
Skew Heap

Tobias Nipkow

September 13, 2023

Abstract

Skew heaps are an amazingly simple and lightweight implementa-
tion of priority queues. They were invented by Sleator and Tarjan [1]
and have logarithmic amortized complexity. This entry provides exe-
cutable and verified functional skew heaps.

The amortized complexity of skew heaps is analyzed in the AFP
entry Amortized Complexity.

Contents
1 Skew Heap 1

1.1 Merge . 1

1 Skew Heap
theory Skew-Heap
imports

HOL−Library.Tree-Multiset
HOL−Library.Pattern-Aliases
HOL−Data-Structures.Heaps

begin

unbundle pattern-aliases

Skew heaps [1] are possibly the simplest functional priority queues that
have logarithmic (albeit amortized) complexity.

The implementation below could be generalized to separate the elements
from their priorities.

1.1 Merge
function merge :: (′a::linorder) tree ⇒ ′a tree ⇒ ′a tree where
merge Leaf t = t |
merge t Leaf = t |
merge (Node l1 a1 r1 =: t1) (Node l2 a2 r2 =: t2) =

1

http://isa-afp.org/entries/Amortized_Complexity.shtml

(if a1 ≤ a2 then Node (merge t2 r1) a1 l1
else Node (merge t1 r2) a2 l2)

〈proof 〉
termination
〈proof 〉

lemma merge-code: merge t1 t2 =
(case t1 of
Leaf ⇒ t2 |
Node l1 a1 r1 ⇒ (case t2 of

Leaf ⇒ t1 |
Node l2 a2 r2 ⇒
(if a1 ≤ a2
then Node (merge t2 r1) a1 l1
else Node (merge t1 r2) a2 l2)))

〈proof 〉

An alternative version that always walks to the Leaf of both heaps:
function merge2 :: (′a::linorder) tree ⇒ ′a tree ⇒ ′a tree where
merge2 Leaf Leaf = Leaf |
merge2 Leaf (Node l2 a2 r2) = Node (merge2 r2 Leaf) a2 l2 |
merge2 (Node l1 a1 r1) Leaf = Node (merge2 r1 Leaf) a1 l1 |
merge2 (Node l1 a1 r1) (Node l2 a2 r2) =

(if a1 ≤ a2
then Node (merge2 (Node l2 a2 r2) r1) a1 l1
else Node (merge2 (Node l1 a1 r1) r2) a2 l2)

〈proof 〉
termination
〈proof 〉

lemma size-merge: size(merge t1 t2) = size t1 + size t2
〈proof 〉

lemma size-merge2 : size(merge2 t1 t2) = size t1 + size t2
〈proof 〉

lemma mset-merge: mset-tree (merge t1 t2) = mset-tree t1 + mset-tree t2
〈proof 〉

lemma set-merge: set-tree (merge t1 t2) = set-tree t1 ∪ set-tree t2
〈proof 〉

lemma heap-merge:
[[heap t1 ; heap t2]] =⇒ heap (merge t1 t2)

〈proof 〉

interpretation skew-heap: Heap-Merge
where merge = merge
〈proof 〉

2

end

References
[1] D. D. Sleator and R. E. Tarjan. Self-adjusting heaps. SIAM J. Comput.,

15(1):52–69, 1986.

3

	Skew Heap
	Merge

