Skew Heap

Tobias Nipkow

October 11, 2017

Abstract

Skew heaps are an amazingly simple and lightweight implementation of priority queues. They were invented by Sleator and Tarjan [1] and have logarithmic amortized complexity. This entry provides executable and verified functional skew heaps.

The amortized complexity of skew heaps is analyzed in the AFP entry Amortized Complexity.

Contents

1 Skew Heap 1
 1.1 Get Minimum . 2
 1.2 Merge . 2
 1.3 Insert . 3
 1.4 Delete minimum . 3

1 Skew Heap

theory Skew-Heap
imports
 HOL-Library.Tree-Multiset
 HOL-Library.Pattern-Aliases
 HOL-Data-Structures.Priority-Queue
begin

unbundle pattern-aliases

Skew heaps [1] are possibly the simplest functional priority queues that have logarithmic (albeit amortized) complexity.

The implementation below should be generalized to separate the elements from their priorities.

type-synonym 'a heap = 'a tree
1.1 Get Minimum

fun get-min :: 'a::linorder heap ⇒ 'a where
get-min(Node l m r) = m

lemma get-min-in:
 h ≠ Leaf ⇒ get-min h ∈ set-tree h
⟨proof⟩

lemma get-min-min:
 [heap h; x ∈ set-tree h] ⇒ get-min h ≤ x
⟨proof⟩

lemma get-min:
 [heap h; h ≠ Leaf] ⇒ get-min h = Min-mset (mset-tree h)
⟨proof⟩

1.2 Merge

function merge :: ('a::linorder) heap ⇒ 'a heap ⇒ 'a heap where
merge Leaf h = h |
merge h Leaf = h |
merge (Node l1 a1 r1 =: h1) (Node l2 a2 r2 =: h2) =
 (if a1 ≤ a2 then Node (merge h2 r1) a1 l1
 else Node (merge h1 r2) a2 l2)
⟨proof⟩
termination
⟨proof⟩

lemma merge-code: merge h1 h2 =
 (case h1 of
 Leaf ⇒ h2 |
 Node l1 a1 r1 ⇒ (case h2 of
 Leaf ⇒ h1 |
 Node l2 a2 r2 ⇒
 (if a1 ≤ a2
 then Node (merge h2 r1) a1 l1
 else Node (merge h1 r2) a2 l2)))
⟨proof⟩

An alternative version that always walks to the Leaf of both heaps:

function merge2 :: ('a::linorder) heap ⇒ 'a heap ⇒ 'a heap where
merge2 Leaf Leaf = Leaf |
merge2 Leaf (Node l2 a2 r2) = Node (merge2 r2 Leaf) a2 l2 |
merge2 (Node l1 a1 r1) Leaf = Node (merge2 r1 Leaf) a1 l1 |
merge2 (Node l1 a1 r1) (Node l2 a2 r2) =
 (if a1 ≤ a2
 then Node (merge2 (Node l2 a2 r2) r1) a1 l1
 else Node (merge2 (Node l1 a1 r1) r2) a2 l2)
⟨proof⟩
termination
lemma size-merge[simp]: size(merge t1 t2) = size t1 + size t2
declaration proof

lemma size-merge2[simp]: size(merge2 t1 t2) = size t1 + size t2
declaration proof

lemma mset-merge: mset-tree (merge h1 h2) = mset-tree h1 + mset-tree h2
declaration proof

lemma set-merge: set-tree (merge h1 h2) = set-tree h1 ∪ set-tree h2
declaration proof

lemma heap-merge:
heap h1 ⇒ heap h2 ⇒ heap (merge h1 h2)
declaration proof

1.3 Insert

hide-const (open) insert
definition insert :: 'a::linorder ⇒ 'a heap ⇒ 'a heap where
insert a t = merge (Node Leaf a Leaf) t

lemma heap-insert: heap h ⇒ heap (insert a h)
declaration proof

lemma mset-insert: mset-tree (insert a h) = {#a#} + mset-tree h
declaration proof

1.4 Delete minimum

fun del-min :: 'a::linorder heap ⇒ 'a heap where
del-min Leaf = Leaf |
del-min (Node l m r) = merge l r

lemma heap-del-min: heap h ⇒ heap (del-min h)
declaration proof

lemma mset-del-min: mset-tree (del-min h) = mset-tree h - {# get-min h #}
declaration proof

interpretation skew-heap: Priority-Queue-Merge
where empty = Leaf and is-empty = λh. h = Leaf
and merge = merge and insert = insert
and del-min = del-min and get-min = get-min
and invar = heap and mset = mset-tree
ndeclaration proof

3
end

References