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Abstract

This article formalizes signature-based algorithms for computing
Gröbner bases. Such algorithms are, in general, superior to other algo-
rithms in terms of efficiency, and have not been formalized in any proof
assistant so far. The present development is both generic, in the sense
that most known variants of signature-based algorithms are covered
by it, and effectively executable on concrete input thanks to Isabelle’s
code generator. Sample computations of benchmark problems show
that the verified implementation of signature-based algorithms indeed
outperforms the existing implementation of Buchberger’s algorithm in
Isabelle/HOL.

Besides total correctness of the algorithms, the article also proves
that under certain conditions they a-priori detect and avoid all useless
zero-reductions, and always return ‘minimal’ (in some sense) Gröbner
bases if an input parameter is chosen in the right way.

The formalization follows the recent survey article by Eder and
Faugère.
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1 Introduction

Signature-based algorithms [3, 1] play are central role in modern computer
algebra systems, as they allow to compute Gröbner bases of ideals of multi-
variate polynomials much more efficiently than other algorithms. Although
they also belong to the class of critical-pair/completion algorithms, as al-
most all algorithms for computing Gröbner bases, they nevertheless possess
some quite unique features that render a formal development in proof assis-
tants challenging. In fact, this is the first formalization of signature-based
algorithms in any proof assistant.
The formalization builds upon the existing formalization of Gröbner bases
theory [4] and closely follows Sections 4–7 of the excellent survey article [1].
Some proofs were taken from [5, 2].
Summarizing, the main features of the formalization are as follows:

• It is generic, in the sense that it considers the computation of so-called
rewrite bases and neither fixes the term order nor the rewrite-order.

• It is efficient, in the sense that all executable algorithms (e. g. gb-
sig) operate on sig-poly-pairs rather than module elements, and that
polynomials are represented efficiently using ordered associative lists.

• It proves that if the input is a regular sequence and the term order
is a POT order, there are no useless zero-reductions (Theorem gb-sig-
no-zero-red).

• It proves that the signature Gröbner bases computed w. r. t. the ‘ratio’
rewrite order are minimal (Theorem gb-sig-z-is-min-sig-GB).

• It features sample computations of benchmark problems to illustrate
the practical usability of the verified algorithms.

2 Preliminaries
theory Prelims

imports Polynomials.Utils Groebner-Bases.General
begin

2.1 Lists
2.1.1 Sequences of Lists
lemma list-seq-length-mono:

fixes seq :: nat ⇒ ′a list
assumes

∧
i. (∃ x. seq (Suc i) = x # seq i) and i < j

shows length (seq i) < length (seq j)
proof −
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from assms(2 ) obtain k where j = Suc (i + k) using less-iff-Suc-add by auto
show ?thesis unfolding ‹j = Suc (i + k)›
proof (induct k)

case 0
from assms(1 ) obtain x where eq: seq (Suc i) = x # seq i ..
show ?case by (simp add: eq)

next
case (Suc k)
from assms(1 ) obtain x where seq (Suc (i + Suc k)) = x # seq (i + Suc k)

..
hence eq: seq (Suc (Suc (i + k))) = x # seq (Suc (i + k)) by simp
note Suc
also have length (seq (Suc (i + k))) < length (seq (Suc (i + Suc k))) by (simp

add: eq)
finally show ?case .

qed
qed

corollary list-seq-length-mono-weak:
fixes seq :: nat ⇒ ′a list
assumes

∧
i. (∃ x. seq (Suc i) = x # seq i) and i ≤ j

shows length (seq i) ≤ length (seq j)
proof (cases i = j)

case True
thus ?thesis by simp

next
case False
with assms(2 ) have i < j by simp
with assms(1 ) have length (seq i) < length (seq j) by (rule list-seq-length-mono)
thus ?thesis by simp

qed

lemma list-seq-indexE-length:
fixes seq :: nat ⇒ ′a list
assumes

∧
i. (∃ x. seq (Suc i) = x # seq i)

obtains j where i < length (seq j)
proof (induct i arbitrary: thesis)

case 0
have 0 ≤ length (seq 0 ) by simp
also from assms lessI have ... < length (seq (Suc 0 )) by (rule list-seq-length-mono)
finally show ?case by (rule 0 )

next
case (Suc i)
obtain j where i < length (seq j) by (rule Suc(1 ))
hence Suc i ≤ length (seq j) by simp
also from assms lessI have ... < length (seq (Suc j)) by (rule list-seq-length-mono)
finally show ?case by (rule Suc(2 ))

qed
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lemma list-seq-nth:
fixes seq :: nat ⇒ ′a list
assumes

∧
i. (∃ x. seq (Suc i) = x # seq i) and i < length (seq j) and j ≤ k

shows rev (seq k) ! i = rev (seq j) ! i
proof −

from assms(3 ) obtain l where k = j + l using nat-le-iff-add by blast
show ?thesis unfolding ‹k = j + l›
proof (induct l)

case 0
show ?case by simp

next
case (Suc l)
note assms(2 )
also from assms(1 ) le-add1 have length (seq j) ≤ length (seq (j + l))

by (rule list-seq-length-mono-weak)
finally have i: i < length (seq (j + l)) .
from assms(1 ) obtain x where seq (Suc (j + l)) = x # seq (j + l) ..
thus ?case by (simp add: nth-append i Suc)

qed
qed

corollary list-seq-nth ′:
fixes seq :: nat ⇒ ′a list
assumes

∧
i. (∃ x. seq (Suc i) = x # seq i) and i < length (seq j) and i <

length (seq k)
shows rev (seq k) ! i = rev (seq j) ! i

proof (rule linorder-cases)
assume j < k
hence j ≤ k by simp
with assms(1 , 2 ) show ?thesis by (rule list-seq-nth)

next
assume k < j
hence k ≤ j by simp
with assms(1 , 3 ) have rev (seq j) ! i = rev (seq k) ! i by (rule list-seq-nth)
thus ?thesis by (rule HOL.sym)

next
assume j = k
thus ?thesis by simp

qed

2.1.2 filter
lemma filter-merge-wrt-1 :

assumes
∧

y. y ∈ set ys =⇒ P y =⇒ False
shows filter P (merge-wrt rel xs ys) = filter P xs
using assms

proof (induct rel xs ys rule: merge-wrt.induct)
case (1 rel xs)
show ?case by simp
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next
case (2 rel y ys)
hence P y =⇒ False and

∧
z. z ∈ set ys =⇒ P z =⇒ False by auto

thus ?case by (auto simp: filter-empty-conv)
next

case (3 rel x xs y ys)
hence ¬ P y and x:

∧
z. z ∈ set ys =⇒ P z =⇒ False by auto

have a: filter P (merge-wrt rel xs ys) = filter P xs if x = y using that x by (rule
3 (1 ))

have b: filter P (merge-wrt rel xs (y # ys)) = filter P xs if x 6= y and rel x y
using that 3 (4 ) by (rule 3 (2 ))

have c: filter P (merge-wrt rel (x # xs) ys) = filter P (x # xs) if x 6= y and ¬
rel x y

using that x by (rule 3 (3 ))
show ?case by (simp add: a b c ‹¬ P y›)

qed

lemma filter-merge-wrt-2 :
assumes

∧
x. x ∈ set xs =⇒ P x =⇒ False

shows filter P (merge-wrt rel xs ys) = filter P ys
using assms

proof (induct rel xs ys rule: merge-wrt.induct)
case (1 rel xs)
thus ?case by (auto simp: filter-empty-conv)

next
case (2 rel y ys)
show ?case by simp

next
case (3 rel x xs y ys)
hence ¬ P x and x:

∧
z. z ∈ set xs =⇒ P z =⇒ False by auto

have a: filter P (merge-wrt rel xs ys) = filter P ys if x = y using that x by (rule
3 (1 ))

have b: filter P (merge-wrt rel xs (y # ys)) = filter P (y # ys) if x 6= y and rel
x y

using that x by (rule 3 (2 ))
have c: filter P (merge-wrt rel (x # xs) ys) = filter P ys if x 6= y and ¬ rel x y

using that 3 (4 ) by (rule 3 (3 ))
show ?case by (simp add: a b c ‹¬ P x›)

qed

lemma length-filter-le-1 :
assumes length (filter P xs) ≤ 1 and i < length xs and j < length xs

and P (xs ! i) and P (xs ! j)
shows i = j

proof −
have ∗: thesis if a < b and b < length xs

and
∧

as bs cs. as @ ((xs ! a) # (bs @ ((xs ! b) # cs))) = xs =⇒ thesis for a
b thesis

proof (rule that(3 ))
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from that(1 , 2 ) have 1 : a < length xs by simp
with that(1 , 2 ) have 2 : b − Suc a < length (drop (Suc a) xs) by simp
from that(1 ) ‹a < length xs› have eq: xs ! b = drop (Suc a) xs ! (b − Suc a)

by simp
show (take a xs) @ ((xs ! a) # ((take (b − Suc a) (drop (Suc a) xs)) @ ((xs !

b) #
drop (Suc (b − Suc a)) (drop (Suc a) xs)))) = xs

by (simp only: eq id-take-nth-drop[OF 1 , symmetric] id-take-nth-drop[OF 2 ,
symmetric])

qed
show ?thesis
proof (rule linorder-cases)

assume i < j
then obtain as bs cs where as @ ((xs ! i) # (bs @ ((xs ! j) # cs))) = xs

using assms(3 ) by (rule ∗)
hence filter P xs = filter P (as @ ((xs ! i) # (bs @ ((xs ! j) # cs)))) by simp
also from assms(4 , 5 ) have ... = (filter P as) @ ((xs ! i) # ((filter P bs) @

((xs ! j) # (filter P cs))))
by simp

finally have ¬ length (filter P xs) ≤ 1 by simp
thus ?thesis using assms(1 ) ..

next
assume j < i
then obtain as bs cs where as @ ((xs ! j) # (bs @ ((xs ! i) # cs))) = xs

using assms(2 ) by (rule ∗)
hence filter P xs = filter P (as @ ((xs ! j) # (bs @ ((xs ! i) # cs)))) by simp
also from assms(4 , 5 ) have ... = (filter P as) @ ((xs ! j) # ((filter P bs) @

((xs ! i) # (filter P cs))))
by simp

finally have ¬ length (filter P xs) ≤ 1 by simp
thus ?thesis using assms(1 ) ..

qed
qed

lemma length-filter-eq [simp]: length (filter ((=) x) xs) = count-list xs x
by (induct xs, simp-all)

2.1.3 drop
lemma nth-in-set-dropI :

assumes j ≤ i and i < length xs
shows xs ! i ∈ set (drop j xs)
using assms

proof (induct xs arbitrary: i j)
case Nil
thus ?case by simp

next
case (Cons x xs)
show ?case
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proof (cases j)
case 0
with Cons(3 ) show ?thesis by (metis drop0 nth-mem)

next
case (Suc j0 )
with Cons(2 ) Suc-le-D obtain i0 where i: i = Suc i0 by blast
with Cons(2 ) have j0 ≤ i0 by (simp add: ‹j = Suc j0 ›)
moreover from Cons(3 ) have i0 < length xs by (simp add: i)
ultimately have xs ! i0 ∈ set (drop j0 xs) by (rule Cons(1 ))
thus ?thesis by (simp add: i ‹j = Suc j0 ›)

qed
qed

2.1.4 count-list
lemma count-list-upt [simp]: count-list [a..<b] x = (if a ≤ x ∧ x < b then 1 else
0 )
proof (cases a ≤ b)

case True
then obtain k where b = a + k using le-Suc-ex by blast
show ?thesis unfolding ‹b = a + k› by (induct k, simp-all)

next
case False
thus ?thesis by simp

qed

2.1.5 sorted-wrt
lemma sorted-wrt-upt-iff : sorted-wrt rel [a..<b] ←→ (∀ i j. a ≤ i −→ i < j −→ j
< b −→ rel i j)
proof (cases a ≤ b)

case True
then obtain k where b = a + k using le-Suc-ex by blast
show ?thesis unfolding ‹b = a + k›
proof (induct k)

case 0
show ?case by simp

next
case (Suc k)
show ?case
proof (simp add: sorted-wrt-append Suc, intro iffI allI ballI impI conjI )

fix i j
assume (∀ i≥a. ∀ j>i. j < a + k −→ rel i j) ∧ (∀ x∈{a..<a + k}. rel x (a +

k))
hence 1 :

∧
i ′ j ′. a ≤ i ′ =⇒ i ′ < j ′ =⇒ j ′ < a + k =⇒ rel i ′ j ′

and 2 :
∧

x. a ≤ x =⇒ x < a + k =⇒ rel x (a + k) by simp-all
assume a ≤ i and i < j
assume j < Suc (a + k)
hence j < a + k ∨ j = a + k by auto
thus rel i j
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proof
assume j < a + k
with ‹a ≤ i› ‹i < j› show ?thesis by (rule 1 )

next
assume j = a + k
from ‹a ≤ i› ‹i < j› show ?thesis unfolding ‹j = a + k› by (rule 2 )

qed
next

fix i j
assume ∀ i≥a. ∀ j>i. j < Suc (a + k) −→ rel i j and a ≤ i and i < j and

j < a + k
thus rel i j by simp

next
fix x
assume x ∈ {a..<a + k}
hence a ≤ x and x < a + k by simp-all
moreover assume ∀ i≥a. ∀ j>i. j < Suc (a + k) −→ rel i j
ultimately show rel x (a + k) by simp

qed
qed

next
case False
thus ?thesis by simp

qed

2.1.6 insort-wrt and merge-wrt
lemma map-insort-wrt:

assumes
∧

x. x ∈ set xs =⇒ r2 (f y) (f x) ←→ r1 y x
shows map f (insort-wrt r1 y xs) = insort-wrt r2 (f y) (map f xs)
using assms

proof (induct xs)
case Nil
show ?case by simp

next
case (Cons x xs)
have x ∈ set (x # xs) by simp
hence r2 (f y) (f x) = r1 y x by (rule Cons(2 ))
moreover have map f (insort-wrt r1 y xs) = insort-wrt r2 (f y) (map f xs)
proof (rule Cons(1 ))

fix x ′

assume x ′ ∈ set xs
hence x ′ ∈ set (x # xs) by simp
thus r2 (f y) (f x ′) = r1 y x ′ by (rule Cons(2 ))

qed
ultimately show ?case by simp

qed

lemma map-merge-wrt:
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assumes f ‘ set xs ∩ f ‘ set ys = {}
and

∧
x y. x ∈ set xs =⇒ y ∈ set ys =⇒ r2 (f x) (f y) ←→ r1 x y

shows map f (merge-wrt r1 xs ys) = merge-wrt r2 (map f xs) (map f ys)
using assms

proof (induct r1 xs ys rule: merge-wrt.induct)
case (1 uu xs)
show ?case by simp

next
case (2 r1 v va)
show ?case by simp

next
case (3 r1 x xs y ys)
from 3 (4 ) have f x 6= f y and 1 : f ‘ set xs ∩ f ‘ set (y # ys) = {}

and 2 : f ‘ set (x # xs) ∩ f ‘ set ys = {} by auto
from this(1 ) have x 6= y by auto
have eq2 : map f (merge-wrt r1 xs (y # ys)) = merge-wrt r2 (map f xs) (map f

(y # ys))
if r1 x y using ‹x 6= y› that 1

proof (rule 3 (2 ))
fix a b
assume a ∈ set xs
hence a ∈ set (x # xs) by simp
moreover assume b ∈ set (y # ys)
ultimately show r2 (f a) (f b) ←→ r1 a b by (rule 3 (5 ))

qed
have eq3 : map f (merge-wrt r1 (x # xs) ys) = merge-wrt r2 (map f (x # xs))

(map f ys)
if ¬ r1 x y using ‹x 6= y› that 2

proof (rule 3 (3 ))
fix a b
assume a ∈ set (x # xs)
assume b ∈ set ys
hence b ∈ set (y # ys) by simp
with ‹a ∈ set (x # xs)› show r2 (f a) (f b) ←→ r1 a b by (rule 3 (5 ))

qed
have eq4 : r2 (f x) (f y) ←→ r1 x y by (rule 3 (5 ), simp-all)
show ?case by (simp add: eq2 eq3 eq4 ‹f x 6= f y› ‹x 6= y›)

qed

2.2 Recursive Functions
locale recursive =

fixes h ′ :: ′b ⇒ ′b
fixes b :: ′b
assumes b-fixpoint: h ′ b = b

begin

context
fixes Q :: ′a ⇒ bool
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fixes g :: ′a ⇒ ′b
fixes h :: ′a ⇒ ′a

begin

function (domintros) recfun-aux :: ′a ⇒ ′b where
recfun-aux x = (if Q x then g x else h ′ (recfun-aux (h x)))
by pat-completeness auto

lemmas [induct del] = recfun-aux.pinduct

definition dom :: ′a ⇒ bool
where dom x ←→ (∃ k. Q ((h ^^ k) x))

lemma domI :
assumes ¬ Q x =⇒ dom (h x)
shows dom x

proof (cases Q x)
case True
hence Q ((h ^^ 0 ) x) by simp
thus ?thesis unfolding dom-def ..

next
case False
hence dom (h x) by (rule assms)
then obtain k where Q ((h ^^ k) (h x)) unfolding dom-def ..
hence Q ((h ^^ (Suc k)) x) by (simp add: funpow-swap1 )
thus ?thesis unfolding dom-def ..

qed

lemma domD:
assumes dom x and ¬ Q x
shows dom (h x)

proof −
from assms(1 ) obtain k where ∗: Q ((h ^^ k) x) unfolding dom-def ..
with assms(2 ) have k 6= 0 using funpow-0 by fastforce
then obtain m where k = Suc m using nat.exhaust by blast
with ∗ have Q ((h ^^ m) (h x)) by (simp add: funpow-swap1 )
thus ?thesis unfolding dom-def ..

qed

lemma recfun-aux-domI :
assumes dom x
shows recfun-aux-dom x

proof −
from assms obtain k where Q ((h ^^ k) x) unfolding dom-def ..
thus ?thesis
proof (induct k arbitrary: x)

case 0
hence Q x by simp
with recfun-aux.domintros show ?case by blast
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next
case (Suc k)
from Suc(2 ) have Q ((h ^^ k) (h x)) by (simp add: funpow-swap1 )
hence recfun-aux-dom (h x) by (rule Suc(1 ))
with recfun-aux.domintros show ?case by blast

qed
qed

lemma recfun-aux-domD:
assumes recfun-aux-dom x
shows dom x
using assms

proof (induct x rule: recfun-aux.pinduct)
case (1 x)
show ?case
proof (cases Q x)

case True
with domI show ?thesis by blast

next
case False
hence dom (h x) by (rule 1 (2 ))
thus ?thesis using domI by blast

qed
qed

corollary recfun-aux-dom-alt: recfun-aux-dom = dom
by (auto dest: recfun-aux-domI recfun-aux-domD)

definition fun :: ′a ⇒ ′b
where fun x = (if recfun-aux-dom x then recfun-aux x else b)

lemma simps: fun x = (if Q x then g x else h ′ (fun (h x)))
proof (cases dom x)

case True
hence dom: recfun-aux-dom x by (rule recfun-aux-domI )
show ?thesis
proof (cases Q x)

case True
with dom show ?thesis by (simp add: fun-def recfun-aux.psimps)

next
case False
have recfun-aux-dom (h x) by (rule recfun-aux-domI , rule domD, fact True,

fact False)
thus ?thesis by (simp add: fun-def dom False recfun-aux.psimps)

qed
next

case False
moreover have ¬ Q x
proof
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assume Q x
hence dom x using domI by blast
with False show False ..

qed
moreover have ¬ dom (h x)
proof

assume dom (h x)
hence dom x using domI by blast
with False show False ..

qed
ultimately show ?thesis by (simp add: recfun-aux-dom-alt fun-def b-fixpoint

split del: if-split)
qed

lemma eq-fixpointI : ¬ dom x =⇒ fun x = b
by (simp add: fun-def recfun-aux-dom-alt)

lemma pinduct: dom x =⇒ (
∧

x. dom x =⇒ (¬ Q x =⇒ P (h x)) =⇒ P x) =⇒
P x

unfolding recfun-aux-dom-alt[symmetric] by (fact recfun-aux.pinduct)

end

end

interpretation tailrec: recursive λx. x undefined
by (standard, fact refl)

2.3 Binary Relations
lemma almost-full-on-Int:

assumes almost-full-on P1 A1 and almost-full-on P2 A2
shows almost-full-on (λx y. P1 x y ∧ P2 x y) (A1 ∩ A2 ) (is almost-full-on ?P

?A)
proof (rule almost-full-onI )

fix f :: nat ⇒ ′a
assume a: ∀ i. f i ∈ ?A
define g where g = (λi. (f i, f i))
from assms have almost-full-on (prod-le P1 P2 ) (A1 × A2 ) by (rule al-

most-full-on-Sigma)
moreover from a have

∧
i. g i ∈ A1 × A2 by (simp add: g-def )

ultimately obtain i j where i < j and prod-le P1 P2 (g i) (g j) by (rule
almost-full-onD)

from this(2 ) have ?P (f i) (f j) by (simp add: g-def prod-le-def )
with ‹i < j› show good ?P f by (rule goodI )

qed

corollary almost-full-on-same:
assumes almost-full-on P1 A and almost-full-on P2 A
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shows almost-full-on (λx y. P1 x y ∧ P2 x y) A
proof −

from assms have almost-full-on (λx y. P1 x y ∧ P2 x y) (A ∩ A) by (rule
almost-full-on-Int)

thus ?thesis by simp
qed

context ord
begin

definition is-le-rel :: ( ′a ⇒ ′a ⇒ bool) ⇒ bool
where is-le-rel rel = (rel = (=) ∨ rel = (≤) ∨ rel = (<))

lemma is-le-relI [simp]: is-le-rel (=) is-le-rel (≤) is-le-rel (<)
by (simp-all add: is-le-rel-def )

lemma is-le-relE :
assumes is-le-rel rel
obtains rel = (=) | rel = (≤) | rel = (<)
using assms unfolding is-le-rel-def by blast

end

context preorder
begin

lemma is-le-rel-le:
assumes is-le-rel rel
shows rel x y =⇒ x ≤ y
using assms by (rule is-le-relE , auto dest: less-imp-le)

lemma is-le-rel-trans:
assumes is-le-rel rel
shows rel x y =⇒ rel y z =⇒ rel x z
using assms by (rule is-le-relE , auto dest: order-trans less-trans)

lemma is-le-rel-trans-le-left:
assumes is-le-rel rel
shows x ≤ y =⇒ rel y z =⇒ x ≤ z
using assms by (rule is-le-relE , auto dest: order-trans le-less-trans less-imp-le)

lemma is-le-rel-trans-le-right:
assumes is-le-rel rel
shows rel x y =⇒ y ≤ z =⇒ x ≤ z
using assms by (rule is-le-relE , auto dest: order-trans less-le-trans less-imp-le)

lemma is-le-rel-trans-less-left:
assumes is-le-rel rel
shows x < y =⇒ rel y z =⇒ x < z
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using assms by (rule is-le-relE , auto dest: less-le-trans less-imp-le)

lemma is-le-rel-trans-less-right:
assumes is-le-rel rel
shows rel x y =⇒ y < z =⇒ x < z
using assms by (rule is-le-relE , auto dest: le-less-trans less-imp-le)

end

context order
begin

lemma is-le-rel-distinct:
assumes is-le-rel rel
shows rel x y =⇒ x 6= y =⇒ x < y
using assms by (rule is-le-relE , auto)

lemma is-le-rel-antisym:
assumes is-le-rel rel
shows rel x y =⇒ rel y x =⇒ x = y
using assms by (rule is-le-relE , auto)

end

end

3 More Properties of Power-Products and Multi-
variate Polynomials

theory More-MPoly
imports Prelims Polynomials.MPoly-Type-Class-Ordered

begin

3.1 Power-Products
lemma (in comm-powerprod) minus-plus ′: s adds t =⇒ u + (t − s) = (u + t) −
s

using add-commute minus-plus by auto

context ulcs-powerprod
begin

lemma lcs-alt-2 :
assumes a + x = b + y
shows lcs x y = (b + y) − gcs a b

proof −
have a + (lcs x y + gcs a b) = lcs (a + x) (a + y) + gcs a b by (simp only:

lcs-plus-left ac-simps)
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also have ... = lcs (b + y) (a + y) + gcs a b by (simp only: assms)
also have ... = (lcs a b + y) + gcs a b by (simp only: lcs-plus-right lcs-comm)
also have ... = (gcs a b + lcs a b) + y by (simp only: ac-simps)
also have ... = a + (b + y) by (simp only: gcs-plus-lcs, simp add: ac-simps)
finally have (lcs x y + gcs a b) − gcs a b = (b + y) − gcs a b by simp
thus ?thesis by simp

qed

corollary lcs-alt-1 :
assumes a + x = b + y
shows lcs x y = (a + x) − gcs a b

proof −
have lcs x y = lcs y x by (simp only: lcs-comm)
also from assms[symmetric] have ... = (a + x) − gcs b a by (rule lcs-alt-2 )
also have ... = (a + x) − gcs a b by (simp only: gcs-comm)
finally show ?thesis .

qed

corollary lcs-minus-1 :
assumes a + x = b + y
shows lcs x y − x = a − gcs a b
by (simp add: lcs-alt-1 [OF assms] diff-right-commute)

corollary lcs-minus-2 :
assumes a + x = b + y
shows lcs x y − y = b − gcs a b
by (simp add: lcs-alt-2 [OF assms] diff-right-commute)

lemma gcs-minus:
assumes u adds s and u adds t
shows gcs (s − u) (t − u) = gcs s t − u

proof −
from assms have gcs s t = gcs ((s − u) + u) ((t − u) + u) by (simp add:

minus-plus)
also have ... = gcs (s − u) (t − u) + u by (simp only: gcs-plus-right)
finally show ?thesis by simp

qed

corollary gcs-minus-gcs: gcs (s − (gcs s t)) (t − (gcs s t)) = 0
by (simp add: gcs-minus gcs-adds gcs-adds-2 )

end

3.2 Miscellaneous
lemma poly-mapping-rangeE :

assumes c ∈ Poly-Mapping.range p
obtains k where k ∈ keys p and c = lookup p k
using assms by (transfer , auto)
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lemma poly-mapping-range-nonzero: 0 /∈ Poly-Mapping.range p
by (transfer , auto)

lemma (in term-powerprod) Keys-range-vectorize-poly: Keys (Poly-Mapping.range
(vectorize-poly p)) = pp-of-term ‘ keys p
proof

show Keys (Poly-Mapping.range (vectorize-poly p)) ⊆ pp-of-term ‘ keys p
proof

fix t
assume t ∈ Keys (Poly-Mapping.range (vectorize-poly p))
then obtain q where q ∈ Poly-Mapping.range (vectorize-poly p) and t ∈ keys

q by (rule in-KeysE)
from this(1 ) obtain k where q: q = lookup (vectorize-poly p) k by (metis

DiffE imageE range.rep-eq)
with ‹t ∈ keys q› have term-of-pair (t, k) ∈ keys p

by (metis in-keys-iff lookup-proj-poly lookup-vectorize-poly)
hence pp-of-term (term-of-pair (t, k)) ∈ pp-of-term ‘ keys p by (rule imageI )
thus t ∈ pp-of-term ‘ keys p by (simp only: pp-of-term-of-pair)

qed
next

show pp-of-term ‘ keys p ⊆ Keys (Poly-Mapping.range (vectorize-poly p))
proof

fix t
assume t ∈ pp-of-term ‘ keys p
then obtain x where x ∈ keys p and t = pp-of-term x ..
from this(2 ) have term-of-pair (t, component-of-term x) = x by (simp add:

term-of-pair-pair)
with ‹x ∈ keys p› have lookup p (term-of-pair (t, component-of-term x)) 6= 0

by (simp add: in-keys-iff )
hence lookup (proj-poly (component-of-term x) p) t 6= 0 by (simp add: lookup-proj-poly)
hence t: t ∈ keys (proj-poly (component-of-term x) p)

by (simp add: in-keys-iff )
from ‹x ∈ keys p› have component-of-term x ∈ keys (vectorize-poly p)

by (simp add: keys-vectorize-poly)
from t show t ∈ Keys (Poly-Mapping.range (vectorize-poly p))
proof (rule in-KeysI )
have proj-poly (component-of-term x) p = lookup (vectorize-poly p) (component-of-term

x)
by (simp only: lookup-vectorize-poly)

also from ‹component-of-term x ∈ keys (vectorize-poly p)›
have ... ∈ Poly-Mapping.range (vectorize-poly p) by (rule in-keys-lookup-in-range)

finally show proj-poly (component-of-term x) p ∈ Poly-Mapping.range
(vectorize-poly p) .

qed
qed

qed
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3.3 ordered-term.lt and ordered-term.higher
context ordered-term
begin

lemma lt-lookup-vectorize: punit.lt (lookup (vectorize-poly p) (component-of-term
(lt p))) = lp p
proof (cases p = 0 )

case True
thus ?thesis by (simp add: vectorize-zero min-term-def pp-of-term-of-pair)

next
case False
show ?thesis
proof (rule punit.lt-eqI-keys)

from False have lt p ∈ keys p by (rule lt-in-keys)
thus lp p ∈ keys (lookup (vectorize-poly p) (component-of-term (lt p)))

by (simp add: lookup-vectorize-poly keys-proj-poly)
next

fix t
assume t ∈ keys (lookup (vectorize-poly p) (component-of-term (lt p)))

also have ... = pp-of-term ‘ {x∈keys p. component-of-term x = component-of-term
(lt p)}

by (simp only: lookup-vectorize-poly keys-proj-poly)
finally obtain v where v ∈ keys p and 1 : component-of-term v = compo-

nent-of-term (lt p)
and t: t = pp-of-term v by auto

from this(1 ) have v �t lt p by (rule lt-max-keys)
show t � lp p
proof (rule ccontr)

assume ¬ t � lp p
hence lp p ≺ pp-of-term v by (simp add: t)
hence lp p 6= pp-of-term v and lp p � pp-of-term v by simp-all
note this(2 )
moreover from 1 have component-of-term (lt p) ≤ component-of-term v by

simp
ultimately have lt p �t v by (rule ord-termI )
with ‹v �t lt p› have v = lt p

by simp
with ‹lp p 6= pp-of-term v› show False by simp

qed
qed

qed

lemma lower-higher-zeroI : u �t v =⇒ lower (higher p v) u = 0
by (simp add: lower-eq-zero-iff lookup-higher-when)

lemma lookup-minus-higher : lookup (p − higher p v) u = (lookup p u when u �t

v)
by (auto simp: lookup-minus lookup-higher-when when-def )
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lemma keys-minus-higher : keys (p − higher p v) = {u ∈ keys p. u �t v}
by (rule set-eqI , simp add: lookup-minus-higher conj-commute flip: lookup-not-eq-zero-eq-in-keys)

lemma lt-minus-higher : v ∈ keys p =⇒ lt (p − higher p v) = v
by (rule lt-eqI-keys, simp-all add: keys-minus-higher)

lemma lc-minus-higher : v ∈ keys p =⇒ lc (p − higher p v) = lookup p v
by (simp add: lc-def lt-minus-higher lookup-minus-higher)

lemma tail-minus-higher : v ∈ keys p =⇒ tail (p − higher p v) = lower p v
by (rule poly-mapping-eqI , simp add: lookup-tail-when lt-minus-higher lookup-lower-when

lookup-minus-higher cong: when-cong)

end

3.4 gd-term.dgrad-p-set
lemma (in gd-term) dgrad-p-set-closed-mult-scalar :

assumes dickson-grading d and p ∈ punit.dgrad-p-set d m and r ∈ dgrad-p-set
d m

shows p � r ∈ dgrad-p-set d m
proof (rule dgrad-p-setI )

fix v
assume v ∈ keys (p � r)
then obtain t u where t ∈ keys p and u ∈ keys r and v: v = t ⊕ u

by (rule in-keys-mult-scalarE)
from assms(2 ) ‹t ∈ keys p› have d t ≤ m by (rule punit.dgrad-p-setD[simplified])
moreover from assms(3 ) ‹u ∈ keys r› have d (pp-of-term u) ≤ m by (rule

dgrad-p-setD)
ultimately have d (t + pp-of-term u) ≤ m using assms(1 ) by (simp add:

dickson-gradingD1 )
thus d (pp-of-term v) ≤ m by (simp only: v pp-of-term-splus)

qed

3.5 Regular Sequences
definition is-regular-sequence :: ( ′a::comm-powerprod ⇒0

′b::comm-ring-1 ) list ⇒
bool

where is-regular-sequence fs ←→ (∀ j<length fs. ∀ q. q ∗ fs ! j ∈ ideal (set (take
j fs)) −→

q ∈ ideal (set (take j fs)))

lemma is-regular-sequenceD:
is-regular-sequence fs =⇒ j < length fs =⇒ q ∗ fs ! j ∈ ideal (set (take j fs)) =⇒

q ∈ ideal (set (take j fs))
by (simp add: is-regular-sequence-def )

lemma is-regular-sequence-Nil: is-regular-sequence []
by (simp add: is-regular-sequence-def )
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lemma is-regular-sequence-snocI :
assumes

∧
q. q ∗ f ∈ ideal (set fs) =⇒ q ∈ ideal (set fs) and is-regular-sequence

fs
shows is-regular-sequence (fs @ [f ])

proof (simp add: is-regular-sequence-def , intro impI allI )
fix j q
assume 1 : j < Suc (length fs) and 2 : q ∗ (fs @ [f ]) ! j ∈ ideal (set (take j fs))
show q ∈ ideal (set (take j fs))
proof (cases j = length fs)

case True
from 2 have q ∗ f ∈ ideal (set fs) by (simp add: True)
hence q ∈ ideal (set fs) by (rule assms(1 ))
thus ?thesis by (simp add: True)

next
case False
with 1 have j < length fs by simp
with 2 have q ∗ fs ! j ∈ ideal (set (take j fs)) by (simp add: nth-append)

with assms(2 ) ‹j < length fs› show q ∈ ideal (set (take j fs)) by (rule
is-regular-sequenceD)

qed
qed

lemma is-regular-sequence-snocD:
assumes is-regular-sequence (fs @ [f ])
shows

∧
q. q ∗ f ∈ ideal (set fs) =⇒ q ∈ ideal (set fs)

and is-regular-sequence fs
proof −

fix q
assume 1 : q ∗ f ∈ ideal (set fs)
note assms
moreover have length fs < length (fs @ [f ]) by simp
moreover from 1 have q ∗ (fs @ [f ]) ! (length fs) ∈ ideal (set (take (length fs)

(fs @ [f ])))
by simp

ultimately have q ∈ ideal (set (take (length fs) (fs @ [f ]))) by (rule is-regular-sequenceD)
thus q ∈ ideal (set fs) by simp

next
show is-regular-sequence fs unfolding is-regular-sequence-def
proof (intro impI allI )

fix j q
assume 1 : j < length fs and 2 : q ∗ fs ! j ∈ ideal (set (take j fs))
note assms
moreover from 1 have j < length (fs @ [f ]) by simp
moreover from 1 2 have q ∗ (fs @ [f ]) ! j ∈ ideal (set (take j (fs @ [f ])))

by (simp add: nth-append)
ultimately have q ∈ ideal (set (take j (fs @ [f ]))) by (rule is-regular-sequenceD)
with 1 show q ∈ ideal (set (take j fs)) by simp

qed
qed
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lemma is-regular-sequence-removeAll-zero:
assumes is-regular-sequence fs
shows is-regular-sequence (removeAll 0 fs)
using assms

proof (induct fs rule: rev-induct)
case Nil
show ?case by (simp add: is-regular-sequence-Nil)

next
case (snoc f fs)
have set (removeAll 0 fs) = set fs − {0} by simp
also have ideal ... = ideal (set fs) by (fact ideal.span-Diff-zero)
finally have eq: ideal (set (removeAll 0 fs)) = ideal (set fs) .
from snoc(2 ) have ∗: is-regular-sequence fs by (rule is-regular-sequence-snocD)
show ?case
proof (simp, intro conjI impI )

show is-regular-sequence (removeAll 0 fs @ [f ])
proof (rule is-regular-sequence-snocI )

fix q
assume q ∗ f ∈ ideal (set (removeAll 0 fs))
hence q ∗ f ∈ ideal (set fs) by (simp only: eq)
with snoc(2 ) have q ∈ ideal (set fs) by (rule is-regular-sequence-snocD)
thus q ∈ ideal (set (removeAll 0 fs)) by (simp only: eq)

next
from ∗ show is-regular-sequence (removeAll 0 fs) by (rule snoc.hyps)

qed
next

from ∗ show is-regular-sequence (removeAll 0 fs) by (rule snoc.hyps)
qed

qed

lemma is-regular-sequence-remdups:
assumes is-regular-sequence fs
shows is-regular-sequence (rev (remdups (rev fs)))
using assms

proof (induct fs rule: rev-induct)
case Nil
show ?case by (simp add: is-regular-sequence-Nil)

next
case (snoc f fs)
from snoc(2 ) have ∗: is-regular-sequence fs by (rule is-regular-sequence-snocD)
show ?case
proof (simp, intro conjI impI )

show is-regular-sequence (rev (remdups (rev fs)) @ [f ])
proof (rule is-regular-sequence-snocI )

fix q
assume q ∗ f ∈ ideal (set (rev (remdups (rev fs))))
hence q ∗ f ∈ ideal (set fs) by simp
with snoc(2 ) have q ∈ ideal (set fs) by (rule is-regular-sequence-snocD)
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thus q ∈ ideal (set (rev (remdups (rev fs)))) by simp
next

from ∗ show is-regular-sequence (rev (remdups (rev fs))) by (rule snoc.hyps)
qed

next
from ∗ show is-regular-sequence (rev (remdups (rev fs))) by (rule snoc.hyps)

qed
qed

end

4 Signature-Based Algorithms for Computing Gröb-
ner Bases

theory Signature-Groebner
imports More-MPoly Groebner-Bases.Syzygy Polynomials.Quasi-PM-Power-Products

begin

First, we develop the whole theory for elements of the module K[X]r, i. e.
objects of type ′t ⇒0

′b. Later, we transfer all algorithms defined on such
objects to algorithms efficiently operating on sig-poly-pairs, i. e. objects of
type ′t × ( ′a ⇒0

′b).

4.1 More Preliminaries
lemma (in gd-term) lt-spoly-less-lcs:

assumes p 6= 0 and q 6= 0 and spoly p q 6= 0
shows lt (spoly p q) ≺t term-of-pair (lcs (lp p) (lp q), component-of-term (lt p))

proof −
let ?l = lcs (lp p) (lp q)
let ?p = monom-mult (1 / lc p) (?l − lp p) p
let ?q = monom-mult (1 / lc q) (?l − lp q) q
from assms(3 ) have eq1 : component-of-term (lt p) = component-of-term (lt q)

and eq2 : spoly p q = ?p − ?q
by (simp-all add: spoly-def Let-def lc-def split: if-split-asm)

from ‹p 6= 0 › have lc p 6= 0 by (rule lc-not-0 )
with assms(1 ) have lt ?p = (?l − lp p) ⊕ lt p and lc ?p = 1 by (simp-all add:

lt-monom-mult)
from this(1 ) have lt-p: lt ?p = term-of-pair (?l, component-of-term (lt p))

by (simp add: splus-def adds-minus adds-lcs)
from ‹q 6= 0 › have lc q 6= 0 by (rule lc-not-0 )
with assms(2 ) have lt ?q = (?l − lp q) ⊕ lt q and lc ?q = 1 by (simp-all add:

lt-monom-mult)
from this(1 ) have lt-q: lt ?q = term-of-pair (?l, component-of-term (lt p))

by (simp add: eq1 splus-def adds-minus adds-lcs-2 )
from assms(3 ) have ?p − ?q 6= 0 by (simp add: eq2 )
moreover have lt ?q = lt ?p by (simp only: lt-p lt-q)
moreover have lc ?q = lc ?p by (simp only: ‹lc ?p = 1 › ‹lc ?q = 1 ›)
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ultimately have lt (?p − ?q) ≺t lt ?p by (rule lt-minus-lessI )
thus ?thesis by (simp only: eq2 lt-p)

qed

4.2 Module Polynomials
locale qpm-inf-term =

gd-term pair-of-term term-of-pair ord ord-strict ord-term ord-term-strict
for pair-of-term:: ′t ⇒ ( ′a::quasi-pm-powerprod × nat)
and term-of-pair ::( ′a × nat) ⇒ ′t
and ord:: ′a ⇒ ′a ⇒ bool (infixl ‹�› 50 )
and ord-strict (infixl ‹≺› 50 )
and ord-term:: ′t ⇒ ′t ⇒ bool (infixl ‹�t› 50 )
and ord-term-strict:: ′t ⇒ ′t ⇒ bool (infixl ‹≺t› 50 )

begin

lemma in-idealE-rep-dgrad-p-set:
assumes hom-grading d and B ⊆ punit.dgrad-p-set d m and p ∈ punit.dgrad-p-set

d m and p ∈ ideal B
obtains r where keys r ⊆ B and Poly-Mapping.range r ⊆ punit.dgrad-p-set d

m and p = ideal.rep r
proof −
from assms obtain A q where finite A and A ⊆ B and 0 :

∧
b. q b ∈ punit.dgrad-p-set

d m
and p: p = (

∑
a∈A. q a ∗ a) by (rule punit.in-pmdlE-dgrad-p-set[simplified],

blast)
define r where r = Abs-poly-mapping (λk. q k when k ∈ A)
have 1 : lookup r = (λk. q k when k ∈ A) unfolding r-def

by (rule Abs-poly-mapping-inverse, simp add: ‹finite A›)
have 2 : keys r ⊆ A by (auto simp: in-keys-iff 1 )
show ?thesis
proof

show Poly-Mapping.range r ⊆ punit.dgrad-p-set d m
proof

fix f
assume f ∈ Poly-Mapping.range r

then obtain b where b ∈ keys r and f : f = lookup r b by (rule poly-mapping-rangeE)
from this(1 ) 2 have b ∈ A ..
hence f = q b by (simp add: f 1 )
show f ∈ punit.dgrad-p-set d m unfolding ‹f = q b› by (rule 0 )

qed
next

have p = (
∑

a∈A. lookup r a ∗ a) unfolding p by (rule sum.cong, simp-all
add: 1 )

also from ‹finite A› 2 have ... = (
∑

a∈keys r . lookup r a ∗ a)
proof (rule sum.mono-neutral-right)

show ∀ a∈A − keys r . lookup r a ∗ a = 0
by (simp add: in-keys-iff )

qed
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finally show p = ideal.rep r by (simp only: ideal.rep-def )
next

from 2 ‹A ⊆ B› show keys r ⊆ B by (rule subset-trans)
qed

qed

context fixes fs :: ( ′a ⇒0
′b::field) list

begin

definition sig-inv-set ′ :: nat ⇒ ( ′t ⇒0
′b) set

where sig-inv-set ′ j = {r . keys (vectorize-poly r) ⊆ {0 ..<j}}

abbreviation sig-inv-set ≡ sig-inv-set ′ (length fs)

definition rep-list :: ( ′t ⇒0
′b) ⇒ ( ′a ⇒0

′b)
where rep-list r = ideal.rep (pm-of-idx-pm fs (vectorize-poly r))

lemma sig-inv-setI : keys (vectorize-poly r) ⊆ {0 ..<j} =⇒ r ∈ sig-inv-set ′ j
by (simp add: sig-inv-set ′-def )

lemma sig-inv-setD: r ∈ sig-inv-set ′ j =⇒ keys (vectorize-poly r) ⊆ {0 ..<j}
by (simp add: sig-inv-set ′-def )

lemma sig-inv-setI ′:
assumes

∧
v. v ∈ keys r =⇒ component-of-term v < j

shows r ∈ sig-inv-set ′ j
proof (rule sig-inv-setI , rule)

fix k
assume k ∈ keys (vectorize-poly r)
then obtain v where v ∈ keys r and k: k = component-of-term v unfolding

keys-vectorize-poly ..
from this(1 ) have k < j unfolding k by (rule assms)
thus k ∈ {0 ..<j} by simp

qed

lemma sig-inv-setD ′:
assumes r ∈ sig-inv-set ′ j and v ∈ keys r
shows component-of-term v < j

proof −
from assms(2 ) have component-of-term v ∈ component-of-term ‘ keys r by (rule

imageI )
also have ... = keys (vectorize-poly r) by (simp only: keys-vectorize-poly)
also from assms(1 ) have ... ⊆ {0 ..<j} by (rule sig-inv-setD)
finally show ?thesis by simp

qed

corollary sig-inv-setD-lt:
assumes r ∈ sig-inv-set ′ j and r 6= 0
shows component-of-term (lt r) < j
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by (rule sig-inv-setD ′, fact, rule lt-in-keys, fact)

lemma sig-inv-set-mono:
assumes i ≤ j
shows sig-inv-set ′ i ⊆ sig-inv-set ′ j

proof
fix r
assume r ∈ sig-inv-set ′ i
hence keys (vectorize-poly r) ⊆ {0 ..<i} by (rule sig-inv-setD)
also from assms have ... ⊆ {0 ..<j} by fastforce
finally show r ∈ sig-inv-set ′ j by (rule sig-inv-setI )

qed

lemma sig-inv-set-zero: 0 ∈ sig-inv-set ′ j
by (rule sig-inv-setI ′, simp)

lemma sig-inv-set-closed-uminus: r ∈ sig-inv-set ′ j =⇒ − r ∈ sig-inv-set ′ j
by (auto dest!: sig-inv-setD ′ intro!: sig-inv-setI ′ simp: keys-uminus)

lemma sig-inv-set-closed-plus:
assumes r ∈ sig-inv-set ′ j and s ∈ sig-inv-set ′ j
shows r + s ∈ sig-inv-set ′ j

proof (rule sig-inv-setI ′)
fix v
assume v ∈ keys (r + s)
hence v ∈ keys r ∪ keys s using Poly-Mapping.keys-add ..
thus component-of-term v < j
proof

assume v ∈ keys r
with assms(1 ) show ?thesis by (rule sig-inv-setD ′)

next
assume v ∈ keys s
with assms(2 ) show ?thesis by (rule sig-inv-setD ′)

qed
qed

lemma sig-inv-set-closed-minus:
assumes r ∈ sig-inv-set ′ j and s ∈ sig-inv-set ′ j
shows r − s ∈ sig-inv-set ′ j

proof (rule sig-inv-setI ′)
fix v
assume v ∈ keys (r − s)
hence v ∈ keys r ∪ keys s using keys-minus ..
thus component-of-term v < j
proof

assume v ∈ keys r
with assms(1 ) show ?thesis by (rule sig-inv-setD ′)

next
assume v ∈ keys s
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with assms(2 ) show ?thesis by (rule sig-inv-setD ′)
qed

qed

lemma sig-inv-set-closed-monom-mult:
assumes r ∈ sig-inv-set ′ j
shows monom-mult c t r ∈ sig-inv-set ′ j

proof (rule sig-inv-setI ′)
fix v
assume v ∈ keys (monom-mult c t r)
hence v ∈ (⊕) t ‘ keys r using keys-monom-mult-subset ..
then obtain u where u ∈ keys r and v: v = t ⊕ u ..
from assms this(1 ) have component-of-term u < j by (rule sig-inv-setD ′)
thus component-of-term v < j by (simp add: v term-simps)

qed

lemma sig-inv-set-closed-mult-scalar :
assumes r ∈ sig-inv-set ′ j
shows p � r ∈ sig-inv-set ′ j

proof (rule sig-inv-setI ′)
fix v
assume v ∈ keys (p � r)
then obtain t u where u ∈ keys r and v: v = t ⊕ u by (rule in-keys-mult-scalarE)
from assms this(1 ) have component-of-term u < j by (rule sig-inv-setD ′)
thus component-of-term v < j by (simp add: v term-simps)

qed

lemma rep-list-zero: rep-list 0 = 0
by (simp add: rep-list-def vectorize-zero)

lemma rep-list-uminus: rep-list (− r) = − rep-list r
by (simp add: rep-list-def vectorize-uminus pm-of-idx-pm-uminus)

lemma rep-list-plus: rep-list (r + s) = rep-list r + rep-list s
by (simp add: rep-list-def vectorize-plus pm-of-idx-pm-plus ideal.rep-plus)

lemma rep-list-minus: rep-list (r − s) = rep-list r − rep-list s
by (simp add: rep-list-def vectorize-minus pm-of-idx-pm-minus ideal.rep-minus)

lemma vectorize-mult-scalar :
vectorize-poly (p � q) = MPoly-Type-Class.punit.monom-mult p 0 (vectorize-poly

q)
by (rule poly-mapping-eqI , simp add: lookup-vectorize-poly MPoly-Type-Class.punit.lookup-monom-mult-zero

proj-mult-scalar)

lemma rep-list-mult-scalar : rep-list (c � r) = c ∗ rep-list r
by (simp add: rep-list-def vectorize-mult-scalar pm-of-idx-pm-monom-mult punit.rep-mult-scalar [simplified])

lemma rep-list-monom-mult: rep-list (monom-mult c t r) = punit.monom-mult c
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t (rep-list r)
unfolding mult-scalar-monomial[symmetric] times-monomial-left[symmetric] by

(rule rep-list-mult-scalar)

lemma rep-list-monomial:
assumes distinct fs
shows rep-list (monomial c u) =

(punit.monom-mult c (pp-of-term u) (fs ! (component-of-term u))
when component-of-term u < length fs)

by (simp add: rep-list-def vectorize-monomial pm-of-idx-pm-monomial[OF assms]
when-def times-monomial-left)

lemma rep-list-in-ideal-sig-inv-set:
assumes r ∈ sig-inv-set ′ j
shows rep-list r ∈ ideal (set (take j fs))

proof −
let ?fs = take j fs
from assms have keys (vectorize-poly r) ⊆ {0 ..<j} by (rule sig-inv-setD)
hence eq: pm-of-idx-pm fs (vectorize-poly r) = pm-of-idx-pm ?fs (vectorize-poly

r)
by (simp only: pm-of-idx-pm-take)

have rep-list r ∈ ideal (keys (pm-of-idx-pm fs (vectorize-poly r)))
unfolding rep-list-def by (rule ideal.rep-in-span)

also have ... = ideal (keys (pm-of-idx-pm ?fs (vectorize-poly r))) by (simp only:
eq)
also from keys-pm-of-idx-pm-subset have ... ⊆ ideal (set ?fs) by (rule ideal.span-mono)
finally show ?thesis .

qed

corollary rep-list-subset-ideal-sig-inv-set:
B ⊆ sig-inv-set ′ j =⇒ rep-list ‘ B ⊆ ideal (set (take j fs))
by (auto dest: rep-list-in-ideal-sig-inv-set)

lemma rep-list-in-ideal: rep-list r ∈ ideal (set fs)
proof −

have rep-list r ∈ ideal (keys (pm-of-idx-pm fs (vectorize-poly r)))
unfolding rep-list-def by (rule ideal.rep-in-span)

also from keys-pm-of-idx-pm-subset have ... ⊆ ideal (set fs) by (rule ideal.span-mono)
finally show ?thesis .

qed

corollary rep-list-subset-ideal: rep-list ‘ B ⊆ ideal (set fs)
by (auto intro: rep-list-in-ideal)

lemma in-idealE-rep-list:
assumes p ∈ ideal (set fs)
obtains r where p = rep-list r and r ∈ sig-inv-set

proof −
from assms obtain r0 where r0 : keys r0 ⊆ set fs and p: p = ideal.rep r0
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by (rule ideal.spanE-rep)
show ?thesis
proof

show p = rep-list (atomize-poly (idx-pm-of-pm fs r0 ))
by (simp add: rep-list-def vectorize-atomize-poly pm-of-idx-pm-of-pm[OF r0 ]

p)
next

show atomize-poly (idx-pm-of-pm fs r0 ) ∈ sig-inv-set
by (rule sig-inv-setI , simp add: vectorize-atomize-poly keys-idx-pm-of-pm-subset)

qed
qed

lemma keys-rep-list-subset:
assumes t ∈ keys (rep-list r)
obtains v s where v ∈ keys r and s ∈ Keys (set fs) and t = pp-of-term v + s

proof −
from assms obtain v0 s where v0 : v0 ∈ Keys (Poly-Mapping.range (pm-of-idx-pm

fs (vectorize-poly r)))
and s: s ∈ Keys (keys (pm-of-idx-pm fs (vectorize-poly r))) and t: t = v0 + s
unfolding rep-list-def by (rule punit.keys-rep-subset[simplified])

note s
also from keys-pm-of-idx-pm-subset have Keys (keys (pm-of-idx-pm fs (vectorize-poly

r))) ⊆ Keys (set fs)
by (rule Keys-mono)

finally have s ∈ Keys (set fs) .
note v0
also from range-pm-of-idx-pm-subset ′

have Keys (Poly-Mapping.range (pm-of-idx-pm fs (vectorize-poly r))) ⊆ Keys
(Poly-Mapping.range (vectorize-poly r))

by (rule Keys-mono)
also have ... = pp-of-term ‘ keys r by (fact Keys-range-vectorize-poly)
finally obtain v where v ∈ keys r and v0 = pp-of-term v ..
from this(2 ) have t = pp-of-term v + s by (simp only: t)
with ‹v ∈ keys r› ‹s ∈ Keys (set fs)› show ?thesis ..

qed

lemma dgrad-p-set-le-rep-list:
assumes dickson-grading d and dgrad-set-le d (pp-of-term ‘ keys r) (Keys (set

fs))
shows punit.dgrad-p-set-le d {rep-list r} (set fs)

proof (simp add: punit.dgrad-p-set-le-def Keys-insert, rule dgrad-set-leI )
fix t
assume t ∈ keys (rep-list r)
then obtain v s1 where v ∈ keys r and s1 ∈ Keys (set fs) and t: t = pp-of-term

v + s1
by (rule keys-rep-list-subset)

from this(1 ) have pp-of-term v ∈ pp-of-term ‘ keys r by fastforce
with assms(2 ) obtain s2 where s2 ∈ Keys (set fs) and d (pp-of-term v) ≤ d

s2
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by (rule dgrad-set-leE)
from assms(1 ) have d t = ord-class.max (d (pp-of-term v)) (d s1 ) unfolding t

by (rule dickson-gradingD1 )
hence d t = d (pp-of-term v) ∨ d t = d s1 by (simp add: ord-class.max-def )
thus ∃ s∈Keys (set fs). d t ≤ d s
proof

assume d t = d (pp-of-term v)
with ‹d (pp-of-term v) ≤ d s2 › have d t ≤ d s2 by simp
with ‹s2 ∈ Keys (set fs)› show ?thesis ..

next
assume d t = d s1
hence d t ≤ d s1 by simp
with ‹s1 ∈ Keys (set fs)› show ?thesis ..

qed
qed

corollary dgrad-p-set-le-rep-list-image:
assumes dickson-grading d and dgrad-set-le d (pp-of-term ‘ Keys F) (Keys (set

fs))
shows punit.dgrad-p-set-le d (rep-list ‘ F) (set fs)

proof (rule punit.dgrad-p-set-leI , elim imageE , simp)
fix f
assume f ∈ F
have pp-of-term ‘ keys f ⊆ pp-of-term ‘ Keys F by (rule image-mono, rule

keys-subset-Keys, fact)
hence dgrad-set-le d (pp-of-term ‘ keys f ) (pp-of-term ‘ Keys F) by (rule dgrad-set-le-subset)
hence dgrad-set-le d (pp-of-term ‘ keys f ) (Keys (set fs)) using assms(2 ) by

(rule dgrad-set-le-trans)
with assms(1 ) show punit.dgrad-p-set-le d {rep-list f } (set fs) by (rule dgrad-p-set-le-rep-list)

qed
term Max

definition dgrad-max :: ( ′a ⇒ nat) ⇒ nat
where dgrad-max d = (Max (d ‘ (insert 0 (Keys (set fs)))))

abbreviation dgrad-max-set d ≡ dgrad-p-set d (dgrad-max d)
abbreviation punit-dgrad-max-set d ≡ punit.dgrad-p-set d (dgrad-max d)

lemma dgrad-max-0 : d 0 ≤ dgrad-max d
proof −

from finite-Keys have finite (d ‘ insert 0 (Keys (set fs))) by auto
moreover have d 0 ∈ d ‘ insert 0 (Keys (set fs)) by blast
ultimately show ?thesis unfolding dgrad-max-def by (rule Max-ge)

qed

lemma dgrad-max-1 : set fs ⊆ punit-dgrad-max-set d
proof (cases Keys (set fs) = {})

case True
show ?thesis
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proof (rule, rule punit.dgrad-p-setI [simplified])
fix f v
assume f ∈ set fs and v ∈ keys f
with True show d v ≤ dgrad-max d by (auto simp: Keys-def )

qed
next

case False
show ?thesis
proof (rule subset-trans)

from finite-set show set fs ⊆ punit.dgrad-p-set d (Max (d ‘ (Keys (set fs))))
by (rule punit.dgrad-p-set-exhaust-expl[simplified])

next
from finite-set have finite (Keys (set fs)) by (rule finite-Keys)
hence finite (d ‘ Keys (set fs)) by (rule finite-imageI )
moreover from False have 2 : d ‘ Keys (set fs) 6= {} by simp
ultimately have dgrad-max d = ord-class.max (d 0 ) (Max (d ‘ Keys (set fs)))

by (simp add: dgrad-max-def )
hence Max (d ‘ (Keys (set fs))) ≤ dgrad-max d by simp
thus punit.dgrad-p-set d (Max (d ‘ (Keys (set fs)))) ⊆ punit-dgrad-max-set d

by (rule punit.dgrad-p-set-subset)
qed

qed

lemma dgrad-max-2 :
assumes dickson-grading d and r ∈ dgrad-max-set d
shows rep-list r ∈ punit-dgrad-max-set d

proof (rule punit.dgrad-p-setI [simplified])
fix t
assume t ∈ keys (rep-list r)
then obtain v s where v ∈ keys r and s ∈ Keys (set fs) and t: t = pp-of-term

v + s
by (rule keys-rep-list-subset)

from assms(2 ) ‹v ∈ keys r› have d (pp-of-term v) ≤ dgrad-max d by (rule
dgrad-p-setD)
moreover have d s ≤ dgrad-max d by (simp add: ‹s ∈ Keys (set fs)› dgrad-max-def

finite-Keys)
ultimately show d t ≤ dgrad-max d by (simp add: t dickson-gradingD1 [OF

assms(1 )])
qed

corollary dgrad-max-3 :
assumes dickson-grading d and F ⊆ dgrad-max-set d
shows rep-list ‘ F ⊆ punit-dgrad-max-set d

proof (rule, elim imageE , simp)
fix f
assume f ∈ F
hence f ∈ dgrad-p-set d (dgrad-max d) using assms(2 ) ..
with assms(1 ) show rep-list f ∈ punit.dgrad-p-set d (dgrad-max d) by (rule

dgrad-max-2 )
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qed

lemma punit-dgrad-max-set-subset-dgrad-p-set:
assumes dickson-grading d and set fs ⊆ punit.dgrad-p-set d m and ¬ set fs ⊆
{0}

shows punit-dgrad-max-set d ⊆ punit.dgrad-p-set d m
proof (rule punit.dgrad-p-set-subset)

show dgrad-max d ≤ m unfolding dgrad-max-def
proof (rule Max.boundedI )

show finite (d ‘ insert 0 (Keys (set fs))) by (simp add: finite-Keys)
next

show d ‘ insert 0 (Keys (set fs)) 6= {} by simp
next

fix a
assume a ∈ d ‘ insert 0 (Keys (set fs))
then obtain t where t ∈ insert 0 (Keys (set fs)) and a = d t ..
from this(1 ) show a ≤ m unfolding ‹a = d t›
proof

assume t = 0
from assms(3 ) obtain f where f ∈ set fs and f 6= 0 by auto
from this(1 ) assms(2 ) have f ∈ punit.dgrad-p-set d m ..
from ‹f 6= 0 › have keys f 6= {} by simp
then obtain s where s ∈ keys f by blast
have d s = d (t + s) by (simp add: ‹t = 0 ›)

also from assms(1 ) have ... = ord-class.max (d t) (d s) by (rule dick-
son-gradingD1 )

finally have d t ≤ d s by (simp add: max-def )
also from ‹f ∈ punit.dgrad-p-set d m› ‹s ∈ keys f › have ... ≤ m

by (rule punit.dgrad-p-setD[simplified])
finally show d t ≤ m .

next
assume t ∈ Keys (set fs)
then obtain f where f ∈ set fs and t ∈ keys f by (rule in-KeysE)
from this(1 ) assms(2 ) have f ∈ punit.dgrad-p-set d m ..
thus d t ≤ m using ‹t ∈ keys f › by (rule punit.dgrad-p-setD[simplified])

qed
qed

qed

definition dgrad-sig-set ′ :: nat ⇒ ( ′a ⇒ nat) ⇒ ( ′t ⇒0
′b) set

where dgrad-sig-set ′ j d = dgrad-max-set d ∩ sig-inv-set ′ j

abbreviation dgrad-sig-set ≡ dgrad-sig-set ′ (length fs)

lemma dgrad-sig-set-set-mono: i ≤ j =⇒ dgrad-sig-set ′ i d ⊆ dgrad-sig-set ′ j d
by (auto simp: dgrad-sig-set ′-def dest: sig-inv-set-mono)

lemma dgrad-sig-set-closed-uminus: r ∈ dgrad-sig-set ′ j d =⇒ − r ∈ dgrad-sig-set ′

j d
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unfolding dgrad-sig-set ′-def by (auto intro: dgrad-p-set-closed-uminus sig-inv-set-closed-uminus)

lemma dgrad-sig-set-closed-plus:
r ∈ dgrad-sig-set ′ j d =⇒ s ∈ dgrad-sig-set ′ j d =⇒ r + s ∈ dgrad-sig-set ′ j d
unfolding dgrad-sig-set ′-def by (auto intro: dgrad-p-set-closed-plus sig-inv-set-closed-plus)

lemma dgrad-sig-set-closed-minus:
r ∈ dgrad-sig-set ′ j d =⇒ s ∈ dgrad-sig-set ′ j d =⇒ r − s ∈ dgrad-sig-set ′ j d
unfolding dgrad-sig-set ′-def by (auto intro: dgrad-p-set-closed-minus sig-inv-set-closed-minus)

lemma dgrad-sig-set-closed-monom-mult:
assumes dickson-grading d and d t ≤ dgrad-max d
shows p ∈ dgrad-sig-set ′ j d =⇒ monom-mult c t p ∈ dgrad-sig-set ′ j d
unfolding dgrad-sig-set ′-def by (auto intro: assms dgrad-p-set-closed-monom-mult

sig-inv-set-closed-monom-mult)

lemma dgrad-sig-set-closed-monom-mult-zero:
p ∈ dgrad-sig-set ′ j d =⇒ monom-mult c 0 p ∈ dgrad-sig-set ′ j d
unfolding dgrad-sig-set ′-def by (auto intro: dgrad-p-set-closed-monom-mult-zero

sig-inv-set-closed-monom-mult)

lemma dgrad-sig-set-closed-mult-scalar :
dickson-grading d =⇒ p ∈ punit-dgrad-max-set d =⇒ r ∈ dgrad-sig-set ′ j d =⇒

p � r ∈ dgrad-sig-set ′ j d
unfolding dgrad-sig-set ′-def by (auto intro: dgrad-p-set-closed-mult-scalar sig-inv-set-closed-mult-scalar)

lemma dgrad-sig-set-closed-monomial:
assumes d (pp-of-term u) ≤ dgrad-max d and component-of-term u < j
shows monomial c u ∈ dgrad-sig-set ′ j d

proof (simp add: dgrad-sig-set ′-def , rule)
show monomial c u ∈ dgrad-max-set d
proof (rule dgrad-p-setI )

fix v
assume v ∈ keys (monomial c u)
also have ... ⊆ {u} by simp
finally show d (pp-of-term v) ≤ dgrad-max d using assms(1 ) by simp

qed
next

show monomial c u ∈ sig-inv-set ′ j
proof (rule sig-inv-setI ′)

fix v
assume v ∈ keys (monomial c u)
also have ... ⊆ {u} by simp
finally show component-of-term v < j using assms(2 ) by simp

qed
qed

lemma rep-list-in-ideal-dgrad-sig-set:
r ∈ dgrad-sig-set ′ j d =⇒ rep-list r ∈ ideal (set (take j fs))
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by (auto simp: dgrad-sig-set ′-def dest: rep-list-in-ideal-sig-inv-set)

lemma in-idealE-rep-list-dgrad-sig-set-take:
assumes hom-grading d and p ∈ punit-dgrad-max-set d and p ∈ ideal (set (take

j fs))
obtains r where r ∈ dgrad-sig-set d and r ∈ dgrad-sig-set ′ j d and p = rep-list

r
proof −

let ?fs = take j fs
from set-take-subset dgrad-max-1 have set ?fs ⊆ punit-dgrad-max-set d

by (rule subset-trans)
with assms(1 ) obtain r0 where r0 : keys r0 ⊆ set ?fs

and 1 : Poly-Mapping.range r0 ⊆ punit-dgrad-max-set d and p: p = ideal.rep
r0

using assms(2 , 3 ) by (rule in-idealE-rep-dgrad-p-set)
define q where q = idx-pm-of-pm ?fs r0
have keys q ⊆ {0 ..<length ?fs} unfolding q-def by (rule keys-idx-pm-of-pm-subset)
also have ... ⊆ {0 ..<j} by fastforce
finally have keys-q: keys q ⊆ {0 ..<j} .
have ∗: atomize-poly q ∈ dgrad-max-set d
proof

fix v
assume v ∈ keys (atomize-poly q)
then obtain i where i: i ∈ keys q

and v-in: v ∈ (λt. term-of-pair (t, i)) ‘ keys (lookup q i)
unfolding keys-atomize-poly ..

from i keys-idx-pm-of-pm-subset[of ?fs r0 ] have i < length ?fs by (auto simp:
q-def )

from v-in obtain t where t ∈ keys (lookup q i) and v: v = term-of-pair (t,
i) ..

from this(1 ) ‹i < length ?fs› have t: t ∈ keys (lookup r0 (?fs ! i))
by (simp add: lookup-idx-pm-of-pm q-def )

hence lookup r0 (?fs ! i) 6= 0 by fastforce
hence lookup r0 (?fs ! i) ∈ Poly-Mapping.range r0 by (simp add: in-keys-iff )
hence lookup r0 (?fs ! i) ∈ punit-dgrad-max-set d using 1 ..
hence d t ≤ dgrad-max d using t by (rule punit.dgrad-p-setD[simplified])
thus d (pp-of-term v) ≤ dgrad-max d by (simp add: v pp-of-term-of-pair)

qed
show ?thesis
proof

have atomize-poly q ∈ sig-inv-set ′ j
by (rule sig-inv-setI , simp add: vectorize-atomize-poly keys-q)

with ∗ show atomize-poly q ∈ dgrad-sig-set ′ j d unfolding dgrad-sig-set ′-def
..

next
from ‹keys q ⊆ {0 ..<length ?fs}› have keys-q ′: keys q ⊆ {0 ..<length fs} by

auto
have atomize-poly q ∈ sig-inv-set

by (rule sig-inv-setI , simp add: vectorize-atomize-poly keys-q ′)
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with ∗ show atomize-poly q ∈ dgrad-sig-set d unfolding dgrad-sig-set ′-def ..
next

from keys-q have pm-of-idx-pm fs q = pm-of-idx-pm ?fs q by (simp only:
pm-of-idx-pm-take)

thus p = rep-list (atomize-poly q)
by (simp add: rep-list-def vectorize-atomize-poly pm-of-idx-pm-of-pm[OF r0 ]

p q-def )
qed

qed

corollary in-idealE-rep-list-dgrad-sig-set:
assumes hom-grading d and p ∈ punit-dgrad-max-set d and p ∈ ideal (set fs)
obtains r where r ∈ dgrad-sig-set d and p = rep-list r

proof −
from assms(3 ) have p ∈ ideal (set (take (length fs) fs)) by simp
with assms(1 , 2 ) obtain r where r ∈ dgrad-sig-set d and p = rep-list r

by (rule in-idealE-rep-list-dgrad-sig-set-take)
thus ?thesis ..

qed

lemma dgrad-sig-setD-lp:
assumes p ∈ dgrad-sig-set ′ j d
shows d (lp p) ≤ dgrad-max d

proof (cases p = 0 )
case True
show ?thesis by (simp add: True min-term-def pp-of-term-of-pair dgrad-max-0 )

next
case False
from assms have p ∈ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
thus ?thesis using False by (rule dgrad-p-setD-lp)

qed

lemma dgrad-sig-setD-lt:
assumes p ∈ dgrad-sig-set ′ j d and p 6= 0
shows component-of-term (lt p) < j

proof −
from assms have p ∈ sig-inv-set ′ j by (simp add: dgrad-sig-set ′-def )
thus ?thesis using assms(2 ) by (rule sig-inv-setD-lt)

qed

lemma dgrad-sig-setD-rep-list-lt:
assumes dickson-grading d and p ∈ dgrad-sig-set ′ j d
shows d (punit.lt (rep-list p)) ≤ dgrad-max d

proof (cases rep-list p = 0 )
case True
show ?thesis by (simp add: True dgrad-max-0 )

next
case False
from assms(2 ) have p ∈ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )

34



with assms(1 ) have rep-list p ∈ punit-dgrad-max-set d by (rule dgrad-max-2 )
thus ?thesis using False by (rule punit.dgrad-p-setD-lp[simplified])

qed

definition spp-of :: ( ′t ⇒0
′b) ⇒ ( ′t × ( ′a ⇒0

′b))
where spp-of r = (lt r , rep-list r)

“spp” stands for “sig-poly-pair”.
lemma fst-spp-of : fst (spp-of r) = lt r

by (simp add: spp-of-def )

lemma snd-spp-of : snd (spp-of r) = rep-list r
by (simp add: spp-of-def )

4.2.1 Signature Reduction
lemma term-is-le-rel-canc-left:

assumes ord-term-lin.is-le-rel rel
shows rel (t ⊕ u) (t ⊕ v) ←→ rel u v
using assms
by (rule ord-term-lin.is-le-relE ,

auto simp: splus-left-canc dest: ord-term-canc ord-term-strict-canc splus-mono
splus-mono-strict)

lemma term-is-le-rel-minus:
assumes ord-term-lin.is-le-rel rel and s adds t
shows rel ((t − s) ⊕ u) v ←→ rel (t ⊕ u) (s ⊕ v)

proof −
from assms(2 ) have eq: s + (t − s) = t unfolding add.commute[of s] by (rule

adds-minus)
from assms(1 ) have rel ((t − s) ⊕ u) v = rel (s ⊕ ((t − s) ⊕ u)) (s ⊕ v)

by (simp only: term-is-le-rel-canc-left)
also have ... = rel (t ⊕ u) (s ⊕ v) by (simp only: splus-assoc[symmetric] eq)
finally show ?thesis .

qed

lemma term-is-le-rel-minus-minus:
assumes ord-term-lin.is-le-rel rel and a adds t and b adds t
shows rel ((t − a) ⊕ u) ((t − b) ⊕ v) ←→ rel (b ⊕ u) (a ⊕ v)

proof −
from assms(2 ) have eq1 : a + (t − a) = t unfolding add.commute[of a] by

(rule adds-minus)
from assms(3 ) have eq2 : b + (t − b) = t unfolding add.commute[of b] by

(rule adds-minus)
from assms(1 ) have rel ((t − a) ⊕ u) ((t − b) ⊕ v) = rel ((a + b) ⊕ ((t − a)
⊕ u)) ((a + b) ⊕ ((t − b) ⊕ v))

by (simp only: term-is-le-rel-canc-left)
also have ... = rel ((t + b) ⊕ u) ((t + a) ⊕ v) unfolding splus-assoc[symmetric]

by (metis (no-types, lifting) add.assoc add.commute eq1 eq2 )
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also from assms(1 ) have ... = rel (b ⊕ u) (a ⊕ v) by (simp only: splus-assoc
term-is-le-rel-canc-left)

finally show ?thesis .
qed

lemma pp-is-le-rel-canc-right:
assumes ordered-powerprod-lin.is-le-rel rel
shows rel (s + u) (t + u) ←→ rel s t
using assms
by (rule ordered-powerprod-lin.is-le-relE , auto dest: ord-canc ord-strict-canc plus-monotone

plus-monotone-strict)

lemma pp-is-le-rel-canc-left: ordered-powerprod-lin.is-le-rel rel =⇒ rel (t + u) (t
+ v) ←→ rel u v

by (simp add: add.commute[of t] pp-is-le-rel-canc-right)

definition sig-red-single :: ( ′t ⇒ ′t ⇒ bool) ⇒ ( ′a ⇒ ′a ⇒ bool) ⇒ ( ′t ⇒0
′b) ⇒

( ′t ⇒0
′b) ⇒ ( ′t ⇒0

′b) ⇒ ′a ⇒ bool
where sig-red-single sing-reg top-tail p q f t ←→

(rep-list f 6= 0 ∧ lookup (rep-list p) (t + punit.lt (rep-list f )) 6= 0 ∧
q = p − monom-mult ((lookup (rep-list p) (t + punit.lt (rep-list f )))

/ punit.lc (rep-list f )) t f ∧
ord-term-lin.is-le-rel sing-reg ∧ ordered-powerprod-lin.is-le-rel top-tail

∧
sing-reg (t ⊕ lt f ) (lt p) ∧ top-tail (t + punit.lt (rep-list f )) (punit.lt

(rep-list p)))

The first two parameters of sig-red-single, sing-reg and top-tail, specify whether
the reduction is a singular/regular/arbitrary top/tail/arbitrary signature-
reduction.

• If sing-reg is (=), the reduction is singular.

• If sing-reg is (≺t), the reduction is regular.

• If sing-reg is (�t), the reduction is an arbitrary signature-reduction.

• If top-tail is (=), it is a top reduction.

• If top-tail is (≺), it is a tail reduction.

• If top-tail is (�), the reduction is an arbitrary signature-reduction.

definition sig-red :: ( ′t ⇒ ′t ⇒ bool) ⇒ ( ′a ⇒ ′a ⇒ bool) ⇒ ( ′t ⇒0
′b) set ⇒ ( ′t

⇒0
′b) ⇒ ( ′t ⇒0

′b) ⇒ bool
where sig-red sing-reg top-tail F p q ←→ (∃ f∈F . ∃ t. sig-red-single sing-reg

top-tail p q f t)

definition is-sig-red :: ( ′t ⇒ ′t ⇒ bool) ⇒ ( ′a ⇒ ′a ⇒ bool) ⇒ ( ′t ⇒0
′b) set ⇒

( ′t ⇒0
′b) ⇒ bool
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where is-sig-red sing-reg top-tail F p ←→ (∃ q. sig-red sing-reg top-tail F p q)

lemma sig-red-singleI :
assumes rep-list f 6= 0 and t + punit.lt (rep-list f ) ∈ keys (rep-list p)

and q = p − monom-mult ((lookup (rep-list p) (t + punit.lt (rep-list f ))) /
punit.lc (rep-list f )) t f

and ord-term-lin.is-le-rel sing-reg and ordered-powerprod-lin.is-le-rel top-tail
and sing-reg (t ⊕ lt f ) (lt p)
and top-tail (t + punit.lt (rep-list f )) (punit.lt (rep-list p))

shows sig-red-single sing-reg top-tail p q f t
unfolding sig-red-single-def using assms by blast

lemma sig-red-singleD1 :
assumes sig-red-single sing-reg top-tail p q f t
shows rep-list f 6= 0
using assms unfolding sig-red-single-def by blast

lemma sig-red-singleD2 :
assumes sig-red-single sing-reg top-tail p q f t
shows t + punit.lt (rep-list f ) ∈ keys (rep-list p)
using assms unfolding sig-red-single-def by (simp add: in-keys-iff )

lemma sig-red-singleD3 :
assumes sig-red-single sing-reg top-tail p q f t
shows q = p − monom-mult ((lookup (rep-list p) (t + punit.lt (rep-list f ))) /

punit.lc (rep-list f )) t f
using assms unfolding sig-red-single-def by blast

lemma sig-red-singleD4 :
assumes sig-red-single sing-reg top-tail p q f t
shows ord-term-lin.is-le-rel sing-reg
using assms unfolding sig-red-single-def by blast

lemma sig-red-singleD5 :
assumes sig-red-single sing-reg top-tail p q f t
shows ordered-powerprod-lin.is-le-rel top-tail
using assms unfolding sig-red-single-def by blast

lemma sig-red-singleD6 :
assumes sig-red-single sing-reg top-tail p q f t
shows sing-reg (t ⊕ lt f ) (lt p)
using assms unfolding sig-red-single-def by blast

lemma sig-red-singleD7 :
assumes sig-red-single sing-reg top-tail p q f t
shows top-tail (t + punit.lt (rep-list f )) (punit.lt (rep-list p))
using assms unfolding sig-red-single-def by blast

lemma sig-red-singleD8 :
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assumes sig-red-single sing-reg top-tail p q f t
shows t ⊕ lt f �t lt p

proof −
from assms have ord-term-lin.is-le-rel sing-reg and sing-reg (t ⊕ lt f ) (lt p)

by (rule sig-red-singleD4 , rule sig-red-singleD6 )
thus ?thesis by (rule ord-term-lin.is-le-rel-le)

qed

lemma sig-red-singleD9 :
assumes sig-red-single sing-reg top-tail p q f t
shows t + punit.lt (rep-list f ) � punit.lt (rep-list p)

proof −
from assms have ordered-powerprod-lin.is-le-rel top-tail

and top-tail (t + punit.lt (rep-list f )) (punit.lt (rep-list p))
by (rule sig-red-singleD5 , rule sig-red-singleD7 )

thus ?thesis by (rule ordered-powerprod-lin.is-le-rel-le)
qed

lemmas sig-red-singleD = sig-red-singleD1 sig-red-singleD2 sig-red-singleD3 sig-red-singleD4
sig-red-singleD5 sig-red-singleD6 sig-red-singleD7 sig-red-singleD8

sig-red-singleD9

lemma sig-red-single-red-single:
sig-red-single sing-reg top-tail p q f t =⇒ punit.red-single (rep-list p) (rep-list q)

(rep-list f ) t
by (simp add: sig-red-single-def punit.red-single-def rep-list-minus rep-list-monom-mult)

lemma sig-red-single-regular-lt:
assumes sig-red-single (≺t) top-tail p q f t
shows lt q = lt p

proof −
let ?f = monom-mult ((lookup (rep-list p) (t + punit.lt (rep-list f ))) / punit.lc

(rep-list f )) t f
from assms have lt: t ⊕ lt f ≺t lt p and q: q = p − ?f

by (rule sig-red-singleD6 , rule sig-red-singleD3 )
from lt-monom-mult-le lt have lt ?f ≺t lt p by (rule ord-term-lin.order .strict-trans1 )
thus ?thesis unfolding q by (rule lt-minus-eqI-2 )

qed

lemma sig-red-single-regular-lc:
assumes sig-red-single (≺t) top-tail p q f t
shows lc q = lc p

proof −
from assms have lt q = lt p by (rule sig-red-single-regular-lt)
from assms have lt: t ⊕ lt f ≺t lt p

and q: q = p − monom-mult ((lookup (rep-list p) (t + punit.lt (rep-list f ))) /
punit.lc (rep-list f )) t f

(is - = - − ?f ) by (rule sig-red-singleD6 , rule sig-red-singleD3 )
from lt-monom-mult-le lt have lt ?f ≺t lt p by (rule ord-term-lin.order .strict-trans1 )
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hence lookup ?f (lt p) = 0 using lt-max ord-term-lin.leD by blast
thus ?thesis unfolding lc-def ‹lt q = lt p› by (simp add: q lookup-minus)

qed

lemma sig-red-single-lt:
assumes sig-red-single sing-reg top-tail p q f t
shows lt q �t lt p

proof −
from assms have lt: t ⊕ lt f �t lt p

and q = p − monom-mult ((lookup (rep-list p) (t + punit.lt (rep-list f ))) /
punit.lc (rep-list f )) t f

by (rule sig-red-singleD8 , rule sig-red-singleD3 )
from this(2 ) have q: q = p + monom-mult (− (lookup (rep-list p) (t + punit.lt

(rep-list f ))) / punit.lc (rep-list f )) t f
(is - = - + ?f ) by (simp add: monom-mult-uminus-left)

from lt-monom-mult-le lt have 1 : lt ?f �t lt p by (rule ord-term-lin.order .trans)
have lt q �t ord-term-lin.max (lt p) (lt ?f ) unfolding q by (fact lt-plus-le-max)
also from 1 have ord-term-lin.max (lt p) (lt ?f ) = lt p by (rule ord-term-lin.max.absorb1 )
finally show ?thesis .

qed

lemma sig-red-single-lt-rep-list:
assumes sig-red-single sing-reg top-tail p q f t
shows punit.lt (rep-list q) � punit.lt (rep-list p)

proof −
from assms have punit.red-single (rep-list p) (rep-list q) (rep-list f ) t

by (rule sig-red-single-red-single)
hence punit.ord-strict-p (rep-list q) (rep-list p) by (rule punit.red-single-ord)
hence punit.ord-p (rep-list q) (rep-list p) by simp
thus ?thesis by (rule punit.ord-p-lt)

qed

lemma sig-red-single-tail-lt-in-keys-rep-list:
assumes sig-red-single sing-reg (≺) p q f t
shows punit.lt (rep-list p) ∈ keys (rep-list q)

proof −
from assms have q = p − monom-mult ((lookup (rep-list p) (t + punit.lt (rep-list

f ))) / punit.lc (rep-list f )) t f
by (rule sig-red-singleD3 )

hence q: q = p + monom-mult (− (lookup (rep-list p) (t + punit.lt (rep-list f )))
/ punit.lc (rep-list f )) t f

by (simp add: monom-mult-uminus-left)
show ?thesis unfolding q rep-list-plus rep-list-monom-mult
proof (rule in-keys-plusI1 )
from assms have t + punit.lt (rep-list f ) ∈ keys (rep-list p) by (rule sig-red-singleD2 )
hence rep-list p 6= 0 by auto
thus punit.lt (rep-list p) ∈ keys (rep-list p) by (rule punit.lt-in-keys)

next
show punit.lt (rep-list p) /∈
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keys (punit.monom-mult (− lookup (rep-list p) (t + punit.lt (rep-list f )) /
punit.lc (rep-list f )) t (rep-list f ))

(is - /∈ keys ?f )
proof

assume punit.lt (rep-list p) ∈ keys ?f
hence punit.lt (rep-list p) � punit.lt ?f by (rule punit.lt-max-keys)

also have ... � t + punit.lt (rep-list f ) by (fact punit.lt-monom-mult-le[simplified])
also from assms have ... ≺ punit.lt (rep-list p) by (rule sig-red-singleD7 )
finally show False by simp

qed
qed

qed

corollary sig-red-single-tail-lt-rep-list:
assumes sig-red-single sing-reg (≺) p q f t
shows punit.lt (rep-list q) = punit.lt (rep-list p)

proof (rule ordered-powerprod-lin.order-antisym)
from assms show punit.lt (rep-list q) � punit.lt (rep-list p) by (rule sig-red-single-lt-rep-list)

next
from assms have punit.lt (rep-list p) ∈ keys (rep-list q) by (rule sig-red-single-tail-lt-in-keys-rep-list)
thus punit.lt (rep-list p) � punit.lt (rep-list q) by (rule punit.lt-max-keys)

qed

lemma sig-red-single-tail-lc-rep-list:
assumes sig-red-single sing-reg (≺) p q f t
shows punit.lc (rep-list q) = punit.lc (rep-list p)

proof −
from assms have ∗: punit.lt (rep-list q) = punit.lt (rep-list p)

by (rule sig-red-single-tail-lt-rep-list)
from assms have lt: t + punit.lt (rep-list f ) ≺ punit.lt (rep-list p)

and q: q = p − monom-mult ((lookup (rep-list p) (t + punit.lt (rep-list f ))) /
punit.lc (rep-list f )) t f

(is - = - − ?f ) by (rule sig-red-singleD7 , rule sig-red-singleD3 )
from punit.lt-monom-mult-le[simplified] lt have punit.lt (rep-list ?f ) ≺ punit.lt

(rep-list p)
unfolding rep-list-monom-mult by (rule ordered-powerprod-lin.order .strict-trans1 )

hence lookup (rep-list ?f ) (punit.lt (rep-list p)) = 0
using punit.lt-max ordered-powerprod-lin.leD by blast

thus ?thesis unfolding punit.lc-def ∗ by (simp add: q lookup-minus rep-list-minus
punit.lc-def )
qed

lemma sig-red-single-top-lt-rep-list:
assumes sig-red-single sing-reg (=) p q f t and rep-list q 6= 0
shows punit.lt (rep-list q) ≺ punit.lt (rep-list p)

proof −
from assms(1 ) have rep-list f 6= 0 and in-keys: t + punit.lt (rep-list f ) ∈ keys

(rep-list p)
and lt: t + punit.lt (rep-list f ) = punit.lt (rep-list p)
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and q = p − monom-mult ((lookup (rep-list p) (t + punit.lt (rep-list f ))) /
punit.lc (rep-list f )) t f

by (rule sig-red-singleD)+
from this(4 ) have q: q = p + monom-mult (− (lookup (rep-list p) (t + punit.lt

(rep-list f ))) / punit.lc (rep-list f )) t f
(is - = - + monom-mult ?c - -) by (simp add: monom-mult-uminus-left)

from ‹rep-list f 6= 0 › have punit.lc (rep-list f ) 6= 0 by (rule punit.lc-not-0 )
from assms(2 ) have ∗: rep-list p + punit.monom-mult ?c t (rep-list f ) 6= 0

by (simp add: q rep-list-plus rep-list-monom-mult)
from in-keys have lookup (rep-list p) (t + punit.lt (rep-list f )) 6= 0

by (simp add: in-keys-iff )
moreover from ‹rep-list f 6= 0 › have punit.lc (rep-list f ) 6= 0 by (rule punit.lc-not-0 )
ultimately have ?c 6= 0 by simp
hence punit.lt (punit.monom-mult ?c t (rep-list f )) = t + punit.lt (rep-list f )

using ‹rep-list f 6= 0 › by (rule lp-monom-mult)
hence punit.lt (punit.monom-mult ?c t (rep-list f )) = punit.lt (rep-list p) by

(simp only: lt)
moreover have punit.lc (punit.monom-mult ?c t (rep-list f )) = − punit.lc

(rep-list p)
by (simp add: lt punit.lc-def [symmetric] ‹punit.lc (rep-list f ) 6= 0 ›)

ultimately show ?thesis unfolding rep-list-plus rep-list-monom-mult q by (rule
punit.lt-plus-lessI [OF ∗])
qed

lemma sig-red-single-monom-mult:
assumes sig-red-single sing-reg top-tail p q f t and c 6= 0
shows sig-red-single sing-reg top-tail (monom-mult c s p) (monom-mult c s q) f

(s + t)
proof −
from assms(1 ) have a: ord-term-lin.is-le-rel sing-reg and b: ordered-powerprod-lin.is-le-rel

top-tail
by (rule sig-red-singleD4 , rule sig-red-singleD5 )

have eq1 : (s + t) ⊕ lt f = s ⊕ (t ⊕ lt f ) by (simp only: splus-assoc)
from assms(1 ) have 1 : t + punit.lt (rep-list f ) ∈ keys (rep-list p) by (rule

sig-red-singleD2 )
hence rep-list p 6= 0 by auto
hence p 6= 0 by (auto simp: rep-list-zero)
with assms(2 ) have eq2 : lt (monom-mult c s p) = s ⊕ lt p by (rule lt-monom-mult)
show ?thesis
proof (rule sig-red-singleI )

from assms(1 ) show rep-list f 6= 0 by (rule sig-red-singleD1 )
next

show s + t + punit.lt (rep-list f ) ∈ keys (rep-list (monom-mult c s p))
by (auto simp: rep-list-monom-mult punit.keys-monom-mult[OF assms(2 )]

ac-simps intro: 1 )
next
from assms(1 ) have q: q = p − monom-mult ((lookup (rep-list p) (t + punit.lt

(rep-list f ))) / punit.lc (rep-list f )) t f
by (rule sig-red-singleD3 )
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show monom-mult c s q =
monom-mult c s p −

monom-mult (lookup (rep-list (monom-mult c s p)) (s + t + punit.lt
(rep-list f )) / punit.lc (rep-list f )) (s + t) f

by (simp add: q monom-mult-dist-right-minus ac-simps rep-list-monom-mult
punit.lookup-monom-mult-plus[simplified] monom-mult-assoc)

next
from assms(1 ) have sing-reg (t ⊕ lt f ) (lt p) by (rule sig-red-singleD6 )
thus sing-reg ((s + t) ⊕ lt f ) (lt (monom-mult c s p))

by (simp only: eq1 eq2 term-is-le-rel-canc-left[OF a])
next

from assms(1 ) have top-tail (t + punit.lt (rep-list f )) (punit.lt (rep-list p))
by (rule sig-red-singleD7 )

thus top-tail (s + t + punit.lt (rep-list f )) (punit.lt (rep-list (monom-mult c s
p)))

by (simp add: rep-list-monom-mult punit.lt-monom-mult[OF assms(2 ) ‹rep-list
p 6= 0 ›] add.assoc pp-is-le-rel-canc-left[OF b])

qed (fact a, fact b)
qed

lemma sig-red-single-sing-reg-cases:
sig-red-single (�t) top-tail p q f t = (sig-red-single (=) top-tail p q f t ∨ sig-red-single

(≺t) top-tail p q f t)
by (auto simp: sig-red-single-def )

corollary sig-red-single-sing-regI :
assumes sig-red-single sing-reg top-tail p q f t
shows sig-red-single (�t) top-tail p q f t

proof −
from assms have ord-term-lin.is-le-rel sing-reg by (rule sig-red-singleD)
with assms show ?thesis unfolding ord-term-lin.is-le-rel-def

by (auto simp: sig-red-single-sing-reg-cases)
qed

lemma sig-red-single-top-tail-cases:
sig-red-single sing-reg (�) p q f t = (sig-red-single sing-reg (=) p q f t ∨ sig-red-single

sing-reg (≺) p q f t)
by (auto simp: sig-red-single-def )

corollary sig-red-single-top-tailI :
assumes sig-red-single sing-reg top-tail p q f t
shows sig-red-single sing-reg (�) p q f t

proof −
from assms have ordered-powerprod-lin.is-le-rel top-tail by (rule sig-red-singleD)
with assms show ?thesis unfolding ordered-powerprod-lin.is-le-rel-def

by (auto simp: sig-red-single-top-tail-cases)
qed

lemma dgrad-max-set-closed-sig-red-single:
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assumes dickson-grading d and p ∈ dgrad-max-set d and f ∈ dgrad-max-set d
and sig-red-single sing-red top-tail p q f t

shows q ∈ dgrad-max-set d
proof −

let ?f = monom-mult (lookup (rep-list p) (t + punit.lt (rep-list f )) / punit.lc
(rep-list f )) t f

from assms(4 ) have t: t + punit.lt (rep-list f ) ∈ keys (rep-list p) and q: q = p
− ?f

by (rule sig-red-singleD2 , rule sig-red-singleD3 )
from assms(1 , 2 ) have rep-list p ∈ punit-dgrad-max-set d by (rule dgrad-max-2 )
show ?thesis unfolding q using assms(2 )
proof (rule dgrad-p-set-closed-minus)

from assms(1 ) - assms(3 ) show ?f ∈ dgrad-max-set d
proof (rule dgrad-p-set-closed-monom-mult)

from assms(1 ) have d t ≤ d (t + punit.lt (rep-list f )) by (simp add:
dickson-gradingD1 )

also from ‹rep-list p ∈ punit-dgrad-max-set d› t have ... ≤ dgrad-max d
by (rule punit.dgrad-p-setD[simplified])

finally show d t ≤ dgrad-max d .
qed

qed
qed

lemma sig-inv-set-closed-sig-red-single:
assumes p ∈ sig-inv-set and f ∈ sig-inv-set and sig-red-single sing-red top-tail

p q f t
shows q ∈ sig-inv-set

proof −
let ?f = monom-mult (lookup (rep-list p) (t + punit.lt (rep-list f )) / punit.lc

(rep-list f )) t f
from assms(3 ) have t: t + punit.lt (rep-list f ) ∈ keys (rep-list p) and q: q = p
− ?f

by (rule sig-red-singleD2 , rule sig-red-singleD3 )
show ?thesis unfolding q using assms(1 )
proof (rule sig-inv-set-closed-minus)

from assms(2 ) show ?f ∈ sig-inv-set by (rule sig-inv-set-closed-monom-mult)
qed

qed

corollary dgrad-sig-set-closed-sig-red-single:
assumes dickson-grading d and p ∈ dgrad-sig-set d and f ∈ dgrad-sig-set d

and sig-red-single sing-red top-tail p q f t
shows q ∈ dgrad-sig-set d
using assms unfolding dgrad-sig-set ′-def
by (auto intro: dgrad-max-set-closed-sig-red-single sig-inv-set-closed-sig-red-single)

lemma sig-red-regular-lt: sig-red (≺t) top-tail F p q =⇒ lt q = lt p
by (auto simp: sig-red-def intro: sig-red-single-regular-lt)
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lemma sig-red-regular-lc: sig-red (≺t) top-tail F p q =⇒ lc q = lc p
by (auto simp: sig-red-def intro: sig-red-single-regular-lc)

lemma sig-red-lt: sig-red sing-reg top-tail F p q =⇒ lt q �t lt p
by (auto simp: sig-red-def intro: sig-red-single-lt)

lemma sig-red-tail-lt-rep-list: sig-red sing-reg (≺) F p q =⇒ punit.lt (rep-list q) =
punit.lt (rep-list p)

by (auto simp: sig-red-def intro: sig-red-single-tail-lt-rep-list)

lemma sig-red-tail-lc-rep-list: sig-red sing-reg (≺) F p q =⇒ punit.lc (rep-list q) =
punit.lc (rep-list p)

by (auto simp: sig-red-def intro: sig-red-single-tail-lc-rep-list)

lemma sig-red-top-lt-rep-list:
sig-red sing-reg (=) F p q =⇒ rep-list q 6= 0 =⇒ punit.lt (rep-list q) ≺ punit.lt

(rep-list p)
by (auto simp: sig-red-def intro: sig-red-single-top-lt-rep-list)

lemma sig-red-lt-rep-list: sig-red sing-reg top-tail F p q =⇒ punit.lt (rep-list q) �
punit.lt (rep-list p)

by (auto simp: sig-red-def intro: sig-red-single-lt-rep-list)

lemma sig-red-red: sig-red sing-reg top-tail F p q =⇒ punit.red (rep-list ‘ F)
(rep-list p) (rep-list q)

by (auto simp: sig-red-def punit.red-def dest: sig-red-single-red-single)

lemma sig-red-monom-mult:
sig-red sing-reg top-tail F p q =⇒ c 6= 0 =⇒ sig-red sing-reg top-tail F (monom-mult

c s p) (monom-mult c s q)
by (auto simp: sig-red-def punit.red-def dest: sig-red-single-monom-mult)

lemma sig-red-sing-reg-cases:
sig-red (�t) top-tail F p q = (sig-red (=) top-tail F p q ∨ sig-red (≺t) top-tail F

p q)
by (auto simp: sig-red-def sig-red-single-sing-reg-cases)

corollary sig-red-sing-regI : sig-red sing-reg top-tail F p q =⇒ sig-red (�t) top-tail
F p q

by (auto simp: sig-red-def intro: sig-red-single-sing-regI )

lemma sig-red-top-tail-cases:
sig-red sing-reg (�) F p q = (sig-red sing-reg (=) F p q ∨ sig-red sing-reg (≺) F

p q)
by (auto simp: sig-red-def sig-red-single-top-tail-cases)

corollary sig-red-top-tailI : sig-red sing-reg top-tail F p q =⇒ sig-red sing-reg (�)
F p q

by (auto simp: sig-red-def intro: sig-red-single-top-tailI )
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lemma sig-red-wf-dgrad-max-set:
assumes dickson-grading d and F ⊆ dgrad-max-set d
shows wfP (sig-red sing-reg top-tail F)−1−1

proof −
from assms have rep-list ‘ F ⊆ punit-dgrad-max-set d by (rule dgrad-max-3 )
with assms(1 ) have wfP (punit.red (rep-list ‘ F))−1−1 by (rule punit.red-wf-dgrad-p-set)
hence ∗: @ f . ∀ i. (punit.red (rep-list ‘ F))−1−1 (f (Suc i)) (f i)

by (simp add: wf-iff-no-infinite-down-chain[to-pred])
show ?thesis unfolding wf-iff-no-infinite-down-chain[to-pred]
proof (rule, elim exE)

fix seq
assume ∀ i. (sig-red sing-reg top-tail F)−1−1 (seq (Suc i)) (seq i)
hence sig-red sing-reg top-tail F (seq i) (seq (Suc i)) for i by simp
hence punit.red (rep-list ‘ F) ((rep-list ◦ seq) i) ((rep-list ◦ seq) (Suc i)) for i

by (auto intro: sig-red-red)
hence ∀ i. (punit.red (rep-list ‘ F))−1−1 ((rep-list ◦ seq) (Suc i)) ((rep-list ◦

seq) i) by simp
hence ∃ f . ∀ i. (punit.red (rep-list ‘ F))−1−1 (f (Suc i)) (f i) by blast
with ∗ show False ..

qed
qed

lemma dgrad-sig-set-closed-sig-red:
assumes dickson-grading d and F ⊆ dgrad-sig-set d and p ∈ dgrad-sig-set d

and sig-red sing-red top-tail F p q
shows q ∈ dgrad-sig-set d
using assms by (auto simp: sig-red-def intro: dgrad-sig-set-closed-sig-red-single)

lemma sig-red-mono: sig-red sing-reg top-tail F p q =⇒ F ⊆ F ′ =⇒ sig-red sing-reg
top-tail F ′ p q

by (auto simp: sig-red-def )

lemma sig-red-Un:
sig-red sing-reg top-tail (A ∪ B) p q ←→ (sig-red sing-reg top-tail A p q ∨ sig-red

sing-reg top-tail B p q)
by (auto simp: sig-red-def )

lemma sig-red-subset:
assumes sig-red sing-reg top-tail F p q and sing-reg = (�t) ∨ sing-reg = (≺t)
shows sig-red sing-reg top-tail {f∈F . sing-reg (lt f ) (lt p)} p q

proof −
from assms(1 ) obtain f t where f ∈ F and ∗: sig-red-single sing-reg top-tail p

q f t
unfolding sig-red-def by blast

have lt f = 0 ⊕ lt f by (simp only: term-simps)
also from zero-min have ... �t t ⊕ lt f by (rule splus-mono-left)
finally have 1 : lt f �t t ⊕ lt f .
from ∗ have 2 : sing-reg (t ⊕ lt f ) (lt p) by (rule sig-red-singleD6 )
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from assms(2 ) have sing-reg (lt f ) (lt p)
proof

assume sing-reg = (�t)
with 1 2 show ?thesis by simp

next
assume sing-reg = (≺t)
with 1 2 show ?thesis by simp

qed
with ‹f ∈ F› have f ∈ {f∈F . sing-reg (lt f ) (lt p)} by simp
thus ?thesis using ∗ unfolding sig-red-def by blast

qed

lemma sig-red-regular-rtrancl-lt:
assumes (sig-red (≺t) top-tail F)∗∗ p q
shows lt q = lt p
using assms by (induct, auto dest: sig-red-regular-lt)

lemma sig-red-regular-rtrancl-lc:
assumes (sig-red (≺t) top-tail F)∗∗ p q
shows lc q = lc p
using assms by (induct, auto dest: sig-red-regular-lc)

lemma sig-red-rtrancl-lt:
assumes (sig-red sing-reg top-tail F)∗∗ p q
shows lt q �t lt p
using assms by (induct, auto dest: sig-red-lt)

lemma sig-red-tail-rtrancl-lt-rep-list:
assumes (sig-red sing-reg (≺) F)∗∗ p q
shows punit.lt (rep-list q) = punit.lt (rep-list p)
using assms by (induct, auto dest: sig-red-tail-lt-rep-list)

lemma sig-red-tail-rtrancl-lc-rep-list:
assumes (sig-red sing-reg (≺) F)∗∗ p q
shows punit.lc (rep-list q) = punit.lc (rep-list p)
using assms by (induct, auto dest: sig-red-tail-lc-rep-list)

lemma sig-red-rtrancl-lt-rep-list:
assumes (sig-red sing-reg top-tail F)∗∗ p q
shows punit.lt (rep-list q) � punit.lt (rep-list p)
using assms by (induct, auto dest: sig-red-lt-rep-list)

lemma sig-red-red-rtrancl:
assumes (sig-red sing-reg top-tail F)∗∗ p q
shows (punit.red (rep-list ‘ F))∗∗ (rep-list p) (rep-list q)
using assms by (induct, auto dest: sig-red-red)

lemma sig-red-rtrancl-monom-mult:
assumes (sig-red sing-reg top-tail F)∗∗ p q
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shows (sig-red sing-reg top-tail F)∗∗ (monom-mult c s p) (monom-mult c s q)
proof (cases c = 0 )

case True
thus ?thesis by simp

next
case False
from assms(1 ) show ?thesis
proof induct

case base
show ?case ..

next
case (step y z)

from step(2 ) False have sig-red sing-reg top-tail F (monom-mult c s y)
(monom-mult c s z)

by (rule sig-red-monom-mult)
with step(3 ) show ?case ..

qed
qed

lemma sig-red-rtrancl-sing-regI : (sig-red sing-reg top-tail F)∗∗ p q =⇒ (sig-red
(�t) top-tail F)∗∗ p q

by (induct rule: rtranclp-induct, auto dest: sig-red-sing-regI )

lemma sig-red-rtrancl-top-tailI : (sig-red sing-reg top-tail F)∗∗ p q =⇒ (sig-red
sing-reg (�) F)∗∗ p q

by (induct rule: rtranclp-induct, auto dest: sig-red-top-tailI )

lemma dgrad-sig-set-closed-sig-red-rtrancl:
assumes dickson-grading d and F ⊆ dgrad-sig-set d and p ∈ dgrad-sig-set d

and (sig-red sing-red top-tail F)∗∗ p q
shows q ∈ dgrad-sig-set d
using assms(4 , 1 , 2 , 3 ) by (induct, auto intro: dgrad-sig-set-closed-sig-red)

lemma sig-red-rtrancl-mono:
assumes (sig-red sing-reg top-tail F)∗∗ p q and F ⊆ F ′

shows (sig-red sing-reg top-tail F ′)∗∗ p q
using assms(1 ) by (induct rule: rtranclp-induct, auto dest: sig-red-mono[OF -

assms(2 )])

lemma sig-red-rtrancl-subset:
assumes (sig-red sing-reg top-tail F)∗∗ p q and sing-reg = (�t) ∨ sing-reg =

(≺t)
shows (sig-red sing-reg top-tail {f∈F . sing-reg (lt f ) (lt p)})∗∗ p q
using assms(1 )

proof (induct rule: rtranclp-induct)
case base
show ?case by (fact rtranclp.rtrancl-refl)

next
case (step y z)
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from step(2 ) assms(2 ) have sig-red sing-reg top-tail {f ∈ F . sing-reg (lt f ) (lt
y)} y z

by (rule sig-red-subset)
moreover have {f ∈ F . sing-reg (lt f ) (lt y)} ⊆ {f ∈ F . sing-reg (lt f ) (lt p)}
proof

fix f
assume f ∈ {f ∈ F . sing-reg (lt f ) (lt y)}
hence f ∈ F and 1 : sing-reg (lt f ) (lt y) by simp-all
from step(1 ) have 2 : lt y �t lt p by (rule sig-red-rtrancl-lt)
from assms(2 ) have sing-reg (lt f ) (lt p)
proof

assume sing-reg = (�t)
with 1 2 show ?thesis by simp

next
assume sing-reg = (≺t)
with 1 2 show ?thesis by simp

qed
with ‹f ∈ F› show f ∈ {f ∈ F . sing-reg (lt f ) (lt p)} by simp

qed
ultimately have sig-red sing-reg top-tail {f ∈ F . sing-reg (lt f ) (lt p)} y z

by (rule sig-red-mono)
with step(3 ) show ?case ..

qed

lemma is-sig-red-is-red: is-sig-red sing-reg top-tail F p =⇒ punit.is-red (rep-list ‘
F) (rep-list p)

by (auto simp: is-sig-red-def punit.is-red-alt dest: sig-red-red)

lemma is-sig-red-monom-mult:
assumes is-sig-red sing-reg top-tail F p and c 6= 0
shows is-sig-red sing-reg top-tail F (monom-mult c s p)

proof −
from assms(1 ) obtain q where sig-red sing-reg top-tail F p q unfolding is-sig-red-def

..
hence sig-red sing-reg top-tail F (monom-mult c s p) (monom-mult c s q)

using assms(2 ) by (rule sig-red-monom-mult)
thus ?thesis unfolding is-sig-red-def ..

qed

lemma is-sig-red-sing-reg-cases:
is-sig-red (�t) top-tail F p = (is-sig-red (=) top-tail F p ∨ is-sig-red (≺t) top-tail

F p)
by (auto simp: is-sig-red-def sig-red-sing-reg-cases)

corollary is-sig-red-sing-regI : is-sig-red sing-reg top-tail F p =⇒ is-sig-red (�t)
top-tail F p

by (auto simp: is-sig-red-def intro: sig-red-sing-regI )

lemma is-sig-red-top-tail-cases:
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is-sig-red sing-reg (�) F p = (is-sig-red sing-reg (=) F p ∨ is-sig-red sing-reg (≺)
F p)

by (auto simp: is-sig-red-def sig-red-top-tail-cases)

corollary is-sig-red-top-tailI : is-sig-red sing-reg top-tail F p =⇒ is-sig-red sing-reg
(�) F p

by (auto simp: is-sig-red-def intro: sig-red-top-tailI )

lemma is-sig-red-singletonI :
assumes is-sig-red sing-reg top-tail F r
obtains f where f ∈ F and is-sig-red sing-reg top-tail {f } r

proof −
from assms obtain r ′ where sig-red sing-reg top-tail F r r ′ unfolding is-sig-red-def

..
then obtain f t where f ∈ F and t: sig-red-single sing-reg top-tail r r ′ f t

by (auto simp: sig-red-def )
have is-sig-red sing-reg top-tail {f } r unfolding is-sig-red-def sig-red-def
proof (intro exI bexI )

show f ∈ {f } by simp
qed fact
with ‹f ∈ F› show ?thesis ..

qed

lemma is-sig-red-singletonD:
assumes is-sig-red sing-reg top-tail {f } r and f ∈ F
shows is-sig-red sing-reg top-tail F r

proof −
from assms(1 ) obtain r ′ where sig-red sing-reg top-tail {f } r r ′ unfolding

is-sig-red-def ..
then obtain t where sig-red-single sing-reg top-tail r r ′ f t by (auto simp:

sig-red-def )
show ?thesis unfolding is-sig-red-def sig-red-def by (intro exI bexI , fact+)

qed

lemma is-sig-redD1 :
assumes is-sig-red sing-reg top-tail F p
shows ord-term-lin.is-le-rel sing-reg

proof −
from assms obtain q where sig-red sing-reg top-tail F p q unfolding is-sig-red-def

..
then obtain f s where f ∈ F and sig-red-single sing-reg top-tail p q f s unfold-

ing sig-red-def by blast
from this(2 ) show ?thesis by (rule sig-red-singleD)

qed

lemma is-sig-redD2 :
assumes is-sig-red sing-reg top-tail F p
shows ordered-powerprod-lin.is-le-rel top-tail

proof −
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from assms obtain q where sig-red sing-reg top-tail F p q unfolding is-sig-red-def
..

then obtain f s where f ∈ F and sig-red-single sing-reg top-tail p q f s unfold-
ing sig-red-def by blast

from this(2 ) show ?thesis by (rule sig-red-singleD)
qed

lemma is-sig-red-addsI :
assumes f ∈ F and t ∈ keys (rep-list p) and rep-list f 6= 0 and punit.lt (rep-list

f ) adds t
and ord-term-lin.is-le-rel sing-reg and ordered-powerprod-lin.is-le-rel top-tail
and sing-reg (t ⊕ lt f ) (punit.lt (rep-list f ) ⊕ lt p) and top-tail t (punit.lt

(rep-list p))
shows is-sig-red sing-reg top-tail F p
unfolding is-sig-red-def

proof
let ?q = p − monom-mult ((lookup (rep-list p) t) / punit.lc (rep-list f )) (t −

punit.lt (rep-list f )) f
show sig-red sing-reg top-tail F p ?q unfolding sig-red-def
proof (intro bexI exI )

from assms(4 ) have eq: (t − punit.lt (rep-list f )) + punit.lt (rep-list f ) = t
by (rule adds-minus)

from assms(4 , 5 , 7 ) have sing-reg ((t − punit.lt (rep-list f )) ⊕ lt f ) (lt p)
by (simp only: term-is-le-rel-minus)

thus sig-red-single sing-reg top-tail p ?q f (t − punit.lt (rep-list f ))
by (simp add: assms eq sig-red-singleI )

qed fact
qed

lemma is-sig-red-addsE :
assumes is-sig-red sing-reg top-tail F p
obtains f t where f ∈ F and t ∈ keys (rep-list p) and rep-list f 6= 0

and punit.lt (rep-list f ) adds t
and sing-reg (t ⊕ lt f ) (punit.lt (rep-list f ) ⊕ lt p)
and top-tail t (punit.lt (rep-list p))

proof −
from assms have ∗: ord-term-lin.is-le-rel sing-reg by (rule is-sig-redD1 )
from assms obtain q where sig-red sing-reg top-tail F p q unfolding is-sig-red-def

..
then obtain f s where f ∈ F and sig-red-single sing-reg top-tail p q f s unfold-

ing sig-red-def by blast
from this(2 ) have 1 : rep-list f 6= 0 and 2 : s + punit.lt (rep-list f ) ∈ keys

(rep-list p)
and 3 : sing-reg (s ⊕ lt f ) (lt p) and 4 : top-tail (s + punit.lt (rep-list f ))

(punit.lt (rep-list p))
by (rule sig-red-singleD)+

note ‹f ∈ F› 2 1
moreover have punit.lt (rep-list f ) adds s + punit.lt (rep-list f ) by simp
moreover from 3 have sing-reg ((s + punit.lt (rep-list f )) ⊕ lt f ) (punit.lt
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(rep-list f ) ⊕ lt p)
by (simp add: add.commute[of s] splus-assoc term-is-le-rel-canc-left[OF ∗])

moreover from 4 have top-tail (s + punit.lt (rep-list f )) (punit.lt (rep-list p))
by simp

ultimately show ?thesis ..
qed

lemma is-sig-red-top-addsI :
assumes f ∈ F and rep-list f 6= 0 and rep-list p 6= 0

and punit.lt (rep-list f ) adds punit.lt (rep-list p) and ord-term-lin.is-le-rel
sing-reg

and sing-reg (punit.lt (rep-list p) ⊕ lt f ) (punit.lt (rep-list f ) ⊕ lt p)
shows is-sig-red sing-reg (=) F p

proof −
note assms(1 )
moreover from assms(3 ) have punit.lt (rep-list p) ∈ keys (rep-list p) by (rule

punit.lt-in-keys)
moreover note assms(2 , 4 , 5 ) ordered-powerprod-lin.is-le-relI (1 ) assms(6 ) refl
ultimately show ?thesis by (rule is-sig-red-addsI )

qed

lemma is-sig-red-top-addsE :
assumes is-sig-red sing-reg (=) F p
obtains f where f ∈ F and rep-list f 6= 0 and rep-list p 6= 0

and punit.lt (rep-list f ) adds punit.lt (rep-list p)
and sing-reg (punit.lt (rep-list p) ⊕ lt f ) (punit.lt (rep-list f ) ⊕ lt p)

proof −
from assms obtain f t where 1 : f ∈ F and 2 : t ∈ keys (rep-list p) and 3 :

rep-list f 6= 0
and 4 : punit.lt (rep-list f ) adds t
and 5 : sing-reg (t ⊕ lt f ) (punit.lt (rep-list f ) ⊕ lt p)
and t: t = punit.lt (rep-list p) by (rule is-sig-red-addsE)

note 1 3
moreover from 2 have rep-list p 6= 0 by auto
moreover from 4 have punit.lt (rep-list f ) adds punit.lt (rep-list p) by (simp

only: t)
moreover from 5 have sing-reg (punit.lt (rep-list p) ⊕ lt f ) (punit.lt (rep-list

f ) ⊕ lt p)
by (simp only: t)

ultimately show ?thesis ..
qed

lemma is-sig-red-top-plusE :
assumes is-sig-red sing-reg (=) F p and is-sig-red sing-reg (=) F q

and lt p �t lt (p + q) and lt q �t lt (p + q) and sing-reg = (�t) ∨ sing-reg
= (≺t)

assumes 1 : is-sig-red sing-reg (=) F (p + q) =⇒ thesis
assumes 2 : punit.lt (rep-list p) = punit.lt (rep-list q) =⇒ punit.lc (rep-list p) +

punit.lc (rep-list q) = 0 =⇒ thesis
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shows thesis
proof −

from assms(1 ) obtain f1 where f1 ∈ F and rep-list f1 6= 0 and rep-list p 6= 0
and a: punit.lt (rep-list f1 ) adds punit.lt (rep-list p)
and b: sing-reg (punit.lt (rep-list p) ⊕ lt f1 ) (punit.lt (rep-list f1 ) ⊕ lt p)
by (rule is-sig-red-top-addsE)

from assms(2 ) obtain f2 where f2 ∈ F and rep-list f2 6= 0 and rep-list q 6= 0
and c: punit.lt (rep-list f2 ) adds punit.lt (rep-list q)
and d: sing-reg (punit.lt (rep-list q) ⊕ lt f2 ) (punit.lt (rep-list f2 ) ⊕ lt q)
by (rule is-sig-red-top-addsE)

show ?thesis
proof (cases punit.lt (rep-list p) = punit.lt (rep-list q) ∧ punit.lc (rep-list p) +

punit.lc (rep-list q) = 0 )
case True
hence punit.lt (rep-list p) = punit.lt (rep-list q) and punit.lc (rep-list p) +

punit.lc (rep-list q) = 0
by simp-all

thus ?thesis by (rule 2 )
next

case False
hence disj: punit.lt (rep-list p) 6= punit.lt (rep-list q) ∨ punit.lc (rep-list p) +

punit.lc (rep-list q) 6= 0
by simp

from assms(5 ) have ord-term-lin.is-le-rel sing-reg by (simp add: ord-term-lin.is-le-rel-def )
have rep-list (p + q) 6= 0 unfolding rep-list-plus
proof

assume eq: rep-list p + rep-list q = 0
have eq2 : punit.lt (rep-list p) = punit.lt (rep-list q)
proof (rule ordered-powerprod-lin.linorder-cases)

assume ∗: punit.lt (rep-list p) ≺ punit.lt (rep-list q)
hence punit.lt (rep-list p + rep-list q) = punit.lt (rep-list q) by (rule

punit.lt-plus-eqI )
with ∗ zero-min[of punit.lt (rep-list p)] show ?thesis by (simp add: eq)

next
assume ∗: punit.lt (rep-list q) ≺ punit.lt (rep-list p)

hence punit.lt (rep-list p + rep-list q) = punit.lt (rep-list p) by (rule
punit.lt-plus-eqI-2 )

with ∗ zero-min[of punit.lt (rep-list q)] show ?thesis by (simp add: eq)
qed
with disj have punit.lc (rep-list p) + punit.lc (rep-list q) 6= 0 by simp
thus False by (simp add: punit.lc-def eq2 lookup-add[symmetric] eq)

qed
have punit.lt (rep-list (p + q)) = ordered-powerprod-lin.max (punit.lt (rep-list

p)) (punit.lt (rep-list q))
unfolding rep-list-plus

proof (rule punit.lt-plus-eq-maxI )
assume punit.lt (rep-list p) = punit.lt (rep-list q)
with disj show punit.lc (rep-list p) + punit.lc (rep-list q) 6= 0 by simp

qed
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hence punit.lt (rep-list (p + q)) = punit.lt (rep-list p) ∨ punit.lt (rep-list (p +
q)) = punit.lt (rep-list q)

by (simp add: ordered-powerprod-lin.max-def )
thus ?thesis
proof

assume eq: punit.lt (rep-list (p + q)) = punit.lt (rep-list p)
show ?thesis
proof (rule 1 , rule is-sig-red-top-addsI )

from a show punit.lt (rep-list f1 ) adds punit.lt (rep-list (p + q)) by (simp
only: eq)

next
from b have sing-reg (punit.lt (rep-list (p + q)) ⊕ lt f1 ) (punit.lt (rep-list

f1 ) ⊕ lt p)
by (simp only: eq)

moreover from assms(3 ) have ... �t punit.lt (rep-list f1 ) ⊕ lt (p + q) by
(rule splus-mono)

ultimately show sing-reg (punit.lt (rep-list (p + q)) ⊕ lt f1 ) (punit.lt
(rep-list f1 ) ⊕ lt (p + q))

using assms(5 ) by auto
qed fact+

next
assume eq: punit.lt (rep-list (p + q)) = punit.lt (rep-list q)
show ?thesis
proof (rule 1 , rule is-sig-red-top-addsI )

from c show punit.lt (rep-list f2 ) adds punit.lt (rep-list (p + q)) by (simp
only: eq)

next
from d have sing-reg (punit.lt (rep-list (p + q)) ⊕ lt f2 ) (punit.lt (rep-list

f2 ) ⊕ lt q)
by (simp only: eq)

moreover from assms(4 ) have ... �t punit.lt (rep-list f2 ) ⊕ lt (p + q) by
(rule splus-mono)

ultimately show sing-reg (punit.lt (rep-list (p + q)) ⊕ lt f2 ) (punit.lt
(rep-list f2 ) ⊕ lt (p + q))

using assms(5 ) by auto
qed fact+

qed
qed

qed

lemma is-sig-red-singleton-monom-multD:
assumes is-sig-red sing-reg top-tail {monom-mult c t f } p
shows is-sig-red sing-reg top-tail {f } p

proof −
let ?f = monom-mult c t f
from assms obtain s where s ∈ keys (rep-list p) and 2 : rep-list ?f 6= 0

and 3 : punit.lt (rep-list ?f ) adds s
and 4 : sing-reg (s ⊕ lt ?f ) (punit.lt (rep-list ?f ) ⊕ lt p)
and top-tail s (punit.lt (rep-list p))
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by (auto elim: is-sig-red-addsE)
from 2 have c 6= 0 and rep-list f 6= 0

by (simp-all add: rep-list-monom-mult punit.monom-mult-eq-zero-iff )
hence f 6= 0 by (auto simp: rep-list-zero)
with ‹c 6= 0 › have eq1 : lt ?f = t ⊕ lt f by (simp add: lt-monom-mult)
from ‹c 6= 0 › ‹rep-list f 6= 0 › have eq2 : punit.lt (rep-list ?f ) = t + punit.lt

(rep-list f )
by (simp add: rep-list-monom-mult punit.lt-monom-mult)

from assms have ∗: ord-term-lin.is-le-rel sing-reg by (rule is-sig-redD1 )
show ?thesis
proof (rule is-sig-red-addsI )

show f ∈ {f } by simp
next

have punit.lt (rep-list f ) adds t + punit.lt (rep-list f ) by (rule adds-triv-right)
also from 3 have ... adds s by (simp only: eq2 )
finally show punit.lt (rep-list f ) adds s .

next
from 4 have sing-reg (t ⊕ (s ⊕ lt f )) (t ⊕ (punit.lt (rep-list f ) ⊕ lt p))

by (simp add: eq1 eq2 splus-assoc splus-left-commute)
with ∗ show sing-reg (s ⊕ lt f ) (punit.lt (rep-list f ) ⊕ lt p)

by (simp add: term-is-le-rel-canc-left)
next
from assms show ordered-powerprod-lin.is-le-rel top-tail by (rule is-sig-redD2 )

qed fact+
qed

lemma is-sig-red-top-singleton-monom-multI :
assumes is-sig-red sing-reg (=) {f } p and c 6= 0

and t adds punit.lt (rep-list p) − punit.lt (rep-list f )
shows is-sig-red sing-reg (=) {monom-mult c t f } p

proof −
let ?f = monom-mult c t f
from assms have 2 : rep-list f 6= 0 and rep-list p 6= 0

and 3 : punit.lt (rep-list f ) adds punit.lt (rep-list p)
and 4 : sing-reg (punit.lt (rep-list p) ⊕ lt f ) (punit.lt (rep-list f ) ⊕ lt p)
by (auto elim: is-sig-red-top-addsE)

hence f 6= 0 by (auto simp: rep-list-zero)
with ‹c 6= 0 › have eq1 : lt ?f = t ⊕ lt f by (simp add: lt-monom-mult)
from ‹c 6= 0 › ‹rep-list f 6= 0 › have eq2 : punit.lt (rep-list ?f ) = t + punit.lt

(rep-list f )
by (simp add: rep-list-monom-mult punit.lt-monom-mult)

from assms(1 ) have ∗: ord-term-lin.is-le-rel sing-reg by (rule is-sig-redD1 )
show ?thesis
proof (rule is-sig-red-top-addsI )

show ?f ∈ {?f } by simp
next

from ‹c 6= 0 › ‹rep-list f 6= 0 › show rep-list ?f 6= 0
by (simp add: rep-list-monom-mult punit.monom-mult-eq-zero-iff )

next
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from assms(3 ) have t + punit.lt (rep-list f ) adds
(punit.lt (rep-list p) − punit.lt (rep-list f )) + punit.lt (rep-list f )

by (simp only: adds-canc)
also from 3 have ... = punit.lt (rep-list p) by (rule adds-minus)
finally show punit.lt (rep-list ?f ) adds punit.lt (rep-list p) by (simp only: eq2 )

next
from 4 ∗ show sing-reg (punit.lt (rep-list p) ⊕ lt ?f ) (punit.lt (rep-list ?f ) ⊕

lt p)
by (simp add: eq1 eq2 term-is-le-rel-canc-left splus-assoc splus-left-commute)

qed fact+
qed

lemma is-sig-red-cong ′:
assumes is-sig-red sing-reg top-tail F p and lt p = lt q and rep-list p = rep-list

q
shows is-sig-red sing-reg top-tail F q

proof −
from assms(1 ) have 1 : ord-term-lin.is-le-rel sing-reg and 2 : ordered-powerprod-lin.is-le-rel

top-tail
by (rule is-sig-redD1 , rule is-sig-redD2 )

from assms(1 ) obtain f t where f ∈ F and t ∈ keys (rep-list p) and rep-list f
6= 0

and punit.lt (rep-list f ) adds t
and sing-reg (t ⊕ lt f ) (punit.lt (rep-list f ) ⊕ lt p)
and top-tail t (punit.lt (rep-list p)) by (rule is-sig-red-addsE)

from this(1−4 ) 1 2 this(5 , 6 ) show ?thesis unfolding assms(2 , 3 ) by (rule
is-sig-red-addsI )
qed

lemma is-sig-red-cong:
lt p = lt q =⇒ rep-list p = rep-list q =⇒

is-sig-red sing-reg top-tail F p ←→ is-sig-red sing-reg top-tail F q
by (auto intro: is-sig-red-cong ′)

lemma is-sig-red-top-cong:
assumes is-sig-red sing-reg (=) F p and rep-list q 6= 0 and lt p = lt q

and punit.lt (rep-list p) = punit.lt (rep-list q)
shows is-sig-red sing-reg (=) F q

proof −
from assms(1 ) have 1 : ord-term-lin.is-le-rel sing-reg by (rule is-sig-redD1 )
from assms(1 ) obtain f where f ∈ F and rep-list f 6= 0 and rep-list p 6= 0

and punit.lt (rep-list f ) adds punit.lt (rep-list p)
and sing-reg (punit.lt (rep-list p) ⊕ lt f ) (punit.lt (rep-list f ) ⊕ lt p)
by (rule is-sig-red-top-addsE)

from this(1 , 2 ) assms(2 ) this(4 ) 1 this(5 ) show ?thesis
unfolding assms(3 , 4 ) by (rule is-sig-red-top-addsI )

qed

lemma sig-irredE-dgrad-max-set:
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assumes dickson-grading d and F ⊆ dgrad-max-set d
obtains q where (sig-red sing-reg top-tail F)∗∗ p q and ¬ is-sig-red sing-reg

top-tail F q
proof −

let ?Q = {q. (sig-red sing-reg top-tail F)∗∗ p q}
from assms have wfP (sig-red sing-reg top-tail F)−1−1 by (rule sig-red-wf-dgrad-max-set)
moreover have p ∈ ?Q by simp
ultimately obtain q where q ∈ ?Q and

∧
x. (sig-red sing-reg top-tail F)−1−1

x q =⇒ x /∈ ?Q
by (rule wfE-min[to-pred], blast)

hence 1 : (sig-red sing-reg top-tail F)∗∗ p q
and 2 :

∧
x. sig-red sing-reg top-tail F q x =⇒ ¬ (sig-red sing-reg top-tail F)∗∗

p x
by simp-all

show ?thesis
proof

show ¬ is-sig-red sing-reg top-tail F q
proof

assume is-sig-red sing-reg top-tail F q
then obtain x where 3 : sig-red sing-reg top-tail F q x unfolding is-sig-red-def

..
hence ¬ (sig-red sing-reg top-tail F)∗∗ p x by (rule 2 )
moreover from 1 3 have (sig-red sing-reg top-tail F)∗∗ p x ..
ultimately show False ..

qed
qed fact

qed

lemma is-sig-red-mono:
is-sig-red sing-reg top-tail F p =⇒ F ⊆ F ′ =⇒ is-sig-red sing-reg top-tail F ′ p
by (auto simp: is-sig-red-def dest: sig-red-mono)

lemma is-sig-red-Un:
is-sig-red sing-reg top-tail (A ∪ B) p ←→ (is-sig-red sing-reg top-tail A p ∨

is-sig-red sing-reg top-tail B p)
by (auto simp: is-sig-red-def sig-red-Un)

lemma is-sig-redD-lt:
assumes is-sig-red (�t) top-tail {f } p
shows lt f �t lt p

proof −
from assms obtain s where rep-list f 6= 0 and s ∈ keys (rep-list p)

and 1 : punit.lt (rep-list f ) adds s and 2 : s ⊕ lt f �t punit.lt (rep-list f ) ⊕ lt p
by (auto elim!: is-sig-red-addsE)

from 1 obtain t where eq: s = punit.lt (rep-list f ) + t by (rule addsE)
hence punit.lt (rep-list f ) ⊕ (t ⊕ lt f ) = s ⊕ lt f by (simp add: splus-assoc)
also note 2
finally have t ⊕ lt f �t lt p by (rule ord-term-canc)
have 0 � t by (fact zero-min)
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hence 0 ⊕ lt f �t t ⊕ lt f by (rule splus-mono-left)
hence lt f �t t ⊕ lt f by (simp add: term-simps)
thus ?thesis using ‹t ⊕ lt f �t lt p› by simp

qed

lemma is-sig-red-regularD-lt:
assumes is-sig-red (≺t) top-tail {f } p
shows lt f ≺t lt p

proof −
from assms obtain s where rep-list f 6= 0 and s ∈ keys (rep-list p)

and 1 : punit.lt (rep-list f ) adds s and 2 : s ⊕ lt f ≺t punit.lt (rep-list f ) ⊕ lt p
by (auto elim!: is-sig-red-addsE)

from 1 obtain t where eq: s = punit.lt (rep-list f ) + t by (rule addsE)
hence punit.lt (rep-list f ) ⊕ (t ⊕ lt f ) = s ⊕ lt f by (simp add: splus-assoc)
also note 2
finally have t ⊕ lt f ≺t lt p by (rule ord-term-strict-canc)
have 0 � t by (fact zero-min)
hence 0 ⊕ lt f �t t ⊕ lt f by (rule splus-mono-left)
hence lt f �t t ⊕ lt f by (simp add: term-simps)
thus ?thesis using ‹t ⊕ lt f ≺t lt p› by (rule ord-term-lin.le-less-trans)

qed

lemma sig-irred-regular-self : ¬ is-sig-red (≺t) top-tail {p} p
by (auto dest: is-sig-red-regularD-lt)

4.2.2 Signature Gröbner Bases
definition sig-red-zero :: ( ′t ⇒ ′t ⇒ bool) ⇒ ( ′t ⇒0

′b) set ⇒ ( ′t ⇒0
′b) ⇒ bool

where sig-red-zero sing-reg F r ←→ (∃ s. (sig-red sing-reg (�) F)∗∗ r s ∧ rep-list
s = 0 )

definition is-sig-GB-in :: ( ′a ⇒ nat) ⇒ ( ′t ⇒0
′b) set ⇒ ′t ⇒ bool

where is-sig-GB-in d G u ←→ (∀ r . lt r = u −→ r ∈ dgrad-sig-set d −→
sig-red-zero (�t) G r)

definition is-sig-GB-upt :: ( ′a ⇒ nat) ⇒ ( ′t ⇒0
′b) set ⇒ ′t ⇒ bool

where is-sig-GB-upt d G u ←→
(G ⊆ dgrad-sig-set d ∧ (∀ v. v ≺t u −→ d (pp-of-term v) ≤ dgrad-max d

−→
component-of-term v < length fs −→ is-sig-GB-in

d G v))

definition is-min-sig-GB :: ( ′a ⇒ nat) ⇒ ( ′t ⇒0
′b) set ⇒ bool

where is-min-sig-GB d G ←→ G ⊆ dgrad-sig-set d ∧
(∀ u. d (pp-of-term u) ≤ dgrad-max d −→ component-of-term

u < length fs −→
is-sig-GB-in d G u) ∧

(∀ g∈G. ¬ is-sig-red (�t) (=) (G − {g}) g)
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definition is-syz-sig :: ( ′a ⇒ nat) ⇒ ′t ⇒ bool
where is-syz-sig d u ←→ (∃ s∈dgrad-sig-set d. s 6= 0 ∧ lt s = u ∧ rep-list s =

0 )

lemma sig-red-zeroI :
assumes (sig-red sing-reg (�) F)∗∗ r s and rep-list s = 0
shows sig-red-zero sing-reg F r
unfolding sig-red-zero-def using assms by blast

lemma sig-red-zeroE :
assumes sig-red-zero sing-reg F r
obtains s where (sig-red sing-reg (�) F)∗∗ r s and rep-list s = 0
using assms unfolding sig-red-zero-def by blast

lemma sig-red-zero-monom-mult:
assumes sig-red-zero sing-reg F r
shows sig-red-zero sing-reg F (monom-mult c t r)

proof −
from assms obtain s where (sig-red sing-reg (�) F)∗∗ r s and rep-list s = 0

by (rule sig-red-zeroE)
from this(1 ) have (sig-red sing-reg (�) F)∗∗ (monom-mult c t r) (monom-mult

c t s)
by (rule sig-red-rtrancl-monom-mult)

moreover have rep-list (monom-mult c t s) = 0 by (simp add: rep-list-monom-mult
‹rep-list s = 0 ›)

ultimately show ?thesis by (rule sig-red-zeroI )
qed

lemma sig-red-zero-sing-regI :
assumes sig-red-zero sing-reg G p
shows sig-red-zero (�t) G p

proof −
from assms obtain s where (sig-red sing-reg (�) G)∗∗ p s and rep-list s = 0

by (rule sig-red-zeroE)
from this(1 ) have (sig-red (�t) (�) G)∗∗ p s by (rule sig-red-rtrancl-sing-regI )
thus ?thesis using ‹rep-list s = 0 › by (rule sig-red-zeroI )

qed

lemma sig-red-zero-nonzero:
assumes sig-red-zero sing-reg F r and rep-list r 6= 0 and sing-reg = (�t) ∨

sing-reg = (≺t)
shows is-sig-red sing-reg (=) F r

proof −
from assms(1 ) obtain s where (sig-red sing-reg (�) F)∗∗ r s and rep-list s =

0
by (rule sig-red-zeroE)

from this(1 ) assms(2 ) show ?thesis
proof (induct rule: converse-rtranclp-induct)

case base
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thus ?case using ‹rep-list s = 0 › ..
next

case (step y z)
from step(1 ) obtain f t where f ∈ F and ∗: sig-red-single sing-reg (�) y z f t

unfolding sig-red-def by blast
from this(2 ) have 1 : rep-list f 6= 0 and 2 : t + punit.lt (rep-list f ) ∈ keys

(rep-list y)
and 3 : z = y − monom-mult (lookup (rep-list y) (t + punit.lt (rep-list f )) /

punit.lc (rep-list f )) t f
and 4 : ord-term-lin.is-le-rel sing-reg and 5 : sing-reg (t ⊕ lt f ) (lt y)
by (rule sig-red-singleD)+

show ?case
proof (cases t + punit.lt (rep-list f ) = punit.lt (rep-list y))

case True
show ?thesis unfolding is-sig-red-def
proof

show sig-red sing-reg (=) F y z unfolding sig-red-def
proof (intro bexI exI )

from 1 2 3 4 ordered-powerprod-lin.is-le-relI (1 ) 5 True
show sig-red-single sing-reg (=) y z f t by (rule sig-red-singleI )

qed fact
qed

next
case False

from 2 have t + punit.lt (rep-list f ) � punit.lt (rep-list y) by (rule
punit.lt-max-keys)

with False have t + punit.lt (rep-list f ) ≺ punit.lt (rep-list y) by simp
with 1 2 3 4 ordered-powerprod-lin.is-le-relI (3 ) 5 have sig-red-single sing-reg

(≺) y z f t
by (rule sig-red-singleI )

hence punit.lt (rep-list y) ∈ keys (rep-list z)
and lt-z: punit.lt (rep-list z) = punit.lt (rep-list y)

by (rule sig-red-single-tail-lt-in-keys-rep-list, rule sig-red-single-tail-lt-rep-list)
from this(1 ) have rep-list z 6= 0 by auto
hence is-sig-red sing-reg (=) F z by (rule step(3 ))
then obtain g where g ∈ F and rep-list g 6= 0

and punit.lt (rep-list g) adds punit.lt (rep-list z)
and a: sing-reg (punit.lt (rep-list z) ⊕ lt g) (punit.lt (rep-list g) ⊕ lt z)
by (rule is-sig-red-top-addsE)

from this(3 ) have punit.lt (rep-list g) adds punit.lt (rep-list y) by (simp only:
lt-z)

with ‹g ∈ F› ‹rep-list g 6= 0 › step(4 ) show ?thesis
proof (rule is-sig-red-top-addsI )

from ‹is-sig-red sing-reg (=) F z› show ord-term-lin.is-le-rel sing-reg by
(rule is-sig-redD1 )

next
from ‹sig-red-single sing-reg (≺) y z f t› have lt z �t lt y by (rule

sig-red-single-lt)
from assms(3 ) show sing-reg (punit.lt (rep-list y) ⊕ lt g) (punit.lt (rep-list
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g) ⊕ lt y)
proof

assume sing-reg = (�t)
from a have punit.lt (rep-list y) ⊕ lt g �t punit.lt (rep-list g) ⊕ lt z

by (simp only: lt-z ‹sing-reg = (�t)›)
also from ‹lt z �t lt y› have ... �t punit.lt (rep-list g) ⊕ lt y by (rule

splus-mono)
finally show ?thesis by (simp only: ‹sing-reg = (�t)›)

next
assume sing-reg = (≺t)
from a have punit.lt (rep-list y) ⊕ lt g ≺t punit.lt (rep-list g) ⊕ lt z

by (simp only: lt-z ‹sing-reg = (≺t)›)
also from ‹lt z �t lt y› have ... �t punit.lt (rep-list g) ⊕ lt y by (rule

splus-mono)
finally show ?thesis by (simp only: ‹sing-reg = (≺t)›)

qed
qed

qed
qed

qed

lemma sig-red-zero-mono: sig-red-zero sing-reg F p =⇒ F ⊆ F ′ =⇒ sig-red-zero
sing-reg F ′ p

by (auto simp: sig-red-zero-def dest: sig-red-rtrancl-mono)

lemma sig-red-zero-subset:
assumes sig-red-zero sing-reg F p and sing-reg = (�t) ∨ sing-reg = (≺t)
shows sig-red-zero sing-reg {f∈F . sing-reg (lt f ) (lt p)} p

proof −
from assms(1 ) obtain s where (sig-red sing-reg (�) F)∗∗ p s and rep-list s =

0
by (rule sig-red-zeroE)

from this(1 ) assms(2 ) have (sig-red sing-reg (�) {f∈F . sing-reg (lt f ) (lt p)})∗∗
p s

by (rule sig-red-rtrancl-subset)
thus ?thesis using ‹rep-list s = 0 › by (rule sig-red-zeroI )

qed

lemma sig-red-zero-idealI :
assumes sig-red-zero sing-reg F p
shows rep-list p ∈ ideal (rep-list ‘ F)

proof −
from assms obtain s where (sig-red sing-reg (�) F)∗∗ p s and rep-list s = 0

by (rule sig-red-zeroE)
from this(1 ) have (punit.red (rep-list ‘ F))∗∗ (rep-list p) (rep-list s) by (rule

sig-red-red-rtrancl)
hence (punit.red (rep-list ‘ F))∗∗ (rep-list p) 0 by (simp only: ‹rep-list s = 0 ›)
thus ?thesis by (rule punit.red-rtranclp-0-in-pmdl[simplified])

qed
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lemma is-sig-GB-inI :
assumes

∧
r . lt r = u =⇒ r ∈ dgrad-sig-set d =⇒ sig-red-zero (�t) G r

shows is-sig-GB-in d G u
unfolding is-sig-GB-in-def using assms by blast

lemma is-sig-GB-inD:
assumes is-sig-GB-in d G u and r ∈ dgrad-sig-set d and lt r = u
shows sig-red-zero (�t) G r
using assms unfolding is-sig-GB-in-def by blast

lemma is-sig-GB-inI-triv:
assumes ¬ d (pp-of-term u) ≤ dgrad-max d ∨ ¬ component-of-term u < length

fs
shows is-sig-GB-in d G u

proof (rule is-sig-GB-inI )
fix r :: ′t ⇒0

′b
assume lt r = u and r ∈ dgrad-sig-set d
show sig-red-zero (�t) G r
proof (cases r = 0 )

case True
hence rep-list r = 0 by (simp only: rep-list-zero)
with rtrancl-refl[to-pred] show ?thesis by (rule sig-red-zeroI )

next
case False

from ‹r ∈ dgrad-sig-set d› have d (lp r) ≤ dgrad-max d by (rule dgrad-sig-setD-lp)
moreover from ‹r ∈ dgrad-sig-set d› False have component-of-term (lt r) <

length fs
by (rule dgrad-sig-setD-lt)

ultimately show ?thesis using assms by (simp add: ‹lt r = u›)
qed

qed

lemma is-sig-GB-in-mono: is-sig-GB-in d G u =⇒ G ⊆ G ′ =⇒ is-sig-GB-in d G ′

u
by (auto simp: is-sig-GB-in-def dest: sig-red-zero-mono)

lemma is-sig-GB-uptI :
assumes G ⊆ dgrad-sig-set d

and
∧

v. v ≺t u =⇒ d (pp-of-term v) ≤ dgrad-max d =⇒ component-of-term
v < length fs =⇒

is-sig-GB-in d G v
shows is-sig-GB-upt d G u
unfolding is-sig-GB-upt-def using assms by blast

lemma is-sig-GB-uptD1 :
assumes is-sig-GB-upt d G u
shows G ⊆ dgrad-sig-set d
using assms unfolding is-sig-GB-upt-def by blast
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lemma is-sig-GB-uptD2 :
assumes is-sig-GB-upt d G u and v ≺t u
shows is-sig-GB-in d G v
using assms is-sig-GB-inI-triv unfolding is-sig-GB-upt-def by blast

lemma is-sig-GB-uptD3 :
assumes is-sig-GB-upt d G u and r ∈ dgrad-sig-set d and lt r ≺t u
shows sig-red-zero (�t) G r
by (rule is-sig-GB-inD, rule is-sig-GB-uptD2 , fact+, fact refl)

lemma is-sig-GB-upt-le:
assumes is-sig-GB-upt d G u and v �t u
shows is-sig-GB-upt d G v

proof (rule is-sig-GB-uptI )
from assms(1 ) show G ⊆ dgrad-sig-set d by (rule is-sig-GB-uptD1 )

next
fix w
assume w ≺t v
hence w ≺t u using assms(2 ) by (rule ord-term-lin.less-le-trans)
with assms(1 ) show is-sig-GB-in d G w by (rule is-sig-GB-uptD2 )

qed

lemma is-sig-GB-upt-mono:
is-sig-GB-upt d G u =⇒ G ⊆ G ′ =⇒ G ′ ⊆ dgrad-sig-set d =⇒ is-sig-GB-upt d

G ′ u
by (auto simp: is-sig-GB-upt-def dest!: is-sig-GB-in-mono)

lemma is-sig-GB-upt-is-Groebner-basis:
assumes dickson-grading d and hom-grading d and G ⊆ dgrad-sig-set ′ j d

and
∧

u. component-of-term u < j =⇒ is-sig-GB-in d G u
shows punit.is-Groebner-basis (rep-list ‘ G)
using assms(1 )

proof (rule punit.weak-GB-is-strong-GB-dgrad-p-set[simplified])
from assms(3 ) have G ⊆ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
with assms(1 ) show rep-list ‘ G ⊆ punit-dgrad-max-set d by (rule dgrad-max-3 )

next
fix f :: ′a ⇒0

′b
assume f ∈ punit-dgrad-max-set d
from assms(3 ) have G-sub: G ⊆ sig-inv-set ′ j by (simp add: dgrad-sig-set ′-def )
assume f ∈ ideal (rep-list ‘ G)
also from rep-list-subset-ideal-sig-inv-set[OF G-sub] have ... ⊆ ideal (set (take

j fs))
by (rule ideal.span-subset-spanI )

finally have f ∈ ideal (set (take j fs)) .
with assms(2 ) ‹f ∈ punit-dgrad-max-set d› obtain r where r ∈ dgrad-sig-set d

and r ∈ dgrad-sig-set ′ j d and f : f = rep-list r
by (rule in-idealE-rep-list-dgrad-sig-set-take)

from this(2 ) have r ∈ sig-inv-set ′ j by (simp add: dgrad-sig-set ′-def )
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show (punit.red (rep-list ‘ G))∗∗ f 0
proof (cases r = 0 )

case True
thus ?thesis by (simp add: f rep-list-zero)

next
case False
hence lt r ∈ keys r by (rule lt-in-keys)

with ‹r ∈ sig-inv-set ′ j› have component-of-term (lt r) < j by (rule sig-inv-setD ′)
hence is-sig-GB-in d G (lt r) by (rule assms(4 ))

hence sig-red-zero (�t) G r using ‹r ∈ dgrad-sig-set d› refl by (rule is-sig-GB-inD)
then obtain s where (sig-red (�t) (�) G)∗∗ r s and s: rep-list s = 0 by (rule

sig-red-zeroE)
from this(1 ) have (punit.red (rep-list ‘ G))∗∗ (rep-list r) (rep-list s)

by (rule sig-red-red-rtrancl)
thus ?thesis by (simp only: f s)

qed
qed

lemma is-sig-GB-is-Groebner-basis:
assumes dickson-grading d and hom-grading d and G ⊆ dgrad-max-set d and∧
u. is-sig-GB-in d G u
shows punit.is-Groebner-basis (rep-list ‘ G)
using assms(1 )

proof (rule punit.weak-GB-is-strong-GB-dgrad-p-set[simplified])
from assms(1 , 3 ) show rep-list ‘ G ⊆ punit-dgrad-max-set d by (rule dgrad-max-3 )

next
fix f :: ′a ⇒0

′b
assume f ∈ punit-dgrad-max-set d
assume f ∈ ideal (rep-list ‘ G)
also from rep-list-subset-ideal have ... ⊆ ideal (set fs) by (rule ideal.span-subset-spanI )
finally have f ∈ ideal (set fs) .
with assms(2 ) ‹f ∈ punit-dgrad-max-set d› obtain r where r ∈ dgrad-sig-set d

and f : f = rep-list r
by (rule in-idealE-rep-list-dgrad-sig-set)

from assms(4 ) this(1 ) refl have sig-red-zero (�t) G r by (rule is-sig-GB-inD)
then obtain s where (sig-red (�t) (�) G)∗∗ r s and s: rep-list s = 0 by (rule

sig-red-zeroE)
from this(1 ) have (punit.red (rep-list ‘ G))∗∗ (rep-list r) (rep-list s)

by (rule sig-red-red-rtrancl)
thus (punit.red (rep-list ‘ G))∗∗ f 0 by (simp only: f s)

qed

lemma sig-red-zero-is-red:
assumes sig-red-zero sing-reg F r and rep-list r 6= 0
shows is-sig-red sing-reg (�) F r

proof −
from assms(1 ) obtain s where ∗: (sig-red sing-reg (�) F)∗∗ r s and rep-list s

= 0
by (rule sig-red-zeroE)
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from this(2 ) assms(2 ) have r 6= s by auto
with ∗ show ?thesis by (induct rule: converse-rtranclp-induct, auto simp: is-sig-red-def )

qed

lemma is-sig-red-sing-top-is-red-zero:
assumes dickson-grading d and is-sig-GB-upt d G u and a ∈ dgrad-sig-set d

and lt a = u
and is-sig-red (=) (=) G a and ¬ is-sig-red (≺t) (=) G a

shows sig-red-zero (�t) G a
proof −

from assms(5 ) obtain g where g ∈ G and rep-list g 6= 0 and rep-list a 6= 0
and 1 : punit.lt (rep-list g) adds punit.lt (rep-list a)
and 2 : punit.lt (rep-list a) ⊕ lt g = punit.lt (rep-list g) ⊕ lt a
by (rule is-sig-red-top-addsE)

from this(2 , 3 ) have g 6= 0 and a 6= 0 by (auto simp: rep-list-zero)
hence lc g 6= 0 and lc a 6= 0 using lc-not-0 by blast+
from 1 have 3 : (punit.lt (rep-list a) − punit.lt (rep-list g)) ⊕ lt g = lt a

by (simp add: term-is-le-rel-minus 2 )
define g ′ where g ′ = monom-mult (lc a / lc g) (punit.lt (rep-list a) − punit.lt

(rep-list g)) g
from ‹g 6= 0 › ‹lc a 6= 0 › ‹lc g 6= 0 › have lt-g ′: lt g ′ = lt a by (simp add: g ′-def

lt-monom-mult 3 )
from ‹lc g 6= 0 › have lc-g ′: lc g ′ = lc a by (simp add: g ′-def )
from assms(1 ) have g ′ ∈ dgrad-sig-set d unfolding g ′-def
proof (rule dgrad-sig-set-closed-monom-mult)

from assms(1 ) 1 have d (punit.lt (rep-list a) − punit.lt (rep-list g)) ≤ d
(punit.lt (rep-list a))

by (rule dickson-grading-minus)
also from assms(1 , 3 ) have ... ≤ dgrad-max d by (rule dgrad-sig-setD-rep-list-lt)
finally show d (punit.lt (rep-list a) − punit.lt (rep-list g)) ≤ dgrad-max d .

next
from assms(2 ) have G ⊆ dgrad-sig-set d by (rule is-sig-GB-uptD1 )
with ‹g ∈ G› show g ∈ dgrad-sig-set d ..

qed
with assms(3 ) have b-in: a − g ′ ∈ dgrad-sig-set d (is ?b ∈ -)

by (rule dgrad-sig-set-closed-minus)
from 1 have 4 : punit.lt (rep-list a) − punit.lt (rep-list g) + punit.lt (rep-list g)

=
punit.lt (rep-list a)

by (rule adds-minus)

show ?thesis
proof (cases lc a / lc g = punit.lc (rep-list a) / punit.lc (rep-list g))

case True
have sig-red-single (=) (=) a ?b g (punit.lt (rep-list a) − punit.lt (rep-list g))
proof (rule sig-red-singleI )

show punit.lt (rep-list a) − punit.lt (rep-list g) + punit.lt (rep-list g) ∈ keys
(rep-list a)

unfolding 4 using ‹rep-list a 6= 0 › by (rule punit.lt-in-keys)

64



next
show ?b =

a − monom-mult
(lookup (rep-list a) (punit.lt (rep-list a) − punit.lt (rep-list g) + punit.lt

(rep-list g)) /
punit.lc (rep-list g))
(punit.lt (rep-list a) − punit.lt (rep-list g)) g

by (simp add: g ′-def 4 punit.lc-def True)
qed (simp-all add: 3 4 ‹rep-list g 6= 0 ›)
hence sig-red (=) (=) G a ?b unfolding sig-red-def using ‹g ∈ G› by blast
hence sig-red (�t) (�) G a ?b by (auto dest: sig-red-sing-regI sig-red-top-tailI )
hence 5 : (sig-red (�t) (�) G)∗∗ a ?b ..
show ?thesis
proof (cases ?b = 0 )

case True
hence rep-list ?b = 0 by (simp only: rep-list-zero)
with 5 show ?thesis by (rule sig-red-zeroI )

next
case False
hence lt ?b ≺t lt a using lt-g ′ lc-g ′ by (rule lt-minus-lessI )
hence lt ?b ≺t u by (simp only: assms(4 ))
with assms(2 ) b-in have sig-red-zero (�t) G ?b by (rule is-sig-GB-uptD3 )
then obtain s where (sig-red (�t) (�) G)∗∗ ?b s and rep-list s = 0 by

(rule sig-red-zeroE)
from 5 this(1 ) have (sig-red (�t) (�) G)∗∗ a s by (rule rtranclp-trans)
thus ?thesis using ‹rep-list s = 0 › by (rule sig-red-zeroI )

qed
next

case False
from ‹rep-list g 6= 0 › ‹lc g 6= 0 › ‹lc a 6= 0 › have 5 : punit.lt (rep-list g ′) =

punit.lt (rep-list a)
by (simp add: g ′-def rep-list-monom-mult punit.lt-monom-mult 4 )

have 6 : punit.lc (rep-list g ′) = (lc a / lc g) ∗ punit.lc (rep-list g)
by (simp add: g ′-def rep-list-monom-mult)

also have 7 : ... 6= punit.lc (rep-list a)
proof

assume lc a / lc g ∗ punit.lc (rep-list g) = punit.lc (rep-list a)
moreover from ‹rep-list g 6= 0 › have punit.lc (rep-list g) 6= 0 by (rule

punit.lc-not-0 )
ultimately have lc a / lc g = punit.lc (rep-list a) / punit.lc (rep-list g)

by (simp add: field-simps)
with False show False ..

qed
finally have punit.lc (rep-list g ′) 6= punit.lc (rep-list a) .

with 5 have 8 : punit.lt (rep-list ?b) = punit.lt (rep-list a) unfolding rep-list-minus
by (rule punit.lt-minus-eqI-3 )

hence punit.lc (rep-list ?b) = punit.lc (rep-list a) − (lc a / lc g) ∗ punit.lc
(rep-list g)

unfolding 6 [symmetric] by (simp only: punit.lc-def lookup-minus rep-list-minus
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5 )
also have ... 6= 0
proof

assume punit.lc (rep-list a) − lc a / lc g ∗ punit.lc (rep-list g) = 0
hence lc a / lc g ∗ punit.lc (rep-list g) = punit.lc (rep-list a) by simp
with 7 show False ..

qed
finally have rep-list ?b 6= 0 by (simp add: punit.lc-eq-zero-iff )
hence ?b 6= 0 by (auto simp: rep-list-zero)
hence lt ?b ≺t lt a using lt-g ′ lc-g ′ by (rule lt-minus-lessI )
hence lt ?b ≺t u by (simp only: assms(4 ))
with assms(2 ) b-in have sig-red-zero (�t) G ?b by (rule is-sig-GB-uptD3 )
moreover note ‹rep-list ?b 6= 0 ›
moreover have (�t) = (�t) ∨ (�t) = (≺t) by simp
ultimately have is-sig-red (�t) (=) G ?b by (rule sig-red-zero-nonzero)
then obtain g0 where g0 ∈ G and rep-list g0 6= 0

and 9 : punit.lt (rep-list g0 ) adds punit.lt (rep-list ?b)
and 10 : punit.lt (rep-list ?b) ⊕ lt g0 �t punit.lt (rep-list g0 ) ⊕ lt ?b
by (rule is-sig-red-top-addsE)

from 9 have punit.lt (rep-list g0 ) adds punit.lt (rep-list a) by (simp only: 8 )
from 10 have punit.lt (rep-list a) ⊕ lt g0 �t punit.lt (rep-list g0 ) ⊕ lt ?b by

(simp only: 8 )
also from ‹lt ?b ≺t lt a› have ... ≺t punit.lt (rep-list g0 ) ⊕ lt a by (rule

splus-mono-strict)
finally have punit.lt (rep-list a) ⊕ lt g0 ≺t punit.lt (rep-list g0 ) ⊕ lt a .
have is-sig-red (≺t) (=) G a
proof (rule is-sig-red-top-addsI )

show ord-term-lin.is-le-rel (≺t) by simp
qed fact+
with assms(6 ) show ?thesis ..

qed
qed

lemma sig-regular-reduced-unique:
assumes is-sig-GB-upt d G (lt q) and p ∈ dgrad-sig-set d and q ∈ dgrad-sig-set

d
and lt p = lt q and lc p = lc q and ¬ is-sig-red (≺t) (�) G p and ¬ is-sig-red

(≺t) (�) G q
shows rep-list p = rep-list q

proof (rule ccontr)
assume rep-list p 6= rep-list q
hence rep-list (p − q) 6= 0 by (auto simp: rep-list-minus)
hence p − q 6= 0 by (auto simp: rep-list-zero)
hence p + (− q) 6= 0 by simp
moreover from assms(4 ) have lt (− q) = lt p by simp
moreover from assms(5 ) have lc (− q) = − lc p by simp
ultimately have lt (p + (− q)) ≺t lt p by (rule lt-plus-lessI )
hence lt (p − q) ≺t lt q using assms(4 ) by simp
with assms(1 ) have is-sig-GB-in d G (lt (p − q)) by (rule is-sig-GB-uptD2 )
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moreover from assms(2 , 3 ) have p − q ∈ dgrad-sig-set d by (rule dgrad-sig-set-closed-minus)
ultimately have sig-red-zero (�t) G (p − q) using refl by (rule is-sig-GB-inD)
hence is-sig-red (�t) (�) G (p − q) using ‹rep-list (p − q) 6= 0 › by (rule

sig-red-zero-is-red)
then obtain g t where g ∈ G and t: t ∈ keys (rep-list (p − q)) and rep-list g
6= 0

and adds: punit.lt (rep-list g) adds t and t ⊕ lt g �t punit.lt (rep-list g) ⊕ lt
(p − q)

by (rule is-sig-red-addsE)
note this(5 )
also from ‹lt (p − q) ≺t lt q› have punit.lt (rep-list g) ⊕ lt (p − q) ≺t punit.lt

(rep-list g) ⊕ lt q
by (rule splus-mono-strict)

finally have 1 : t ⊕ lt g ≺t punit.lt (rep-list g) ⊕ lt q .
hence 2 : t ⊕ lt g ≺t punit.lt (rep-list g) ⊕ lt p by (simp only: assms(4 ))
from t keys-minus have t ∈ keys (rep-list p) ∪ keys (rep-list q) unfolding

rep-list-minus ..
thus False
proof

assume t-in: t ∈ keys (rep-list p)
hence t � punit.lt (rep-list p) by (rule punit.lt-max-keys)

with ‹g ∈ G› t-in ‹rep-list g 6= 0 › adds ord-term-lin.is-le-relI (3 ) ordered-powerprod-lin.is-le-relI (2 )
2

have is-sig-red (≺t) (�) G p by (rule is-sig-red-addsI )
with assms(6 ) show False ..

next
assume t-in: t ∈ keys (rep-list q)
hence t � punit.lt (rep-list q) by (rule punit.lt-max-keys)

with ‹g ∈ G› t-in ‹rep-list g 6= 0 › adds ord-term-lin.is-le-relI (3 ) ordered-powerprod-lin.is-le-relI (2 )
1

have is-sig-red (≺t) (�) G q by (rule is-sig-red-addsI )
with assms(7 ) show False ..

qed
qed

corollary sig-regular-reduced-unique ′:
assumes is-sig-GB-upt d G (lt q) and p ∈ dgrad-sig-set d and q ∈ dgrad-sig-set

d
and lt p = lt q and ¬ is-sig-red (≺t) (�) G p and ¬ is-sig-red (≺t) (�) G q

shows punit.monom-mult (lc q) 0 (rep-list p) = punit.monom-mult (lc p) 0
(rep-list q)
proof (cases p = 0 ∨ q = 0 )

case True
thus ?thesis by (auto simp: rep-list-zero)

next
case False
hence p 6= 0 and q 6= 0 by simp-all
hence lc p 6= 0 and lc q 6= 0 by (simp-all add: lc-not-0 )
let ?p = monom-mult (lc q) 0 p
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let ?q = monom-mult (lc p) 0 q
have lt ?q = lt q by (simp add: lt-monom-mult[OF ‹lc p 6= 0 › ‹q 6= 0 ›] splus-zero)
with assms(1 ) have is-sig-GB-upt d G (lt ?q) by simp
moreover from assms(2 ) have ?p ∈ dgrad-sig-set d by (rule dgrad-sig-set-closed-monom-mult-zero)
moreover from assms(3 ) have ?q ∈ dgrad-sig-set d by (rule dgrad-sig-set-closed-monom-mult-zero)
moreover from ‹lt ?q = lt q› have lt ?p = lt ?q

by (simp add: lt-monom-mult[OF ‹lc q 6= 0 › ‹p 6= 0 ›] splus-zero assms(4 ))
moreover have lc ?p = lc ?q by simp
moreover have ¬ is-sig-red (≺t) (�) G ?p
proof

assume is-sig-red (≺t) (�) G ?p
moreover from ‹lc q 6= 0 › have 1 / (lc q) 6= 0 by simp
ultimately have is-sig-red (≺t) (�) G (monom-mult (1 / lc q) 0 ?p) by (rule

is-sig-red-monom-mult)
hence is-sig-red (≺t) (�) G p by (simp add: monom-mult-assoc ‹lc q 6= 0 ›)
with assms(5 ) show False ..

qed
moreover have ¬ is-sig-red (≺t) (�) G ?q
proof

assume is-sig-red (≺t) (�) G ?q
moreover from ‹lc p 6= 0 › have 1 / (lc p) 6= 0 by simp
ultimately have is-sig-red (≺t) (�) G (monom-mult (1 / lc p) 0 ?q) by (rule

is-sig-red-monom-mult)
hence is-sig-red (≺t) (�) G q by (simp add: monom-mult-assoc ‹lc p 6= 0 ›)
with assms(6 ) show False ..

qed
ultimately have rep-list ?p = rep-list ?q by (rule sig-regular-reduced-unique)
thus ?thesis by (simp only: rep-list-monom-mult)

qed

lemma sig-regular-top-reduced-lt-lc-unique:
assumes dickson-grading d and is-sig-GB-upt d G (lt q) and p ∈ dgrad-sig-set

d and q ∈ dgrad-sig-set d
and lt p = lt q and (p = 0 ) ←→ (q = 0 ) and ¬ is-sig-red (≺t) (=) G p and

¬ is-sig-red (≺t) (=) G q
shows punit.lt (rep-list p) = punit.lt (rep-list q) ∧ lc q ∗ punit.lc (rep-list p) =

lc p ∗ punit.lc (rep-list q)
proof (cases p = 0 )

case True
with assms(6 ) have q = 0 by simp
thus ?thesis by (simp add: True)

next
case False
with assms(6 ) have q 6= 0 by simp
from False have lc p 6= 0 by (rule lc-not-0 )
from ‹q 6= 0 › have lc q 6= 0 by (rule lc-not-0 )
from assms(2 ) have G-sub: G ⊆ dgrad-sig-set d by (rule is-sig-GB-uptD1 )
hence G ⊆ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
with assms(1 ) obtain p ′ where p ′-red: (sig-red (≺t) (≺) G)∗∗ p p ′ and ¬
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is-sig-red (≺t) (≺) G p ′

by (rule sig-irredE-dgrad-max-set)
from this(1 ) have lt-p ′: lt p ′ = lt p and lt-p ′′: punit.lt (rep-list p ′) = punit.lt

(rep-list p)
and lc-p ′: lc p ′ = lc p and lc-p ′′: punit.lc (rep-list p ′) = punit.lc (rep-list p)
by (rule sig-red-regular-rtrancl-lt, rule sig-red-tail-rtrancl-lt-rep-list,

rule sig-red-regular-rtrancl-lc, rule sig-red-tail-rtrancl-lc-rep-list)
have ¬ is-sig-red (≺t) (=) G p ′

proof
assume a: is-sig-red (≺t) (=) G p ′

hence rep-list p ′ 6= 0 using is-sig-red-top-addsE by blast
hence rep-list p 6= 0 using ‹(sig-red (≺t) (≺) G)∗∗ p p ′›

by (auto simp: punit.rtrancl-0 dest!: sig-red-red-rtrancl)
with a have is-sig-red (≺t) (=) G p using lt-p ′ lt-p ′′ by (rule is-sig-red-top-cong)
with assms(7 ) show False ..

qed
with ‹¬ is-sig-red (≺t) (≺) G p ′› have 1 : ¬ is-sig-red (≺t) (�) G p ′ by (simp

add: is-sig-red-top-tail-cases)
from assms(1 ) ‹G ⊆ dgrad-max-set d› obtain q ′ where q ′-red: (sig-red (≺t)

(≺) G)∗∗ q q ′

and ¬ is-sig-red (≺t) (≺) G q ′ by (rule sig-irredE-dgrad-max-set)
from this(1 ) have lt-q ′: lt q ′ = lt q and lt-q ′′: punit.lt (rep-list q ′) = punit.lt

(rep-list q)
and lc-q ′: lc q ′ = lc q and lc-q ′′: punit.lc (rep-list q ′) = punit.lc (rep-list q)
by (rule sig-red-regular-rtrancl-lt, rule sig-red-tail-rtrancl-lt-rep-list,

rule sig-red-regular-rtrancl-lc, rule sig-red-tail-rtrancl-lc-rep-list)
have ¬ is-sig-red (≺t) (=) G q ′

proof
assume a: is-sig-red (≺t) (=) G q ′

hence rep-list q ′ 6= 0 using is-sig-red-top-addsE by blast
hence rep-list q 6= 0 using ‹(sig-red (≺t) (≺) G)∗∗ q q ′›

by (auto simp: punit.rtrancl-0 dest!: sig-red-red-rtrancl)
with a have is-sig-red (≺t) (=) G q using lt-q ′ lt-q ′′ by (rule is-sig-red-top-cong)
with assms(8 ) show False ..

qed
with ‹¬ is-sig-red (≺t) (≺) G q ′› have 2 : ¬ is-sig-red (≺t) (�) G q ′ by (simp

add: is-sig-red-top-tail-cases)
from assms(2 ) have is-sig-GB-upt d G (lt q ′) by (simp only: lt-q ′)
moreover from assms(1 ) G-sub assms(3 ) p ′-red have p ′ ∈ dgrad-sig-set d

by (rule dgrad-sig-set-closed-sig-red-rtrancl)
moreover from assms(1 ) G-sub assms(4 ) q ′-red have q ′ ∈ dgrad-sig-set d

by (rule dgrad-sig-set-closed-sig-red-rtrancl)
moreover have lt p ′ = lt q ′ by (simp only: lt-p ′ lt-q ′ assms(5 ))
ultimately have eq: punit.monom-mult (lc q ′) 0 (rep-list p ′) = punit.monom-mult

(lc p ′) 0 (rep-list q ′)
using 1 2 by (rule sig-regular-reduced-unique ′)

have lc q ∗ punit.lc (rep-list p) = lc q ∗ punit.lc (rep-list p ′) by (simp only:
lc-p ′′)
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also from ‹lc q 6= 0 › have ... = punit.lc (punit.monom-mult (lc q ′) 0 (rep-list
p ′))

by (simp add: lc-q ′)
also have ... = punit.lc (punit.monom-mult (lc p ′) 0 (rep-list q ′)) by (simp only:

eq)
also from ‹lc p 6= 0 › have ... = lc p ∗ punit.lc (rep-list q ′) by (simp add: lc-p ′)
also have ... = lc p ∗ punit.lc (rep-list q) by (simp only: lc-q ′′)
finally have ∗: lc q ∗ punit.lc (rep-list p) = lc p ∗ punit.lc (rep-list q) .

have punit.lt (rep-list p) = punit.lt (rep-list p ′) by (simp only: lt-p ′′)
also from ‹lc q 6= 0 › have ... = punit.lt (punit.monom-mult (lc q ′) 0 (rep-list

p ′))
by (simp add: lc-q ′ punit.lt-monom-mult-zero)

also have ... = punit.lt (punit.monom-mult (lc p ′) 0 (rep-list q ′)) by (simp only:
eq)

also from ‹lc p 6= 0 › have ... = punit.lt (rep-list q ′) by (simp add: lc-p ′

punit.lt-monom-mult-zero)
also have ... = punit.lt (rep-list q) by (fact lt-q ′′)
finally show ?thesis using ∗ ..

qed

corollary sig-regular-top-reduced-lt-unique:
assumes dickson-grading d and is-sig-GB-upt d G (lt q) and p ∈ dgrad-sig-set

d
and q ∈ dgrad-sig-set d and lt p = lt q and p 6= 0 and q 6= 0
and ¬ is-sig-red (≺t) (=) G p and ¬ is-sig-red (≺t) (=) G q

shows punit.lt (rep-list p) = punit.lt (rep-list q)
proof −

from assms(6 , 7 ) have (p = 0 ) ←→ (q = 0 ) by simp
with assms(1 , 2 , 3 , 4 , 5 )
have punit.lt (rep-list p) = punit.lt (rep-list q) ∧ lc q ∗ punit.lc (rep-list p) = lc

p ∗ punit.lc (rep-list q)
using assms(8 , 9 ) by (rule sig-regular-top-reduced-lt-lc-unique)

thus ?thesis ..
qed

corollary sig-regular-top-reduced-lc-unique:
assumes dickson-grading d and is-sig-GB-upt d G (lt q) and p ∈ dgrad-sig-set

d and q ∈ dgrad-sig-set d
and lt p = lt q and lc p = lc q and ¬ is-sig-red (≺t) (=) G p and ¬ is-sig-red

(≺t) (=) G q
shows punit.lc (rep-list p) = punit.lc (rep-list q)

proof (cases p = 0 )
case True
with assms(6 ) have q = 0 by (simp add: lc-eq-zero-iff )
with True show ?thesis by simp

next
case False
hence lc p 6= 0 by (rule lc-not-0 )
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hence lc q 6= 0 by (simp add: assms(6 ))
hence q 6= 0 by (simp add: lc-eq-zero-iff )
with False have (p = 0 ) ←→ (q = 0 ) by simp
with assms(1 , 2 , 3 , 4 , 5 )
have punit.lt (rep-list p) = punit.lt (rep-list q) ∧ lc q ∗ punit.lc (rep-list p) = lc

p ∗ punit.lc (rep-list q)
using assms(7 , 8 ) by (rule sig-regular-top-reduced-lt-lc-unique)

hence lc q ∗ punit.lc (rep-list p) = lc p ∗ punit.lc (rep-list q) ..
also have ... = lc q ∗ punit.lc (rep-list q) by (simp only: assms(6 ))
finally show ?thesis using ‹lc q 6= 0 › by simp

qed

Minimal signature Gröbner bases are indeed minimal, at least up to sig-
lead-pairs:
lemma is-min-sig-GB-minimal:

assumes is-min-sig-GB d G and G ′ ⊆ dgrad-sig-set d
and

∧
u. d (pp-of-term u) ≤ dgrad-max d =⇒ component-of-term u < length

fs =⇒ is-sig-GB-in d G ′ u
and g ∈ G and rep-list g 6= 0

obtains g ′ where g ′ ∈ G ′ and rep-list g ′ 6= 0 and lt g ′ = lt g
and punit.lt (rep-list g ′) = punit.lt (rep-list g)

proof −
from assms(1 ) have G ⊆ dgrad-sig-set d
and 1 :

∧
u. d (pp-of-term u) ≤ dgrad-max d =⇒ component-of-term u < length

fs =⇒ is-sig-GB-in d G u
and 2 :

∧
g0 . g0 ∈ G =⇒ ¬ is-sig-red (�t) (=) (G − {g0}) g0

by (simp-all add: is-min-sig-GB-def )
from assms(4 ) have 3 : ¬ is-sig-red (�t) (=) (G − {g}) g by (rule 2 )

from assms(5 ) have g 6= 0 by (auto simp: rep-list-zero)
from assms(4 ) ‹G ⊆ dgrad-sig-set d› have g ∈ dgrad-sig-set d ..
hence d (lp g) ≤ dgrad-max d and component-of-term (lt g) < length fs

by (rule dgrad-sig-setD-lp, rule dgrad-sig-setD-lt[OF - ‹g 6= 0 ›])
hence is-sig-GB-in d G ′ (lt g) by (rule assms(3 ))
hence sig-red-zero (�t) G ′ g using ‹g ∈ dgrad-sig-set d› refl by (rule is-sig-GB-inD)
moreover note assms(5 )
moreover have (�t) = (�t) ∨ (�t) = (≺t) by simp
ultimately have is-sig-red (�t) (=) G ′ g by (rule sig-red-zero-nonzero)
then obtain g ′ where g ′ ∈ G ′ and rep-list g ′ 6= 0

and adds1 : punit.lt (rep-list g ′) adds punit.lt (rep-list g)
and le1 : punit.lt (rep-list g) ⊕ lt g ′ �t punit.lt (rep-list g ′) ⊕ lt g
by (rule is-sig-red-top-addsE)

from ‹rep-list g ′ 6= 0 › have g ′ 6= 0 by (auto simp: rep-list-zero)
from ‹g ′ ∈ G ′› assms(2 ) have g ′ ∈ dgrad-sig-set d ..
hence d (lp g ′) ≤ dgrad-max d and component-of-term (lt g ′) < length fs

by (rule dgrad-sig-setD-lp, rule dgrad-sig-setD-lt[OF - ‹g ′ 6= 0 ›])
hence is-sig-GB-in d G (lt g ′) by (rule 1 )
hence sig-red-zero (�t) G g ′ using ‹g ′∈ dgrad-sig-set d› refl by (rule is-sig-GB-inD)
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moreover note ‹rep-list g ′ 6= 0 ›
moreover have (�t) = (�t) ∨ (�t) = (≺t) by simp
ultimately have is-sig-red (�t) (=) G g ′ by (rule sig-red-zero-nonzero)
then obtain g0 where g0 ∈ G and rep-list g0 6= 0

and adds2 : punit.lt (rep-list g0 ) adds punit.lt (rep-list g ′)
and le2 : punit.lt (rep-list g ′) ⊕ lt g0 �t punit.lt (rep-list g0 ) ⊕ lt g ′

by (rule is-sig-red-top-addsE)

have eq1 : g0 = g
proof (rule ccontr)

assume g0 6= g
with ‹g0 ∈ G› have g0 ∈ G − {g} by simp
moreover note ‹rep-list g0 6= 0 › assms(5 )
moreover from adds2 adds1 have punit.lt (rep-list g0 ) adds punit.lt (rep-list

g)
by (rule adds-trans)

moreover have ord-term-lin.is-le-rel (�t) by simp
moreover have punit.lt (rep-list g) ⊕ lt g0 �t punit.lt (rep-list g0 ) ⊕ lt g
proof (rule ord-term-canc)

have punit.lt (rep-list g ′) ⊕ (punit.lt (rep-list g) ⊕ lt g0 ) =
punit.lt (rep-list g) ⊕ (punit.lt (rep-list g ′) ⊕ lt g0 ) by (fact splus-left-commute)

also from le2 have ... �t punit.lt (rep-list g) ⊕ (punit.lt (rep-list g0 ) ⊕ lt g ′)
by (rule splus-mono)

also have ... = punit.lt (rep-list g0 ) ⊕ (punit.lt (rep-list g) ⊕ lt g ′)
by (fact splus-left-commute)

also from le1 have ... �t punit.lt (rep-list g0 ) ⊕ (punit.lt (rep-list g ′) ⊕ lt
g)

by (rule splus-mono)
also have ... = punit.lt (rep-list g ′) ⊕ (punit.lt (rep-list g0 ) ⊕ lt g)

by (fact splus-left-commute)
finally show punit.lt (rep-list g ′) ⊕ (punit.lt (rep-list g) ⊕ lt g0 ) �t

punit.lt (rep-list g ′) ⊕ (punit.lt (rep-list g0 ) ⊕ lt g) .
qed
ultimately have is-sig-red (�t) (=) (G − {g}) g by (rule is-sig-red-top-addsI )
with 3 show False ..

qed

from adds2 adds1 have eq2 : punit.lt (rep-list g ′) = punit.lt (rep-list g) by (simp
add: eq1 adds-antisym)

with le1 le2 have punit.lt (rep-list g) ⊕ lt g ′ = punit.lt (rep-list g) ⊕ lt g by
(simp add: eq1 )

hence lt g ′ = lt g by (simp only: splus-left-canc)
with ‹g ′ ∈ G ′› ‹rep-list g ′ 6= 0 › show ?thesis using eq2 ..

qed

lemma sig-red-zero-regularI-adds:
assumes dickson-grading d and is-sig-GB-upt d G (lt q)

and p ∈ dgrad-sig-set d and q ∈ dgrad-sig-set d and p 6= 0 and sig-red-zero
(≺t) G p
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and lt p addst lt q
shows sig-red-zero (≺t) G q

proof (cases q = 0 )
case True
hence rep-list q = 0 by (simp only: rep-list-zero)
with rtrancl-refl[to-pred] show ?thesis by (rule sig-red-zeroI )

next
case False
hence lc q 6= 0 by (rule lc-not-0 )
moreover from assms(5 ) have lc p 6= 0 by (rule lc-not-0 )
ultimately have lc q / lc p 6= 0 by simp
from assms(7 ) have eq1 : (lp q − lp p) ⊕ lt p = lt q

by (metis add-diff-cancel-right ′ adds-termE pp-of-term-splus)
from assms(7 ) have lp p adds lp q by (simp add: adds-term-def )
with assms(1 ) have d (lp q − lp p) ≤ d (lp q) by (rule dickson-grading-minus)
also from assms(4 ) have ... ≤ dgrad-max d by (rule dgrad-sig-setD-lp)
finally have d (lp q − lp p) ≤ dgrad-max d .
from assms(2 ) have G-sub: G ⊆ dgrad-sig-set d by (rule is-sig-GB-uptD1 )
hence G ⊆ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )

let ?mult = λr . monom-mult (lc q / lc p) (lp q − lp p) r
from assms(6 ) obtain p ′ where p-red: (sig-red (≺t) (�) G)∗∗ p p ′ and rep-list

p ′ = 0
by (rule sig-red-zeroE)

from p-red have lt p ′ = lt p and lc p ′ = lc p
by (rule sig-red-regular-rtrancl-lt, rule sig-red-regular-rtrancl-lc)

hence p ′ 6= 0 using ‹lc p 6= 0 › by auto
with ‹lc q / lc p 6= 0 › have ?mult p ′ 6= 0 by (simp add: monom-mult-eq-zero-iff )
from ‹lc q / lc p 6= 0 › ‹p ′ 6= 0 › have lt (?mult p ′) = lt q

by (simp add: lt-monom-mult ‹lt p ′ = lt p› eq1 )
from ‹lc p 6= 0 › have lc (?mult p ′) = lc q by (simp add: ‹lc p ′ = lc p›)
from p-red have mult-p-red: (sig-red (≺t) (�) G)∗∗ (?mult p) (?mult p ′)

by (rule sig-red-rtrancl-monom-mult)
have rep-list (?mult p ′) = 0 by (simp add: rep-list-monom-mult ‹rep-list p ′ =

0 ›)
hence mult-p ′-irred: ¬ is-sig-red (≺t) (�) G (?mult p ′)

using is-sig-red-addsE by fastforce
from assms(1 ) G-sub assms(3 ) p-red have p ′ ∈ dgrad-sig-set d

by (rule dgrad-sig-set-closed-sig-red-rtrancl)
with assms(1 ) ‹d (lp q − lp p) ≤ dgrad-max d› have ?mult p ′ ∈ dgrad-sig-set d

by (rule dgrad-sig-set-closed-monom-mult)

from assms(1 ) ‹G ⊆ dgrad-max-set d› obtain q ′ where q-red: (sig-red (≺t) (�)
G)∗∗ q q ′

and q ′-irred: ¬ is-sig-red (≺t) (�) G q ′ by (rule sig-irredE-dgrad-max-set)
from q-red have lt q ′ = lt q and lc q ′ = lc q

by (rule sig-red-regular-rtrancl-lt, rule sig-red-regular-rtrancl-lc)
hence q ′ 6= 0 using ‹lc q 6= 0 › by auto
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from assms(2 ) have is-sig-GB-upt d G (lt (?mult p ′)) by (simp only: ‹lt (?mult
p ′) = lt q›)

moreover from assms(1 ) G-sub assms(4 ) q-red have q ′ ∈ dgrad-sig-set d
by (rule dgrad-sig-set-closed-sig-red-rtrancl)

moreover note ‹?mult p ′ ∈ dgrad-sig-set d›
moreover have lt q ′ = lt (?mult p ′) by (simp only: ‹lt (?mult p ′) = lt q› ‹lt q ′

= lt q›)
moreover have lc q ′ = lc (?mult p ′) by (simp only: ‹lc (?mult p ′) = lc q› ‹lc q ′

= lc q›)
ultimately have rep-list q ′ = rep-list (?mult p ′) using q ′-irred mult-p ′-irred

by (rule sig-regular-reduced-unique)
with ‹rep-list (?mult p ′) = 0 › have rep-list q ′ = 0 by simp
with q-red show ?thesis by (rule sig-red-zeroI )

qed

lemma is-syz-sigI :
assumes s 6= 0 and lt s = u and s ∈ dgrad-sig-set d and rep-list s = 0
shows is-syz-sig d u
unfolding is-syz-sig-def using assms by blast

lemma is-syz-sigE :
assumes is-syz-sig d u
obtains r where r 6= 0 and lt r = u and r ∈ dgrad-sig-set d and rep-list r =

0
using assms unfolding is-syz-sig-def by blast

lemma is-syz-sig-adds:
assumes dickson-grading d and is-syz-sig d u and u addst v

and d (pp-of-term v) ≤ dgrad-max d
shows is-syz-sig d v

proof −
from assms(2 ) obtain s where s 6= 0 and lt s = u and s ∈ dgrad-sig-set d

and rep-list s = 0 by (rule is-syz-sigE)
from assms(3 ) obtain t where v: v = t ⊕ u by (rule adds-termE)
show ?thesis
proof (rule is-syz-sigI )
from ‹s 6= 0 › show monom-mult 1 t s 6= 0 by (simp add: monom-mult-eq-zero-iff )

next
from ‹s 6= 0 › show lt (monom-mult 1 t s) = v by (simp add: lt-monom-mult

v ‹lt s = u›)
next

from assms(4 ) have d (t + pp-of-term u) ≤ dgrad-max d by (simp add: v
term-simps)

with assms(1 ) have d t ≤ dgrad-max d by (simp add: dickson-gradingD1 )
with assms(1 ) show monom-mult 1 t s ∈ dgrad-sig-set d using ‹s ∈ dgrad-sig-set

d›
by (rule dgrad-sig-set-closed-monom-mult)

next
show rep-list (monom-mult 1 t s) = 0 by (simp add: ‹rep-list s = 0 › rep-list-monom-mult)
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qed
qed

lemma syzygy-crit:
assumes dickson-grading d and is-sig-GB-upt d G u and is-syz-sig d u

and p ∈ dgrad-sig-set d and lt p = u
shows sig-red-zero (≺t) G p

proof −
from assms(3 ) obtain s where s 6= 0 and lt s = u and s ∈ dgrad-sig-set d

and rep-list s = 0 by (rule is-syz-sigE)
note assms(1 )
moreover from assms(2 ) have is-sig-GB-upt d G (lt p) by (simp only: assms(5 ))
moreover note ‹s ∈ dgrad-sig-set d› assms(4 ) ‹s 6= 0 ›
moreover from rtranclp.rtrancl-refl ‹rep-list s = 0 › have sig-red-zero (≺t) G s

by (rule sig-red-zeroI )
moreover have lt s addst lt p by (simp only: assms(5 ) ‹lt s = u› adds-term-refl)
ultimately show ?thesis by (rule sig-red-zero-regularI-adds)

qed

lemma lemma-21 :
assumes dickson-grading d and is-sig-GB-upt d G (lt p) and p ∈ dgrad-sig-set

d and g ∈ G
and rep-list p 6= 0 and rep-list g 6= 0 and lt g addst lt p
and punit.lt (rep-list g) adds punit.lt (rep-list p)

shows is-sig-red (�t) (=) G p
proof −

let ?lp = punit.lt (rep-list p)
define s where s = ?lp − punit.lt (rep-list g)
from assms(8 ) have s: ?lp = s + punit.lt (rep-list g) by (simp add: s-def mi-

nus-plus)
from assms(7 ) obtain t where lt-p: lt p = t ⊕ lt g by (rule adds-termE)
show ?thesis
proof (cases s ⊕ lt g �t lt p)

case True
hence ?lp ⊕ lt g �t punit.lt (rep-list g) ⊕ lt p

by (simp add: s splus-assoc splus-left-commute[of s] splus-mono)
with assms(4 , 6 , 5 , 8 ) ord-term-lin.is-le-relI (2 ) show ?thesis

by (rule is-sig-red-top-addsI )
next

case False
hence lt p ≺t s ⊕ lt g by simp
hence t ≺ s by (simp add: lt-p ord-term-strict-canc-left)

hence t + punit.lt (rep-list g) ≺ s + punit.lt (rep-list g) by (rule plus-monotone-strict)
hence t + punit.lt (rep-list g) ≺ ?lp by (simp only: s)
from assms(5 ) have p 6= 0 by (auto simp: rep-list-zero)
hence lc p 6= 0 by (rule lc-not-0 )
from assms(6 ) have g 6= 0 by (auto simp: rep-list-zero)
hence lc g 6= 0 by (rule lc-not-0 )
with ‹lc p 6= 0 › have 1 : lc p / lc g 6= 0 by simp
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let ?g = monom-mult (lc p / lc g) t g
from 1 ‹g 6= 0 › have lt ?g = lt p unfolding lt-p by (rule lt-monom-mult)
from ‹lc g 6= 0 › have lc ?g = lc p by simp
have punit.lt (rep-list ?g) = t + punit.lt (rep-list g)
unfolding rep-list-monom-mult using 1 assms(6 ) by (rule punit.lt-monom-mult[simplified])
also have ... ≺ ?lp by fact
finally have punit.lt (rep-list ?g) ≺ ?lp .
hence lt-pg: punit.lt (rep-list (p − ?g)) = ?lp and rep-list p 6= rep-list ?g

by (auto simp: rep-list-minus punit.lt-minus-eqI-2 )
from this(2 ) have rep-list (p − ?g) 6= 0 and p − ?g 6= 0

by (auto simp: rep-list-minus rep-list-zero)

from assms(2 ) have G ⊆ dgrad-sig-set d by (rule is-sig-GB-uptD1 )
note assms(1 )
moreover have d t ≤ dgrad-max d
proof (rule le-trans)

have lp p = t + lp g by (simp add: lt-p term-simps)
with assms(1 ) show d t ≤ d (lp p) by (simp add: dickson-grading-adds-imp-le)
next

from assms(3 ) show d (lp p) ≤ dgrad-max d by (rule dgrad-sig-setD-lp)
qed
moreover from assms(4 ) ‹G ⊆ dgrad-sig-set d› have g ∈ dgrad-sig-set d ..

ultimately have ?g ∈ dgrad-sig-set d by (rule dgrad-sig-set-closed-monom-mult)

note assms(2 )
moreover from assms(3 ) ‹?g ∈ dgrad-sig-set d› have p − ?g ∈ dgrad-sig-set

d
by (rule dgrad-sig-set-closed-minus)

moreover from ‹p − ?g 6= 0 › ‹lt ?g = lt p› ‹lc ?g = lc p› have lt (p − ?g)
≺t lt p

by (rule lt-minus-lessI )
ultimately have sig-red-zero (�t) G (p − ?g)

by (rule is-sig-GB-uptD3 )
moreover note ‹rep-list (p − ?g) 6= 0 ›
moreover have (�t) = (�t) ∨ (�t) = (≺t) by simp
ultimately have is-sig-red (�t) (=) G (p − ?g) by (rule sig-red-zero-nonzero)
then obtain g1 where g1 ∈ G and rep-list g1 6= 0

and 2 : punit.lt (rep-list g1 ) adds punit.lt (rep-list (p − ?g))
and 3 : punit.lt (rep-list (p − ?g)) ⊕ lt g1 �t punit.lt (rep-list g1 ) ⊕ lt (p −

?g)
by (rule is-sig-red-top-addsE)

from ‹g1 ∈ G› ‹rep-list g1 6= 0 › assms(5 ) show ?thesis
proof (rule is-sig-red-top-addsI )

from 2 show punit.lt (rep-list g1 ) adds punit.lt (rep-list p) by (simp only:
lt-pg)

next
have ?lp ⊕ lt g1 = punit.lt (rep-list (p − ?g)) ⊕ lt g1 by (simp only: lt-pg)
also have ... �t punit.lt (rep-list g1 ) ⊕ lt (p − ?g) by (fact 3 )
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also from ‹lt (p − ?g) ≺t lt p› have ... ≺t punit.lt (rep-list g1 ) ⊕ lt p
by (rule splus-mono-strict)

finally show ?lp ⊕ lt g1 �t punit.lt (rep-list g1 ) ⊕ lt p by (rule ord-term-lin.less-imp-le)
qed simp

qed
qed

4.2.3 Rewrite Bases
definition is-rewrite-ord :: (( ′t × ( ′a ⇒0

′b)) ⇒ ( ′t × ( ′a ⇒0
′b)) ⇒ bool) ⇒ bool

where is-rewrite-ord rword ←→ (reflp rword ∧ transp rword ∧ (∀ a b. rword a b
∨ rword b a) ∧

(∀ a b. rword a b −→ rword b a −→ fst a = fst b) ∧
(∀ d G a b. dickson-grading d −→ is-sig-GB-upt d G (lt

b) −→
a ∈ G −→ b ∈ G −→ a 6= 0 −→ b 6= 0 −→ lt a

addst lt b −→
¬ is-sig-red (≺t) (=) G b −→ rword (spp-of a)

(spp-of b)))

definition is-canon-rewriter :: (( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ bool) ⇒
( ′t ⇒0

′b) set ⇒ ′t ⇒ ( ′t ⇒0
′b) ⇒ bool

where is-canon-rewriter rword A u p ←→
(p ∈ A ∧ p 6= 0 ∧ lt p addst u ∧ (∀ a∈A. a 6= 0 −→ lt a addst u

−→ rword (spp-of a) (spp-of p)))

definition is-RB-in :: ( ′a ⇒ nat) ⇒ (( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒
bool) ⇒ ( ′t ⇒0

′b) set ⇒ ′t ⇒ bool
where is-RB-in d rword G u ←→

((∃ g. is-canon-rewriter rword G u g ∧ ¬ is-sig-red (≺t) (=) G (monom-mult
1 (pp-of-term u − lp g) g)) ∨

is-syz-sig d u)

definition is-RB-upt :: ( ′a ⇒ nat) ⇒ (( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒
bool) ⇒ ( ′t ⇒0

′b) set ⇒ ′t ⇒ bool
where is-RB-upt d rword G u ←→

(G ⊆ dgrad-sig-set d ∧ (∀ v. v ≺t u −→ d (pp-of-term v) ≤ dgrad-max d
−→

component-of-term v < length fs −→ is-RB-in d
rword G v))

lemma is-rewrite-ordI :
assumes reflp rword and transp rword and

∧
a b. rword a b ∨ rword b a

and
∧

a b. rword a b =⇒ rword b a =⇒ fst a = fst b
and

∧
d G a b. dickson-grading d =⇒ is-sig-GB-upt d G (lt b) =⇒ a ∈ G =⇒

b ∈ G =⇒
a 6= 0 =⇒ b 6= 0 =⇒ lt a addst lt b =⇒ ¬ is-sig-red (≺t) (=) G b

=⇒ rword (spp-of a) (spp-of b)
shows is-rewrite-ord rword
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unfolding is-rewrite-ord-def using assms by blast

lemma is-rewrite-ordD1 : is-rewrite-ord rword =⇒ rword a a
by (simp add: is-rewrite-ord-def reflpD)

lemma is-rewrite-ordD2 : is-rewrite-ord rword =⇒ rword a b =⇒ rword b c =⇒
rword a c

by (auto simp: is-rewrite-ord-def dest: transpD)

lemma is-rewrite-ordD3 :
assumes is-rewrite-ord rword

and rword a b =⇒ thesis
and ¬ rword a b =⇒ rword b a =⇒ thesis

shows thesis
proof −

from assms(1 ) have disj: rword a b ∨ rword b a
by (simp add: is-rewrite-ord-def del: split-paired-All)

show ?thesis
proof (cases rword a b)

case True
thus ?thesis by (rule assms(2 ))

next
case False
moreover from this disj have rword b a by simp
ultimately show ?thesis by (rule assms(3 ))

qed
qed

lemma is-rewrite-ordD4 :
assumes is-rewrite-ord rword and rword a b and rword b a
shows fst a = fst b
using assms unfolding is-rewrite-ord-def by blast

lemma is-rewrite-ordD4 ′:
assumes is-rewrite-ord rword and rword (spp-of a) (spp-of b) and rword (spp-of

b) (spp-of a)
shows lt a = lt b

proof −
from assms have fst (spp-of a) = fst (spp-of b) by (rule is-rewrite-ordD4 )
thus ?thesis by (simp add: spp-of-def )

qed

lemma is-rewrite-ordD5 :
assumes is-rewrite-ord rword and dickson-grading d and is-sig-GB-upt d G (lt

b)
and a ∈ G and b ∈ G and a 6= 0 and b 6= 0 and lt a addst lt b
and ¬ is-sig-red (≺t) (=) G b

shows rword (spp-of a) (spp-of b)
using assms unfolding is-rewrite-ord-def by blast
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lemma is-canon-rewriterI :
assumes p ∈ A and p 6= 0 and lt p addst u

and
∧

a. a ∈ A =⇒ a 6= 0 =⇒ lt a addst u =⇒ rword (spp-of a) (spp-of p)
shows is-canon-rewriter rword A u p
unfolding is-canon-rewriter-def using assms by blast

lemma is-canon-rewriterD1 : is-canon-rewriter rword A u p =⇒ p ∈ A
by (simp add: is-canon-rewriter-def )

lemma is-canon-rewriterD2 : is-canon-rewriter rword A u p =⇒ p 6= 0
by (simp add: is-canon-rewriter-def )

lemma is-canon-rewriterD3 : is-canon-rewriter rword A u p =⇒ lt p addst u
by (simp add: is-canon-rewriter-def )

lemma is-canon-rewriterD4 :
is-canon-rewriter rword A u p =⇒ a ∈ A =⇒ a 6= 0 =⇒ lt a addst u =⇒ rword

(spp-of a) (spp-of p)
by (simp add: is-canon-rewriter-def )

lemmas is-canon-rewriterD = is-canon-rewriterD1 is-canon-rewriterD2 is-canon-rewriterD3
is-canon-rewriterD4

lemma is-rewrite-ord-finite-canon-rewriterE :
assumes is-rewrite-ord rword and finite A and a ∈ A and a 6= 0 and lt a addst

u
obtains p where is-canon-rewriter rword A u p

proof −
let ?A = {x. x ∈ A ∧ x 6= 0 ∧ lt x addst u}
let ?rel = λx y. strict rword (spp-of y) (spp-of x)
have finite ?A
proof (rule finite-subset)

show ?A ⊆ A by blast
qed fact
moreover have ?A 6= {}
proof

from assms(3 , 4 , 5 ) have a ∈ ?A by simp
also assume ?A = {}
finally show False by simp

qed
moreover have irreflp ?rel
proof −

from assms(1 ) have reflp rword by (simp add: is-rewrite-ord-def )
thus ?thesis by (simp add: reflp-def irreflp-def )

qed
moreover have transp ?rel
proof −

from assms(1 ) have transp rword by (simp add: is-rewrite-ord-def )

79



thus ?thesis by (auto simp: transp-def simp del: split-paired-All)
qed
ultimately obtain p where p ∈ ?A and ∗:

∧
b. ?rel b p =⇒ b /∈ ?A by (rule

finite-minimalE , blast)
from this(1 ) have p ∈ A and p 6= 0 and lt p addst u by simp-all
show ?thesis
proof (rule, rule is-canon-rewriterI )

fix q
assume q ∈ A and q 6= 0 and lt q addst u
hence q ∈ ?A by simp
with ∗ have ¬ ?rel q p by blast
hence disj: ¬ rword (spp-of p) (spp-of q) ∨ rword (spp-of q) (spp-of p) by simp
from assms(1 ) show rword (spp-of q) (spp-of p)
proof (rule is-rewrite-ordD3 )

assume ¬ rword (spp-of q) (spp-of p) and rword (spp-of p) (spp-of q)
with disj show ?thesis by simp

qed
qed fact+

qed

lemma is-rewrite-ord-canon-rewriterD1 :
assumes is-rewrite-ord rword and is-canon-rewriter rword A u p and is-canon-rewriter

rword A v q
and lt p addst v and lt q addst u

shows lt p = lt q
proof −

from assms(2 ) have p ∈ A and p 6= 0
and 1 :

∧
a. a ∈ A =⇒ a 6= 0 =⇒ lt a addst u =⇒ rword (spp-of a) (spp-of p)

by (rule is-canon-rewriterD)+
from assms(3 ) have q ∈ A and q 6= 0

and 2 :
∧

a. a ∈ A =⇒ a 6= 0 =⇒ lt a addst v =⇒ rword (spp-of a) (spp-of q)
by (rule is-canon-rewriterD)+

note assms(1 )
moreover from ‹p ∈ A› ‹p 6= 0 › assms(4 ) have rword (spp-of p) (spp-of q) by

(rule 2 )
moreover from ‹q ∈ A› ‹q 6= 0 › assms(5 ) have rword (spp-of q) (spp-of p) by

(rule 1 )
ultimately show ?thesis by (rule is-rewrite-ordD4 ′)

qed

corollary is-rewrite-ord-canon-rewriterD2 :
assumes is-rewrite-ord rword and is-canon-rewriter rword A u p and is-canon-rewriter

rword A u q
shows lt p = lt q
using assms

proof (rule is-rewrite-ord-canon-rewriterD1 )
from assms(2 ) show lt p addst u by (rule is-canon-rewriterD)

next
from assms(3 ) show lt q addst u by (rule is-canon-rewriterD)
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qed

lemma is-rewrite-ord-canon-rewriterD3 :
assumes is-rewrite-ord rword and dickson-grading d and is-canon-rewriter rword

A u p
and a ∈ A and a 6= 0 and lt a addst u and is-sig-GB-upt d A (lt a)
and lt p addst lt a and ¬ is-sig-red (≺t) (=) A a

shows lt p = lt a
proof −

note assms(1 )
moreover from assms(1 , 2 , 7 ) - assms(4 ) - assms(5 , 8 , 9 ) have rword (spp-of

p) (spp-of a)
proof (rule is-rewrite-ordD5 )

from assms(3 ) show p ∈ A and p 6= 0 by (rule is-canon-rewriterD)+
qed
moreover from assms(3 , 4 , 5 , 6 ) have rword (spp-of a) (spp-of p) by (rule

is-canon-rewriterD4 )
ultimately show ?thesis by (rule is-rewrite-ordD4 ′)

qed

lemma is-RB-inI1 :
assumes is-canon-rewriter rword G u g and ¬ is-sig-red (≺t) (=) G (monom-mult

1 (pp-of-term u − lp g) g)
shows is-RB-in d rword G u
unfolding is-RB-in-def using assms is-canon-rewriterD1 by blast

lemma is-RB-inI2 :
assumes is-syz-sig d u
shows is-RB-in d rword G u
unfolding is-RB-in-def Let-def using assms by blast

lemma is-RB-inE :
assumes is-RB-in d rword G u

and is-syz-sig d u =⇒ thesis
and

∧
g. ¬ is-syz-sig d u =⇒ is-canon-rewriter rword G u g =⇒
¬ is-sig-red (≺t) (=) G (monom-mult 1 (pp-of-term u − lp g) g) =⇒

thesis
shows thesis
using assms unfolding is-RB-in-def by blast

lemma is-RB-inD:
assumes dickson-grading d and G ⊆ dgrad-sig-set d and is-RB-in d rword G u

and ¬ is-syz-sig d u and d (pp-of-term u) ≤ dgrad-max d
and is-canon-rewriter rword G u g

shows rep-list g 6= 0
proof

assume a: rep-list g = 0
from assms(1 ) have is-syz-sig d u
proof (rule is-syz-sig-adds)
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show is-syz-sig d (lt g)
proof (rule is-syz-sigI )

from assms(6 ) show g 6= 0 by (rule is-canon-rewriterD2 )
next

from assms(6 ) have g ∈ G by (rule is-canon-rewriterD1 )
thus g ∈ dgrad-sig-set d using assms(2 ) ..

qed (fact refl, fact a)
next

from assms(6 ) show lt g addst u by (rule is-canon-rewriterD3 )
qed fact
with assms(4 ) show False ..

qed

lemma is-RB-uptI :
assumes G ⊆ dgrad-sig-set d

and
∧

v. v ≺t u =⇒ d (pp-of-term v) ≤ dgrad-max d =⇒ component-of-term
v < length fs =⇒

is-RB-in d canon G v
shows is-RB-upt d canon G u
unfolding is-RB-upt-def using assms by blast

lemma is-RB-uptD1 :
assumes is-RB-upt d canon G u
shows G ⊆ dgrad-sig-set d
using assms unfolding is-RB-upt-def by blast

lemma is-RB-uptD2 :
assumes is-RB-upt d canon G u and v ≺t u and d (pp-of-term v) ≤ dgrad-max

d
and component-of-term v < length fs

shows is-RB-in d canon G v
using assms unfolding is-RB-upt-def by blast

lemma is-RB-in-UnI :
assumes is-RB-in d rword G u and

∧
h. h ∈ H =⇒ u ≺t lt h

shows is-RB-in d rword (H ∪ G) u
using assms(1 )

proof (rule is-RB-inE)
assume is-syz-sig d u
thus is-RB-in d rword (H ∪ G) u by (rule is-RB-inI2 )

next
fix g ′

assume crw: is-canon-rewriter rword G u g ′

and irred: ¬ is-sig-red (≺t) (=) G (monom-mult 1 (pp-of-term u − lp g ′) g ′)
from crw have g ′ ∈ G and g ′ 6= 0 and lt g ′ addst u

and max:
∧

a. a ∈ G =⇒ a 6= 0 =⇒ lt a addst u =⇒ rword (spp-of a) (spp-of
g ′)

by (rule is-canon-rewriterD)+
show is-RB-in d rword (H ∪ G) u
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proof (rule is-RB-inI1 )
show is-canon-rewriter rword (H ∪ G) u g ′

proof (rule is-canon-rewriterI )
from ‹g ′ ∈ G› show g ′ ∈ H ∪ G by simp

next
fix a
assume a ∈ H ∪ G and a 6= 0 and lt a addst u
from this(1 ) show rword (spp-of a) (spp-of g ′)
proof

assume a ∈ H
with ‹lt a addst u› have lt a addst u by simp
hence lt a �t u by (rule ord-adds-term)
moreover from ‹a ∈ H › have u ≺t lt a by (rule assms(2 ))
ultimately show ?thesis by simp

next
assume a ∈ G
thus ?thesis using ‹a 6= 0 › ‹lt a addst u› by (rule max)

qed
qed fact+

next
show ¬ is-sig-red (≺t) (=) (H ∪ G) (monom-mult 1 (pp-of-term u − lp g ′) g ′)
(is ¬ is-sig-red - - - ?g)

proof
assume is-sig-red (≺t) (=) (H ∪ G) ?g
with irred have is-sig-red (≺t) (=) H ?g by (simp add: is-sig-red-Un del:

Un-insert-left)
then obtain h where h ∈ H and is-sig-red (≺t) (=) {h} ?g by (rule

is-sig-red-singletonI )
from this(2 ) have lt h ≺t lt ?g by (rule is-sig-red-regularD-lt)
also from ‹g ′ 6= 0 › ‹lt g ′ addst u› have ... = u

by (auto simp: lt-monom-mult adds-term-alt pp-of-term-splus)
finally have lt h ≺t u .
moreover from ‹h ∈ H › have u ≺t lt h by (rule assms(2 ))
ultimately show False by simp

qed
qed

qed

corollary is-RB-in-insertI :
assumes is-RB-in d rword G u and u ≺t lt g
shows is-RB-in d rword (insert g G) u

proof −
from assms(1 ) have is-RB-in d rword ({g} ∪ G) u
proof (rule is-RB-in-UnI )

fix h
assume h ∈ {g}
with assms(2 ) show u ≺t lt h by simp

qed
thus ?thesis by simp
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qed

corollary is-RB-upt-UnI :
assumes is-RB-upt d rword G u and H ⊆ dgrad-sig-set d and

∧
h. h ∈ H =⇒

u �t lt h
shows is-RB-upt d rword (H ∪ G) u

proof (rule is-RB-uptI )
from assms(1 ) have G ⊆ dgrad-sig-set d by (rule is-RB-uptD1 )
with assms(2 ) show H ∪ G ⊆ dgrad-sig-set d by (rule Un-least)

next
fix v
assume v ≺t u and d (pp-of-term v) ≤ dgrad-max d and component-of-term v

< length fs
with assms(1 ) have is-RB-in d rword G v by (rule is-RB-uptD2 )
moreover from ‹v ≺t u› assms(3 ) have

∧
h. h ∈ H =⇒ v ≺t lt h by (rule

ord-term-lin.less-le-trans)
ultimately show is-RB-in d rword (H ∪ G) v by (rule is-RB-in-UnI )

qed

corollary is-RB-upt-insertI :
assumes is-RB-upt d rword G u and g ∈ dgrad-sig-set d and u �t lt g
shows is-RB-upt d rword (insert g G) u

proof −
from assms(1 ) have is-RB-upt d rword ({g} ∪ G) u
proof (rule is-RB-upt-UnI )

from assms(2 ) show {g} ⊆ dgrad-sig-set d by simp
next

fix h
assume h ∈ {g}
with assms(3 ) show u �t lt h by simp

qed
thus ?thesis by simp

qed

lemma is-RB-upt-is-sig-GB-upt:
assumes dickson-grading d and is-RB-upt d rword G u
shows is-sig-GB-upt d G u

proof (rule ccontr)
let ?Q = {v. v ≺t u ∧ d (pp-of-term v) ≤ dgrad-max d ∧ component-of-term v

< length fs ∧ ¬ is-sig-GB-in d G v}
have Q-sub: pp-of-term ‘ ?Q ⊆ dgrad-set d (dgrad-max d) by blast
from assms(2 ) have G-sub: G ⊆ dgrad-sig-set d by (rule is-RB-uptD1 )
hence G ⊆ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
assume ¬ is-sig-GB-upt d G u
with G-sub obtain v ′ where v ′ ∈ ?Q unfolding is-sig-GB-upt-def by blast
with assms(1 ) obtain v where v ∈ ?Q and min:

∧
y. y ≺t v =⇒ y /∈ ?Q using

Q-sub
by (rule ord-term-minimum-dgrad-set, blast)

from ‹v ∈ ?Q› have v ≺t u and d (pp-of-term v) ≤ dgrad-max d and compo-
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nent-of-term v < length fs
and ¬ is-sig-GB-in d G v by simp-all

from assms(2 ) this(1 , 2 , 3 ) have is-RB-in d rword G v by (rule is-RB-uptD2 )
from ‹¬ is-sig-GB-in d G v› obtain r where lt r = v and r ∈ dgrad-sig-set d

and ¬ sig-red-zero (�t) G r
unfolding is-sig-GB-in-def by blast

from this(3 ) have rep-list r 6= 0 by (auto simp: sig-red-zero-def )
hence r 6= 0 by (auto simp: rep-list-zero)
hence lc r 6= 0 by (rule lc-not-0 )

from G-sub have is-sig-GB-upt d G v
proof (rule is-sig-GB-uptI )

fix w
assume dw: d (pp-of-term w) ≤ dgrad-max d and cp: component-of-term w <

length fs
assume w ≺t v
hence w /∈ ?Q by (rule min)
hence ¬ w ≺t u ∨ is-sig-GB-in d G w by (simp add: dw cp)
thus is-sig-GB-in d G w
proof

assume ¬ w ≺t u
moreover from ‹w ≺t v› ‹v ≺t u› have w ≺t u by (rule ord-term-lin.less-trans)

ultimately show ?thesis ..
qed

qed

from ‹is-RB-in d rword G v› have sig-red-zero (�t) G r
proof (rule is-RB-inE)

assume is-syz-sig d v
have sig-red-zero (≺t) G r by (rule syzygy-crit, fact+)
thus ?thesis by (rule sig-red-zero-sing-regI )

next
fix g
assume a: ¬ is-sig-red (≺t) (=) G (monom-mult 1 (pp-of-term v − lp g) g)
assume is-canon-rewriter rword G v g
hence g ∈ G and g 6= 0 and lt g addst v by (rule is-canon-rewriterD)+
assume ¬ is-syz-sig d v
from ‹g ∈ G› G-sub have g ∈ dgrad-sig-set d ..
from ‹g 6= 0 › have lc g 6= 0 by (rule lc-not-0 )
with ‹lc r 6= 0 › have lc r / lc g 6= 0 by simp
from ‹lt g addst v› have lt g addst lt r by (simp only: ‹lt r = v›)
hence eq1 : (lp r − lp g) ⊕ lt g = lt r by (metis add-implies-diff adds-termE

pp-of-term-splus)

let ?h = monom-mult (lc r / lc g) (lp r − lp g) g
from ‹lc g 6= 0 › ‹lc r 6= 0 › ‹g 6= 0 › have ?h 6= 0 by (simp add: monom-mult-eq-zero-iff )
have h-irred: ¬ is-sig-red (≺t) (=) G ?h
proof

assume is-sig-red (≺t) (=) G ?h
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moreover from ‹lc g 6= 0 › ‹lc r 6= 0 › have lc g / lc r 6= 0 by simp
ultimately have is-sig-red (≺t) (=) G (monom-mult (lc g / lc r) 0 ?h) by

(rule is-sig-red-monom-mult)
with ‹lc g 6= 0 › ‹lc r 6= 0 › have is-sig-red (≺t) (=) G (monom-mult 1

(pp-of-term v − lp g) g)
by (simp add: monom-mult-assoc ‹lt r = v›)

with a show False ..
qed
from ‹lc r / lc g 6= 0 › ‹g 6= 0 › have lt ?h = lt r by (simp add: lt-monom-mult

eq1 )
hence lt ?h = v by (simp only: ‹lt r = v›)
from ‹lc g 6= 0 › have lc ?h = lc r by simp
from assms(1 ) - ‹g ∈ dgrad-sig-set d› have ?h ∈ dgrad-sig-set d
proof (rule dgrad-sig-set-closed-monom-mult)

from ‹lt g addst lt r› have lp g adds lp r by (simp add: adds-term-def )
with assms(1 ) have d (lp r − lp g) ≤ d (lp r) by (rule dickson-grading-minus)
also from ‹r ∈ dgrad-sig-set d› have ... ≤ dgrad-max d by (rule dgrad-sig-setD-lp)

finally show d (lp r − lp g) ≤ dgrad-max d .
qed
have rep-list ?h 6= 0
proof

assume rep-list ?h = 0
with ‹?h 6= 0 › ‹lt ?h = v› ‹?h ∈ dgrad-sig-set d› have is-syz-sig d v by (rule

is-syz-sigI )
with ‹¬ is-syz-sig d v› show False ..

qed
hence rep-list g 6= 0 by (simp add: rep-list-monom-mult punit.monom-mult-eq-zero-iff )
hence punit.lc (rep-list g) 6= 0 by (rule punit.lc-not-0 )
from assms(1 ) ‹G ⊆ dgrad-max-set d› obtain s where s-red: (sig-red (≺t)

(�) G)∗∗ r s
and s-irred: ¬ is-sig-red (≺t) (�) G s by (rule sig-irredE-dgrad-max-set)

from s-red have s-red ′: (sig-red (�t) (�) G)∗∗ r s by (rule sig-red-rtrancl-sing-regI )
have rep-list s 6= 0
proof

assume rep-list s = 0
with s-red ′ have sig-red-zero (�t) G r by (rule sig-red-zeroI )
with ‹¬ sig-red-zero (�t) G r› show False ..

qed
from assms(1 ) G-sub ‹r ∈ dgrad-sig-set d› s-red have s ∈ dgrad-sig-set d

by (rule dgrad-sig-set-closed-sig-red-rtrancl)
from s-red have lt s = lt r and lc s = lc r

by (rule sig-red-regular-rtrancl-lt, rule sig-red-regular-rtrancl-lc)
hence lt ?h = lt s and lc ?h = lc s and s 6= 0

using ‹lc r 6= 0 › by (auto simp: ‹lt ?h = lt r› ‹lc ?h = lc r› simp del:
lc-monom-mult)

from s-irred have ¬ is-sig-red (≺t) (=) G s by (simp add: is-sig-red-top-tail-cases)
from ‹is-sig-GB-upt d G v› have is-sig-GB-upt d G (lt s) by (simp only: ‹lt s

= lt r› ‹lt r = v›)
have punit.lt (rep-list ?h) = punit.lt (rep-list s)
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by (rule sig-regular-top-reduced-lt-unique, fact+)
hence eq2 : lp r − lp g + punit.lt (rep-list g) = punit.lt (rep-list s)

using ‹lc r / lc g 6= 0 › ‹rep-list g 6= 0 › by (simp add: rep-list-monom-mult
punit.lt-monom-mult)

have punit.lc (rep-list ?h) = punit.lc (rep-list s)
by (rule sig-regular-top-reduced-lc-unique, fact+)

hence eq3 : lc r / lc g = punit.lc (rep-list s) / punit.lc (rep-list g)
using ‹punit.lc (rep-list g) 6= 0 › by (simp add: rep-list-monom-mult field-simps)
have sig-red-single (=) (=) s (s − ?h) g (lp r − lp g)

by (rule sig-red-singleI , auto simp: eq1 eq2 eq3 punit.lc-def [symmetric] ‹lt s
= lt r›

‹rep-list g 6= 0 › ‹rep-list s 6= 0 › intro!: punit.lt-in-keys)
with ‹g ∈ G› have sig-red (=) (=) G s (s − ?h) unfolding sig-red-def by

blast
hence sig-red (�t) (�) G s (s − ?h) by (auto dest: sig-red-sing-regI sig-red-top-tailI )
with s-red ′ have r-red: (sig-red (�t) (�) G)∗∗ r (s − ?h) ..
show ?thesis
proof (cases s − ?h = 0 )

case True
hence rep-list (s − ?h) = 0 by (simp only: rep-list-zero)
with r-red show ?thesis by (rule sig-red-zeroI )

next
case False
note ‹is-sig-GB-upt d G (lt s)›
moreover from ‹s ∈ dgrad-sig-set d› ‹?h ∈ dgrad-sig-set d› have s − ?h ∈

dgrad-sig-set d
by (rule dgrad-sig-set-closed-minus)

moreover from False ‹lt ?h = lt s› ‹lc ?h = lc s› have lt (s − ?h) ≺t lt s
by (rule lt-minus-lessI )

ultimately have sig-red-zero (�t) G (s − ?h) by (rule is-sig-GB-uptD3 )
then obtain s ′ where (sig-red (�t) (�) G)∗∗ (s − ?h) s ′ and rep-list s ′ = 0

by (rule sig-red-zeroE)
from r-red this(1 ) have (sig-red (�t) (�) G)∗∗ r s ′ by simp
thus ?thesis using ‹rep-list s ′ = 0 › by (rule sig-red-zeroI )

qed
qed
with ‹¬ sig-red-zero (�t) G r› show False ..

qed

corollary is-RB-upt-is-syz-sigD:
assumes dickson-grading d and is-RB-upt d rword G u

and is-syz-sig d u and p ∈ dgrad-sig-set d and lt p = u
shows sig-red-zero (≺t) G p

proof −
note assms(1 )
moreover from assms(1 , 2 ) have is-sig-GB-upt d G u by (rule is-RB-upt-is-sig-GB-upt)
ultimately show ?thesis using assms(3 , 4 , 5 ) by (rule syzygy-crit)

qed

87



4.2.4 S-Pairs
definition spair :: ( ′t ⇒0

′b) ⇒ ( ′t ⇒0
′b) ⇒ ( ′t ⇒0

′b)
where spair p q = (let t1 = punit.lt (rep-list p); t2 = punit.lt (rep-list q); l =

lcs t1 t2 in
(monom-mult (1 / punit.lc (rep-list p)) (l − t1 ) p) −
(monom-mult (1 / punit.lc (rep-list q)) (l − t2 ) q))

definition is-regular-spair :: ( ′t ⇒0
′b) ⇒ ( ′t ⇒0

′b) ⇒ bool
where is-regular-spair p q ←→

(rep-list p 6= 0 ∧ rep-list q 6= 0 ∧
(let t1 = punit.lt (rep-list p); t2 = punit.lt (rep-list q); l = lcs t1

t2 in
(l − t1 ) ⊕ lt p 6= (l − t2 ) ⊕ lt q))

lemma rep-list-spair : rep-list (spair p q) = punit.spoly (rep-list p) (rep-list q)
by (simp add: spair-def punit.spoly-def Let-def rep-list-minus rep-list-monom-mult

punit.lc-def )

lemma spair-comm: spair p q = − spair q p
by (simp add: spair-def Let-def lcs-comm)

lemma dgrad-sig-set-closed-spair :
assumes dickson-grading d and p ∈ dgrad-sig-set d and q ∈ dgrad-sig-set d
shows spair p q ∈ dgrad-sig-set d

proof −
define t1 where t1 = punit.lt (rep-list p)
define t2 where t2 = punit.lt (rep-list q)
let ?l = lcs t1 t2
have d t1 ≤ dgrad-max d
proof (cases rep-list p = 0 )

case True
show ?thesis by (simp add: t1-def True dgrad-max-0 )

next
case False
from assms(2 ) have p ∈ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
with assms(1 ) have rep-list p ∈ punit-dgrad-max-set d by (rule dgrad-max-2 )

thus ?thesis unfolding t1-def using False by (rule punit.dgrad-p-setD-lp[simplified])
qed
moreover have d t2 ≤ dgrad-max d
proof (cases rep-list q = 0 )

case True
show ?thesis by (simp add: t2-def True dgrad-max-0 )

next
case False
from assms(3 ) have q ∈ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
with assms(1 ) have rep-list q ∈ punit-dgrad-max-set d by (rule dgrad-max-2 )

thus ?thesis unfolding t2-def using False by (rule punit.dgrad-p-setD-lp[simplified])
qed
ultimately have ord-class.max (d t1 ) (d t2 ) ≤ dgrad-max d by simp
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moreover from assms(1 ) have d ?l ≤ ord-class.max (d t1 ) (d t2 ) by (rule
dickson-grading-lcs)

ultimately have ∗: d ?l ≤ dgrad-max d by auto
thm dickson-grading-minus
show ?thesis
proof (simp add: spair-def Let-def t1-def [symmetric] t2-def [symmetric],

intro dgrad-sig-set-closed-minus dgrad-sig-set-closed-monom-mult[OF assms(1 )])
from assms(1 ) adds-lcs have d (?l − t1 ) ≤ d ?l by (rule dickson-grading-minus)
thus d (?l − t1 ) ≤ dgrad-max d using ∗ by (rule le-trans)

next
from assms(1 ) adds-lcs-2 have d (?l − t2 ) ≤ d ?l by (rule dickson-grading-minus)
thus d (?l − t2 ) ≤ dgrad-max d using ∗ by (rule le-trans)

qed fact+
qed

lemma lt-spair :
assumes rep-list p 6= 0 and punit.lt (rep-list p) ⊕ lt q ≺t punit.lt (rep-list q) ⊕

lt p
shows lt (spair p q) = (lcs (punit.lt (rep-list p)) (punit.lt (rep-list q)) − punit.lt

(rep-list p)) ⊕ lt p
proof −

define l where l = lcs (punit.lt (rep-list p)) (punit.lt (rep-list q))
have 1 : punit.lt (rep-list p) adds l and 2 : punit.lt (rep-list q) adds l

unfolding l-def by (rule adds-lcs, rule adds-lcs-2 )
have eq1 : spair p q = (monom-mult (1 / punit.lc (rep-list p)) (l − punit.lt

(rep-list p)) p) +
(monom-mult (− 1 / punit.lc (rep-list q)) (l − punit.lt (rep-list

q)) q)
by (simp add: spair-def Let-def l-def monom-mult-uminus-left)

from assms(1 ) have punit.lc (rep-list p) 6= 0 by (rule punit.lc-not-0 )
hence 1 / punit.lc (rep-list p) 6= 0 by simp
moreover from assms(1 ) have p 6= 0 by (auto simp: rep-list-zero)
ultimately have eq2 : lt (monom-mult (1 / punit.lc (rep-list p)) (l − punit.lt

(rep-list p)) p) =
(l − punit.lt (rep-list p)) ⊕ lt p

by (rule lt-monom-mult)
have lt (monom-mult (− 1 / punit.lc (rep-list q)) (l − punit.lt (rep-list q)) q)
�t

(l − punit.lt (rep-list q)) ⊕ lt q
by (fact lt-monom-mult-le)

also from assms(2 ) have ... ≺t (l − punit.lt (rep-list p)) ⊕ lt p
by (simp add: term-is-le-rel-minus-minus[OF - 2 1 ])

finally show ?thesis unfolding eq2 [symmetric] eq1 l-def [symmetric] by (rule
lt-plus-eqI-2 )
qed

lemma lt-spair ′:
assumes rep-list p 6= 0 and a + punit.lt (rep-list p) = b + punit.lt (rep-list q)

and b ⊕ lt q ≺t a ⊕ lt p
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shows lt (spair p q) = (a − gcs a b) ⊕ lt p
proof −

from assms(3 ) have punit.lt (rep-list p) ⊕ (b ⊕ lt q) ≺t punit.lt (rep-list p) ⊕
(a ⊕ lt p)

by (fact splus-mono-strict)
hence (b + punit.lt (rep-list p)) ⊕ lt q ≺t (b + punit.lt (rep-list q)) ⊕ lt p

by (simp only: splus-assoc[symmetric] add.commute assms(2 ))
hence punit.lt (rep-list p) ⊕ lt q ≺t punit.lt (rep-list q) ⊕ lt p

by (simp only: splus-assoc ord-term-strict-canc)
with assms(1 )
have lt (spair p q) = (lcs (punit.lt (rep-list p)) (punit.lt (rep-list q)) − punit.lt

(rep-list p)) ⊕ lt p
by (rule lt-spair)

with assms(2 ) show ?thesis by (simp add: lcs-minus-1 )
qed

lemma lt-rep-list-spair :
assumes rep-list p 6= 0 and rep-list q 6= 0 and rep-list (spair p q) 6= 0

and a + punit.lt (rep-list p) = b + punit.lt (rep-list q)
shows punit.lt (rep-list (spair p q)) ≺ (a − gcs a b) + punit.lt (rep-list p)

proof −
from assms(1 ) have 1 : punit.lc (rep-list p) 6= 0 by (rule punit.lc-not-0 )
from assms(2 ) have 2 : punit.lc (rep-list q) 6= 0 by (rule punit.lc-not-0 )
define l where l = lcs (punit.lt (rep-list p)) (punit.lt (rep-list q))
have eq: rep-list (spair p q) = (punit.monom-mult (1 / punit.lc (rep-list p)) (l
− punit.lt (rep-list p)) (rep-list p)) +

(punit.monom-mult (− 1 / punit.lc (rep-list q)) (l −
punit.lt (rep-list q)) (rep-list q))

(is - = ?a + ?b)
by (simp add: spair-def Let-def rep-list-minus rep-list-monom-mult punit.monom-mult-uminus-left

l-def )
have ?a + ?b 6= 0 unfolding eq[symmetric] by (fact assms(3 ))
moreover from 1 2 assms(1 , 2 ) have punit.lt ?b = punit.lt ?a

by (simp add: lp-monom-mult l-def minus-plus adds-lcs adds-lcs-2 )
moreover have punit.lc ?b = − punit.lc ?a by (simp add: 1 2 )
ultimately have punit.lt (rep-list (spair p q)) ≺ punit.lt ?a unfolding eq by

(rule punit.lt-plus-lessI )
also from 1 assms(1 ) have ... = (l − punit.lt (rep-list p)) + punit.lt (rep-list p)

by (simp add: lp-monom-mult)
also have ... = l by (simp add: l-def minus-plus adds-lcs)
also have ... = (a + punit.lt (rep-list p)) − gcs a b unfolding l-def using

assms(4 ) by (rule lcs-alt-1 )
also have ... = (a − gcs a b) + punit.lt (rep-list p) by (simp add: minus-plus

gcs-adds)
finally show ?thesis .

qed

lemma is-regular-spair-sym: is-regular-spair p q =⇒ is-regular-spair q p
by (auto simp: is-regular-spair-def Let-def lcs-comm)
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lemma is-regular-spairI :
assumes rep-list p 6= 0 and rep-list q 6= 0
and punit.lt (rep-list q) ⊕ lt p 6= punit.lt (rep-list p) ⊕ lt q
shows is-regular-spair p q

proof −
have ∗: (lcs (punit.lt (rep-list p)) (punit.lt (rep-list q)) − punit.lt (rep-list p)) ⊕

lt p 6=
(lcs (punit.lt (rep-list p)) (punit.lt (rep-list q)) − punit.lt (rep-list q)) ⊕

lt q
(is ?l 6= ?r)

proof
assume ?l = ?r
hence punit.lt (rep-list q) ⊕ lt p = punit.lt (rep-list p) ⊕ lt q

by (simp add: term-is-le-rel-minus-minus adds-lcs adds-lcs-2 )
with assms(3 ) show False ..

qed
with assms(1 , 2 ) show ?thesis by (simp add: is-regular-spair-def )

qed

lemma is-regular-spairI ′:
assumes rep-list p 6= 0 and rep-list q 6= 0
and a + punit.lt (rep-list p) = b + punit.lt (rep-list q) and a ⊕ lt p 6= b ⊕ lt q
shows is-regular-spair p q

proof −
have punit.lt (rep-list q) ⊕ lt p 6= punit.lt (rep-list p) ⊕ lt q
proof

assume punit.lt (rep-list q) ⊕ lt p = punit.lt (rep-list p) ⊕ lt q
hence a ⊕ (punit.lt (rep-list q) ⊕ lt p) = a ⊕ (punit.lt (rep-list p) ⊕ lt q) by

(simp only:)
hence (a + punit.lt (rep-list q)) ⊕ lt p = (b + punit.lt (rep-list q)) ⊕ lt q

by (simp add: splus-assoc[symmetric] assms(3 ))
hence punit.lt (rep-list q) ⊕ (a ⊕ lt p) = punit.lt (rep-list q) ⊕ (b ⊕ lt q)

by (simp only: add.commute[of - punit.lt (rep-list q)] splus-assoc)
hence a ⊕ lt p = b ⊕ lt q by (simp only: splus-left-canc)
with assms(4 ) show False ..

qed
with assms(1 , 2 ) show ?thesis by (rule is-regular-spairI )

qed

lemma is-regular-spairD1 : is-regular-spair p q =⇒ rep-list p 6= 0
by (simp add: is-regular-spair-def )

lemma is-regular-spairD2 : is-regular-spair p q =⇒ rep-list q 6= 0
by (simp add: is-regular-spair-def )

lemma is-regular-spairD3 :
fixes p q
defines t1 ≡ punit.lt (rep-list p)
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defines t2 ≡ punit.lt (rep-list q)
assumes is-regular-spair p q
shows t2 ⊕ lt p 6= t1 ⊕ lt q (is ?thesis1 )

and lt (monom-mult (1 / punit.lc (rep-list p)) (lcs t1 t2 − t1 ) p) 6=
lt (monom-mult (1 / punit.lc (rep-list q)) (lcs t1 t2 − t2 ) q) (is ?l 6= ?r)

proof −
from assms(3 ) have rep-list p 6= 0 by (rule is-regular-spairD1 )
hence punit.lc (rep-list p) 6= 0 and p 6= 0 by (auto simp: rep-list-zero punit.lc-eq-zero-iff )
from assms(3 ) have rep-list q 6= 0 by (rule is-regular-spairD2 )
hence punit.lc (rep-list q) 6= 0 and q 6= 0 by (auto simp: rep-list-zero punit.lc-eq-zero-iff )

have ?l = (lcs t1 t2 − t1 ) ⊕ lt p
using ‹punit.lc (rep-list p) 6= 0 › ‹p 6= 0 › by (simp add: lt-monom-mult)

also from assms(3 ) have ∗: ... 6= (lcs t1 t2 − t2 ) ⊕ lt q
by (simp add: is-regular-spair-def t1-def t2-def Let-def )

also have (lcs t1 t2 − t2 ) ⊕ lt q = ?r
using ‹punit.lc (rep-list q) 6= 0 › ‹q 6= 0 › by (simp add: lt-monom-mult)

finally show ?l 6= ?r .

show ?thesis1
proof

assume t2 ⊕ lt p = t1 ⊕ lt q
hence (lcs t1 t2 − t1 ) ⊕ lt p = (lcs t1 t2 − t2 ) ⊕ lt q

by (simp add: term-is-le-rel-minus-minus adds-lcs adds-lcs-2 )
with ∗ show False ..

qed
qed

lemma is-regular-spair-nonzero: is-regular-spair p q =⇒ spair p q 6= 0
by (auto simp: spair-def Let-def dest: is-regular-spairD3 )

lemma is-regular-spair-lt:
assumes is-regular-spair p q
shows lt (spair p q) = ord-term-lin.max

((lcs (punit.lt (rep-list p)) (punit.lt (rep-list q)) − punit.lt (rep-list p))
⊕ lt p)

((lcs (punit.lt (rep-list p)) (punit.lt (rep-list q)) − punit.lt (rep-list q))
⊕ lt q)
proof −

let ?t1 = punit.lt (rep-list p)
let ?t2 = punit.lt (rep-list q)
let ?l = lcs ?t1 ?t2
show ?thesis
proof (rule ord-term-lin.linorder-cases)

assume a: ?t2 ⊕ lt p ≺t ?t1 ⊕ lt q
hence (?l − ?t1 ) ⊕ lt p ≺t (?l − ?t2 ) ⊕ lt q

by (simp add: term-is-le-rel-minus-minus adds-lcs adds-lcs-2 )
hence le: (?l − ?t1 ) ⊕ lt p �t (?l − ?t2 ) ⊕ lt q by (rule ord-term-lin.less-imp-le)
from assms have rep-list q 6= 0 by (rule is-regular-spairD2 )
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have lt (spair p q) = lt (spair q p) by (simp add: spair-comm[of p])
also from ‹rep-list q 6= 0 › a have ... = (lcs ?t2 ?t1 − ?t2 ) ⊕ lt q by (rule

lt-spair)
also have ... = (?l − ?t2 ) ⊕ lt q by (simp only: lcs-comm)
finally show ?thesis using le by (simp add: ord-term-lin.max-def )

next
assume a: ?t1 ⊕ lt q ≺t ?t2 ⊕ lt p
hence (?l − ?t2 ) ⊕ lt q ≺t (?l − ?t1 ) ⊕ lt p

by (simp add: term-is-le-rel-minus-minus adds-lcs adds-lcs-2 )
hence le: ¬ ((?l − ?t1 ) ⊕ lt p �t (?l − ?t2 ) ⊕ lt q) by simp
from assms have rep-list p 6= 0 by (rule is-regular-spairD1 )
hence lt (spair p q) = (lcs ?t1 ?t2 − ?t1 ) ⊕ lt p using a by (rule lt-spair)
thus ?thesis using le by (simp add: ord-term-lin.max-def )

next
from assms have ?t2 ⊕ lt p 6= ?t1 ⊕ lt q by (rule is-regular-spairD3 )
moreover assume ?t2 ⊕ lt p = ?t1 ⊕ lt q
ultimately show ?thesis ..

qed
qed

lemma is-regular-spair-lt-ge-1 :
assumes is-regular-spair p q
shows lt p �t lt (spair p q)

proof −
have lt p = 0 ⊕ lt p by (simp only: term-simps)
also from zero-min have ... �t (lcs (punit.lt (rep-list p)) (punit.lt (rep-list q))
− punit.lt (rep-list p)) ⊕ lt p

by (rule splus-mono-left)
also have ... �t ord-term-lin.max

((lcs (punit.lt (rep-list p)) (punit.lt (rep-list q)) − punit.lt (rep-list p))
⊕ lt p)

((lcs (punit.lt (rep-list p)) (punit.lt (rep-list q)) − punit.lt (rep-list q))
⊕ lt q)

by (rule ord-term-lin.max.cobounded1 )
also from assms have ... = lt (spair p q) by (simp only: is-regular-spair-lt)
finally show ?thesis .

qed

corollary is-regular-spair-lt-ge-2 :
assumes is-regular-spair p q
shows lt q �t lt (spair p q)

proof −
from assms have is-regular-spair q p by (rule is-regular-spair-sym)
hence lt q �t lt (spair q p) by (rule is-regular-spair-lt-ge-1 )
also have ... = lt (spair p q) by (simp add: spair-comm[of q])
finally show ?thesis .

qed

lemma is-regular-spair-component-lt-cases:
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assumes is-regular-spair p q
shows component-of-term (lt (spair p q)) = component-of-term (lt p) ∨

component-of-term (lt (spair p q)) = component-of-term (lt q)
proof (rule ord-term-lin.linorder-cases)

from assms have rep-list q 6= 0 by (rule is-regular-spairD2 )
moreover assume punit.lt (rep-list q) ⊕ lt p ≺t punit.lt (rep-list p) ⊕ lt q
ultimately have lt (spair q p) = (lcs (punit.lt (rep-list q)) (punit.lt (rep-list p))
− punit.lt (rep-list q)) ⊕ lt q

by (rule lt-spair)
thus ?thesis by (simp add: spair-comm[of p] term-simps)

next
from assms have rep-list p 6= 0 by (rule is-regular-spairD1 )
moreover assume punit.lt (rep-list p) ⊕ lt q ≺t punit.lt (rep-list q) ⊕ lt p
ultimately have lt (spair p q) = (lcs (punit.lt (rep-list p)) (punit.lt (rep-list q))
− punit.lt (rep-list p)) ⊕ lt p

by (rule lt-spair)
thus ?thesis by (simp add: term-simps)

next
from assms have punit.lt (rep-list q) ⊕ lt p 6= punit.lt (rep-list p) ⊕ lt q

by (rule is-regular-spairD3 )
moreover assume punit.lt (rep-list q) ⊕ lt p = punit.lt (rep-list p) ⊕ lt q
ultimately show ?thesis ..

qed

lemma lemma-9 :
assumes dickson-grading d and is-rewrite-ord rword and is-RB-upt d rword G

u
and inj-on lt G and ¬ is-syz-sig d u and is-canon-rewriter rword G u g1 and

h ∈ G
and is-sig-red (≺t) (=) {h} (monom-mult 1 (pp-of-term u − lp g1 ) g1 )
and d (pp-of-term u) ≤ dgrad-max d

shows lcs (punit.lt (rep-list g1 )) (punit.lt (rep-list h)) − punit.lt (rep-list g1 ) =
pp-of-term u − lp g1 (is ?thesis1 )

and lcs (punit.lt (rep-list g1 )) (punit.lt (rep-list h)) − punit.lt (rep-list h) =
((pp-of-term u − lp g1 ) + punit.lt (rep-list g1 )) − punit.lt (rep-list h)

(is ?thesis2 )
and is-regular-spair g1 h (is ?thesis3 )
and lt (spair g1 h) = u (is ?thesis4 )

proof −
from assms(8 ) have rep-list (monom-mult 1 (pp-of-term u − lp g1 ) g1 ) 6= 0

using is-sig-red-top-addsE by fastforce
hence rep-list g1 6= 0 by (simp add: rep-list-monom-mult punit.monom-mult-eq-zero-iff )
hence g1 6= 0 by (auto simp: rep-list-zero)
from assms(6 ) have g1 ∈ G and lt g1 addst u by (rule is-canon-rewriterD)+
from assms(3 ) have G ⊆ dgrad-sig-set d by (rule is-RB-uptD1 )
with ‹g1 ∈ G› have g1 ∈ dgrad-sig-set d ..
hence component-of-term (lt g1 ) < length fs using ‹g1 6= 0 › by (rule dgrad-sig-setD-lt)
with ‹lt g1 addst u› have component-of-term u < length fs by (simp add:

adds-term-def )

94



from ‹lt g1 addst u› obtain a where u: u = a ⊕ lt g1 by (rule adds-termE)
hence a: a = pp-of-term u − lp g1 by (simp add: term-simps)
from assms(8 ) have is-sig-red (≺t) (=) {h} (monom-mult 1 a g1 ) by (simp

only: a)
hence rep-list h 6= 0 and rep-list (monom-mult 1 a g1 ) 6= 0 and

2 : punit.lt (rep-list h) adds punit.lt (rep-list (monom-mult 1 a g1 )) and
3 : punit.lt (rep-list (monom-mult 1 a g1 )) ⊕ lt h ≺t punit.lt (rep-list h) ⊕ lt

(monom-mult 1 a g1 )
by (auto elim: is-sig-red-top-addsE)

from this(2 ) have rep-list g1 6= 0 by (simp add: rep-list-monom-mult punit.monom-mult-eq-zero-iff )
hence g1 6= 0 by (auto simp: rep-list-zero)
from ‹rep-list h 6= 0 › have h 6= 0 by (auto simp: rep-list-zero)
from 2 ‹rep-list g1 6= 0 › have punit.lt (rep-list h) adds a + punit.lt (rep-list g1 )

by (simp add: rep-list-monom-mult punit.lt-monom-mult)
then obtain b where eq1 : a + punit.lt (rep-list g1 ) = b + punit.lt (rep-list h)

by (auto elim: addsE simp: add.commute)
hence b: b = ((pp-of-term u − lp g1 ) + punit.lt (rep-list g1 )) − punit.lt (rep-list

h)
by (simp add: a)

define g where g = gcs a b
have g = 0
proof (rule ccontr)

assume g 6= 0
have g adds a unfolding g-def by (fact gcs-adds)
also have ... addsp u unfolding u by (fact adds-pp-triv)
finally obtain v where u2 : u = g ⊕ v by (rule adds-ppE)
hence v: v = u 	 g by (simp add: term-simps)
from u2 have v addst u by (rule adds-termI )
hence v �t u by (rule ord-adds-term)
moreover have v 6= u
proof

assume v = u
hence g ⊕ v = 0 ⊕ v by (simp add: u2 term-simps)
hence g = 0 by (simp only: splus-right-canc)
with ‹g 6= 0 › show False ..

qed
ultimately have v ≺t u by simp
note assms(3 ) ‹v ≺t u›
moreover have d (pp-of-term v) ≤ dgrad-max d
proof (rule le-trans)

from assms(1 ) show d (pp-of-term v) ≤ d (pp-of-term u)
by (simp add: u2 term-simps dickson-gradingD1 )

qed fact
moreover from ‹component-of-term u < length fs› have component-of-term v

< length fs
by (simp only: v term-simps)

ultimately have is-RB-in d rword G v by (rule is-RB-uptD2 )
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thus False
proof (rule is-RB-inE)

assume is-syz-sig d v
with assms(1 ) have is-syz-sig d u using ‹v addst u› assms(9 ) by (rule

is-syz-sig-adds)
with assms(5 ) show False ..

next
fix g2
assume ∗: ¬ is-sig-red (≺t) (=) G (monom-mult 1 (pp-of-term v − lp g2 )

g2 )
assume is-canon-rewriter rword G v g2
hence g2 ∈ G and g2 6= 0 and lt g2 addst v by (rule is-canon-rewriterD)+
assume ¬ is-syz-sig d v
note assms(2 ) ‹is-canon-rewriter rword G v g2 › assms(6 )

moreover from ‹lt g2 addst v› ‹v addst u› have lt g2 addst u by (rule
adds-term-trans)

moreover from ‹g adds a› have lt g1 addst v by (simp add: v u mi-
nus-splus[symmetric] adds-termI )

ultimately have lt g2 = lt g1 by (rule is-rewrite-ord-canon-rewriterD1 )
with assms(4 ) have g2 = g1 using ‹g2 ∈ G› ‹g1 ∈ G› by (rule inj-onD)

have pp-of-term v − lp g1 = a − g by (simp add: u v term-simps diff-diff-add)

have is-sig-red (≺t) (=) G (monom-mult 1 (pp-of-term v − lp g2 ) g2 )
unfolding ‹g2 = g1 › ‹pp-of-term v − lp g1 = a − g› using assms(7 )

‹rep-list h 6= 0 ›
proof (rule is-sig-red-top-addsI )

from ‹rep-list g1 6= 0 › show rep-list (monom-mult 1 (a − g) g1 ) 6= 0
by (simp add: rep-list-monom-mult punit.monom-mult-eq-zero-iff )

next
have eq3 : (a − g) + punit.lt (rep-list g1 ) = lcs (punit.lt (rep-list g1 ))

(punit.lt (rep-list h))
by (simp add: g-def lcs-minus-1 [OF eq1 , symmetric] adds-minus adds-lcs)

from ‹rep-list g1 6= 0 ›
show punit.lt (rep-list h) adds punit.lt (rep-list (monom-mult 1 (a − g) g1 ))

by (simp add: rep-list-monom-mult punit.lt-monom-mult eq3 adds-lcs-2 )
next

from 3 ‹rep-list g1 6= 0 › ‹g1 6= 0 ›
show punit.lt (rep-list (monom-mult 1 (a − g) g1 )) ⊕ lt h ≺t

punit.lt (rep-list h) ⊕ lt (monom-mult 1 (a − g) g1 )
by (auto simp: rep-list-monom-mult punit.lt-monom-mult lt-monom-mult

splus-assoc splus-left-commute
dest!: ord-term-strict-canc intro: splus-mono-strict)

next
show ord-term-lin.is-le-rel (≺t) by (fact ord-term-lin.is-le-relI )

qed
with ∗ show False ..

qed
qed
thus ?thesis1 and ?thesis2 by (simp-all add: a b lcs-minus-1 [OF eq1 ] lcs-minus-2 [OF
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eq1 ] g-def )
hence eq3 : spair g1 h = monom-mult (1 / punit.lc (rep-list g1 )) a g1 −

monom-mult (1 / punit.lc (rep-list h)) b h
by (simp add: spair-def Let-def a b)

from 3 ‹rep-list g1 6= 0 › ‹g1 6= 0 › have b ⊕ lt h ≺t a ⊕ lt g1
by (auto simp: rep-list-monom-mult punit.lt-monom-mult lt-monom-mult eq1

splus-assoc
splus-left-commute[of b] dest!: ord-term-strict-canc)

hence a ⊕ lt g1 6= b ⊕ lt h by simp
with ‹rep-list g1 6= 0 › ‹rep-list h 6= 0 › eq1 show ?thesis3

by (rule is-regular-spairI ′)

have lt (monom-mult (1 / punit.lc (rep-list h)) b h) = b ⊕ lt h
proof (rule lt-monom-mult)

from ‹rep-list h 6= 0 › show 1 / punit.lc (rep-list h) 6= 0 by (simp add:
punit.lc-eq-zero-iff )

qed fact
also have ... ≺t a ⊕ lt g1 by fact
also have ... = lt (monom-mult (1 / punit.lc (rep-list g1 )) a g1 )
proof (rule HOL.sym, rule lt-monom-mult)

from ‹rep-list g1 6= 0 › show 1 / punit.lc (rep-list g1 ) 6= 0 by (simp add:
punit.lc-eq-zero-iff )

qed fact
finally have lt (spair g1 h) = lt (monom-mult (1 / punit.lc (rep-list g1 )) a g1 )

unfolding eq3 by (rule lt-minus-eqI-2 )
also have ... = a ⊕ lt g1 by (rule HOL.sym, fact)
finally show ?thesis4 by (simp only: u)

qed

lemma is-RB-upt-finite:
assumes dickson-grading d and is-rewrite-ord rword and G ⊆ dgrad-sig-set d

and inj-on lt G
and finite G
and

∧
g1 g2 . g1 ∈ G =⇒ g2 ∈ G =⇒ is-regular-spair g1 g2 =⇒ lt (spair g1

g2 ) ≺t u =⇒
is-RB-in d rword G (lt (spair g1 g2 ))

and
∧

i. i < length fs =⇒ term-of-pair (0 , i) ≺t u =⇒ is-RB-in d rword G
(term-of-pair (0 , i))

shows is-RB-upt d rword G u
proof (rule ccontr)

let ?Q = {v. v ≺t u ∧ d (pp-of-term v) ≤ dgrad-max d ∧ component-of-term v
< length fs ∧ ¬ is-RB-in d rword G v}

have Q-sub: pp-of-term ‘ ?Q ⊆ dgrad-set d (dgrad-max d) by blast
from assms(3 ) have G ⊆ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
assume ¬ is-RB-upt d rword G u
with assms(3 ) obtain v ′ where v ′ ∈ ?Q unfolding is-RB-upt-def by blast
with assms(1 ) obtain v where v ∈ ?Q and min:

∧
y. y ≺t v =⇒ y /∈ ?Q using

Q-sub
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by (rule ord-term-minimum-dgrad-set, blast)
from ‹v ∈ ?Q› have v ≺t u and d (pp-of-term v) ≤ dgrad-max d and compo-

nent-of-term v < length fs
and ¬ is-RB-in d rword G v by simp-all

from this(4 )
have impl:

∧
g. g ∈ G =⇒ is-canon-rewriter rword G v g =⇒
is-sig-red (≺t) (=) G (monom-mult 1 (pp-of-term v − lp g) g)

and ¬ is-syz-sig d v by (simp-all add: is-RB-in-def Let-def )

from assms(3 ) have is-RB-upt d rword G v
proof (rule is-RB-uptI )

fix w
assume dw: d (pp-of-term w) ≤ dgrad-max d and cp: component-of-term w <

length fs
assume w ≺t v
hence w /∈ ?Q by (rule min)
hence ¬ w ≺t u ∨ is-RB-in d rword G w by (simp add: dw cp)
thus is-RB-in d rword G w
proof

assume ¬ w ≺t u
moreover from ‹w ≺t v› ‹v ≺t u› have w ≺t u by (rule ord-term-lin.less-trans)

ultimately show ?thesis ..
qed

qed

show False
proof (cases ∃ g∈G. g 6= 0 ∧ lt g addst v)

case False
hence x:

∧
g. g ∈ G =⇒ lt g addst v =⇒ g = 0 by blast

let ?w = term-of-pair (0 , component-of-term v)
have ?w addst v by (simp add: adds-term-def term-simps)
hence ?w �t v by (rule ord-adds-term)
also have ... ≺t u by fact
finally have ?w ≺t u .
with ‹component-of-term v < length fs› have is-RB-in d rword G ?w by (rule

assms(7 ))
thus ?thesis
proof (rule is-RB-inE)

assume is-syz-sig d ?w
with assms(1 ) have is-syz-sig d v using ‹?w addst v› ‹d (pp-of-term v) ≤

dgrad-max d›
by (rule is-syz-sig-adds)

with ‹¬ is-syz-sig d v› show ?thesis ..
next

fix g1
assume is-canon-rewriter rword G ?w g1
hence g1 6= 0 and g1 ∈ G and lt g1 addst ?w by (rule is-canon-rewriterD)+
from this(3 ) have lt g1 addst v using ‹?w addst v› by (rule adds-term-trans)
with ‹g1 ∈ G› have g1 = 0 by (rule x)
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with ‹g1 6= 0 › show ?thesis ..
qed

next
case True
then obtain g ′ where g ′ ∈ G and g ′ 6= 0 and lt g ′ addst v by blast
with assms(2 , 5 ) obtain g1 where crw: is-canon-rewriter rword G v g1

by (rule is-rewrite-ord-finite-canon-rewriterE)
hence g1 ∈ G by (rule is-canon-rewriterD1 )
hence is-sig-red (≺t) (=) G (monom-mult 1 (pp-of-term v − lp g1 ) g1 ) using

crw by (rule impl)
then obtain h where h ∈ G and is-sig-red (≺t) (=) {h} (monom-mult 1

(pp-of-term v − lp g1 ) g1 )
by (rule is-sig-red-singletonI )

with assms(1 , 2 ) ‹is-RB-upt d rword G v› assms(4 ) ‹¬ is-syz-sig d v› crw
have is-regular-spair g1 h and eq: lt (spair g1 h) = v

using ‹d (pp-of-term v) ≤ dgrad-max d› by (rule lemma-9 )+
from ‹v ≺t u› have lt (spair g1 h) ≺t u by (simp only: eq)
with ‹g1 ∈ G› ‹h ∈ G› ‹is-regular-spair g1 h› have is-RB-in d rword G (lt

(spair g1 h))
by (rule assms(6 ))

hence is-RB-in d rword G v by (simp only: eq)
with ‹¬ is-RB-in d rword G v› show ?thesis ..

qed
qed

Note that the following lemma actually holds for all regularly reducible
power-products in rep-list p, not just for the leading power-product.
lemma lemma-11 :

assumes dickson-grading d and is-rewrite-ord rword and is-RB-upt d rword G
(lt p)

and p ∈ dgrad-sig-set d and is-sig-red (≺t) (=) G p
obtains u g where u ≺t lt p and d (pp-of-term u) ≤ dgrad-max d and compo-

nent-of-term u < length fs
and ¬ is-syz-sig d u and is-canon-rewriter rword G u g
and u = (punit.lt (rep-list p) − punit.lt (rep-list g)) ⊕ lt g and is-sig-red (≺t)

(=) {g} p
proof −

from assms(3 ) have G-sub: G ⊆ dgrad-sig-set d by (rule is-RB-uptD1 )
from assms(5 ) have rep-list p 6= 0 using is-sig-red-addsE by fastforce
hence p 6= 0 by (auto simp: rep-list-zero)
let ?lc = punit.lc (rep-list p)
let ?lp = punit.lt (rep-list p)
from ‹rep-list p 6= 0 › have ?lc 6= 0 by (rule punit.lc-not-0 )
from assms(4 ) have p ∈ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
from assms(4 ) have d (lp p) ≤ dgrad-max d by (rule dgrad-sig-setD-lp)
from assms(4 ) ‹p 6= 0 › have component-of-term (lt p) < length fs by (rule

dgrad-sig-setD-lt)
from assms(1 ) ‹p ∈ dgrad-max-set d› have rep-list p ∈ punit-dgrad-max-set d

by (rule dgrad-max-2 )

99



hence d ?lp ≤ dgrad-max d using ‹rep-list p 6= 0 › by (rule punit.dgrad-p-setD-lp[simplified])

from assms(5 ) obtain g0 where g0 ∈ G and is-sig-red (≺t) (=) {g0} p
by (rule is-sig-red-singletonI )

from ‹g0 ∈ G› G-sub have g0 ∈ dgrad-sig-set d ..
let ?g0 = monom-mult (?lc / punit.lc (rep-list g0 )) (?lp − punit.lt (rep-list g0 ))

g0

define M where M = {monom-mult (?lc / punit.lc (rep-list g)) (?lp − punit.lt
(rep-list g)) g |

g. g ∈ dgrad-sig-set d ∧ is-sig-red (≺t) (=) {g} p}
from ‹g0 ∈ dgrad-sig-set d› ‹is-sig-red (≺t) (=) {g0} p› have ?g0 ∈ M by (auto

simp: M-def )
have 0 /∈ rep-list ‘ M
proof

assume 0 ∈ rep-list ‘ M
then obtain g where 1 : is-sig-red (≺t) (=) {g} p
and 2 : rep-list (monom-mult (?lc / punit.lc (rep-list g)) (?lp − punit.lt (rep-list

g)) g) = 0
unfolding M-def by fastforce

from 1 have rep-list g 6= 0 using is-sig-red-addsE by fastforce
moreover from this have punit.lc (rep-list g) 6= 0 by (rule punit.lc-not-0 )
ultimately have rep-list (monom-mult (?lc / punit.lc (rep-list g)) (?lp −

punit.lt (rep-list g)) g) 6= 0
using ‹?lc 6= 0 › by (simp add: rep-list-monom-mult punit.monom-mult-eq-zero-iff )
thus False using 2 ..

qed
with rep-list-zero have 0 /∈ M by auto
have M ⊆ dgrad-sig-set d
proof

fix m
assume m ∈ M
then obtain g where g ∈ dgrad-sig-set d and 1 : is-sig-red (≺t) (=) {g} p

and m: m = monom-mult (?lc / punit.lc (rep-list g)) (?lp − punit.lt (rep-list
g)) g

unfolding M-def by fastforce
from 1 have punit.lt (rep-list g) adds ?lp using is-sig-red-top-addsE by fast-

force
note assms(1 )
thm dickson-grading-minus
moreover have d (?lp − punit.lt (rep-list g)) ≤ dgrad-max d

by (rule le-trans, rule dickson-grading-minus, fact+)
ultimately show m ∈ dgrad-sig-set d unfolding m using ‹g ∈ dgrad-sig-set

d›
by (rule dgrad-sig-set-closed-monom-mult)

qed
hence M ⊆ sig-inv-set by (simp add: dgrad-sig-set ′-def )

let ?M = lt ‘ M
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note assms(1 )
moreover from ‹?g0 ∈ M › have lt ?g0 ∈ ?M by (rule imageI )
moreover from ‹M ⊆ dgrad-sig-set d› have pp-of-term ‘ ?M ⊆ dgrad-set d

(dgrad-max d)
by (auto intro!: dgrad-sig-setD-lp)

ultimately obtain u where u ∈ ?M and min:
∧

v. v ≺t u =⇒ v /∈ ?M
by (rule ord-term-minimum-dgrad-set, blast)

from ‹u ∈ ?M › obtain m where m ∈ M and u ′: u = lt m ..
from this(1 ) obtain g1 where g1 ∈ dgrad-sig-set d and 1 : is-sig-red (≺t) (=)
{g1} p

and m: m = monom-mult (?lc / punit.lc (rep-list g1 )) (?lp − punit.lt (rep-list
g1 )) g1

unfolding M-def by fastforce
from 1 have adds: punit.lt (rep-list g1 ) adds ?lp and ?lp ⊕ lt g1 ≺t punit.lt

(rep-list g1 ) ⊕ lt p
and rep-list g1 6= 0 using is-sig-red-top-addsE by fastforce+

from this(3 ) have lc-g1 : punit.lc (rep-list g1 ) 6= 0 by (rule punit.lc-not-0 )
from ‹m ∈ M › ‹0 /∈ rep-list ‘ M › have rep-list m 6= 0 by fastforce
from ‹m ∈ M › ‹0 /∈ M › have m 6= 0 by blast
hence lc m 6= 0 by (rule lc-not-0 )
from lc-g1 have eq0 : punit.lc (rep-list m) = ?lc by (simp add: m rep-list-monom-mult)
from ‹?lc 6= 0 › ‹rep-list g1 6= 0 › adds have eq1 : punit.lt (rep-list m) = ?lp

by (simp add: m rep-list-monom-mult punit.lt-monom-mult punit.lc-eq-zero-iff
adds-minus)

from ‹m ∈ M › ‹M ⊆ dgrad-sig-set d› have m ∈ dgrad-sig-set d ..

from ‹rep-list g1 6= 0 › have punit.lc (rep-list g1 ) 6= 0 and g1 6= 0
by (auto simp: rep-list-zero punit.lc-eq-zero-iff )

with ‹?lc 6= 0 › have u: u = (?lp − punit.lt (rep-list g1 )) ⊕ lt g1
by (simp add: u ′ m lt-monom-mult lc-eq-zero-iff )

hence punit.lt (rep-list g1 ) ⊕ u = punit.lt (rep-list g1 ) ⊕ ((?lp − punit.lt (rep-list
g1 )) ⊕ lt g1 )

by simp
also from adds have ... = ?lp ⊕ lt g1

by (simp only: splus-assoc[symmetric], metis add.commute adds-minus)
also have ... ≺t punit.lt (rep-list g1 ) ⊕ lt p by fact
finally have u ≺t lt p by (rule ord-term-strict-canc)

from ‹u ∈ ?M › have pp-of-term u ∈ pp-of-term ‘ ?M by (rule imageI )
also have ... ⊆ dgrad-set d (dgrad-max d) by fact
finally have d (pp-of-term u) ≤ dgrad-max d by (rule dgrad-setD)

from ‹u ∈ ?M › have component-of-term u ∈ component-of-term ‘ ?M by (rule
imageI )

also from ‹M ⊆ sig-inv-set› ‹0 /∈ M › sig-inv-setD-lt have ... ⊆ {0 ..<length fs}
by fastforce

finally have component-of-term u < length fs by simp

have ¬ is-syz-sig d u
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proof
assume is-syz-sig d u
then obtain s where s 6= 0 and lt s = u and s ∈ dgrad-sig-set d and rep-list

s = 0
by (rule is-syz-sigE)

let ?s = monom-mult (lc m / lc s) 0 s
have rep-list ?s = 0 by (simp add: rep-list-monom-mult ‹rep-list s = 0 ›)
from ‹s 6= 0 › have lc s 6= 0 by (rule lc-not-0 )
hence lc m / lc s 6= 0 using ‹lc m 6= 0 › by simp
have m − ?s 6= 0
proof

assume m − ?s = 0
hence m = ?s by simp
with ‹rep-list ?s = 0 › have rep-list m = 0 by simp
with ‹rep-list m 6= 0 › show False ..

qed
moreover from ‹lc m / lc s 6= 0 › have lt ?s = lt m by (simp add: lt-monom-mult-zero

‹lt s = u› u ′)
moreover from ‹lc s 6= 0 › have lc ?s = lc m by simp
ultimately have lt (m − ?s) ≺t u unfolding u ′ by (rule lt-minus-lessI )
hence lt (m − ?s) /∈ ?M by (rule min)
hence m − ?s /∈ M by blast
moreover have m − ?s ∈ M
proof −
have ?s = monom-mult (?lc / lc s) 0 (monom-mult (lc g1 / punit.lc (rep-list

g1 )) 0 s)
by (simp add: m monom-mult-assoc mult.commute)

define m ′ where m ′ = m − ?s
have eq: rep-list m ′ = rep-list m by (simp add: m ′-def rep-list-minus ‹rep-list

?s = 0 ›)
from ‹?lc 6= 0 › have m ′ = monom-mult (?lc / punit.lc (rep-list m ′)) (?lp −

punit.lt (rep-list m ′)) m ′

by (simp add: eq eq0 eq1 )
also have ... ∈ M unfolding M-def
proof (rule, intro exI conjI )

from ‹s ∈ dgrad-sig-set d› have ?s ∈ dgrad-sig-set d
by (rule dgrad-sig-set-closed-monom-mult-zero)

with ‹m ∈ dgrad-sig-set d› show m ′ ∈ dgrad-sig-set d unfolding m ′-def
by (rule dgrad-sig-set-closed-minus)

next
show is-sig-red (≺t) (=) {m ′} p
proof (rule is-sig-red-top-addsI )

show m ′ ∈ {m ′} by simp
next

from ‹rep-list m 6= 0 › show rep-list m ′ 6= 0 by (simp add: eq)
next

show punit.lt (rep-list m ′) adds punit.lt (rep-list p) by (simp add: eq eq1 )
next

have punit.lt (rep-list p) ⊕ lt m ′ ≺t punit.lt (rep-list p) ⊕ u
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by (rule splus-mono-strict, simp only: m ′-def ‹lt (m − ?s) ≺t u›)
also have ... ≺t punit.lt (rep-list m ′) ⊕ lt p

unfolding eq eq1 using ‹u ≺t lt p› by (rule splus-mono-strict)
finally show punit.lt (rep-list p) ⊕ lt m ′ ≺t punit.lt (rep-list m ′) ⊕ lt p .

next
show ord-term-lin.is-le-rel (≺t) by simp

qed fact
qed (fact refl)
finally show ?thesis by (simp only: m ′-def )

qed
ultimately show False ..

qed

have is-RB-in d rword G u by (rule is-RB-uptD2 , fact+)
thus ?thesis
proof (rule is-RB-inE)

assume is-syz-sig d u
with ‹¬ is-syz-sig d u› show ?thesis ..

next
fix g
assume is-canon-rewriter rword G u g
hence g ∈ G and g 6= 0 and adds ′: lt g addst u by (rule is-canon-rewriterD)+
assume irred: ¬ is-sig-red (≺t) (=) G (monom-mult 1 (pp-of-term u − lp g)

g)

define b where b = monom-mult 1 (pp-of-term u − lp g) g
note assms(1 )
moreover have is-sig-GB-upt d G (lt m) unfolding u ′[symmetric]
by (rule is-sig-GB-upt-le, rule is-RB-upt-is-sig-GB-upt, fact+, rule ord-term-lin.less-imp-le,

fact)
moreover from assms(1 ) have b ∈ dgrad-sig-set d unfolding b-def
proof (rule dgrad-sig-set-closed-monom-mult)

from adds ′ have lp g adds pp-of-term u by (simp add: adds-term-def )
with assms(1 ) have d (pp-of-term u − lp g) ≤ d (pp-of-term u) by (rule

dickson-grading-minus)
thus d (pp-of-term u − lp g) ≤ dgrad-max d using ‹d (pp-of-term u) ≤

dgrad-max d›
by (rule le-trans)

next
from ‹g ∈ G› G-sub show g ∈ dgrad-sig-set d ..

qed
moreover note ‹m ∈ dgrad-sig-set d›
moreover from ‹g 6= 0 › have lt b = lt m

by (simp add: b-def u ′[symmetric] lt-monom-mult,
metis adds ′ add-diff-cancel-right ′ adds-termE pp-of-term-splus)

moreover from ‹g 6= 0 › have b 6= 0 by (simp add: b-def monom-mult-eq-zero-iff )
moreover note ‹m 6= 0 ›
moreover from irred have ¬ is-sig-red (≺t) (=) G b by (simp add: b-def )
moreover have ¬ is-sig-red (≺t) (=) G m
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proof
assume is-sig-red (≺t) (=) G m
then obtain g2 where 1 : g2 ∈ G and 2 : rep-list g2 6= 0

and 3 : punit.lt (rep-list g2 ) adds punit.lt (rep-list m)
and 4 : punit.lt (rep-list m) ⊕ lt g2 ≺t punit.lt (rep-list g2 ) ⊕ lt m
by (rule is-sig-red-top-addsE)

from 2 have g2 6= 0 and punit.lc (rep-list g2 ) 6= 0 by (auto simp: rep-list-zero
punit.lc-eq-zero-iff )

with 3 4 have lt (monom-mult (?lc / punit.lc (rep-list g2 )) (?lp − punit.lt
(rep-list g2 )) g2 ) ≺t u

(is lt ?g2 ≺t u)
using ‹?lc 6= 0 › by (simp add: term-is-le-rel-minus u ′ eq1 lt-monom-mult)

hence lt ?g2 /∈ ?M by (rule min)
hence ?g2 /∈ M by blast
hence g2 /∈ dgrad-sig-set d ∨ ¬ is-sig-red (≺t) (=) {g2} p by (simp add:

M-def )
thus False
proof

assume g2 /∈ dgrad-sig-set d
moreover from ‹g2 ∈ G› G-sub have g2 ∈ dgrad-sig-set d ..
ultimately show ?thesis ..

next
assume ¬ is-sig-red (≺t) (=) {g2} p
moreover have is-sig-red (≺t) (=) {g2} p
proof (rule is-sig-red-top-addsI )

show g2 ∈ {g2} by simp
next
from 3 show punit.lt (rep-list g2 ) adds punit.lt (rep-list p) by (simp only:

eq1 )
next

from 4 have ?lp ⊕ lt g2 ≺t punit.lt (rep-list g2 ) ⊕ u by (simp only: eq1
u ′)

also from ‹u ≺t lt p› have ... ≺t punit.lt (rep-list g2 ) ⊕ lt p by (rule
splus-mono-strict)

finally show ?lp ⊕ lt g2 ≺t punit.lt (rep-list g2 ) ⊕ lt p .
next

show ord-term-lin.is-le-rel (≺t) by simp
qed fact+
ultimately show ?thesis ..

qed
qed
ultimately have eq2 : punit.lt (rep-list b) = punit.lt (rep-list m)

by (rule sig-regular-top-reduced-lt-unique)
have rep-list g 6= 0 by (rule is-RB-inD, fact+)
moreover from adds ′ have lp g adds pp-of-term u and component-of-term (lt

g) = component-of-term u
by (simp-all add: adds-term-def )

ultimately have u = (?lp − punit.lt (rep-list g)) ⊕ lt g
by (simp add: eq1 [symmetric] eq2 [symmetric] b-def rep-list-monom-mult
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punit.lt-monom-mult
splus-def adds-minus term-simps)

have is-sig-red (≺t) (=) {b} p
proof (rule is-sig-red-top-addsI )

show b ∈ {b} by simp
next

from ‹rep-list g 6= 0 › show rep-list b 6= 0
by (simp add: b-def rep-list-monom-mult punit.monom-mult-eq-zero-iff )

next
show punit.lt (rep-list b) adds punit.lt (rep-list p) by (simp add: eq1 eq2 )

next
show punit.lt (rep-list p) ⊕ lt b ≺t punit.lt (rep-list b) ⊕ lt p
by (simp add: eq1 eq2 ‹lt b = lt m› u ′[symmetric] ‹u ≺t lt p› splus-mono-strict)

next
show ord-term-lin.is-le-rel (≺t) by simp

qed fact
hence is-sig-red (≺t) (=) {g} p unfolding b-def by (rule is-sig-red-singleton-monom-multD)
show ?thesis by (rule, fact+)

qed
qed

4.2.5 Termination
definition term-pp-rel :: ( ′t ⇒ ′t ⇒ bool) ⇒ ( ′t × ′a) ⇒ ( ′t × ′a) ⇒ bool

where term-pp-rel r a b ←→ r (snd b ⊕ fst a) (snd a ⊕ fst b)

definition canon-term-pp-pair :: ( ′t × ′a) ⇒ bool
where canon-term-pp-pair a ←→ (gcs (pp-of-term (fst a)) (snd a) = 0 )

definition cancel-term-pp-pair :: ( ′t × ′a) ⇒ ( ′t × ′a)
where cancel-term-pp-pair a = (fst a 	 (gcs (pp-of-term (fst a)) (snd a)), snd a
− (gcs (pp-of-term (fst a)) (snd a)))

lemma term-pp-rel-refl: reflp r =⇒ term-pp-rel r a a
by (simp add: term-pp-rel-def reflp-def )

lemma term-pp-rel-irrefl: irreflp r =⇒ ¬ term-pp-rel r a a
by (simp add: term-pp-rel-def irreflp-def )

lemma term-pp-rel-sym: symp r =⇒ term-pp-rel r a b =⇒ term-pp-rel r b a
by (auto simp: term-pp-rel-def symp-def )

lemma term-pp-rel-trans:
assumes ord-term-lin.is-le-rel r and term-pp-rel r a b and term-pp-rel r b c
shows term-pp-rel r a c

proof −
from assms(1 ) have transp r by (rule ord-term-lin.is-le-relE , auto)
from assms(2 ) have 1 : r (snd b ⊕ fst a) (snd a ⊕ fst b) by (simp only:

term-pp-rel-def )
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from assms(3 ) have 2 : r (snd c ⊕ fst b) (snd b ⊕ fst c) by (simp only:
term-pp-rel-def )
have snd b ⊕ (snd c ⊕ fst a) = snd c ⊕ (snd b ⊕ fst a) by (rule splus-left-commute)
also from assms(1 ) 1 have r ... (snd a ⊕ (snd c ⊕ fst b))

by (simp add: splus-left-commute[of snd a] term-is-le-rel-canc-left)
also from assms(1 ) 2 have r ... (snd b ⊕ (snd a ⊕ fst c))

by (simp add: splus-left-commute[of snd b] term-is-le-rel-canc-left)
finally(transpD[OF ‹transp r›]) show ?thesis using assms(1 )

by (simp only: term-pp-rel-def term-is-le-rel-canc-left)
qed

lemma term-pp-rel-trans-eq-left:
assumes ord-term-lin.is-le-rel r and term-pp-rel (=) a b and term-pp-rel r b c
shows term-pp-rel r a c

proof −
from assms(1 ) have transp r by (rule ord-term-lin.is-le-relE , auto)
from assms(2 ) have 1 : snd b ⊕ fst a = snd a ⊕ fst b by (simp only: term-pp-rel-def )
from assms(3 ) have 2 : r (snd c ⊕ fst b) (snd b ⊕ fst c) by (simp only:

term-pp-rel-def )
have snd b ⊕ (snd c ⊕ fst a) = snd c ⊕ (snd b ⊕ fst a) by (rule splus-left-commute)
also from assms(1 ) 1 have ... = (snd a ⊕ (snd c ⊕ fst b))

by (simp add: splus-left-commute[of snd a])
finally have eq: snd b ⊕ (snd c ⊕ fst a) = snd a ⊕ (snd c ⊕ fst b) .
from assms(1 ) 2 have r (snd b ⊕ (snd c ⊕ fst a)) (snd b ⊕ (snd a ⊕ fst c))
unfolding eq by (simp add: splus-left-commute[of snd b] term-is-le-rel-canc-left)

thus ?thesis using assms(1 ) by (simp only: term-pp-rel-def term-is-le-rel-canc-left)
qed

lemma term-pp-rel-trans-eq-right:
assumes ord-term-lin.is-le-rel r and term-pp-rel r a b and term-pp-rel (=) b c
shows term-pp-rel r a c

proof −
from assms(1 ) have transp r by (rule ord-term-lin.is-le-relE , auto)
from assms(2 ) have 1 : r (snd b ⊕ fst a) (snd a ⊕ fst b) by (simp only:

term-pp-rel-def )
from assms(3 ) have 2 : snd c ⊕ fst b = snd b ⊕ fst c by (simp only: term-pp-rel-def )
have snd b ⊕ (snd a ⊕ fst c) = snd a ⊕ (snd b ⊕ fst c) by (rule splus-left-commute)
also from assms(1 ) 2 have ... = (snd a ⊕ (snd c ⊕ fst b))

by (simp add: splus-left-commute[of snd a])
finally have eq: snd b ⊕ (snd a ⊕ fst c) = snd a ⊕ (snd c ⊕ fst b) .
from assms(1 ) 1 have r (snd b ⊕ (snd c ⊕ fst a)) (snd b ⊕ (snd a ⊕ fst c))
unfolding eq by (simp add: splus-left-commute[of - snd c] term-is-le-rel-canc-left)

thus ?thesis using assms(1 ) by (simp only: term-pp-rel-def term-is-le-rel-canc-left)
qed

lemma canon-term-pp-cancel: canon-term-pp-pair (cancel-term-pp-pair a)
by (simp add: cancel-term-pp-pair-def canon-term-pp-pair-def gcs-minus-gcs term-simps)

lemma term-pp-rel-cancel:
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assumes reflp r
shows term-pp-rel r a (cancel-term-pp-pair a)

proof −
obtain u s where a: a = (u, s) by (rule prod.exhaust)
show ?thesis
proof (simp add: a cancel-term-pp-pair-def )

let ?g = gcs (pp-of-term u) s
have ?g adds s by (fact gcs-adds-2 )
hence (s − ?g) ⊕ (u 	 0 ) = s ⊕ u 	 (?g + 0 ) using zero-adds-pp

by (rule minus-splus-sminus)
also have ... = s ⊕ (u 	 ?g)

by (metis add.left-neutral add.right-neutral adds-pp-def diff-zero gcs-adds-2
gcs-comm

minus-splus-sminus zero-adds)
finally have r ((s − ?g) ⊕ u) (s ⊕ (u 	 ?g)) using assms by (simp add:

term-simps reflp-def )
thus term-pp-rel r (u, s) (u 	 ?g, s − ?g) by (simp add: a term-pp-rel-def )

qed
qed

lemma canon-term-pp-rel-id:
assumes term-pp-rel (=) a b and canon-term-pp-pair a and canon-term-pp-pair

b
shows a = b

proof −
obtain u s where a: a = (u, s) by (rule prod.exhaust)
obtain v t where b: b = (v, t) by (rule prod.exhaust)
from assms(1 ) have t ⊕ u = s ⊕ v by (simp add: term-pp-rel-def a b)
hence 1 : t + pp-of-term u = s + pp-of-term v by (metis pp-of-term-splus)
from assms(2 ) have 2 : gcs (pp-of-term u) s = 0 by (simp add: canon-term-pp-pair-def

a)
from assms(3 ) have 3 : gcs (pp-of-term v) t = 0 by (simp add: canon-term-pp-pair-def

b)
have t = t + gcs (pp-of-term u) s by (simp add: 2 )
also have ... = gcs (t + pp-of-term u) (t + s) by (simp only: gcs-plus-left)
also have ... = gcs (s + pp-of-term v) (s + t) by (simp only: 1 add.commute)
also have ... = s + gcs (pp-of-term v) t by (simp only: gcs-plus-left)
also have ... = s by (simp add: 3 )
finally have t = s .
moreover from ‹t ⊕ u = s ⊕ v› have u = v by (simp only: ‹t = s› splus-left-canc)
ultimately show ?thesis by (simp add: a b)

qed

lemma min-set-finite:
fixes seq :: nat ⇒ ( ′t ⇒0

′b::field)
assumes dickson-grading d and range seq ⊆ dgrad-sig-set d and 0 /∈ rep-list ‘

range seq
and

∧
i j. i < j =⇒ lt (seq i) ≺t lt (seq j)

shows finite {i. ¬ (∃ j<i. lt (seq j) addst lt (seq i) ∧
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punit.lt (rep-list (seq j)) adds punit.lt (rep-list (seq i)))}
proof −

have inj (λi. lt (seq i))
proof

fix i j
assume eq: lt (seq i) = lt (seq j)
show i = j
proof (rule linorder-cases)

assume i < j
hence lt (seq i) ≺t lt (seq j) by (rule assms(4 ))
thus ?thesis by (simp add: eq)

next
assume j < i
hence lt (seq j) ≺t lt (seq i) by (rule assms(4 ))
thus ?thesis by (simp add: eq)

qed
qed
hence inj seq unfolding comp-def [symmetric] by (rule inj-on-imageI2 )

let ?P1 = λp q. lt p addst lt q
let ?P2 = λp q. punit.lt (rep-list p) adds punit.lt (rep-list q)
let ?P = λp q. ?P1 p q ∧ ?P2 p q
have reflp ?P by (simp add: reflp-def adds-term-refl)
have almost-full-on ?P1 (range seq)
proof (rule almost-full-on-map)

let ?B = {t. pp-of-term t ∈ dgrad-set d (dgrad-max d) ∧ component-of-term t
∈ {0 ..<length fs}}

from assms(1 ) finite-atLeastLessThan show almost-full-on (addst) ?B by (rule
Dickson-term)

show lt ‘ range seq ⊆ ?B
proof

fix v
assume v ∈ lt ‘ range seq
then obtain p where p ∈ range seq and v: v = lt p ..
from this(1 ) assms(3 ) have rep-list p 6= 0 by auto
hence p 6= 0 by (auto simp: rep-list-zero)
from ‹p ∈ range seq› assms(2 ) have p ∈ dgrad-sig-set d ..
hence d (lp p) ≤ dgrad-max d by (rule dgrad-sig-setD-lp)
hence lp p ∈ dgrad-set d (dgrad-max d) by (simp add: dgrad-set-def )
moreover from ‹p ∈ dgrad-sig-set d› ‹p 6= 0 › have component-of-term (lt

p) < length fs
by (rule dgrad-sig-setD-lt)

ultimately show v ∈ ?B by (simp add: v)
qed

qed
moreover have almost-full-on ?P2 (range seq)
proof (rule almost-full-on-map)

let ?B = dgrad-set d (dgrad-max d)
from assms(1 ) show almost-full-on (adds) ?B by (rule dickson-gradingD-dgrad-set)
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show (λp. punit.lt (rep-list p)) ‘ range seq ⊆ ?B
proof

fix t
assume t ∈ (λp. punit.lt (rep-list p)) ‘ range seq
then obtain p where p ∈ range seq and t: t = punit.lt (rep-list p) ..
from this(1 ) assms(3 ) have rep-list p 6= 0 by auto
from ‹p ∈ range seq› assms(2 ) have p ∈ dgrad-sig-set d ..
hence p ∈ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )

with assms(1 ) have rep-list p ∈ punit-dgrad-max-set d by (rule dgrad-max-2 )
from this ‹rep-list p 6= 0 › have d (punit.lt (rep-list p)) ≤ dgrad-max d

by (rule punit.dgrad-p-setD-lp[simplified])
thus t ∈ ?B by (simp add: t dgrad-set-def )

qed
qed
ultimately have almost-full-on ?P (range seq) by (rule almost-full-on-same)
with ‹reflp ?P› obtain T where finite T and T ⊆ range seq and ∗:

∧
p. p ∈

range seq =⇒ (∃ q∈T . ?P q p)
by (rule almost-full-on-finite-subsetE , blast)

from ‹T ⊆ range seq› obtain I where T : T = seq ‘ I by (meson sub-
set-image-iff )

have {i. ¬ (∃ j<i. ?P (seq j) (seq i))} ⊆ I
proof

fix i
assume i ∈ {i. ¬ (∃ j<i. ?P (seq j) (seq i))}
hence x: ¬ (∃ j<i. ?P (seq j) (seq i)) by simp
obtain j where j ∈ I and ?P (seq j) (seq i)
proof −

have seq i ∈ range seq by simp
hence ∃ q∈T . ?P q (seq i) by (rule ∗)
then obtain q where q ∈ T and ?P q (seq i) ..
from this(1 ) obtain j where j ∈ I and q = seq j unfolding T ..
from this(1 ) ‹?P q (seq i)› show ?thesis unfolding ‹q = seq j› ..

qed
from this(2 ) x have i ≤ j by auto
moreover have ¬ i < j
proof

assume i < j
hence lt (seq i) ≺t lt (seq j) by (rule assms(4 ))
hence ¬ ?P1 (seq j) (seq i) using ord-adds-term ord-term-lin.leD by blast
with ‹?P (seq j) (seq i)› show False by simp

qed
ultimately show i ∈ I using ‹j ∈ I › by simp

qed
moreover from ‹inj seq› ‹finite T › have finite I by (simp add: finite-image-iff

inj-on-subset T )
ultimately show ?thesis by (rule finite-subset)

qed

lemma rb-termination:
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fixes seq :: nat ⇒ ( ′t ⇒0
′b::field)

assumes dickson-grading d and range seq ⊆ dgrad-sig-set d and 0 /∈ rep-list ‘
range seq

and
∧

i j. i < j =⇒ lt (seq i) ≺t lt (seq j)
and

∧
i. ¬ is-sig-red (≺t) (�) (seq ‘ {0 ..<i}) (seq i)

and
∧

i. (∃ j<length fs. lt (seq i) = lt (monomial (1 :: ′b) (term-of-pair (0 , j)))
∧

punit.lt (rep-list (seq i)) � punit.lt (rep-list (monomial 1 (term-of-pair
(0 , j))))) ∨

(∃ j k. is-regular-spair (seq j) (seq k) ∧ rep-list (spair (seq j) (seq k)) 6=
0 ∧

lt (seq i) = lt (spair (seq j) (seq k)) ∧
punit.lt (rep-list (seq i)) � punit.lt (rep-list (spair (seq j) (seq k))))

and
∧

i. is-sig-GB-upt d (seq ‘ {0 ..<i}) (lt (seq i))
shows thesis

proof −
from assms(3 ) have 0 /∈ range seq using rep-list-zero by auto
have ord-term-lin.is-le-rel (=) and ord-term-lin.is-le-rel (≺t) by (rule ord-term-lin.is-le-relI )+
have reflp (=) and symp (=) by (simp-all add: symp-def )
have irreflp (≺t) by (simp add: irreflp-def )
have inj (λi. lt (seq i))
proof

fix i j
assume eq: lt (seq i) = lt (seq j)
show i = j
proof (rule linorder-cases)

assume i < j
hence lt (seq i) ≺t lt (seq j) by (rule assms(4 ))
thus ?thesis by (simp add: eq)

next
assume j < i
hence lt (seq j) ≺t lt (seq i) by (rule assms(4 ))
thus ?thesis by (simp add: eq)

qed
qed
hence inj seq unfolding comp-def [symmetric] by (rule inj-on-imageI2 )

define R where R = (λx. {i. term-pp-rel (=) (lt (seq i), punit.lt (rep-list (seq
i))) x})

let ?A = {x. canon-term-pp-pair x ∧ R x 6= {}}

have finite ?A
proof −

define min-set where min-set = {i. ¬ (∃ j<i. lt (seq j) addst lt (seq i) ∧
punit.lt (rep-list (seq j)) adds punit.lt (rep-list (seq

i)))}
have ?A ⊆ (λi. cancel-term-pp-pair (lt (seq i), punit.lt (rep-list (seq i)))) ‘

min-set
proof
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fix u t
assume (u, t) ∈ ?A
hence canon-term-pp-pair (u, t) and R (u, t) 6= {} by simp-all
from this(2 ) obtain i where x: term-pp-rel (=) (lt (seq i), punit.lt (rep-list

(seq i))) (u, t)
by (auto simp: R-def )

let ?equiv = (λi j. term-pp-rel (=) (lt (seq i), punit.lt (rep-list (seq i))) (lt
(seq j), punit.lt (rep-list (seq j))))

obtain j where j ∈ min-set and ?equiv j i
proof (cases i ∈ min-set)

case True
moreover have ?equiv i i by (simp add: term-pp-rel-refl)
ultimately show ?thesis ..

next
case False
let ?Q = {seq j | j. j < i ∧ is-sig-red (=) (=) {seq j} (seq i)}
have ?Q ⊆ range seq by blast
also have ... ⊆ dgrad-sig-set d by (fact assms(2 ))
finally have ?Q ⊆ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
moreover from ‹?Q ⊆ range seq› ‹0 /∈ range seq› have 0 /∈ ?Q by blast
ultimately have Q-sub: pp-of-term ‘ lt ‘ ?Q ⊆ dgrad-set d (dgrad-max d)

unfolding image-image by (smt CollectI dgrad-p-setD-lp dgrad-set-def
image-subset-iff subsetCE)

have ∗: ∃ g∈seq ‘ {0 ..<k}. is-sig-red (=) (=) {g} (seq k) if k /∈ min-set for
k

proof −
from that obtain j where j < k and a: lt (seq j) addst lt (seq k)

and b: punit.lt (rep-list (seq j)) adds punit.lt (rep-list (seq k)) by (auto
simp: min-set-def )

note assms(1 , 7 )
moreover from assms(2 ) have seq k ∈ dgrad-sig-set d by fastforce
moreover from ‹j < k› have seq j ∈ seq ‘ {0 ..<k} by simp
moreover from assms(3 ) have rep-list (seq k) 6= 0 and rep-list (seq j)

6= 0 by fastforce+
ultimately have is-sig-red (�t) (=) (seq ‘ {0 ..<k}) (seq k) using a b by

(rule lemma-21 )
moreover from assms(5 )[of k] have ¬ is-sig-red (≺t) (=) (seq ‘ {0 ..<k})

(seq k)
by (simp add: is-sig-red-top-tail-cases)

ultimately have is-sig-red (=) (=) (seq ‘ {0 ..<k}) (seq k)
by (simp add: is-sig-red-sing-reg-cases)

then obtain g0 where g0 ∈ seq ‘ {0 ..<k} and is-sig-red (=) (=) {g0}
(seq k)

by (rule is-sig-red-singletonI )
thus ?thesis ..

qed

from this[OF False] obtain g0 where g0 ∈ seq ‘ {0 ..<i} and is-sig-red
(=) (=) {g0} (seq i) ..
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hence g0 ∈ ?Q by fastforce
hence lt g0 ∈ lt ‘ ?Q by (rule imageI )
with assms(1 ) obtain v where v ∈ lt ‘ ?Q and min:

∧
v ′. v ′ ≺t v =⇒ v ′

/∈ lt ‘ ?Q
using Q-sub by (rule ord-term-minimum-dgrad-set, blast)

from this(1 ) obtain j where j < i and is-sig-red (=) (=) {seq j} (seq i)
and v: v = lt (seq j) by fastforce

hence 1 : punit.lt (rep-list (seq j)) adds punit.lt (rep-list (seq i))
and 2 : punit.lt (rep-list (seq i)) ⊕ lt (seq j) = punit.lt (rep-list (seq j)) ⊕

lt (seq i)
by (auto elim: is-sig-red-top-addsE)

show ?thesis
proof

show ?equiv j i by (simp add: term-pp-rel-def 2 )
next

show j ∈ min-set
proof (rule ccontr)

assume j /∈ min-set
from ∗[OF this] obtain g1 where g1 ∈ seq ‘ {0 ..<j} and red: is-sig-red

(=) (=) {g1} (seq j) ..
from this(1 ) obtain j0 where j0 < j and g1 = seq j0 by fastforce+

from red have 3 : punit.lt (rep-list (seq j0 )) adds punit.lt (rep-list (seq
j))

and 4 : punit.lt (rep-list (seq j)) ⊕ lt (seq j0 ) = punit.lt (rep-list (seq
j0 )) ⊕ lt (seq j)

by (auto simp: ‹g1 = seq j0 › elim: is-sig-red-top-addsE)

from ‹j0 < j› ‹j < i› have j0 < i by simp
from ‹j0 < j› have lt (seq j0 ) ≺t v unfolding v by (rule assms(4 ))
hence lt (seq j0 ) /∈ lt ‘?Q by (rule min)
with ‹j0 < i› have ¬ is-sig-red (=) (=) {seq j0} (seq i) by blast
moreover have is-sig-red (=) (=) {seq j0} (seq i)
proof (rule is-sig-red-top-addsI )

from assms(3 ) show rep-list (seq j0 ) 6= 0 by fastforce
next

from assms(3 ) show rep-list (seq i) 6= 0 by fastforce
next
from 3 1 show punit.lt (rep-list (seq j0 )) adds punit.lt (rep-list (seq i))

by (rule adds-trans)
next

from 4 have ?equiv j0 j by (simp add: term-pp-rel-def )
also from 2 have ?equiv j i by (simp add: term-pp-rel-def )
finally(term-pp-rel-trans[OF ‹ord-term-lin.is-le-rel (=)›])

show punit.lt (rep-list (seq i)) ⊕ lt (seq j0 ) = punit.lt (rep-list (seq
j0 )) ⊕ lt (seq i)

by (simp add: term-pp-rel-def )
next

show ord-term-lin.is-le-rel (=) by simp
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qed simp-all
ultimately show False ..

qed
qed

qed
have term-pp-rel (=) (cancel-term-pp-pair (lt (seq j), punit.lt (rep-list (seq

j)))) (lt (seq j), punit.lt (rep-list (seq j)))
by (rule term-pp-rel-sym, fact ‹symp (=)›, rule term-pp-rel-cancel, fact ‹reflp

(=)›)
also note ‹?equiv j i›
also(term-pp-rel-trans[OF ‹ord-term-lin.is-le-rel (=)›]) note x
finally(term-pp-rel-trans[OF ‹ord-term-lin.is-le-rel (=)›])
have term-pp-rel (=) (cancel-term-pp-pair (lt (seq j), punit.lt (rep-list (seq

j)))) (u, t) .
with ‹symp (=)› have term-pp-rel (=) (u, t) (cancel-term-pp-pair (lt (seq j),

punit.lt (rep-list (seq j))))
by (rule term-pp-rel-sym)

hence (u, t) = cancel-term-pp-pair (lt (seq j), punit.lt (rep-list (seq j)))
using ‹canon-term-pp-pair (u, t)› canon-term-pp-cancel by (rule canon-term-pp-rel-id)
with ‹j ∈ min-set› show (u, t) ∈ (λi. cancel-term-pp-pair (lt (seq i), punit.lt

(rep-list (seq i)))) ‘ min-set
by fastforce

qed
moreover have finite ((λi. cancel-term-pp-pair (lt (seq i), punit.lt (rep-list

(seq i)))) ‘ min-set)
proof (rule finite-imageI )

show finite min-set unfolding min-set-def using assms(1−4 ) by (rule
min-set-finite)

qed
ultimately show ?thesis by (rule finite-subset)

qed

have range seq ⊆ seq ‘ (
⋃

(R ‘ ?A))
proof (rule image-mono, rule)

fix i
show i ∈ (

⋃
(R ‘ ?A))

proof
show i ∈ R (cancel-term-pp-pair (lt (seq i), punit.lt (rep-list (seq i))))

by (simp add: R-def term-pp-rel-cancel)
thus cancel-term-pp-pair (lt (seq i), punit.lt (rep-list (seq i))) ∈ ?A

using canon-term-pp-cancel by blast
qed

qed
moreover from ‹inj seq› have infinite (range seq) by (rule range-inj-infinite)
ultimately have infinite (seq ‘ (

⋃
(R ‘ ?A))) by (rule infinite-super)

moreover have finite (seq ‘ (
⋃

(R ‘ ?A)))
proof (rule finite-imageI , rule finite-UN-I )

fix x
assume x ∈ ?A
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let ?rel = term-pp-rel (≺t)
have irreflp ?rel by (rule irreflpI , rule term-pp-rel-irrefl, fact)

moreover have transp ?rel by (rule transpI , drule term-pp-rel-trans[OF
‹ord-term-lin.is-le-rel (≺t)›])

ultimately have wfp-on ?rel ?A using ‹finite ?A› by (rule wfp-on-finite)
thus finite (R x) using ‹x ∈ ?A›
proof (induct rule: wfp-on-induct)

case (less x)
from less(1 ) have canon-term-pp-pair x by simp
define R ′ where R ′ =

⋃
(R ‘ ({x. canon-term-pp-pair x ∧ R x 6= {}} ∩ {z.

term-pp-rel (≺t) z x}))
define red-set where red-set = (λp:: ′t ⇒0

′b. {k. lt (seq k) = lt p ∧
punit.lt (rep-list (seq k)) � punit.lt (rep-list p)})

have finite-red-set: finite (red-set p) for p
proof (cases red-set p = {})

case True
thus ?thesis by simp

next
case False
then obtain k where lt-k: lt (seq k) = lt p by (auto simp: red-set-def )
have red-set p ⊆ {k}
proof

fix k ′

assume k ′ ∈ red-set p
hence lt (seq k ′) = lt p by (simp add: red-set-def )
hence lt (seq k ′) = lt (seq k) by (simp only: lt-k)
with ‹inj (λi. lt (seq i))› have k ′ = k by (rule injD)
thus k ′ ∈ {k} by simp

qed
thus ?thesis using infinite-super by auto

qed

have R x ⊆ (
⋃

i∈R ′.
⋃

j∈R ′. red-set (spair (seq i) (seq j))) ∪
(
⋃

j∈{0 ..<length fs}. red-set (monomial 1 (term-of-pair (0 , j))))
(is - ⊆ ?B ∪ ?C )

proof
fix i
assume i ∈ R x
hence i-x: term-pp-rel (=) (lt (seq i), punit.lt (rep-list (seq i))) x

by (simp add: R-def term-pp-rel-def )
from assms(6 )[of i] show i ∈ ?B ∪ ?C
proof (elim disjE exE conjE)

fix j
assume j < length fs
hence j ∈ {0 ..<length fs} by simp
assume lt (seq i) = lt (monomial (1 :: ′b) (term-of-pair (0 , j)))
and punit.lt (rep-list (seq i)) � punit.lt (rep-list (monomial 1 (term-of-pair

(0 , j))))
hence i ∈ red-set (monomial 1 (term-of-pair (0 , j))) by (simp add:
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red-set-def )
with ‹j ∈ {0 ..<length fs}› have i ∈ ?C ..
thus ?thesis ..

next
fix j k
let ?li = punit.lt (rep-list (seq i))
let ?lj = punit.lt (rep-list (seq j))
let ?lk = punit.lt (rep-list (seq k))
assume lt-i: lt (seq i) = lt (spair (seq j) (seq k))

and lt-i ′: ?li � punit.lt (rep-list (spair (seq j) (seq k)))
and spair-0 : rep-list (spair (seq j) (seq k)) 6= 0

hence i ∈ red-set (spair (seq j) (seq k)) by (simp add: red-set-def )
from assms(3 ) have i-0 : rep-list (seq i) 6= 0 and j-0 : rep-list (seq j) 6= 0

and k-0 : rep-list (seq k) 6= 0 by fastforce+

have R ′I : a ∈ R ′ if term-pp-rel (≺t) (lt (seq a), punit.lt (rep-list (seq a)))
x for a

proof −
let ?x = cancel-term-pp-pair (lt (seq a), punit.lt (rep-list (seq a)))
show ?thesis unfolding R ′-def
proof (rule UN-I , simp, intro conjI )

show a ∈ R ?x by (simp add: R-def term-pp-rel-cancel)
thus R ?x 6= {} by blast

next
note ‹ord-term-lin.is-le-rel (≺t)›
moreover have term-pp-rel (=) ?x (lt (seq a), punit.lt (rep-list (seq

a)))
by (rule term-pp-rel-sym, fact, rule term-pp-rel-cancel, fact)

ultimately show term-pp-rel (≺t) ?x x using that by (rule
term-pp-rel-trans-eq-left)

qed (fact canon-term-pp-cancel)
qed

assume is-regular-spair (seq j) (seq k)
hence ?lk ⊕ lt (seq j) 6= ?lj ⊕ lt (seq k) by (rule is-regular-spairD3 )
hence term-pp-rel (≺t) (lt (seq j), ?lj) x ∧ term-pp-rel (≺t) (lt (seq k),

?lk) x
proof (rule ord-term-lin.neqE)

assume c: ?lk ⊕ lt (seq j) ≺t ?lj ⊕ lt (seq k)
hence j-k: term-pp-rel (≺t) (lt (seq j), ?lj) (lt (seq k), ?lk)

by (simp add: term-pp-rel-def )
note ‹ord-term-lin.is-le-rel (≺t)›
moreover have term-pp-rel (≺t) (lt (seq k), ?lk) (lt (seq i), ?li)
proof (simp add: term-pp-rel-def )

from lt-i ′ have ?li ⊕ lt (seq k) �t

punit.lt (rep-list (spair (seq j) (seq k))) ⊕ lt (seq k)
by (rule splus-mono-left)

also have ... ≺t (?lk − gcs ?lk ?lj + ?lj) ⊕ lt (seq k)
by (rule splus-mono-strict-left, rule lt-rep-list-spair , fact+, simp only:
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add.commute)
also have ... = ((?lk + ?lj) − gcs ?lj ?lk) ⊕ lt (seq k)

by (simp add: minus-plus gcs-adds-2 gcs-comm)
also have ... = ?lk ⊕ ((?lj − gcs ?lj ?lk) ⊕ lt (seq k))

by (simp add: minus-plus ′ gcs-adds splus-assoc[symmetric])
also have ... = ?lk ⊕ lt (seq i)
by (simp add: lt-spair ′[OF k-0 - c] add.commute spair-comm[of seq j]

lt-i)
finally show ?li ⊕ lt (seq k) ≺t ?lk ⊕ lt (seq i) .

qed
ultimately have term-pp-rel (≺t) (lt (seq k), ?lk) x using i-x

by (rule term-pp-rel-trans-eq-right)
moreover from ‹ord-term-lin.is-le-rel (≺t)› j-k this
have term-pp-rel (≺t) (lt (seq j), ?lj) x by (rule term-pp-rel-trans)
ultimately show ?thesis by simp

next
assume c: ?lj ⊕ lt (seq k) ≺t ?lk ⊕ lt (seq j)
hence j-k: term-pp-rel (≺t) (lt (seq k), ?lk) (lt (seq j), ?lj)

by (simp add: term-pp-rel-def )
note ‹ord-term-lin.is-le-rel (≺t)›
moreover have term-pp-rel (≺t) (lt (seq j), ?lj) (lt (seq i), ?li)
proof (simp add: term-pp-rel-def )

from lt-i ′ have ?li ⊕ lt (seq j) �t

punit.lt (rep-list (spair (seq j) (seq k))) ⊕ lt (seq j)
by (rule splus-mono-left)

thm lt-rep-list-spair
also have ... ≺t (?lk − gcs ?lk ?lj + ?lj) ⊕ lt (seq j)
by (rule splus-mono-strict-left, rule lt-rep-list-spair , fact+, simp only:

add.commute)
also have ... = ((?lk + ?lj) − gcs ?lk ?lj) ⊕ lt (seq j)

by (simp add: minus-plus gcs-adds-2 gcs-comm)
also have ... = ?lj ⊕ ((?lk − gcs ?lk ?lj) ⊕ lt (seq j))

by (simp add: minus-plus ′ gcs-adds splus-assoc[symmetric] add.commute)
also have ... = ?lj ⊕ lt (seq i) by (simp add: lt-spair ′[OF j-0 - c] lt-i

add.commute)
finally show ?li ⊕ lt (seq j) ≺t ?lj ⊕ lt (seq i) .

qed
ultimately have term-pp-rel (≺t) (lt (seq j), ?lj) x using i-x

by (rule term-pp-rel-trans-eq-right)
moreover from ‹ord-term-lin.is-le-rel (≺t)› j-k this
have term-pp-rel (≺t) (lt (seq k), ?lk) x by (rule term-pp-rel-trans)
ultimately show ?thesis by simp

qed
with ‹i ∈ red-set (spair (seq j) (seq k))› have i ∈ ?B using R ′I by blast
thus ?thesis ..

qed
qed
moreover have finite (?B ∪ ?C )
proof (rule finite-UnI )
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have finite R ′ unfolding R ′-def
proof (rule finite-UN-I )

from ‹finite ?A› show finite (?A ∩ {z. term-pp-rel (≺t) z x}) by simp
next

fix y
assume y ∈ ?A ∩ {z. term-pp-rel (≺t) z x}
hence y ∈ ?A and term-pp-rel (≺t) y x by simp-all
thus finite (R y) by (rule less(2 ))

qed
show finite ?B by (intro finite-UN-I ‹finite R ′› finite-red-set)

next
show finite ?C by (intro finite-UN-I finite-atLeastLessThan finite-red-set)

qed
ultimately show ?case by (rule finite-subset)

qed
qed fact
ultimately show ?thesis ..

qed

4.2.6 Concrete Rewrite Orders
definition is-strict-rewrite-ord :: (( ′t × ( ′a ⇒0

′b)) ⇒ ( ′t × ( ′a ⇒0
′b)) ⇒ bool)

⇒ bool
where is-strict-rewrite-ord rel ←→ is-rewrite-ord (λx y. ¬ rel y x)

lemma is-strict-rewrite-ordI : is-rewrite-ord (λx y. ¬ rel y x) =⇒ is-strict-rewrite-ord
rel

unfolding is-strict-rewrite-ord-def by blast

lemma is-strict-rewrite-ordD: is-strict-rewrite-ord rel =⇒ is-rewrite-ord (λx y. ¬
rel y x)

unfolding is-strict-rewrite-ord-def by blast

lemma is-strict-rewrite-ord-antisym:
assumes is-strict-rewrite-ord rel and ¬ rel x y and ¬ rel y x
shows fst x = fst y
by (rule is-rewrite-ordD4 , rule is-strict-rewrite-ordD, fact+)

lemma is-strict-rewrite-ord-asym:
assumes is-strict-rewrite-ord rel and rel x y
shows ¬ rel y x

proof −
from assms(1 ) have is-rewrite-ord (λx y. ¬ rel y x) by (rule is-strict-rewrite-ordD)
thus ?thesis
proof (rule is-rewrite-ordD3 )

assume ¬ ¬ rel y x
assume ¬ rel x y
thus ?thesis using ‹rel x y› ..

qed
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qed

lemma is-strict-rewrite-ord-irrefl: is-strict-rewrite-ord rel =⇒ ¬ rel x x
using is-strict-rewrite-ord-asym by blast

definition rw-rat :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ bool
where rw-rat p q ←→ (let u = punit.lt (snd q) ⊕ fst p; v = punit.lt (snd p) ⊕

fst q in
u ≺t v ∨ (u = v ∧ fst p �t fst q))

definition rw-rat-strict :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ bool
where rw-rat-strict p q ←→ (let u = punit.lt (snd q) ⊕ fst p; v = punit.lt (snd

p) ⊕ fst q in
u ≺t v ∨ (u = v ∧ fst p ≺t fst q))

definition rw-add :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ bool
where rw-add p q ←→ (fst p �t fst q)

definition rw-add-strict :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ bool
where rw-add-strict p q ←→ (fst p ≺t fst q)

lemma rw-rat-alt: rw-rat = (λp q. ¬ rw-rat-strict q p)
by (intro ext, auto simp: rw-rat-def rw-rat-strict-def Let-def )

lemma rw-rat-is-rewrite-ord: is-rewrite-ord rw-rat
proof (rule is-rewrite-ordI )

show reflp rw-rat by (simp add: reflp-def rw-rat-def )
next

have 1 : ord-term-lin.is-le-rel (≺t) and 2 : ord-term-lin.is-le-rel (=)
by (rule ord-term-lin.is-le-relI )+

have rw-rat p q ←→ (term-pp-rel (≺t) (fst p, punit.lt (snd p)) (fst q, punit.lt
(snd q)) ∨

(term-pp-rel (=) (fst p, punit.lt (snd p)) (fst q, punit.lt (snd q))
∧

fst p �t fst q))
for p q

by (simp add: rw-rat-def term-pp-rel-def Let-def )
thus transp rw-rat
by (auto simp: transp-def dest: term-pp-rel-trans[OF 1 ] term-pp-rel-trans-eq-left[OF

1 ]
term-pp-rel-trans-eq-right[OF 1 ] term-pp-rel-trans[OF 2 ])

next
fix p q
show rw-rat p q ∨ rw-rat q p by (auto simp: rw-rat-def Let-def )

next
fix p q
assume rw-rat p q and rw-rat q p
thus fst p = fst q by (auto simp: rw-rat-def Let-def )

next
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fix d G p q
assume d: dickson-grading d and gb: is-sig-GB-upt d G (lt q) and p ∈ G and

q ∈ G
and p 6= 0 and q 6= 0 and lt p addst lt q and ¬ is-sig-red (≺t) (=) G q

let ?u = punit.lt (rep-list q) ⊕ lt p
let ?v = punit.lt (rep-list p) ⊕ lt q
from ‹lt p addst lt q› obtain t where lt-q: lt q = t ⊕ lt p by (rule adds-termE)
from gb have G ⊆ dgrad-sig-set d by (rule is-sig-GB-uptD1 )
hence G ⊆ dgrad-max-set d by (simp add: dgrad-sig-set ′-def )
with d obtain p ′ where red: (sig-red (≺t) (=) G)∗∗ (monom-mult 1 t p) p ′

and ¬ is-sig-red (≺t) (=) G p ′ by (rule sig-irredE-dgrad-max-set)
from red have lt p ′ = lt (monom-mult 1 t p) and lc p ′ = lc (monom-mult 1 t p)

and 2 : punit.lt (rep-list p ′) � punit.lt (rep-list (monom-mult 1 t p))
by (rule sig-red-regular-rtrancl-lt, rule sig-red-regular-rtrancl-lc, rule sig-red-rtrancl-lt-rep-list)

with ‹p 6= 0 › have lt p ′= lt q and lc p ′= lc p by (simp-all add: lt-q lt-monom-mult)
from 2 punit.lt-monom-mult-le[simplified] have 3 : punit.lt (rep-list p ′) � t +

punit.lt (rep-list p)
unfolding rep-list-monom-mult by (rule ordered-powerprod-lin.order-trans)

have punit.lt (rep-list p ′) = punit.lt (rep-list q)
proof (rule sig-regular-top-reduced-lt-unique)

show p ′ ∈ dgrad-sig-set d
proof (rule dgrad-sig-set-closed-sig-red-rtrancl)

note d
moreover have d t ≤ dgrad-max d
proof (rule le-trans)

have t adds lp q by (simp add: lt-q term-simps)
with d show d t ≤ d (lp q) by (rule dickson-grading-adds-imp-le)

next
from ‹q ∈ G› ‹G ⊆ dgrad-max-set d› have q ∈ dgrad-max-set d ..
thus d (lp q) ≤ dgrad-max d using ‹q 6= 0 › by (rule dgrad-p-setD-lp)

qed
moreover from ‹p ∈ G› ‹G ⊆ dgrad-sig-set d› have p ∈ dgrad-sig-set d ..

ultimately show monom-mult 1 t p ∈ dgrad-sig-set d by (rule dgrad-sig-set-closed-monom-mult)
qed fact+

next
from ‹q ∈ G› ‹G ⊆ dgrad-sig-set d› show q ∈ dgrad-sig-set d ..

next
from ‹p 6= 0 › ‹lc p ′ = lc p› show p ′ 6= 0 by (auto simp: lc-eq-zero-iff )

qed fact+
with 3 have punit.lt (rep-list q) � t + punit.lt (rep-list p) by simp
hence ?u �t (t + punit.lt (rep-list p)) ⊕ lt p by (rule splus-mono-left)
also have ... = ?v by (simp add: lt-q splus-assoc splus-left-commute)
finally have ?u �t ?v by (simp only: rel-def )
moreover from ‹lt p addst lt q› have lt p �t lt q by (rule ord-adds-term)
ultimately show rw-rat (spp-of p) (spp-of q) by (auto simp: rw-rat-def Let-def

spp-of-def )
qed

lemma rw-rat-strict-is-strict-rewrite-ord: is-strict-rewrite-ord rw-rat-strict
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proof (rule is-strict-rewrite-ordI )
show is-rewrite-ord (λx y. ¬ rw-rat-strict y x)

unfolding rw-rat-alt[symmetric] by (fact rw-rat-is-rewrite-ord)
qed

lemma rw-add-alt: rw-add = (λp q. ¬ rw-add-strict q p)
by (intro ext, auto simp: rw-add-def rw-add-strict-def )

lemma rw-add-is-rewrite-ord: is-rewrite-ord rw-add
proof (rule is-rewrite-ordI )

show reflp rw-add by (simp add: reflp-def rw-add-def )
next

show transp rw-add by (auto simp: transp-def rw-add-def )
next

fix p q
show rw-add p q ∨ rw-add q p by (simp only: rw-add-def ord-term-lin.linear)

next
fix p q
assume rw-add p q and rw-add q p
thus fst p = fst q unfolding rw-add-def

by simp
next

fix p q :: ′t ⇒0
′b

assume lt p addst lt q
thus rw-add (spp-of p) (spp-of q) unfolding rw-add-def spp-of-def fst-conv by

(rule ord-adds-term)
qed

lemma rw-add-strict-is-strict-rewrite-ord: is-strict-rewrite-ord rw-add-strict
proof (rule is-strict-rewrite-ordI )

show is-rewrite-ord (λx y. ¬ rw-add-strict y x)
unfolding rw-add-alt[symmetric] by (fact rw-add-is-rewrite-ord)

qed

4.2.7 Preparations for Sig-Poly-Pairs
context

fixes dgrad :: ′a ⇒ nat
begin

definition spp-rel :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t ⇒0

′b) ⇒ bool
where spp-rel sp r ←→ (r 6= 0 ∧ r ∈ dgrad-sig-set dgrad ∧ lt r = fst sp ∧ rep-list

r = snd sp)

definition spp-inv :: ( ′t × ( ′a ⇒0
′b)) ⇒ bool

where spp-inv sp ←→ Ex (spp-rel sp)

definition vec-of :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t ⇒0

′b)
where vec-of sp = (if spp-inv sp then Eps (spp-rel sp) else 0 )
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lemma spp-inv-spp-of :
assumes r 6= 0 and r ∈ dgrad-sig-set dgrad
shows spp-inv (spp-of r)
unfolding spp-inv-def spp-rel-def

proof (intro exI conjI )
show lt r = fst (spp-of r) by (simp add: spp-of-def )

next
show rep-list r = snd (spp-of r) by (simp add: spp-of-def )

qed fact+

context
fixes sp :: ′t × ( ′a ⇒0

′b)
assumes spi: spp-inv sp

begin

lemma sig-poly-rel-vec-of : spp-rel sp (vec-of sp)
proof −

from spi have eq: vec-of sp = Eps (spp-rel sp) by (simp add: vec-of-def )
from spi show ?thesis unfolding eq spp-inv-def by (rule someI-ex)

qed

lemma vec-of-nonzero: vec-of sp 6= 0
using sig-poly-rel-vec-of by (simp add: spp-rel-def )

lemma lt-vec-of : lt (vec-of sp) = fst sp
using sig-poly-rel-vec-of by (simp add: spp-rel-def )

lemma rep-list-vec-of : rep-list (vec-of sp) = snd sp
using sig-poly-rel-vec-of by (simp add: spp-rel-def )

lemma spp-of-vec-of : spp-of (vec-of sp) = sp
by (simp add: spp-of-def lt-vec-of rep-list-vec-of )

end

lemma map-spp-of-vec-of :
assumes list-all spp-inv sps
shows map (spp-of ◦ vec-of ) sps = sps

proof (rule map-idI )
fix sp
assume sp ∈ set sps
with assms have spp-inv sp by (simp add: list-all-def )
hence spp-of (vec-of sp) = sp by (rule spp-of-vec-of )
thus (spp-of ◦ vec-of ) sp = sp by simp

qed

lemma vec-of-dgrad-sig-set: vec-of sp ∈ dgrad-sig-set dgrad
proof (cases spp-inv sp)
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case True
hence spp-rel sp (vec-of sp) by (rule sig-poly-rel-vec-of )
thus ?thesis by (simp add: spp-rel-def )

next
case False
moreover have 0 ∈ dgrad-sig-set dgrad unfolding dgrad-sig-set ′-def
proof

show 0 ∈ dgrad-max-set dgrad by (rule dgrad-p-setI ) simp
next

show 0 ∈ sig-inv-set by (rule sig-inv-setI ) (simp add: term-simps)
qed
ultimately show ?thesis by (simp add: vec-of-def )

qed

lemma spp-invD-fst:
assumes spp-inv sp
shows dgrad (pp-of-term (fst sp)) ≤ dgrad-max dgrad and component-of-term

(fst sp) < length fs
proof −

from vec-of-dgrad-sig-set have dgrad (lp (vec-of sp)) ≤ dgrad-max dgrad by (rule
dgrad-sig-setD-lp)

with assms show dgrad (pp-of-term (fst sp)) ≤ dgrad-max dgrad by (simp add:
lt-vec-of )

from vec-of-dgrad-sig-set vec-of-nonzero[OF assms] have component-of-term (lt
(vec-of sp)) < length fs

by (rule dgrad-sig-setD-lt)
with assms show component-of-term (fst sp) < length fs by (simp add: lt-vec-of )

qed

lemma spp-invD-snd:
assumes dickson-grading dgrad and spp-inv sp
shows snd sp ∈ punit-dgrad-max-set dgrad

proof −
from vec-of-dgrad-sig-set[of sp] have vec-of sp ∈ dgrad-max-set dgrad by (simp

add: dgrad-sig-set ′-def )
with assms(1 ) have rep-list (vec-of sp) ∈ punit-dgrad-max-set dgrad by (rule

dgrad-max-2 )
with assms(2 ) show ?thesis by (simp add: rep-list-vec-of )

qed

lemma vec-of-inj:
assumes spp-inv sp and vec-of sp = vec-of sp ′

shows sp = sp ′

proof −
from assms(1 ) have vec-of sp 6= 0 by (rule vec-of-nonzero)
hence vec-of sp ′ 6= 0 by (simp add: assms(2 ))
hence spp-inv sp ′ by (simp add: vec-of-def split: if-split-asm)
from assms(1 ) have sp = spp-of (vec-of sp) by (simp only: spp-of-vec-of )
also have ... = spp-of (vec-of sp ′) by (simp only: assms(2 ))
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also from ‹spp-inv sp ′› have ... = sp ′ by (rule spp-of-vec-of )
finally show ?thesis .

qed

lemma spp-inv-alt: spp-inv sp ←→ (vec-of sp 6= 0 )
proof −

have spp-inv sp if vec-of sp 6= 0
proof (rule ccontr)

assume ¬ spp-inv sp
hence vec-of sp = 0 by (simp add: vec-of-def )
with that show False ..

qed
thus ?thesis by (auto dest: vec-of-nonzero)

qed

lemma spp-of-vec-of-spp-of :
assumes p ∈ dgrad-sig-set dgrad
shows spp-of (vec-of (spp-of p)) = spp-of p

proof (cases p = 0 )
case True
show ?thesis
proof (cases spp-inv (spp-of p))

case True
thus ?thesis by (rule spp-of-vec-of )

next
case False
hence vec-of (spp-of p) = 0 by (simp add: spp-inv-alt)
thus ?thesis by (simp only: True)

qed
next

case False
have spp-inv (spp-of p) unfolding spp-inv-def
proof
from False assms show spp-rel (spp-of p) p by (simp add: spp-rel-def spp-of-def )

qed
thus ?thesis by (rule spp-of-vec-of )

qed

4.2.8 Total Reduction
primrec find-sig-reducer :: ( ′t × ( ′a ⇒0

′b)) list ⇒ ′t ⇒ ′a ⇒ nat ⇒ nat option
where

find-sig-reducer [] - - - = None|
find-sig-reducer (b # bs) u t i =

(if snd b 6= 0 ∧ punit.lt (snd b) adds t ∧ (t − punit.lt (snd b)) ⊕ fst b ≺t

u then Some i
else find-sig-reducer bs u t (Suc i))

lemma find-sig-reducer-SomeD-aux:
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assumes find-sig-reducer bs u t i = Some j
shows i ≤ j and j − i < length bs

proof −
from assms have i ≤ j ∧ j − i < length bs
proof (induct bs arbitrary: i)

case Nil
thus ?case by simp

next
case (Cons b bs)
from Cons(2 ) show ?case
proof (simp split: if-split-asm)

assume find-sig-reducer bs u t (Suc i) = Some j
hence Suc i ≤ j ∧ j − Suc i < length bs by (rule Cons(1 ))
thus i ≤ j ∧ j − i < Suc (length bs) by auto

qed
qed
thus i ≤ j and j − i < length bs by simp-all

qed

lemma find-sig-reducer-SomeD ′:
assumes find-sig-reducer bs u t i = Some j and b = bs ! (j − i)
shows b ∈ set bs and snd b 6= 0 and punit.lt (snd b) adds t and (t − punit.lt

(snd b)) ⊕ fst b ≺t u
proof −

from assms(1 ) have j − i < length bs by (rule find-sig-reducer-SomeD-aux)
thus b ∈ set bs unfolding assms(2 ) by (rule nth-mem)

next
from assms have snd b 6= 0 ∧ punit.lt (snd b) adds t ∧ (t − punit.lt (snd b)) ⊕

fst b ≺t u
proof (induct bs arbitrary: i)

case Nil
from Nil(1 ) show ?case by simp

next
case (Cons a bs)
from Cons(2 ) show ?case
proof (simp split: if-split-asm)

assume i = j
with Cons(3 ) have b = a by simp
moreover assume snd a 6= 0 and punit.lt (snd a) adds t and (t − punit.lt

(snd a)) ⊕ fst a ≺t u
ultimately show ?case by simp

next
assume ∗: find-sig-reducer bs u t (Suc i) = Some j
hence Suc i ≤ j by (rule find-sig-reducer-SomeD-aux)
note Cons(3 )
also from ‹Suc i ≤ j› have (a # bs) ! (j − i) = bs ! (j − Suc i) by simp
finally have b = bs ! (j − Suc i) .
with ∗ show ?case by (rule Cons(1 ))

qed
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qed
thus snd b 6= 0 and punit.lt (snd b) adds t and (t − punit.lt (snd b)) ⊕ fst b
≺t u by simp-all
qed

corollary find-sig-reducer-SomeD:
assumes find-sig-reducer (map spp-of bs) u t 0 = Some i
shows i < length bs and rep-list (bs ! i) 6= 0 and punit.lt (rep-list (bs ! i)) adds

t
and (t − punit.lt (rep-list (bs ! i))) ⊕ lt (bs ! i) ≺t u

proof −
from assms have i − 0 < length (map spp-of bs) by (rule find-sig-reducer-SomeD-aux)
thus i < length bs by simp
hence spp-of (bs ! i) = (map spp-of bs) ! (i − 0 ) by simp
with assms have snd (spp-of (bs ! i)) 6= 0 and punit.lt (snd (spp-of (bs ! i)))

adds t
and (t − punit.lt (snd (spp-of (bs ! i)))) ⊕ fst (spp-of (bs ! i)) ≺t u
by (rule find-sig-reducer-SomeD ′)+

thus rep-list (bs ! i) 6= 0 and punit.lt (rep-list (bs ! i)) adds t
and (t − punit.lt (rep-list (bs ! i))) ⊕ lt (bs ! i) ≺t u by (simp-all add: fst-spp-of

snd-spp-of )
qed

lemma find-sig-reducer-NoneE :
assumes find-sig-reducer bs u t i = None and b ∈ set bs
assumes snd b = 0 =⇒ thesis and snd b 6= 0 =⇒ ¬ punit.lt (snd b) adds t =⇒

thesis
and snd b 6= 0 =⇒ punit.lt (snd b) adds t =⇒ ¬ (t − punit.lt (snd b)) ⊕ fst b

≺t u =⇒ thesis
shows thesis
using assms

proof (induct bs arbitrary: thesis i)
case Nil
from Nil(2 ) show ?case by simp

next
case (Cons a bs)
from Cons(2 ) have 1 : snd a = 0 ∨ ¬ punit.lt (snd a) adds t ∨ ¬ (t − punit.lt

(snd a)) ⊕ fst a ≺t u
and eq: find-sig-reducer bs u t (Suc i) = None by (simp-all split: if-splits)

from Cons(3 ) have b = a ∨ b ∈ set bs by simp
thus ?case
proof

assume b = a
show ?thesis
proof (cases snd a = 0 )

case True
show ?thesis by (rule Cons(4 ), simp add: ‹b = a› True)

next
case False
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with 1 have 2 : ¬ punit.lt (snd a) adds t ∨ ¬ (t − punit.lt (snd a)) ⊕ fst a
≺t u by simp

show ?thesis
proof (cases punit.lt (snd a) adds t)

case True
with 2 have 3 : ¬ (t − punit.lt (snd a)) ⊕ fst a ≺t u by simp
show ?thesis by (rule Cons(6 ), simp-all add: ‹b = a› ‹snd a 6= 0 › True 3 )

next
case False
show ?thesis by (rule Cons(5 ), simp-all add: ‹b = a› ‹snd a 6= 0 › False)

qed
qed

next
assume b ∈ set bs
with eq show ?thesis
proof (rule Cons(1 ))

assume snd b = 0
thus ?thesis by (rule Cons(4 ))

next
assume snd b 6= 0 and ¬ punit.lt (snd b) adds t
thus ?thesis by (rule Cons(5 ))

next
assume snd b 6= 0 and punit.lt (snd b) adds t and ¬ (t − punit.lt (snd b))

⊕ fst b ≺t u
thus ?thesis by (rule Cons(6 ))

qed
qed

qed

lemma find-sig-reducer-SomeD-red-single:
assumes t ∈ keys (rep-list p) and find-sig-reducer (map spp-of bs) (lt p) t 0 =

Some i
shows sig-red-single (≺t) (�) p (p − monom-mult (lookup (rep-list p) t / punit.lc

(rep-list (bs ! i)))
(t − punit.lt (rep-list (bs ! i))) (bs ! i)) (bs ! i) (t − punit.lt (rep-list (bs

! i)))
proof −

from assms(2 ) have punit.lt (rep-list (bs ! i)) adds t and 1 : rep-list (bs ! i) 6=
0

and 2 : (t − punit.lt (rep-list (bs ! i))) ⊕ lt (bs ! i) ≺t lt p
by (rule find-sig-reducer-SomeD)+

from this(1 ) have eq: t − punit.lt (rep-list (bs ! i)) + punit.lt (rep-list (bs ! i))
= t

by (rule adds-minus)
from assms(1 ) have 3 : t � punit.lt (rep-list p) by (rule punit.lt-max-keys)
show ?thesis by (rule sig-red-singleI , simp-all add: eq 1 2 3 assms(1 ))

qed

corollary find-sig-reducer-SomeD-red:
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assumes t ∈ keys (rep-list p) and find-sig-reducer (map spp-of bs) (lt p) t 0 =
Some i

shows sig-red (≺t) (�) (set bs) p (p − monom-mult (lookup (rep-list p) t /
punit.lc (rep-list (bs ! i)))

(t − punit.lt (rep-list (bs ! i))) (bs ! i))
unfolding sig-red-def

proof (intro bexI exI , rule find-sig-reducer-SomeD-red-single)
from assms(2 ) have i − 0 < length (map spp-of bs) by (rule find-sig-reducer-SomeD-aux)
hence i < length bs by simp
thus bs ! i ∈ set bs by (rule nth-mem)

qed fact+

context
fixes bs :: ( ′t ⇒0

′b) list
begin

definition sig-trd-term :: ( ′a ⇒ nat) ⇒ (( ′a × ( ′t ⇒0
′b)) × ( ′a × ( ′t ⇒0

′b)))
set

where sig-trd-term d = {(x, y). punit.dgrad-p-set-le d {rep-list (snd x)}
(insert (rep-list (snd y)) (rep-list ‘ set bs)) ∧

fst x ∈ keys (rep-list (snd x)) ∧ fst y ∈ keys (rep-list
(snd y)) ∧

fst x ≺ fst y}

lemma sig-trd-term-wf :
assumes dickson-grading d
shows wf (sig-trd-term d)

proof (rule wfI-min)
fix x :: ′a × ( ′t ⇒0

′b) and Q
assume x ∈ Q
show ∃ z∈Q. ∀ y. (y, z) ∈ sig-trd-term d −→ y /∈ Q
proof (cases fst x ∈ keys (rep-list (snd x)))

case True
define X where X = rep-list ‘ set bs
let ?A = insert (rep-list (snd x)) X
have finite X unfolding X-def by simp
hence finite ?A by (simp only: finite-insert)

then obtain m where A: ?A ⊆ punit.dgrad-p-set d m by (rule punit.dgrad-p-set-exhaust)
hence x: rep-list (snd x) ∈ punit.dgrad-p-set d m and X : X ⊆ punit.dgrad-p-set

d m
by simp-all

let ?Q = {q ∈ Q. rep-list (snd q) ∈ punit.dgrad-p-set d m ∧ fst q ∈ keys (rep-list
(snd q))}

from ‹x ∈ Q› x True have x ∈ ?Q by simp
have ∀Q x . x ∈ Q ∧ Q ⊆ {q. d q ≤ m} −→ (∃ z∈Q. ∀ y. y ≺ z −→ y /∈ Q)

by (rule wfp-on-imp-minimal, rule wfp-on-ord-strict, fact assms)
hence 1 : fst x ∈ fst ‘ ?Q =⇒ fst ‘ ?Q ⊆ {q. d q ≤ m} =⇒ (∃ z∈fst ‘ ?Q. ∀ y.

y ≺ z −→ y /∈ fst ‘ ?Q)
by meson
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have fst x ∈ fst ‘ ?Q by (rule, fact refl, fact)
moreover have fst ‘ ?Q ⊆ {q. d q ≤ m}
proof −

{
fix q

assume a: rep-list (snd q) ∈ punit.dgrad-p-set d m and b: fst q ∈ keys
(rep-list (snd q))

from a have keys (rep-list (snd q)) ⊆ dgrad-set d m by (simp add:
punit.dgrad-p-set-def )

with b have fst q ∈ dgrad-set d m ..
hence d (fst q) ≤ m by (simp add: dgrad-set-def )

}
thus ?thesis by auto

qed
ultimately have ∃ z∈fst ‘ ?Q. ∀ y. y ≺ z −→ y /∈ fst ‘ ?Q by (rule 1 )
then obtain z0 where z0 ∈ fst ‘ ?Q and 2 :

∧
y. y ≺ z0 =⇒ y /∈ fst ‘ ?Q by

blast
from this(1 ) obtain z where z ∈ ?Q and z0 : z0 = fst z ..
hence z ∈ Q and z: rep-list (snd z) ∈ punit.dgrad-p-set d m by simp-all
from this(1 ) show ∃ z∈Q. ∀ y. (y, z) ∈ sig-trd-term d −→ y /∈ Q
proof

show ∀ y. (y, z) ∈ sig-trd-term d −→ y /∈ Q
proof (intro allI impI )

fix y
assume (y, z) ∈ sig-trd-term d
hence 3 : punit.dgrad-p-set-le d {rep-list (snd y)} (insert (rep-list (snd z))

X)
and 4 : fst y ∈ keys (rep-list (snd y)) and fst y ≺ z0
by (simp-all add: sig-trd-term-def X-def z0 )

from this(3 ) have fst y /∈ fst ‘ ?Q by (rule 2 )
hence y /∈ Q ∨ rep-list (snd y) /∈ punit.dgrad-p-set d m ∨ fst y /∈ keys

(rep-list (snd y))
by auto

thus y /∈ Q
proof (elim disjE)

assume 5 : rep-list (snd y) /∈ punit.dgrad-p-set d m
from z X have insert (rep-list (snd z)) X ⊆ punit.dgrad-p-set d m by

simp
with 3 have {rep-list (snd y)} ⊆ punit.dgrad-p-set d m by (rule

punit.dgrad-p-set-le-dgrad-p-set)
hence rep-list (snd y) ∈ punit.dgrad-p-set d m by simp
with 5 show ?thesis ..

next
assume fst y /∈ keys (rep-list (snd y))
thus ?thesis using 4 ..

qed
qed

qed
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next
case False
from ‹x ∈ Q› show ?thesis
proof

show ∀ y. (y, x) ∈ sig-trd-term d −→ y /∈ Q
proof (intro allI impI )

fix y
assume (y, x) ∈ sig-trd-term d
hence fst x ∈ keys (rep-list (snd x)) by (simp add: sig-trd-term-def )
with False show y /∈ Q ..

qed
qed

qed
qed

function (domintros) sig-trd-aux :: ( ′a × ( ′t ⇒0
′b)) ⇒ ( ′t ⇒0

′b) where
sig-trd-aux (t, p) =
(let p ′ =
(case find-sig-reducer (map spp-of bs) (lt p) t 0 of

None ⇒ p
| Some i ⇒ p − monom-mult (lookup (rep-list p) t / punit.lc (rep-list (bs !

i)))
(t − punit.lt (rep-list (bs ! i))) (bs ! i));

p ′′ = punit.lower (rep-list p ′) t in
if p ′′ = 0 then p ′ else sig-trd-aux (punit.lt p ′′, p ′))

by auto

lemma sig-trd-aux-domI :
assumes fst args0 ∈ keys (rep-list (snd args0 ))
shows sig-trd-aux-dom args0

proof −
from ex-hgrad obtain d:: ′a ⇒ nat where dickson-grading d ∧ hom-grading d ..
hence dg: dickson-grading d ..
hence wf (sig-trd-term d) by (rule sig-trd-term-wf )
thus ?thesis using assms
proof (induct args0 )

case (less args)
obtain t p where args: args = (t, p) using prod.exhaust by blast
with less(1 ) have 1 :

∧
s q. ((s, q), (t, p)) ∈ sig-trd-term d =⇒ s ∈ keys (rep-list

q) =⇒ sig-trd-aux-dom (s, q)
using prod.exhaust by auto

from less(2 ) have t ∈ keys (rep-list p) by (simp add: args)
show ?case unfolding args
proof (rule sig-trd-aux.domintros)

define p ′ where p ′ = (case find-sig-reducer (map spp-of bs) (lt p) t 0 of
None ⇒ p
| Some i ⇒ p −

monom-mult (lookup (rep-list p) t / punit.lc (rep-list
(bs ! i)))
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(t − punit.lt (rep-list (bs ! i))) (bs ! i))
define p ′′ where p ′′ = punit.lower (rep-list p ′) t
assume p ′′ 6= 0
from ‹p ′′ 6= 0 › have punit.lt p ′′ ∈ keys p ′′ by (rule punit.lt-in-keys)
also have ... ⊆ keys (rep-list p ′) by (auto simp: p ′′-def punit.keys-lower)
finally have punit.lt p ′′ ∈ keys (rep-list p ′) .
with - show sig-trd-aux-dom (punit.lt p ′′, p ′)
proof (rule 1 )
have punit.dgrad-p-set-le d {rep-list p ′} (insert (rep-list p) (rep-list ‘ set bs))
proof (cases find-sig-reducer (map spp-of bs) (lt p) t 0 )

case None
hence p ′ = p by (simp add: p ′-def )
hence {rep-list p ′} ⊆ insert (rep-list p) (rep-list ‘ set bs) by simp
thus ?thesis by (rule punit.dgrad-p-set-le-subset)

next
case (Some i)
hence p ′: p ′ = p − monom-mult (lookup (rep-list p) t / punit.lc (rep-list

(bs ! i)))
(t − punit.lt (rep-list (bs ! i))) (bs ! i) by (simp add:

p ′-def )
have sig-red (≺t) (�) (set bs) p p ′ unfolding p ′ using ‹t ∈ keys (rep-list

p)› Some
by (rule find-sig-reducer-SomeD-red)

hence punit.red (rep-list ‘ set bs) (rep-list p) (rep-list p ′) by (rule sig-red-red)
with dg show ?thesis by (rule punit.dgrad-p-set-le-red)

qed
moreover note ‹punit.lt p ′′ ∈ keys (rep-list p ′)› ‹t ∈ keys (rep-list p)›
moreover from ‹p ′′ 6= 0 › have punit.lt p ′′ ≺ t unfolding p ′′-def by (rule

punit.lt-lower-less)
ultimately show ((punit.lt p ′′, p ′), t, p) ∈ sig-trd-term d by (simp add:

sig-trd-term-def )
qed

qed
qed

qed

definition sig-trd :: ( ′t ⇒0
′b) ⇒ ( ′t ⇒0

′b)
where sig-trd p = (if rep-list p = 0 then p else sig-trd-aux (punit.lt (rep-list p),

p))

lemma sig-trd-aux-red-rtrancl:
assumes fst args0 ∈ keys (rep-list (snd args0 ))
shows (sig-red (≺t) (�) (set bs))∗∗ (snd args0 ) (sig-trd-aux args0 )

proof −
from assms have sig-trd-aux-dom args0 by (rule sig-trd-aux-domI )
thus ?thesis using assms
proof (induct args0 rule: sig-trd-aux.pinduct)

case (1 t p)
define p ′ where p ′ = (case find-sig-reducer (map spp-of bs) (lt p) t 0 of
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None ⇒ p
| Some i ⇒ p −

monom-mult (lookup (rep-list p) t / punit.lc (rep-list (bs
! i)))

(t − punit.lt (rep-list (bs ! i))) (bs ! i))
define p ′′ where p ′′ = punit.lower (rep-list p ′) t
from 1 (3 ) have t ∈ keys (rep-list p) by simp
have ∗: (sig-red (≺t) (�) (set bs))∗∗ p p ′

proof (cases find-sig-reducer (map spp-of bs) (lt p) t 0 )
case None
hence p ′ = p by (simp add: p ′-def )
thus ?thesis by simp

next
case (Some i)
hence p ′: p ′ = p − monom-mult (lookup (rep-list p) t / punit.lc (rep-list (bs

! i)))
(t − punit.lt (rep-list (bs ! i))) (bs ! i) by (simp add:

p ′-def )
have sig-red (≺t) (�) (set bs) p p ′ unfolding p ′ using ‹t ∈ keys (rep-list p)›

Some
by (rule find-sig-reducer-SomeD-red)

thus ?thesis ..
qed
show ?case

proof (simp add: sig-trd-aux.psimps[OF 1 (1 )] Let-def p ′-def [symmetric] p ′′-def [symmetric]
∗, intro impI )

assume p ′′ 6= 0
from ∗ have (sig-red (≺t) (�) (set bs))∗∗ p (snd (punit.lt p ′′, p ′)) by (simp

only: snd-conv)
moreover have (sig-red (≺t) (�) (set bs))∗∗ (snd (punit.lt p ′′, p ′)) (sig-trd-aux

(punit.lt p ′′, p ′))
using p ′-def p ′′-def ‹p ′′ 6= 0 ›

proof (rule 1 (2 ))
from ‹p ′′ 6= 0 › have punit.lt p ′′ ∈ keys p ′′ by (rule punit.lt-in-keys)
also have ... ⊆ keys (rep-list p ′) by (auto simp: p ′′-def punit.keys-lower)
finally show fst (punit.lt p ′′, p ′) ∈ keys (rep-list (snd (punit.lt p ′′, p ′))) by

simp
qed

ultimately show (sig-red (≺t) (�) (set bs))∗∗ p (sig-trd-aux (punit.lt p ′′, p ′))
by (rule rtranclp-trans)

qed
qed

qed

corollary sig-trd-red-rtrancl: (sig-red (≺t) (�) (set bs))∗∗ p (sig-trd p)
unfolding sig-trd-def

proof (split if-split, intro conjI impI rtranclp.rtrancl-refl)
let ?args = (punit.lt (rep-list p), p)
assume rep-list p 6= 0
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hence punit.lt (rep-list p) ∈ keys (rep-list p) by (rule punit.lt-in-keys)
hence fst (punit.lt (rep-list p), p) ∈ keys (rep-list (snd (punit.lt (rep-list p), p)))

by (simp only: fst-conv snd-conv)
hence (sig-red (≺t) (�) (set bs))∗∗ (snd ?args) (sig-trd-aux ?args) by (rule

sig-trd-aux-red-rtrancl)
thus (sig-red (≺t) (�) (set bs))∗∗ p (sig-trd-aux (punit.lt (rep-list p), p)) by

(simp only: snd-conv)
qed

lemma sig-trd-aux-irred:
assumes fst args0 ∈ keys (rep-list (snd args0 ))

and
∧

b s. b ∈ set bs =⇒ rep-list b 6= 0 =⇒ fst args0 ≺ s + punit.lt (rep-list
b) =⇒

s ⊕ lt b ≺t lt (snd (args0 )) =⇒ lookup (rep-list (snd args0 )) (s +
punit.lt (rep-list b)) = 0

shows ¬ is-sig-red (≺t) (�) (set bs) (sig-trd-aux args0 )
proof −

from assms(1 ) have sig-trd-aux-dom args0 by (rule sig-trd-aux-domI )
thus ?thesis using assms
proof (induct args0 rule: sig-trd-aux.pinduct)

case (1 t p)
define p ′ where p ′ = (case find-sig-reducer (map spp-of bs) (lt p) t 0 of

None ⇒ p
| Some i ⇒ p −

monom-mult (lookup (rep-list p) t / punit.lc (rep-list (bs
! i)))

(t − punit.lt (rep-list (bs ! i))) (bs ! i))
define p ′′ where p ′′ = punit.lower (rep-list p ′) t
from 1 (3 ) have t ∈ keys (rep-list p) by simp
from 1 (4 ) have a: b ∈ set bs =⇒ rep-list b 6= 0 =⇒ t ≺ s + punit.lt (rep-list

b) =⇒
s ⊕ lt b ≺t lt p =⇒ lookup (rep-list p) (s + punit.lt (rep-list b))

= 0
for b s by (simp only: fst-conv snd-conv)

have lt p ′ = lt p ∧ (∀ s. t ≺ s −→ lookup (rep-list p ′) s = lookup (rep-list p) s)
proof (cases find-sig-reducer (map spp-of bs) (lt p) t 0 )

case None
thus ?thesis by (simp add: p ′-def )

next
case (Some i)
hence p ′: p ′ = p − monom-mult (lookup (rep-list p) t / punit.lc (rep-list (bs

! i)))
(t − punit.lt (rep-list (bs ! i))) (bs ! i) by (simp add:

p ′-def )
have sig-red-single (≺t) (�) p p ′ (bs ! i) (t − punit.lt (rep-list (bs ! i)))
unfolding p ′ using ‹t ∈ keys (rep-list p)› Some by (rule find-sig-reducer-SomeD-red-single)
hence r : punit.red-single (rep-list p) (rep-list p ′) (rep-list (bs ! i)) (t − punit.lt

(rep-list (bs ! i)))
and lt p ′ = lt p by (rule sig-red-single-red-single, rule sig-red-single-regular-lt)
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have ∀ s. t ≺ s −→ lookup (rep-list p ′) s = lookup (rep-list p) s
proof (intro allI impI )

fix s
assume t ≺ s

from Some have punit.lt (rep-list (bs ! i)) adds t by (rule find-sig-reducer-SomeD)
hence eq0 : (t − punit.lt (rep-list (bs ! i))) + punit.lt (rep-list (bs ! i)) = t

(is ?t = t)
by (rule adds-minus)

from ‹t ≺ s› have lookup (rep-list p ′) s = lookup (punit.higher (rep-list p ′)
?t) s

by (simp add: eq0 punit.lookup-higher-when)
also from r have ... = lookup (punit.higher (rep-list p) ?t) s

by (simp add: punit.red-single-higher [simplified])
also from ‹t ≺ s› have ... = lookup (rep-list p) s by (simp add: eq0

punit.lookup-higher-when)
finally show lookup (rep-list p ′) s = lookup (rep-list p) s .

qed
with ‹lt p ′ = lt p› show ?thesis ..

qed
hence lt-p ′: lt p ′ = lt p and b:

∧
s. t ≺ s =⇒ lookup (rep-list p ′) s = lookup

(rep-list p) s
by blast+

have c: lookup (rep-list p ′) (s + punit.lt (rep-list b)) = 0
if b ∈ set bs and rep-list b 6= 0 and t � s + punit.lt (rep-list b) and s ⊕ lt

b ≺t lt p ′ for b s
proof (cases t ≺ s + punit.lt (rep-list b))

case True
hence lookup (rep-list p ′) (s + punit.lt (rep-list b)) =

lookup (rep-list p) (s + punit.lt (rep-list b)) by (rule b)
also from that(1 , 2 ) True that(4 ) have ... = 0 unfolding lt-p ′ by (rule a)
finally show ?thesis .

next
case False
with that(3 ) have t: t = s + punit.lt (rep-list b) by simp
show ?thesis
proof (cases find-sig-reducer (map spp-of bs) (lt p) t 0 )

case None
from that(1 ) have spp-of b ∈ set (map spp-of bs) by fastforce
with None show ?thesis
proof (rule find-sig-reducer-NoneE)

assume snd (spp-of b) = 0
with that(2 ) show ?thesis by (simp add: snd-spp-of )

next
assume ¬ punit.lt (snd (spp-of b)) adds t
thus ?thesis by (simp add: snd-spp-of t)

next
assume ¬ (t − punit.lt (snd (spp-of b))) ⊕ fst (spp-of b) ≺t lt p
with that(4 ) show ?thesis by (simp add: fst-spp-of snd-spp-of t lt-p ′)

qed
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next
case (Some i)
hence p ′: p ′ = p − monom-mult (lookup (rep-list p) t / punit.lc (rep-list

(bs ! i)))
(t − punit.lt (rep-list (bs ! i))) (bs ! i) by (simp add:

p ′-def )
have sig-red-single (≺t) (�) p p ′ (bs ! i) (t − punit.lt (rep-list (bs ! i)))

unfolding p ′ using ‹t ∈ keys (rep-list p)› Some by (rule find-sig-reducer-SomeD-red-single)
hence r : punit.red-single (rep-list p) (rep-list p ′) (rep-list (bs ! i)) (t −

punit.lt (rep-list (bs ! i)))
by (rule sig-red-single-red-single)

from Some have punit.lt (rep-list (bs ! i)) adds t by (rule find-sig-reducer-SomeD)
hence eq0 : (t − punit.lt (rep-list (bs ! i))) + punit.lt (rep-list (bs ! i)) = t

(is ?t = t)
by (rule adds-minus)

from r have lookup (rep-list p ′) ((t − punit.lt (rep-list (bs ! i))) + punit.lt
(rep-list (bs ! i))) = 0

by (rule punit.red-single-lookup[simplified])
thus ?thesis by (simp only: eq0 t[symmetric])

qed
qed
show ?case

proof (simp add: sig-trd-aux.psimps[OF 1 (1 )] Let-def p ′-def [symmetric] p ′′-def [symmetric],
intro conjI impI )

assume p ′′ = 0
show ¬ is-sig-red (≺t) (�) (set bs) p ′

proof
assume is-sig-red (≺t) (�) (set bs) p ′

then obtain b s where b ∈ set bs and s ∈ keys (rep-list p ′) and rep-list b
6= 0

and adds: punit.lt (rep-list b) adds s and s ⊕ lt b ≺t punit.lt (rep-list b)
⊕ lt p ′

by (rule is-sig-red-addsE)
let ?s = s − punit.lt (rep-list b)

from adds have eq0 : ?s + punit.lt (rep-list b) = s by (simp add: adds-minus)
show False
proof (cases t � s)

case True
note ‹b ∈ set bs› ‹rep-list b 6= 0 ›
moreover from True have t � ?s + punit.lt (rep-list b) by (simp only:

eq0 )
moreover from adds ‹s ⊕ lt b ≺t punit.lt (rep-list b) ⊕ lt p ′› have ?s ⊕

lt b ≺t lt p ′

by (simp add: term-is-le-rel-minus)
ultimately have lookup (rep-list p ′) (?s + punit.lt (rep-list b)) = 0 by

(rule c)
hence s /∈ keys (rep-list p ′) by (simp add: eq0 in-keys-iff )
thus ?thesis using ‹s ∈ keys (rep-list p ′)› ..

next

134



case False
hence s ≺ t by simp
hence lookup (rep-list p ′) s = lookup (punit.lower (rep-list p ′) t) s

by (simp add: punit.lookup-lower-when)
also from ‹p ′′ = 0 › have ... = 0 by (simp add: p ′′-def )
finally have s /∈ keys (rep-list p ′) by (simp add: in-keys-iff )
thus ?thesis using ‹s ∈ keys (rep-list p ′)› ..

qed
qed

next
assume p ′′ 6= 0
with p ′-def p ′′-def show ¬ is-sig-red (≺t) (�) (set bs) (sig-trd-aux (punit.lt

p ′′, p ′))
proof (rule 1 (2 ))

from ‹p ′′ 6= 0 › have punit.lt p ′′ ∈ keys p ′′ by (rule punit.lt-in-keys)
also have ... ⊆ keys (rep-list p ′) by (auto simp: p ′′-def punit.keys-lower)
finally show fst (punit.lt p ′′, p ′) ∈ keys (rep-list (snd (punit.lt p ′′, p ′))) by

simp
next

fix b s
assume b ∈ set bs and rep-list b 6= 0
assume fst (punit.lt p ′′, p ′) ≺ s + punit.lt (rep-list b)

and s ⊕ lt b ≺t lt (snd (punit.lt p ′′, p ′))
hence punit.lt p ′′ ≺ s + punit.lt (rep-list b) and s ⊕ lt b ≺t lt p ′ by simp-all
have lookup (rep-list p ′) (s + punit.lt (rep-list b)) = 0
proof (cases t � s + punit.lt (rep-list b))

case True
with ‹b ∈ set bs› ‹rep-list b 6= 0 › show ?thesis using ‹s ⊕ lt b ≺t lt p ′›

by (rule c)
next

case False
hence s + punit.lt (rep-list b) ≺ t by simp
hence lookup (rep-list p ′) (s + punit.lt (rep-list b)) =

lookup (punit.lower (rep-list p ′) t) (s + punit.lt (rep-list b))
by (simp add: punit.lookup-lower-when)

also have ... = 0
proof (rule ccontr)
assume lookup (punit.lower (rep-list p ′) t) (s + punit.lt (rep-list b)) 6= 0
hence s + punit.lt (rep-list b) � punit.lt (punit.lower (rep-list p ′) t)

by (rule punit.lt-max)
also have ... = punit.lt p ′′ by (simp only: p ′′-def )

finally show False using ‹punit.lt p ′′ ≺ s + punit.lt (rep-list b)› by
simp

qed
finally show ?thesis .

qed
thus lookup (rep-list (snd (punit.lt p ′′, p ′))) (s + punit.lt (rep-list b)) = 0

by (simp only: snd-conv)
qed
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qed
qed

qed

corollary sig-trd-irred: ¬ is-sig-red (≺t) (�) (set bs) (sig-trd p)
unfolding sig-trd-def

proof (split if-split, intro conjI impI )
assume rep-list p = 0
show ¬ is-sig-red (≺t) (�) (set bs) p
proof

assume is-sig-red (≺t) (�) (set bs) p
then obtain t where t ∈ keys (rep-list p) by (rule is-sig-red-addsE)
thus False by (simp add: ‹rep-list p = 0 ›)

qed
next

assume rep-list p 6= 0
show ¬ is-sig-red (≺t) (�) (set bs) (sig-trd-aux (punit.lt (rep-list p), p))
proof (rule sig-trd-aux-irred)

from ‹rep-list p 6= 0 › have punit.lt (rep-list p) ∈ keys (rep-list p) by (rule
punit.lt-in-keys)

thus fst (punit.lt (rep-list p), p) ∈ keys (rep-list (snd (punit.lt (rep-list p), p)))
by simp

next
fix b s
assume fst (punit.lt (rep-list p), p) ≺ s + punit.lt (rep-list b)
thus lookup (rep-list (snd (punit.lt (rep-list p), p))) (s + punit.lt (rep-list b))

= 0
using punit.lt-max by force

qed
qed

end

context
fixes bs :: ( ′t × ( ′a ⇒0

′b)) list
begin

context
fixes v :: ′t

begin

fun sig-trd-spp-body :: (( ′a ⇒0
′b) × ( ′a ⇒0

′b)) ⇒ (( ′a ⇒0
′b) × ( ′a ⇒0

′b))
where

sig-trd-spp-body (p, r) =
(case find-sig-reducer bs v (punit.lt p) 0 of

None ⇒ (punit.tail p, r + monomial (punit.lc p) (punit.lt p))
| Some i ⇒ let b = snd (bs ! i) in

(punit.tail p − punit.monom-mult (punit.lc p / punit.lc b) (punit.lt p −
punit.lt b) (punit.tail b), r))
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definition sig-trd-spp-aux :: (( ′a ⇒0
′b) × ( ′a ⇒0

′b)) ⇒ ( ′a ⇒0
′b)

where sig-trd-spp-aux-def [code del]: sig-trd-spp-aux = tailrec.fun (λx. fst x =
0 ) snd sig-trd-spp-body

lemma sig-trd-spp-aux-simps [code]:
sig-trd-spp-aux (p, r) = (if p = 0 then r else sig-trd-spp-aux (sig-trd-spp-body (p,

r)))
by (simp add: sig-trd-spp-aux-def tailrec.simps)

end

fun sig-trd-spp :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) where
sig-trd-spp (v, p) = (v, sig-trd-spp-aux v (p, 0 ))

We define function sig-trd-spp, operating on sig-poly-pairs, already here, to
have its definition in the right context. Lemmas are proved about it below
in Section Sig−Poly−Pairs.
end

4.2.9 Koszul Syzygies

A Koszul syzygy of the list fs of scalar polynomials is a syzygy of the form fs
! i � monomial 1 (term-of-pair (0 , j)) − fs ! j � monomial 1 (term-of-pair
(0 , i)), for i < j and j < length fs.
primrec Koszul-syz-sigs-aux :: ( ′a ⇒0

′b) list ⇒ nat ⇒ ′t list where
Koszul-syz-sigs-aux [] i = [] |
Koszul-syz-sigs-aux (b # bs) i =

map-idx (λb ′ j. ord-term-lin.max (term-of-pair (punit.lt b, j)) (term-of-pair
(punit.lt b ′, i))) bs (Suc i) @

Koszul-syz-sigs-aux bs (Suc i)

definition Koszul-syz-sigs :: ( ′a ⇒0
′b) list ⇒ ′t list

where Koszul-syz-sigs bs = filter-min (addst) (Koszul-syz-sigs-aux bs 0 )

fun new-syz-sigs :: ′t list ⇒ ( ′t ⇒0
′b) list ⇒ (( ′t ⇒0

′b) × ( ′t ⇒0
′b)) + nat ⇒

′t list
where

new-syz-sigs ss bs (Inl (a, b)) = ss |
new-syz-sigs ss bs (Inr j) =
(if is-pot-ord then

filter-min-append (addst) ss (filter-min (addst) (map (λb. term-of-pair
(punit.lt (rep-list b), j)) bs))

else ss)

fun new-syz-sigs-spp :: ′t list ⇒ ( ′t × ( ′a ⇒0
′b)) list ⇒ (( ′t × ( ′a ⇒0

′b)) × ( ′t
× ( ′a ⇒0

′b))) + nat ⇒ ′t list
where
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new-syz-sigs-spp ss bs (Inl (a, b)) = ss |
new-syz-sigs-spp ss bs (Inr j) =
(if is-pot-ord then

filter-min-append (addst) ss (filter-min (addst) (map (λb. term-of-pair
(punit.lt (snd b), j)) bs))

else ss)

lemma Koszul-syz-sigs-auxI :
assumes i < j and j < length bs
shows ord-term-lin.max (term-of-pair (punit.lt (bs ! i), k + j)) (term-of-pair

(punit.lt (bs ! j), k + i)) ∈
set (Koszul-syz-sigs-aux bs k)

using assms
proof (induct bs arbitrary: i j k)

case Nil
from Nil(2 ) show ?case by simp

next
case (Cons b bs)
from Cons(2 ) obtain j0 where j: j = Suc j0 by (meson lessE)
from Cons(3 ) have j0 < length bs by (simp add: j)
let ?A = (λj. ord-term-lin.max (term-of-pair (punit.lt b, Suc (j + k))) (term-of-pair

(punit.lt (bs ! j), k))) ‘
{0 ..<length bs}

let ?B = set (Koszul-syz-sigs-aux bs (Suc k))
show ?case
proof (cases i)

case 0
from ‹j0 < length bs› have j0 ∈ {0 ..<length bs} by simp
hence ord-term-lin.max (term-of-pair (punit.lt b, Suc (j0 + k)))

(term-of-pair (punit.lt (bs ! j0 ), k)) ∈ ?A by (rule imageI )
thus ?thesis by (simp add: ‹i = 0 › j set-map-idx ac-simps)

next
case (Suc i0 )
from Cons(2 ) have i0 < j0 by (simp add: ‹i = Suc i0 › j)
hence ord-term-lin.max (term-of-pair (punit.lt (bs ! i0 ), Suc k + j0 ))

(term-of-pair (punit.lt (bs ! j0 ), Suc k + i0 )) ∈ ?B
using ‹j0 < length bs› by (rule Cons(1 ))

thus ?thesis by (simp add: ‹i = Suc i0 › j set-map-idx ac-simps)
qed

qed

lemma Koszul-syz-sigs-auxE :
assumes v ∈ set (Koszul-syz-sigs-aux bs k)
obtains i j where i < j and j < length bs

and v = ord-term-lin.max (term-of-pair (punit.lt (bs ! i), k + j)) (term-of-pair
(punit.lt (bs ! j), k + i))

using assms
proof (induct bs arbitrary: k thesis)

case Nil
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from Nil(2 ) show ?case by simp
next

case (Cons b bs)
have v ∈ (λj. ord-term-lin.max (term-of-pair (punit.lt b, Suc (j + k))) (term-of-pair

(punit.lt (bs ! j), k))) ‘
{0 ..<length bs} ∪ set (Koszul-syz-sigs-aux bs (Suc k)) (is v ∈ ?A ∪

?B)
using Cons(3 ) by (simp add: set-map-idx)

thus ?case
proof

assume v ∈ ?A
then obtain j where j ∈ {0 ..<length bs}

and v: v = ord-term-lin.max (term-of-pair (punit.lt b, Suc (j + k)))
(term-of-pair (punit.lt (bs ! j), k)) ..

from this(1 ) have j < length bs by simp
show ?thesis
proof (rule Cons(2 ))

show 0 < Suc j by simp
next

from ‹j < length bs› show Suc j < length (b # bs) by simp
next

show v = ord-term-lin.max (term-of-pair (punit.lt ((b # bs) ! 0 ), k + Suc
j))

(term-of-pair (punit.lt ((b # bs) ! Suc j), k + 0 ))
by (simp add: v ac-simps)

qed
next

assume v ∈ ?B
obtain i j where i < j and j < length bs

and v: v = ord-term-lin.max (term-of-pair (punit.lt (bs ! i), Suc k + j))
(term-of-pair (punit.lt (bs ! j), Suc k + i))

by (rule Cons(1 ), assumption, rule ‹v ∈ ?B›)
show ?thesis
proof (rule Cons(2 ))

from ‹i < j› show Suc i < Suc j by simp
next

from ‹j < length bs› show Suc j < length (b # bs) by simp
next

show v = ord-term-lin.max (term-of-pair (punit.lt ((b # bs) ! Suc i), k +
Suc j))

(term-of-pair (punit.lt ((b # bs) ! Suc j), k + Suc i))
by (simp add: v)

qed
qed

qed

lemma lt-Koszul-syz-comp:
assumes 0 /∈ set fs and i < length fs
shows lt ((fs ! i) � monomial 1 (term-of-pair (0 , j))) = term-of-pair (punit.lt
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(fs ! i), j)
proof −

from assms(2 ) have fs ! i ∈ set fs by (rule nth-mem)
with assms(1 ) have fs ! i 6= 0 by auto
thus ?thesis by (simp add: lt-mult-scalar-monomial-right splus-def term-simps)

qed

lemma Koszul-syz-nonzero-lt:
assumes rep-list a 6= 0 and rep-list b 6= 0 and component-of-term (lt a) <

component-of-term (lt b)
shows rep-list a � b − rep-list b � a 6= 0 (is ?p − ?q 6= 0 )

and lt (rep-list a � b − rep-list b � a) =
ord-term-lin.max (punit.lt (rep-list a) ⊕ lt b) (punit.lt (rep-list b) ⊕ lt a)

(is - = ?r)
proof −

from assms(2 ) have b 6= 0 by (auto simp: rep-list-zero)
with assms(1 ) have lt-p: lt ?p = punit.lt (rep-list a) ⊕ lt b by (rule lt-mult-scalar)
from assms(1 ) have a 6= 0 by (auto simp: rep-list-zero)
with assms(2 ) have lt-q: lt ?q = punit.lt (rep-list b) ⊕ lt a by (rule lt-mult-scalar)
from assms(3 ) have component-of-term (lt ?p) 6= component-of-term (lt ?q)

by (simp add: lt-p lt-q component-of-term-splus)
hence lt ?p 6= lt ?q by auto
hence lt (?p − ?q) = ord-term-lin.max (lt ?p) (lt ?q) by (rule lt-minus-distinct-eq-max)
also have ... = ?r by (simp only: lt-p lt-q)
finally show lt (?p − ?q) = ?r .

from ‹lt ?p 6= lt ?q› show ?p − ?q 6= 0 by auto
qed

lemma Koszul-syz-is-syz: rep-list (rep-list a � b − rep-list b � a) = 0
by (simp add: rep-list-minus rep-list-mult-scalar)

lemma dgrad-sig-set-closed-Koszul-syz:
assumes dickson-grading dgrad and a ∈ dgrad-sig-set dgrad and b ∈ dgrad-sig-set

dgrad
shows rep-list a � b − rep-list b � a ∈ dgrad-sig-set dgrad

proof −
from assms(2 , 3 ) have 1 : a ∈ dgrad-max-set dgrad and 2 : b ∈ dgrad-max-set

dgrad
by (simp-all add: dgrad-sig-set ′-def )

show ?thesis
by (intro dgrad-sig-set-closed-minus dgrad-sig-set-closed-mult-scalar dgrad-max-2

assms 1 2 )
qed

corollary Koszul-syz-is-syz-sig:
assumes dickson-grading dgrad and a ∈ dgrad-sig-set dgrad and b ∈ dgrad-sig-set

dgrad
and rep-list a 6= 0 and rep-list b 6= 0 and component-of-term (lt a) < compo-
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nent-of-term (lt b)
shows is-syz-sig dgrad (ord-term-lin.max (punit.lt (rep-list a) ⊕ lt b) (punit.lt

(rep-list b) ⊕ lt a))
proof (rule is-syz-sigI )

from assms(4−6 ) show rep-list a � b − rep-list b � a 6= 0
and lt (rep-list a � b − rep-list b � a) =

ord-term-lin.max (punit.lt (rep-list a) ⊕ lt b) (punit.lt (rep-list b) ⊕ lt a)
by (rule Koszul-syz-nonzero-lt)+

next
from assms(1−3 ) show rep-list a � b − rep-list b � a ∈ dgrad-sig-set dgrad

by (rule dgrad-sig-set-closed-Koszul-syz)
qed (fact Koszul-syz-is-syz)

corollary lt-Koszul-syz-in-Koszul-syz-sigs-aux:
assumes distinct fs and 0 /∈ set fs and i < j and j < length fs
shows lt ((fs ! i) � monomial 1 (term-of-pair (0 , j)) − (fs ! j) � monomial 1

(term-of-pair (0 , i))) ∈
set (Koszul-syz-sigs-aux fs 0 ) (is ?l ∈ ?K )

proof −
let ?a = monomial (1 :: ′b) (term-of-pair (0 , i))
let ?b = monomial (1 :: ′b) (term-of-pair (0 , j))
from assms(3 , 4 ) have i < length fs by simp
with assms(1 ) have a: rep-list ?a = fs ! i by (simp add: rep-list-monomial

term-simps)
from assms(1 , 4 ) have b: rep-list ?b = fs ! j by (simp add: rep-list-monomial

term-simps)
have ?l = lt (rep-list ?a � ?b − rep-list ?b � ?a) by (simp only: a b)
also have ... = ord-term-lin.max (punit.lt (rep-list ?a) ⊕ lt ?b) (punit.lt (rep-list

?b) ⊕ lt ?a)
proof (rule Koszul-syz-nonzero-lt)

from ‹i < length fs› have fs ! i ∈ set fs by (rule nth-mem)
with assms(2 ) show rep-list ?a 6= 0 by (auto simp: a)

next
from assms(4 ) have fs ! j ∈ set fs by (rule nth-mem)
with assms(2 ) show rep-list ?b 6= 0 by (auto simp: b)

next
from assms(3 ) show component-of-term (lt ?a) < component-of-term (lt ?b)

by (simp add: lt-monomial component-of-term-of-pair)
qed
also have ... = ord-term-lin.max (term-of-pair (punit.lt (fs ! i), 0 + j)) (term-of-pair

(punit.lt (fs ! j), 0 + i))
by (simp add: a b lt-monomial splus-def term-simps)

also from assms(3 , 4 ) have ... ∈ ?K by (rule Koszul-syz-sigs-auxI )
thm Koszul-syz-sigs-auxI [OF assms(3 , 4 )]
finally show ?thesis .

qed

corollary lt-Koszul-syz-in-Koszul-syz-sigs:
assumes ¬ is-pot-ord and distinct fs and 0 /∈ set fs and i < j and j < length
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fs
obtains v where v ∈ set (Koszul-syz-sigs fs)
and v addst lt ((fs ! i) � monomial 1 (term-of-pair (0 , j)) − (fs ! j) � monomial

1 (term-of-pair (0 , i)))
proof −

have transp (addst) by (rule transpI , drule adds-term-trans)
moreover have lt ((fs ! i) � monomial 1 (term-of-pair (0 , j)) − (fs ! j) �

monomial 1 (term-of-pair (0 , i))) ∈
set (Koszul-syz-sigs-aux fs 0 ) (is ?l ∈ set ?ks)

using assms(2−5 ) by (rule lt-Koszul-syz-in-Koszul-syz-sigs-aux)
ultimately show ?thesis
proof (rule filter-min-cases)

assume ?l ∈ set (filter-min (addst) ?ks)
hence ?l ∈ set (Koszul-syz-sigs fs) by (simp add: Koszul-syz-sigs-def assms(1 ))
thus ?thesis using adds-term-refl ..

next
fix v
assume v ∈ set (filter-min (addst) ?ks)
hence v ∈ set (Koszul-syz-sigs fs) by (simp add: Koszul-syz-sigs-def assms(1 ))
moreover assume v addst ?l
ultimately show ?thesis ..

qed
qed

lemma lt-Koszul-syz-init:
assumes 0 /∈ set fs and i < j and j < length fs
shows lt ((fs ! i) � monomial 1 (term-of-pair (0 , j)) − (fs ! j) � monomial 1

(term-of-pair (0 , i))) =
ord-term-lin.max (term-of-pair (punit.lt (fs ! i), j)) (term-of-pair (punit.lt

(fs ! j), i))
(is lt (?p − ?q) = ?r)

proof −
from assms(2 , 3 ) have i < length fs by simp
with assms(1 ) have lt-i: lt ?p = term-of-pair (punit.lt (fs ! i), j) by (rule

lt-Koszul-syz-comp)
from assms(1 , 3 ) have lt-j: lt ?q = term-of-pair (punit.lt (fs ! j), i) by (rule

lt-Koszul-syz-comp)
from assms(2 ) have component-of-term (lt ?p) 6= component-of-term (lt ?q)

by (simp add: lt-i lt-j component-of-term-of-pair)
hence lt ?p 6= lt ?q by auto
hence lt (?p − ?q) = ord-term-lin.max (lt ?p) (lt ?q) by (rule lt-minus-distinct-eq-max)
also have ... = ?r by (simp only: lt-i lt-j)
finally show ?thesis .

qed

corollary Koszul-syz-sigs-auxE-lt-Koszul-syz:
assumes 0 /∈ set fs and v ∈ set (Koszul-syz-sigs-aux fs 0 )
obtains i j where i < j and j < length fs

and v = lt ((fs ! i) � monomial 1 (term-of-pair (0 , j)) − (fs ! j) � monomial
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1 (term-of-pair (0 , i)))
proof −

from assms(2 ) obtain i j where i < j and j < length fs
and v = ord-term-lin.max (term-of-pair (punit.lt (fs ! i), 0 + j))

(term-of-pair (punit.lt (fs ! j), 0 + i))
by (rule Koszul-syz-sigs-auxE)

with assms(1 ) have v = lt ((fs ! i) � monomial 1 (term-of-pair (0 , j)) −
(fs ! j) � monomial 1 (term-of-pair (0 , i)))

by (simp add: lt-Koszul-syz-init)
with ‹i < j› ‹j < length fs› show ?thesis ..

qed

corollary Koszul-syz-sigs-is-syz-sig:
assumes dickson-grading dgrad and distinct fs and 0 /∈ set fs and v ∈ set

(Koszul-syz-sigs fs)
shows is-syz-sig dgrad v

proof −
from assms(4 ) have v ∈ set (Koszul-syz-sigs-aux fs 0 )

using filter-min-subset by (fastforce simp: Koszul-syz-sigs-def )
with assms(3 ) obtain i j where i < j and j < length fs
and v ′: v = lt ((fs ! i) � monomial 1 (term-of-pair (0 , j)) − (fs ! j) � monomial

1 (term-of-pair (0 , i)))
(is v = lt (?p − ?q))

by (rule Koszul-syz-sigs-auxE-lt-Koszul-syz)
let ?a = monomial (1 :: ′b) (term-of-pair (0 , i))
let ?b = monomial (1 :: ′b) (term-of-pair (0 , j))
from ‹i < j› ‹j < length fs› have i < length fs by simp
with assms(2 ) have a: rep-list ?a = fs ! i by (simp add: rep-list-monomial

term-simps)
from assms(2 ) ‹j < length fs› have b: rep-list ?b = fs ! j by (simp add:

rep-list-monomial term-simps)
note v ′

also have lt (?p − ?q) = ord-term-lin.max (term-of-pair (punit.lt (fs ! i), j))
(term-of-pair (punit.lt (fs ! j), i))

using assms(3 ) ‹i < j› ‹j < length fs› by (rule lt-Koszul-syz-init)
also have ... = ord-term-lin.max (punit.lt (rep-list ?a) ⊕ lt ?b) (punit.lt (rep-list

?b) ⊕ lt ?a)
by (simp add: a b lt-monomial splus-def term-simps)

finally have v: v = ord-term-lin.max (punit.lt (rep-list ?a) ⊕ lt ?b) (punit.lt
(rep-list ?b) ⊕ lt ?a) .

show ?thesis unfolding v using assms(1 )
proof (rule Koszul-syz-is-syz-sig)

show ?a ∈ dgrad-sig-set dgrad
by (rule dgrad-sig-set-closed-monomial, simp-all add: term-simps dgrad-max-0

‹i < length fs›)
next

show ?b ∈ dgrad-sig-set dgrad
by (rule dgrad-sig-set-closed-monomial, simp-all add: term-simps dgrad-max-0

‹j < length fs›)
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next
from ‹i < length fs› have fs ! i ∈ set fs by (rule nth-mem)
with assms(3 ) show rep-list ?a 6= 0 by (fastforce simp: a)

next
from ‹j < length fs› have fs ! j ∈ set fs by (rule nth-mem)
with assms(3 ) show rep-list ?b 6= 0 by (fastforce simp: b)

next
from ‹i < j› show component-of-term (lt ?a) < component-of-term (lt ?b)

by (simp add: lt-monomial component-of-term-of-pair)
qed

qed

lemma Koszul-syz-sigs-minimal:
assumes u ∈ set (Koszul-syz-sigs fs) and v ∈ set (Koszul-syz-sigs fs) and u

addst v
shows u = v

proof −
from assms(1 , 2 ) have u ∈ set (filter-min (addst) (Koszul-syz-sigs-aux fs 0 ))

and v ∈ set (filter-min (addst) (Koszul-syz-sigs-aux fs 0 )) by (simp-all add:
Koszul-syz-sigs-def )

with - show ?thesis using assms(3 )
proof (rule filter-min-minimal)

show transp (addst) by (rule transpI , drule adds-term-trans)
qed

qed

lemma Koszul-syz-sigs-distinct: distinct (Koszul-syz-sigs fs)
proof −

from adds-term-refl have reflp (addst) by (rule reflpI )
thus ?thesis by (simp add: Koszul-syz-sigs-def filter-min-distinct)

qed

4.2.10 Algorithms
definition spair-spp :: ( ′t × ( ′a ⇒0

′b)) ⇒ ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b))
where spair-spp p q = (let t1 = punit.lt (snd p); t2 = punit.lt (snd q); l = lcs

t1 t2 in
(ord-term-lin.max ((l − t1 ) ⊕ fst p) ((l − t2 ) ⊕ fst q),
punit.monom-mult (1 / punit.lc (snd p)) (l − t1 ) (snd p) −
punit.monom-mult (1 / punit.lc (snd q)) (l − t2 ) (snd q)))

definition is-regular-spair-spp :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ bool
where is-regular-spair-spp p q ←→

(snd p 6= 0 ∧ snd q 6= 0 ∧ punit.lt (snd q) ⊕ fst p 6= punit.lt (snd
p) ⊕ fst q)

definition spair-sigs :: ( ′t ⇒0
′b) ⇒ ( ′t ⇒0

′b) ⇒ ( ′t × ′t)
where spair-sigs p q =

(let t1 = punit.lt (rep-list p); t2 = punit.lt (rep-list q); l = lcs t1 t2
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in
((l − t1 ) ⊕ lt p, (l − t2 ) ⊕ lt q))

definition spair-sigs-spp :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ ( ′t × ′t)
where spair-sigs-spp p q =

(let t1 = punit.lt (snd p); t2 = punit.lt (snd q); l = lcs t1 t2 in
((l − t1 ) ⊕ fst p, (l − t2 ) ⊕ fst q))

fun poly-of-pair :: ((( ′t ⇒0
′b) × ( ′t ⇒0

′b)) + nat) ⇒ ( ′t ⇒0
′b)

where
poly-of-pair (Inl (p, q)) = spair p q |
poly-of-pair (Inr j) = monomial 1 (term-of-pair (0 , j))

fun spp-of-pair :: ((( ′t × ( ′a ⇒0
′b)) × ( ′t × ( ′a ⇒0

′b))) + nat) ⇒ ( ′t × ( ′a ⇒0
′b))

where
spp-of-pair (Inl (p, q)) = spair-spp p q |
spp-of-pair (Inr j) = (term-of-pair (0 , j), fs ! j)

fun sig-of-pair :: ((( ′t ⇒0
′b) × ( ′t ⇒0

′b)) + nat) ⇒ ′t
where

sig-of-pair (Inl (p, q)) = (let (u, v) = spair-sigs p q in ord-term-lin.max u v) |
sig-of-pair (Inr j) = term-of-pair (0 , j)

fun sig-of-pair-spp :: ((( ′t × ( ′a ⇒0
′b)) × ( ′t × ( ′a ⇒0

′b))) + nat) ⇒ ′t
where
sig-of-pair-spp (Inl (p, q)) = (let (u, v) = spair-sigs-spp p q in ord-term-lin.max

u v) |
sig-of-pair-spp (Inr j) = term-of-pair (0 , j)

definition pair-ord :: ((( ′t ⇒0
′b) × ( ′t ⇒0

′b)) + nat) ⇒ ((( ′t ⇒0
′b) × ( ′t ⇒0

′b)) + nat) ⇒ bool
where pair-ord x y ←→ (sig-of-pair x �t sig-of-pair y)

definition pair-ord-spp :: ((( ′t × ( ′a ⇒0
′b)) × ( ′t × ( ′a ⇒0

′b))) + nat) ⇒
((( ′t × ( ′a ⇒0

′b)) × ( ′t × ( ′a ⇒0
′b))) + nat) ⇒ bool

where pair-ord-spp x y ←→ (sig-of-pair-spp x �t sig-of-pair-spp y)

primrec new-spairs :: ( ′t ⇒0
′b) list ⇒ ( ′t ⇒0

′b) ⇒ ((( ′t ⇒0
′b) × ( ′t ⇒0

′b))
+ nat) list where

new-spairs [] p = [] |
new-spairs (b # bs) p =
(if is-regular-spair p b then insort-wrt pair-ord (Inl (p, b)) (new-spairs bs p) else

new-spairs bs p)

primrec new-spairs-spp :: ( ′t × ( ′a ⇒0
′b)) list ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒
((( ′t × ( ′a ⇒0

′b)) × ( ′t × ( ′a ⇒0
′b))) + nat) list where

new-spairs-spp [] p = [] |
new-spairs-spp (b # bs) p =
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(if is-regular-spair-spp p b then
insort-wrt pair-ord-spp (Inl (p, b)) (new-spairs-spp bs p)

else new-spairs-spp bs p)

definition add-spairs :: ((( ′t ⇒0
′b) × ( ′t ⇒0

′b)) + nat) list ⇒ ( ′t ⇒0
′b) list ⇒

( ′t ⇒0
′b) ⇒

((( ′t ⇒0
′b) × ( ′t ⇒0

′b)) + nat) list
where add-spairs ps bs p = merge-wrt pair-ord (new-spairs bs p) ps

definition add-spairs-spp :: ((( ′t × ( ′a ⇒0
′b)) × ( ′t × ( ′a ⇒0

′b))) + nat) list ⇒
( ′t × ( ′a ⇒0

′b)) list ⇒ ( ′t × ( ′a ⇒0
′b)) ⇒

((( ′t × ( ′a ⇒0
′b)) × ( ′t × ( ′a ⇒0

′b))) + nat) list
where add-spairs-spp ps bs p = merge-wrt pair-ord-spp (new-spairs-spp bs p) ps

lemma spair-alt-spair-sigs:
spair p q = monom-mult (1 / punit.lc (rep-list p)) (pp-of-term (fst (spair-sigs p

q)) − lp p) p −
monom-mult (1 / punit.lc (rep-list q)) (pp-of-term (snd (spair-sigs p

q)) − lp q) q
by (simp add: spair-def spair-sigs-def Let-def term-simps)

lemma sig-of-spair :
assumes is-regular-spair p q
shows sig-of-pair (Inl (p, q)) = lt (spair p q)

proof −
from assms have rep-list p 6= 0 by (rule is-regular-spairD1 )
hence 1 : punit.lc (rep-list p) 6= 0 and p 6= 0 by (rule punit.lc-not-0 , auto simp:

rep-list-zero)
from assms have rep-list q 6= 0 by (rule is-regular-spairD2 )
hence 2 : punit.lc (rep-list q) 6= 0 and q 6= 0 by (rule punit.lc-not-0 , auto simp:

rep-list-zero)
let ?t1 = punit.lt (rep-list p)
let ?t2 = punit.lt (rep-list q)
let ?l = lcs ?t1 ?t2
from assms have lt (monom-mult (1 / punit.lc (rep-list p)) (?l − ?t1 ) p) 6=

lt (monom-mult (1 / punit.lc (rep-list q)) (?l − ?t2 ) q)
by (rule is-regular-spairD3 )

hence ∗: lt (monom-mult (1 / punit.lc (rep-list p)) (pp-of-term (fst (spair-sigs p
q)) − lp p) p) 6=

lt (monom-mult (1 / punit.lc (rep-list q)) (pp-of-term (snd (spair-sigs p
q)) − lp q) q)

by (simp add: spair-sigs-def Let-def term-simps)
from 1 2 ‹p 6= 0 › ‹q 6= 0 › show ?thesis

by (simp add: spair-alt-spair-sigs lt-monom-mult lt-minus-distinct-eq-max[OF
∗],

simp add: spair-sigs-def Let-def term-simps)
qed

lemma sig-of-spair-commute: sig-of-pair (Inl (p, q)) = sig-of-pair (Inl (q, p))
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by (simp add: spair-sigs-def Let-def lcs-comm ord-term-lin.max.commute)

lemma in-new-spairsI :
assumes b ∈ set bs and is-regular-spair p b
shows Inl (p, b) ∈ set (new-spairs bs p)
using assms(1 )

proof (induct bs)
case Nil
thus ?case by simp

next
case (Cons a bs)
from Cons(2 ) have b = a ∨ b ∈ set bs by simp
thus ?case
proof

assume b = a
from assms(2 ) show ?thesis by (simp add: ‹b = a›)

next
assume b ∈ set bs
hence Inl (p, b) ∈ set (new-spairs bs p) by (rule Cons(1 ))
thus ?thesis by simp

qed
qed

lemma in-new-spairsD:
assumes Inl (a, b) ∈ set (new-spairs bs p)
shows a = p and b ∈ set bs and is-regular-spair p b

proof −
from assms have a = p ∧ b ∈ set bs ∧ is-regular-spair p b
proof (induct bs)
case Nil
thus ?case by simp
next

case (Cons c bs)
from Cons(2 ) have (is-regular-spair p c ∧ Inl (a, b) = Inl (p, c)) ∨ Inl (a, b)

∈ set (new-spairs bs p)
by (simp split: if-split-asm)

thus ?case
proof

assume is-regular-spair p c ∧ Inl (a, b) = Inl (p, c)
hence is-regular-spair p c and a = p and b = c by simp-all
thus ?thesis by simp

next
assume Inl (a, b) ∈ set (new-spairs bs p)
hence a = p ∧ b ∈ set bs ∧ is-regular-spair p b by (rule Cons(1 ))
thus ?thesis by simp

qed
qed
thus a = p and b ∈ set bs and is-regular-spair p b by simp-all

qed
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corollary in-new-spairs-iff :
Inl (p, b) ∈ set (new-spairs bs p) ←→ (b ∈ set bs ∧ is-regular-spair p b)
by (auto intro: in-new-spairsI dest: in-new-spairsD)

lemma Inr-not-in-new-spairs: Inr j /∈ set (new-spairs bs p)
by (induct bs, simp-all)

lemma sum-prodE :
assumes

∧
a b. p = Inl (a, b) =⇒ thesis and

∧
j. p = Inr j =⇒ thesis

shows thesis
using - assms(2 )

proof (rule sumE)
fix x
assume p = Inl x
moreover obtain a b where x = (a, b) by fastforce
ultimately have p = Inl (a, b) by simp
thus ?thesis by (rule assms(1 ))

qed

corollary in-new-spairsE :
assumes q ∈ set (new-spairs bs p)
obtains b where b ∈ set bs and is-regular-spair p b and q = Inl (p, b)

proof (rule sum-prodE)
fix a b
assume q: q = Inl (a, b)
from assms have a = p and b ∈ set bs and is-regular-spair p b

unfolding q by (rule in-new-spairsD)+
note this(2 , 3 )
moreover have q = Inl (p, b) by (simp only: q ‹a = p›)
ultimately show ?thesis ..

next
fix j
assume q = Inr j
with assms show ?thesis by (simp add: Inr-not-in-new-spairs)

qed

lemma new-spairs-sorted: sorted-wrt pair-ord (new-spairs bs p)
proof (induct bs)

case Nil
show ?case by simp

next
case (Cons a bs)
moreover have transp pair-ord by (rule transpI , simp add: pair-ord-def )
moreover have pair-ord x y ∨ pair-ord y x for x y by (simp add: pair-ord-def

ord-term-lin.linear)
ultimately show ?case by (simp add: sorted-wrt-insort-wrt)

qed
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lemma sorted-add-spairs:
assumes sorted-wrt pair-ord ps
shows sorted-wrt pair-ord (add-spairs ps bs p)
unfolding add-spairs-def using - - new-spairs-sorted assms

proof (rule sorted-merge-wrt)
show transp pair-ord by (rule transpI , simp add: pair-ord-def )

next
fix x y
show pair-ord x y ∨ pair-ord y x by (simp add: pair-ord-def ord-term-lin.linear)

qed

context
fixes rword-strict :: ( ′t × ( ′a ⇒0

′b)) ⇒ ( ′t × ( ′a ⇒0
′b)) ⇒ bool — Must be

a strict rewrite order.
begin

qualified definition rword :: ( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ bool
where rword x y ←→ ¬ rword-strict y x

definition is-pred-syz :: ′t list ⇒ ′t ⇒ bool
where is-pred-syz ss u = (∃ v∈set ss. v addst u)

definition is-rewritable :: ( ′t ⇒0
′b) list ⇒ ( ′t ⇒0

′b) ⇒ ′t ⇒ bool
where is-rewritable bs p u = (∃ b∈set bs. b 6= 0 ∧ lt b addst u ∧ rword-strict

(spp-of p) (spp-of b))

definition is-rewritable-spp :: ( ′t × ( ′a ⇒0
′b)) list ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ ′t ⇒
bool

where is-rewritable-spp bs p u = (∃ b∈set bs. fst b addst u ∧ rword-strict p b)

fun sig-crit :: ( ′t ⇒0
′b) list ⇒ ′t list ⇒ ((( ′t ⇒0

′b) × ( ′t ⇒0
′b)) + nat) ⇒ bool

where
sig-crit bs ss (Inl (p, q)) =
(let (u, v) = spair-sigs p q in

is-pred-syz ss u ∨ is-pred-syz ss v ∨ is-rewritable bs p u ∨ is-rewritable bs q
v) |

sig-crit bs ss (Inr j) = is-pred-syz ss (term-of-pair (0 , j))

fun sig-crit ′ :: ( ′t ⇒0
′b) list ⇒ ((( ′t ⇒0

′b) × ( ′t ⇒0
′b)) + nat) ⇒ bool

where
sig-crit ′ bs (Inl (p, q)) =
(let (u, v) = spair-sigs p q in

is-syz-sig dgrad u ∨ is-syz-sig dgrad v ∨ is-rewritable bs p u ∨ is-rewritable
bs q v) |

sig-crit ′ bs (Inr j) = is-syz-sig dgrad (term-of-pair (0 , j))

fun sig-crit-spp :: ( ′t × ( ′a ⇒0
′b)) list ⇒ ′t list ⇒ ((( ′t × ( ′a ⇒0

′b)) × ( ′t × ( ′a
⇒0

′b))) + nat) ⇒ bool
where
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sig-crit-spp bs ss (Inl (p, q)) =
(let (u, v) = spair-sigs-spp p q in
is-pred-syz ss u ∨ is-pred-syz ss v ∨ is-rewritable-spp bs p u ∨ is-rewritable-spp

bs q v) |
sig-crit-spp bs ss (Inr j) = is-pred-syz ss (term-of-pair (0 , j))

sig-crit is used in algorithms, sig-crit ′ is only needed for proving.
fun rb-spp-body ::

((( ′t × ( ′a ⇒0
′b)) list × ′t list × ((( ′t × ( ′a ⇒0

′b)) × ( ′t × ( ′a ⇒0
′b))) +

nat) list) × nat) ⇒
((( ′t × ( ′a ⇒0

′b)) list × ′t list × ((( ′t × ( ′a ⇒0
′b)) × ( ′t × ( ′a ⇒0

′b)))
+ nat) list) × nat)

where
rb-spp-body ((bs, ss, []), z) = ((bs, ss, []), z) |
rb-spp-body ((bs, ss, p # ps), z) =
(let ss ′ = new-syz-sigs-spp ss bs p in

if sig-crit-spp bs ss ′ p then
((bs, ss ′, ps), z)

else
let p ′ = sig-trd-spp bs (spp-of-pair p) in
if snd p ′ = 0 then
((bs, fst p ′ # ss ′, ps), Suc z)

else
((p ′ # bs, ss ′, add-spairs-spp ps bs p ′), z))

definition rb-spp-aux ::
((( ′t × ( ′a ⇒0

′b)) list × ′t list × ((( ′t × ( ′a ⇒0
′b)) × ( ′t × ( ′a ⇒0

′b))) +
nat) list) × nat) ⇒

((( ′t × ( ′a ⇒0
′b)) list × ′t list × ((( ′t × ( ′a ⇒0

′b)) × ( ′t × ( ′a ⇒0
′b)))

+ nat) list) × nat)
where rb-spp-aux-def [code del]: rb-spp-aux = tailrec.fun (λx. snd (snd (fst x))

= []) (λx. x) rb-spp-body

lemma rb-spp-aux-Nil [code]: rb-spp-aux ((bs, ss, []), z) = ((bs, ss, []), z)
by (simp add: rb-spp-aux-def tailrec.simps)

lemma rb-spp-aux-Cons [code]:
rb-spp-aux ((bs, ss, p # ps), z) = rb-spp-aux (rb-spp-body ((bs, ss, p # ps), z))
by (simp add: rb-spp-aux-def tailrec.simps)

The last parameter / return value of rb-spp-aux, z, counts the number of
zero-reductions. Below we will prove that this number remains 0 under
certain conditions.
context

assumes rword-is-strict-rewrite-ord: is-strict-rewrite-ord rword-strict
assumes dgrad: dickson-grading dgrad

begin

lemma rword: is-rewrite-ord rword
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unfolding rword-def using rword-is-strict-rewrite-ord by (rule is-strict-rewrite-ordD)

lemma sig-crit ′-sym: sig-crit ′ bs (Inl (p, q)) =⇒ sig-crit ′ bs (Inl (q, p))
by (auto simp: spair-sigs-def Let-def lcs-comm)

lemma is-rewritable-ConsD:
assumes is-rewritable (b # bs) p u and u ≺t lt b
shows is-rewritable bs p u

proof −
from assms(1 ) obtain b ′ where b ′ ∈ set (b # bs) and b ′ 6= 0 and lt b ′ addst u

and rword-strict (spp-of p) (spp-of b ′) unfolding is-rewritable-def by blast
from this(3 ) have lt b ′ �t u by (rule ord-adds-term)
with assms(2 ) have b ′ 6= b by auto
with ‹b ′ ∈ set (b # bs)› have b ′ ∈ set bs by simp
with ‹b ′ 6= 0 › ‹lt b ′ addst u› ‹rword-strict (spp-of p) (spp-of b ′)› show ?thesis

by (auto simp: is-rewritable-def )
qed

lemma sig-crit ′-ConsD:
assumes sig-crit ′ (b # bs) p and sig-of-pair p ≺t lt b
shows sig-crit ′ bs p

proof (rule sum-prodE)
fix x y
assume p: p = Inl (x, y)
define u where u = fst (spair-sigs x y)
define v where v = snd (spair-sigs x y)
have sigs: spair-sigs x y = (u, v) by (simp add: u-def v-def )
have u �t sig-of-pair p and v �t sig-of-pair p by (simp-all add: p sigs)
hence u ≺t lt b and v ≺t lt b using assms(2 ) by simp-all
with assms(1 ) show ?thesis by (auto simp: p sigs dest: is-rewritable-ConsD)

next
fix j
assume p: p = Inr j
from assms show ?thesis by (simp add: p)

qed

definition rb-aux-inv1 :: ( ′t ⇒0
′b) list ⇒ bool

where rb-aux-inv1 bs =
(set bs ⊆ dgrad-sig-set dgrad ∧ 0 /∈ rep-list ‘ set bs ∧
sorted-wrt (λx y. lt y ≺t lt x) bs ∧
(∀ i<length bs. ¬ is-sig-red (≺t) (�) (set (drop (Suc i) bs)) (bs ! i)) ∧
(∀ i<length bs.

((∃ j<length fs. lt (bs ! i) = lt (monomial (1 :: ′b) (term-of-pair (0 , j))) ∧
punit.lt (rep-list (bs ! i)) � punit.lt (rep-list (monomial 1 (term-of-pair

(0 , j))))) ∨
(∃ p∈set bs. ∃ q∈set bs. is-regular-spair p q ∧ rep-list (spair p q) 6= 0 ∧

lt (bs ! i) = lt (spair p q) ∧ punit.lt (rep-list (bs ! i)) � punit.lt (rep-list
(spair p q))))) ∧

(∀ i<length bs. is-RB-upt dgrad rword (set (drop (Suc i) bs)) (lt (bs !
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i))))

fun rb-aux-inv :: (( ′t ⇒0
′b) list × ′t list × ((( ′t ⇒0

′b) × ( ′t ⇒0
′b)) + nat) list)

⇒ bool
where rb-aux-inv (bs, ss, ps) =

(rb-aux-inv1 bs ∧
(∀ u∈set ss. is-syz-sig dgrad u) ∧
(∀ p q. Inl (p, q) ∈ set ps −→ (is-regular-spair p q ∧ p ∈ set bs ∧ q ∈ set

bs)) ∧
(∀ j. Inr j ∈ set ps −→ (j < length fs ∧ (∀ b∈set bs. lt b ≺t term-of-pair

(0 , j))) ∧
length (filter (λq. sig-of-pair q = term-of-pair (0 , j)) ps)

≤ 1 ) ∧
(sorted-wrt pair-ord ps) ∧
(∀ p∈set ps. (∀ b1∈set bs. ∀ b2∈set bs. is-regular-spair b1 b2 −→

sig-of-pair p ≺t lt (spair b1 b2 ) −→ (Inl (b1 , b2 ) ∈ set ps ∨
Inl (b2 , b1 ) ∈ set ps)) ∧

(∀ j<length fs. sig-of-pair p ≺t term-of-pair (0 , j) −→ Inr j ∈
set ps)) ∧

(∀ b∈set bs. ∀ p∈set ps. lt b �t sig-of-pair p) ∧
(∀ a∈set bs. ∀ b∈set bs. is-regular-spair a b −→ Inl (a, b) /∈ set ps −→

Inl (b, a) /∈ set ps −→
¬ is-RB-in dgrad rword (set bs) (lt (spair a b)) −→
(∃ p∈set ps. sig-of-pair p = lt (spair a b) ∧ ¬ sig-crit ′ bs p)) ∧
(∀ j<length fs. Inr j /∈ set ps −→ (is-RB-in dgrad rword (set bs)

(term-of-pair (0 , j)) ∧
rep-list (monomial (1 :: ′b) (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ set

bs))))

lemmas [simp del] = rb-aux-inv.simps

lemma rb-aux-inv1-D1 : rb-aux-inv1 bs =⇒ set bs ⊆ dgrad-sig-set dgrad
by (simp add: rb-aux-inv1-def )

lemma rb-aux-inv1-D2 : rb-aux-inv1 bs =⇒ 0 /∈ rep-list ‘ set bs
by (simp add: rb-aux-inv1-def )

lemma rb-aux-inv1-D3 : rb-aux-inv1 bs =⇒ sorted-wrt (λx y. lt y ≺t lt x) bs
by (simp add: rb-aux-inv1-def )

lemma rb-aux-inv1-D4 :
rb-aux-inv1 bs =⇒ i < length bs =⇒ ¬ is-sig-red (≺t) (�) (set (drop (Suc i) bs))

(bs ! i)
by (simp add: rb-aux-inv1-def )

lemma rb-aux-inv1-D5 :
rb-aux-inv1 bs =⇒ i < length bs =⇒ is-RB-upt dgrad rword (set (drop (Suc i)

bs)) (lt (bs ! i))
by (simp add: rb-aux-inv1-def )
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lemma rb-aux-inv1-E :
assumes rb-aux-inv1 bs and i < length bs

and
∧

j. j < length fs =⇒ lt (bs ! i) = lt (monomial (1 :: ′b) (term-of-pair (0 ,
j))) =⇒

punit.lt (rep-list (bs ! i)) � punit.lt (rep-list (monomial 1 (term-of-pair
(0 , j)))) =⇒ thesis

and
∧

p q. p ∈ set bs =⇒ q ∈ set bs =⇒ is-regular-spair p q =⇒ rep-list (spair
p q) 6= 0 =⇒

lt (bs ! i) = lt (spair p q) =⇒ punit.lt (rep-list (bs ! i)) � punit.lt (rep-list
(spair p q)) =⇒ thesis

shows thesis
using assms unfolding rb-aux-inv1-def by blast

lemmas rb-aux-inv1-D = rb-aux-inv1-D1 rb-aux-inv1-D2 rb-aux-inv1-D3 rb-aux-inv1-D4
rb-aux-inv1-D5

lemma rb-aux-inv1-distinct-lt:
assumes rb-aux-inv1 bs
shows distinct (map lt bs)

proof (rule distinct-sorted-wrt-irrefl)
show irreflp (�t) by (simp add: irreflp-def )

next
show transp (�t) by (auto simp: transp-def )

next
from assms show sorted-wrt (�t) (map lt bs)

unfolding sorted-wrt-map conversep-iff by (rule rb-aux-inv1-D3 )
qed

corollary rb-aux-inv1-lt-inj-on:
assumes rb-aux-inv1 bs
shows inj-on lt (set bs)

proof
fix a b
assume a ∈ set bs
then obtain i where i: i < length bs and a: a = bs ! i by (metis in-set-conv-nth)
assume b ∈ set bs
then obtain j where j: j < length bs and b: b = bs ! j by (metis in-set-conv-nth)
assume lt a = lt b
with i j have (map lt bs) ! i = (map lt bs) ! j by (simp add: a b)
moreover from assms have distinct (map lt bs) by (rule rb-aux-inv1-distinct-lt)
moreover from i have i < length (map lt bs) by simp
moreover from j have j < length (map lt bs) by simp
ultimately have i = j by (simp only: nth-eq-iff-index-eq)
thus a = b by (simp add: a b)

qed

lemma canon-rewriter-unique:
assumes rb-aux-inv1 bs and is-canon-rewriter rword (set bs) u a
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and is-canon-rewriter rword (set bs) u b
shows a = b

proof −
from assms(1 ) have inj-on lt (set bs) by (rule rb-aux-inv1-lt-inj-on)
moreover from rword(1 ) assms(2 , 3 ) have lt a = lt b by (rule is-rewrite-ord-canon-rewriterD2 )
moreover from assms(2 ) have a ∈ set bs by (rule is-canon-rewriterD1 )
moreover from assms(3 ) have b ∈ set bs by (rule is-canon-rewriterD1 )
ultimately show ?thesis by (rule inj-onD)

qed

lemma rb-aux-inv-D1 : rb-aux-inv (bs, ss, ps) =⇒ rb-aux-inv1 bs
by (simp add: rb-aux-inv.simps)

lemma rb-aux-inv-D2 : rb-aux-inv (bs, ss, ps) =⇒ u ∈ set ss =⇒ is-syz-sig dgrad
u

by (simp add: rb-aux-inv.simps)

lemma rb-aux-inv-D3 :
assumes rb-aux-inv (bs, ss, ps) and Inl (p, q) ∈ set ps
shows p ∈ set bs and q ∈ set bs and is-regular-spair p q
using assms by (simp-all add: rb-aux-inv.simps)

lemma rb-aux-inv-D4 :
assumes rb-aux-inv (bs, ss, ps) and Inr j ∈ set ps
shows j < length fs and

∧
b. b ∈ set bs =⇒ lt b ≺t term-of-pair (0 , j)

and length (filter (λq. sig-of-pair q = term-of-pair (0 , j)) ps) ≤ 1
using assms by (simp-all add: rb-aux-inv.simps)

lemma rb-aux-inv-D5 : rb-aux-inv (bs, ss, ps) =⇒ sorted-wrt pair-ord ps
by (simp add: rb-aux-inv.simps)

lemma rb-aux-inv-D6-1 :
assumes rb-aux-inv (bs, ss, ps) and p ∈ set ps and b1 ∈ set bs and b2 ∈ set bs

and is-regular-spair b1 b2 and sig-of-pair p ≺t lt (spair b1 b2 )
obtains Inl (b1 , b2 ) ∈ set ps | Inl (b2 , b1 ) ∈ set ps
using assms unfolding rb-aux-inv.simps by blast

lemma rb-aux-inv-D6-2 :
rb-aux-inv (bs, ss, ps) =⇒ p ∈ set ps =⇒ j < length fs =⇒ sig-of-pair p ≺t

term-of-pair (0 , j) =⇒
Inr j ∈ set ps

by (simp add: rb-aux-inv.simps)

lemma rb-aux-inv-D7 : rb-aux-inv (bs, ss, ps) =⇒ b ∈ set bs =⇒ p ∈ set ps =⇒
lt b �t sig-of-pair p

by (simp add: rb-aux-inv.simps)

lemma rb-aux-inv-D8 :
assumes rb-aux-inv (bs, ss, ps) and a ∈ set bs and b ∈ set bs and is-regular-spair

154



a b
and Inl (a, b) /∈ set ps and Inl (b, a) /∈ set ps and ¬ is-RB-in dgrad rword

(set bs) (lt (spair a b))
obtains p where p ∈ set ps and sig-of-pair p = lt (spair a b) and ¬ sig-crit ′

bs p
using assms unfolding rb-aux-inv.simps by meson

lemma rb-aux-inv-D9 :
assumes rb-aux-inv (bs, ss, ps) and j < length fs and Inr j /∈ set ps
shows is-RB-in dgrad rword (set bs) (term-of-pair (0 , j))

and rep-list (monomial (1 :: ′b) (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ set bs)
using assms by (simp-all add: rb-aux-inv.simps)

lemma rb-aux-inv-is-RB-upt:
assumes rb-aux-inv (bs, ss, ps) and

∧
p. p ∈ set ps =⇒ u �t sig-of-pair p

shows is-RB-upt dgrad rword (set bs) u
proof −

from assms(1 ) have inv1 : rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
from dgrad rword(1 ) show ?thesis
proof (rule is-RB-upt-finite)

from inv1 show set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
next

from inv1 show inj-on lt (set bs) by (rule rb-aux-inv1-lt-inj-on)
next

show finite (set bs) by (fact finite-set)
next

fix g1 g2
assume 1 : g1 ∈ set bs and 2 : g2 ∈ set bs and 3 : is-regular-spair g1 g2

and 4 : lt (spair g1 g2 ) ≺t u
have 5 : p /∈ set ps if sig-of-pair p = lt (spair g1 g2 ) for p
proof

assume p ∈ set ps
hence u �t sig-of-pair p by (rule assms(2 ))
also have ... ≺t u unfolding that by (fact 4 )
finally show False ..

qed
show is-RB-in dgrad rword (set bs) (lt (spair g1 g2 ))
proof (rule ccontr)

note assms(1 ) 1 2 3
moreover have Inl (g1 , g2 ) /∈ set ps by (rule 5 , rule sig-of-spair , fact 3 )
moreover have Inl (g2 , g1 ) /∈ set ps

by (rule 5 , simp only: sig-of-spair-commute, rule sig-of-spair , fact 3 )
moreover assume ¬ is-RB-in dgrad rword (set bs) (lt (spair g1 g2 ))
ultimately obtain p where p ∈ set ps and sig-of-pair p = lt (spair g1 g2 )

by (rule rb-aux-inv-D8 )
from this(2 ) have p /∈ set ps by (rule 5 )
thus False using ‹p ∈ set ps› ..

qed
next
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fix j
assume 1 : term-of-pair (0 , j) ≺t u
note assms(1 )
moreover assume j < length fs
moreover have Inr j /∈ set ps
proof

assume Inr j ∈ set ps
hence u �t sig-of-pair (Inr j) by (rule assms(2 ))
also have ... ≺t u by (simp add: 1 )
finally show False ..

qed
ultimately show is-RB-in dgrad rword (set bs) (term-of-pair (0 , j)) by (rule

rb-aux-inv-D9 )
qed

qed

lemma rb-aux-inv-is-RB-upt-Cons:
assumes rb-aux-inv (bs, ss, p # ps)
shows is-RB-upt dgrad rword (set bs) (sig-of-pair p)
using assms

proof (rule rb-aux-inv-is-RB-upt)
fix q
assume q ∈ set (p # ps)
hence q = p ∨ q ∈ set ps by simp
thus sig-of-pair p �t sig-of-pair q
proof

assume q = p
thus ?thesis by simp

next
assume q ∈ set ps

moreover from assms have sorted-wrt pair-ord (p # ps) by (rule rb-aux-inv-D5 )
ultimately show ?thesis by (simp add: pair-ord-def )

qed
qed

lemma Inr-in-tailD:
assumes rb-aux-inv (bs, ss, p # ps) and Inr j ∈ set ps
shows sig-of-pair p 6= term-of-pair (0 , j)

proof
assume eq: sig-of-pair p = term-of-pair (0 , j)
from assms(2 ) have Inr j ∈ set (p # ps) by simp
let ?P = λq. sig-of-pair q = term-of-pair (0 , j)
from assms(2 ) obtain i1 where i1 < length ps and Inrj: Inr j = ps ! i1

by (metis in-set-conv-nth)
from assms(1 ) ‹Inr j ∈ set (p # ps)› have length (filter ?P (p # ps)) ≤ 1

by (rule rb-aux-inv-D4 )
moreover from ‹i1 < length ps› have Suc i1 < length (p # ps) by simp
moreover have 0 < length (p # ps) by simp
moreover have ?P ((p # ps) ! Suc i1 ) by (simp add: Inrj[symmetric])
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moreover have ?P ((p # ps) ! 0 ) by (simp add: eq)
ultimately have Suc i1 = 0 by (rule length-filter-le-1 )
thus False ..

qed

lemma pair-list-aux:
assumes rb-aux-inv (bs, ss, ps) and p ∈ set ps
shows sig-of-pair p = lt (poly-of-pair p) ∧ poly-of-pair p 6= 0 ∧ poly-of-pair p ∈

dgrad-sig-set dgrad
proof (rule sum-prodE)

fix a b
assume p: p = Inl (a, b)
from assms(1 ) have rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence bs-sub: set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
from assms have is-regular-spair a b unfolding p by (rule rb-aux-inv-D3 )
hence sig-of-pair p = lt (poly-of-pair p) and poly-of-pair p 6= 0
unfolding p poly-of-pair .simps by (rule sig-of-spair , rule is-regular-spair-nonzero)
moreover from dgrad have poly-of-pair p ∈ dgrad-sig-set dgrad unfolding p

poly-of-pair .simps
proof (rule dgrad-sig-set-closed-spair)

from assms have a ∈ set bs unfolding p by (rule rb-aux-inv-D3 )
thus a ∈ dgrad-sig-set dgrad using bs-sub ..

next
from assms have b ∈ set bs unfolding p by (rule rb-aux-inv-D3 )
thus b ∈ dgrad-sig-set dgrad using bs-sub ..

qed
ultimately show ?thesis by simp

next
fix j
assume p = Inr j
from assms have j < length fs unfolding ‹p = Inr j› by (rule rb-aux-inv-D4 )
have monomial 1 (term-of-pair (0 , j)) ∈ dgrad-sig-set dgrad
by (rule dgrad-sig-set-closed-monomial, simp add: pp-of-term-of-pair dgrad-max-0 ,

simp add: component-of-term-of-pair ‹j < length fs›)
thus ?thesis by (simp add: ‹p = Inr j› lt-monomial monomial-0-iff )

qed

corollary pair-list-sig-of-pair :
rb-aux-inv (bs, ss, ps) =⇒ p ∈ set ps =⇒ sig-of-pair p = lt (poly-of-pair p)
by (simp add: pair-list-aux)

corollary pair-list-nonzero: rb-aux-inv (bs, ss, ps) =⇒ p ∈ set ps =⇒ poly-of-pair
p 6= 0

by (simp add: pair-list-aux)

corollary pair-list-dgrad-sig-set:
rb-aux-inv (bs, ss, ps) =⇒ p ∈ set ps =⇒ poly-of-pair p ∈ dgrad-sig-set dgrad
by (simp add: pair-list-aux)
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lemma is-rewritableI-is-canon-rewriter :
assumes rb-aux-inv1 bs and b ∈ set bs and b 6= 0 and lt b addst u

and ¬ is-canon-rewriter rword (set bs) u b
shows is-rewritable bs b u

proof −
from assms(2−5 ) obtain b ′ where b ′ ∈ set bs and b ′ 6= 0 and lt b ′ addst u

and 1 : ¬ rword (spp-of b ′) (spp-of b) by (auto simp: is-canon-rewriter-def )
show ?thesis unfolding is-rewritable-def
proof (intro bexI conjI )

from rword(1 ) have 2 : rword (spp-of b) (spp-of b ′)
proof (rule is-rewrite-ordD3 )

assume rword (spp-of b ′) (spp-of b)
with 1 show ?thesis ..

qed
from rword(1 ) 1 have b 6= b ′ by (auto dest: is-rewrite-ordD1 )
have lt b 6= lt b ′

proof
assume lt b = lt b ′

with rb-aux-inv1-lt-inj-on[OF assms(1 )] have b = b ′ using assms(2 ) ‹b ′ ∈
set bs›

by (rule inj-onD)
with ‹b 6= b ′› show False ..

qed
hence fst (spp-of b) 6= fst (spp-of b ′) by (simp add: spp-of-def )
with rword-is-strict-rewrite-ord 2 show rword-strict (spp-of b) (spp-of b ′)

by (auto simp: rword-def dest: is-strict-rewrite-ord-antisym)
qed fact+

qed

lemma is-rewritableD-is-canon-rewriter :
assumes rb-aux-inv1 bs and is-rewritable bs b u
shows ¬ is-canon-rewriter rword (set bs) u b

proof
assume is-canon-rewriter rword (set bs) u b
hence b ∈ set bs and b 6= 0 and lt b addst u

and 1 :
∧

a. a ∈ set bs =⇒ a 6= 0 =⇒ lt a addst u =⇒ rword (spp-of a) (spp-of
b)

by (rule is-canon-rewriterD)+
from assms(2 ) obtain b ′ where b ′ ∈ set bs and b ′ 6= 0 and lt b ′ addst u

and 2 : rword-strict (spp-of b) (spp-of b ′) unfolding is-rewritable-def by blast
from this(1 , 2 , 3 ) have rword (spp-of b ′) (spp-of b) by (rule 1 )
moreover from rword-is-strict-rewrite-ord 2 have rword (spp-of b) (spp-of b ′)

unfolding rword-def by (rule is-strict-rewrite-ord-asym)
ultimately have fst (spp-of b ′) = fst (spp-of b) by (rule is-rewrite-ordD4 [OF

rword])
hence lt b ′ = lt b by (simp add: spp-of-def )
with rb-aux-inv1-lt-inj-on[OF assms(1 )] have b ′ = b using ‹b ′ ∈ set bs› ‹b ∈

set bs›
by (rule inj-onD)
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from rword-is-strict-rewrite-ord have ¬ rword-strict (spp-of b) (spp-of b ′)
unfolding ‹b ′ = b› by (rule is-strict-rewrite-ord-irrefl)

thus False using 2 ..
qed

lemma lemma-12 :
assumes rb-aux-inv (bs, ss, ps) and is-RB-upt dgrad rword (set bs) u

and dgrad (pp-of-term u) ≤ dgrad-max dgrad and is-canon-rewriter rword (set
bs) u a

and ¬ is-syz-sig dgrad u and is-sig-red (≺t) (=) (set bs) (monom-mult 1
(pp-of-term u − lp a) a)

obtains p q where p ∈ set bs and q ∈ set bs and is-regular-spair p q and lt
(spair p q) = u

and ¬ sig-crit ′ bs (Inl (p, q))
proof −

from assms(1 ) have inv1 : rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence inj: inj-on lt (set bs) by (rule rb-aux-inv1-lt-inj-on)
from assms(4 ) have lt a addst u by (rule is-canon-rewriterD3 )
hence lp a adds pp-of-term u and comp-a: component-of-term (lt a) = compo-

nent-of-term u
by (simp-all add: adds-term-def )

let ?s = pp-of-term u − lp a
let ?a = monom-mult 1 ?s a
from assms(4 ) have a ∈ set bs by (rule is-canon-rewriterD1 )
from assms(6 ) have rep-list ?a 6= 0 using is-sig-red-top-addsE by blast
hence rep-list a 6= 0 by (auto simp: rep-list-monom-mult)
hence a 6= 0 by (auto simp: rep-list-zero)
hence lt ?a = ?s ⊕ lt a by (simp add: lt-monom-mult)
also from ‹lp a adds pp-of-term u› have eq0 : ... = u

by (simp add: splus-def comp-a adds-minus term-simps)
finally have lt ?a = u .
note dgrad rword(1 )
moreover from assms(2 ) have is-RB-upt dgrad rword (set bs) (lt ?a) by (simp

only: ‹lt ?a = u›)
moreover from dgrad have ?a ∈ dgrad-sig-set dgrad
proof (rule dgrad-sig-set-closed-monom-mult)

from dgrad ‹lp a adds pp-of-term u› have dgrad (pp-of-term u − lp a) ≤ dgrad
(pp-of-term u)

by (rule dickson-grading-minus)
thus dgrad (pp-of-term u − lp a) ≤ dgrad-max dgrad using assms(3 ) by (rule

le-trans)
next

from inv1 have set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
with ‹a ∈ set bs› show a ∈ dgrad-sig-set dgrad ..

qed
ultimately obtain v b where v ≺t lt ?a and dgrad (pp-of-term v) ≤ dgrad-max

dgrad
and component-of-term v < length fs and ns: ¬ is-syz-sig dgrad v
and v: v = (punit.lt (rep-list ?a) − punit.lt (rep-list b)) ⊕ lt b
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and cr : is-canon-rewriter rword (set bs) v b and is-sig-red (≺t) (=) {b} ?a
using assms(6 ) by (rule lemma-11 )

from this(6 ) have b ∈ set bs by (rule is-canon-rewriterD1 )
with ‹a ∈ set bs› show ?thesis
proof
from dgrad rword(1 ) assms(2 ) inj assms(5 , 4 ) ‹b ∈ set bs› ‹is-sig-red (≺t) (=)

{b} ?a› assms(3 )
show is-regular-spair a b by (rule lemma-9 (3 ))

next
from dgrad rword(1 ) assms(2 ) inj assms(5 , 4 ) ‹b ∈ set bs› ‹is-sig-red (≺t) (=)

{b} ?a› assms(3 )
show lt (spair a b) = u by (rule lemma-9 (4 ))

next
from ‹rep-list a 6= 0 › have v ′: v = (?s + punit.lt (rep-list a) − punit.lt (rep-list

b)) ⊕ lt b
by (simp add: v rep-list-monom-mult punit.lt-monom-mult)

moreover from dgrad rword(1 ) assms(2 ) inj assms(5 , 4 ) ‹b ∈ set bs› ‹is-sig-red
(≺t) (=) {b} ?a› assms(3 )

have lcs (punit.lt (rep-list a)) (punit.lt (rep-list b)) − punit.lt (rep-list a) = ?s
and lcs (punit.lt (rep-list a)) (punit.lt (rep-list b)) − punit.lt (rep-list b) =

?s + punit.lt (rep-list a) − punit.lt (rep-list b)
by (rule lemma-9 )+

ultimately have eq1 : spair-sigs a b = (u, v) by (simp add: spair-sigs-def eq0 )
show ¬ sig-crit ′ bs (Inl (a, b))
proof (simp add: eq1 assms(5 ) ns, intro conjI notI )

assume is-rewritable bs a u
with inv1 have ¬ is-canon-rewriter rword (set bs) u a by (rule is-rewritableD-is-canon-rewriter)

thus False using assms(4 ) ..
next

assume is-rewritable bs b v
with inv1 have ¬ is-canon-rewriter rword (set bs) v b by (rule is-rewritableD-is-canon-rewriter)

thus False using cr ..
qed

qed
qed

lemma is-canon-rewriterI-eq-sig:
assumes rb-aux-inv1 bs and b ∈ set bs
shows is-canon-rewriter rword (set bs) (lt b) b

proof −
from assms(2 ) have rep-list b ∈ rep-list ‘ set bs by (rule imageI )
moreover from assms(1 ) have 0 /∈ rep-list ‘ set bs by (rule rb-aux-inv1-D2 )
ultimately have b 6= 0 by (auto simp: rep-list-zero)
with assms(2 ) show ?thesis
proof (rule is-canon-rewriterI )

fix a
assume a ∈ set bs and a 6= 0 and lt a addst lt b
from assms(2 ) obtain i where i < length bs and b: b = bs ! i by (metis

in-set-conv-nth)
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from assms(1 ) this(1 ) have is-RB-upt dgrad rword (set (drop (Suc i) bs)) (lt
(bs ! i))

by (rule rb-aux-inv1-D5 )
with dgrad have is-sig-GB-upt dgrad (set (drop (Suc i) bs)) (lt (bs ! i))

by (rule is-RB-upt-is-sig-GB-upt)
hence is-sig-GB-upt dgrad (set (drop (Suc i) bs)) (lt b) by (simp only: b)
moreover have set (drop (Suc i) bs) ⊆ set bs by (rule set-drop-subset)

moreover from assms(1 ) have set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
ultimately have is-sig-GB-upt dgrad (set bs) (lt b) by (rule is-sig-GB-upt-mono)
with rword(1 ) dgrad show rword (spp-of a) (spp-of b)
proof (rule is-rewrite-ordD5 )

from assms(1 ) ‹i < length bs› have ¬ is-sig-red (≺t) (�) (set (drop (Suc i)
bs)) (bs ! i)

by (rule rb-aux-inv1-D4 )
hence ¬ is-sig-red (≺t) (=) (set (drop (Suc i) bs)) b by (simp add: b

is-sig-red-top-tail-cases)
moreover have ¬ is-sig-red (≺t) (=) (set (take (Suc i) bs)) b
proof

assume is-sig-red (≺t) (=) (set (take (Suc i) bs)) b
then obtain f where f-in: f ∈ set (take (Suc i) bs) and is-sig-red (≺t)

(=) {f } b
by (rule is-sig-red-singletonI )

from this(2 ) have lt f ≺t lt b by (rule is-sig-red-regularD-lt)
from ‹i < length bs› have take-eq: take (Suc i) bs = (take i bs) @ [b]

unfolding b by (rule take-Suc-conv-app-nth)
from assms(1 ) have sorted-wrt (λx y. lt y ≺t lt x) ((take (Suc i) bs) @

(drop (Suc i) bs))
unfolding append-take-drop-id by (rule rb-aux-inv1-D3 )

hence 1 :
∧

y. y ∈ set (take i bs) =⇒ lt b ≺t lt y
by (simp add: sorted-wrt-append take-eq del: append-take-drop-id)

from f-in have f = b ∨ f ∈ set (take i bs) by (simp add: take-eq)
hence lt b �t lt f
proof

assume f ∈ set (take i bs)
hence lt b ≺t lt f by (rule 1 )
thus ?thesis by simp

qed simp
with ‹lt f ≺t lt b› show False by simp

qed
ultimately have ¬ is-sig-red (≺t) (=) (set (take (Suc i) bs) ∪ set (drop (Suc

i) bs)) b
by (simp add: is-sig-red-Un)

thus ¬ is-sig-red (≺t) (=) (set bs) b by (metis append-take-drop-id set-append)
qed fact+

qed (simp add: term-simps)
qed

lemma not-sig-crit:
assumes rb-aux-inv (bs, ss, p # ps) and ¬ sig-crit bs (new-syz-sigs ss bs p) p
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and b ∈ set bs
shows lt b ≺t sig-of-pair p

proof (rule sum-prodE)
fix x y
assume p: p = Inl (x, y)
have p ∈ set (p # ps) by simp
hence Inl (x, y) ∈ set (p # ps) by (simp only: p)
define t1 where t1 = punit.lt (rep-list x)
define t2 where t2 = punit.lt (rep-list y)
define u where u = fst (spair-sigs x y)
define v where v = snd (spair-sigs x y)
have u: u = (lcs t1 t2 − t1 ) ⊕ lt x by (simp add: u-def spair-sigs-def t1-def

t2-def Let-def )
have v: v = (lcs t1 t2 − t2 ) ⊕ lt y by (simp add: v-def spair-sigs-def t1-def

t2-def Let-def )
have spair-sigs: spair-sigs x y = (u, v) by (simp add: u-def v-def )
with assms(2 ) have ¬ is-rewritable bs x u and ¬ is-rewritable bs y v

by (simp-all add: p)
from assms(1 ) ‹Inl (x, y) ∈ set (p # ps)› have x-in: x ∈ set bs and y-in: y ∈

set bs
and is-regular-spair x y by (rule rb-aux-inv-D3 )+

from assms(1 ) have inv1 : rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
from inv1 have 0 /∈ rep-list ‘ set bs by (rule rb-aux-inv1-D2 )
with x-in y-in have rep-list x 6= 0 and rep-list y 6= 0 by auto
hence x 6= 0 and y 6= 0 by (auto simp: rep-list-zero)
from inv1 have sorted: sorted-wrt (λx y. lt y ≺t lt x) bs by (rule rb-aux-inv1-D3 )
from x-in obtain i1 where i1 < length bs and x: x = bs ! i1 by (metis

in-set-conv-nth)
from y-in obtain i2 where i2 < length bs and y: y = bs ! i2 by (metis

in-set-conv-nth)
have lt b 6= sig-of-pair p
proof

assume lt-b: lt b = sig-of-pair p
from inv1 have crw: is-canon-rewriter rword (set bs) (lt b) b using assms(3 )

by (rule is-canon-rewriterI-eq-sig)
show False
proof (rule ord-term-lin.linorder-cases)

assume u ≺t v
hence lt b = v by (auto simp: lt-b p spair-sigs ord-term-lin.max-def )
with crw have crw-b: is-canon-rewriter rword (set bs) v b by simp
from v have lt y addst v by (rule adds-termI )
hence is-canon-rewriter rword (set bs) v y
using inv1 y-in ‹y 6= 0 › ‹¬ is-rewritable bs y v› is-rewritableI-is-canon-rewriter

by blast
with inv1 crw-b have b = y by (rule canon-rewriter-unique)
with ‹lt b = v› have lt y = v by simp
from inv1 ‹i2 < length bs› have ¬ is-sig-red (≺t) (�) (set (drop (Suc i2 )

bs)) (bs ! i2 )
by (rule rb-aux-inv1-D4 )
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moreover have is-sig-red (≺t) (�) (set (drop (Suc i2 ) bs)) (bs ! i2 )
proof (rule is-sig-red-singletonD)

have is-sig-red (≺t) (=) {x} y
proof (rule is-sig-red-top-addsI )

from ‹lt y = v› have (lcs t1 t2 − t2 ) ⊕ lt y = lt y by (simp only: v)
also have ... = 0 ⊕ lt y by (simp only: term-simps)
finally have lcs t1 t2 − t2 = 0 by (simp only: splus-right-canc)
hence lcs t1 t2 = t2 by (metis (full-types) add.left-neutral adds-minus

adds-lcs-2 )
with adds-lcs[of t1 t2 ] show punit.lt (rep-list x) adds punit.lt (rep-list y)

by (simp only: t1-def t2-def )
next

from ‹u ≺t v› show punit.lt (rep-list y) ⊕ lt x ≺t punit.lt (rep-list x) ⊕
lt y

by (simp add: t1-def t2-def u v term-is-le-rel-minus-minus adds-lcs
adds-lcs-2 )

qed (simp|fact)+
thus is-sig-red (≺t) (�) {x} (bs ! i2 ) by (simp add: y is-sig-red-top-tail-cases)
next

have lt x �t 0 ⊕ lt x by (simp only: term-simps)
also have ... �t u unfolding u using zero-min by (rule splus-mono-left)
also have ... ≺t v by fact

finally have ∗: lt (bs ! i1 ) ≺t lt (bs ! i2 ) by (simp only: ‹lt y = v› x
y[symmetric])

have i2 < i1
proof (rule linorder-cases)

assume i1 < i2
with sorted have lt (bs ! i2 ) ≺t lt (bs ! i1 ) using ‹i2 < length bs›

by (rule sorted-wrt-nth-less)
with ∗ show ?thesis by simp

next
assume i1 = i2
with ∗ show ?thesis by simp

qed
hence Suc i2 ≤ i1 by simp
thus x ∈ set (drop (Suc i2 ) bs) unfolding x using ‹i1 < length bs› by

(rule nth-in-set-dropI )
qed
ultimately show ?thesis ..

next
assume v ≺t u
hence lt b = u by (auto simp: lt-b p spair-sigs ord-term-lin.max-def )
with crw have crw-b: is-canon-rewriter rword (set bs) u b by simp
from u have lt x addst u by (rule adds-termI )
hence is-canon-rewriter rword (set bs) u x
using inv1 x-in ‹x 6= 0 › ‹¬ is-rewritable bs x u› is-rewritableI-is-canon-rewriter

by blast
with inv1 crw-b have b = x by (rule canon-rewriter-unique)
with ‹lt b = u› have lt x = u by simp

163



from inv1 ‹i1 < length bs› have ¬ is-sig-red (≺t) (�) (set (drop (Suc i1 )
bs)) (bs ! i1 )

by (rule rb-aux-inv1-D4 )
moreover have is-sig-red (≺t) (�) (set (drop (Suc i1 ) bs)) (bs ! i1 )
proof (rule is-sig-red-singletonD)

have is-sig-red (≺t) (=) {y} x
proof (rule is-sig-red-top-addsI )

from ‹lt x = u› have (lcs t1 t2 − t1 ) ⊕ lt x = lt x by (simp only: u)
also have ... = 0 ⊕ lt x by (simp only: term-simps)
finally have lcs t1 t2 − t1 = 0 by (simp only: splus-right-canc)
hence lcs t1 t2 = t1 by (metis (full-types) add.left-neutral adds-minus

adds-lcs)
with adds-lcs-2 [of t2 t1 ] show punit.lt (rep-list y) adds punit.lt (rep-list

x)
by (simp only: t1-def t2-def )

next
from ‹v ≺t u› show punit.lt (rep-list x) ⊕ lt y ≺t punit.lt (rep-list y) ⊕

lt x
by (simp add: t1-def t2-def u v term-is-le-rel-minus-minus adds-lcs

adds-lcs-2 )
qed (simp|fact)+

thus is-sig-red (≺t) (�) {y} (bs ! i1 ) by (simp add: x is-sig-red-top-tail-cases)
next

have lt y �t 0 ⊕ lt y by (simp only: term-simps)
also have ... �t v unfolding v using zero-min by (rule splus-mono-left)
also have ... ≺t u by fact

finally have ∗: lt (bs ! i2 ) ≺t lt (bs ! i1 ) by (simp only: ‹lt x = u› y
x[symmetric])

have i1 < i2
proof (rule linorder-cases)

assume i2 < i1
with sorted have lt (bs ! i1 ) ≺t lt (bs ! i2 ) using ‹i1 < length bs›

by (rule sorted-wrt-nth-less)
with ∗ show ?thesis by simp

next
assume i2 = i1
with ∗ show ?thesis by simp

qed
hence Suc i1 ≤ i2 by simp
thus y ∈ set (drop (Suc i1 ) bs) unfolding y using ‹i2 < length bs› by

(rule nth-in-set-dropI )
qed
ultimately show ?thesis ..

next
assume u = v
hence punit.lt (rep-list x) ⊕ lt y = punit.lt (rep-list y) ⊕ lt x
by (simp add: t1-def t2-def u v term-is-le-rel-minus-minus adds-lcs adds-lcs-2 )
moreover from ‹is-regular-spair x y›

have punit.lt (rep-list y) ⊕ lt x 6= punit.lt (rep-list x) ⊕ lt y by (rule
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is-regular-spairD3 )
ultimately show ?thesis by simp

qed
qed
moreover from assms(1 , 3 ) ‹p ∈ set (p # ps)› have lt b �t sig-of-pair p by

(rule rb-aux-inv-D7 )
ultimately show ?thesis by simp

next
fix j
assume p: p = Inr j
have Inr j ∈ set (p # ps) by (simp add: p)
with assms(1 ) have lt b ≺t term-of-pair (0 , j) using assms(3 ) by (rule rb-aux-inv-D4 )
thus ?thesis by (simp add: p)

qed

context
assumes fs-distinct: distinct fs
assumes fs-nonzero: 0 /∈ set fs

begin

lemma rep-list-monomial ′: rep-list (monomial 1 (term-of-pair (0 , j))) = ((fs ! j)
when j < length fs)

by (simp add: rep-list-monomial fs-distinct term-simps)

lemma new-syz-sigs-is-syz-sig:
assumes rb-aux-inv (bs, ss, p # ps) and v ∈ set (new-syz-sigs ss bs p)
shows is-syz-sig dgrad v

proof (rule sum-prodE)
fix a b
assume p = Inl (a, b)
with assms(2 ) have v ∈ set ss by simp
with assms(1 ) show ?thesis by (rule rb-aux-inv-D2 )

next
fix j
assume p: p = Inr j
let ?f = λb. term-of-pair (punit.lt (rep-list b), j)
let ?a = monomial (1 :: ′b) (term-of-pair (0 , j))
from assms(1 ) have inv1 : rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
have Inr j ∈ set (p # ps) by (simp add: p)
with assms(1 ) have j < length fs by (rule rb-aux-inv-D4 )
hence a: rep-list ?a = fs ! j by (simp add: rep-list-monomial ′)
show ?thesis
proof (cases is-pot-ord)

case True
with assms(2 ) have v ∈ set (filter-min-append (addst) ss (filter-min (addst)

(map ?f bs)))
by (simp add: p)

hence v ∈ set ss ∪ ?f ‘ set bs using filter-min-append-subset filter-min-subset
by fastforce
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thus ?thesis
proof

assume v ∈ set ss
with assms(1 ) show ?thesis by (rule rb-aux-inv-D2 )

next
assume v ∈ ?f ‘ set bs
then obtain b where b ∈ set bs and v = ?f b ..
have comp-b: component-of-term (lt b) < component-of-term (lt ?a)
proof (rule ccontr)

have ∗: pp-of-term (term-of-pair (0 , j)) � pp-of-term (lt b)
by (simp add: pp-of-term-of-pair zero-min)

assume ¬ component-of-term (lt b) < component-of-term (lt ?a)
hence component-of-term (term-of-pair (0 , j)) ≤ component-of-term (lt b)

by (simp add: lt-monomial)
with ∗ have term-of-pair (0 , j) �t lt b by (rule ord-termI )
moreover from assms(1 ) ‹Inr j ∈ set (p # ps)› ‹b ∈ set bs› have lt b ≺t

term-of-pair (0 , j)
by (rule rb-aux-inv-D4 )

ultimately show False by simp
qed
have v = punit.lt (rep-list b) ⊕ lt ?a

by (simp add: ‹v = ?f b› a lt-monomial splus-def term-simps)
also have ... = ord-term-lin.max (punit.lt (rep-list b) ⊕ lt ?a) (punit.lt (rep-list

?a) ⊕ lt b)
proof −

have component-of-term (punit.lt (rep-list ?a) ⊕ lt b) = component-of-term
(lt b)

by (simp only: term-simps)
also have ... < component-of-term (lt ?a) by (fact comp-b)
also have ... = component-of-term (punit.lt (rep-list b) ⊕ lt ?a)

by (simp only: term-simps)
finally have component-of-term (punit.lt (rep-list ?a) ⊕ lt b) <

component-of-term (punit.lt (rep-list b) ⊕ lt ?a) .
with True have punit.lt (rep-list ?a) ⊕ lt b ≺t punit.lt (rep-list b) ⊕ lt ?a

by (rule is-pot-ordD)
thus ?thesis by (auto simp: ord-term-lin.max-def )

qed
finally have v: v = ord-term-lin.max (punit.lt (rep-list b) ⊕ lt ?a) (punit.lt

(rep-list ?a) ⊕ lt b) .
show ?thesis unfolding v using dgrad
proof (rule Koszul-syz-is-syz-sig)

from inv1 have set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
with ‹b ∈ set bs› show b ∈ dgrad-sig-set dgrad ..

next
show ?a ∈ dgrad-sig-set dgrad

by (rule dgrad-sig-set-closed-monomial, simp-all add: term-simps dgrad-max-0
‹j < length fs›)

next
from inv1 have 0 /∈ rep-list ‘ set bs by (rule rb-aux-inv1-D2 )
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with ‹b ∈ set bs› show rep-list b 6= 0 by fastforce
next

from ‹j < length fs› have fs ! j ∈ set fs by (rule nth-mem)
with fs-nonzero show rep-list ?a 6= 0 by (auto simp: a)

qed (fact comp-b)
qed

next
case False
with assms(2 ) have v ∈ set ss by (simp add: p)
with assms(1 ) show ?thesis by (rule rb-aux-inv-D2 )

qed
qed

lemma new-syz-sigs-minimal:
assumes

∧
u ′ v ′. u ′ ∈ set ss =⇒ v ′ ∈ set ss =⇒ u ′ addst v ′ =⇒ u ′ = v ′

assumes u ∈ set (new-syz-sigs ss bs p) and v ∈ set (new-syz-sigs ss bs p) and
u addst v

shows u = v
proof (rule sum-prodE)

fix a b
assume p: p = Inl (a, b)
from assms(2 , 3 ) have u ∈ set ss and v ∈ set ss by (simp-all add: p)
thus ?thesis using assms(4 ) by (rule assms(1 ))

next
fix j
assume p: p = Inr j
show ?thesis
proof (cases is-pot-ord)

case True
have transp (addst) by (rule transpI , drule adds-term-trans)
define ss ′ where ss ′ = filter-min (addst) (map (λb. term-of-pair (punit.lt

(rep-list b), j)) bs)
note assms(1 )
moreover have u ′ = v ′ if u ′ ∈ set ss ′ and v ′ ∈ set ss ′ and u ′ addst v ′ for u ′

v ′

using ‹transp (addst)› that unfolding ss ′-def by (rule filter-min-minimal)
moreover from True assms(2 , 3 ) have u ∈ set (filter-min-append (addst) ss

ss ′)
and v ∈ set (filter-min-append (addst) ss ss ′) by (simp-all add: p ss ′-def )

ultimately show ?thesis using assms(4 ) by (rule filter-min-append-minimal)
next

case False
with assms(2 , 3 ) have u ∈ set ss and v ∈ set ss by (simp-all add: p)
thus ?thesis using assms(4 ) by (rule assms(1 ))

qed
qed

lemma new-syz-sigs-distinct:
assumes distinct ss
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shows distinct (new-syz-sigs ss bs p)
proof (rule sum-prodE)

fix a b
assume p = Inl (a, b)
with assms show ?thesis by simp

next
fix j
assume p: p = Inr j
show ?thesis
proof (cases is-pot-ord)

case True
define ss ′ where ss ′ = filter-min (addst) (map (λb. term-of-pair (punit.lt

(rep-list b), j)) bs)
from adds-term-refl have reflp (addst) by (rule reflpI )
moreover note assms
moreover have distinct ss ′ unfolding ss ′-def using ‹reflp (addst)› by (rule

filter-min-distinct)
ultimately have distinct (filter-min-append (addst) ss ss ′) by (rule filter-min-append-distinct)
thus ?thesis by (simp add: p ss ′-def True)

next
case False
with assms show ?thesis by (simp add: p)

qed
qed

lemma sig-crit ′I-sig-crit:
assumes rb-aux-inv (bs, ss, p # ps) and sig-crit bs (new-syz-sigs ss bs p) p
shows sig-crit ′ bs p

proof −
have rl: is-syz-sig dgrad u

if is-pred-syz (new-syz-sigs ss bs p) u and dgrad (pp-of-term u) ≤ dgrad-max
dgrad for u

proof −
from that(1 ) obtain s where s ∈ set (new-syz-sigs ss bs p) and adds: s addst

u
unfolding is-pred-syz-def ..

from assms(1 ) this(1 ) have is-syz-sig dgrad s by (rule new-syz-sigs-is-syz-sig)
with dgrad show ?thesis using adds that(2 ) by (rule is-syz-sig-adds)

qed
from assms(1 ) have rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence bs-sub: set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
show ?thesis
proof (rule sum-prodE)

fix a b
assume p: p = Inl (a, b)
hence Inl (a, b) ∈ set (p # ps) by simp
with assms(1 ) have a ∈ set bs and b ∈ set bs by (rule rb-aux-inv-D3 )+
with bs-sub have a-in: a ∈ dgrad-sig-set dgrad and b-in: b ∈ dgrad-sig-set

dgrad by fastforce+
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define t1 where t1 = punit.lt (rep-list a)
define t2 where t2 = punit.lt (rep-list b)
define u where u = fst (spair-sigs a b)
define v where v = snd (spair-sigs a b)
from dgrad a-in have dgrad t1 ≤ dgrad-max dgrad unfolding t1-def by (rule

dgrad-sig-setD-rep-list-lt)
moreover from dgrad b-in have dgrad t2 ≤ dgrad-max dgrad

unfolding t2-def by (rule dgrad-sig-setD-rep-list-lt)
ultimately have ord-class.max (dgrad t1 ) (dgrad t2 ) ≤ dgrad-max dgrad by

simp
with dickson-grading-lcs[OF dgrad] have dgrad (lcs t1 t2 ) ≤ dgrad-max dgrad

by (rule le-trans)
have u: u = (lcs t1 t2 − t1 ) ⊕ lt a by (simp add: u-def spair-sigs-def t1-def

t2-def Let-def )
have v: v = (lcs t1 t2 − t2 ) ⊕ lt b by (simp add: v-def spair-sigs-def t1-def

t2-def Let-def )
have 1 : spair-sigs a b = (u, v) by (simp add: u-def v-def )

from assms(2 ) have (is-pred-syz (new-syz-sigs ss bs p) u ∨ is-pred-syz (new-syz-sigs
ss bs p) v) ∨

(is-rewritable bs a u ∨ is-rewritable bs b v) by (simp add: p 1 )
thus ?thesis
proof

assume is-pred-syz (new-syz-sigs ss bs p) u ∨ is-pred-syz (new-syz-sigs ss bs
p) v

thus ?thesis
proof

assume is-pred-syz (new-syz-sigs ss bs p) u
moreover have dgrad (pp-of-term u) ≤ dgrad-max dgrad
proof (simp add: u term-simps dickson-gradingD1 [OF dgrad], rule)

from dgrad adds-lcs have dgrad (lcs t1 t2 − t1 ) ≤ dgrad (lcs t1 t2 )
by (rule dickson-grading-minus)

also have ... ≤ dgrad-max dgrad by fact
finally show dgrad (lcs t1 t2 − t1 ) ≤ dgrad-max dgrad .

next
from a-in show dgrad (lp a) ≤ dgrad-max dgrad by (rule dgrad-sig-setD-lp)
qed
ultimately have is-syz-sig dgrad u by (rule rl)
thus ?thesis by (simp add: p 1 )

next
assume is-pred-syz (new-syz-sigs ss bs p) v
moreover have dgrad (pp-of-term v) ≤ dgrad-max dgrad
proof (simp add: v term-simps dickson-gradingD1 [OF dgrad], rule)

from dgrad adds-lcs-2 have dgrad (lcs t1 t2 − t2 ) ≤ dgrad (lcs t1 t2 )
by (rule dickson-grading-minus)

also have ... ≤ dgrad-max dgrad by fact
finally show dgrad (lcs t1 t2 − t2 ) ≤ dgrad-max dgrad .

next
from b-in show dgrad (lp b) ≤ dgrad-max dgrad by (rule dgrad-sig-setD-lp)
qed
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ultimately have is-syz-sig dgrad v by (rule rl)
thus ?thesis by (simp add: p 1 )

qed
next

assume is-rewritable bs a u ∨ is-rewritable bs b v
thus ?thesis by (simp add: p 1 )

qed
next

fix j
assume p = Inr j
with assms(2 ) have is-pred-syz (new-syz-sigs ss bs p) (term-of-pair (0 , j)) by

simp
moreover have dgrad (pp-of-term (term-of-pair (0 , j))) ≤ dgrad-max dgrad

by (simp add: pp-of-term-of-pair dgrad-max-0 )
ultimately have is-syz-sig dgrad (term-of-pair (0 , j)) by (rule rl)
thus ?thesis by (simp add: ‹p = Inr j›)

qed
qed

lemma rb-aux-inv-preserved-0 :
assumes rb-aux-inv (bs, ss, p # ps)

and
∧

s. s ∈ set ss ′ =⇒ is-syz-sig dgrad s
and

∧
a b. a ∈ set bs =⇒ b ∈ set bs =⇒ is-regular-spair a b =⇒ Inl (a, b) /∈

set ps =⇒
Inl (b, a) /∈ set ps =⇒ ¬ is-RB-in dgrad rword (set bs) (lt (spair a b)) =⇒
∃ q∈set ps. sig-of-pair q = lt (spair a b) ∧ ¬ sig-crit ′ bs q

and
∧

j. j < length fs =⇒ p = Inr j =⇒ Inr j /∈ set ps =⇒ is-RB-in dgrad
rword (set bs) (term-of-pair (0 , j)) ∧

rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ set bs)
shows rb-aux-inv (bs, ss ′, ps)

proof −
from assms(1 ) have rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
show ?thesis unfolding rb-aux-inv.simps
proof (intro conjI ballI allI impI )

fix s
assume s ∈ set ss ′

thus is-syz-sig dgrad s by (rule assms(2 ))
next

fix q1 q2
assume Inl (q1 , q2 ) ∈ set ps
hence Inl (q1 , q2 ) ∈ set (p # ps) by simp
with assms(1 ) show is-regular-spair q1 q2 and q1 ∈ set bs and q2 ∈ set bs

by (rule rb-aux-inv-D3 )+
next

fix j
assume Inr j ∈ set ps
hence Inr j ∈ set (p # ps) by simp

with assms(1 ) have j < length fs and length (filter (λq. sig-of-pair q =
term-of-pair (0 , j)) (p # ps)) ≤ 1
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by (rule rb-aux-inv-D4 )+
have length (filter (λq. sig-of-pair q = term-of-pair (0 , j)) ps) ≤

length (filter (λq. sig-of-pair q = term-of-pair (0 , j)) (p # ps)) by simp
also have ... ≤ 1 by fact
finally show length (filter (λq. sig-of-pair q = term-of-pair (0 , j)) ps) ≤ 1 .
show j < length fs by fact

fix b
assume b ∈ set bs
with assms(1 ) ‹Inr j ∈ set (p # ps)› show lt b ≺t term-of-pair (0 , j) by (rule

rb-aux-inv-D4 )
next

from assms(1 ) have sorted-wrt pair-ord (p # ps) by (rule rb-aux-inv-D5 )
thus sorted-wrt pair-ord ps by simp

next
fix q
assume q ∈ set ps
from assms(1 ) have sorted-wrt pair-ord (p # ps) by (rule rb-aux-inv-D5 )

hence
∧

p ′. p ′ ∈ set ps =⇒ sig-of-pair p �t sig-of-pair p ′ by (simp add:
pair-ord-def )

with ‹q ∈ set ps› have 1 : sig-of-pair p �t sig-of-pair q by blast
{

fix b1 b2
note assms(1 )
moreover from ‹q ∈ set ps› have q ∈ set (p # ps) by simp
moreover assume b1 ∈ set bs and b2 ∈ set bs and is-regular-spair b1 b2

and 2 : sig-of-pair q ≺t lt (spair b1 b2 )
ultimately show Inl (b1 , b2 ) ∈ set ps ∨ Inl (b2 , b1 ) ∈ set ps
proof (rule rb-aux-inv-D6-1 )

assume Inl (b1 , b2 ) ∈ set (p # ps)
moreover from 1 2 have sig-of-pair p ≺t lt (spair b1 b2 ) by simp
ultimately have Inl (b1 , b2 ) ∈ set ps

by (auto simp: sig-of-spair ‹is-regular-spair b1 b2 › simp del: sig-of-pair .simps)
thus ?thesis ..

next
assume Inl (b2 , b1 ) ∈ set (p # ps)
moreover from 1 2 have sig-of-pair p ≺t lt (spair b1 b2 ) by simp
ultimately have Inl (b2 , b1 ) ∈ set ps

by (auto simp: sig-of-spair ‹is-regular-spair b1 b2 › sig-of-spair-commute
simp del: sig-of-pair .simps)

thus ?thesis ..
qed

}
{

fix j
note assms(1 )
moreover from ‹q ∈ set ps› have q ∈ set (p # ps) by simp
moreover assume j < length fs and 2 : sig-of-pair q ≺t term-of-pair (0 , j)
ultimately have Inr j ∈ set (p # ps) by (rule rb-aux-inv-D6-2 )
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moreover from 1 2 have sig-of-pair p ≺t sig-of-pair (Inr j) by simp
ultimately show Inr j ∈ set ps by auto

}
next

fix b q
assume b ∈ set bs and q ∈ set ps
hence b ∈ set bs and q ∈ set (p # ps) by simp-all
with assms(1 ) show lt b �t sig-of-pair q by (rule rb-aux-inv-D7 )

next
fix j
assume j < length fs and Inr j /∈ set ps
have is-RB-in dgrad rword (set bs) (term-of-pair (0 , j)) ∧

rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ set bs)
proof (cases p = Inr j)

case True
with ‹j < length fs› show ?thesis using ‹Inr j /∈ set ps› by (rule assms(4 ))

next
case False
with ‹Inr j /∈ set ps› have Inr j /∈ set (p # ps) by simp
with assms(1 ) ‹j < length fs› rb-aux-inv-D9 show ?thesis by blast

qed
thus is-RB-in dgrad rword (set bs) (term-of-pair (0 , j))

and rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ set bs) by
simp-all

qed (fact, rule assms(3 ))
qed

lemma rb-aux-inv-preserved-1 :
assumes rb-aux-inv (bs, ss, p # ps) and sig-crit bs (new-syz-sigs ss bs p) p
shows rb-aux-inv (bs, new-syz-sigs ss bs p, ps)

proof −
from assms(1 ) have rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence bs-sub: set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
from assms(1 , 2 ) have sig-crit ′ bs p by (rule sig-crit ′I-sig-crit)
from assms(1 ) show ?thesis
proof (rule rb-aux-inv-preserved-0 )

fix s
assume s ∈ set (new-syz-sigs ss bs p)
with assms(1 ) show is-syz-sig dgrad s by (rule new-syz-sigs-is-syz-sig)

next
fix a b
assume 1 : a ∈ set bs and 2 : b ∈ set bs and 3 : is-regular-spair a b and 4 : Inl

(a, b) /∈ set ps
and 5 : Inl (b, a) /∈ set ps and 6 : ¬ is-RB-in dgrad rword (set bs) (lt (spair

a b))
from assms(1 , 2 ) have sig-crit ′ bs p by (rule sig-crit ′I-sig-crit)
show ∃ q∈set ps. sig-of-pair q = lt (spair a b) ∧ ¬ sig-crit ′ bs q
proof (cases p = Inl (a, b) ∨ p = Inl (b, a))

case True
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hence sig-of-p: lt (spair a b) = sig-of-pair p
proof

assume p: p = Inl (a, b)
from 3 show ?thesis by (simp only: p sig-of-spair)

next
assume p: p = Inl (b, a)
from 3 have is-regular-spair b a by (rule is-regular-spair-sym)
thus ?thesis by (simp only: p sig-of-spair spair-comm[of a] lt-uminus)

qed
note assms(1 )
moreover have is-RB-upt dgrad rword (set bs) (lt (spair a b)) unfolding

sig-of-p
using assms(1 ) by (rule rb-aux-inv-is-RB-upt-Cons)

moreover have dgrad (lp (spair a b)) ≤ dgrad-max dgrad
proof (rule dgrad-sig-setD-lp, rule dgrad-sig-set-closed-spair , fact dgrad)

from ‹a ∈ set bs› bs-sub show a ∈ dgrad-sig-set dgrad ..
next

from ‹b ∈ set bs› bs-sub show b ∈ dgrad-sig-set dgrad ..
qed
moreover obtain c where crw: is-canon-rewriter rword (set bs) (lt (spair a

b)) c
proof (rule ord-term-lin.linorder-cases)

from 3 have rep-list b 6= 0 by (rule is-regular-spairD2 )
moreover assume punit.lt (rep-list b) ⊕ lt a ≺t punit.lt (rep-list a) ⊕ lt b
ultimately have lt (spair b a) = (lcs (punit.lt (rep-list b)) (punit.lt (rep-list

a)) − punit.lt (rep-list b)) ⊕ lt b
by (rule lt-spair)
hence lt (spair a b) = (lcs (punit.lt (rep-list b)) (punit.lt (rep-list a)) −

punit.lt (rep-list b)) ⊕ lt b
by (simp add: spair-comm[of a])

hence lt b addst lt (spair a b) by (rule adds-termI )
from ‹rep-list b 6= 0 › have b 6= 0 by (auto simp: rep-list-zero)
show ?thesis by (rule is-rewrite-ord-finite-canon-rewriterE , fact rword, fact

finite-set, fact+)
next

from 3 have rep-list a 6= 0 by (rule is-regular-spairD1 )
moreover assume punit.lt (rep-list a) ⊕ lt b ≺t punit.lt (rep-list b) ⊕ lt a

ultimately have lt (spair a b) = (lcs (punit.lt (rep-list a)) (punit.lt (rep-list
b)) − punit.lt (rep-list a)) ⊕ lt a

by (rule lt-spair)
hence lt a addst lt (spair a b) by (rule adds-termI )
from ‹rep-list a 6= 0 › have a 6= 0 by (auto simp: rep-list-zero)
show ?thesis by (rule is-rewrite-ord-finite-canon-rewriterE , fact rword, fact

finite-set, fact+)
next

from 3 have punit.lt (rep-list b) ⊕ lt a 6= punit.lt (rep-list a) ⊕ lt b
by (rule is-regular-spairD3 )

moreover assume punit.lt (rep-list b) ⊕ lt a = punit.lt (rep-list a) ⊕ lt b
ultimately show ?thesis ..
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qed
moreover from 6 have ¬ is-syz-sig dgrad (lt (spair a b)) by (simp add:

is-RB-in-def )
moreover from 6 crw have is-sig-red (≺t) (=) (set bs) (monom-mult 1 (lp

(spair a b) − lp c) c)
by (simp add: is-RB-in-def )
ultimately obtain x y where 7 : x ∈ set bs and 8 : y ∈ set bs and 9 :

is-regular-spair x y
and 10 : lt (spair x y) = lt (spair a b) and 11 : ¬ sig-crit ′ bs (Inl (x, y))
by (rule lemma-12 )

from this(5 ) ‹sig-crit ′ bs p› have Inl (x, y) 6= p and Inl (y, x) 6= p
by (auto simp only: sig-crit ′-sym)

show ?thesis
proof (cases Inl (x, y) ∈ set ps ∨ Inl (y, x) ∈ set ps)

case True
thus ?thesis
proof

assume Inl (x, y) ∈ set ps
show ?thesis
proof (intro bexI conjI )

show sig-of-pair (Inl (x, y)) = lt (spair a b) by (simp only: sig-of-spair
9 10 )

qed fact+
next

assume Inl (y, x) ∈ set ps
show ?thesis
proof (intro bexI conjI )

from 9 have is-regular-spair y x by (rule is-regular-spair-sym)
thus sig-of-pair (Inl (y, x)) = lt (spair a b)

by (simp only: sig-of-spair spair-comm[of y] lt-uminus 10 )
next
from 11 show ¬ sig-crit ′ bs (Inl (y, x)) by (auto simp only: sig-crit ′-sym)
qed fact

qed
next

case False
note assms(1 ) 7 8 9
moreover from False ‹Inl (x, y) 6= p› ‹Inl (y, x) 6= p› have Inl (x, y) /∈

set (p # ps)
and Inl (y, x) /∈ set (p # ps) by auto

moreover from 6 have ¬ is-RB-in dgrad rword (set bs) (lt (spair x y)) by
(simp add: 10 )

ultimately obtain q where 12 : q ∈ set (p # ps) and 13 : sig-of-pair q =
lt (spair x y)

and 14 : ¬ sig-crit ′ bs q by (rule rb-aux-inv-D8 )
from 12 14 ‹sig-crit ′ bs p› have q ∈ set ps by auto
with 13 14 show ?thesis unfolding 10 by blast

qed
next
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case False
with 4 5 have Inl (a, b) /∈ set (p # ps) and Inl (b, a) /∈ set (p # ps) by

auto
with assms(1 ) 1 2 3 obtain q where 7 : q ∈ set (p # ps) and 8 : sig-of-pair

q = lt (spair a b)
and 9 : ¬ sig-crit ′ bs q using 6 by (rule rb-aux-inv-D8 )

from 7 9 ‹sig-crit ′ bs p› have q ∈ set ps by auto
with 8 9 show ?thesis by blast

qed
next

fix j
assume j < length fs
assume p: p = Inr j
with ‹sig-crit ′ bs p› have is-syz-sig dgrad (term-of-pair (0 , j)) by simp
hence is-RB-in dgrad rword (set bs) (term-of-pair (0 , j)) by (rule is-RB-inI2 )
moreover have rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘

set bs)
proof (rule sig-red-zero-idealI , rule syzygy-crit)

from assms(1 ) have is-RB-upt dgrad rword (set bs) (sig-of-pair p)
by (rule rb-aux-inv-is-RB-upt-Cons)

with dgrad have is-sig-GB-upt dgrad (set bs) (sig-of-pair p)
by (rule is-RB-upt-is-sig-GB-upt)

thus is-sig-GB-upt dgrad (set bs) (term-of-pair (0 , j)) by (simp add: p)
next

show monomial 1 (term-of-pair (0 , j)) ∈ dgrad-sig-set dgrad
by (rule dgrad-sig-set-closed-monomial, simp-all add: term-simps dgrad-max-0

‹j < length fs›)
next

show lt (monomial (1 :: ′b) (term-of-pair (0 , j))) = term-of-pair (0 , j) by
(simp add: lt-monomial)

qed (fact dgrad, fact)
ultimately show is-RB-in dgrad rword (set bs) (term-of-pair (0 , j)) ∧

rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ set
bs) ..

qed
qed

lemma rb-aux-inv-preserved-2 :
assumes rb-aux-inv (bs, ss, p # ps) and rep-list (sig-trd bs (poly-of-pair p)) = 0
shows rb-aux-inv (bs, lt (sig-trd bs (poly-of-pair p)) # new-syz-sigs ss bs p, ps)

proof −
let ?p = sig-trd bs (poly-of-pair p)
have 0 : (sig-red (≺t) (�) (set bs))∗∗ (poly-of-pair p) ?p

by (rule sig-trd-red-rtrancl)
hence eq: lt ?p = lt (poly-of-pair p) by (rule sig-red-regular-rtrancl-lt)
from assms(1 ) have inv1 : rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
have ∗: is-syz-sig dgrad (lt (poly-of-pair p))
proof (rule is-syz-sigI )

have poly-of-pair p 6= 0 by (rule pair-list-nonzero, fact, simp)
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hence lc (poly-of-pair p) 6= 0 by (rule lc-not-0 )
moreover from 0 have lc ?p = lc (poly-of-pair p) by (rule sig-red-regular-rtrancl-lc)
ultimately have lc ?p 6= 0 by simp
thus ?p 6= 0 by (simp add: lc-eq-zero-iff )

next
note dgrad(1 )

moreover from inv1 have set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
moreover have poly-of-pair p ∈ dgrad-sig-set dgrad by (rule pair-list-dgrad-sig-set,

fact, simp)
ultimately show ?p ∈ dgrad-sig-set dgrad using 0 by (rule dgrad-sig-set-closed-sig-red-rtrancl)

qed (fact eq, fact assms(2 ))
hence rb: is-RB-in dgrad rword (set bs) (lt (poly-of-pair p)) by (rule is-RB-inI2 )
from assms(1 ) show ?thesis
proof (rule rb-aux-inv-preserved-0 )

fix s
assume s ∈ set (lt ?p # new-syz-sigs ss bs p)
hence s = lt (poly-of-pair p) ∨ s ∈ set (new-syz-sigs ss bs p) by (simp add: eq)
thus is-syz-sig dgrad s
proof

assume s = lt (poly-of-pair p)
with ∗ show ?thesis by simp

next
assume s ∈ set (new-syz-sigs ss bs p)
with assms(1 ) show ?thesis by (rule new-syz-sigs-is-syz-sig)

qed
next

fix a b
assume 1 : a ∈ set bs and 2 : b ∈ set bs and 3 : is-regular-spair a b and 4 : Inl

(a, b) /∈ set ps
and 5 : Inl (b, a) /∈ set ps and 6 : ¬ is-RB-in dgrad rword (set bs) (lt (spair a

b))
have p ∈ set (p # ps) by simp

with assms(1 ) have sig-of-p: sig-of-pair p = lt (poly-of-pair p) by (rule
pair-list-sig-of-pair)

from rb 6 have neq: lt (poly-of-pair p) 6= lt (spair a b) by auto
hence p 6= Inl (a, b) and p 6= Inl (b, a) by (auto simp: spair-comm[of a])
with 4 5 have Inl (a, b) /∈ set (p # ps) and Inl (b, a) /∈ set (p # ps) by auto
with assms(1 ) 1 2 3 obtain q where 7 : q ∈ set (p # ps) and 8 : sig-of-pair

q = lt (spair a b)
and 9 : ¬ sig-crit ′ bs q using 6 by (rule rb-aux-inv-D8 )

from this(1 , 2 ) neq have q ∈ set ps by (auto simp: sig-of-p)
thus ∃ q∈set ps. sig-of-pair q = lt (spair a b) ∧ ¬ sig-crit ′ bs q using 8 9 by

blast
next

fix j
assume j < length fs
assume p: p = Inr j
from rb have is-RB-in dgrad rword (set bs) (term-of-pair (0 , j)) by (simp add:

p lt-monomial)
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moreover have rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘
set bs)

proof (rule sig-red-zero-idealI , rule sig-red-zeroI )
from 0 show (sig-red (≺t) (�) (set bs))∗∗ (monomial 1 (term-of-pair (0 , j)))

?p by (simp add: p)
qed fact
ultimately show is-RB-in dgrad rword (set bs) (term-of-pair (0 , j)) ∧

rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ set
bs) ..

qed
qed

lemma rb-aux-inv-preserved-3 :
assumes rb-aux-inv (bs, ss, p # ps) and ¬ sig-crit bs (new-syz-sigs ss bs p) p

and rep-list (sig-trd bs (poly-of-pair p)) 6= 0
shows rb-aux-inv ((sig-trd bs (poly-of-pair p)) # bs, new-syz-sigs ss bs p,

add-spairs ps bs (sig-trd bs (poly-of-pair p)))
and lt (sig-trd bs (poly-of-pair p)) /∈ lt ‘ set bs

proof −
have p ∈ set (p # ps) by simp
with assms(1 ) have sig-of-p: sig-of-pair p = lt (poly-of-pair p)

and p-in: poly-of-pair p ∈ dgrad-sig-set dgrad
by (rule pair-list-sig-of-pair , rule pair-list-dgrad-sig-set)

define p ′ where p ′ = sig-trd bs (poly-of-pair p)
from assms(1 ) have inv1 : rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence bs-sub: set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
have p-red: (sig-red (≺t) (�) (set bs))∗∗ (poly-of-pair p) p ′

and p ′-irred: ¬ is-sig-red (≺t) (�) (set bs) p ′

unfolding p ′-def by (rule sig-trd-red-rtrancl, rule sig-trd-irred)
from dgrad bs-sub p-in p-red have p ′-in: p ′ ∈ dgrad-sig-set dgrad

by (rule dgrad-sig-set-closed-sig-red-rtrancl)
from p-red have lt-p ′: lt p ′ = lt (poly-of-pair p) by (rule sig-red-regular-rtrancl-lt)
have sig-merge: sig-of-pair p �t sig-of-pair q if q ∈ set (add-spairs ps bs p ′) for

q
using that unfolding add-spairs-def set-merge-wrt

proof
assume q ∈ set (new-spairs bs p ′)
then obtain b0 where is-regular-spair p ′ b0 and q = Inl (p ′, b0 ) by (rule

in-new-spairsE)
hence sig-of-q: sig-of-pair q = lt (spair p ′ b0 ) by (simp only: sig-of-spair)

show ?thesis unfolding sig-of-q sig-of-p lt-p ′[symmetric] by (rule is-regular-spair-lt-ge-1 ,
fact)

next
assume q ∈ set ps

moreover from assms(1 ) have sorted-wrt pair-ord (p # ps) by (rule rb-aux-inv-D5 )
ultimately show ?thesis by (simp add: pair-ord-def )

qed
have sig-of-p-less: sig-of-pair p ≺t term-of-pair (0 , j) if Inr j ∈ set ps for j
proof (intro ord-term-lin.le-neq-trans)
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from assms(1 ) have sorted-wrt pair-ord (p # ps) by (rule rb-aux-inv-D5 )
with ‹Inr j ∈ set ps› show sig-of-pair p �t term-of-pair (0 , j)

by (auto simp: pair-ord-def )
next
from assms(1 ) that show sig-of-pair p 6= term-of-pair (0 , j) by (rule Inr-in-tailD)

qed
have lt-p-gr : lt b ≺t lt (poly-of-pair p) if b ∈ set bs for b unfolding sig-of-p[symmetric]

using assms(1 , 2 ) that by (rule not-sig-crit)
have inv1 : rb-aux-inv1 (p ′ # bs) unfolding rb-aux-inv1-def
proof (intro conjI impI allI )

from bs-sub p ′-in show set (p ′ # bs) ⊆ dgrad-sig-set dgrad by simp
next

from inv1 have 0 /∈ rep-list ‘ set bs by (rule rb-aux-inv1-D2 )
with assms(3 ) show 0 /∈ rep-list ‘ set (p ′ # bs) by (simp add: p ′-def )

next
from inv1 have sorted-wrt (λx y. lt y ≺t lt x) bs by (rule rb-aux-inv1-D3 )
with lt-p-gr show sorted-wrt (λx y. lt y ≺t lt x) (p ′ # bs) by (simp add: lt-p ′)

next
fix i
assume i < length (p ′ # bs)
have (¬ is-sig-red (≺t) (�) (set (drop (Suc i) (p ′ # bs))) ((p ′ # bs) ! i)) ∧

((∃ j<length fs. lt ((p ′ # bs) ! i) = lt (monomial (1 :: ′b) (term-of-pair (0 ,
j))) ∧

punit.lt (rep-list ((p ′ # bs) ! i)) � punit.lt (rep-list (monomial 1
(term-of-pair (0 , j))))) ∨

(∃ p∈set (p ′ # bs). ∃ q∈set (p ′ # bs). is-regular-spair p q ∧ rep-list (spair
p q) 6= 0 ∧

lt ((p ′ # bs) ! i) = lt (spair p q) ∧
punit.lt (rep-list ((p ′ # bs) ! i)) � punit.lt (rep-list (spair p q)))) ∧

is-RB-upt dgrad rword (set (drop (Suc i) (p ′ # bs))) (lt ((p ′ # bs) ! i))
(is ?thesis1 ∧ ?thesis2 ∧ ?thesis3 )

proof (cases i)
case 0
show ?thesis
proof (simp add: ‹i = 0 › p ′-irred del: bex-simps, rule conjI )

show (∃ j<length fs. lt p ′ = lt (monomial (1 :: ′b) (term-of-pair (0 , j))) ∧
punit.lt (rep-list p ′) � punit.lt (rep-list (monomial 1 (term-of-pair

(0 , j))))) ∨
(∃ p∈insert p ′ (set bs). ∃ q∈insert p ′ (set bs). is-regular-spair p q ∧

rep-list (spair p q) 6= 0 ∧
lt p ′ = lt (spair p q) ∧ punit.lt (rep-list p ′) � punit.lt (rep-list

(spair p q)))
proof (rule sum-prodE)

fix a b
assume p: p = Inl (a, b)
have Inl (a, b) ∈ set (p # ps) by (simp add: p)
with assms(1 ) have a ∈ set bs and b ∈ set bs and is-regular-spair a b

by (rule rb-aux-inv-D3 )+
from p-red have p ′-red: (sig-red (≺t) (�) (set bs))∗∗ (spair a b) p ′ by
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(simp add: p)
hence (punit.red (rep-list ‘ set bs))∗∗ (rep-list (spair a b)) (rep-list p ′)

by (rule sig-red-red-rtrancl)
moreover from assms(3 ) have rep-list p ′ 6= 0 by (simp add: p ′-def )
ultimately have rep-list (spair a b) 6= 0 by (auto dest: punit.rtrancl-0 )
moreover from p ′-red have lt p ′ = lt (spair a b)

and punit.lt (rep-list p ′) � punit.lt (rep-list (spair a b))
by (rule sig-red-regular-rtrancl-lt, rule sig-red-rtrancl-lt-rep-list)

ultimately show ?thesis using ‹a ∈ set bs› ‹b ∈ set bs› ‹is-regular-spair
a b› by blast

next
fix j
assume p = Inr j
hence Inr j ∈ set (p # ps) by simp
with assms(1 ) have j < length fs by (rule rb-aux-inv-D4 )
from p-red have (sig-red (≺t) (�) (set bs))∗∗ (monomial 1 (term-of-pair

(0 , j))) p ′

by (simp add: ‹p = Inr j›)
hence lt p ′ = lt (monomial (1 :: ′b) (term-of-pair (0 , j)))

and punit.lt (rep-list p ′) � punit.lt (rep-list (monomial 1 (term-of-pair
(0 , j))))

by (rule sig-red-regular-rtrancl-lt, rule sig-red-rtrancl-lt-rep-list)
with ‹j < length fs› show ?thesis by blast

qed
next

from assms(1 ) show is-RB-upt dgrad rword (set bs) (lt p ′) unfolding lt-p ′

sig-of-p[symmetric]
by (rule rb-aux-inv-is-RB-upt-Cons)

qed
next

case (Suc i ′)
with ‹i < length (p ′ # bs)› have i ′: i ′ < length bs by simp
show ?thesis
proof (simp add: ‹i = Suc i ′› del: bex-simps, intro conjI )

from inv1 i ′ show ¬ is-sig-red (≺t) (�) (set (drop (Suc i ′) bs)) (bs ! i ′)
by (rule rb-aux-inv1-D4 )

next
from inv1 i ′
show (∃ j<length fs. lt (bs ! i ′) = lt (monomial (1 :: ′b) (term-of-pair (0 , j)))

∧
punit.lt (rep-list (bs ! i ′)) � punit.lt (rep-list (monomial 1 (term-of-pair

(0 , j))))) ∨
(∃ p∈insert p ′ (set bs). ∃ q∈insert p ′ (set bs). is-regular-spair p q ∧ rep-list

(spair p q) 6= 0 ∧
lt (bs ! i ′) = lt (spair p q) ∧ punit.lt (rep-list (bs ! i ′)) � punit.lt

(rep-list (spair p q)))
by (auto elim!: rb-aux-inv1-E)

next
from inv1 i ′ show is-RB-upt dgrad rword (set (drop (Suc i ′) bs)) (lt (bs !
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i ′))
by (rule rb-aux-inv1-D5 )

qed
qed
thus ?thesis1 and ?thesis2 and ?thesis3 by simp-all

qed
have rb: is-RB-in dgrad rword (set (p ′ # bs)) (sig-of-pair p)
proof (rule is-RB-inI1 )

have p ′ ∈ set (p ′ # bs) by simp
with inv1 have is-canon-rewriter rword (set (p ′ # bs)) (lt p ′) p ′

by (rule is-canon-rewriterI-eq-sig)
thus is-canon-rewriter rword (set (p ′ # bs)) (sig-of-pair p) p ′ by (simp add:

lt-p ′ sig-of-p)
next

from p ′-irred have ¬ is-sig-red (≺t) (=) (set bs) p ′

by (simp add: is-sig-red-top-tail-cases)
with sig-irred-regular-self have ¬ is-sig-red (≺t) (=) ({p ′} ∪ set bs) p ′

by (simp add: is-sig-red-Un del: Un-insert-left)
thus ¬ is-sig-red (≺t) (=) (set (p ′# bs)) (monom-mult 1 (pp-of-term (sig-of-pair

p) − lp p ′) p ′)
by (simp add: lt-p ′ sig-of-p)

qed
show rb-aux-inv (p ′ # bs, new-syz-sigs ss bs p, add-spairs ps bs p ′)

unfolding rb-aux-inv.simps
proof (intro conjI ballI allI impI )

show rb-aux-inv1 (p ′ # bs) by (fact inv1 )
next

fix s
assume s ∈ set (new-syz-sigs ss bs p)
with assms(1 ) show is-syz-sig dgrad s by (rule new-syz-sigs-is-syz-sig)

next
fix q1 q2
assume Inl (q1 , q2 ) ∈ set (add-spairs ps bs p ′)
hence Inl (q1 , q2 ) ∈ set (new-spairs bs p ′) ∨ Inl (q1 , q2 ) ∈ set (p # ps)

by (auto simp: add-spairs-def set-merge-wrt)
hence is-regular-spair q1 q2 ∧ q1 ∈ set (p ′ # bs) ∧ q2 ∈ set (p ′ # bs)
proof

assume Inl (q1 , q2 ) ∈ set (new-spairs bs p ′)
hence q1 = p ′ and q2 ∈ set bs and is-regular-spair p ′ q2 by (rule in-new-spairsD)+

thus ?thesis by simp
next

assume Inl (q1 , q2 ) ∈ set (p # ps)
with assms(1 ) have is-regular-spair q1 q2 and q1 ∈ set bs and q2 ∈ set bs

by (rule rb-aux-inv-D3 )+
thus ?thesis by simp

qed
thus is-regular-spair q1 q2 and q1 ∈ set (p ′ # bs) and q2 ∈ set (p ′ # bs) by

simp-all
next
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fix j
assume Inr j ∈ set (add-spairs ps bs p ′)

hence Inr j ∈ set ps by (simp add: add-spairs-def set-merge-wrt Inr-not-in-new-spairs)
hence Inr j ∈ set (p # ps) by simp
with assms(1 ) show j < length fs by (rule rb-aux-inv-D4 )

fix b
assume b ∈ set (p ′ # bs)
hence b = p ′ ∨ b ∈ set bs by simp
thus lt b ≺t term-of-pair (0 , j)
proof

assume b = p ′

hence lt b = sig-of-pair p by (simp only: lt-p ′ sig-of-p)
also from ‹Inr j ∈ set ps› have ... ≺t term-of-pair (0 , j) by (rule sig-of-p-less)
finally show ?thesis .

next
assume b ∈ set bs
with assms(1 ) ‹Inr j ∈ set (p # ps)› show ?thesis by (rule rb-aux-inv-D4 )

qed
next

fix j
assume Inr j ∈ set (add-spairs ps bs p ′)

hence Inr j ∈ set ps by (simp add: add-spairs-def set-merge-wrt Inr-not-in-new-spairs)
hence Inr j ∈ set (p # ps) by simp
let ?P = λq. sig-of-pair q = term-of-pair (0 , j)
have filter ?P (add-spairs ps bs p ′) = filter ?P ps unfolding add-spairs-def
proof (rule filter-merge-wrt-2 )

fix q
assume q ∈ set (new-spairs bs p ′)
then obtain b where b ∈ set bs and is-regular-spair p ′ b and q = Inl (p ′, b)

by (rule in-new-spairsE)
moreover assume sig-of-pair q = term-of-pair (0 , j)
ultimately have lt (spair p ′ b) = term-of-pair (0 , j)

by (simp add: sig-of-spair del: sig-of-pair .simps)
hence eq: component-of-term (lt (spair p ′ b)) = j by (simp add: compo-

nent-of-term-of-pair)
have component-of-term (lt p ′) < j
proof (rule ccontr)

assume ¬ component-of-term (lt p ′) < j
hence component-of-term (term-of-pair (0 , j)) ≤ component-of-term (lt p ′)

by (simp add: component-of-term-of-pair)
moreover have pp-of-term (term-of-pair (0 , j)) � pp-of-term (lt p ′)

by (simp add: pp-of-term-of-pair zero-min)
ultimately have term-of-pair (0 , j) �t lt p ′ using ord-termI by blast

moreover have lt p ′≺t term-of-pair (0 , j) unfolding lt-p ′ sig-of-p[symmetric]
using ‹Inr j ∈ set ps› by (rule sig-of-p-less)

ultimately show False by simp
qed
moreover have component-of-term (lt b) < j

181



proof (rule ccontr)
assume ¬ component-of-term (lt b) < j
hence component-of-term (term-of-pair (0 , j)) ≤ component-of-term (lt b)

by (simp add: component-of-term-of-pair)
moreover have pp-of-term (term-of-pair (0 , j)) � pp-of-term (lt b)

by (simp add: pp-of-term-of-pair zero-min)
ultimately have term-of-pair (0 , j) �t lt b using ord-termI by blast
moreover from assms(1 ) ‹Inr j ∈ set (p # ps)› ‹b ∈ set bs›
have lt b ≺t term-of-pair (0 , j) by (rule rb-aux-inv-D4 )
ultimately show False by simp

qed
ultimately have component-of-term (lt (spair p ′ b)) < j
using is-regular-spair-component-lt-cases[OF ‹is-regular-spair p ′ b›] by auto

thus False by (simp add: eq)
qed
hence length (filter ?P (add-spairs ps bs p ′)) ≤ length (filter ?P (p # ps))

by simp
also from assms(1 ) ‹Inr j ∈ set (p # ps)› have ... ≤ 1 by (rule rb-aux-inv-D4 )
finally show length (filter ?P (add-spairs ps bs p ′)) ≤ 1 .

next
from assms(1 ) have sorted-wrt pair-ord (p # ps) by (rule rb-aux-inv-D5 )
hence sorted-wrt pair-ord ps by simp
thus sorted-wrt pair-ord (add-spairs ps bs p ′) by (rule sorted-add-spairs)

next
fix q b1 b2
assume 1 : q ∈ set (add-spairs ps bs p ′) and 2 : is-regular-spair b1 b2

and 3 : sig-of-pair q ≺t lt (spair b1 b2 )
assume b1 ∈ set (p ′ # bs) and b2 ∈ set (p ′ # bs)
hence b1 = p ′ ∨ b1 ∈ set bs and b2 = p ′ ∨ b2 ∈ set bs by simp-all
thus Inl (b1 , b2 ) ∈ set (add-spairs ps bs p ′) ∨ Inl (b2 , b1 ) ∈ set (add-spairs

ps bs p ′)
proof (elim disjE)

assume b1 = p ′ and b2 = p ′

with 2 show ?thesis by (simp add: is-regular-spair-def )
next

assume b1 = p ′ and b2 ∈ set bs
from this(2 ) 2 have Inl (b1 , b2 ) ∈ set (new-spairs bs p ′) unfolding ‹b1 =

p ′›
by (rule in-new-spairsI )

with 2 show ?thesis by (simp add: sig-of-spair add-spairs-def set-merge-wrt
image-Un del: sig-of-pair .simps)

next
assume b2 = p ′ and b1 ∈ set bs
note this(2 )
moreover from 2 have is-regular-spair b2 b1 by (rule is-regular-spair-sym)
ultimately have Inl (b2 , b1 ) ∈ set (new-spairs bs p ′) unfolding ‹b2 = p ′›

by (rule in-new-spairsI )
with 2 show ?thesis
by (simp add: sig-of-spair-commute sig-of-spair add-spairs-def set-merge-wrt
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image-Un del: sig-of-pair .simps)
next

note assms(1 ) ‹p ∈ set (p # ps)›
moreover assume b1 ∈ set bs and b2 ∈ set bs
moreover note 2
moreover have 4 : sig-of-pair p ≺t lt (spair b1 b2 )

by (rule ord-term-lin.le-less-trans, rule sig-merge, fact 1 , fact 3 )
ultimately show ?thesis
proof (rule rb-aux-inv-D6-1 )

assume Inl (b1 , b2 ) ∈ set (p # ps)
with 4 have Inl (b1 , b2 ) ∈ set ps

by (auto simp: sig-of-spair ‹is-regular-spair b1 b2 › simp del: sig-of-pair .simps)
thus ?thesis by (simp add: add-spairs-def set-merge-wrt)

next
assume Inl (b2 , b1 ) ∈ set (p # ps)
with 4 have Inl (b2 , b1 ) ∈ set ps

by (auto simp: sig-of-spair sig-of-spair-commute ‹is-regular-spair b1 b2 ›
simp del: sig-of-pair .simps)

thus ?thesis by (simp add: add-spairs-def set-merge-wrt)
qed

qed
next

fix q j
assume j < length fs
assume q ∈ set (add-spairs ps bs p ′)
hence sig-of-pair p �t sig-of-pair q by (rule sig-merge)
also assume sig-of-pair q ≺t term-of-pair (0 , j)
finally have 1 : sig-of-pair p ≺t term-of-pair (0 , j) .
with assms(1 ) ‹p ∈ set (p # ps)› ‹j < length fs› have Inr j ∈ set (p # ps)

by (rule rb-aux-inv-D6-2 )
with 1 show Inr j ∈ set (add-spairs ps bs p ′) by (auto simp: add-spairs-def

set-merge-wrt)
next

fix b q
assume b ∈ set (p ′ # bs) and q-in: q ∈ set (add-spairs ps bs p ′)
from this(1 ) have b = p ′ ∨ b ∈ set bs by simp
hence lt b �t lt p ′

proof
note assms(1 )
moreover assume b ∈ set bs
moreover have p ∈ set (p # ps) by simp
ultimately have lt b �t sig-of-pair p by (rule rb-aux-inv-D7 )
thus ?thesis by (simp only: lt-p ′ sig-of-p)

qed simp
also have ... = sig-of-pair p by (simp only: sig-of-p lt-p ′)
also from q-in have ... �t sig-of-pair q by (rule sig-merge)
finally show lt b �t sig-of-pair q .

next
fix a b
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assume 1 : a ∈ set (p ′ # bs) and 2 : b ∈ set (p ′ # bs) and 3 : is-regular-spair
a b

assume 6 : ¬ is-RB-in dgrad rword (set (p ′ # bs)) (lt (spair a b))
with rb have neq: lt (spair a b) 6= lt (poly-of-pair p) by (auto simp: sig-of-p)
assume Inl (a, b) /∈ set (add-spairs ps bs p ′)
hence 40 : Inl (a, b) /∈ set (new-spairs bs p ′) and Inl (a, b) /∈ set ps

by (simp-all add: add-spairs-def set-merge-wrt)
from this(2 ) neq have 4 : Inl (a, b) /∈ set (p # ps) by auto
assume Inl (b, a) /∈ set (add-spairs ps bs p ′)
hence 50 : Inl (b, a) /∈ set (new-spairs bs p ′) and Inl (b, a) /∈ set ps

by (simp-all add: add-spairs-def set-merge-wrt)
from this(2 ) neq have 5 : Inl (b, a) /∈ set (p # ps) by (auto simp: spair-comm[of

a])
have a 6= p ′

proof
assume a = p ′

with 3 have b 6= p ′ by (auto simp: is-regular-spair-def )
with 2 have b ∈ set bs by simp
hence Inl (a, b) ∈ set (new-spairs bs p ′) using 3 unfolding ‹a = p ′› by

(rule in-new-spairsI )
with 40 show False ..

qed
with 1 have a ∈ set bs by simp
have b 6= p ′

proof
assume b = p ′

with 3 have a 6= p ′ by (auto simp: is-regular-spair-def )
with 1 have a ∈ set bs by simp
moreover from 3 have is-regular-spair b a by (rule is-regular-spair-sym)
ultimately have Inl (b, a) ∈ set (new-spairs bs p ′) unfolding ‹b = p ′› by

(rule in-new-spairsI )
with 50 show False ..

qed
with 2 have b ∈ set bs by simp
have lt-sp: lt (spair a b) ≺t lt p ′

proof (rule ord-term-lin.linorder-cases)
assume lt (spair a b) = lt p ′

with neq show ?thesis by (simp add: lt-p ′)
next

assume lt p ′ ≺t lt (spair a b)
hence sig-of-pair p ≺t lt (spair a b) by (simp only: lt-p ′ sig-of-p)
with assms(1 ) ‹p ∈ set (p # ps)› ‹a ∈ set bs› ‹b ∈ set bs› 3 show ?thesis
proof (rule rb-aux-inv-D6-1 )

assume Inl (a, b) ∈ set (p # ps)
with 4 show ?thesis ..

next
assume Inl (b, a) ∈ set (p # ps)
with 5 show ?thesis ..

qed
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qed
have ¬ is-RB-in dgrad rword (set bs) (lt (spair a b))
proof

assume is-RB-in dgrad rword (set bs) (lt (spair a b))
hence is-RB-in dgrad rword (set (p ′# bs)) (lt (spair a b)) unfolding set-simps

using lt-sp
by (rule is-RB-in-insertI )

with 6 show False ..
qed
with assms(1 ) ‹a ∈ set bs› ‹b ∈ set bs› 3 4 5
obtain q where q ∈ set (p # ps) and 8 : sig-of-pair q = lt (spair a b) and 9 :

¬ sig-crit ′ bs q
by (rule rb-aux-inv-D8 )

from this(1 , 2 ) lt-sp have q ∈ set ps by (auto simp: lt-p ′ sig-of-p)
show ∃ q∈set (add-spairs ps bs p ′). sig-of-pair q = lt (spair a b) ∧ ¬ sig-crit ′

(p ′ # bs) q
proof (intro bexI conjI )

show ¬ sig-crit ′ (p ′ # bs) q
proof

assume sig-crit ′ (p ′ # bs) q
moreover from lt-sp have sig-of-pair q ≺t lt p ′ by (simp only: 8 )
ultimately have sig-crit ′ bs q by (rule sig-crit ′-ConsD)
with 9 show False ..

qed
next

from ‹q ∈ set ps› show q ∈ set (add-spairs ps bs p ′) by (simp add:
add-spairs-def set-merge-wrt)

qed fact
next

fix j
assume j < length fs
assume Inr j /∈ set (add-spairs ps bs p ′)
hence Inr j /∈ set ps by (simp add: add-spairs-def set-merge-wrt)

show is-RB-in dgrad rword (set (p ′ # bs)) (term-of-pair (0 , j))
proof (cases term-of-pair (0 , j) = sig-of-pair p)

case True
with rb show ?thesis by simp

next
case False
with ‹Inr j /∈ set ps› have Inr j /∈ set (p # ps) by auto

with assms(1 ) ‹j < length fs› have rb ′: is-RB-in dgrad rword (set bs)
(term-of-pair (0 , j))

by (rule rb-aux-inv-D9 )
have term-of-pair (0 , j) ≺t lt p ′

proof (rule ord-term-lin.linorder-cases)
assume term-of-pair (0 , j) = lt p ′

with False show ?thesis by (simp add: lt-p ′ sig-of-p)
next
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assume lt p ′ ≺t term-of-pair (0 , j)
hence sig-of-pair p ≺t term-of-pair (0 , j) by (simp only: lt-p ′ sig-of-p)
with assms(1 ) ‹p ∈ set (p # ps)› ‹j < length fs› have Inr j ∈ set (p # ps)

by (rule rb-aux-inv-D6-2 )
with ‹Inr j /∈ set (p # ps)› show ?thesis ..

qed
with rb ′ show ?thesis unfolding set-simps by (rule is-RB-in-insertI )

qed

show rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ set (p ′ #
bs))

proof (cases p = Inr j)
case True
show ?thesis
proof (rule sig-red-zero-idealI , rule sig-red-zeroI )

from p-red have (sig-red (≺t) (�) (set bs))∗∗ (monomial 1 (term-of-pair
(0 , j))) p ′

by (simp add: True)
moreover have set bs ⊆ set (p ′ # bs) by fastforce

ultimately have (sig-red (≺t) (�) (set (p ′# bs)))∗∗ (monomial 1 (term-of-pair
(0 , j))) p ′

by (rule sig-red-rtrancl-mono)
hence (sig-red (�t) (�) (set (p ′ # bs)))∗∗ (monomial 1 (term-of-pair (0 ,

j))) p ′

by (rule sig-red-rtrancl-sing-regI )
also have sig-red (�t) (�) (set (p ′ # bs)) p ′ 0 unfolding sig-red-def
proof (intro exI bexI )

from assms(3 ) have rep-list p ′ 6= 0 by (simp add: p ′-def )
show sig-red-single (�t) (�) p ′ 0 p ′ 0
proof (rule sig-red-singleI )

show rep-list p ′ 6= 0 by fact
next

from ‹rep-list p ′ 6= 0 › have punit.lt (rep-list p ′) ∈ keys (rep-list p ′)
by (rule punit.lt-in-keys)

thus 0 + punit.lt (rep-list p ′) ∈ keys (rep-list p ′) by simp
next

from ‹rep-list p ′ 6= 0 › have punit.lc (rep-list p ′) 6= 0 by (rule
punit.lc-not-0 )

thus 0 = p ′ − monom-mult (lookup (rep-list p ′) (0 + punit.lt (rep-list
p ′)) / punit.lc (rep-list p ′)) 0 p ′

by (simp add: punit.lc-def [symmetric])
qed (simp-all add: term-simps)

qed simp
finally show (sig-red (�t) (�) (set (p ′ # bs)))∗∗ (monomial 1 (term-of-pair

(0 , j))) 0 .
qed (fact rep-list-zero)

next
case False
with ‹Inr j /∈ set ps› have Inr j /∈ set (p # ps) by simp
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with assms(1 ) ‹j < length fs›
have rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ set bs)

by (rule rb-aux-inv-D9 )
also have ... ⊆ ideal (rep-list ‘ set (p ′ # bs)) by (rule ideal.span-mono,

fastforce)
finally show ?thesis .

qed
qed

show lt p ′ /∈ lt ‘ set bs unfolding lt-p ′

proof
assume lt (poly-of-pair p) ∈ lt ‘ set bs
then obtain b where b ∈ set bs and lt (poly-of-pair p) = lt b ..
note this(2 )
also from ‹b ∈ set bs› have lt b ≺t lt (poly-of-pair p) by (rule lt-p-gr)
finally show False ..

qed
qed

lemma rb-aux-inv-init: rb-aux-inv ([], Koszul-syz-sigs fs, map Inr [0 ..<length fs])
proof (simp add: rb-aux-inv.simps rb-aux-inv1-def o-def , intro conjI ballI allI
impI )

fix v
assume v ∈ set (Koszul-syz-sigs fs)
with dgrad fs-distinct fs-nonzero show is-syz-sig dgrad v by (rule Koszul-syz-sigs-is-syz-sig)

next
fix p q :: ′t ⇒0

′b
show Inl (p, q) /∈ Inr ‘ {0 ..<length fs} by blast

next
fix j
assume Inr j ∈ Inr ‘ {0 ..<length fs}
thus j < length fs by fastforce

next
fix j
have eq: (term-of-pair (0 , i) = term-of-pair (0 , j)) ←→ (j = i) for i

by (auto dest: term-of-pair-injective)
show length (filter (λi. term-of-pair (0 , i) = term-of-pair (0 , j)) [0 ..<length fs])
≤ Suc 0

by (simp add: eq)
next

show sorted-wrt pair-ord (map Inr [0 ..<length fs])
proof (simp add: sorted-wrt-map pair-ord-def sorted-wrt-upt-iff , intro allI impI )

fix i j :: nat
assume i < j
hence i ≤ j by simp
show term-of-pair (0 , i) �t term-of-pair (0 , j) by (rule ord-termI , simp-all

add: term-simps ‹i ≤ j›)
qed

qed
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corollary rb-aux-inv-init-fst:
rb-aux-inv (fst (([], Koszul-syz-sigs fs, map Inr [0 ..<length fs]), z))
using rb-aux-inv-init by simp

function (domintros) rb-aux :: ((( ′t ⇒0
′b) list × ′t list × ((( ′t ⇒0

′b) × ( ′t ⇒0
′b)) + nat) list) × nat) ⇒

((( ′t ⇒0
′b) list × ′t list × ((( ′t ⇒0

′b) × ( ′t ⇒0
′b))

+ nat) list) × nat)
where

rb-aux ((bs, ss, []), z) = ((bs, ss, []), z) |
rb-aux ((bs, ss, p # ps), z) =
(let ss ′ = new-syz-sigs ss bs p in

if sig-crit bs ss ′ p then
rb-aux ((bs, ss ′, ps), z)

else
let p ′ = sig-trd bs (poly-of-pair p) in

if rep-list p ′ = 0 then
rb-aux ((bs, lt p ′ # ss ′, ps), Suc z)

else
rb-aux ((p ′ # bs, ss ′, add-spairs ps bs p ′), z))

by pat-completeness auto

definition rb :: ( ′t ⇒0
′b) list × nat

where rb = (let ((bs, -, -), z) = rb-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length
fs]), 0 ) in (bs, z))

rb is only an auxiliary function used for stating some theorems about rewrite
bases and their computation in a readable way. Actual computations (of
Gröbner bases) are performed by function sig-gb, defined below. The second
return value of rb is the number of zero-reductions. It is only needed for
proving that under certain assumptions, there are no such zero-reductions.

Termination
qualified definition rb-aux-term1 ≡ {(x, y). ∃ z. x = z # y}

qualified definition rb-aux-term2 ≡ {(x, y). (fst x, fst y) ∈ rb-aux-term1 ∨
(fst x = fst y ∧ length (snd (snd x)) < length (snd (snd y)))}

qualified definition rb-aux-term ≡ rb-aux-term2 ∩ {(x, y). rb-aux-inv x ∧ rb-aux-inv
y}

lemma wfp-on-rb-aux-term1 : wfp-on (λx y. (x, y) ∈ rb-aux-term1 ) (Collect rb-aux-inv1 )
proof (rule wfp-onI-chain, rule, elim exE)

fix seq ′

assume ∀ i. seq ′ i ∈ Collect rb-aux-inv1 ∧ (seq ′ (Suc i), seq ′ i) ∈ rb-aux-term1
hence inv: rb-aux-inv1 (seq ′ j) and cons: ∃ b. seq ′ (Suc j) = b # seq ′ j for j

by (simp-all add: rb-aux-term1-def )
from this(2 ) have 1 : thesis0 if

∧
j. i < length (seq ′ j) =⇒ thesis0 for i thesis0

188



using that by (rule list-seq-indexE-length)

define seq where seq = (λi. let j = (SOME k. i < length (seq ′ k)) in rev (seq ′

j) ! i)
have 2 : seq i = rev (seq ′ j) ! i if i < length (seq ′ j) for i j
proof −

define k where k = (SOME k. i < length (seq ′ k))
from that have i < length (seq ′ k) unfolding k-def by (rule someI )
with cons that have rev (seq ′ k) ! i = rev (seq ′ j) ! i by (rule list-seq-nth ′)
thus ?thesis by (simp add: seq-def k-def [symmetric])

qed
have 3 : seq i ∈ set (seq ′ j) if i < length (seq ′ j) for i j
proof −

from that have i < length (rev (seq ′ j)) by simp
moreover from that have seq i = rev (seq ′ j) ! i by (rule 2 )
ultimately have seq i ∈ set (rev (seq ′ j)) by (metis nth-mem)
thus ?thesis by simp

qed
have 4 : seq ‘ {0 ..<i} = set (take i (rev (seq ′ j))) if i < length (seq ′ j) for i j
proof −

from refl have seq ‘ {0 ..<i} = (!) (rev (seq ′ j)) ‘ {0 ..<i}
proof (rule image-cong)

fix i ′
assume i ′ ∈ {0 ..<i}
hence i ′ < i by simp
hence i ′ < length (seq ′ j) using that by simp
thus seq i ′ = rev (seq ′ j) ! i ′ by (rule 2 )

qed
also have ... = set (take i (rev (seq ′ j))) by (rule nth-image, simp add: that

less-imp-le-nat)
finally show ?thesis .

qed
from dgrad show False
proof (rule rb-termination)

have seq i ∈ dgrad-sig-set dgrad for i
proof −

obtain j where i < length (seq ′ j) by (rule 1 )
hence seq i ∈ set (seq ′ j) by (rule 3 )

moreover from inv have set (seq ′ j) ⊆ dgrad-sig-set dgrad by (rule
rb-aux-inv1-D1 )

ultimately show ?thesis ..
qed
thus range seq ⊆ dgrad-sig-set dgrad by blast

next
have rep-list (seq i) 6= 0 for i
proof −

obtain j where i < length (seq ′ j) by (rule 1 )
hence seq i ∈ set (seq ′ j) by (rule 3 )
moreover from inv have 0 /∈ rep-list ‘ set (seq ′ j) by (rule rb-aux-inv1-D2 )
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ultimately show ?thesis by auto
qed
thus 0 /∈ rep-list ‘ range seq by fastforce

next
fix i1 i2 :: nat
assume i1 < i2
also obtain j where i2 : i2 < length (seq ′ j) by (rule 1 )
finally have i1 : i1 < length (seq ′ j) .
from i1 have s1 : seq i1 = rev (seq ′ j) ! i1 by (rule 2 )
from i2 have s2 : seq i2 = rev (seq ′ j) ! i2 by (rule 2 )
from inv have sorted-wrt (λx y. lt y ≺t lt x) (seq ′ j) by (rule rb-aux-inv1-D3 )
hence sorted-wrt (λx y. lt x ≺t lt y) (rev (seq ′ j)) by (simp add: sorted-wrt-rev)
moreover note ‹i1 < i2 ›
moreover from i2 have i2 < length (rev (seq ′ j)) by simp

ultimately have lt (rev (seq ′ j) ! i1 ) ≺t lt (rev (seq ′ j) ! i2 ) by (rule
sorted-wrt-nth-less)

thus lt (seq i1 ) ≺t lt (seq i2 ) by (simp only: s1 s2 )
next

fix i
obtain j where i: i < length (seq ′ j) by (rule 1 )
hence eq1 : seq i = rev (seq ′ j) ! i and eq2 : seq ‘ {0 ..<i} = set (take i (rev

(seq ′ j)))
by (rule 2 , rule 4 )

let ?i = length (seq ′ j) − Suc i
from i have ?i < length (seq ′ j) by simp
with inv have ¬ is-sig-red (≺t) (�) (set (drop (Suc ?i) (seq ′ j))) ((seq ′ j) ! ?i)

by (rule rb-aux-inv1-D4 )
thus ¬ is-sig-red (≺t) (�) (seq ‘ {0 ..<i}) (seq i)

using i by (simp add: eq1 eq2 rev-nth take-rev Suc-diff-Suc)

from inv ‹?i < length (seq ′ j)›
show (∃ j<length fs. lt (seq i) = lt (monomial (1 :: ′b) (term-of-pair (0 , j))) ∧

punit.lt (rep-list (seq i)) � punit.lt (rep-list (monomial 1 (term-of-pair
(0 , j))))) ∨

(∃ j k. is-regular-spair (seq j) (seq k) ∧ rep-list (spair (seq j) (seq k)) 6= 0 ∧
lt (seq i) = lt (spair (seq j) (seq k)) ∧
punit.lt (rep-list (seq i)) � punit.lt (rep-list (spair (seq j) (seq k))))

(is ?l ∨ ?r)
proof (rule rb-aux-inv1-E)

fix j0
assume j0 < length fs
and lt (seq ′ j ! (length (seq ′ j) − Suc i)) = lt (monomial (1 :: ′b) (term-of-pair

(0 , j0 )))
and punit.lt (rep-list (seq ′ j ! (length (seq ′ j) − Suc i))) �

punit.lt (rep-list (monomial 1 (term-of-pair (0 , j0 ))))
hence ?l using i by (auto simp: eq1 eq2 rev-nth take-rev Suc-diff-Suc)
thus ?thesis ..

next
fix p q
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assume p ∈ set (seq ′ j)
then obtain pi where pi < length (seq ′ j) and p = (seq ′ j) ! pi by (metis

in-set-conv-nth)
hence p: p = seq (length (seq ′ j) − Suc pi)

by (metis 2 ‹p ∈ set (seq ′ j)› diff-Suc-less length-pos-if-in-set length-rev
rev-nth rev-rev-ident)

assume q ∈ set (seq ′ j)
then obtain qi where qi < length (seq ′ j) and q = (seq ′ j) ! qi by (metis

in-set-conv-nth)
hence q: q = seq (length (seq ′ j) − Suc qi)

by (metis 2 ‹q ∈ set (seq ′ j)› diff-Suc-less length-pos-if-in-set length-rev
rev-nth rev-rev-ident)

assume is-regular-spair p q and rep-list (spair p q) 6= 0
and lt (seq ′ j ! (length (seq ′ j) − Suc i)) = lt (spair p q)
and punit.lt (rep-list (seq ′ j ! (length (seq ′ j) − Suc i))) � punit.lt (rep-list

(spair p q))
hence ?r using i by (auto simp: eq1 eq2 p q rev-nth take-rev Suc-diff-Suc)
thus ?thesis ..

qed

from inv ‹?i < length (seq ′ j)›
have is-RB-upt dgrad rword (set (drop (Suc ?i) (seq ′ j))) (lt ((seq ′ j) ! ?i))

by (rule rb-aux-inv1-D5 )
with dgrad have is-sig-GB-upt dgrad (set (drop (Suc ?i) (seq ′ j))) (lt ((seq ′ j)

! ?i))
by (rule is-RB-upt-is-sig-GB-upt)

thus is-sig-GB-upt dgrad (seq ‘ {0 ..<i}) (lt (seq i))
using i by (simp add: eq1 eq2 rev-nth take-rev Suc-diff-Suc)

qed
qed

lemma wfp-on-rb-aux-term2 : wfp-on (λx y. (x, y) ∈ rb-aux-term2 ) (Collect rb-aux-inv)
proof (rule wfp-onI-min)

fix x Q
assume x ∈ Q and Q-sub: Q ⊆ Collect rb-aux-inv
from this(1 ) have fst x ∈ fst ‘ Q by (rule imageI )
have fst ‘ Q ⊆ Collect rb-aux-inv1
proof

fix y
assume y ∈ fst ‘ Q
then obtain z where z ∈ Q and y: y = fst z by fastforce
obtain bs ss ps where z: z = (bs, ss, ps) by (rule rb-aux-inv.cases)
from ‹z ∈ Q› Q-sub have rb-aux-inv z by blast
thus y ∈ Collect rb-aux-inv1 by (simp add: y z rb-aux-inv.simps)

qed
with wfp-on-rb-aux-term1 ‹fst x ∈ fst ‘ Q› obtain z ′ where z ′ ∈ fst ‘ Q

and z ′-min:
∧

y. (y, z ′) ∈ rb-aux-term1 =⇒ y /∈ fst ‘ Q by (rule wfp-onE-min)
blast

from this(1 ) obtain z0 where z0 ∈ Q and z ′: z ′ = fst z0 by fastforce
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define Q0 where Q0 = {z. z ∈ Q ∧ fst z = fst z0}
from ‹z0 ∈ Q› have z0 ∈ Q0 by (simp add: Q0-def )
hence length (snd (snd z0 )) ∈ length ‘ snd ‘ snd ‘ Q0 by (intro imageI )
with wf-less obtain n where n1 : n ∈ length ‘ snd ‘ snd ‘ Q0

and n2 :
∧

n ′. n ′ < n =⇒ n ′ /∈ length ‘ snd ‘ snd ‘ Q0 by (rule wfE-min, blast)
from n1 obtain z where z ∈ Q0 and n3 : n = length (snd (snd z)) by fastforce
have z-min: y /∈ Q0 if length (snd (snd y)) < length (snd (snd z)) for y
proof

assume y ∈ Q0
hence length (snd (snd y)) ∈ length ‘ snd ‘ snd ‘ Q0 by (intro imageI )

with n2 have ¬ length (snd (snd y)) < length (snd (snd z)) unfolding
n3 [symmetric] by blast

thus False using that ..
qed
show ∃ z∈Q. ∀ y∈Collect rb-aux-inv. (y, z) ∈ rb-aux-term2 −→ y /∈ Q
proof (intro bexI ballI impI )

fix y
assume y ∈ Collect rb-aux-inv
assume (y, z) ∈ rb-aux-term2
hence (fst y, fst z) ∈ rb-aux-term1 ∨ (fst y = fst z ∧ length (snd (snd y)) <

length (snd (snd z)))
by (simp add: rb-aux-term2-def )

thus y /∈ Q
proof

assume (fst y, fst z) ∈ rb-aux-term1
moreover from ‹z ∈ Q0 › have fst z = fst z0 by (simp add: Q0-def )
ultimately have (fst y, z ′) ∈ rb-aux-term1 by (simp add: rb-aux-term1-def

z ′)
hence fst y /∈ fst ‘ Q by (rule z ′-min)
thus ?thesis by blast

next
assume fst y = fst z ∧ length (snd (snd y)) < length (snd (snd z))

hence fst y = fst z and length (snd (snd y)) < length (snd (snd z)) by
simp-all

from this(2 ) have y /∈ Q0 by (rule z-min)
moreover from ‹z ∈ Q0 › have fst y = fst z0 by (simp add: Q0-def ‹fst y

= fst z›)
ultimately show ?thesis by (simp add: Q0-def )

qed
next

from ‹z ∈ Q0 › show z ∈ Q by (simp add: Q0-def )
qed

qed

corollary wf-rb-aux-term: wf rb-aux-term
proof (rule wfI-min)

fix x::( ′t ⇒0
′b) list × ′t list × ((( ′t ⇒0

′b) × ( ′t ⇒0
′b)) + nat) list and Q

assume x ∈ Q
show ∃ z∈Q. ∀ y. (y, z) ∈ rb-aux-term −→ y /∈ Q
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proof (cases rb-aux-inv x)
case True
let ?Q = Q ∩ Collect rb-aux-inv
note wfp-on-rb-aux-term2
moreover from ‹x ∈ Q› True have x ∈ ?Q by simp
moreover have ?Q ⊆ Collect rb-aux-inv by simp
ultimately obtain z where z ∈ ?Q and z-min:

∧
y. (y, z) ∈ rb-aux-term2

=⇒ y /∈ ?Q
by (rule wfp-onE-min) blast

show ?thesis
proof (intro bexI allI impI )

fix y
assume (y, z) ∈ rb-aux-term

hence (y, z) ∈ rb-aux-term2 and rb-aux-inv y by (simp-all add: rb-aux-term-def )
from this(1 ) have y /∈ ?Q by (rule z-min)
with ‹rb-aux-inv y› show y /∈ Q by simp

next
from ‹z ∈ ?Q› show z ∈ Q by simp

qed
next

case False
show ?thesis
proof (intro bexI allI impI )

fix y
assume (y, x) ∈ rb-aux-term
hence rb-aux-inv x by (simp add: rb-aux-term-def )
with False show y /∈ Q ..

qed fact
qed

qed

lemma rb-aux-domI :
assumes rb-aux-inv (fst args)
shows rb-aux-dom args

proof −
let ?rel = rb-aux-term <∗lex∗> ({}::(nat × nat) set)
from wf-rb-aux-term wf-empty have wf ?rel ..
thus ?thesis using assms
proof (induct args)

case (less args)
obtain bs ss ps0 z where args: args = ((bs, ss, ps0 ), z) using prod.exhaust

by metis
show ?case
proof (cases ps0 )

case Nil
show ?thesis unfolding args Nil by (rule rb-aux.domintros)

next
case (Cons p ps)
from less(1 ) have 1 :

∧
y. (y, ((bs, ss, p # ps), z)) ∈ ?rel =⇒ rb-aux-inv (fst
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y) =⇒ rb-aux-dom y
by (simp only: args Cons)

from less(2 ) have 2 : rb-aux-inv (bs, ss, p # ps) by (simp only: args Cons
fst-conv)

show ?thesis unfolding args Cons
proof (rule rb-aux.domintros)

assume sig-crit bs (new-syz-sigs ss bs p) p
with 2 have a: rb-aux-inv (bs, (new-syz-sigs ss bs p), ps) by (rule

rb-aux-inv-preserved-1 )
with 2 have ((bs, (new-syz-sigs ss bs p), ps), bs, ss, p # ps) ∈ rb-aux-term

by (simp add: rb-aux-term-def rb-aux-term2-def )
hence (((bs, (new-syz-sigs ss bs p), ps), z), (bs, ss, p # ps), z) ∈ ?rel by

simp
moreover from a have rb-aux-inv (fst ((bs, (new-syz-sigs ss bs p), ps), z))

by (simp only: fst-conv)
ultimately show rb-aux-dom ((bs, (new-syz-sigs ss bs p), ps), z) by (rule

1 )
next

assume rep-list (sig-trd bs (poly-of-pair p)) = 0
with 2 have a: rb-aux-inv (bs, lt (sig-trd bs (poly-of-pair p)) # new-syz-sigs

ss bs p, ps)
by (rule rb-aux-inv-preserved-2 )

with 2 have ((bs, lt (sig-trd bs (poly-of-pair p)) # new-syz-sigs ss bs p, ps),
bs, ss, p # ps) ∈

rb-aux-term
by (simp add: rb-aux-term-def rb-aux-term2-def )

hence (((bs, lt (sig-trd bs (poly-of-pair p)) # new-syz-sigs ss bs p, ps), Suc
z), (bs, ss, p # ps), z) ∈

?rel by simp
moreover from a have rb-aux-inv (fst ((bs, lt (sig-trd bs (poly-of-pair p))

# new-syz-sigs ss bs p, ps), Suc z))
by (simp only: fst-conv)

ultimately show rb-aux-dom ((bs, lt (sig-trd bs (poly-of-pair p)) #
new-syz-sigs ss bs p, ps), Suc z)

by (rule 1 )
next

let ?args = (sig-trd bs (poly-of-pair p) # bs, new-syz-sigs ss bs p, add-spairs
ps bs (sig-trd bs (poly-of-pair p)))

assume ¬ sig-crit bs (new-syz-sigs ss bs p) p and rep-list (sig-trd bs
(poly-of-pair p)) 6= 0

with 2 have a: rb-aux-inv ?args by (rule rb-aux-inv-preserved-3 )
with 2 have (?args, bs, ss, p # ps) ∈ rb-aux-term

by (simp add: rb-aux-term-def rb-aux-term2-def rb-aux-term1-def )
hence ((?args, z), (bs, ss, p # ps), z) ∈ ?rel by simp
moreover from a have rb-aux-inv (fst (?args, z)) by (simp only: fst-conv)
ultimately show rb-aux-dom (?args, z) by (rule 1 )

qed
qed

qed
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qed

Invariant
lemma rb-aux-inv-invariant:

assumes rb-aux-inv (fst args)
shows rb-aux-inv (fst (rb-aux args))

proof −
from assms have rb-aux-dom args by (rule rb-aux-domI )
thus ?thesis using assms
proof (induct args rule: rb-aux.pinduct)

case (1 bs ss z)
thus ?case by (simp only: rb-aux.psimps(1 ))

next
case (2 bs ss p ps z)
from 2 (5 ) have ∗: rb-aux-inv (bs, ss, p # ps) by (simp only: fst-conv)
show ?case
proof (simp add: rb-aux.psimps(2 )[OF 2 (1 )] Let-def , intro conjI impI )

assume a: sig-crit bs (new-syz-sigs ss bs p) p
with ∗ have rb-aux-inv (bs, new-syz-sigs ss bs p, ps)

by (rule rb-aux-inv-preserved-1 )
hence rb-aux-inv (fst ((bs, new-syz-sigs ss bs p, ps), z)) by (simp only:

fst-conv)
with refl a show rb-aux-inv (fst (rb-aux ((bs, new-syz-sigs ss bs p, ps), z)))

by (rule 2 (2 ))
thus rb-aux-inv (fst (rb-aux ((bs, new-syz-sigs ss bs p, ps), z))) .

next
assume a: ¬ sig-crit bs (new-syz-sigs ss bs p) p
assume b: rep-list (sig-trd bs (poly-of-pair p)) = 0
with ∗ have rb-aux-inv (bs, lt (sig-trd bs (poly-of-pair p)) # new-syz-sigs ss

bs p, ps)
by (rule rb-aux-inv-preserved-2 )

hence rb-aux-inv (fst ((bs, lt (sig-trd bs (poly-of-pair p)) # new-syz-sigs ss bs
p, ps), Suc z))

by (simp only: fst-conv)
with refl a refl b

show rb-aux-inv (fst (rb-aux ((bs, lt (sig-trd bs (poly-of-pair p)) # new-syz-sigs
ss bs p, ps), Suc z)))

by (rule 2 (3 ))
next

let ?args = (sig-trd bs (poly-of-pair p) # bs, new-syz-sigs ss bs p,
add-spairs ps bs (sig-trd bs (poly-of-pair p)))

assume a: ¬ sig-crit bs (new-syz-sigs ss bs p) p and b: rep-list (sig-trd bs
(poly-of-pair p)) 6= 0

with ∗ have rb-aux-inv ?args by (rule rb-aux-inv-preserved-3 )
hence rb-aux-inv (fst (?args, z)) by (simp only: fst-conv)
with refl a refl b
show rb-aux-inv (fst (rb-aux (?args, z)))

by (rule 2 (4 ))
qed
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qed
qed

lemma rb-aux-inv-last-Nil:
assumes rb-aux-dom args
shows snd (snd (fst (rb-aux args))) = []
using assms

proof (induct args rule: rb-aux.pinduct)
case (1 bs ss z)
thus ?case by (simp add: rb-aux.psimps(1 ))

next
case (2 bs ss p ps z)
show ?case
proof (simp add: rb-aux.psimps(2 )[OF 2 (1 )] Let-def , intro conjI impI )

assume sig-crit bs (new-syz-sigs ss bs p) p
with refl show snd (snd (fst (rb-aux ((bs, new-syz-sigs ss bs p, ps), z)))) = []

and snd (snd (fst (rb-aux ((bs, new-syz-sigs ss bs p, ps), z)))) = []
by (rule 2 (2 ))+

next
assume a: ¬ sig-crit bs (new-syz-sigs ss bs p) p and b: rep-list (sig-trd bs

(poly-of-pair p)) = 0
from refl a refl b
show snd (snd (fst (rb-aux ((bs, lt (sig-trd bs (poly-of-pair p)) # new-syz-sigs

ss bs p, ps), Suc z)))) = []
by (rule 2 (3 ))

next
assume a: ¬ sig-crit bs (new-syz-sigs ss bs p) p and b: rep-list (sig-trd bs

(poly-of-pair p)) 6= 0
from refl a refl b
show snd (snd (fst (rb-aux ((sig-trd bs (poly-of-pair p) # bs, new-syz-sigs ss bs

p,
add-spairs ps bs (sig-trd bs (poly-of-pair p))), z)))) = []

by (rule 2 (4 ))
qed

qed

corollary rb-aux-shape:
assumes rb-aux-dom args
obtains bs ss z where rb-aux args = ((bs, ss, []), z)

proof −
obtain bs ss ps z where rb-aux args = ((bs, ss, ps), z) using prod.exhaust by

metis
moreover from assms have snd (snd (fst (rb-aux args))) = [] by (rule rb-aux-inv-last-Nil)
ultimately have rb-aux args = ((bs, ss, []), z) by simp
thus ?thesis ..

qed

lemma rb-aux-is-RB-upt:
is-RB-upt dgrad rword (set (fst (fst (rb-aux (([], Koszul-syz-sigs fs, map Inr
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[0 ..<length fs]), z))))) u
proof −

let ?args = (([], Koszul-syz-sigs fs, map Inr [0 ..<length fs]), z)
from rb-aux-inv-init-fst have rb-aux-dom ?args by (rule rb-aux-domI )
then obtain bs ss z ′ where eq: rb-aux ?args = ((bs, ss, []), z ′) by (rule

rb-aux-shape)
moreover from rb-aux-inv-init-fst have rb-aux-inv (fst (rb-aux ?args))

by (rule rb-aux-inv-invariant)
ultimately have rb-aux-inv (bs, ss, []) by simp
have is-RB-upt dgrad rword (set bs) u by (rule rb-aux-inv-is-RB-upt, fact, simp)
thus ?thesis by (simp add: eq)

qed

corollary rb-is-RB-upt: is-RB-upt dgrad rword (set (fst rb)) u
using rb-aux-is-RB-upt[of 0 u] by (auto simp add: rb-def split: prod.split)

corollary rb-aux-is-sig-GB-upt:
is-sig-GB-upt dgrad (set (fst (fst (rb-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length

fs]), z))))) u
using dgrad rb-aux-is-RB-upt by (rule is-RB-upt-is-sig-GB-upt)

corollary rb-aux-is-sig-GB-in:
is-sig-GB-in dgrad (set (fst (fst (rb-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length

fs]), z))))) u
proof −

let ?u = term-of-pair (pp-of-term u, Suc (component-of-term u))
have u ≺t ?u
proof (rule ord-term-lin.le-neq-trans)

show u �t ?u by (rule ord-termI , simp-all add: term-simps)
next

show u 6= ?u
proof

assume u = ?u
hence component-of-term u = component-of-term ?u by simp
thus False by (simp add: term-simps)

qed
qed
with rb-aux-is-sig-GB-upt show ?thesis by (rule is-sig-GB-uptD2 )

qed

corollary rb-aux-is-Groebner-basis:
assumes hom-grading dgrad
shows punit.is-Groebner-basis (set (map rep-list (fst (fst (rb-aux (([], Koszul-syz-sigs

fs, map Inr [0 ..<length fs]), z))))))
proof −

let ?args = (([], Koszul-syz-sigs fs, map Inr [0 ..<length fs]), z)
from rb-aux-inv-init-fst have rb-aux-dom ?args by (rule rb-aux-domI )
then obtain bs ss z ′ where eq: rb-aux ?args = ((bs, ss, []), z ′) by (rule

rb-aux-shape)
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moreover from rb-aux-inv-init-fst have rb-aux-inv (fst (rb-aux ?args))
by (rule rb-aux-inv-invariant)

ultimately have rb-aux-inv (bs, ss, []) by simp
hence rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
hence set (fst (fst (rb-aux ?args))) ⊆ dgrad-max-set dgrad by (simp add: eq

dgrad-sig-set ′-def )
with dgrad assms have punit.is-Groebner-basis (rep-list ‘ set (fst (fst (rb-aux

?args))))
using rb-aux-is-sig-GB-in by (rule is-sig-GB-is-Groebner-basis)

thus ?thesis by simp
qed

lemma ideal-rb-aux:
ideal (set (map rep-list (fst (fst (rb-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length

fs]), z)))))) =
ideal (set fs) (is ideal ?l = ideal ?r)

proof
show ideal ?l ⊆ ideal ?r by (rule ideal.span-subset-spanI , auto simp: rep-list-in-ideal)

next
show ideal ?r ⊆ ideal ?l
proof (rule ideal.span-subset-spanI , rule subsetI )

fix f
assume f ∈ set fs
then obtain j where j < length fs and f : f = fs ! j by (metis in-set-conv-nth)
let ?args = (([], Koszul-syz-sigs fs, map Inr [0 ..<length fs]), z)
from rb-aux-inv-init-fst have rb-aux-dom ?args by (rule rb-aux-domI )
then obtain bs ss z ′ where eq: rb-aux ?args = ((bs, ss, []), z ′) by (rule

rb-aux-shape)
moreover from rb-aux-inv-init-fst have rb-aux-inv (fst (rb-aux ?args))

by (rule rb-aux-inv-invariant)
ultimately have rb-aux-inv (bs, ss, []) by simp
moreover note ‹j < length fs›
moreover have Inr j /∈ set [] by simp
ultimately have rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal ?l

unfolding eq set-map fst-conv by (rule rb-aux-inv-D9 )
thus f ∈ ideal ?l by (simp add: rep-list-monomial ′ ‹j < length fs› f )

qed
qed

corollary ideal-rb: ideal (rep-list ‘ set (fst rb)) = ideal (set fs)
proof −

have ideal (rep-list ‘ set (fst rb)) =
ideal (set (map rep-list (fst (fst (rb-aux (([], Koszul-syz-sigs fs, map Inr

[0 ..<length fs]), 0 ))))))
by (auto simp: rb-def split: prod.splits)

also have ... = ideal (set fs) by (fact ideal-rb-aux)
finally show ?thesis .

qed
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lemma
shows dgrad-max-set-closed-rb-aux:

set (map rep-list (fst (fst (rb-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length
fs]), z))))) ⊆

punit-dgrad-max-set dgrad (is ?thesis1 )
and rb-aux-nonzero:
0 /∈ set (map rep-list (fst (fst (rb-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length

fs]), z)))))
(is ?thesis2 )

proof −
let ?args = (([], Koszul-syz-sigs fs, map Inr [0 ..<length fs]), z)
from rb-aux-inv-init-fst have rb-aux-dom ?args by (rule rb-aux-domI )
then obtain bs ss z ′ where eq: rb-aux ?args = ((bs, ss, []), z ′) by (rule

rb-aux-shape)
moreover from rb-aux-inv-init-fst have rb-aux-inv (fst (rb-aux ?args))

by (rule rb-aux-inv-invariant)
ultimately have rb-aux-inv (bs, ss, []) by simp
hence rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence set bs ⊆ dgrad-sig-set dgrad and ∗: 0 /∈ rep-list ‘ set bs

by (rule rb-aux-inv1-D1 , rule rb-aux-inv1-D2 )
from this(1 ) have set bs ⊆ dgrad-max-set dgrad by (simp add: dgrad-sig-set ′-def )
with dgrad show ?thesis1 by (simp add: eq dgrad-max-3 )
from ∗ show ?thesis2 by (simp add: eq)

qed

4.2.11 Minimality of the Computed Basis
lemma rb-aux-top-irred ′:

assumes rword-strict = rw-rat-strict and rb-aux-inv (bs, ss, p # ps)
and ¬ sig-crit bs (new-syz-sigs ss bs p) p

shows ¬ is-sig-red (�t) (=) (set bs) (sig-trd bs (poly-of-pair p))
proof −

have rword = rw-rat by (intro ext, simp only: rword-def rw-rat-alt, simp add:
assms(1 ))

have lt-p: sig-of-pair p = lt (poly-of-pair p) by (rule pair-list-sig-of-pair , fact,
simp)

define p ′ where p ′ = sig-trd bs (poly-of-pair p)
have red-p: (sig-red (≺t) (�) (set bs))∗∗ (poly-of-pair p) p ′

unfolding p ′-def by (rule sig-trd-red-rtrancl)
hence lt-p ′: lt p ′ = sig-of-pair p

and lt-p ′′: punit.lt (rep-list p ′) � punit.lt (rep-list (poly-of-pair p))
unfolding lt-p by (rule sig-red-regular-rtrancl-lt, rule sig-red-rtrancl-lt-rep-list)

have ¬ is-sig-red (=) (=) (set bs) p ′

proof
assume is-sig-red (=) (=) (set bs) p ′

then obtain b where b ∈ set bs and rep-list b 6= 0 and rep-list p ′ 6= 0
and 1 : punit.lt (rep-list b) adds punit.lt (rep-list p ′)
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and 2 : punit.lt (rep-list p ′) ⊕ lt b = punit.lt (rep-list b) ⊕ lt p ′

by (rule is-sig-red-top-addsE)
note this(3 )

moreover from red-p have (punit.red (rep-list ‘ set bs))∗∗ (rep-list (poly-of-pair
p)) (rep-list p ′)

by (rule sig-red-red-rtrancl)
ultimately have rep-list (poly-of-pair p) 6= 0 by (auto simp: punit.rtrancl-0 )

define x where x = punit.lt (rep-list p ′) − punit.lt (rep-list b)
from 1 2 have x1 : x ⊕ lt b = lt p ′ by (simp add: term-is-le-rel-minus x-def )
from this[symmetric] have lt b addst sig-of-pair p unfolding lt-p ′ by (rule

adds-termI )
from 1 have x2 : x + punit.lt (rep-list b) = punit.lt (rep-list p ′) by (simp add:

x-def adds-minus)
from ‹rep-list b 6= 0 › have b 6= 0 by (auto simp: rep-list-zero)

show False
proof (rule sum-prodE)

fix a0 b0
assume p: p = Inl (a0 , b0 )
hence Inl (a0 , b0 ) ∈ set (p # ps) by simp
with assms(2 ) have reg: is-regular-spair a0 b0 and a0 ∈ set bs and b0 ∈

set bs
by (rule rb-aux-inv-D3 )+

from assms(2 ) have inv1 : rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence 0 /∈ rep-list ‘ set bs by (rule rb-aux-inv1-D2 )
with ‹a0 ∈ set bs› ‹b0 ∈ set bs› have rep-list a0 6= 0 and rep-list b0 6= 0

by fastforce+
hence a0 6= 0 and b0 6= 0 by (auto simp: rep-list-zero)

let ?t1 = punit.lt (rep-list a0 )
let ?t2 = punit.lt (rep-list b0 )
let ?l = lcs ?t1 ?t2
from ‹rep-list (poly-of-pair p) 6= 0 › have punit.spoly (rep-list a0 ) (rep-list

b0 ) 6= 0
by (simp add: p rep-list-spair)

with ‹rep-list a0 6= 0 › ‹rep-list b0 6= 0 ›
have punit.lt (punit.spoly (rep-list a0 ) (rep-list b0 )) ≺ ?l

by (rule punit.lt-spoly-less-lcs[simplified])

obtain b ′ where 3 : is-canon-rewriter rword (set bs) (sig-of-pair p) b ′

and 4 : punit.lt (rep-list (poly-of-pair p)) ≺
(pp-of-term (sig-of-pair p) − lp b ′) + punit.lt (rep-list b ′)

proof (cases (?l − ?t1 ) ⊕ lt a0 �t (?l − ?t2 ) ⊕ lt b0 )
case True
have sig-of-pair p = lt (spair a0 b0 ) unfolding lt-p by (simp add: p)
also from reg have ... = (?l − ?t2 ) ⊕ lt b0

by (simp add: True is-regular-spair-lt ord-term-lin.max-def )
finally have eq1 : sig-of-pair p = (?l − ?t2 ) ⊕ lt b0 .
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hence lt b0 addst sig-of-pair p by (rule adds-termI )
moreover from assms(3 ) have ¬ is-rewritable bs b0 ((?l − ?t2 ) ⊕ lt b0 )

by (simp add: p spair-sigs-def Let-def )
ultimately have is-canon-rewriter rword (set bs) (sig-of-pair p) b0

unfolding eq1 [symmetric] using inv1 ‹b0 ∈ set bs› ‹b0 6= 0 › is-rewritableI-is-canon-rewriter
by blast

thus ?thesis
proof
have punit.lt (rep-list (poly-of-pair p)) = punit.lt (punit.spoly (rep-list a0 )

(rep-list b0 ))
by (simp add: p rep-list-spair)

also have ... ≺ ?l by fact
also have ... = (?l − ?t2 ) + ?t2 by (simp only: adds-minus adds-lcs-2 )
also have ... = (pp-of-term (sig-of-pair p) − lp b0 ) + ?t2

by (simp only: eq1 pp-of-term-splus add-diff-cancel-right ′)
finally show punit.lt (rep-list (poly-of-pair p)) ≺ pp-of-term (sig-of-pair

p) − lp b0 + ?t2 .
qed

next
case False
have sig-of-pair p = lt (spair a0 b0 ) unfolding lt-p by (simp add: p)
also from reg have ... = (?l − ?t1 ) ⊕ lt a0

by (simp add: False is-regular-spair-lt ord-term-lin.max-def )
finally have eq1 : sig-of-pair p = (?l − ?t1 ) ⊕ lt a0 .
hence lt a0 addst sig-of-pair p by (rule adds-termI )
moreover from assms(3 ) have ¬ is-rewritable bs a0 ((?l − ?t1 ) ⊕ lt a0 )

by (simp add: p spair-sigs-def Let-def )
ultimately have is-canon-rewriter rword (set bs) (sig-of-pair p) a0

unfolding eq1 [symmetric] using inv1 ‹a0 ∈ set bs› ‹a0 6= 0 › is-rewritableI-is-canon-rewriter
by blast

thus ?thesis
proof
have punit.lt (rep-list (poly-of-pair p)) = punit.lt (punit.spoly (rep-list a0 )

(rep-list b0 ))
by (simp add: p rep-list-spair)

also have ... ≺ ?l by fact
also have ... = (?l − ?t1 ) + ?t1 by (simp only: adds-minus adds-lcs)
also have ... = (pp-of-term (sig-of-pair p) − lp a0 ) + ?t1

by (simp only: eq1 pp-of-term-splus add-diff-cancel-right ′)
finally show punit.lt (rep-list (poly-of-pair p)) ≺ pp-of-term (sig-of-pair

p) − lp a0 + ?t1 .
qed

qed

define y where y = pp-of-term (sig-of-pair p) − lp b ′

from lt-p ′′ 4 have y2 : punit.lt (rep-list p ′) ≺ y + punit.lt (rep-list b ′)
unfolding y-def by (rule ordered-powerprod-lin.le-less-trans)

from 3 have lt b ′ addst sig-of-pair p by (rule is-canon-rewriterD3 )
hence lp b ′ adds lp p ′ and component-of-term (lt b ′) = component-of-term (lt

201



p ′)
by (simp-all add: adds-term-def lt-p ′)

hence y1 : y ⊕ lt b ′ = lt p ′ by (simp add: y-def splus-def lt-p ′ adds-minus
term-simps)

from 3 ‹b ∈ set bs› ‹b 6= 0 › ‹lt b addst sig-of-pair p›
have rword (spp-of b) (spp-of b ′) by (rule is-canon-rewriterD)
hence punit.lt (rep-list b ′) ⊕ lt b �t punit.lt (rep-list b) ⊕ lt b ′

by (auto simp: ‹rword = rw-rat› rw-rat-def Let-def spp-of-def )
hence (x + y) ⊕ (punit.lt (rep-list b ′) ⊕ lt b) �t (x + y) ⊕ (punit.lt (rep-list

b) ⊕ lt b ′)
by (rule splus-mono)

hence (y + punit.lt (rep-list b ′)) ⊕ (x ⊕ lt b) �t (x + punit.lt (rep-list b)) ⊕
(y ⊕ lt b ′)

by (simp add: ac-simps)
hence (y + punit.lt (rep-list b ′)) ⊕ lt p ′ �t punit.lt (rep-list p ′) ⊕ lt p ′

by (simp only: x1 x2 y1 )
hence y + punit.lt (rep-list b ′) � punit.lt (rep-list p ′) by (rule ord-term-canc-left)

with y2 show ?thesis by simp
next

fix j
assume p: p = Inr j
hence lt p ′ = term-of-pair (0 , j) by (simp add: lt-p ′)
with x1 term-of-pair-pair [of lt b] have lt b = term-of-pair (0 , j)

by (auto simp: splus-def dest!: term-of-pair-injective plus-eq-zero-2 )
moreover have lt b ≺t term-of-pair (0 , j) by (rule rb-aux-inv-D4 , fact, simp

add: p, fact)
ultimately show ?thesis by simp

qed
qed
moreover have ¬ is-sig-red (≺t) (=) (set bs) p ′

proof
assume is-sig-red (≺t) (=) (set bs) p ′

hence is-sig-red (≺t) (�) (set bs) p ′ by (simp add: is-sig-red-top-tail-cases)
with sig-trd-irred show False unfolding p ′-def ..

qed
ultimately show ?thesis by (simp add: p ′-def is-sig-red-sing-reg-cases)

qed

lemma rb-aux-top-irred:
assumes rword-strict = rw-rat-strict and rb-aux-inv (fst args) and b ∈ set (fst

(fst (rb-aux args)))
and

∧
b0 . b0 ∈ set (fst (fst args)) =⇒ ¬ is-sig-red (�t) (=) (set (fst (fst args))

− {b0}) b0
shows ¬ is-sig-red (�t) (=) (set (fst (fst (rb-aux args))) − {b}) b

proof −
from assms(2 ) have rb-aux-dom args by (rule rb-aux-domI )
thus ?thesis using assms(2 , 3 , 4 )
proof (induct args rule: rb-aux.pinduct)

case (1 bs ss z)
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let ?nil = []::((( ′t ⇒0
′b) × ( ′t ⇒0

′b)) + nat) list
from 1 (3 ) have b ∈ set (fst (fst ((bs, ss, ?nil), z))) by (simp add: rb-aux.psimps(1 )[OF

1 (1 )])
hence ¬ is-sig-red (�t) (=) (set (fst (fst ((bs, ss, ?nil), z))) − {b}) b by (rule

1 (4 ))
thus ?case by (simp add: rb-aux.psimps(1 )[OF 1 (1 )])

next
case (2 bs ss p ps z)
from 2 (5 ) have ∗: rb-aux-inv (bs, ss, p # ps) by (simp only: fst-conv)
define p ′ where p ′ = sig-trd bs (poly-of-pair p)
from 2 (6 ) show ?case
proof (simp add: rb-aux.psimps(2 )[OF 2 (1 )] Let-def p ′-def [symmetric] split:

if-splits)
note refl
moreover assume sig-crit bs (new-syz-sigs ss bs p) p
moreover from ∗ this have rb-aux-inv (fst ((bs, new-syz-sigs ss bs p, ps),

z))
unfolding fst-conv by (rule rb-aux-inv-preserved-1 )

moreover assume b ∈ set (fst (fst (rb-aux ((bs, new-syz-sigs ss bs p, ps),
z))))

ultimately show ¬ is-sig-red (�t) (=) (set (fst (fst (rb-aux ((bs, new-syz-sigs
ss bs p, ps), z)))) − {b}) b

proof (rule 2 (2 ))
fix b0
assume b0 ∈ set (fst (fst ((bs, new-syz-sigs ss bs p, ps), z)))
hence b0 ∈ set (fst (fst ((bs, ss, p # ps), z))) by simp
hence ¬ is-sig-red (�t) (=) (set (fst (fst ((bs, ss, p # ps), z))) − {b0}) b0

by (rule 2 (7 ))
thus ¬ is-sig-red (�t) (=) (set (fst (fst ((bs, new-syz-sigs ss bs p, ps), z)))

− {b0}) b0
by simp

qed
next

note refl
moreover assume ¬ sig-crit bs (new-syz-sigs ss bs p) p
moreover note refl
moreover assume rep-list p ′ = 0
moreover from ∗ this have rb-aux-inv (fst ((bs, lt p ′ # new-syz-sigs ss bs

p, ps), Suc z))
unfolding p ′-def fst-conv by (rule rb-aux-inv-preserved-2 )

moreover assume b ∈ set (fst (fst (rb-aux ((bs, lt p ′ # new-syz-sigs ss bs p,
ps), Suc z))))

ultimately show ¬ is-sig-red (�t) (=) (set (fst (fst (rb-aux ((bs,
lt p ′ # new-syz-sigs ss bs p, ps), Suc

z)))) − {b}) b
proof (rule 2 (3 )[simplified p ′-def [symmetric]])

fix b0
assume b0 ∈ set (fst (fst ((bs, lt p ′ # new-syz-sigs ss bs p, ps), Suc z)))
hence b0 ∈ set (fst (fst ((bs, ss, p # ps), z))) by simp
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hence ¬ is-sig-red (�t) (=) (set (fst (fst ((bs, ss, p # ps), z))) − {b0}) b0
by (rule 2 (7 ))

thus ¬ is-sig-red (�t) (=) (set (fst (fst ((bs, lt p ′ # new-syz-sigs ss bs p,
ps), Suc z))) − {b0}) b0

by simp
qed

next
note refl
moreover assume ¬ sig-crit bs (new-syz-sigs ss bs p) p
moreover note refl
moreover assume rep-list p ′ 6= 0
moreover from ∗ ‹¬ sig-crit bs (new-syz-sigs ss bs p) p› this
have inv: rb-aux-inv (fst ((p ′ # bs, new-syz-sigs ss bs p, add-spairs ps bs p ′),

z))
unfolding p ′-def fst-conv by (rule rb-aux-inv-preserved-3 )

moreover assume b ∈ set (fst (fst (rb-aux ((p ′ # bs, new-syz-sigs ss bs p,
add-spairs ps bs p ′), z))))

ultimately show ¬ is-sig-red (�t) (=) (set (fst (fst (rb-aux ((p ′ # bs,
new-syz-sigs ss bs p, add-spairs ps bs p ′), z))))

− {b}) b
proof (rule 2 (4 )[simplified p ′-def [symmetric]])

fix b0
assume b0 ∈ set (fst (fst ((p ′ # bs, new-syz-sigs ss bs p, add-spairs ps bs

p ′), z)))
hence b0 = p ′ ∨ b0 ∈ set bs by simp
hence ¬ is-sig-red (�t) (=) (({p ′} − {b0}) ∪ (set bs − {b0})) b0
proof

assume b0 = p ′

have ¬ is-sig-red (�t) (=) (set bs − {b0}) p ′

proof
assume is-sig-red (�t) (=) (set bs − {b0}) p ′

moreover have set bs − {b0} ⊆ set bs by fastforce
ultimately have is-sig-red (�t) (=) (set bs) p ′ by (rule is-sig-red-mono)
moreover have ¬ is-sig-red (�t) (=) (set bs) p ′ unfolding p ′-def

using assms(1 ) ∗ ‹¬ sig-crit bs (new-syz-sigs ss bs p) p› by (rule
rb-aux-top-irred ′)

ultimately show False by simp
qed
thus ?thesis by (simp add: ‹b0 = p ′›)

next
assume b0 ∈ set bs
hence b0 ∈ set (fst (fst ((bs, ss, p # ps), z))) by simp
hence ¬ is-sig-red (�t) (=) (set (fst (fst ((bs, ss, p # ps), z))) − {b0})

b0 by (rule 2 (7 ))
hence ¬ is-sig-red (�t) (=) (set bs − {b0}) b0 by simp
moreover have ¬ is-sig-red (�t) (=) ({p ′} − {b0}) b0
proof

assume is-sig-red (�t) (=) ({p ′} − {b0}) b0
moreover have {p ′} − {b0} ⊆ {p ′} by fastforce
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ultimately have is-sig-red (�t) (=) {p ′} b0 by (rule is-sig-red-mono)
hence lt p ′ �t lt b0 by (rule is-sig-redD-lt)

from inv have rb-aux-inv (p ′ # bs, new-syz-sigs ss bs p, add-spairs ps
bs p ′)

by (simp only: fst-conv)
hence rb-aux-inv1 (p ′ # bs) by (rule rb-aux-inv-D1 )
hence sorted-wrt (λx y. lt y ≺t lt x) (p ′ # bs) by (rule rb-aux-inv1-D3 )
with ‹b0 ∈ set bs› have lt b0 ≺t lt p ′ by simp
with ‹lt p ′ �t lt b0 › show False by simp

qed
ultimately show ?thesis by (simp add: is-sig-red-Un)

qed
thus ¬ is-sig-red (�t) (=) (set (fst (fst ((p ′ # bs, new-syz-sigs ss bs p,

add-spairs ps bs p ′), z))) − {b0}) b0
by (simp add: Un-Diff [symmetric])

qed
qed

qed
qed

corollary rb-aux-is-min-sig-GB:
assumes rword-strict = rw-rat-strict
shows is-min-sig-GB dgrad (set (fst (fst (rb-aux (([], Koszul-syz-sigs fs, map Inr

[0 ..<length fs]), z)))))
(is is-min-sig-GB - (set (fst (fst (rb-aux ?args)))))

unfolding is-min-sig-GB-def
proof (intro conjI allI ballI impI )

from rb-aux-inv-init-fst have inv: rb-aux-inv (fst (rb-aux ?args))
and rb-aux-dom ?args
by (rule rb-aux-inv-invariant, rule rb-aux-domI )

from this(2 ) obtain bs ss z ′ where eq: rb-aux ?args = ((bs, ss, []), z ′)
by (rule rb-aux-shape)

from inv have rb-aux-inv (bs, ss, []) by (simp only: eq fst-conv)
hence rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
thus set (fst (fst (rb-aux ?args))) ⊆ dgrad-sig-set dgrad by (simp add: eq)

next
fix u
show is-sig-GB-in dgrad (set (fst (fst (rb-aux ?args)))) u by (fact rb-aux-is-sig-GB-in)

next
fix g
assume g ∈ set (fst (fst (rb-aux ?args)))
with assms(1 ) rb-aux-inv-init-fst
show ¬ is-sig-red (�t) (=) (set (fst (fst (rb-aux ?args))) − {g}) g

by (rule rb-aux-top-irred) simp
qed

corollary rb-is-min-sig-GB:
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assumes rword-strict = rw-rat-strict
shows is-min-sig-GB dgrad (set (fst rb))
using rb-aux-is-min-sig-GB[OF assms, of 0 ] by (auto simp: rb-def split: prod.split)

4.2.12 No Zero-Reductions
fun rb-aux-inv2 :: (( ′t ⇒0

′b) list × ′t list × ((( ′t ⇒0
′b) × ( ′t ⇒0

′b)) + nat)
list) ⇒ bool

where rb-aux-inv2 (bs, ss, ps) =
(rb-aux-inv (bs, ss, ps) ∧
(∀ j<length fs. Inr j /∈ set ps −→

(fs ! j ∈ ideal (rep-list ‘ set (filter (λb. component-of-term (lt b) < Suc
j) bs)) ∧

(∀ b∈set bs. component-of-term (lt b) < j −→
(∃ s∈set ss. s addst term-of-pair (punit.lt (rep-list b), j))))))

lemma rb-aux-inv2-D1 : rb-aux-inv2 args =⇒ rb-aux-inv args
by (metis prod.exhaust rb-aux-inv2 .simps)

lemma rb-aux-inv2-D2 :
rb-aux-inv2 (bs, ss, ps) =⇒ j < length fs =⇒ Inr j /∈ set ps =⇒

fs ! j ∈ ideal (rep-list ‘ set (filter (λb. component-of-term (lt b) < Suc j) bs))
by simp

lemma rb-aux-inv2-E :
assumes rb-aux-inv2 (bs, ss, ps) and j < length fs and Inr j /∈ set ps and b ∈

set bs
and component-of-term (lt b) < j

obtains s where s ∈ set ss and s addst term-of-pair (punit.lt (rep-list b), j)
using assms by auto

context
assumes pot: is-pot-ord

begin

lemma sig-red-zero-filter :
assumes sig-red-zero (�t) (set bs) r and component-of-term (lt r) < j
shows sig-red-zero (�t) (set (filter (λb. component-of-term (lt b) < j) bs)) r

proof −
have (�t) = (�t) ∨ (�t) = (≺t) by simp
with assms(1 ) have sig-red-zero (�t) {b∈set bs. lt b �t lt r} r by (rule sig-red-zero-subset)
moreover have {b∈set bs. lt b �t lt r} ⊆ set (filter (λb. component-of-term (lt

b) < j) bs)
proof

fix b
assume b ∈ {b∈set bs. lt b �t lt r}
hence b ∈ set bs and lt b �t lt r by simp-all
from pot this(2 ) have component-of-term (lt b) ≤ component-of-term (lt r) by

(rule is-pot-ordD2 )
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also have ... < j by (fact assms(2 ))
finally have component-of-term (lt b) < j .
with ‹b ∈ set bs› show b ∈ set (filter (λb. component-of-term (lt b) < j) bs)

by simp
qed
ultimately show ?thesis by (rule sig-red-zero-mono)

qed

lemma rb-aux-inv2-preserved-0 :
assumes rb-aux-inv2 (bs, ss, p # ps) and j < length fs and Inr j /∈ set ps

and b ∈ set bs and component-of-term (lt b) < j
shows ∃ s∈set (new-syz-sigs ss bs p). s addst term-of-pair (punit.lt (rep-list b),

j)
proof (rule sum-prodE)

fix x y
assume p: p = Inl (x, y)
with assms(3 ) have Inr j /∈ set (p # ps) by simp
with assms(1 , 2 ) obtain s where s ∈ set ss and ∗: s addst term-of-pair (punit.lt

(rep-list b), j)
using assms(4 , 5 ) by (rule rb-aux-inv2-E)

from this(1 ) have s ∈ set (new-syz-sigs ss bs p) by (simp add: p)
with ∗ show ?thesis ..

next
fix i
assume p: p = Inr i
have trans: transp (addst) by (rule transpI , drule adds-term-trans)
from adds-term-refl have refl: reflp (addst) by (rule reflpI )
let ?v = term-of-pair (punit.lt (rep-list b), j)
let ?f = λb. term-of-pair (punit.lt (rep-list b), i)
define ss ′ where ss ′ = filter-min (addst) (map ?f bs)
have eq: new-syz-sigs ss bs p = filter-min-append (addst) ss ss ′ by (simp add: p

ss ′-def pot)
show ?thesis
proof (cases i = j)

case True
from ‹b ∈ set bs› have ?v ∈ ?f ‘ set bs unfolding ‹i = j› by (rule imageI )
hence ?v ∈ set ss ∪ set (map ?f bs) by simp
thus ?thesis
proof

assume ?v ∈ set ss
hence ?v ∈ set ss ∪ set ss ′ by simp
with trans refl obtain s where s ∈ set (new-syz-sigs ss bs p) and s addst ?v

unfolding eq by (rule filter-min-append-relE)
thus ?thesis ..

next
assume ?v ∈ set (map ?f bs)
with trans refl obtain s where s ∈ set ss ′ and s addst ?v

unfolding ss ′-def by (rule filter-min-relE)
from this(1 ) have s ∈ set ss ∪ set ss ′ by simp
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with trans refl obtain s ′ where s ′: s ′ ∈ set (new-syz-sigs ss bs p) and s ′

addst s
unfolding eq by (rule filter-min-append-relE)

from this(2 ) ‹s addst ?v› have s ′ addst ?v by (rule adds-term-trans)
with s ′ show ?thesis ..

qed
next

case False
with assms(3 ) have Inr j /∈ set (p # ps) by (simp add: p)
with assms(1 , 2 ) obtain s where s ∈ set ss and s addst ?v

using assms(4 , 5 ) by (rule rb-aux-inv2-E)
from this(1 ) have s ∈ set ss ∪ set (map ?f bs) by simp
thus ?thesis
proof

assume s ∈ set ss
hence s ∈ set ss ∪ set ss ′ by simp
with trans refl obtain s ′ where s ′: s ′ ∈ set (new-syz-sigs ss bs p) and s ′

addst s
unfolding eq by (rule filter-min-append-relE)

from this(2 ) ‹s addst ?v› have s ′ addst ?v by (rule adds-term-trans)
with s ′ show ?thesis ..

next
assume s ∈ set (map ?f bs)
with trans refl obtain s ′ where s ′ ∈ set ss ′ and s ′ addst s

unfolding ss ′-def by (rule filter-min-relE)
from this(1 ) have s ′ ∈ set ss ∪ set ss ′ by simp
with trans refl obtain s ′′ where s ′′: s ′′ ∈ set (new-syz-sigs ss bs p) and s ′′

addst s ′

unfolding eq by (rule filter-min-append-relE)
from this(2 ) ‹s ′ addst s› have s ′′ addst s by (rule adds-term-trans)
hence s ′′ addst ?v using ‹s addst ?v› by (rule adds-term-trans)
with s ′′ show ?thesis ..

qed
qed

qed

lemma rb-aux-inv2-preserved-1 :
assumes rb-aux-inv2 (bs, ss, p # ps) and sig-crit bs (new-syz-sigs ss bs p) p
shows rb-aux-inv2 (bs, new-syz-sigs ss bs p, ps)
unfolding rb-aux-inv2 .simps

proof (intro allI conjI impI ballI )
from assms(1 ) have inv: rb-aux-inv (bs, ss, p # ps) by (rule rb-aux-inv2-D1 )
thus rb-aux-inv (bs, new-syz-sigs ss bs p, ps)

using assms(2 ) by (rule rb-aux-inv-preserved-1 )

fix j
assume j < length fs and Inr j /∈ set ps
show fs ! j ∈ ideal (rep-list ‘ set (filter (λb. component-of-term (lt b) < Suc j)

bs))
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proof (cases p = Inr j)
case True
with assms(2 ) have is-pred-syz (new-syz-sigs ss bs p) (term-of-pair (0 , j)) by

simp
let ?X = set (filter (λb. component-of-term (lt b) < Suc j) bs)
have rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ ?X)
proof (rule sig-red-zero-idealI )

have sig-red-zero (≺t) (set bs) (monomial 1 (term-of-pair (0 , j)))
proof (rule syzygy-crit)

from inv have is-RB-upt dgrad rword (set bs) (sig-of-pair p)
by (rule rb-aux-inv-is-RB-upt-Cons)

with dgrad have is-sig-GB-upt dgrad (set bs) (sig-of-pair p)
by (rule is-RB-upt-is-sig-GB-upt)

thus is-sig-GB-upt dgrad (set bs) (term-of-pair (0 , j)) by (simp add: ‹p =
Inr j›)

next
show monomial 1 (term-of-pair (0 , j)) ∈ dgrad-sig-set dgrad

by (rule dgrad-sig-set-closed-monomial, simp-all add: term-simps dgrad-max-0
‹j < length fs›)

next
show lt (monomial (1 :: ′b) (term-of-pair (0 , j))) = term-of-pair (0 , j) by

(simp add: lt-monomial)
next

from inv assms(2 ) have sig-crit ′ bs p by (rule sig-crit ′I-sig-crit)
thus is-syz-sig dgrad (term-of-pair (0 , j)) by (simp add: ‹p = Inr j›)

qed (fact dgrad)
hence sig-red-zero (�t) (set bs) (monomial 1 (term-of-pair (0 , j)))

by (rule sig-red-zero-sing-regI )
moreover have component-of-term (lt (monomial (1 :: ′b) (term-of-pair (0 ,

j)))) < Suc j
by (simp add: lt-monomial component-of-term-of-pair)

ultimately show sig-red-zero (�t) ?X (monomial 1 (term-of-pair (0 , j)))
by (rule sig-red-zero-filter)

qed
thus ?thesis by (simp add: rep-list-monomial ′ ‹j < length fs›)

next
case False
with ‹Inr j /∈ set ps› have Inr j /∈ set (p # ps) by simp
with assms(1 ) ‹j < length fs› show ?thesis by (rule rb-aux-inv2-D2 )

qed
next

fix j b
assume j < length fs and Inr j /∈ set ps and b ∈ set bs and component-of-term

(lt b) < j
with assms(1 ) show ∃ s∈set (new-syz-sigs ss bs p). s addst term-of-pair (punit.lt

(rep-list b), j)
by (rule rb-aux-inv2-preserved-0 )

qed
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lemma rb-aux-inv2-preserved-3 :
assumes rb-aux-inv2 (bs, ss, p # ps) and ¬ sig-crit bs (new-syz-sigs ss bs p) p

and rep-list (sig-trd bs (poly-of-pair p)) 6= 0
shows rb-aux-inv2 (sig-trd bs (poly-of-pair p) # bs, new-syz-sigs ss bs p,

add-spairs ps bs (sig-trd bs (poly-of-pair p)))
proof −

from assms(1 ) have inv: rb-aux-inv (bs, ss, p # ps) by (rule rb-aux-inv2-D1 )
define p ′ where p ′ = sig-trd bs (poly-of-pair p)
from sig-trd-red-rtrancl[of bs poly-of-pair p] have lt p ′ = lt (poly-of-pair p)

unfolding p ′-def by (rule sig-red-regular-rtrancl-lt)
also have ... = sig-of-pair p by (rule sym, rule pair-list-sig-of-pair , fact inv,

simp)
finally have lt-p ′: lt p ′ = sig-of-pair p .
show ?thesis unfolding rb-aux-inv2 .simps p ′-def [symmetric]
proof (intro allI conjI impI ballI )

show rb-aux-inv (p ′ # bs, new-syz-sigs ss bs p, add-spairs ps bs p ′)
unfolding p ′-def using inv assms(2 , 3 ) by (rule rb-aux-inv-preserved-3 )

next
fix j
assume j < length fs and ∗: Inr j /∈ set (add-spairs ps bs p ′)
show fs ! j ∈ ideal (rep-list ‘ set (filter (λb. component-of-term (lt b) < Suc j)

(p ′ # bs)))
proof (cases p = Inr j)

case True
let ?X = set (filter (λb. component-of-term (lt b) < Suc j) (p ′ # bs))
have rep-list (monomial 1 (term-of-pair (0 , j))) ∈ ideal (rep-list ‘ ?X)
proof (rule sig-red-zero-idealI )

have sig-red-zero (�t) (set (p ′ # bs)) (monomial 1 (term-of-pair (0 , j)))
proof (rule sig-red-zeroI )

have (sig-red (≺t) (�) (set bs))∗∗ (monomial 1 (term-of-pair (0 , j))) p ′

using sig-trd-red-rtrancl[of bs poly-of-pair p] by (simp add: True p ′-def )
moreover have set bs ⊆ set (p ′ # bs) by fastforce

ultimately have (sig-red (≺t) (�) (set (p ′ # bs)))∗∗ (monomial 1
(term-of-pair (0 , j))) p ′

by (rule sig-red-rtrancl-mono)
hence (sig-red (�t) (�) (set (p ′ # bs)))∗∗ (monomial 1 (term-of-pair (0 ,

j))) p ′

by (rule sig-red-rtrancl-sing-regI )
also have sig-red (�t) (�) (set (p ′ # bs)) p ′ 0 unfolding sig-red-def
proof (intro exI bexI )

from assms(3 ) have rep-list p ′ 6= 0 by (simp add: p ′-def )
show sig-red-single (�t) (�) p ′ 0 p ′ 0
proof (rule sig-red-singleI )

show rep-list p ′ 6= 0 by fact
next

from ‹rep-list p ′ 6= 0 › have punit.lt (rep-list p ′) ∈ keys (rep-list p ′)
by (rule punit.lt-in-keys)

thus 0 + punit.lt (rep-list p ′) ∈ keys (rep-list p ′) by simp
next
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from ‹rep-list p ′ 6= 0 › have punit.lc (rep-list p ′) 6= 0 by (rule
punit.lc-not-0 )

thus 0 = p ′ − monom-mult (lookup (rep-list p ′) (0 + punit.lt (rep-list
p ′)) / punit.lc (rep-list p ′)) 0 p ′

by (simp add: punit.lc-def [symmetric])
qed (simp-all add: term-simps)

qed simp
finally show (sig-red (�t) (�) (set (p ′ # bs)))∗∗ (monomial 1 (term-of-pair

(0 , j))) 0 .
qed (fact rep-list-zero)
moreover have component-of-term (lt (monomial (1 :: ′b) (term-of-pair (0 ,

j)))) < Suc j
by (simp add: lt-monomial component-of-term-of-pair)

ultimately show sig-red-zero (�t) ?X (monomial 1 (term-of-pair (0 , j)))
by (rule sig-red-zero-filter)

qed
thus ?thesis by (simp add: rep-list-monomial ′ ‹j < length fs›)

next
case False
from ∗ have Inr j /∈ set ps by (simp add: add-spairs-def set-merge-wrt)
hence Inr j /∈ set (p # ps) using False by simp
with assms(1 ) ‹j < length fs›
have fs ! j ∈ ideal (rep-list ‘ set (filter (λb. component-of-term (lt b) < Suc

j) bs))
by (rule rb-aux-inv2-D2 )

also have ... ⊆ ideal (rep-list ‘ set (filter (λb. component-of-term (lt b) < Suc
j) (p ′ # bs)))

by (intro ideal.span-mono image-mono, fastforce)
finally show ?thesis .

qed
next

fix j and b:: ′t ⇒0
′b

assume j < length fs and ∗: component-of-term (lt b) < j
assume Inr j /∈ set (add-spairs ps bs p ′)
hence Inr j /∈ set ps by (simp add: add-spairs-def set-merge-wrt)
assume b ∈ set (p ′ # bs)
hence b = p ′ ∨ b ∈ set bs by simp
thus ∃ s∈set (new-syz-sigs ss bs p). s addst term-of-pair (punit.lt (rep-list b),

j)
proof

assume b = p ′

with ∗ have component-of-term (sig-of-pair p) < component-of-term (term-of-pair
(0 , j))

by (simp only: lt-p ′ component-of-term-of-pair)
with pot have ∗∗: sig-of-pair p ≺t term-of-pair (0 , j) by (rule is-pot-ordD)
have p ∈ set (p # ps) by simp

with inv have Inr j ∈ set (p # ps) using ‹j < length fs› ∗∗ by (rule
rb-aux-inv-D6-2 )

with ‹Inr j /∈ set ps› have p = Inr j by simp
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with ∗∗ show ?thesis by simp
next

assume b ∈ set bs
with assms(1 ) ‹j < length fs› ‹Inr j /∈ set ps› show ?thesis

using ∗ by (rule rb-aux-inv2-preserved-0 )
qed

qed
qed

lemma rb-aux-inv2-ideal-subset:
assumes rb-aux-inv2 (bs, ss, ps) and

∧
p0 . p0 ∈ set ps =⇒ j ≤ component-of-term

(sig-of-pair p0 )
shows ideal (set (take j fs)) ⊆ ideal (rep-list ‘ set (filter (λb. component-of-term

(lt b) < j) bs))
(is ideal ?B ⊆ ideal ?A)

proof (intro ideal.span-subset-spanI subsetI )
fix f
assume f ∈ ?B
then obtain i where i < length (take j fs) and f = (take j fs) ! i

by (metis in-set-conv-nth)
hence i < length fs and i < j and f : f = fs ! i by auto
from this(2 ) have Suc i ≤ j by simp
have f ∈ ideal (rep-list ‘ set (filter (λb. component-of-term (lt b) < Suc i) bs))

unfolding f using assms(1 ) ‹i < length fs›
proof (rule rb-aux-inv2-D2 )

show Inr i /∈ set ps
proof

assume Inr i ∈ set ps
hence j ≤ component-of-term (sig-of-pair (Inr i)) by (rule assms(2 ))
hence j ≤ i by (simp add: component-of-term-of-pair)
with ‹i < j› show False by simp

qed
qed
also have ... ⊆ ideal ?A

by (intro ideal.span-mono image-mono, auto dest: order-less-le-trans[OF - ‹Suc
i ≤ j›])

finally show f ∈ ideal ?A .
qed

lemma rb-aux-inv-is-Groebner-basis:
assumes hom-grading dgrad and rb-aux-inv (bs, ss, ps)

and
∧

p0 . p0 ∈ set ps =⇒ j ≤ component-of-term (sig-of-pair p0 )
shows punit.is-Groebner-basis (rep-list ‘ set (filter (λb. component-of-term (lt b)

< j) bs))
(is punit.is-Groebner-basis (rep-list ‘ set ?bs))

using dgrad assms(1 )
proof (rule is-sig-GB-upt-is-Groebner-basis)

show set ?bs ⊆ dgrad-sig-set ′ j dgrad
proof
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fix b
assume b ∈ set ?bs
hence b ∈ set bs and component-of-term (lt b) < j by simp-all
show b ∈ dgrad-sig-set ′ j dgrad unfolding dgrad-sig-set ′-def
proof

from assms(2 ) have rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )
with ‹b ∈ set bs› have b ∈ dgrad-sig-set dgrad ..
thus b ∈ dgrad-max-set dgrad by (simp add: dgrad-sig-set ′-def )

next
show b ∈ sig-inv-set ′ j
proof (rule sig-inv-setI ′)

fix v
assume v ∈ keys b
hence v �t lt b by (rule lt-max-keys)
with pot have component-of-term v ≤ component-of-term (lt b) by (rule

is-pot-ordD2 )
also have ... < j by fact
finally show component-of-term v < j .

qed
qed

qed
next

fix u
assume u: component-of-term u < j
from dgrad have is-sig-GB-upt dgrad (set bs) (term-of-pair (0 , j))
proof (rule is-RB-upt-is-sig-GB-upt)

from assms(2 ) show is-RB-upt dgrad rword (set bs) (term-of-pair (0 , j))
proof (rule rb-aux-inv-is-RB-upt)

fix p
assume p ∈ set ps
hence j ≤ component-of-term (sig-of-pair p) by (rule assms(3 ))
with pot show term-of-pair (0 , j) �t sig-of-pair p

by (auto simp: is-pot-ord term-simps zero-min)
qed

qed
moreover from pot have u ≺t term-of-pair (0 , j)

by (rule is-pot-ordD) (simp only: u component-of-term-of-pair)
ultimately have 1 : is-sig-GB-in dgrad (set bs) u by (rule is-sig-GB-uptD2 )
show is-sig-GB-in dgrad (set ?bs) u
proof (rule is-sig-GB-inI )

fix r :: ′t ⇒0
′b

assume lt r = u
assume r ∈ dgrad-sig-set dgrad

with 1 have sig-red-zero (�t) (set bs) r using ‹lt r = u› by (rule is-sig-GB-inD)
moreover from u have component-of-term (lt r) < j by (simp only: ‹lt r =

u›)
ultimately show sig-red-zero (�t) (set ?bs) r by (rule sig-red-zero-filter)

qed
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qed

lemma rb-aux-inv2-no-zero-red:
assumes hom-grading dgrad and is-regular-sequence fs and rb-aux-inv2 (bs, ss,

p # ps)
and ¬ sig-crit bs (new-syz-sigs ss bs p) p

shows rep-list (sig-trd bs (poly-of-pair p)) 6= 0
proof

from assms(3 ) have inv: rb-aux-inv (bs, ss, p # ps) by (rule rb-aux-inv2-D1 )
moreover have p ∈ set (p # ps) by simp
ultimately have sig-p: sig-of-pair p = lt (poly-of-pair p) and poly-of-pair p 6= 0

and p-in: poly-of-pair p ∈ dgrad-sig-set dgrad
by (rule pair-list-sig-of-pair , rule pair-list-nonzero, rule pair-list-dgrad-sig-set)

from this(2 ) have lc (poly-of-pair p) 6= 0 by (rule lc-not-0 )
from inv have rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence bs-sub: set bs ⊆ dgrad-sig-set dgrad by (rule rb-aux-inv1-D1 )

define p ′ where p ′ = sig-trd bs (poly-of-pair p)
define j where j = component-of-term (lt p ′)
define q where q = lookup (vectorize-poly p ′) j
let ?bs = filter (λb. component-of-term (lt b) < j) bs
let ?fs = take (Suc j) fs

have p ′∈ dgrad-sig-set dgrad unfolding p ′-def using dgrad bs-sub p-in sig-trd-red-rtrancl
by (rule dgrad-sig-set-closed-sig-red-rtrancl)

hence p ′ ∈ sig-inv-set by (simp add: dgrad-sig-set ′-def )

have lt-p ′: lt p ′ = lt (poly-of-pair p) and lc p ′ = lc (poly-of-pair p)
unfolding p ′-def using sig-trd-red-rtrancl
by (rule sig-red-regular-rtrancl-lt, rule sig-red-regular-rtrancl-lc)

from this(2 ) ‹lc (poly-of-pair p) 6= 0 › have p ′ 6= 0 by (simp add: lc-eq-zero-iff [symmetric])
hence lt p ′ ∈ keys p ′ by (rule lt-in-keys)
hence j ∈ keys (vectorize-poly p ′) by (simp add: keys-vectorize-poly j-def )
hence q 6= 0 by (simp add: q-def in-keys-iff )

from ‹p ′ ∈ sig-inv-set› ‹lt p ′ ∈ keys p ′› have j < length fs
unfolding j-def by (rule sig-inv-setD ′)

with le-refl have fs ! j ∈ set (drop j fs) by (rule nth-in-set-dropI )
with fs-distinct le-refl have 0 : fs ! j /∈ set (take j fs)

by (auto dest: set-take-disj-set-drop-if-distinct)

have 1 : j ≤ component-of-term (sig-of-pair p0 ) if p0 ∈ set (p # ps) for p0
proof −

from that have p0 = p ∨ p0 ∈ set ps by simp
thus ?thesis
proof

assume p0 = p
thus ?thesis by (simp add: j-def lt-p ′ sig-p)

next
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assume p0 ∈ set ps
from inv have sorted-wrt pair-ord (p # ps) by (rule rb-aux-inv-D5 )
hence Ball (set ps) (pair-ord p) by simp
hence pair-ord p p0 using ‹p0 ∈ set ps› ..
hence lt p ′ �t sig-of-pair p0 by (simp add: pair-ord-def lt-p ′ sig-p)
thus ?thesis using pot by (auto simp add: is-pot-ord j-def term-simps)

qed
qed
with assms(1 ) inv have gb: punit.is-Groebner-basis (rep-list ‘ set ?bs)

by (rule rb-aux-inv-is-Groebner-basis)

have p ′ ∈ sig-inv-set ′ (Suc j)
proof (rule sig-inv-setI ′)

fix v
assume v ∈ keys p ′

hence v �t lt p ′ by (rule lt-max-keys)
with pot have component-of-term v ≤ j unfolding j-def by (rule is-pot-ordD2 )
thus component-of-term v < Suc j by simp

qed
hence 2 : keys (vectorize-poly p ′) ⊆ {0 ..<Suc j} by (rule sig-inv-setD)
moreover assume rep-list p ′ = 0
ultimately have 0 = (

∑
k∈keys (pm-of-idx-pm ?fs (vectorize-poly p ′)).

lookup (pm-of-idx-pm ?fs (vectorize-poly p ′)) k ∗ k)
by (simp add: rep-list-def ideal.rep-def pm-of-idx-pm-take)

also have ... = (
∑

k∈set ?fs. lookup (pm-of-idx-pm ?fs (vectorize-poly p ′)) k ∗
k)

using finite-set keys-pm-of-idx-pm-subset by (rule sum.mono-neutral-left) (simp
add: in-keys-iff )

also from 2 have ... = (
∑

k∈set ?fs. lookup (pm-of-idx-pm fs (vectorize-poly
p ′)) k ∗ k)

by (simp only: pm-of-idx-pm-take)
also have ... = lookup (pm-of-idx-pm fs (vectorize-poly p ′)) (fs ! j) ∗ fs ! j +

(
∑

k∈set (take j fs). lookup (pm-of-idx-pm fs (vectorize-poly p ′)) k
∗ k)

using ‹j < length fs› by (simp add: take-Suc-conv-app-nth q-def sum.insert[OF
finite-set 0 ])

also have ... = q ∗ fs ! j + (
∑

k∈set (take j fs). lookup (pm-of-idx-pm fs
(vectorize-poly p ′)) k ∗ k)

using fs-distinct ‹j < length fs› by (simp only: lookup-pm-of-idx-pm-distinct
q-def )

finally have − (q ∗ fs ! j) =
(
∑

k∈set (take j fs). lookup (pm-of-idx-pm fs (vectorize-poly
p ′)) k ∗ k)

by (simp add: add-eq-0-iff )
hence − (q ∗ fs ! j) ∈ ideal (set (take j fs)) by (simp add: ideal.sum-in-spanI )
hence − (− (q ∗ fs ! j)) ∈ ideal (set (take j fs)) by (rule ideal.span-neg)
hence q ∗ fs ! j ∈ ideal (set (take j fs)) by simp
with assms(2 ) ‹j < length fs› have q ∈ ideal (set (take j fs)) by (rule is-regular-sequenceD)
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also from assms(3 ) 1 have ... ⊆ ideal (rep-list ‘ set ?bs)
by (rule rb-aux-inv2-ideal-subset)

finally have q ∈ ideal (rep-list ‘ set ?bs) .
with gb obtain g where g ∈ rep-list ‘ set ?bs and g 6= 0 and punit.lt g adds

punit.lt q
using ‹q 6= 0 › by (rule punit.GB-adds-lt[simplified])

from this(1 ) obtain b where b ∈ set bs and component-of-term (lt b) < j and
g: g = rep-list b

by auto
from assms(3 ) ‹j < length fs› - this(1 , 2 )
have ∃ s∈set (new-syz-sigs ss bs p). s addst term-of-pair (punit.lt (rep-list b), j)
proof (rule rb-aux-inv2-preserved-0 )

show Inr j /∈ set ps
proof

assume Inr j ∈ set ps
with inv have sig-of-pair p 6= term-of-pair (0 , j) by (rule Inr-in-tailD)
hence lt p ′ 6= term-of-pair (0 , j) by (simp add: lt-p ′ sig-p)
from inv have sorted-wrt pair-ord (p # ps) by (rule rb-aux-inv-D5 )
hence Ball (set ps) (pair-ord p) by simp
hence pair-ord p (Inr j) using ‹Inr j ∈ set ps› ..
hence lt p ′ �t term-of-pair (0 , j) by (simp add: pair-ord-def lt-p ′ sig-p)
hence lp p ′ � 0 using pot by (simp add: is-pot-ord j-def term-simps)

hence lp p ′ = 0 using zero-min by (rule ordered-powerprod-lin.order-antisym)
hence lt p ′ = term-of-pair (0 , j) by (metis j-def term-of-pair-pair)
with ‹lt p ′ 6= term-of-pair (0 , j)› show False ..

qed
qed
then obtain s where s-in: s ∈ set (new-syz-sigs ss bs p) and s addst term-of-pair

(punit.lt g, j)
unfolding g ..

from this(2 ) ‹punit.lt g adds punit.lt q› have s addst term-of-pair (punit.lt q, j)
by (metis adds-minus-splus adds-term-splus component-of-term-of-pair pp-of-term-of-pair)

also have ... = lt p ′ by (simp only: q-def j-def lt-lookup-vectorize term-simps)
finally have s addst sig-of-pair p by (simp only: lt-p ′ sig-p)
with s-in have pred: is-pred-syz (new-syz-sigs ss bs p) (sig-of-pair p)

by (auto simp: is-pred-syz-def )
have sig-crit bs (new-syz-sigs ss bs p) p
proof (rule sum-prodE)

fix x y
assume p = Inl (x, y)
thus ?thesis using pred by (auto simp: ord-term-lin.max-def split: if-splits)

next
fix i
assume p = Inr i
thus ?thesis using pred by simp

qed
with assms(4 ) show False ..

qed
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corollary rb-aux-no-zero-red ′:
assumes hom-grading dgrad and is-regular-sequence fs and rb-aux-inv2 (fst args)
shows snd (rb-aux args) = snd args

proof −
from assms(3 ) have rb-aux-inv (fst args) by (rule rb-aux-inv2-D1 )
hence rb-aux-dom args by (rule rb-aux-domI )
thus ?thesis using assms(3 )
proof (induct args rule: rb-aux.pinduct)

case (1 bs ss z)
show ?case by (simp only: rb-aux.psimps(1 )[OF 1 (1 )])

next
case (2 bs ss p ps z)
from 2 (5 ) have ∗: rb-aux-inv2 (bs, ss, p # ps) by (simp only: fst-conv)
show ?case
proof (simp add: rb-aux.psimps(2 )[OF 2 (1 )] Let-def , intro conjI impI )

note refl
moreover assume sig-crit bs (new-syz-sigs ss bs p) p
moreover from ∗ this have rb-aux-inv2 (fst ((bs, new-syz-sigs ss bs p, ps),

z))
unfolding fst-conv by (rule rb-aux-inv2-preserved-1 )

ultimately have snd (rb-aux ((bs, new-syz-sigs ss bs p, ps), z)) =
snd ((bs, new-syz-sigs ss bs p, ps), z) by (rule 2 (2 ))

thus snd (rb-aux ((bs, new-syz-sigs ss bs p, ps), z)) = z by (simp only:
snd-conv)

thus snd (rb-aux ((bs, new-syz-sigs ss bs p, ps), z)) = z .
next

assume ¬ sig-crit bs (new-syz-sigs ss bs p) p
with assms(1 , 2 ) ∗ have rep-list (sig-trd bs (poly-of-pair p)) 6= 0

by (rule rb-aux-inv2-no-zero-red)
moreover assume rep-list (sig-trd bs (poly-of-pair p)) = 0
ultimately show snd (rb-aux ((bs, lt (sig-trd bs (poly-of-pair p)) #

new-syz-sigs ss bs p, ps), Suc z)) = z ..
next

define p ′ where p ′ = sig-trd bs (poly-of-pair p)
note refl
moreover assume a: ¬ sig-crit bs (new-syz-sigs ss bs p) p
moreover note p ′-def
moreover assume b: rep-list p ′ 6= 0
moreover have rb-aux-inv2 (fst ((p ′ # bs, new-syz-sigs ss bs p, add-spairs

ps bs p ′), z))
using ∗ a b unfolding fst-conv p ′-def by (rule rb-aux-inv2-preserved-3 )

ultimately have snd (rb-aux ((p ′ # bs, new-syz-sigs ss bs p, add-spairs ps
bs p ′), z)) =

snd ((p ′ # bs, new-syz-sigs ss bs p, add-spairs ps bs p ′), z)
by (rule 2 (4 ))

thus snd (rb-aux ((p ′ # bs, new-syz-sigs ss bs p, add-spairs ps bs p ′), z)) = z
by (simp only: snd-conv)

qed
qed
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qed

corollary rb-aux-no-zero-red:
assumes hom-grading dgrad and is-regular-sequence fs
shows snd (rb-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length fs]), z)) = z

proof −
let ?args = (([]::( ′t ⇒0

′b) list, Koszul-syz-sigs fs,
(map Inr [0 ..<length fs])::((( ′t ⇒0

′b) × ( ′t ⇒0
′b)) + nat) list), z)

from rb-aux-inv-init have rb-aux-inv2 (fst ?args) by simp
with assms have snd (rb-aux ?args) = snd ?args by (rule rb-aux-no-zero-red ′)
thus ?thesis by (simp only: snd-conv)

qed

corollary rb-no-zero-red:
assumes hom-grading dgrad and is-regular-sequence fs
shows snd rb = 0
using rb-aux-no-zero-red[OF assms, of 0 ] by (auto simp: rb-def split: prod.split)

end

4.3 Sig-Poly-Pairs

We now prove that the algorithms defined for sig-poly-pairs (i. e. those whose
names end with -spp) behave exactly as those defined for module elements.
More precisely, if A is some algorithm defined for module elements, we prove
something like spp-of (A x) = A-spp (spp-of x).
fun spp-inv-pair :: ((( ′t × ( ′a ⇒0

′b)) × ( ′t × ( ′a ⇒0
′b))) + nat) ⇒ bool where

spp-inv-pair (Inl (p, q)) = (spp-inv p ∧ spp-inv q) |
spp-inv-pair (Inr j) = True

fun app-pair :: ( ′x ⇒ ′y) ⇒ (( ′x × ′x) + nat) ⇒ (( ′y × ′y) + nat) where
app-pair f (Inl (p, q)) = Inl (f p, f q) |
app-pair f (Inr j) = Inr j

fun app-args :: ( ′x ⇒ ′y) ⇒ (( ′x list × ′z × ((( ′x × ′x) + nat) list)) × nat) ⇒
(( ′y list × ′z × ((( ′y × ′y) + nat) list)) × nat) where

app-args f ((as, bs, cs), n) = ((map f as, bs, map (app-pair f ) cs), n)

lemma app-pair-spp-of-vec-of :
assumes spp-inv-pair p
shows app-pair spp-of (app-pair vec-of p) = p

proof (rule sum-prodE)
fix a b
assume p: p = Inl (a, b)
from assms have spp-inv a and spp-inv b by (simp-all add: p)
thus ?thesis by (simp add: p spp-of-vec-of )

qed simp

218



lemma map-app-pair-spp-of-vec-of :
assumes list-all spp-inv-pair ps
shows map (app-pair spp-of ◦ app-pair vec-of ) ps = ps

proof (rule map-idI )
fix p
assume p ∈ set ps
with assms have spp-inv-pair p by (simp add: list-all-def )
hence app-pair spp-of (app-pair vec-of p) = p by (rule app-pair-spp-of-vec-of )
thus (app-pair spp-of ◦ app-pair vec-of ) p = p by simp

qed

lemma snd-app-args: snd (app-args f args) = snd args
by (metis prod.exhaust app-args.simps snd-conv)

lemma new-syz-sigs-alt-spp:
new-syz-sigs ss bs p = new-syz-sigs-spp ss (map spp-of bs) (app-pair spp-of p)

proof (rule sum-prodE)
fix a b
assume p = Inl (a, b)
thus ?thesis by simp

next
fix j
assume p = Inr j
thus ?thesis by (simp add: comp-def spp-of-def )

qed

lemma is-rewritable-alt-spp:
assumes 0 /∈ set bs
shows is-rewritable bs p u = is-rewritable-spp (map spp-of bs) (spp-of p) u

proof −
from assms have b ∈ set bs =⇒ b 6= 0 for b by blast
thus ?thesis by (auto simp: is-rewritable-def is-rewritable-spp-def fst-spp-of )

qed

lemma spair-sigs-alt-spp: spair-sigs p q = spair-sigs-spp (spp-of p) (spp-of q)
by (simp add: spair-sigs-def spair-sigs-spp-def Let-def fst-spp-of snd-spp-of )

lemma sig-crit-alt-spp:
assumes 0 /∈ set bs
shows sig-crit bs ss p = sig-crit-spp (map spp-of bs) ss (app-pair spp-of p)

proof (rule sum-prodE)
fix a b
assume p: p = Inl (a, b)
from assms show ?thesis by (simp add: p spair-sigs-alt-spp is-rewritable-alt-spp)

qed simp

lemma spair-alt-spp:
assumes is-regular-spair p q
shows spp-of (spair p q) = spair-spp (spp-of p) (spp-of q)
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proof −
let ?t1 = punit.lt (rep-list p)
let ?t2 = punit.lt (rep-list q)
let ?l = lcs ?t1 ?t2
from assms have p: rep-list p 6= 0 and q: rep-list q 6= 0

by (rule is-regular-spairD1 , rule is-regular-spairD2 )
hence p 6= 0 and q 6= 0 and 1 : punit.lc (rep-list p) 6= 0 and 2 : punit.lc (rep-list

q) 6= 0
by (auto simp: rep-list-zero punit.lc-eq-zero-iff )

from assms have lt (monom-mult (1 / punit.lc (rep-list p)) (?l − ?t1 ) p) 6=
lt (monom-mult (1 / punit.lc (rep-list q)) (?l − ?t2 ) q) (is ?u 6=

?v)
by (rule is-regular-spairD3 )

hence lt (monom-mult (1 / punit.lc (rep-list p)) (?l − ?t1 ) p − monom-mult (1
/ punit.lc (rep-list q)) (?l − ?t2 ) q) =

ord-term-lin.max ?u ?v by (rule lt-minus-distinct-eq-max)
moreover from ‹p 6= 0 › 1 have ?u = (?l − ?t1 ) ⊕ fst (spp-of p) by (simp

add: lt-monom-mult fst-spp-of )
moreover from ‹q 6= 0 › 2 have ?v = (?l − ?t2 ) ⊕ fst (spp-of q) by (simp add:

lt-monom-mult fst-spp-of )
ultimately show ?thesis
by (simp add: spair-spp-def spair-def Let-def spp-of-def rep-list-minus rep-list-monom-mult)

qed

lemma sig-trd-spp-body-alt-Some:
assumes find-sig-reducer (map spp-of bs) v (punit.lt p) 0 = Some i
shows sig-trd-spp-body (map spp-of bs) v (p, r) =

(punit.lower (p − local.punit.monom-mult (punit.lc p / punit.lc (rep-list
(bs ! i)))

(punit.lt p − punit.lt (rep-list (bs ! i))) (rep-list (bs ! i))) (punit.lt
p), r)

(is ?thesis1 )
and sig-trd-spp-body (map spp-of bs) v (p, r) =

(p − local.punit.monom-mult (punit.lc p / punit.lc (rep-list (bs ! i)))
(punit.lt p − punit.lt (rep-list (bs ! i))) (rep-list (bs ! i)), r)

(is ?thesis2 )
proof −

have ?thesis1 ∧ ?thesis2
proof (cases p = 0 )

case True
show ?thesis by (simp add: assms, simp add: True)

next
case False
from assms have i < length bs by (rule find-sig-reducer-SomeD)
hence eq1 : snd (map spp-of bs ! i) = rep-list (bs ! i) by (simp add: snd-spp-of )

from assms have rep-list (bs ! i) 6= 0 and punit.lt (rep-list (bs ! i)) adds
punit.lt p

by (rule find-sig-reducer-SomeD)+
hence nz: rep-list (bs ! i) 6= 0 and adds: punit.lt (rep-list (bs ! i)) adds punit.lt
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p
by (simp-all add: snd-spp-of )

from nz have punit.lc (rep-list (bs ! i)) 6= 0 by (rule punit.lc-not-0 )
moreover from False have punit.lc p 6= 0 by (rule punit.lc-not-0 )

ultimately have eq2 : punit.lt (punit.monom-mult (punit.lc p / punit.lc (rep-list
(bs ! i)))

(punit.lt p − punit.lt (rep-list (bs ! i))) (rep-list (bs ! i))) =
punit.lt p

(is punit.lt ?p = -) using nz adds by (simp add: lp-monom-mult adds-minus)
have ?thesis1 by (simp add: assms Let-def eq1 punit.lower-minus punit.tail-monom-mult[symmetric],

simp add: punit.tail-def eq2 )
moreover have ?thesis2
proof (simp add: ‹?thesis1 › punit.lower-id-iff disj-commute[of p = ?p] del:

sig-trd-spp-body.simps)
show punit.lt (p − ?p) ≺ punit.lt p ∨ p = ?p
proof (rule disjCI )

assume p 6= ?p
hence p − ?p 6= 0 by simp
moreover note eq2

moreover from ‹punit.lc (rep-list (bs ! i)) 6= 0 › have punit.lc ?p = punit.lc
p by simp

ultimately show punit.lt (p − ?p) ≺ punit.lt p by (rule punit.lt-minus-lessI )
qed

qed
ultimately show ?thesis ..

qed
thus ?thesis1 and ?thesis2 by blast+

qed

lemma sig-trd-aux-alt-spp:
assumes fst args ∈ keys (rep-list (snd args))
shows rep-list (sig-trd-aux bs args) =

sig-trd-spp-aux (map spp-of bs) (lt (snd args))
(rep-list (snd args) − punit.higher (rep-list (snd args)) (fst args),
punit.higher (rep-list (snd args)) (fst args))

proof −
from assms have sig-trd-aux-dom bs args by (rule sig-trd-aux-domI )
thus ?thesis using assms
proof (induct args rule: sig-trd-aux.pinduct)

case (1 t p)
define p ′ where p ′ = (case find-sig-reducer (map spp-of bs) (lt p) t 0 of

None ⇒ p
| Some i ⇒ p −

monom-mult (lookup (rep-list p) t / punit.lc (rep-list (bs
! i)))

(t − punit.lt (rep-list (bs ! i))) (bs ! i))
define p ′′ where p ′′ = punit.lower (rep-list p ′) t
from 1 (3 ) have t-in: t ∈ keys (rep-list p) by simp
hence t ∈ keys (rep-list p − punit.higher (rep-list p) t) (is - ∈ keys ?p)
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by (simp add: punit.keys-minus-higher)
hence ?p 6= 0 by auto

hence eq1 : sig-trd-spp-aux bs0 v0 (?p, r0 ) = sig-trd-spp-aux bs0 v0 (sig-trd-spp-body
bs0 v0 (?p, r0 ))

for bs0 v0 r0 by (simp add: sig-trd-spp-aux-simps del: sig-trd-spp-body.simps)
from t-in have lt-p: punit.lt ?p = t and lc-p: punit.lc ?p = lookup (rep-list p)

t
and tail-p: punit.tail ?p = punit.lower (rep-list p) t

by (rule punit.lt-minus-higher , rule punit.lc-minus-higher , rule punit.tail-minus-higher)
have lt p ′ = lt p ∧ punit.higher (rep-list p ′) t = punit.higher (rep-list p) t ∧

(∀ i. find-sig-reducer (map spp-of bs) (lt p) t 0 = Some i −→ lookup (rep-list
p ′) t = 0 )

(is ?A ∧ ?B ∧ ?C )
proof (cases find-sig-reducer (map spp-of bs) (lt p) t 0 )

case None
thus ?thesis by (simp add: p ′-def )

next
case (Some i)
hence p ′: p ′ = p − monom-mult (lookup (rep-list p) t / punit.lc (rep-list (bs

! i)))
(t − punit.lt (rep-list (bs ! i))) (bs ! i) by (simp add: p ′-def )

from Some have punit.lt (rep-list (bs ! i)) adds t by (rule find-sig-reducer-SomeD)
hence eq: t − punit.lt (rep-list (bs ! i)) + punit.lt (rep-list (bs ! i)) = t by

(rule adds-minus)
from t-in Some have ∗: sig-red-single (≺t) (�) p p ′ (bs ! i) (t − punit.lt

(rep-list (bs ! i)))
unfolding p ′ by (rule find-sig-reducer-SomeD-red-single)
hence ∗∗: punit.red-single (rep-list p) (rep-list p ′) (rep-list (bs ! i)) (t −

punit.lt (rep-list (bs ! i)))
by (rule sig-red-single-red-single)

from ∗ have ?A by (rule sig-red-single-regular-lt)
moreover from punit.red-single-higher [OF ∗∗] have ?B by (simp add: eq)
moreover have ?C
proof (intro allI impI )

from punit.red-single-lookup[OF ∗∗] show lookup (rep-list p ′) t = 0 by
(simp add: eq)

qed
ultimately show ?thesis by (intro conjI )

qed
hence lt-p ′: lt p ′ = lt p and higher-p ′: punit.higher (rep-list p ′) t = punit.higher

(rep-list p) t
and lookup-p ′:

∧
i. find-sig-reducer (map spp-of bs) (lt p) t 0 = Some i =⇒

lookup (rep-list p ′) t = 0
by blast+

show ?case
proof (simp add: sig-trd-aux.psimps[OF 1 (1 )] Let-def p ′-def [symmetric] p ′′-def [symmetric],

intro conjI impI )
assume p ′′ = 0
hence p ′-decomp: punit.higher (rep-list p) t + monomial (lookup (rep-list p ′)
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t) t = rep-list p ′

using punit.higher-lower-decomp[of rep-list p ′ t] by (simp add: p ′′-def
higher-p ′)

show rep-list p ′ = sig-trd-spp-aux (map spp-of bs) (lt p) (?p, punit.higher
(rep-list p) t)

proof (cases find-sig-reducer (map spp-of bs) (lt p) t 0 )
case None
hence p ′: p ′ = p by (simp add: p ′-def )
from ‹p ′′ = 0 › have eq2 : punit.tail ?p = 0 by (simp add: tail-p p ′′-def p ′)

from p ′-decomp show ?thesis by (simp add: p ′ eq1 lt-p lc-p None eq2
sig-trd-spp-aux-simps)

next
case (Some i)
hence p ′: p ′ = p − monom-mult (lookup (rep-list p) t / punit.lc (rep-list

(bs ! i)))
(t − punit.lt (rep-list (bs ! i))) (bs ! i) by (simp add: p ′-def )

from ‹p ′′ = 0 › have eq2 : punit.lower (rep-list p − punit.higher (rep-list p)
t −

punit.monom-mult (lookup (rep-list p) t / punit.lc (rep-list (bs ! i)))
(t − punit.lt (rep-list (bs ! i))) (rep-list (bs ! i)))

t = 0
by (simp add: p ′′-def p ′ rep-list-minus rep-list-monom-mult punit.lower-minus

punit.lower-higher-zeroI )
from Some have lookup (rep-list p ′) t = 0 by (rule lookup-p ′)
with p ′-decomp have eq3 : rep-list p ′ = punit.higher (rep-list p) t by simp
show ?thesis by (simp add: sig-trd-spp-body-alt-Some(1 ) eq1 eq2 lt-p lc-p

Some del: sig-trd-spp-body.simps,
simp add: sig-trd-spp-aux-simps eq3 )

qed
next

assume p ′′ 6= 0
hence punit.lt p ′′ ≺ t unfolding p ′′-def by (rule punit.lt-lower-less)
have higher-p ′-2 : punit.higher (rep-list p ′) (punit.lt p ′′) =

punit.higher (rep-list p) t + monomial (lookup (rep-list p ′) t) t
proof (simp add: higher-p ′[symmetric], rule poly-mapping-eqI )

fix s
show lookup (punit.higher (rep-list p ′) (punit.lt p ′′)) s =

lookup (punit.higher (rep-list p ′) t + monomial (lookup (rep-list p ′) t)
t) s

proof (rule ordered-powerprod-lin.linorder-cases)
assume t ≺ s
moreover from ‹punit.lt p ′′ ≺ t› this have punit.lt p ′′ ≺ s

by (rule ordered-powerprod-lin.less-trans)
ultimately show ?thesis by (simp add: lookup-add punit.lookup-higher-when

lookup-single)
next

assume t = s
with ‹punit.lt p ′′≺ t› show ?thesis by (simp add: lookup-add punit.lookup-higher-when)
next
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assume s ≺ t
show ?thesis
proof (cases punit.lt p ′′ ≺ s)

case True
hence lookup (punit.higher (rep-list p ′) (punit.lt p ′′)) s = lookup (rep-list

p ′) s
by (simp add: punit.lookup-higher-when)

also from ‹s ≺ t› have ... = lookup p ′′ s by (simp add: p ′′-def
punit.lookup-lower-when)

also from True have ... = 0 using punit.lt-le-iff by auto
finally show ?thesis using ‹s ≺ t›

by (simp add: lookup-add lookup-single punit.lookup-higher-when)
next

case False
with ‹s ≺ t› show ?thesis by (simp add: lookup-add punit.lookup-higher-when

lookup-single)
qed

qed
qed
have rep-list (sig-trd-aux bs (punit.lt p ′′, p ′)) =

sig-trd-spp-aux (map spp-of bs) (lt (snd (punit.lt p ′′, p ′)))
(rep-list (snd (punit.lt p ′′, p ′)) −
punit.higher (rep-list (snd (punit.lt p ′′, p ′))) (fst (punit.lt p ′′, p ′)),
punit.higher (rep-list (snd (punit.lt p ′′, p ′))) (fst (punit.lt p ′′, p ′)))

using p ′-def p ′′-def ‹p ′′ 6= 0 ›
proof (rule 1 (2 ))

from ‹p ′′ 6= 0 › have punit.lt p ′′ ∈ keys p ′′ by (rule punit.lt-in-keys)
also have ... ⊆ keys (rep-list p ′) by (auto simp: p ′′-def punit.keys-lower)
finally show fst (punit.lt p ′′, p ′) ∈ keys (rep-list (snd (punit.lt p ′′, p ′))) by

simp
qed
also have ... = sig-trd-spp-aux (map spp-of bs) (lt p)

(rep-list p ′ − punit.higher (rep-list p ′) (punit.lt p ′′),
punit.higher (rep-list p ′) (punit.lt p ′′))

by (simp only: lt-p ′ fst-conv snd-conv)
also have ... = sig-trd-spp-aux (map spp-of bs) (lt p) (?p, punit.higher (rep-list

p) t)
proof (cases find-sig-reducer (map spp-of bs) (lt p) t 0 )

case None
hence p ′: p ′ = p by (simp add: p ′-def )
have rep-list p − (punit.higher (rep-list p) t + monomial (lookup (rep-list

p) t) t) =
punit.lower (rep-list p) t

using punit.higher-lower-decomp[of rep-list p t] by (simp add: diff-eq-eq
ac-simps)

with higher-p ′-2 show ?thesis by (simp add: eq1 lt-p lc-p tail-p p ′ None)
next

case (Some i)
hence p ′: rep-list p − punit.monom-mult (lookup (rep-list p) t / punit.lc
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(rep-list (bs ! i)))
(t − punit.lt (rep-list (bs ! i))) (rep-list (bs ! i)) = rep-list p ′

by (simp add: p ′-def rep-list-minus rep-list-monom-mult)
from Some have lookup (rep-list p ′) t = 0 by (rule lookup-p ′)
with higher-p ′-2 show ?thesis

by (simp add: sig-trd-spp-body-alt-Some(2 ) eq1 lt-p lc-p tail-p Some
diff-right-commute[of rep-list p punit.higher (rep-list p) t] p ′ del:

sig-trd-spp-body.simps)
qed
finally show rep-list (sig-trd-aux bs (punit.lt p ′′, p ′)) =

sig-trd-spp-aux (map spp-of bs) (lt p) (?p, punit.higher (rep-list
p) t) .

qed
qed

qed

lemma sig-trd-alt-spp: spp-of (sig-trd bs p) = sig-trd-spp (map spp-of bs) (spp-of
p)

unfolding sig-trd-def
proof (split if-split, intro conjI impI )

assume rep-list p = 0
thus spp-of p = sig-trd-spp (map spp-of bs) (spp-of p) by (simp add: spp-of-def

sig-trd-spp-aux-simps)
next

let ?args = (punit.lt (rep-list p), p)
assume rep-list p 6= 0
hence a: fst ?args ∈ keys (rep-list (snd ?args)) by (simp add: punit.lt-in-keys)
hence (sig-red (≺t) (�) (set bs))∗∗ (snd ?args) (sig-trd-aux bs ?args)

by (rule sig-trd-aux-red-rtrancl)
hence eq1 : lt (sig-trd-aux bs ?args) = lt (snd ?args) by (rule sig-red-regular-rtrancl-lt)
have eq2 : punit.higher (rep-list p) (punit.lt (rep-list p)) = 0
by (auto simp: punit.higher-eq-zero-iff punit.lt-max simp flip: not-in-keys-iff-lookup-eq-zero

dest: punit.lt-max-keys)
show spp-of (sig-trd-aux bs (punit.lt (rep-list p), p)) = sig-trd-spp (map spp-of

bs) (spp-of p)
by (simp add: spp-of-def eq1 eq2 sig-trd-aux-alt-spp[OF a])

qed

lemma is-regular-spair-alt-spp: is-regular-spair p q ←→ is-regular-spair-spp (spp-of
p) (spp-of q)
by (auto simp: is-regular-spair-spp-def fst-spp-of snd-spp-of intro: is-regular-spairI

dest: is-regular-spairD1 is-regular-spairD2 is-regular-spairD3 )

lemma sig-of-spair-alt-spp: sig-of-pair p = sig-of-pair-spp (app-pair spp-of p)
proof (rule sum-prodE)

fix a b
assume p: p = Inl (a, b)
show ?thesis by (simp add: p spair-sigs-def spair-sigs-spp-def spp-of-def )

qed simp
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lemma pair-ord-alt-spp: pair-ord x y ←→ pair-ord-spp (app-pair spp-of x) (app-pair
spp-of y)

by (simp add: pair-ord-spp-def pair-ord-def sig-of-spair-alt-spp)

lemma new-spairs-alt-spp:
map (app-pair spp-of ) (new-spairs bs p) = new-spairs-spp (map spp-of bs) (spp-of

p)
proof (induct bs)

case Nil
show ?case by simp

next
case (Cons b bs)
have map (app-pair spp-of ) (insort-wrt pair-ord (Inl (p, b)) (new-spairs bs p))

=
insort-wrt pair-ord-spp (app-pair spp-of (Inl (p, b))) (map (app-pair spp-of )

(new-spairs bs p))
by (rule map-insort-wrt, rule pair-ord-alt-spp[symmetric])

thus ?case by (simp add: is-regular-spair-alt-spp Cons)
qed

lemma add-spairs-alt-spp:
assumes

∧
x. x ∈ set bs =⇒ Inl (spp-of p, spp-of x) /∈ app-pair spp-of ‘ set ps

shows map (app-pair spp-of ) (add-spairs ps bs p) =
add-spairs-spp (map (app-pair spp-of ) ps) (map spp-of bs) (spp-of p)

proof −
have map (app-pair spp-of ) (merge-wrt pair-ord (new-spairs bs p) ps) =

merge-wrt pair-ord-spp (map (app-pair spp-of ) (new-spairs bs p)) (map
(app-pair spp-of ) ps)

proof (rule map-merge-wrt, rule ccontr)
assume app-pair spp-of ‘ set (new-spairs bs p) ∩ app-pair spp-of ‘ set ps 6= {}
then obtain q ′ where q ′ ∈ app-pair spp-of ‘ set (new-spairs bs p)

and q ′-in: q ′ ∈ app-pair spp-of ‘ set ps by blast
from this(1 ) obtain q where q ∈ set (new-spairs bs p) and q ′: q ′ = app-pair

spp-of q ..
from this(1 ) obtain x where x-in: x ∈ set bs and q: q = Inl (p, x)

by (rule in-new-spairsE)
have q ′: q ′ = Inl (spp-of p, spp-of x) by (simp add: q q ′)
have q ′ /∈ app-pair spp-of ‘ set ps unfolding q ′ using x-in by (rule assms)
thus False using q ′-in ..

qed (simp only: pair-ord-alt-spp)
thus ?thesis by (simp add: add-spairs-def add-spairs-spp-def new-spairs-alt-spp)

qed

lemma rb-aux-invD-app-args:
assumes rb-aux-inv (fst (app-args vec-of ((bs, ss, ps), z)))
shows list-all spp-inv bs and list-all spp-inv-pair ps

proof −
from assms(1 ) have inv: rb-aux-inv (map vec-of bs, ss, map (app-pair vec-of )
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ps) by simp
hence rb-aux-inv1 (map vec-of bs) by (rule rb-aux-inv-D1 )
hence 0 /∈ rep-list ‘ set (map vec-of bs) by (rule rb-aux-inv1-D2 )
hence 0 /∈ vec-of ‘ set bs using rep-list-zero by fastforce
hence 1 : b ∈ set bs =⇒ spp-inv b for b by (auto simp: spp-inv-alt)
thus list-all spp-inv bs by (simp add: list-all-def )

have 2 : x ∈ set bs if vec-of x ∈ set (map vec-of bs) for x
proof −

from that have vec-of x ∈ vec-of ‘ set bs by simp
then obtain y where y ∈ set bs and eq: vec-of x = vec-of y ..
from this(1 ) have spp-inv y by (rule 1 )
moreover have vec-of y = vec-of x by (simp only: eq)
ultimately have y = x by (rule vec-of-inj)
with ‹y ∈ set bs› show ?thesis by simp

qed

show list-all spp-inv-pair ps unfolding list-all-def
proof (rule ballI )

fix p
assume p ∈ set ps
show spp-inv-pair p
proof (rule sum-prodE)

fix a b
assume p: p = Inl (a, b)
from ‹p ∈ set ps› have Inl (a, b) ∈ set ps by (simp only: p)
hence app-pair vec-of (Inl (a, b)) ∈ app-pair vec-of ‘ set ps by (rule imageI )
hence Inl (vec-of a, vec-of b) ∈ set (map (app-pair vec-of ) ps) by simp
with inv have vec-of a ∈ set (map vec-of bs) and vec-of b ∈ set (map vec-of

bs)
by (rule rb-aux-inv-D3 )+

have spp-inv a by (rule 1 , rule 2 , fact)
moreover have spp-inv b by (rule 1 , rule 2 , fact)
ultimately show ?thesis by (simp add: p)

qed simp
qed

qed

lemma app-args-spp-of-vec-of :
assumes rb-aux-inv (fst (app-args vec-of args))
shows app-args spp-of (app-args vec-of args) = args

proof −
obtain bs ss ps z where args: args = ((bs, ss, ps), z) using prod.exhaust by

metis
from assms have list-all spp-inv bs and ∗: list-all spp-inv-pair ps unfolding

args
by (rule rb-aux-invD-app-args)+

from this(1 ) have map (spp-of ◦ vec-of ) bs = bs by (rule map-spp-of-vec-of )
moreover from ∗ have map (app-pair spp-of ◦ app-pair vec-of ) ps = ps
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by (rule map-app-pair-spp-of-vec-of )
ultimately show ?thesis by (simp add: args)

qed

lemma poly-of-pair-alt-spp:
assumes distinct fs and rb-aux-inv (bs, ss, p # ps)
shows spp-of (poly-of-pair p) = spp-of-pair (app-pair spp-of p)

proof −
show ?thesis
proof (rule sum-prodE)

fix a b
assume p: p = Inl (a, b)
hence Inl (a, b) ∈ set (p # ps) by simp
with assms(2 ) have is-regular-spair a b by (rule rb-aux-inv-D3 )
thus ?thesis by (simp add: p spair-alt-spp)

next
fix j
assume p: p = Inr j
hence Inr j ∈ set (p # ps) by simp
with assms(2 ) have j < length fs by (rule rb-aux-inv-D4 )
thus ?thesis by (simp add: p spp-of-def lt-monomial rep-list-monomial[OF

assms(1 )] term-simps)
qed

qed

lemma rb-aux-alt-spp:
assumes rb-aux-inv (fst args)
shows app-args spp-of (rb-aux args) = rb-spp-aux (app-args spp-of args)

proof −
from assms have rb-aux-dom args by (rule rb-aux-domI )
thus ?thesis using assms
proof (induct args rule: rb-aux.pinduct)

case (1 bs ss z)
show ?case by (simp add: rb-aux.psimps(1 )[OF 1 (1 )] rb-spp-aux-Nil)

next
case (2 bs ss p ps z)
let ?q = sig-trd bs (poly-of-pair p)

from 2 (5 ) have ∗: rb-aux-inv (bs, ss, p # ps) by (simp only: fst-conv)
hence rb-aux-inv1 bs by (rule rb-aux-inv-D1 )
hence 0 /∈ rep-list ‘ set bs by (rule rb-aux-inv1-D2 )
hence 0 /∈ set bs by (force simp: rep-list-zero)
hence eq1 : sig-crit-spp (map spp-of bs) ss ′ (app-pair spp-of p) ←→ sig-crit bs

ss ′ p for ss ′

by (simp add: sig-crit-alt-spp)
from fs-distinct ∗ have eq2 : sig-trd-spp (map spp-of bs) (spp-of-pair (app-pair

spp-of p)) = spp-of ?q
by (simp only: sig-trd-alt-spp poly-of-pair-alt-spp)
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show ?case
proof (simp add: rb-aux.psimps(2 )[OF 2 (1 )] Let-def , intro conjI impI )

note refl
moreover assume a: sig-crit bs (new-syz-sigs ss bs p) p
moreover from ∗ this have rb-aux-inv (fst ((bs, new-syz-sigs ss bs p, ps),

z))
unfolding fst-conv by (rule rb-aux-inv-preserved-1 )

ultimately have app-args spp-of (rb-aux ((bs, new-syz-sigs ss bs p, ps), z))
=

rb-spp-aux (app-args spp-of ((bs, new-syz-sigs ss bs p, ps), z))
by (rule 2 (2 ))
also have ... = rb-spp-aux ((map spp-of bs, ss, app-pair spp-of p # map

(app-pair spp-of ) ps), z)
by (simp add: rb-spp-aux-Cons eq1 a new-syz-sigs-alt-spp[symmetric])

finally show app-args spp-of (rb-aux ((bs, new-syz-sigs ss bs p, ps), z)) =
rb-spp-aux ((map spp-of bs, ss, app-pair spp-of p # map (app-pair spp-of )

ps), z) .
thus app-args spp-of (rb-aux ((bs, new-syz-sigs ss bs p, ps), z)) =

rb-spp-aux ((map spp-of bs, ss, app-pair spp-of p # map (app-pair spp-of )
ps), z) .

next
assume a: ¬ sig-crit bs (new-syz-sigs ss bs p) p and b: rep-list ?q = 0
from ∗ b have rb-aux-inv (fst ((bs, lt ?q # new-syz-sigs ss bs p, ps), Suc z))

unfolding fst-conv by (rule rb-aux-inv-preserved-2 )
with refl a refl b have app-args spp-of (rb-aux ((bs, lt ?q # new-syz-sigs ss

bs p, ps), Suc z)) =
rb-spp-aux (app-args spp-of ((bs, lt ?q # new-syz-sigs ss

bs p, ps), Suc z))
by (rule 2 (3 ))
also have ... = rb-spp-aux ((map spp-of bs, ss, app-pair spp-of p # map

(app-pair spp-of ) ps), z)
by (simp add: rb-spp-aux-Cons eq1 a Let-def eq2 snd-spp-of b fst-spp-of

new-syz-sigs-alt-spp[symmetric])
finally show app-args spp-of (rb-aux ((bs, lt ?q # new-syz-sigs ss bs p, ps),

Suc z)) =
rb-spp-aux ((map spp-of bs, ss, app-pair spp-of p # map (app-pair

spp-of ) ps), z) .
next

assume a: ¬ sig-crit bs (new-syz-sigs ss bs p) p and b: rep-list ?q 6= 0

have Inl (spp-of ?q, spp-of x) /∈ app-pair spp-of ‘ set ps for x
proof

assume Inl (spp-of ?q, spp-of x) ∈ app-pair spp-of ‘ set ps
then obtain y where y ∈ set ps and eq0 : Inl (spp-of ?q, spp-of x) =

app-pair spp-of y ..
obtain a b where y: y = Inl (a, b) and spp-of ?q = spp-of a
proof (rule sum-prodE)

fix a b
assume y = Inl (a, b)
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moreover from eq0 have spp-of ?q = spp-of a by (simp add: ‹y = Inl
(a, b)›)

ultimately show ?thesis ..
next

fix j
assume y = Inr j
with eq0 show ?thesis by simp

qed
from this(2 ) have lt ?q = lt a by (simp add: spp-of-def )
from ‹y ∈ set ps› have y ∈ set (p # ps) by simp
with ∗ have a ∈ set bs unfolding y by (rule rb-aux-inv-D3 (1 ))
hence lt ?q ∈ lt ‘ set bs unfolding ‹lt ?q = lt a› by (rule imageI )

moreover from ∗ a b have lt ?q /∈ lt ‘ set bs by (rule rb-aux-inv-preserved-3 )
ultimately show False by simp

qed
hence eq3 : add-spairs-spp (map (app-pair spp-of ) ps) (map spp-of bs) (spp-of

?q) =
map (app-pair spp-of ) (add-spairs ps bs ?q) by (simp add:

add-spairs-alt-spp)

from ∗ a b have rb-aux-inv (fst ((?q # bs, new-syz-sigs ss bs p, add-spairs
ps bs ?q), z))

unfolding fst-conv by (rule rb-aux-inv-preserved-3 )
with refl a refl b
have app-args spp-of (rb-aux ((?q # bs, new-syz-sigs ss bs p, add-spairs ps bs

?q), z)) =
rb-spp-aux (app-args spp-of ((?q # bs, new-syz-sigs ss bs p, add-spairs

ps bs ?q), z))
by (rule 2 (4 ))
also have ... = rb-spp-aux ((map spp-of bs, ss, app-pair spp-of p # map

(app-pair spp-of ) ps), z)
by (simp add: rb-spp-aux-Cons eq1 a Let-def eq2 fst-spp-of snd-spp-of b eq3

new-syz-sigs-alt-spp[symmetric])
finally show app-args spp-of (rb-aux ((?q # bs, new-syz-sigs ss bs p, add-spairs

ps bs ?q), z)) =
rb-spp-aux ((map spp-of bs, ss, app-pair spp-of p # map (app-pair

spp-of ) ps), z) .
qed

qed
qed

corollary rb-spp-aux-alt:
rb-aux-inv (fst (app-args vec-of args)) =⇒

rb-spp-aux args = app-args spp-of (rb-aux (app-args vec-of args))
by (simp only: rb-aux-alt-spp app-args-spp-of-vec-of )

corollary rb-spp-aux:
hom-grading dgrad =⇒

punit.is-Groebner-basis (set (map snd (fst (fst (rb-spp-aux (([], Koszul-syz-sigs
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fs, map Inr [0 ..<length fs]), z))))))
(is - =⇒ ?thesis1 )

ideal (set (map snd (fst (fst (rb-spp-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length
fs]), z)))))) = ideal (set fs)

(is ?thesis2 )
set (map snd (fst (fst (rb-spp-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length

fs]), z))))) ⊆ punit-dgrad-max-set dgrad
(is ?thesis3 )

0 /∈ set (map snd (fst (fst (rb-spp-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length
fs]), z)))))

(is ?thesis4 )
hom-grading dgrad =⇒ is-pot-ord =⇒ is-regular-sequence fs =⇒

snd (rb-spp-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length fs]), z)) = z
(is - =⇒ - =⇒ - =⇒ ?thesis5 )

rword-strict = rw-rat-strict =⇒ p ∈ set (fst (fst (rb-spp-aux (([], Koszul-syz-sigs
fs, map Inr [0 ..<length fs]), z)))) =⇒

q ∈ set (fst (fst (rb-spp-aux (([], Koszul-syz-sigs fs, map Inr [0 ..<length fs]),
z)))) =⇒ p 6= q =⇒

punit.lt (snd p) adds punit.lt (snd q) =⇒ punit.lt (snd p) ⊕ fst q ≺t punit.lt
(snd q) ⊕ fst p
proof −

let ?args = (([], Koszul-syz-sigs fs, map Inr [0 ..<length fs]), z)
have eq0 : app-pair vec-of ◦ Inr = Inr by (intro ext, simp)
have eq1 : fst (fst (app-args spp-of a)) = map spp-of (fst (fst a)) for a::(- × ( ′t

list) × -) × -
proof −

obtain bs ss ps z where a = ((bs, ss, ps), z) using prod.exhaust by metis
thus ?thesis by simp

qed
have eq2 : snd ◦ spp-of = rep-list by (intro ext, simp add: snd-spp-of )
have rb-aux-inv (fst (app-args vec-of ?args)) by (simp add: eq0 rb-aux-inv-init)
hence eq3 : rb-spp-aux ?args = app-args spp-of (rb-aux (app-args vec-of ?args))

by (rule rb-spp-aux-alt)

{
assume hom-grading dgrad
with rb-aux-is-Groebner-basis show ?thesis1 by (simp add: eq0 eq1 eq2 eq3

del: set-map)
}

from ideal-rb-aux show ?thesis2 by (simp add: eq0 eq1 eq2 eq3 del: set-map)

from dgrad-max-set-closed-rb-aux show ?thesis3 by (simp add: eq0 eq1 eq2 eq3
del: set-map)

from rb-aux-nonzero show ?thesis4 by (simp add: eq0 eq1 eq2 eq3 del: set-map)

{
assume is-pot-ord and hom-grading dgrad and is-regular-sequence fs
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hence snd (rb-aux ?args) = z by (rule rb-aux-no-zero-red)
thus ?thesis5 by (simp add: snd-app-args eq0 eq3 )

}

{
from rb-aux-nonzero have 0 /∈ rep-list ‘ set (fst (fst (rb-aux ?args)))
(is 0 /∈ rep-list ‘ ?G) by simp

assume rword-strict = rw-rat-strict
hence is-min-sig-GB dgrad ?G by (rule rb-aux-is-min-sig-GB)
hence rl:

∧
g. g ∈ ?G =⇒ ¬ is-sig-red (�t) (=) (?G − {g}) g by (simp add:

is-min-sig-GB-def )
assume p ∈ set (fst (fst (rb-spp-aux ?args)))
also have ... = spp-of ‘ ?G by (simp add: eq0 eq1 eq3 )
finally obtain p ′ where p ′ ∈ ?G and p: p = spp-of p ′ ..
assume q ∈ set (fst (fst (rb-spp-aux ?args)))
also have ... = spp-of ‘ ?G by (simp add: eq0 eq1 eq3 )
finally obtain q ′ where q ′ ∈ ?G and q: q = spp-of q ′ ..
from this(1 ) have 1 : ¬ is-sig-red (�t) (=) (?G − {q ′}) q ′ by (rule rl)
assume p 6= q and punit.lt (snd p) adds punit.lt (snd q)
hence p ′ 6= q ′ and adds: punit.lt (rep-list p ′) adds punit.lt (rep-list q ′)

by (auto simp: p q snd-spp-of )
show punit.lt (snd p) ⊕ fst q ≺t punit.lt (snd q) ⊕ fst p
proof (rule ccontr)

assume ¬ punit.lt (snd p) ⊕ fst q ≺t punit.lt (snd q) ⊕ fst p
hence le: punit.lt (rep-list q ′) ⊕ lt p ′ �t punit.lt (rep-list p ′) ⊕ lt q ′

by (simp add: p q spp-of-def )
from ‹p ′ 6= q ′› ‹p ′ ∈ ?G› have p ′ ∈ ?G − {q ′} by simp

moreover from ‹p ′ ∈ ?G› ‹0 /∈ rep-list ‘ ?G› have rep-list p ′ 6= 0 by fastforce
moreover from ‹q ′ ∈ ?G› ‹0 /∈ rep-list ‘ ?G› have rep-list q ′ 6= 0 by fastforce
moreover note adds
moreover have ord-term-lin.is-le-rel (�t) by simp

ultimately have is-sig-red (�t) (=) (?G − {q ′}) q ′ using le by (rule
is-sig-red-top-addsI )

with 1 show False ..
qed

}
qed

end

end

end

end

end

definition gb-sig-z ::
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(( ′t × ( ′a ⇒0
′b)) ⇒ ( ′t × ( ′a ⇒0

′b)) ⇒ bool) ⇒ ( ′a ⇒0
′b) list ⇒ (( ′t × ( ′a

⇒0
′b::field)) list × nat)

where gb-sig-z rword-strict fs0 =
(let fs = rev (remdups (rev (removeAll 0 fs0 )));

res = rb-spp-aux fs rword-strict (([], Koszul-syz-sigs fs, map Inr
[0 ..<length fs]), 0 ) in

(fst (fst res), snd res))

The second return value of gb-sig-z is the total number of zero-reductions.
definition gb-sig :: (( ′t × ( ′a ⇒0

′b)) ⇒ ( ′t × ( ′a ⇒0
′b)) ⇒ bool) ⇒ ( ′a ⇒0

′b)
list ⇒ ( ′a ⇒0

′b::field) list
where gb-sig rword-strict fs0 = map snd (fst (gb-sig-z rword-strict fs0 ))

theorem
assumes

∧
fs. is-strict-rewrite-ord fs rword-strict

shows gb-sig-isGB: punit.is-Groebner-basis (set (gb-sig rword-strict fs)) (is ?thesis1 )
and gb-sig-ideal: ideal (set (gb-sig rword-strict fs)) = ideal (set fs) (is ?thesis2 )
and dgrad-p-set-closed-gb-sig:

dickson-grading d =⇒ set fs ⊆ punit.dgrad-p-set d m =⇒ set (gb-sig
rword-strict fs) ⊆ punit.dgrad-p-set d m

(is - =⇒ - =⇒ ?thesis3 )
and gb-sig-nonzero: 0 /∈ set (gb-sig rword-strict fs) (is ?thesis4 )
and gb-sig-no-zero-red: is-pot-ord =⇒ is-regular-sequence fs =⇒ snd (gb-sig-z

rword-strict fs) = 0
proof −

from ex-hgrad obtain d0 :: ′a ⇒ nat where dickson-grading d0 ∧ hom-grading
d0 ..

hence dg: dickson-grading d0 and hg: hom-grading d0 by simp-all
define fs1 where fs1 = rev (remdups (rev (removeAll 0 fs)))
note assms dg
moreover have distinct fs1 and 0 /∈ set fs1 by (simp-all add: fs1-def )
ultimately have ideal (set (gb-sig rword-strict fs)) = ideal (set fs1 ) and ?thesis4

unfolding gb-sig-def gb-sig-z-def fst-conv fs1-def Let-def by (rule rb-spp-aux)+
thus ?thesis2 and ?thesis4 by (simp-all add: fs1-def ideal.span-Diff-zero)

from assms dg ‹distinct fs1 › ‹0 /∈ set fs1 › hg show ?thesis1
unfolding gb-sig-def gb-sig-z-def fst-conv fs1-def Let-def by (rule rb-spp-aux)

{
assume dg: dickson-grading d and ∗: set fs ⊆ punit.dgrad-p-set d m
show ?thesis3
proof (cases set fs ⊆ {0})

case True
hence removeAll 0 fs = []

by (metis (no-types, lifting) Diff-iff ex-in-conv set-empty2 set-removeAll
subset-singleton-iff )

thus ?thesis by (simp add: gb-sig-def gb-sig-z-def Let-def rb-spp-aux-Nil)
next

case False
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have set fs1 ⊆ set fs by (fastforce simp: fs1-def )
hence Keys (set fs1 ) ⊆ Keys (set fs) by (rule Keys-mono)
hence d ‘ Keys (set fs1 ) ⊆ d ‘ Keys (set fs) by (rule image-mono)
hence insert (d 0 ) (d ‘ Keys (set fs1 )) ⊆ insert (d 0 ) (d ‘ Keys (set fs)) by

(rule insert-mono)
moreover have insert (d 0 ) (d ‘ Keys (set fs1 )) 6= {} by simp
moreover have finite (insert (d 0 ) (d ‘ Keys (set fs)))

by (simp add: finite-Keys)
ultimately have le: Max (insert (d 0 ) (d ‘ Keys (set fs1 ))) ≤

Max (insert (d 0 ) (d ‘ Keys (set fs))) by (rule Max-mono)
from assms dg have set (gb-sig rword-strict fs) ⊆ punit-dgrad-max-set

(TYPE( ′b)) fs1 d
using ‹distinct fs1 › ‹0 /∈ set fs1 ›

unfolding gb-sig-def gb-sig-z-def fst-conv fs1-def Let-def by (rule rb-spp-aux)
also have punit-dgrad-max-set (TYPE( ′b)) fs1 d ⊆ punit-dgrad-max-set

(TYPE( ′b)) fs d
by (rule punit.dgrad-p-set-subset, simp add: dgrad-max-def le)

also from dg ∗ False have ... ⊆ punit.dgrad-p-set d m
by (rule punit-dgrad-max-set-subset-dgrad-p-set)

finally show ?thesis .
qed

}

{
assume is-regular-sequence fs
note assms dg ‹distinct fs1 › ‹0 /∈ set fs1 › hg
moreover assume is-pot-ord

moreover from ‹is-regular-sequence fs› have is-regular-sequence fs1 unfolding
fs1-def

by (intro is-regular-sequence-remdups is-regular-sequence-removeAll-zero)
ultimately show snd (gb-sig-z rword-strict fs) = 0
unfolding gb-sig-def gb-sig-z-def snd-conv fs1-def Let-def by (rule rb-spp-aux)

}
qed

theorem gb-sig-z-is-min-sig-GB:
assumes p ∈ set (fst (gb-sig-z rw-rat-strict fs)) and q ∈ set (fst (gb-sig-z

rw-rat-strict fs))
and p 6= q and punit.lt (snd p) adds punit.lt (snd q)

shows punit.lt (snd p) ⊕ fst q ≺t punit.lt (snd q) ⊕ fst p
proof −

define fs1 where fs1 = rev (remdups (rev (removeAll 0 fs)))
from ex-hgrad obtain d0 :: ′a ⇒ nat where dickson-grading d0 ∧ hom-grading

d0 ..
hence dickson-grading d0 ..
note rw-rat-strict-is-strict-rewrite-ord this
moreover have distinct fs1 and 0 /∈ set fs1 by (simp-all add: fs1-def )
moreover note refl assms
ultimately show ?thesis unfolding gb-sig-z-def fst-conv fs1-def Let-def by (rule
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rb-spp-aux)
qed

Summarizing, these are the four main results proved in this theory:

• (
∧

fs. is-strict-rewrite-ord fs ?rword-strict) =⇒ punit.is-Groebner-basis
(set (gb-sig ?rword-strict ?fs)),

• (
∧

fs. is-strict-rewrite-ord fs ?rword-strict) =⇒ ideal (set (gb-sig ?rword-strict
?fs)) = ideal (set ?fs),

• [[
∧

fs. is-strict-rewrite-ord fs ?rword-strict; is-pot-ord; is-regular-sequence
?fs]] =⇒ snd (gb-sig-z ?rword-strict ?fs) = 0, and

• [[?p ∈ set (fst (gb-sig-z rw-rat-strict ?fs)); ?q ∈ set (fst (gb-sig-z rw-rat-strict
?fs)); ?p 6= ?q; punit.lt (snd ?p) adds punit.lt (snd ?q)]] =⇒ punit.lt
(snd ?p) ⊕ fst ?q ≺t punit.lt (snd ?q) ⊕ fst ?p.

end

end

5 Sample Computations with Signature-Based Al-
gorithms

theory Signature-Examples
imports Signature-Groebner Groebner-Bases.Benchmarks Groebner-Bases.Code-Target-Rat

begin

5.1 Setup
lift-definition except-pp :: ( ′a, ′b) pp ⇒ ′a set ⇒ ( ′a, ′b::zero) pp is except .

lemma hom-grading-varnum-pp: hom-grading (varnum-pp::( ′a::countable, ′b::add-wellorder)
pp ⇒ nat)
proof −

define f where f = (λn t. (except-pp t (− {x. elem-index x < n}))::( ′a, ′b) pp)
show ?thesis unfolding hom-grading-def hom-grading-fun-def
proof (intro exI allI conjI impI )

fix n s t
show f n (s + t) = f n s + f n t unfolding f-def by transfer (rule except-plus)

next
fix n t
show varnum-pp (f n t) ≤ n unfolding f-def

by transfer (simp add: varnum-le-iff keys-except)
next

fix n t
show varnum-pp t ≤ n =⇒ f n t = t unfolding f-def
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by transfer (auto simp: except-id-iff varnum-le-iff )
qed

qed

instance pp :: (countable, add-wellorder) quasi-pm-powerprod
by (standard, intro exI conjI , fact dickson-grading-varnum-pp, fact hom-grading-varnum-pp)

5.1.1 Projections of Term Orders to Orders on Power-Products
definition proj-comp :: (( ′a::nat, ′b::nat) pp × nat) nat-term-order ⇒ ( ′a, ′b) pp
⇒ ( ′a, ′b) pp ⇒ order

where proj-comp cmp = (λx y. nat-term-compare cmp (x, 0 ) (y, 0 ))

definition proj-ord :: (( ′a::nat, ′b::nat) pp × nat) nat-term-order ⇒ ( ′a, ′b) pp
nat-term-order

where proj-ord cmp = Abs-nat-term-order (proj-comp cmp)

In principle, proj-comp and proj-ord could be defined more generally on type
′a × nat, but then ′a would have to belong to some new type-class which is
the intersection of nat-pp-term and nat-pp-compare and additionally requires
rep-nat-term x = (rep-nat-pp x, 0 ).
lemma comparator-proj-comp: comparator (proj-comp cmp)
proof −
interpret cmp: comparator nat-term-compare cmp by (rule comparator-nat-term-compare)
show ?thesis unfolding proj-comp-def
proof

fix x y :: ( ′a, ′b) pp
show invert-order (nat-term-compare cmp (x, 0 ) (y, 0 )) = nat-term-compare

cmp (y, 0 ) (x, 0 )
by (simp only: cmp.sym)

next
fix x y :: ( ′a, ′b) pp
assume nat-term-compare cmp (x, 0 ) (y, 0 ) = Eq
hence (x, 0 ) = (y, 0 ::nat) by (rule cmp.weak-eq)
thus x = y by simp

next
fix x y z :: ( ′a, ′b) pp
assume nat-term-compare cmp (x, 0 ) (y, 0 ) = Lt and nat-term-compare cmp

(y, 0 ) (z, 0 ) = Lt
thus nat-term-compare cmp (x, 0 ) (z, 0 ) = Lt by (rule cmp.comp-trans)

qed
qed

lemma nat-term-comp-proj-comp: nat-term-comp (proj-comp cmp)
proof −

have 1 : fst (rep-nat-term (u, i)) = rep-nat-pp u for u::( ′a, ′b) pp and i::nat
by (simp add: rep-nat-term-prod-def )

have 2 : snd (rep-nat-term (u, i)) = i for u::( ′a, ′b) pp and i::nat
by (simp add: rep-nat-term-prod-def rep-nat-nat-def )
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show ?thesis
proof (rule nat-term-compI )

fix u v :: ( ′a, ′b) pp
assume a: fst (rep-nat-term u) = 0
note nat-term-comp-nat-term-compare

moreover have snd (rep-nat-term (u, 0 ::nat)) = snd (rep-nat-term (v, 0 ::nat))
by (simp only: 2 )

moreover from a have fst (rep-nat-term (u, 0 ::nat)) = 0 by (simp add: 1
rep-nat-term-pp-def )

ultimately have nat-term-compare cmp (u, 0 ) (v, 0 ) 6= Gt by (rule nat-term-compD1 )
thus proj-comp cmp u v 6= Gt by (simp add: proj-comp-def )

next
fix u v :: ( ′a, ′b) pp
assume snd (rep-nat-term u) < snd (rep-nat-term v)
thus proj-comp cmp u v = Lt by (simp add: rep-nat-term-pp-def )

next
fix t u v :: ( ′a, ′b) pp
assume proj-comp cmp u v = Lt
hence nat-term-compare cmp (u, 0 ) (v, 0 ) = Lt by (simp add: proj-comp-def )
with nat-term-comp-nat-term-compare have nat-term-compare cmp (splus (t,

0 ) (u, 0 )) (splus (t, 0 ) (v, 0 )) = Lt
by (rule nat-term-compD3 )

thus proj-comp cmp (splus t u) (splus t v) = Lt
by (simp add: proj-comp-def splus-prod-def pprod.splus-def splus-pp-term)

next
fix u v a b :: ( ′a, ′b) pp
assume u: fst (rep-nat-term u) = fst (rep-nat-term a) and v: fst (rep-nat-term

v) = fst (rep-nat-term b)
and a: proj-comp cmp a b = Lt

note nat-term-comp-nat-term-compare
moreover from u have fst (rep-nat-term (u, 0 ::nat)) = fst (rep-nat-term (a,

0 ::nat))
by (simp add: 1 rep-nat-term-pp-def )

moreover from v have fst (rep-nat-term (v, 0 ::nat)) = fst (rep-nat-term (b,
0 ::nat))

by (simp add: 1 rep-nat-term-pp-def )
moreover have snd (rep-nat-term (u, 0 ::nat)) = snd (rep-nat-term (v, 0 ::nat))

and snd (rep-nat-term (a, 0 ::nat)) = snd (rep-nat-term (b, 0 ::nat)) by
(simp-all only: 2 )

moreover from a have nat-term-compare cmp (a, 0 ) (b, 0 ) = Lt by (simp
add: proj-comp-def )

ultimately have nat-term-compare cmp (u, 0 ) (v, 0 ) = Lt by (rule nat-term-compD4 )
thus proj-comp cmp u v = Lt by (simp add: proj-comp-def )

qed
qed

corollary nat-term-compare-proj-ord: nat-term-compare (proj-ord cmp) = proj-comp
cmp

unfolding proj-ord-def using comparator-proj-comp nat-term-comp-proj-comp
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by (rule nat-term-compare-Abs-nat-term-order-id)

lemma proj-ord-LEX [code]: proj-ord LEX = LEX
proof −

have nat-term-compare (proj-ord LEX) = nat-term-compare LEX
by (auto simp: nat-term-compare-proj-ord nat-term-compare-LEX proj-comp-def

lex-comp
lex-comp-aux-def rep-nat-term-prod-def rep-nat-term-pp-def intro!: ext split:

order .split)
thus ?thesis by (simp only: nat-term-compare-inject)

qed

lemma proj-ord-DRLEX [code]: proj-ord DRLEX = DRLEX
proof −

have nat-term-compare (proj-ord DRLEX) = nat-term-compare DRLEX
by (auto simp: nat-term-compare-proj-ord nat-term-compare-DRLEX proj-comp-def

deg-comp pot-comp
lex-comp lex-comp-aux-def rep-nat-term-prod-def rep-nat-term-pp-def intro!:

ext split: order .split)
thus ?thesis by (simp only: nat-term-compare-inject)

qed

lemma proj-ord-DEG [code]: proj-ord (DEG to) = DEG (proj-ord to)
proof −

have nat-term-compare (proj-ord (DEG to)) = nat-term-compare (DEG (proj-ord
to))

by (simp add: nat-term-compare-proj-ord nat-term-compare-DEG proj-comp-def
deg-comp

rep-nat-term-prod-def rep-nat-term-pp-def )
thus ?thesis by (simp only: nat-term-compare-inject)

qed

lemma proj-ord-POT [code]: proj-ord (POT to) = proj-ord to
proof −

have nat-term-compare (proj-ord (POT to)) = nat-term-compare (proj-ord to)
by (simp add: nat-term-compare-proj-ord nat-term-compare-POT proj-comp-def

pot-comp
rep-nat-term-prod-def rep-nat-term-pp-def )

thus ?thesis by (simp only: nat-term-compare-inject)
qed

5.1.2 Locale Interpretation
locale qpm-nat-inf-term = gd-nat-term λx. x λx. x to

for to::(( ′a::nat, ′b::nat) pp × nat) nat-term-order
begin

sublocale aux: qpm-inf-term λx. x λx. x
le-of-nat-term-order (proj-ord to)
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lt-of-nat-term-order (proj-ord to)
le-of-nat-term-order to
lt-of-nat-term-order to

proof intro-locales

show ordered-powerprod-axioms (le-of-nat-term-order (proj-ord to))
by (unfold-locales, fact le-of-nat-term-order-zero-min, auto dest: le-of-nat-term-order-plus-monotone

simp: ac-simps)
next

show ordered-term-axioms (λx. x) (λx. x) (le-of-nat-term-order (proj-ord to))
(le-of-nat-term-order to)

proof
fix v w t
assume le-of-nat-term-order to v w
thus le-of-nat-term-order to (local.splus t v) (local.splus t w)

by (simp add: le-of-nat-term-order nat-term-compare-splus splus-eq-splus)
next

fix v w
assume le-of-nat-term-order (proj-ord to) (pp-of-term v) (pp-of-term w)

and component-of-term v ≤ component-of-term w
hence nat-term-compare to (fst v, 0 ) (fst w, 0 ) 6= Gt and snd v ≤ snd w
by (simp-all add: le-of-nat-term-order nat-term-compare-proj-ord proj-comp-def )
from comparator-nat-term-compare nat-term-comp-nat-term-compare - - - -

this(1 )
have nat-term-compare to v w 6= Gt
by (rule nat-term-compD4 ′′) (simp-all add: rep-nat-term-prod-def ord-iff [symmetric]

‹snd v ≤ snd w›)
thus le-of-nat-term-order to v w by (simp add: le-of-nat-term-order)

qed
qed

end

We must define the following two constants outside the global interpretation,
since otherwise their types are too general.
definition splus-pprod :: ( ′a::nat, ′b::nat) pp ⇒ -

where splus-pprod = pprod.splus

definition adds-term-pprod :: (( ′a::nat, ′b::nat) pp × -) ⇒ -
where adds-term-pprod = pprod.adds-term

global-interpretation pprod ′: qpm-nat-inf-term to
rewrites pprod.pp-of-term = fst
and pprod.component-of-term = snd
and pprod.splus = splus-pprod
and pprod.adds-term = adds-term-pprod
and punit.monom-mult = monom-mult-punit
and pprod ′.aux.punit.lt = lt-punit (proj-ord to)
and pprod ′.aux.punit.lc = lc-punit (proj-ord to)
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and pprod ′.aux.punit.tail = tail-punit (proj-ord to)
for to :: (( ′a::nat, ′b::nat) pp × nat) nat-term-order
defines max-pprod = pprod ′.ord-term-lin.max
and Koszul-syz-sigs-aux-pprod = pprod ′.aux.Koszul-syz-sigs-aux
and Koszul-syz-sigs-pprod = pprod ′.aux.Koszul-syz-sigs
and find-sig-reducer-pprod = pprod ′.aux.find-sig-reducer
and sig-trd-spp-body-pprod = pprod ′.aux.sig-trd-spp-body
and sig-trd-spp-aux-pprod = pprod ′.aux.sig-trd-spp-aux
and sig-trd-spp-pprod = pprod ′.aux.sig-trd-spp
and spair-sigs-spp-pprod = pprod ′.aux.spair-sigs-spp
and is-pred-syz-pprod = pprod ′.aux.is-pred-syz
and is-rewritable-spp-pprod = pprod ′.aux.is-rewritable-spp
and sig-crit-spp-pprod = pprod ′.aux.sig-crit-spp
and spair-spp-pprod = pprod ′.aux.spair-spp
and spp-of-pair-pprod = pprod ′.aux.spp-of-pair
and pair-ord-spp-pprod = pprod ′.aux.pair-ord-spp
and sig-of-pair-spp-pprod = pprod ′.aux.sig-of-pair-spp
and new-spairs-spp-pprod = pprod ′.aux.new-spairs-spp
and is-regular-spair-spp-pprod = pprod ′.aux.is-regular-spair-spp
and add-spairs-spp-pprod = pprod ′.aux.add-spairs-spp
and is-pot-ord-pprod = pprod ′.is-pot-ord
and new-syz-sigs-spp-pprod = pprod ′.aux.new-syz-sigs-spp
and rb-spp-body-pprod = pprod ′.aux.rb-spp-body
and rb-spp-aux-pprod = pprod ′.aux.rb-spp-aux
and gb-sig-z-pprod ′ = pprod ′.aux.gb-sig-z
and gb-sig-pprod ′ = pprod ′.aux.gb-sig
and rw-rat-strict-pprod = pprod ′.aux.rw-rat-strict
and rw-add-strict-pprod = pprod ′.aux.rw-add-strict
subgoal by (rule qpm-nat-inf-term.intro, fact gd-nat-term-id)
subgoal by (fact pprod-pp-of-term)
subgoal by (fact pprod-component-of-term)
subgoal by (simp only: splus-pprod-def )
subgoal by (simp only: adds-term-pprod-def )
subgoal by (simp only: monom-mult-punit-def )
subgoal by (simp only: lt-punit-def )
subgoal by (simp only: lc-punit-def )
subgoal by (simp only: tail-punit-def )
done

5.1.3 More Lemmas and Definitions
lemma compute-adds-term-pprod [code]:

adds-term-pprod u v = (snd u = snd v ∧ adds-pp-add-linorder (fst u) (fst v))
by (simp add: adds-term-pprod-def pprod.adds-term-def adds-pp-add-linorder-def )

lemma compute-splus-pprod [code]: splus-pprod t (s, i) = (t + s, i)
by (simp add: splus-pprod-def pprod.splus-def )

lemma compute-sig-trd-spp-body-pprod [code]:
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sig-trd-spp-body-pprod to bs v (p, r) =
(case find-sig-reducer-pprod to bs v (lt-punit (proj-ord to) p) 0 of

None ⇒ (tail-punit (proj-ord to) p, plus-monomial-less r (lc-punit (proj-ord
to) p) (lt-punit (proj-ord to) p))

| Some i ⇒ let b = snd (bs ! i) in
(tail-punit (proj-ord to) p − monom-mult-punit (lc-punit (proj-ord to) p /

lc-punit (proj-ord to) b)
(lt-punit (proj-ord to) p − lt-punit (proj-ord to) b) (tail-punit (proj-ord

to) b), r))
by (simp add: plus-monomial-less-def split: option.split)

lemma compute-sig-trd-spp-pprod [code]:
sig-trd-spp-pprod to bs (v, p) ≡ (v, sig-trd-spp-aux-pprod to bs v (p, change-ord

(proj-ord to) 0 ))
by (simp add: change-ord-def )

lemmas [code] = conversep-iff

lemma compute-is-pot-ord [code]:
is-pot-ord-pprod (LEX ::(( ′a::nat, ′b::nat) pp × nat) nat-term-order) = False
(is is-pot-ord-pprod ?lex = -)

is-pot-ord-pprod (DRLEX ::(( ′a::nat, ′b::nat) pp × nat) nat-term-order) = False
(is is-pot-ord-pprod ?drlex = -)

is-pot-ord-pprod (DEG (to::(( ′a::nat, ′b::nat) pp × nat) nat-term-order)) = False
is-pot-ord-pprod (POT (to::(( ′a::nat, ′b::nat) pp × nat) nat-term-order)) = True

proof −
have eq1 : snd ((Term-Order .of-exps a b i)::( ′a, ′b) pp × nat) = i for a b and

i::nat
proof −

have snd ((Term-Order .of-exps a b i)::( ′a, ′b) pp × nat) =
snd (rep-nat-term ((Term-Order .of-exps a b i)::( ′a, ′b) pp × nat))

by (simp add: rep-nat-term-prod-def rep-nat-nat-def )
also have ... = i
proof (rule snd-of-exps)
show snd (rep-nat-term (undefined, i)) = i by (simp add: rep-nat-term-prod-def

rep-nat-nat-def )
qed
finally show ?thesis .

qed

let ?u = (Term-Order .of-exps 1 0 0 )::( ′a, ′b) pp × nat
let ?v = (Term-Order .of-exps 0 0 1 )::( ′a, ′b) pp × nat
have ¬ is-pot-ord-pprod ?lex
proof

assume is-pot-ord-pprod ?lex
moreover have le-of-nat-term-order ?lex ?v ?u
by (simp add: le-of-nat-term-order nat-term-compare-LEX lex-comp lex-comp-aux-def

comp-of-ord-def lex-pp-of-exps eq-of-exps)
ultimately have snd ?v ≤ snd ?u by (rule pprod ′.is-pot-ordD2 )
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thus False by (simp add: eq1 )
qed
thus is-pot-ord-pprod ?lex = False by simp

have ¬ is-pot-ord-pprod ?drlex
proof

assume is-pot-ord-pprod ?drlex
moreover have le-of-nat-term-order ?drlex ?v ?u

by (simp add: le-of-nat-term-order nat-term-compare-DRLEX deg-comp com-
parator-of-def )

ultimately have snd ?v ≤ snd ?u by (rule pprod ′.is-pot-ordD2 )
thus False by (simp add: eq1 )

qed
thus is-pot-ord-pprod ?drlex = False by simp

have ¬ is-pot-ord-pprod (DEG to)
proof

assume is-pot-ord-pprod (DEG to)
moreover have le-of-nat-term-order (DEG to) ?v ?u
by (simp add: le-of-nat-term-order nat-term-compare-DEG deg-comp compara-

tor-of-def )
ultimately have snd ?v ≤ snd ?u by (rule pprod ′.is-pot-ordD2 )
thus False by (simp add: eq1 )

qed
thus is-pot-ord-pprod (DEG to) = False by simp

have is-pot-ord-pprod (POT to)
by (rule pprod ′.is-pot-ordI , simp add: lt-of-nat-term-order nat-term-compare-POT

pot-comp rep-nat-term-prod-def ,
simp add: comparator-of-def )

thus is-pot-ord-pprod (POT to) = True by simp
qed

corollary is-pot-ord-POT : is-pot-ord-pprod (POT to)
by (simp only: compute-is-pot-ord)

definition gb-sig-z-pprod to rword-strict fs ≡
(let res = gb-sig-z-pprod ′ to (rword-strict to) (map (change-ord

(proj-ord to)) fs) in
(length (fst res), snd res))

definition gb-sig-pprod to rword-strict fs ≡ gb-sig-pprod ′ to (rword-strict to) (map
(change-ord (proj-ord to)) fs)

lemma snd-gb-sig-z-pprod ′-eq-gb-sig-z-pprod:
snd (gb-sig-z-pprod ′ to (rword-strict to) fs) = snd (gb-sig-z-pprod to rword-strict

fs)
by (simp add: gb-sig-z-pprod-def change-ord-def Let-def )
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lemma gb-sig-pprod ′-eq-gb-sig-pprod:
gb-sig-pprod ′ to (rword-strict to) fs = gb-sig-pprod to rword-strict fs
by (simp add: gb-sig-pprod-def change-ord-def )

thm pprod ′.aux.gb-sig-isGB[OF pprod ′.aux.rw-rat-strict-is-strict-rewrite-ord, sim-
plified gb-sig-pprod ′-eq-gb-sig-pprod]
thm pprod ′.aux.gb-sig-no-zero-red[OF pprod ′.aux.rw-rat-strict-is-strict-rewrite-ord
is-pot-ord-POT , simplified snd-gb-sig-z-pprod ′-eq-gb-sig-z-pprod]

5.2 Computations
experiment begin interpretation trivariate0-rat .

lemma
gb-sig-pprod DRLEX rw-rat-strict-pprod [X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y , X ∗ Y ∗ Z

+ 2 ∗ Y 2] =
[C 0 (3 / 4 ) ∗ X ^ 3 ∗ Y 2 − 2 ∗ Y ^ 4 , − 4 ∗ Y ^ 3 ∗ Z − 3 ∗ X2 ∗ Y 2, X

∗ Y ∗ Z + 2 ∗ Y 2, X2 ∗ Z ^ 3 + 3 ∗ X2 ∗ Y ]
by eval

end

Recall that the first return value of gb-sig-z-pprod is the size of the computed
Gröbner basis, and the second return value is the total number of useless
zero-reductions:
lemma

gb-sig-z-pprod (POT DRLEX) rw-rat-strict-pprod ((cyclic DRLEX 6 )::(- ⇒0 rat)
list) = (155 , 8 )

by eval

lemma
gb-sig-z-pprod (POT DRLEX) rw-rat-strict-pprod ((katsura DRLEX 5 )::(- ⇒0

rat) list) = (29 , 0 )
by eval

lemma
gb-sig-z-pprod (POT DRLEX) rw-rat-strict-pprod ((eco DRLEX 8 )::(- ⇒0 rat)

list) = (76 , 0 )
by eval

lemma
gb-sig-z-pprod (POT DRLEX) rw-rat-strict-pprod ((noon DRLEX 5 )::(- ⇒0 rat)

list) = (83 , 0 )
by eval

end
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