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Abstract
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1 Background Reading

The selected simplified variants of Goédel’s ontological argument [5, 7] as
presented in §3 have first been extracted from the insights gained in §6 of
[4]. These variants are also influenced by the work presented in [1] and they
significantly extend the findings from [3]. In §4 we additionally include the
sources from [4].

2 Higher-Order Modal Logic in HOL (cf. [2] and
Fig. 1 in [4]).

theory HOML imports Main
begin
nitpick-params|user-azioms,expect=genuine|

Type i is associated with possible worlds and type e with entities:

typedecl i — Possible worlds

typedecl ¢ — Individuals

type-synonym o = i=bool — World-lifted propositions
type-synonym v = e=oc — Lifted predicates
type-synonym p = 0=0 — Unary modal connectives
type-synonym v = g=0=-0 — Binary modal connectives

Logical connectives (operating on truth-sets):

abbreviation cI::0 («L)) where L = Aw. False

abbreviation c¢2::0 (xT>) where T = Aw. True

abbreviation c¢3:p («—->[52]58) where - = Aw.— (¢ w)
abbreviation c/::v (infix<A»50) where oAy = Aw.(¢ w)A(Y w)
abbreviation c5::v (infix«V»49) where oV¢ = Aw.(¢ w)V (¢ w)
abbreviation c6::v (infix<—»48) where p—1¢ = Aw.(p w)— (¢ w)
abbreviation c¢7::v (infix«<»>47) where @< = Aw.(p w)— (¢ w)

consts R:i=-i=bool (<-r-») — Accessibility relation

abbreviation
abbreviation
abbreviation
abbreviation
abbreviation
abbreviation

c8:p (x0-[54]565) where Op = Aw.¥ v.(wrv)— (¢ v)
c9::p (O [54]155) where G¢ = Aw.Fv.(urv)A(p v
c10:y=v (s~ [52]53) where =@ = Az w.~(D z w)
cl1l:y=v («—-) where —® = Az w.~(P® z w)
c12:e=>e=0 (<-=-)) where 1=y = A\w.(z=y)
cl13:e=e=0 («-#-)) where 1y = A\w.(z#y)

Polymorphic possibilist quantification:



abbreviation ¢I::('‘a=0)=0c («\V)) where V® = Aw.Vz.(® z w)
abbreviation ¢2 (binder<«V»[10]11) where Vz. ¢(z) =V
abbreviation ¢3::(‘a=0c)=0c («3)) where 3¢ = Aw.Fz.(P z w)
abbreviation ¢/ (binder<3)[10]11) where Jz. p(z) = Jp

Actualist quantification for individuals/entities:

consts existsAt:y (x-Q-»)

abbreviation ¢5::y=0 (V) where VF® = \w.V z.(2Quw)—(® z w)
abbreviation ¢6 (binder«V ¥,[8]9) where V £z. p(z) = VFp
abbreviation ¢7:y=0 (\3%)) where 3% = \w.3z.(?Qu)A(® z w)
abbreviation ¢8 (binder«3%,[8]9) where 3 Fz. p(z) = 3 ¥

Meta-logical predicate for global validity:
abbreviation gI::0=-bool (<|-]>) where |¢| = Yw. ¢ w
Barcan and converse Barcan formula:

lemma True nitpick|[satisfy] oops — Model found by Nitpick
lemma |(VF2.0(p 7)) — O(VP2.(¢ 7)) nitpick oops — Ctm
lemma |0V Zz.(p 1)) — (VF2.0(p 7)) nitpick oops — Ctm
lemma |(Vz.O(p z)) — OV 2. ¢ z)| by simp

lemma OV z.(p z)) = (Vz.O(p z))] by simp

end

3 Selected Simplified Ontological Argument

theory SimplifiedOntological Argument imports
HOML
begin

Positive properties:
consts posProp:y=c («P»)

An entity x is God-like if it possesses all positive properties.
definition G («G») where G(z) = VO.(P(®?) — ®(z))

The axiom’s of the simplified variant are presented next; these axioms
are further motivated in [4, 1]).

Self-difference is not a positive property (possible alternative: the empty
property is not a positive property).

axiomatization where COROI: |—~(P(Az.(z#£x)))]
A property entailed by a positive property is positive.

axiomatization where COR0O2: |[V® U. P(®) A (Vz. D(z) — U(z)) — P(¥)]
Being Godlike is a positive property.

axiomatization where AXIOMS3: |P G|



3.1 Verifying the Selected Simplified Ontological Argument
(version 1)

The existence of a non-exemplified positive property implies that self-difference
(or, alternatively, the empty property) is a positive property.

lemma LEMMAL: |(3D.(P(®) A =(Tz. ®(2)))) — P(Ax.(a1))]
using COROZ2 by meson

A non-exemplified positive property does not exist.

lemma LEMMA2: |—~(3®.(P(®) A =(Iz. (z))))]
using CORO1 LEMMA1 by blast

Positive properties are exemplified.

lemma LEMMAS: |V ®.(P(®) —» (Fz. ®(z)))]
using LEMMAZ2 by blast

There exists a God-like entity.

theorem THEOREMS3': |3 xz. G(z)]
using AXIOM8 LEMMAS3 by auto

Necessarily, there exists a God-like entity.
theorem THEOREMS: |O0(3z. G(x))]
using THEOREM3' by simp
However, the possible existence of Godlike entity is not implied.

theorem CORO: |O(Fz. G(z))]
nitpick oops

3.2 Verifying the Selected Simplified Ontological Argument
(version 2)
We switch to logic T.
axiomatization where T: |V ¢. Op — ¢]
lemma T |V . p — Op| using T by metis
Positive properties are possibly exemplified.

theorem THEOREMI: |V ®. P(®) — &(Fz. O(x))]
using CORO1 CORO2 T' by metis

Possibly there exists a God-like entity.

theorem CORO: [¢(Fz. G(x))]
using AXIOM3 THEOREM1 by auto

The possible existence of a God-like entity impplies the necessary exis-
tence of a God-like entity.

theorem THEOREM?2: |&(3z. G(z)) — O(Fz. G(z))]
using AXIOMS8 CORO1 CORO2 by metis



Necessarily, there exists a God-like entity.

theorem THEOS3: |O(3z. G(x))]
using CORO THEOREM?2 by blast

There exists a God-like entity.

theorem THEO3" |Jz. G(z)]
using T THEOS3 by metis

Modal collapse is not implied; nitpick reports a countermodel.
lemma MC: |V®. & — O®| nitpick oops
Consistency of the theory; nitpick reports a model.

lemma True nitpick|[satisfy] oops
end

4 Presentation of All Variants as Studied in [4]

4.1 Preliminaries: Modal Ultrafilter (Fig. 2 in [4])

theory MFilter imports HOML
begin

Some abbreviations for auxiliary operations.

abbreviation a:y=(y=0)=0 («-€-)) where z€S = Sz
abbreviation b::y («@)) where @ = \z. L

abbreviation c:y (<Uy) where U = Az. T

abbreviation d:y=v=0 (-C-) where ¢C¢ = Vz.((p z) — (¢ z))
abbreviation e:y=y=- («-M-)) where oMy = Az.((¢ z) A (¥ z))
abbreviation f::y= («<"1-) where ~'¢ = \z. =(¢ z)

Definition of modal filter.

abbreviation g::(y=0)=0 (<Filter)
where Filter ® = ((U€®) A =(0€d))
N (Ve v (((peP) A (pCY)) — (YED))))
N (Ve v (((p€P) A (VEP)) — ((pMh)€D)))

Definition of modal ultrafilter .

abbreviation h::(y=c)=0c (<UFilter)) where
UFilter ® = (Filter ®)A(Y .((9€®) V ((Tlp)€®D)))

Modal filter and modal ultrafilter are consistent.
lemma |V ® ¢.((UFilter ®) — =((p€®) A ((Tlp)€®)))| by force
end
4.2 Preliminaries: Further Basic Notions (Fig. 3 in [4])

theory BaseDefs imports HOML
begin



Positive properties.
consts posProp::y=c (<P»)
Basic definitions for modal ontological argument.

abbreviation a (-C-)) where XLV =V F2.((X 2) — (Y 2))

abbreviation b (<-=-)) where X=Y = O(XCY)

abbreviation ¢ (<Posy) where Pos Z =V X.(Z X) — (P X))

abbreviation d («-[]-)) where X[Z = OV fu.((Xu) & VY.(Z Y) = (Y
)

Definition of Godlike.
definition G («G») where G z =V Y.((P Y) — (Y 2))
Definitions of Essence and Necessary Existence.

definition F («&)) where £ Yo = (YY) A VZ.((Z2) = (Y=2)))
definition NE («\N'&)) where N z =V Y.((€ Yz) — OFF Y))
end

4.3 Ultrafilter Analysis of Scott’s Variant (Fig. 3 in [4]))

theory ScottVariant imports
HOML
MFilter
BaseDefs

begin

Axioms of Scott’s variant.

axiomatization where
Al: |VX.((-(P X)) + (P(—X)))] and
A2: VX Y.((P X) A (X2Y)) —» (P Y))| and
A3: [VZ.((Pos Z2) > VX.((X[1Z) — (P X))))| and
A VX (P X)— O(P X))| and
A5: [P NEJ and
B: |Vo.(p — OOp)| — Logic KB

lemma B Vz y. =(ary) V (yrz) using B by fastforce
Necessary existence of a Godlike entity.

theorem 76: [O(3F G)]
proof —

have T1: |[VX.((P X) — ©(3% X))| using A1 A2 by blast

have T2: |P G| by (metis A3 G-def)

have T3: |O(3F G)| using T1 T2 by simp

have T/: |V ¥2.((G 2)—(€ G z))| unfolding G-def E-def using A1 Aj by
metis

have T5: |(¢(3FG))— O(3¥G)| by (smt A5 G-def B’ NE-def T4)

thus ?thesis using T3 by blast qed

Existence of a Godlike entity.



lemma |3% G| using A1 A2 B’ T6 by blast
Consistency
lemma True nitpick[satisfy] oops — Model found.

Modal collapse: holds.

lemma MC: |V®.(® — O9)]
proof — {
fix w fix Q
have 1: Vz.(G 1 w) — (VZ.((Z2) — ONE2((G 2) = (Z 2))))) w)
by (metis A1 A4 G-def)
have 2: (3z. G zw)—(Q — OV F2.((G 2) = Q))) w)
using 1 by force
have 3: (Q — OQ) w using B’ T6 2 by blast}
thus ?thesis by auto qed

Analysis of positive properties using ultrafilters.

theorem U1: | UFilter P] — Proof found by sledgehammer
proof —

have 1: [(U€P) A =(0€P)| using A1 A2 by blast

have 2: [V ¢.(p€P)A(PCY))—(WEP))| by (smt A2 B’ MC)

have 3: |V ¢.(((p€P)AWEP))—((pMp)EP))| by (metis Al A2 G-def B’
T6)

have : |V ¢.((p€P) V ((T'¢)EP))| using A1 by blast

thus “thesis using 1 2 8 / by simp qed

lemma LI: VX Y.(X=Y) —» (XCY))] by (metis A1 A2 MC)
lemma L2: VX Y.(P X) A (XCY)) — (P Y))] by (smt A2 B" MC)
Set of supersets of X, we call this HF X.
abbreviation HF where HF X = \Y.(XLCY)
HF G is a filter; hence, HF' G is Hauptfilter of G.

lemma F1: | Filter (HF G)| by (metis A2 B’ T6 Ul)
lemma F2: | UFilter (HF G)| by (smt A1 F1 G-def)

T6 follows directly from F1.

theorem T6again: |O(3F G)| using F1 by simp
end

4.4 Ultrafilter Variant (Fig. 5 in [4])

theory UFilterVariant imports
HOML
MFilter
BaseDefs

begin

Axiom’s of ultrafilter variant.



axiomatization where
Ul: | UFilter P| and
A2: VX Y.((P X) A (X2Y)) —» (P Y))| and
A3: [V Z.((Pos Z2) = (VX.((X[12) = (P X))))]

Necessary existence of a Godlike entity.

theorem T6: [O(3F G)| — Proof also found by sledgehammer
proof —
have T1: |[VX.((P X) — ©(3% X))| by (metis A2 Ul)
have T2: |P G| by (metis A3 G-def)
have T3: |O(3F G)| using T1 T2 by simp
have T5: [(¢(3F G)) — O(3% G)| by (metis A2 G-def T2 U1)
thus “thesis using T3 by blast qed

Checking for consistency.
lemma True nitpick|[satisfy] oops — Model found
Checking for modal collapse.

lemma MC: |V ®.(® — OP)] nitpick oops — Countermodel
end

4.5 Simplified Variant (Fig. 6 in [4])

theory SimpleVariant imports
HOML
MFilter
BaseDefs

begin

Axiom’s of new, simplified variant.

axiomatization where
A1 |=(P(Az.(z£2)))] and
A2 VX Y.((P X) A ((XCY) V (X=Y))) > (P Y))] and
A3: |[VZ.((Pos 2) = VX.((XT12) = (P X))))]

lemma T2: |P G| by (metis A3 G-def) — From A3
lemma L1: |P(Az.(z=x))| by (metis A2’ A3)

Necessary existence of a Godlike entity.

theorem T6: [O(3F G)| — Proof found by sledgehammer
proof —
have T1: [VX.(P X) — ©(3F X))| by (metis A1’ A2')
have T3: [O(3F G)| using T1 T2 by simp
have T5: |[(©(3F G)) — O(3F G)| by (metis A1’ A2’ T2)
thus ?thesis using T3 by blast qed



lemma True nitpick|[satisfy] oops — Consistency: model found

Modal collapse and monotheism: not implied.

lemma MC: |V ®.(® — 0O®)| nitpick oops — Countermodel
lemma MT: |Vz y.((G z) A (G y)) = (z=y))]
nitpick oops — Countermodel.

Godel’s A1, A4, A5: not implied anymore.

lemma A71: |V X.((=(P X))+ (P(—X)))| nitpick oops — Countermodel
lemma A4: |VX.(P X) — O(P X))] nitpick oops — Countermodel
lemma A5: |P N&| nitpick oops — Countermodel

Checking filter and ultrafilter properties.

theorem F'1: | Filter P| oops — Proof found by sledgehammer, but reconstruction
timeout

theorem U1: | UFilter P] nitpick oops — Countermodel

end

4.6 Simplified Variant with Axiom T2 (Fig. 7 in [4])

theory SimpleVariantPG imports
HOML
MFilter
BaseDefs

begin

Axiom’s of simplified variant with A3 replaced.

axiomatization where
A1 |2(P(Az.(z£2)))] and
A2 VX Y.((P X) A ((XEY)V(X=Y))) — (P Y))] and
T2: |P G|

Necessary existence of a Godlike entity.

theorem 76: |O(3F G)| — Proof found by sledgehammer
proof —
have T1: |[VX.((P X) — ©(3F X))| by (metis A1’ A2’)
have T3: |¢(3F G)| using T1 T2 by simp
have T5: [(©(3F G)) — O(3¥ G)| by (metis A1’ A2’ T2)
thus ?thesis using T3 by blast qed

lemma True nitpick[satisfy] oops — Consistency: model found

Modal collapse and Monotheism: not implied.

lemma MC: |V ®.(® — O®P)] nitpick oops — Countermodel
lemma MT: |Vz y.(G 2)A(G y))—(z=y))| nitpick oops — Countermodel
end



4.7 Simplified Variant with Simple Entailment in Logic K
(Fig. 8 in [4])
theory SimpleVariantSE imports
HOML
MFilter

BaseDefs
begin

Axiom’s of new variant based on ultrafilters.

axiomatization where
Al | =(P(Az.(z#2)))| and
A2 VX Y.((P X) A (XCY)) — (P Y))] and
T2: |P G|
Necessary existence of a Godlike entity.

theorem T6: [O(3F G)| using A1’ A2" T2 by blast
theorem 77: |[3¥ G| using A1’ A2" T2 by blast

Possible existence of a Godlike: has counterodel.

lemma T3: [¢(3F G)] nitpick oops — Countermodel

lemma T3 assumes T: |V o.((Qp) — ¢)]
shows [O(3F G)]
using A1’ A2" T2 T by metis

end

4.8 Simplified Variant with Simple Entailment in Logic T
(Fig. 9 in [4])
theory SimpleVariantSEinT imports
HOML
MFilter

BaseDefs
begin

Axiom’s of new variant based on ultrafilters.

axiomatization where
A1 |=(P(Az.(z£2)))] and
A2 VX Y.(P X) A(XCY)) —» (P Y))] and
T2: [P G

Modal Logic T.

axiomatization where T: |V ¢.((Op) — ¢)]
lemma T |[Vo.(¢ = (Op))]| by (metis T)

Necessary existence of a Godlike entity.

theorem 76: |O(3 ¥ G)| — Proof found by sledgehammer
proof —

10



have T1: |V X.((P X)—=(0(3F X)))| by (metis A1" A2" T
have T3: |O(3F G)| by (metis T1 T2)

have T5: [(¢(3F G)) — O(3% G)| by (metis A1’ A2" T2)
thus “thesis using T3 by simp qed

T6 again, with an alternative, simpler proof.

theorem T6again: |O(3F G)]
proof —
have L1: [ X.(P X)A=(3EX)))—=(P(A\z.(z#7)))]
by (smt A2")
have L2: [=(3X.((P X) A =~(3¥ X)))] by (metis L1 A1)
have T1" [V X.(P X) — (3% X))| by (metis L2)
have 73" |3 ¥ G| by (metis T1' T2)
have L3: [O(3F G)| by (metis T3’ T') — not needed
thus ?thesis using T3’ by simp qed
end

4.9 Hauptfiltervariant (Fig. 10 in [4])

theory SimpleVariantHF imports
HOML
MFilter
BaseDefs

begin

Definition: Set of supersets of X, we call this HF X.
abbreviation HF::y=(y=0) where HF X = \Y.(XCY)
Postulate: HF G is a filter; i.e., Hauptfilter of G.

axiomatization where F1: | Filter (HF G)]
Necessary existence of a Godlike entity.
theorem 76: |O(3% G)| using F1 by auto — Proof found
theorem T6again: |O(IF G)]
proof —
have T3": |3¥ G| using FI by auto

have T6: |O(3% G)| using T3’ by blast
thus ?thesis by simp qed

Possible existence of Godlike entity not implied.
lemma 73: [O(3F G)| nitpick oops — Countermodel
Axiom T enforces possible existence of Godlike entity.

axiomatization
lemma T3: assumes T: |V o.((Qp) — ¢)]
shows |O(3 ¥ G)| using FI T by auto

lemma True nitpick][satisfy] oops — Consistency: model found

11



Modal collapse: not implied anymore.

lemma MC: |V ®.(® — O®P)] nitpick oops — Countermodel
lemma MT: ¥z y.(G o) A (G y) — (+=y))]

nitpick oops — Countermodel
end

4.10 Formal Study of Version No.2 of Godel’s Argument as
Reported by Kanckos and Lethen, 2019 [6] (Fig. 11 in
[4])
theory KanckosLethenNo2Possibilist imports
HOML
MFilter

BaseDefs
begin

Axioms of Version No. 2 [6].

abbreviation delta (<Ay) where A A = Az.(V¢. (A ¢¥) — (¢ x)))
abbreviation N («N) where N ¢ = Az.(O(p z))

axiomatization where

Agiom1: |V v.((P ¢) A (B(Va. ((p 2) — (& 2)))) — (P 1)) and — The
O can be omitted here; the proofs still work.

Aziom2: [VA .(O((Ve.(4A ¢) = (P ¢))) = (P (A A))))] and — The O can
be omitted here; the proofs still work.

Aziom3: |V ¢.(P ¢) — (P (N ¢)))| and

Aziom: [V (P ¢) = (~(P(—))))] and

— Logic S5

azB: |V ¢.(¢p — OCp)| and azM: |V ¢.((Op) = ¢)| and azf: |V e.((Op) —
(00g)]

Sahlqvist correspondences: they are better suited for proof automation.

lemma azB”: Vz y. —(ary) V (yrz) using azB by fastforce
lemma azM’: Vz. (arz) using azM by blast
lemma azf” Vo y z. (((zxry) A (yrz)) — (arz)) using az4 by auto

Proofs for all theorems for No.2 from [6].

theorem Theorem0: [V ¥.(V Q. ((Q ¢) — (Q ) = (P ¢) — (P »)))]
by auto — not needed

theorem Theoreml1: |P G| unfolding G-def using Aziom2 azM by blast
theorem Theorem2: |Vz. (G 2)—(3y. G y))| by blast — not needed
theorem Theorem3a: |P (Az. (3y. G y))| by (metis (no-types, lifting) Aziom1
Theorem1)

theorem Theorem3b: |O(P (Az.(O(Fy. G v))))] by (smt Aziom1 G-def Theo-
rem3a  Axziom3 Theoreml axB’)

theorem Theorem/: |Vz. O((G z) = (P (Az.(0(3y.G ¥)))) — (O 3y.Gy))))]
using G-def by fastforce — not needed

theorem Theorem5: |V z. O((G ) — (O(3y. G y)))] by (smt (verit) G-def The-
orem3a Theorem3b) — not needed

12



theorem Theorem6: |O0((Fy. G y) — (O(FJy. G y)))] by (smt G-def Theorem3a
Theorem3b)

theorem Theorem?7: |B((¢(Jy. G y)) — (O(FJy. G y)))] using Theorem6 azB’
by blast

theorem Theorem8: |O(3 y. G y) | by (metis Aziom1 Aziom4 Theoreml Theorem7
azB’)

theorem Theorem9: |V . (P ¢) = &(3z. ¢ z))] using Aziom! Aziom4 axM’
by metis

Short proof of Theorem8; analogous to the one presented in Sec. 7 of
Benzmiiller 2020.

theorem |O(3y. G y)| — Note: this version of the proof uses only azB’ and azM’.
proof —

have L1: |[(3X.((P X)A-(3X)))—=(P(Az.(a£2)))] using Azioml Aziom3
azB’ by blast — Use metis here if O is omitted in Axiom1 and Axiom 2

have L2: |- (P (/\a:(z;é:c)))J using Azioml! Aziom4 by metis

have L3: |-(3X.(P X) A =(3 X)))| using L1 L2 by blast

have T2: |P G| by (smt Aziom1 Aziom2 G-def axM’)

have T3: |3 y. G y| using L3 T2 by blast

have T6: [O(Fy. G y)| by (simp add: T3)

thus %thesis by blast qed

theorem T5: [(¢(3y. G y)) — O(Fy. G y)] — Obvious: If we can prove Theo-
rem8, then we also have T5.

proof —
have L1: |(3X.(P X)A-(3X)))—=(P(Az.(a#£x)))] using Aziom! Aziom3
azB’ by blast — Use metis here if O is omitted in Axiom1 and Axiom 2

have L2: |- (P (/\:c(z;éx)))J using Aziom! Aziom4 by metis
have L3: [-(3X.((P X) A =(3 X)))] using LI L2 by blast
have T2: |P G| by (smt Aziom1 Aziom2 G-def axM’)

have T3: |Jy. G y| using L3 T2 by blast

have 76: [O(3y. G y)| by (simp add: T3)

thus ?thesis by blast qed

Another short proof of Theorems8.

theorem |O(3y. G y)| — Note: fewer assumptions used in some cases than in
[6].
proof —

have T1: |P G| unfolding G-def using Aziom2 axM by blast

have T3a: |P (Az. (3y. G y))| by (metis (no-types, lifting) Axiom1 T1)

have T3b: |O(P (Az.(O(3y. G v))))] by (smt Aziom! G-def T3a Aziom3 T1
azB’)

have T6: |O((3y. G y) — (O3 y. G v)))] by (smt G-def T3a T3b)

have T7: |[O((¢(Jy. G y)) — (O(Fy. G y)))] using T6 axB’ by blast

thus ?thesis by (smt Aziom1 Aziomj T3b axB’) qed

Are the axioms of the simplified versions implied?

Actualist version of the axioms.

lemma A1 |~(P(Az.(z£x)))| using Theorem9 by blast
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lemma A2" VX Y.(P X) A (XEY)V(X=Y))) = (P Y))] nitpick oops
— Countermodel

lemma A3: |[VZ.((Pos Z2) —» (VX.((X[12) — (P X))))| nitpick oops —
Countermodel

Possibilist version of the axioms.
abbreviation a («-CP-)) where XCPY =V 2.((X 2) = (Y 2))
abbreviation b (<-=P-») where X=?Y = O(XCPY)
abbreviation d (¢<-[]?-») where X[|PZ = OV u.(Xu) < VY.((ZY) = (VY
u)))))

lemma A1'P: |~ (P(Az.(z#£2)))| using Theorem9 by blast
lemma A2'P: VX Y.(P X) A (XEPY)V(X=PY))) — (P Y))] oops — no
answer, yet by sledgehammer and nitpick
lemma A2'aP: [VX Y.((P X) A (X=2PY)) —» (P Y))] using Aziom! azM’ by
metis
lemma A2'bP: VX Y.(P X) A (XEPY)) — (P Y))| oops — no answer, yet
by sledgehammer and nitpick
lemma A3P: |V Z.((Pos Z2) —» (VX.(X[PZ2) — (P X))))]

by (smt (verit, del-insts) Aziom1 Aziom2 axM’) — proof found

Are Axiom?2 and A3 equivalent? Only when assuming Axiom1 and axiom
M.

lemma |[VA .(O((Ve.((A o) = (Pp)) = (P (A A)) =|VE((Pos Z) —
(VX.((XTTPZ) — (P X))))]

by (smt (verit, ccfv-threshold) Axiom1 axM') — proof found
end
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