<real (Suc n)})
by auto

then have (
∫

+x∈{0 ::real..}. ennreal (f (nat bxc))∂lborel) =
(
∑

n.
∫

+x∈{real n..<1 + real n}. ennreal (f (nat bxc))∂lborel)
by (auto simp add: disjoint-family-on-def nn-integral-disjoint-family)

also have . . . = (
∑

n.
∫

+x∈{real n..<1 + real n}. ennreal (f n)∂lborel)
by(subst suminf-cong, rule nn-integral-cong-AE)
(auto intro!: eventuallyI simp add: indicator-def floor-eq4)

also have . . . = (
∑

n. ennreal (f n))

30

by (auto intro!: suminf-cong simp add: nn-integral-cmult)
also have . . . = infsetsum f {0 ..}

using assms suminf-ennreal2 abs-summable-on-nat-iff ′ summable-norm-cancel
by (auto simp add: infsetsum-nat)

finally show ?thesis
by simp

qed

lemma nn-integral-nats-reals:
shows (

∫
+ i. ennreal (f i) ∂count-space UNIV) = (

∫
+x∈{0 ::real..}. ennreal (f

(nat bxc))∂lborel)
proof −

have x < 1 + (floor x)for x::real
by linarith

then have ∃n. real n ≤ x ∧ x < 1 + real n if x ≥ 0 for x
using that of-nat-floor by (intro exI [of - nat (floor x)]) auto

then have {0 ..} = (
⋃

n. {real n..<real (Suc n)})
by auto

then have (
∫

+x∈{0 ::real..}. f (nat bxc)∂lborel) =
(
∑

n.
∫

+x∈{real n..<1 + real n}. ennreal (f (nat bxc))∂lborel)
by (auto simp add: disjoint-family-on-def nn-integral-disjoint-family)

also have . . . = (
∑

n.
∫

+x∈{real n..<1 + real n}. ennreal (f n)∂lborel)
by(subst suminf-cong,rule nn-integral-cong-AE)
(auto intro!: eventuallyI simp add: indicator-def floor-eq4)

also have . . . = (
∑

n. ennreal (f n))
by (auto intro!: suminf-cong simp add: nn-integral-cmult)

also have . . . = (
∫

+ i. ennreal (f i) ∂count-space UNIV)
by (simp add: nn-integral-count-space-nat)

finally show ?thesis
by simp

qed

lemma nn-integral-floor-less-eq:
assumes

∧
x y. x ≤ y =⇒ f y ≤ f x

shows (
∫

+x∈{0 ::real..}. ennreal (f x)∂lborel) ≤ (
∫

+x∈{0 ::real..}. ennreal (f
(nat bxc))∂lborel)
using assms by (auto simp add: indicator-def intro!: nn-integral-mono ennreal-leI)

lemma nn-integral-finite-imp-abs-sumable-on:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes nn-integral (count-space A) (λx. norm (f x)) < ∞
shows f abs-summable-on A
using assms unfolding abs-summable-on-def integrable-iff-bounded by auto

lemma nn-integral-finite-imp-abs-sumable-on ′:
assumes nn-integral (count-space A) (λx. ennreal (f x)) < ∞

∧
x. f x ≥ 0

shows f abs-summable-on A
using assms unfolding abs-summable-on-def integrable-iff-bounded by auto

We now show that
∫∞
0 1− (1− qx)n dx = −Hn

ln q if 0 < q < 1.

31

lemma harm-integral-x-raised-n:
set-integrable lborel {0 ::real..1} (λx. (

∑
i∈{..<n}. x ^ i)) (is ?thesis1)

LBINT x = 0 ..1 . (
∑

i∈{..<n}. x ^ i) = harm n (is ?thesis2)
proof −

have h: set-integrable lborel {0 ::real..1} (λx. (
∑

i∈{..<n}. x ^ i)) for n
by (intro borel-integrable-atLeastAtMost ′) (auto intro!: continuous-intros)

then show ?thesis1
by (intro borel-integrable-atLeastAtMost ′) (auto intro!: continuous-intros)

show ?thesis2
proof (induction n)

case (Suc n)
have (LBINT x=0 ..1 .(

∑
i∈{..<n}. x ^ i) + x ^ n) =

(LBINT x=0 ..1 . (
∑

i∈{..<n}. x ^ i)) + (LBINT x=0 ..1 . x ^ n)
proof −

have set-integrable lborel (einterval 0 1) (λx. (
∑

i∈{..<n}. x ^ i))
by (rule set-integrable-subset) (use h in ‹auto simp add: einterval-def ›)

moreover have set-integrable lborel (einterval 0 1) (λx. (x ^ n))
proof −

have set-integrable lborel {0 ::real..1} (λx. (x ^ n))
by (rule borel-integrable-atLeastAtMost ′)
(auto intro!: borel-integrable-atLeastAtMost ′ continuous-intros)

then show ?thesis
by (rule set-integrable-subset) (auto simp add: einterval-def)

qed
ultimately show ?thesis
by (auto intro!: borel-integrable-atLeastAtMost ′ simp add: interval-lebesgue-integrable-def)

qed
also have (LBINT x=0 ..1 . x ^ n) = 1 / (1 + real n)
proof −

have (LBINT x=0 ..1 . x ^ n) = (LBINT x. x ^ n ∗ indicator {0 ..1} x)
proof −

have AE x in lborel. x ^ n ∗ indicator {0 ..1} x = indicator (einterval 0 1)
x ∗ x ^ n

by(rule eventually-mono[OF eventually-conj[OF AE-lborel-singleton[of 1]
AE-lborel-singleton[of 0]]])

(auto simp add: indicator-def einterval-def)
then show ?thesis

using integral-cong-AE unfolding interval-lebesgue-integral-def set-lebesgue-integral-def
by (auto intro!: integral-cong-AE)

qed
then show ?thesis

by (auto simp add: integral-power)
qed
finally show ?case

using Suc by (auto simp add: harm-def inverse-eq-divide)
qed (auto simp add: harm-def)

qed

lemma harm-integral-0-1-fraction:

32

set-integrable lborel {0 ::real..1} (λx. (1 − x ^ n) / (1 − x))
(LBINT x = 0 ..1 . ((1 − x ^ n) / (1 − x))) = harm n

proof −
show set-integrable lborel {0 ::real..1} (λx. (1 − x ^ n) / (1 − x))
proof −

have AE x∈{0 ::real..1} in lborel. (1 − x ^ n) / (1 − x) = sum ((^) x) {..<n}
by (smt (verit, best) AE-lborel-singleton eventually-mono sum-gp-strict)

with harm-integral-x-raised-n show ?thesis
by (subst set-integrable-cong-AE) auto

qed
moreover have AE x∈{0 ::real<..<1} in lborel. (1 − x ^ n) / (1 − x) = sum

((^) x) {..<n}
by (auto simp add: sum-gp-strict)

moreover have einterval (min 0 1) (max 0 1) = {0 ::real<..<1}
by (auto simp add: min-def max-def einterval-iff)

ultimately show (LBINT x = 0 ..1 . ((1 − x ^ n) / (1 − x))) = harm n
using harm-integral-x-raised-n by (subst interval-integral-cong-AE) auto

qed

lemma one-minus-one-minus-q-x-n-integral:
assumes q ∈ {0<..<1}
shows set-integrable lborel (einterval 0 ∞) (λx. (1 − (1 − q powr x) ^ n))

(LBINT x=0 ..∞. 1 − (1 − q powr x) ^ n) = − harm n / ln q
proof −

have [simp]: q powr (log q (1−x)) = 1 − x if x ∈ {0<..<1} for x
using that assms by (subst powr-log-cancel) auto

have 1 : ((ereal ◦ (λx. log q (1 − x)) ◦ real-of-ereal) −−−→ 0) (at-right 0)
using assms unfolding zero-ereal-def ereal-tendsto-simps by (auto intro!: tend-

sto-eq-intros)
have 2 : ((ereal ◦ (λx. log q (1−x)) ◦ real-of-ereal) −−−→ ∞) (at-left 1)
proof −

have filterlim ((−) 1) (at-right 0) (at-left (1 ::real))
by (intro filterlim-at-withinI eventually-at-leftI [of 0]) (auto intro!: tend-

sto-eq-intros)
then have LIM x at-left 1 . − inverse (ln q) ∗ − ln (1 − x) :> at-top

using assms
by (intro filterlim-tendsto-pos-mult-at-top [OF tendsto-const])
(auto simp: filterlim-uminus-at-top intro!: filterlim-compose[OF ln-at-0])

then show ?thesis
unfolding one-ereal-def ereal-tendsto-simps log-def by (simp add: field-simps)

qed
have 3 : set-integrable lborel (einterval 0 1)

(λx. (1 − (1 − q powr (log q (1 − x))) ^ n) ∗ (− 1 / (ln q ∗ (1 − x))))
proof −

have set-integrable lborel (einterval 0 1) (λx. − (1 / ln q) ∗ ((1 − x ^ n) / (1
− x)))

by(intro set-integrable-mult-right)
(auto intro!: harm-integral-0-1-fraction intro: set-integrable-subset simp add:

einterval-def)

33

then show ?thesis
by(subst set-integrable-cong-AE [where g=λx. − (1 / ln q) ∗ ((1 − x ^ n) /

(1 − x))])
(auto intro!: eventuallyI simp add: einterval-def)

qed
have 4 : LBINT x=0 ..1 . − ((1 − (1 − q powr log q (1 − x)) ^ n) / (ln q ∗ (1
− x))) = − (harm n / ln q)

(is ?lhs = ?rhs)
proof −

have ?lhs = LBINT x=0 ..1 . ((1 − x ^ n) / (1 − x)) ∗ (− 1 / ln q)
using assms
by (intro interval-integral-cong-AE)
(auto intro!: eventuallyI simp add: max-def einterval-def field-simps)

also have . . . = harm n ∗ (−1 / ln q)
using harm-integral-0-1-fraction by (subst interval-lebesgue-integral-mult-left)

auto
finally show ?thesis

by auto
qed
note sub = interval-integral-substitution-nonneg

[where f = (λx. (1 − (1 − q powr x) ^ n)) and g=(λx. log q (1−x))
and g ′=(λx. − 1 / (ln q ∗ (1 − x))) and a = 0 and b = 1]

show set-integrable lborel (einterval 0 ∞) (λx. (1 − (1 − q powr x) ^ n))
using assms 1 2 3 4

by (intro sub) (auto intro!: sub derivative-eq-intros continuous-intros mult-nonneg-nonpos2
power-le-one)

show (LBINT x=0 ..∞. 1 − (1 − q powr x) ^ n) = − harm n / ln q
using assms 1 2 3 4

by (subst sub) (auto intro!: derivative-eq-intros continuous-intros mult-nonneg-nonpos2
power-le-one)
qed

lemma one-minus-one-minus-q-x-n-nn-integral:
fixes q::real
assumes q ∈ {0<..<1}
shows set-nn-integral lborel {0 ..} (λx. (1 − (1 − q powr x) ^ n)) =

LBINT x=0 ..∞. 1 − (1 − q powr x) ^ n
proof −

have set-nn-integral lborel {0 ..} (λx. (1 − (1 − q powr x) ^ n)) =
nn-integral lborel (λx. indicator (einterval 0 ∞) x ∗ (1 − (1 − q powr x)

^ n))
using assms by (intro nn-integral-cong-AE eventually-mono[OF AE-lborel-singleton[of

0]])
(auto simp add: indicator-def einterval-def)

also have . . . = ennreal (LBINT x. indicator (einterval 0 ∞) x ∗ (1 − (1 − q
powr x) ^ n))

using one-minus-one-minus-q-x-n-integral assms
by(intro nn-integral-eq-integral)
(auto simp add: indicator-def einterval-def set-integrable-def

34

intro!: eventuallyI power-le-one powr-le1)
finally show ?thesis

by (simp add: interval-lebesgue-integral-def set-lebesgue-integral-def)
qed

We can now derive bounds for the expected height.
context random-skip-list
begin

definition EHN where EHN n = measure-pmf .expectation (HN n) real

lemma EHN -bounds ′:
fixes n::nat
assumes p ∈ {0<..<1} 0 < n
shows − harm n / ln q − 1 ≤ EHN n

EHN n ≤ − harm n / ln q
integrable (HN n) real

proof −
define f where f = (λx. 1 − (1 − q ^ x) ^ n)
define f ′ where f ′ = (λx. 1 − (1 − q powr x) ^ n)
have q: q ∈ {0<..<1}

unfolding q-def using assms by auto
have f-descending: f y ≤ f x if x ≤ y for x y

unfolding f-def using that q
by (auto intro!: power-mono simp add: power-decreasing power-le-one-iff)

have f ′-descending: f ′ y ≤ f ′ x if x ≤ y 0 ≤ x for x y
unfolding f ′-def using that q
by (auto intro!: power-mono simp add: ln-powr powr-def mult-nonneg-nonpos)

have [simp]: harm n / ln q <= 0
using harm-nonneg ln-ge-zero-imp-ge-one q by (intro divide-nonneg-neg) auto

have f-nn-integral-harm:
− harm n / ln q ≤

∫
+ x. (f x) ∂count-space UNIV

(
∫

+ i. f (i + 1) ∂count-space UNIV) ≤ − harm n / ln q
proof −

have (
∫

+ i. f (i + 1) ∂count-space UNIV) = (
∫

+x∈{0 ::real..}. (f (nat bxc
+ 1))∂lborel)

using nn-integral-nats-reals by auto
also have . . . = (

∫
+x∈{0 ::real..}. ennreal (f ′ (nat bxc + 1))∂lborel)

proof −
have 0 ≤ x =⇒ (1 − q ∗ q ^ nat bxc) ^ n = (1 − q powr (1 + real-of-int

bxc)) ^ n for x::real
using q by (subst powr-realpow [symmetric]) (auto simp: powr-add)

then show ?thesis
unfolding f-def f ′-def using q
by (auto intro!: nn-integral-cong ennreal-cong simp add: powr-real-of-int

indicator-def)
qed
also have . . . ≤ set-nn-integral lborel {0 ..} f ′

proof −

35

have x ≤ 1 + real-of-int bxc for x
by linarith

then show ?thesis
by (auto simp add: indicator-def intro!: f ′-descending nn-integral-mono

ennreal-leI)
qed
also have harm-integral-f ′: . . . = − harm n / ln q

unfolding f ′-def using q
by (auto intro!: ennreal-cong
simp add: one-minus-one-minus-q-x-n-nn-integral one-minus-one-minus-q-x-n-integral)

finally show (
∫

+ i. f (i + 1) ∂count-space UNIV) ≤ − harm n / ln q
by simp

note harm-integral-f ′[symmetric]
also have set-nn-integral lborel {0 ..} f ′≤ (

∫
+x∈{0 ::real..}. f ′ (nat bxc)∂lborel)

using assms f ′-descending
by (auto simp add: indicator-def intro!: nn-integral-mono ennreal-leI)

also have . . . = (
∫

+x∈{0 ::real..}. f (nat bxc)∂lborel)
unfolding f-def f ′-def

using q by (auto intro!: nn-integral-cong ennreal-cong simp add: powr-real-of-int
indicator-def)

also have . . . = (
∫

+ x. f x ∂count-space UNIV)
using nn-integral-nats-reals by auto

finally show − harm n / ln q ≤
∫

+ x. f x ∂count-space UNIV
by simp

qed
then have f1-abs-summable-on: (λi. f (i + 1)) abs-summable-on UNIV

unfolding f-def using q
by (intro nn-integral-finite-imp-abs-sumable-on ′)
(auto simp add: f-def le-less-trans intro!: power-le-one mult-le-one)

then have f-abs-summable-on: f abs-summable-on {1 ..}
using Suc-le-lessD greaterThan-0
by (subst abs-summable-on-reindex-bij-betw[symmetric, where g=λx. x + 1

and A=UNIV]) auto
also have (f abs-summable-on {1 ..}) = ((λx. measure-pmf .prob (HN n) {x..})

abs-summable-on {1 ..})
proof −

have ((λx. measure-pmf .prob (HN n) {x..}) abs-summable-on {1 ..}) =
((λx. measure-pmf .prob (HN n) {x − 1<..}) abs-summable-on {1 ..})

by (auto intro!: measure-prob-cong-0 abs-summable-on-cong)
also have . . . = (f abs-summable-on {1 ..})

using assms
by (intro abs-summable-on-cong) (auto simp add: f-def prob-Max-IID-geometric-greaterThan)
finally show ?thesis

by simp
qed
finally have EHN -sum:

EHN n = (
∑

ai∈{1 ..}. measure-pmf .prob (HN n) {i..})
integrable (measure-pmf (HN n)) real
unfolding EHN -def using expectation-prob-atLeast by auto

36

then show integrable (measure-pmf (HN n)) real
by simp

have EHN -sum ′: EHN n = infsetsum f {1 ..}
proof −

have EHN n = (
∑

ak∈{1 ..}. measure-pmf .prob (HN n) {k − 1<..})
unfolding EHN -sum by (auto intro!: measure-prob-cong-0 infsetsum-cong)

also have . . . = infsetsum f {1 ..}
using assms

by (intro infsetsum-cong) (auto simp add: f-def prob-Max-IID-geometric-greaterThan)
finally show ?thesis

by simp
qed
also have . . . = (

∑
ak. f (k + 1))

using Suc-le-lessD greaterThan-0
by (subst infsetsum-reindex-bij-betw[symmetric, where g=λx. x + 1 and

A=UNIV]) auto
also have ennreal . . . = (

∫
+x∈{0 ::real..}. f (nat bxc + 1)∂lborel)

using f1-abs-summable-on q
by (intro infsetsum-set-nn-integral-reals) (auto simp add: f-def mult-le-one

power-le-one)
also have . . . = (

∫
+ i. f (i + 1) ∂count-space UNIV)

using nn-integral-nats-reals by auto
also have . . . ≤ − harm n / ln q

using f-nn-integral-harm by auto
finally show EHN n ≤ − harm n / ln q

by (subst (asm) ennreal-le-iff) (auto)
have EHN n + 1 = (

∑
ax∈{Suc 0 ..}. f x) + (

∑
ax∈{0}. f x)

using assms by (subst EHN -sum ′) (auto simp add: f-def)
also have . . . = infsetsum f UNIV

using f-abs-summable-on by (subst infsetsum-Un-disjoint[symmetric]) (auto
intro!: infsetsum-cong)

also have . . . = (
∫

+x∈{0 ::real..}. f (nat bxc)∂lborel)
proof −

have f abs-summable-on ({0} ∪ {1 ..})
using f-abs-summable-on by (intro abs-summable-on-union) (auto)

also have {0 ::nat} ∪ {1 ..} = UNIV
by auto

finally show ?thesis
using q
by (intro infsetsum-set-nn-integral-reals) (auto simp add: f-def mult-le-one

power-le-one)
qed
also have . . . = (

∫
+ x. f x ∂count-space UNIV)

using nn-integral-nats-reals by auto
also have ... ≥ − harm n / ln q

using f-nn-integral-harm by auto
finally have − harm n / ln q ≤ EHN n + 1

by (subst (asm) ennreal-le-iff) (auto simp add: EHN -def)
then show − harm n / ln q − 1 ≤ EHN n

37

by simp
qed

theorem EHN -bounds:
fixes n::nat
assumes p ∈ {0<..<1}
shows
− harm n / ln q − 1 ≤ EHN n
EHN n ≤ − harm n / ln q
integrable (HN n) real

proof −
show − harm n / ln q − 1 ≤ EHN n

using assms EHN -bounds ′

by (cases n = 0) (auto simp add: EHN -def HN -def H-def SL-def harm-expand)
show EHN n ≤ − harm n / ln q

using assms EHN -bounds ′

by (cases n = 0) (auto simp add: EHN -def HN -def H-def SL-def harm-expand)
show integrable (HN n) real

using assms EHN -bounds ′

by (cases n = 0) (auto simp add: HN -def H-def SL-def intro!: integrable-measure-pmf-finite)
qed

end

4.4 Expected Length of Search Path

Let A and f where f is an abstract description of a skip list (assign each
value its maximum level). steps A f s u l starts on the rightmost element on
level s in the skip lists. If possible it moves up, if not it moves to the left.
For every step up it adds cost u and for every step to the left it adds cost
l. steps A f 0 1 1 therefore walks from the bottom right corner of a skip list
to the top left corner of a skip list and counts all steps.
function steps :: ′a :: linorder set ⇒ (′a ⇒ nat) ⇒ nat ⇒ nat ⇒ nat ⇒ nat
where

steps A f l up left = (if A = {} ∨ infinite A
then 0

else (let m = Max A in (if f m < l then steps (A − {m}) f l up left
else (if f m > l then up + steps A f (l + 1) up left

else left + steps (A − {m}) f l up left))))
by pat-completeness auto

termination
proof (relation (λ(A,f ,l,a,b). card A) <∗mlex∗> (λ(A,f ,l,a,b). Max (f ‘ A) − l)
<∗mlex∗> {}, goal-cases)

case 1
then show ?case

by(intro wf-mlex wf-empty)
next

case 2

38

then show ?case
by (intro mlex-less) (auto simp: card-gt-0-iff)

next
case (3 A f l a b x)
then have Max (f ‘ A) − Suc l < Max (f ‘ A) − l
by (meson Max-gr-iff Max-in diff-less-mono2 finite-imageI imageI image-is-empty

lessI)
with 3 have ((A, f , l + 1 , a, b), A, f , l, a, b) ∈ (λ(A, f , l, a, b). Max (f ‘ A)

− l) <∗mlex∗> {}
by (intro mlex-less) (auto)

with 3 show ?case apply − apply(rule mlex-leq) by auto
next

case 4
then show ?case by (intro mlex-less) (auto simp: card-gt-0-iff)

qed

declare steps.simps[simp del]

lsteps is similar to steps but is using lists instead of sets. This makes the
proofs where we use induction easier.
function lsteps :: ′a list ⇒ (′a ⇒ nat) ⇒ nat ⇒ nat ⇒ nat ⇒ nat where

lsteps [] f l up left = 0 |
lsteps (x#xs) f l up left = (if f x < l then lsteps xs f l up left

else (if f x > l then up + lsteps (x#xs) f (l + 1) up left
else left + lsteps xs f l up left))

by pat-completeness auto
termination
proof (relation (λ(xs,f ,l,a,b). length xs) <∗mlex∗> (λ(xs,f ,l,a,b).

Max (f ‘ set xs) − l) <∗mlex∗> {},
goal-cases)

case 1
then show ?case

by(intro wf-mlex wf-empty)
next

case 2
then show ?case

by (auto intro: mlex-less simp: card-gt-0-iff)
next

case (3 n f l a b)
show ?case
by (rule mlex-leq) (use 3 in ‹auto intro: mlex-less mlex-leq intro!: diff-less-mono2

simp add: Max-gr-iff ›)
next

case 4
then show ?case by (intro mlex-less) (auto simp: card-gt-0-iff)

qed

declare lsteps.simps(2)[simp del]

39

lemma steps-empty [simp]: steps {} f l up left = 0
by (simp add: steps.simps)

lemma steps-lsteps: steps A f l u v = lsteps (rev (sorted-list-of-set A)) f l u v
proof (cases finite A ∧ A 6= {})

case True
then show ?thesis
proof(induction (rev (sorted-list-of-set A)) f l u v arbitrary: A rule: lsteps.induct)

case (2 y ys f l u v A)
then have y-ys: y = Max A ys = rev (sorted-list-of-set (A − {y}))

by (auto simp add: sorted-list-of-set-Max-snoc)
consider (a) l < f y | (b) f y < l | (c) f y = l

by fastforce
then have steps A f l u v = lsteps (y#ys) f l u v
proof cases

case a
then show ?thesis

by (subst steps.simps, subst lsteps.simps) (use y-ys 2 in auto)
next

case b
then show ?thesis
using y-ys 2 (1) by (cases ys = []) (auto simp add: steps.simps lsteps.simps)

next
case c
then have steps (A − {Max A}) f l u v =

lsteps (rev (sorted-list-of-set (A − {Max A}))) f l u v
by (cases A = {Max A}) (use y-ys 2 in ‹auto intro!: 2 (3) simp add:

steps.simps›)
then show ?thesis

by (subst steps.simps, subst lsteps.simps) (use y-ys 2 in auto)
qed
then show ?case

using 2 by simp
qed (auto simp add: steps.simps)

qed (auto simp add: steps.simps)

lemma lsteps-comp-map: lsteps zs (f ◦ g) l u v = lsteps (map g zs) f l u v
by (induction zs f ◦ g l u v rule: lsteps.induct) (auto simp add: lsteps.simps)

lemma steps-image:
assumes finite A mono-on A g inj-on g A
shows steps A (f ◦ g) l u v = steps (g ‘ A) f l u v

proof −
have (sorted-list-of-set (g ‘ A)) = map g (sorted-list-of-set A)

using sorted-list-of-set-image assms by auto
also have rev . . . = map g (rev (sorted-list-of-set A))

using rev-map by auto
finally show ?thesis

by (simp add: steps-lsteps lsteps-comp-map)

40

qed

lemma lsteps-cong:
assumes ys = xs

∧
x. x ∈ set xs =⇒ f x = g x l = l ′

shows lsteps xs f l u v = lsteps ys g l ′ u v
using assms proof (induction xs f l u v arbitrary: ys l ′ rule: lsteps.induct)
case (2 x xs f l up left)
then show ?case

by (subst ‹ys = x # xs›, subst lsteps.simps, subst (2) lsteps.simps) auto
qed (auto)

lemma steps-cong:
assumes A = B

∧
x. x ∈ A =⇒ f x = g x l = l ′

shows steps A f l u v = steps B g l ′ u v
using assms
by (cases A = {} ∨ infinite A) (auto simp add: steps-lsteps steps.simps intro!:

lsteps-cong)

lemma lsteps-f-add ′:
shows lsteps xs f l u v = lsteps xs (λx. f x + m) (l + m) u v
by (induction xs f l u v rule: lsteps.induct) (auto simp add: lsteps.simps)

lemma steps-f-add ′:
shows steps A f l u v = steps A (λx. f x + m) (l + m) u v
by (cases A = {} ∨ infinite A) (auto simp add: steps-lsteps steps.simps intro!:

lsteps-f-add ′)

lemma lsteps-smaller-set:
assumes m ≤ l
shows lsteps xs f l u v = lsteps [x ← xs. m ≤ f x] f l u v
using assms by (induction xs f l u v rule: lsteps.induct) (auto simp add: lsteps.simps)

lemma steps-smaller-set:
assumes finite A m ≤ l
shows steps A f l u v = steps {x∈A. f x ≥ m} f l u v
using assms
by(cases A = {} ∨ infinite A)
(auto simp add: steps-lsteps steps.simps rev-filter sorted-list-of-set-filter

intro!: lsteps-smaller-set)

lemma lsteps-level-greater-fun-image:
assumes

∧
x. x ∈ set xs =⇒ f x < l

shows lsteps xs f l u v = 0
using assms by (induction xs f l u v rule: lsteps.induct) (auto simp add: lsteps.simps)

lemma lsteps-smaller-card-Max-fun ′:
assumes ∃ x ∈ set xs. l ≤ f x
shows lsteps xs f l u v + l ∗ u ≤ v ∗ length xs + u ∗ Max ((f ‘ (set xs)) ∪ {0})
using assms proof (induction xs f l u v rule: lsteps.induct)

41

case (1 f l up left)
then show ?case by (simp)

next
case (2 x xs f l up left)
consider l = f x ∃ y∈set xs. l ≤ f y | f x = l ¬ (∃ y∈set xs. l ≤ f y) |
f x < l | l < f x
by fastforce

then show ?case
proof cases

assume a: l = f x ∃ y∈set xs. l ≤ f y
have lsteps (x # xs) f l up left + l ∗ up = lsteps xs f l up left + f x ∗ up + left

using a by (auto simp add: lsteps.simps)
also have lsteps xs f l up left + f x ∗ up ≤ left ∗ length xs + up ∗ Max (f ‘ set

xs ∪ {0})
using a 2 by blast

also have up ∗ Max (f ‘ set xs ∪ {0}) ≤ up ∗ Max (insert (f x) (f ‘ set xs))
by simp

finally show ?case
by auto

next
assume a: f x = l ¬ (∃ y∈set xs. l ≤ f y)
have lsteps (x # xs) f l up left + l ∗ up = lsteps xs f l up left + f x ∗ up + left

using a by (auto simp add: lsteps.simps)
also have lsteps xs f l up left = 0

using a by (subst lsteps-level-greater-fun-image) auto
also have f x ∗ up ≤ up ∗ Max (insert (f x) (f ‘ set xs))

by simp
finally show ?case

by simp
next

assume a: f x < l
then have lsteps (x # xs) f l up left = lsteps xs f l up left

by (auto simp add: lsteps.simps)
also have . . . + l ∗ up ≤ left ∗ length (x # xs) + up ∗ Max (insert 0 (f ‘ set

xs))
using a 2 by auto

also have Max (insert 0 (f ‘ set xs)) ≤ Max (f ‘ set (x # xs) ∪ {0})
by simp

finally show ?case
by simp

next
assume f x > l

then show ?case
using 2 by (subst lsteps.simps) auto

qed
qed

lemma steps-smaller-card-Max-fun ′:
assumes finite A ∃ x∈A. l ≤ f x

42

shows steps A f l up left + l ∗ up ≤ left ∗ card A + up ∗ Max0 (f ‘ A)
proof −

let ?xs = rev (sorted-list-of-set A)
have steps A f l up left = lsteps (rev (sorted-list-of-set A)) f l up left

using steps-lsteps by blast
also have . . . + l ∗ up ≤ left ∗ length ?xs + up ∗ Max (f ‘ set ?xs ∪ {0})

using assms by (intro lsteps-smaller-card-Max-fun ′) auto
also have left ∗ length ?xs = left ∗ card A

using assms sorted-list-of-set-length by (auto)
also have set ?xs = A

using assms by (auto)
finally show ?thesis

by simp
qed

lemma lsteps-height:
assumes ∃ x ∈ set xs. l ≤ f x
shows lsteps xs f l up 0 + up ∗ l = up ∗ Max0 (f ‘ (set xs))
using assms proof (induction xs f l up 0 ::nat rule: lsteps.induct)
case (2 x xs f l up)
consider l = f x ∃ y∈set xs. l ≤ f y | f x = l ¬ (∃ y∈set xs. l ≤ f y) |
f x < l | l < f x
by fastforce

then show ?case
proof cases

assume 0 : l = f x ∃ y∈set xs. l ≤ f y
then have 1 : set xs 6= {}

using 2 by auto
then have ∃ xa∈set xs. f x ≤ f xa

using 0 2 by force
then have f x ≤ Max (f ‘ set xs)

using 0 2 by (subst Max-ge-iff) auto
then have max (f x) (Max (f ‘ set xs)) = (Max (f ‘ set xs))

using 0 2 by (auto intro!: simp add: max-def)
then show ?case

using 0 1 2 by (subst lsteps.simps) (auto)
next

assume 0 : f x = l ¬ (∃ y∈set xs. l ≤ f y)
then have Max (insert l (f ‘ set xs)) = l

by (intro Max-eqI) (auto)
moreover have lsteps xs f l up 0 = 0

using 0 by (subst lsteps-level-greater-fun-image) auto
ultimately show ?case

using 0 by (subst lsteps.simps) auto
next

assume 0 : f x < l
then have 1 : set xs 6= {}

using 2 by auto
then have ∃ xa∈set xs. f x ≤ f xa

43

using 0 2 by force
then have f x ≤ Max (f ‘ set xs)

using 0 2 by (subst Max-ge-iff) auto
then have max (f x) (Max (f ‘ set xs)) = Max (f ‘ set xs)

using 0 2 by (auto intro!: simp add: max-def)
then show ?case

using 0 1 2 by (subst lsteps.simps) (auto)
next
assume f x > l

then show ?case
using 2 by (subst lsteps.simps) auto

qed
qed (simp)

lemma steps-height:
assumes finite A
shows steps A f 0 up 0 = up ∗ Max0 (f ‘ A)

proof −
have steps A f 0 up 0 = lsteps (rev (sorted-list-of-set A)) f 0 up 0 + up ∗ 0

by (subst steps-lsteps) simp
also have . . . = up ∗ Max (f ‘ A ∪ {0}) if A 6= {}

using assms that by (subst lsteps-height) auto
finally show ?thesis

using assms by (cases A = {}) (auto)
qed

context random-skip-list
begin

We can now define the pmf describing the length of the search path in a
skip list. Like the height it only depends on the number of elements in the
skip list’s underlying set.
definition R where R A u l = map-pmf (λf . steps A f 0 u l) (SL A)
definition RN :: nat ⇒ nat ⇒ nat ⇒ nat pmf where RN n u l = R {..<n} u l

lemma RN -alt-def : RN n u l = map-pmf (λf . steps {..<n} f 0 u l) (SLN n)
unfolding SLN -def RN -def R-def by simp

context includes monad-normalisation
begin

lemma R-RN :
assumes finite A p ∈ {0 ..1}
shows R A u l = RN (card A) u l

proof −
let ?steps = λA f . steps A f 0 u l
let ?f ′ = bij-mono-map-set-to-nat A
have R A u l = SL A >>= (λf . return-pmf (?steps A f))

44

unfolding R-def map-pmf-def by simp
also have . . . = SLN (card A) >>= (λf . return-pmf (?steps A (f ◦ ?f ′)))
proof −

have ?f ′ x /∈ {..<card A} if x /∈ A for x
using that unfolding bij-mono-map-set-to-nat-def by (auto)

then show ?thesis
using assms bij-mono-map-set-to-nat unfolding SL-def SLN -def
by (subst Pi-pmf-bij-betw[of - ?f ′ {..<card A}])
(auto simp add: map-pmf-def)

qed
also have . . . = SLN (card A) >>= (λf . return-pmf (?steps {..<card A} f))
using assms bij-mono-map-set-to-nat bij-betw-def by (subst steps-image) (fastforce)+

finally show ?thesis
unfolding RN -def R-def SLN -def SL-def by (simp add: map-pmf-def)

qed

RN fulfills a recurrence relation. If we move up or to the left the “remaining”
length of the search path is again a slightly different probability distribution
over the length.
lemma RN -recurrence:

assumes 0 < n p ∈ {0<..1}
shows RN n u l =

do {
b ← bernoulli-pmf p;
if b then — leftwards

map-pmf (λn. n + l) (RN (n − 1) u l)
else do { — upwards

m ← binomial-pmf (n − 1) (1 − p);
map-pmf (λn. n + u) (RN (m + 1) u l)
}
}

proof −
define B where B = (λb. insert (n−1) {x ∈ {..<n − 1}. ¬ b x})
have RN n u l = map-pmf (λf . steps {..<n} f 0 u l) (SLN n)

by (auto simp add: RN -def R-def SLN -def)
also have . . . = map-pmf (λf . steps {..<n} f 0 u l)

(map-pmf (λ(y, f). f (n−1 := y)) (pair-pmf (geometric-pmf
p) (SLN (n − 1))))

proof −
have {..<n} = insert (n − Suc 0) {..<n − 1}

using assms by force
then have (Pi-pmf {..<n} 0 (λ-. geometric-pmf p)) =

map-pmf (λ(y, f). f (n − 1 := y)) (pair-pmf (geometric-pmf p)
(Pi-pmf {..<n−1} 0 (λ-. geometric-pmf p)))

using assms
by (subst Pi-pmf-insert[of {..<n−1} n−1 0 λ-. geometric-pmf p, symmetric])

(auto)
then show ?thesis

by (simp add: SLN -def SL-def)

45

qed
also have . . . =

do { g ← geometric-pmf p;
f ← SLN (n − 1);
return-pmf (steps {..<n} (f (n − 1 := g)) 0 u l)}

by (simp add: case-prod-beta map-pmf-def pair-pmf-def)
also have . . . =

do { b ← bernoulli-pmf p;
g ← if b then return-pmf 0 else map-pmf Suc (geometric-pmf p);
f ← SLN (n − 1);
return-pmf (steps {..<n} (f (n − 1 := g)) 0 u l)}

using assms by (subst geometric-bind-pmf-unfold) (auto)
also have . . . =

do { b ← bernoulli-pmf p;
if b

then do { g ← return-pmf 0 ;
f ← SLN (n − 1);
return-pmf (steps {..<n} (f (n − 1 := g)) 0 u l) }

else do { g ← map-pmf Suc (geometric-pmf p);
f ← SLN (n − 1);
return-pmf (steps {..<n} (f (n − 1 := g)) 0 u l) }}

by (subst bind-pmf-if ′) (auto)
also have do { g ← return-pmf 0 ;

f ← SLN (n − 1);
return-pmf (steps {..<n} (f (n − 1 := g)) 0 u l) } =

do { f ← SLN (n − 1);
return-pmf (steps {..<n} (f (n − 1 := 0)) 0 u l) }

by (subst bind-return-pmf) auto
also have . . . = map-pmf (λn. n + l) (map-pmf (λf . steps {..<n − 1} f 0 u l)

(SLN (n − 1)))
proof −

have I : {..<n} − {n − Suc 0} = {..<n − Suc 0}
by fastforce

have Max {..<n} = n − Suc 0
using assms by (intro Max-eqI) (auto)

then have steps {..<n} (f (n − 1 := 0)) 0 u l = l + steps {..<n − 1} f 0 u l
for f

using assms by (subst steps.simps) (auto intro!: steps-cong simp add: I simp
add: Let-def)

then show ?thesis
by (auto simp add: add-ac map-pmf-def)

qed
also have . . . = map-pmf (λn. n + l) (RN (n − 1) u l)

unfolding RN -def R-def SLN -def by simp
also have map-pmf Suc (geometric-pmf p) >>=

(λg. SLN (n − 1) >>=
(λf . return-pmf (steps {..<n} (f (n − 1 := g)) 0 u l)))
=
Pi-pmf {..<n − 1} True (λ-. bernoulli-pmf p) >>=

46

(λb. map-pmf Suc (geometric-pmf p) >>=
(λg. Pi-pmf {x ∈ {..<n − 1}. ¬ b x} 0 (λ-. map-pmf Suc (geometric-pmf

p)) >>=
(λf . return-pmf (steps {..<n} (f (n − 1 := g)) 0 u l))))

using assms unfolding SLN -def SL-def by (subst Pi-pmf-geometric-filter)
(auto)

also have . . . =
do {
b ← Pi-pmf {..<n − 1} True (λ-. bernoulli-pmf p);
f ← Pi-pmf (insert (n−1) {x ∈ {..<n − 1}. ¬ b x}) 0 (λ-. map-pmf

Suc (geometric-pmf p));
return-pmf (steps {..<n} f 0 u l)} (is - = ?rhs)

using assms by (subst Pi-pmf-insert ′) (auto)
also have . . . =

do {
b ← Pi-pmf {..<n − 1} True (λ-. bernoulli-pmf p);
f ← Pi-pmf (B b) 1 (λ-. map-pmf Suc (geometric-pmf p));
return-pmf (steps {..<n} (λx. if x ∈ (B b) then f x else 0) 0 u l)}

by (subst Pi-pmf-default-swap[symmetric, of - - - 1]) (auto simp add: map-pmf-def
B-def)

also have . . . =
do {

b ← Pi-pmf {..<n − 1} True (λ-. bernoulli-pmf p);
f ← SL (B b);
return-pmf (steps {..<n} (λx. if x ∈ (B b) then Suc (f x) else 0) 0 u

l)}
proof −

have ∗: (Suc ◦ f) x = Suc (f x) for x and f ::nat ⇒ nat
by simp

have (λf . return-pmf (steps {..<n} (λx. if x ∈ B b then (Suc ◦ f) x else 0) 0
u l)) =

(λf . return-pmf (steps {..<n} (λx. if x ∈ B b then Suc (f x) else 0) 0 u
l)) for b

by (subst ∗) (simp)
then show ?thesis

by (subst Pi-pmf-map[of - - 0]) (auto simp add: map-pmf-def B-def SL-def)
qed
also have . . . =

do {
b ← Pi-pmf {..<n − 1} True (λ-. bernoulli-pmf p);
r ← R (B b) u l;
return-pmf (u + r)}

proof −
have steps {..<n} (λx. if x ∈ B b then Suc (f x) else 0) 0 u l = u + steps (B

b) f 0 u l
for f b

proof −
have Max {..<n} = n − 1

using assms by (intro Max-eqI) auto

47

then have steps {..<n} (λx. if x ∈ B b then Suc (f x) else 0) 0 u l =
u + (steps {..<n} (λx. if x ∈ (B b) then Suc (f x) else 0) 1 u l)

unfolding B-def using assms by (subst steps.simps) (auto simp add:
Let-def)

also have steps {..<n} (λx. if x ∈ (B b) then Suc (f x) else 0) 1 u l =
steps (B b) (λx. if x ∈ (B b) then Suc (f x) else 0) 1 u l

proof −
have {x ∈ {..<n}. 1 ≤ (if x ∈ B b then Suc (f x) else 0)} = B b

using assms unfolding B-def by force
then show ?thesis

by (subst steps-smaller-set[of - 1]) auto
qed
also have . . . = steps (B b) (λx. f x + 1) 1 u l

by (rule steps-cong) (auto)
also have . . . = steps (B b) f 0 u l

by (subst (2) steps-f-add ′[of - - - - - 1]) simp
finally show ?thesis

by auto
qed
then show ?thesis

by (simp add: R-def map-pmf-def)
qed
also have . . . = do {

b ← Pi-pmf {..<n − 1} False (λ-. bernoulli-pmf (1 − p));
let m = 1 + card {x. x < n − 1 ∧ b x};
r ← R {..<m} u l;
return-pmf (u + r)}

proof −
have ∗: card (insert (n − Suc 0) {x. x < n − 1 ∧ b x}) =

(Suc (card {x. x < n − 1 ∧ b x})) for b
using assms by (auto simp add: card-insert-if)

have Pi-pmf {..<n − 1} True (λ-. bernoulli-pmf p) =
Pi-pmf {..<n − 1} True (λ-. map-pmf Not (bernoulli-pmf (1 − p)))

using assms by (subst bernoulli-pmf-Not) auto
also have . . . = map-pmf ((◦) Not) (Pi-pmf {..<n − 1} False (λ-. bernoulli-pmf

(1 − p)))
using assms by (subst Pi-pmf-map[of - - False]) auto

finally show ?thesis
unfolding B-def using assms ∗
by (subst R-RN) (auto simp add: R-RN map-pmf-def)

qed
also have . . . = binomial-pmf (n − 1) (1 − p) >>= (λm. map-pmf (λn. n + u)

(RN (m + 1) u l))
using assms
by (subst binomial-pmf-altdef ′[where A = {..<n − 1} and dflt = False])
(auto simp add: RN -def R-def SL-def map-pmf-def ac-simps)

finally show ?thesis
by simp

qed

48

end

The expected height and length of search path defined as non-negative in-
tegral. It’s easier to prove the recurrence relation of the expected length of
the search path using non-negative integrals.
definition NHN where NHN n = nn-integral (HN n) real
definition NRN where NRN n u l = nn-integral (RN n u l) real

lemma NHN -EHN :
assumes p ∈ {0<..<1}
shows NHN n = EHN n
using assms EHN -bounds unfolding EHN -def NHN -def by (subst nn-integral-eq-integral)

(auto)

lemma RN -0 [simp]: RN 0 u l = return-pmf 0
unfolding RN -def R-def SL-def by (auto simp add: steps.simps)

lemma NRN -bounds:
fixes u l::nat
shows NRN n u l ≤ l ∗ n + u ∗ NHN n

proof −
have NRN n u l =

∫
+ x. x ∂measure-pmf (RN n u l)

unfolding NRN -def RN -alt-def
by (simp add: ennreal-of-nat-eq-real-of-nat)

also have . . . ≤
∫

+ x. x ∂(measure-pmf (map-pmf (λf . l ∗ n + u ∗ Max0 (f ‘
{..<n})) (SLN n)))

using of-nat-mono[OF steps-smaller-card-Max-fun ′[of {..<n} 0 - u l]] unfold-
ing RN -alt-def

by (cases n = 0) (auto intro!: nn-integral-mono)
also have . . . = l ∗ n + u ∗ NHN n

unfolding NHN -def HN -def H-def SLN -def
by (auto simp add: nn-integral-add nn-integral-cmult ennreal-of-nat-eq-real-of-nat

ennreal-mult)
finally show NRN n u l ≤ l ∗ n + u ∗ NHN n

by simp
qed

lemma NRN -recurrence:
assumes 0 < n p ∈ {0<..<1}
shows NRN n u l = (p ∗ (l + NRN (n − 1) u l) +

q ∗ (u + (
∑

k<n − 1 . NRN (k + 1) u l ∗ (pmf (binomial-pmf
(n − 1) q) k))))

/ (1 − (q ^ n))
proof −

define B where B = (λn k. pmf (binomial-pmf n q) k)
have q: q ∈ {0<..<1}

using assms unfolding q-def by auto
then have q ^ n < 1

49

using assms power-Suc-less-one by (induction n) (auto)
then have qn: q ^ n ∈ {0<..<1}

using assms q by (auto)
have NRN n u l = p ∗ (l + NRN (n − 1) u l) +

q ∗ (u +
∫

+ k. NRN (k + 1) u l ∂measure-pmf (binomial-pmf
(n − 1) q))

using assms unfolding NRN -def
by(subst RN -recurrence)
(auto simp add: field-simps nn-integral-add q-def ennreal-of-nat-eq-real-of-nat)

also have (
∫

+ m. NRN (m + 1) u l ∂measure-pmf (binomial-pmf (n − 1) q))
=

(
∑

k≤n − 1 . NRN (k + 1) u l ∗ B (n − 1) k)
using assms unfolding B-def q-def
by (auto simp add: nn-integral-measure-pmf-finite)

also have . . . = (
∑

k∈{..<n − 1} ∪ {n − 1}. NRN (k + 1) u l ∗ B (n − 1)
k)

by (rule sum.cong) (auto)
also have . . . = (

∑
k<n − 1 . NRN (k + 1) u l ∗ B (n − 1) k) + NRN n u l

∗ q ^ (n − 1)
unfolding B-def q-def using assms by (subst sum.union-disjoint) (auto)

finally have NRN n u l = p ∗ (l + NRN (n − 1) u l) +
q ∗ ((

∑
k<n − 1 . NRN (k + 1) u l ∗ B (n − 1) k) + u) +

NRN n u l ∗ (q ^ (n − 1)) ∗ q
using assms by (auto simp add: field-simps numerals)

also have NRN n u l ∗ (q ^ (n − 1)) ∗ q = (q ^ n) ∗ NRN n u l
using q power-minus-mult[of - q] assms
by (subst mult-ac, subst ennreal-mult[symmetric], auto simp add: mult-ac)

finally have 1 : NRN n u l = p ∗ (l + NRN (n − 1) u l) +
q ∗ (u + (

∑
k<n − 1 . NRN (k + 1) u l ∗ (B (n − 1)

k))) +
(q ^ n) ∗ NRN n u l

by (simp add: add-ac)
have x − z = y if x = y + z z 6= > for x y z::ennreal

using that by (subst that) (auto)
have NRN n u l ≤ l ∗ n + u ∗ NHN n

using NRN -bounds by (auto simp add: ennreal-of-nat-eq-real-of-nat)
also have NHN n = EHN n

using assms NHN -EHN by auto
also have (l ∗ n) + u ∗ ennreal (EHN n) < >

by (simp add: ennreal-mult-less-top of-nat-less-top)
finally have 3 : NRN n u l 6= >

by simp
have 2 : x = y / (1 − a) if x = y + a ∗ x and t: x 6= > a ∈ {0<..<1} for x

y::ennreal
and a::real

proof −
have y = x − a ∗ x

using t by (subst that) (auto simp add: ennreal-mult-eq-top-iff)
also have . . . = x ∗ (ennreal 1 − ennreal a)

50

using that by (auto simp add: mult-ac ennreal-right-diff-distrib)
also have ennreal 1 − ennreal a = ennreal (1 − a)

using that by (subst ennreal-minus) (auto)
also have x ∗ (1 − a) / (1 − a) = x

using that ennreal-minus-eq-0 not-less by (subst mult-divide-eq-ennreal) auto
finally show ?thesis

by simp
qed
have NRN n u l = (p ∗ (l + NRN (n − 1) u l) +

q ∗ (u + (
∑

k<n − 1 . NRN (k + 1) u l ∗ (B (n − 1) k))))
/ (1 − (q ^ n))

using 1 3 assms qn by (intro 2) auto
then show ?thesis

unfolding B-def by simp
qed

lemma NRn-NHN : NRN n u 0 = u ∗ NHN n
proof −

have NRN n u 0 =
∫

+ f . steps {..<n} f 0 u 0 ∂measure-pmf (SLN n)
unfolding NRN -def RN -alt-def by (auto simp add: ennreal-of-nat-eq-real-of-nat)

also have . . . =
∫

+ f . of-nat u ∗ of-nat (Max0 (f ‘ {..<n})) ∂measure-pmf (SLN

n)
by (intro nn-integral-cong) (auto simp add: steps-height)

also have . . . = u ∗ NHN n
by (auto simp add: NHN -def HN -def H-def SLN -def ennreal-of-nat-eq-real-of-nat

nn-integral-cmult)
finally show ?thesis

by simp
qed

lemma NRN -recurrence ′:
assumes 0 < n p ∈ {0<..<1}
shows NRN n u l = (p ∗ l + p ∗ NRN (n − 1) u l +

q ∗ u + q ∗ (
∑

k<n − 1 . NRN (k + 1) u l ∗ (pmf (binomial-pmf
(n − 1) q) k)))

/ (1 − (q ^ n))
unfolding NRN -recurrence[OF assms]
by (auto simp add: field-simps ennreal-of-nat-eq-real-of-nat ennreal-mult ′ en-

nreal-mult ′′)

lemma NRN -l-0 :
assumes 0 < n p ∈ {0<..<1}
shows NRN n u 0 = (p ∗ NRN (n − 1) u 0 +

q ∗ (u + (
∑

k<n − 1 . NRN (k + 1) u 0 ∗ (pmf (binomial-pmf
(n − 1) q) k))))

/ (1 − (q ^ n))
unfolding NRN -recurrence[OF assms] by (simp)

51

lemma NRN -u-0 :
assumes 0 < n p ∈ {0<..<1}
shows NRN n 0 l = (p ∗ (l + NRN (n − 1) 0 l) +

q ∗ (
∑

k<n − 1 . NRN (k + 1) 0 l ∗ (pmf (binomial-pmf (n −
1) q) k)))

/ (1 − (q ^ n))
unfolding NRN -recurrence[OF assms] by (simp)

lemma NRN -0 [simp]: NRN 0 u l = 0
unfolding NRN -def RN -def R-def by (auto)

lemma NRN -1 :
assumes p ∈ {0<..<1}
shows NRN 1 u l = (u ∗ q + l ∗ p) / p

proof −
have NRN 1 u l = (ennreal p ∗ of-nat l + ennreal q ∗ of-nat u) / ennreal (1 −

q)
using assms by (subst NRN -recurrence) auto

also have (ennreal p ∗ of-nat l + ennreal q ∗ of-nat u) = (u ∗ q + l ∗ p)
using assms q-def by (subst ennreal-plus)
(auto simp add: field-simps ennreal-mult ′ ennreal-of-nat-eq-real-of-nat)

also have . . . / ennreal (1 − q) = ennreal ((u ∗ q + l ∗ p) / (1 − q))
using q-def assms by (intro divide-ennreal) auto

finally show ?thesis
unfolding q-def by simp

qed

lemma NRN -NRN -l-0 :
assumes n: 0 < n and p: p ∈ {0<..<1} and u ≥ 1
shows NRN n u 0 = (u ∗ q / (u ∗ q + l ∗ p)) ∗ NRN n u l
using n proof (induction n rule: less-induct)
case (less i)
have 1 : 0 < u ∗ q

unfolding q-def using assms by simp
moreover have 0 ≤ l ∗ p

using assms by auto
ultimately have 2 : 0 < u ∗ q + l ∗ p

by arith
define c where c = ennreal (u ∗ q / (u ∗ q + l ∗ p))
have [simp]: c / c = 1
proof −

have u ∗ q / (u ∗ q + l ∗ p) 6= 0
using assms q-def 2 by auto

then show ?thesis
unfolding c-def using p q-def by (auto intro!: ennreal-divide-self)

qed
show ?case
proof (cases i = 1)

case True

52

have c ∗ NRN i u l = c ∗ ((u ∗ q + l ∗ p) / p)
unfolding c-def True by (subst NRN -1 [OF p]) auto

also have . . . = ennreal ((u ∗ q / (u ∗ q + l ∗ p)) ∗ ((u ∗ q + l ∗ p) / p))
unfolding c-def using assms q-def by (subst ennreal-mult ′′) auto

also have (u ∗ q / (u ∗ q + l ∗ p)) ∗ ((u ∗ q + l ∗ p) / p) = u ∗ q / p
proof −

have I : (a / b) ∗ (b / c) = a / c if 0 < b for a b c::real
using that by (auto)

show ?thesis
using 2 q-def by (intro I) auto

qed
also have . . . = NRN i u 0

unfolding True c-def by (subst NRN -1 [OF p]) (auto)
finally show ?thesis

unfolding c-def using True by simp
next

case False
then have i: i > 1

using less by auto
define c where c = ennreal (u ∗ q / (u ∗ q + l ∗ p))

define B where B = (
∑

k<i − 1 . NRN (k + 1) u l ∗ ennreal (pmf (binomial-pmf
(i − 1) q) k))

have NRN i u 0 = (p ∗ NRN (i − 1) u 0 +
q ∗ (u + (

∑
k<i − 1 . NRN (k + 1) u 0 ∗ (pmf (binomial-pmf

(i − 1) q) k))))
/ (1 − (q ^ i))

using less assms by (subst NRN -l-0) auto
also have q ∗ (u + (

∑
k<i − 1 . NRN (k + 1) u 0 ∗ (pmf (binomial-pmf (i

− 1) q) k))) =
q ∗ u + q ∗ (

∑
k<i − 1 . NRN (k + 1) u 0 ∗ (pmf (binomial-pmf (i

− 1) q) k))
using assms q-def
by (auto simp add: field-simps ennreal-of-nat-eq-real-of-nat ennreal-mult)

also have NRN (i − 1) u 0 = c ∗ NRN (i − 1) u l
unfolding c-def using less i by (intro less) (auto)

also have (
∑

k<i − 1 . NRN (k + 1) u 0 ∗ ennreal (pmf (binomial-pmf (i −
1) q) k)) =

(
∑

k<i − 1 . c ∗ NRN (k + 1) u l ∗ ennreal (pmf (binomial-pmf (i −
1) q) k))

by (auto intro!: sum.cong simp add: less c-def)
also have . . . = c ∗ B

unfolding B-def by (subst sum-distrib-left) (auto intro!: sum.cong mult-ac)
also have q ∗ (c ∗ B) = c ∗ (q ∗ B)

by (simp add: mult-ac)
also have ennreal (q ∗ real u) = q ∗ u ∗ ((u ∗ q + l ∗ p) / (u ∗ q + l ∗ p))

using assms 2 by (auto simp add: field-simps q-def)
also have . . . = c ∗ (real u ∗ q + real l ∗ p)

unfolding c-def using 2 by (subst ennreal-mult ′′[symmetric]) (auto simp
add: mult-ac)

53

also have c ∗ ennreal (real u ∗ q + real l ∗ p) + c ∗ (ennreal q ∗ B) =
c ∗ (ennreal (real u ∗ q + real l ∗ p) + (ennreal q ∗ B))

by (auto simp add: field-simps)
also have ennreal p ∗ (c ∗ NRN (i − 1) u l) = c ∗ (ennreal p ∗ NRN (i − 1)

u l)
by (simp add: mult-ac)

also have (c ∗ (ennreal p ∗ NRN (i − 1) u l) + c ∗ (ennreal (u ∗ q + l ∗ p)
+ ennreal q ∗ B))

= c ∗ ((ennreal p ∗ NRN (i − 1) u l) + (ennreal (u ∗ q + l ∗ p) +
ennreal q ∗ B))

by (auto simp add: field-simps)
also have c ∗ (ennreal p ∗ NRN (i − 1) u l + (ennreal (u ∗ q + l ∗ p) +

ennreal q ∗ B)) / ennreal (1 − q ^ i)
= c ∗ ((ennreal p ∗ NRN (i − 1) u l + (ennreal (u ∗ q + l ∗ p) + ennreal

q ∗ B)) / ennreal (1 − q ^ i))
by (auto simp add: ennreal-times-divide)

also have (ennreal p ∗ NRN (i − 1) u l + (ennreal (real u ∗ q + real l ∗ p)
+ ennreal q ∗ B)) / ennreal (1 − q ^ i)

= NRN i u l
apply(subst (2) NRN -recurrence ′)
using i assms q-def by
(auto simp add: field-simps B-def ennreal-of-nat-eq-real-of-nat ennreal-mult ′

ennreal-mult ′′)
finally show ?thesis

unfolding c-def by simp
qed

qed

Assigning 1 as the cost for going up and/or left, we can now show the
relation between the expected length of the reverse search path and the
expected height.
definition ELN where ELN n = measure-pmf .expectation (RN n 1 1) real

theorem EHN -ELsp:
assumes p ∈ {0<..<1}
shows 1 / q ∗ EHN n = ELN n

proof −
have 1 : ennreal (1 / y ∗ x) = r if ennreal x = y ∗ r x ≥ 0 y > 0

for x y::real and r ::ennreal
proof −

have ennreal ((1 / y) ∗ x) = ennreal (1 / y) ∗ ennreal x
using that apply(subst ennreal-mult ′′) by auto

also note that(1)
also have ennreal (1 / y) ∗ (ennreal y ∗ r) = ennreal ((1 / y) ∗ y) ∗ r

using that by (subst ennreal-mult ′′) (auto simp add: mult-ac)
also have (1 / y) ∗ y = 1

using that by (auto)
finally show ?thesis

54

by auto
qed
have EHN n = NHN n

using NHN -EHN assms by auto
also have NHN n = NRN n 1 0

using NRn-NHN by auto
also have NRN n 1 0 = q ∗ NRN n 1 1 if n > 0

using NRN -NRN -l-0 [of - 1 1] that assms q-def by force
finally have ennreal (EHN n) = q ∗ NRN n 1 1 if n > 0

using that by blast
then have 1 / q ∗ EHN n = NRN n 1 1 if n > 0

using that assms q-def by (intro 1) (auto simp add: EHN -def HN -def H-def)
moreover have 1 / q ∗ EHN n = NRN n 1 1 if n = 0

unfolding that by (auto simp add: EHN -def HN -def H-def)
ultimately have 2 : ennreal (1 / q ∗ EHN n) = NRN n 1 1

by blast
also have NRN n 1 1 = ELN n

using 2 assms EHN -bounds unfolding ELN -def NRN -def
by(subst nn-integral-eq-integral)
(auto intro!: integrableI-nn-integral-finite[where x=EHN n / q])

finally show ?thesis
using assms q-def ennreal-inj unfolding ELN -def EHN -def HN -def H-def

SL-def
by (auto)

qed

end

thm random-skip-list.EHN -ELsp[unfolded random-skip-list.q-def]
random-skip-list.EHN -bounds ′[unfolded random-skip-list.q-def]

end

References

[1] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge uni-
versity press, 1995.

[2] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In
Workshop on Algorithms and Data Structures, pages 437–449. Springer,
1989.

55

	Indexed products of PMFs
	Definition
	Dependent product sets with a default
	Common PMF operations on products
	Merging and splitting PMF products
	Applications

	Auxiliary material
	Theorems about the Geometric Distribution
	Randomized Skip Lists
	Preliminaries
	Definition of a Randomised Skip List
	Height of Skip List
	Expected Length of Search Path

