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Abstract

Skew heaps are an amazingly simple and lightweight implementa-
tion of priority queues. They were invented by Sleator and Tarjan [1]
and have logarithmic amortized complexity. This entry provides exe-
cutable and verified functional skew heaps.

The amortized complexity of skew heaps is analyzed in the AFP
entry Amortized Complexity.
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1 Skew Heap
theory Skew-Heap
imports

HOL−Library.Tree-Multiset
HOL−Library.Pattern-Aliases
HOL−Data-Structures.Heaps

begin

unbundle pattern-aliases

Skew heaps [1] are possibly the simplest functional priority queues that
have logarithmic (albeit amortized) complexity.

The implementation below could be generalized to separate the elements
from their priorities.

1.1 Merge
function merge :: ( ′a::linorder) tree ⇒ ′a tree ⇒ ′a tree where
merge Leaf t = t |
merge t Leaf = t |
merge (Node l1 a1 r1 =: t1 ) (Node l2 a2 r2 =: t2 ) =
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(if a1 ≤ a2 then Node (merge t2 r1 ) a1 l1
else Node (merge t1 r2 ) a2 l2 )

〈proof 〉
termination
〈proof 〉

lemma merge-code: merge t1 t2 =
(case t1 of
Leaf ⇒ t2 |
Node l1 a1 r1 ⇒ (case t2 of

Leaf ⇒ t1 |
Node l2 a2 r2 ⇒
(if a1 ≤ a2
then Node (merge t2 r1 ) a1 l1
else Node (merge t1 r2 ) a2 l2 )))

〈proof 〉

An alternative version that always walks to the Leaf of both heaps:
function merge2 :: ( ′a::linorder) tree ⇒ ′a tree ⇒ ′a tree where
merge2 Leaf Leaf = Leaf |
merge2 Leaf (Node l2 a2 r2 ) = Node (merge2 r2 Leaf ) a2 l2 |
merge2 (Node l1 a1 r1 ) Leaf = Node (merge2 r1 Leaf ) a1 l1 |
merge2 (Node l1 a1 r1 ) (Node l2 a2 r2 ) =

(if a1 ≤ a2
then Node (merge2 (Node l2 a2 r2 ) r1 ) a1 l1
else Node (merge2 (Node l1 a1 r1 ) r2 ) a2 l2 )

〈proof 〉
termination
〈proof 〉

lemma size-merge: size(merge t1 t2 ) = size t1 + size t2
〈proof 〉

lemma size-merge2 : size(merge2 t1 t2 ) = size t1 + size t2
〈proof 〉

lemma mset-merge: mset-tree (merge t1 t2 ) = mset-tree t1 + mset-tree t2
〈proof 〉

lemma set-merge: set-tree (merge t1 t2 ) = set-tree t1 ∪ set-tree t2
〈proof 〉

lemma heap-merge:
[[ heap t1 ; heap t2 ]] =⇒ heap (merge t1 t2 )

〈proof 〉

interpretation skew-heap: Heap-Merge
where merge = merge
〈proof 〉
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end
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