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Abstract

We present a machine-checked Isabelle/HOL development of the
sigmoid function

σ(x) =
ex

1 + ex
,

together with its most important analytic properties. After proving
positivity, strict monotonicity, C∞ smoothness, and the limits at ±∞,
we derive a closed-form expression for the n–th derivative using Stir-
ling numbers of the second kind, following the combinatorial argument
of Minai and Williams [4]. These results are packaged into a small
reusable library of lemmas on σ.

Building on this analytic groundwork we mechanise a constructive
version of the classical Universal Approximation Theorem: for every
continuous function f : [a, b] → R and every ε > 0 there is a single-
hidden-layer neural network with sigmoidal activations whose output
is within ε of f everywhere on [a, b]. Our proof follows the method of
Costarell and Spigler [2], giving the first fully verified end-to-end proof
of this theorem inside a higher-order proof assistant.
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1 Limits and Higher Order Derivatives
theory Limits-Higher-Order-Derivatives

imports HOL−Analysis.Analysis
begin

1.1 ε–δ Characterizations of Limits and Continuity
lemma tendsto-at-top-epsilon-def :
(f −−−→ L) at-top = (∀ ε > 0 . ∃N . ∀ x ≥ N . |(f (x::real)::real) − L| < ε)

by (simp add: Zfun-def tendsto-Zfun-iff eventually-at-top-linorder)

lemma tendsto-at-bot-epsilon-def :
(f −−−→ L) at-bot = (∀ ε > 0 . ∃N . ∀ x ≤ N . |(f (x::real)::real) − L| < ε)

by (simp add: Zfun-def tendsto-Zfun-iff eventually-at-bot-linorder)

lemma tendsto-inf-at-top-epsilon-def :
(g −−−→ ∞) at-top = (∀ ε > 0 . ∃N . ∀ x ≥ N . (g (x::real)::real) > ε)
by (subst tendsto-PInfty ′, subst Filter .eventually-at-top-linorder , simp)

lemma tendsto-inf-at-bot-epsilon-def :
(g −−−→ ∞) at-bot = (∀ ε > 0 . ∃N . ∀ x ≤ N . (g (x::real)::real) > ε)
by (subst tendsto-PInfty ′, subst Filter .eventually-at-bot-linorder , simp)

lemma tendsto-minus-inf-at-top-epsilon-def :
(g −−−→ −∞) at-top = (∀ ε < 0 . ∃N . ∀ x ≥ N . (g (x::real)::real) < ε)
by(subst tendsto-MInfty ′, subst Filter .eventually-at-top-linorder , simp)

lemma tendsto-minus-inf-at-bot-epsilon-def :
(g −−−→ −∞) at-bot = (∀ ε < 0 . ∃N . ∀ x ≤ N . (g (x::real)::real) < ε)
by (subst tendsto-MInfty ′, subst Filter .eventually-at-bot-linorder , simp)

lemma tendsto-at-x-epsilon-def :
fixes f :: real ⇒ real and L :: real and x :: real
shows (f −−−→ L) (at x) = (∀ ε > 0 . ∃ δ > 0 . ∀ y. (y 6= x ∧ |y − x| < δ) −→ |f

y − L| < ε)
unfolding tendsto-def

proof (subst eventually-at, safe)

2



— First Direction — We show that the filter definition implies the ε–δ
formulation.

fix ε :: real
assume lim-neigh: ∀S . open S −→ L ∈ S −→ (∃ d>0 . ∀ xa∈UNIV . xa 6= x ∧

dist xa x < d −→ f xa ∈ S)
assume ε-pos: 0 < ε
show ∃ δ>0 . ∀ y. y 6= x ∧ |y − x| < δ −→ |f y − L| < ε
proof −

Choose S as the open ball around L with radius ε.
have open (ball L ε)

by simp

Confirm that L lies in the ball.
moreover have L ∈ ball L ε

unfolding ball-def by (simp add: ε-pos)

By applying lim_neigh to the ball, we obtain a suitable δ.
ultimately obtain δ where d-pos: δ > 0

and δ-prop: ∀ y. y 6= x ∧ dist y x < δ −→ f y ∈ ball L ε
by (meson UNIV-I lim-neigh)

Since f(y) ∈ ball(L, ε) means |f(y)−L| < ε, we deduce the εδ condition.
hence ∀ y. y 6= x ∧ |y − x| < δ −→ |f y − L| < ε

by (auto simp: ball-def dist-norm)
thus ?thesis

using d-pos by blast
qed

next

— Second Direction — We show that the ε–δ formulation implies the
filter definition.

fix S :: real set
assume eps-delta: ∀ ε>0 . ∃ δ>0 . ∀ y. (y 6= x ∧ |y − x| < δ) −→ |f y − L| < ε
and S-open: open S
and L-in-S : L ∈ S

Since S is open and contains L, there exists an ε-ball around L contained
in S.

from S-open L-in-S obtain ε where ε-pos: ε > 0 and ball-sub: ball L ε ⊆ S
by (meson openE)

Applying the ε–δ assumption for this particular ε yields a δ > 0 such
that for all y, if y 6= x and |y − x| < δ then |f(y)− L| < ε.

from eps-delta obtain δ where δ-pos: δ > 0
and δ-prop: ∀ y. (y 6= x ∧ |y − x| < δ) −→ |f y − L| < ε
using ε-pos by blast

Notice that |f(y)− L| < ε is equivalent to f(y) ∈ ballLε.
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have ∀ y. (y 6= x ∧ dist y x < δ) −→ f y ∈ ball L ε
using δ-prop dist-real-def by fastforce

Since ball(L, ε) ⊆ S, for all y with y 6= x and dist y x < δ, we have
f y ∈ S.

hence ∀ y. (y 6= x ∧ dist y x < δ) −→ f y ∈ S
using ball-sub by blast

This gives exactly the existence of some d (namely δ) satisfying the filter
condition.

thus ∃ d>0 . ∀ y∈UNIV . (y 6= x ∧ dist y x < d) −→ f y ∈ S
using δ-pos by blast

qed

lemma continuous-at-eps-delta:
fixes g :: real ⇒ real and y :: real
shows continuous (at y) g = (∀ ε > 0 . ∃ δ > 0 . ∀ x. |x − y| < δ −→ |g x − g y|

< ε)
proof −

have continuous (at y) g = (∀ ε > 0 . ∃ δ > 0 . ∀ x. (x 6= y ∧ |x − y| < δ) −→ |g
x − g y| < ε)

by (simp add: isCont-def tendsto-at-x-epsilon-def )
also have ... = (∀ ε > 0 . ∃ δ > 0 . ∀ x. |x − y| < δ −→ |g x − g y| < ε)

by (metis abs-eq-0 diff-self )
finally show ?thesis.

qed

lemma tendsto-divide-approaches-const:
fixes f g :: real ⇒ real
assumes f-lim:((λx. f (x::real)) −−−→ c) at-top

and g-lim: ((λx. g (x::real)) −−−→ ∞) at-top
shows ((λx. f (x::real) / g x) −−−→ 0 ) at-top

proof(subst tendsto-at-top-epsilon-def , clarify)
fix ε :: real
assume ε-pos: 0 < ε

obtain M where M-def : M = abs c + 1 and M-gt-0 : M > 0
by simp

obtain N1 where N1-def : ∀ x≥N1 . abs (f x − c) < 1
using f-lim tendsto-at-top-epsilon-def zero-less-one by blast

have f-bound: ∀ x≥N1 . abs (f x) < M
using M-def N1-def by fastforce

have M-over-ε-gt-0 : M / ε > 0
by (simp add: M-gt-0 ε-pos)

then obtain N2 where N2-def : ∀ x≥N2 . g x > M / ε
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using g-lim tendsto-inf-at-top-epsilon-def by blast

obtain N where N = max N1 N2 and N-ge-N1 : N ≥ N1 and N-ge-N2 : N ≥
N2

by auto

show ∃N ::real. ∀ x≥N . |f x / g x − 0 | < ε
proof(intro exI [where x=N ], clarify)

fix x :: real
assume x-ge-N : N ≤ x

have f-bound-x: |f x| < M
using N-ge-N1 f-bound x-ge-N by auto

have g-bound-x: g x > M / ε
using N2-def N-ge-N2 x-ge-N by auto

have |f x / g x| = |f x| / |g x|
using abs-divide by blast

also have ... < M / |g x|
using M-over-ε-gt-0 divide-strict-right-mono f-bound-x g-bound-x by force

also have ... < ε
by (metis M-over-ε-gt-0 ε-pos abs-real-def g-bound-x mult.commute or-

der-less-irrefl order-less-trans pos-divide-less-eq)
finally show |f x / g x − 0 | < ε

by linarith
qed

qed

lemma tendsto-divide-approaches-const-at-bot:
fixes f g :: real ⇒ real
assumes f-lim: ((λx. f (x::real)) −−−→ c) at-bot

and g-lim: ((λx. g (x::real)) −−−→ ∞) at-bot
shows ((λx. f (x::real) / g x) −−−→ 0 ) at-bot

proof(subst tendsto-at-bot-epsilon-def , clarify)
fix ε :: real
assume ε-pos: 0 < ε

obtain M where M-def : M = abs c + 1 and M-gt-0 : M > 0
by simp

obtain N1 where N1-def : ∀ x≤N1 . abs (f x − c) < 1
using f-lim tendsto-at-bot-epsilon-def zero-less-one by blast

have f-bound: ∀ x≤N1 . abs (f x) < M
using M-def N1-def by fastforce

have M-over-ε-gt-0 : M / ε > 0
by (simp add: M-gt-0 ε-pos)
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then obtain N2 where N2-def : ∀ x≤N2 . g x > M / ε
using g-lim tendsto-inf-at-bot-epsilon-def by blast

obtain N where N = min N1 N2 and N-le-N1 : N ≤ N1 and N-le-N2 : N ≤
N2

by auto

show ∃N ::real. ∀ x≤N . |f x / g x − 0 | < ε
proof(intro exI [where x=N ], clarify)

fix x :: real
assume x-le-N : x ≤ N

have f-bound-x: |f x| < M
using N-le-N1 f-bound x-le-N by auto

have g-bound-x: g x > M / ε
using N2-def N-le-N2 x-le-N by auto

have |f x / g x| = |f x| / |g x|
using abs-divide by blast

also have ... < M / |g x|
using M-over-ε-gt-0 divide-strict-right-mono f-bound-x g-bound-x by force

also have ... < ε
by (metis M-over-ε-gt-0 ε-pos abs-real-def g-bound-x mult.commute or-

der-less-irrefl order-less-trans pos-divide-less-eq)
finally show |f x / g x − 0 | < ε

by linarith
qed

qed

lemma equal-limits-diff-zero-at-top:
assumes f-lim: (f −−−→ (L1 ::real)) at-top
assumes g-lim: (g −−−→ (L2 ::real)) at-top
shows ((f − g) −−−→ (L1 − L2 )) at-top

proof −
have ((λx. f x − g x) −−−→ L1 − L2 ) at-top

by (rule tendsto-diff , rule f-lim, rule g-lim)
then show ?thesis

by (simp add: fun-diff-def )
qed

lemma equal-limits-diff-zero-at-bot:
assumes f-lim: (f −−−→ (L1 ::real)) at-bot
assumes g-lim: (g −−−→ (L2 ::real)) at-bot
shows ((f − g) −−−→ (L1 − L2 )) at-bot

proof −
have ((λx. f x − g x) −−−→ L1 − L2 ) at-bot

by (rule tendsto-diff , rule f-lim, rule g-lim)
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then show ?thesis
by (simp add: fun-diff-def )

qed

1.2 Nth Order Derivatives and Ck(U) Smoothness
fun Nth-derivative :: nat ⇒ (real ⇒ real) ⇒ (real ⇒ real) where

Nth-derivative 0 f = f |
Nth-derivative (Suc n) f = deriv (Nth-derivative n f )

lemma first-derivative-alt-def :
Nth-derivative 1 f = deriv f
by simp

lemma second-derivative-alt-def :
Nth-derivative 2 f = deriv (deriv f )
by (simp add: numeral-2-eq-2 )

lemma limit-def-nth-deriv:
fixes f :: real ⇒ real and a :: real and n :: nat
assumes n-pos: n > 0

and D-last: DERIV (Nth-derivative (n − 1 ) f ) a :> Nth-derivative n f a
shows
((λx. (Nth-derivative (n − 1 ) f x − Nth-derivative (n − 1 ) f a) / (x − a))
−−−→ Nth-derivative n f a) (at a)

using D-last has-field-derivativeD by blast

definition C-k-on :: nat ⇒ (real ⇒ real) ⇒ real set ⇒ bool where
C-k-on k f U ≡

(if k = 0 then (open U ∧ continuous-on U f )
else (open U ∧ (∀n < k. (Nth-derivative n f ) differentiable-on U

∧ continuous-on U (Nth-derivative (Suc n) f ))))

lemma C0-on-def :
C-k-on 0 f U ←→ (open U ∧ continuous-on U f )
by (simp add: C-k-on-def )

lemma C1-cont-diff :
assumes C-k-on 1 f U
shows f differentiable-on U ∧ continuous-on U (deriv f ) ∧

(∀ y ∈ U . (f has-real-derivative (deriv f ) y) (at y))
using C-k-on-def DERIV-deriv-iff-real-differentiable assms at-within-open differ-

entiable-on-def by fastforce

lemma C2-cont-diff :
fixes f :: real ⇒ real and U :: real set
assumes C-k-on 2 f U
shows f differentiable-on U ∧ continuous-on U (deriv f ) ∧

(∀ y ∈ U . (f has-real-derivative (deriv f ) y) (at y)) ∧
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deriv f differentiable-on U ∧ continuous-on U (deriv (deriv f )) ∧
(∀ y ∈ U . (deriv f has-real-derivative (deriv (deriv f )) y) (at y))

by (smt (verit, best) C1-cont-diff C-k-on-def Nth-derivative.simps(1 ,2 ) One-nat-def
assms less-2-cases-iff less-numeral-extra(1 ) nat-1-add-1 order .asym pos-add-strict)

lemma C2-on-open-U-def2 :
fixes f :: real ⇒ real
assumes openU : open U

and diff-f : f differentiable-on U
and diff-df : deriv f differentiable-on U
and cont-d2f : continuous-on U (deriv (deriv f ))

shows C-k-on 2 f U
by (simp add: C-k-on-def cont-d2f diff-df diff-f differentiable-imp-continuous-on

less-2-cases-iff openU )

lemma C-k-on-subset:
assumes C-k-on k f U
assumes open-subset: open S ∧ S ⊂ U
shows C-k-on k f S
using assms
by (smt (verit) C-k-on-def continuous-on-subset differentiable-on-eq-differentiable-at

dual-order .strict-implies-order subset-eq)

definition smooth-on :: (real ⇒ real) ⇒ real set ⇒ bool where
smooth-on f U ≡ ∀ k. C-k-on k f U

end
theory Sigmoid-Definition
imports HOL−Analysis.Analysis HOL−Combinatorics.Stirling Limits-Higher-Order-Derivatives

begin

2 Definition and Analytical Properties
definition sigmoid :: real ⇒ real where

sigmoid x = exp x / (1 + exp x)

lemma sigmoid-alt-def : sigmoid x = inverse (1 + exp(−x))
proof −

have sigmoid x = (exp(x) ∗ exp(−x)) / ((1 + exp(x))∗ exp(−x))
unfolding sigmoid-def by simp

also have ... = 1 / (1∗exp(−x) + exp(x)∗exp(−x))
by (simp add: distrib-right exp-minus-inverse)

also have ... = inverse (exp(−x) + 1 )
by (simp add: divide-inverse-commute exp-minus)

finally show ?thesis
by simp

qed

8



2.1 Range, Monotonicity, and Symmetry
Bounds
lemma sigmoid-pos: sigmoid x > 0

by (smt (verit) divide-le-0-1-iff exp-gt-zero inverse-eq-divide sigmoid-alt-def )

Prove that σ(x) < 1 for all x.
lemma sigmoid-less-1 : sigmoid x < 1

by (smt (verit) le-divide-eq-1-pos not-exp-le-zero sigmoid-def )

The sigmoid function σ(x) satisfies

0 < σ(x) < 1 for all x ∈ R.

corollary sigmoid-range: 0 < sigmoid x ∧ sigmoid x < 1
by (simp add: sigmoid-less-1 sigmoid-pos)

Symmetry around the origin: The sigmoid function σ satisfies

σ(−x) = 1− σ(x) for all x ∈ R,

reflecting that negative inputs shift the output towards 0, while positive
inputs shift it towards 1.
lemma sigmoid-symmetry: sigmoid (−x) = 1 − sigmoid x

by (smt (verit, ccfv-SIG) add-divide-distrib divide-self-if
exp-ge-zero inverse-eq-divide sigmoid-alt-def sigmoid-def )

corollary sigmoid(x) + sigmoid(−x) = 1
by (simp add: sigmoid-symmetry)

The sigmoid function is strictly increasing.
lemma sigmoid-strictly-increasing: x1 < x2 =⇒ sigmoid x1 < sigmoid x2

by (unfold sigmoid-alt-def ,
smt (verit) add-strict-left-mono divide-eq-0-iff exp-gt-zero exp-less-cancel-iff

inverse-less-iff-less le-divide-eq-1-pos neg-0-le-iff-le neg-le-iff-le order-less-trans
real-add-le-0-iff )

lemma sigmoid-at-zero:
sigmoid 0 = 1/2
by (simp add: sigmoid-def )

lemma sigmoid-left-dom-range:
assumes x < 0
shows sigmoid x < 1/2
by (metis assms sigmoid-at-zero sigmoid-strictly-increasing)

lemma sigmoid-right-dom-range:
assumes x > 0
shows sigmoid x > 1/2
by (metis assms sigmoid-at-zero sigmoid-strictly-increasing)
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2.2 Differentiability and Derivative Identities
Derivative: The derivative of the sigmoid function can be expressed in terms
of itself:

σ′(x) = σ(x) (1− σ(x)).

This identity is central to backpropagation for weight updates in neural
networks, since it shows the derivative depends only on σ(x), simplifying
optimisation computations.
lemma uminus-derive-minus-one: (uminus has-derivative (∗) (−1 :: real)) (at a
within A)

by (rule has-derivative-eq-rhs, (rule derivative-intros)+, fastforce)

lemma sigmoid-differentiable:
(λx. sigmoid x) differentiable-on UNIV

proof −
have ∀ x. sigmoid differentiable (at x)
proof

fix x :: real
have num-diff : (λx. exp x) differentiable (at x)
by (simp add: field-differentiable-imp-differentiable field-differentiable-within-exp)
have denom-diff : (λx. 1 + exp x) differentiable (at x)

by (simp add: num-diff )
hence (λx. exp x / (1 + exp x)) differentiable (at x)
by (metis add-le-same-cancel2 num-diff differentiable-divide exp-ge-zero not-one-le-zero)

thus sigmoid differentiable (at x)
unfolding sigmoid-def by simp

qed
thus ?thesis

by (simp add: differentiable-on-def )
qed

lemma sigmoid-differentiable ′:
sigmoid field-differentiable at x
by (meson UNIV-I differentiable-on-def field-differentiable-def real-differentiableE

sigmoid-differentiable)

lemma sigmoid-derivative:
shows deriv sigmoid x = sigmoid x ∗ (1 − sigmoid x)
unfolding sigmoid-def

proof −
from field-differentiable-within-exp
have deriv (λx. exp x /(1 + exp x)) x = (deriv (λx. exp x) x ∗ (λx. 1 + exp x)

x − (λx. exp x) x ∗ deriv (λx. 1 + exp x) x) / ((λx. 1 + exp x) x)2
by(rule deriv-divide,

simp add: Derivative.field-differentiable-add field-differentiable-within-exp,
smt (verit, ccfv-threshold) exp-gt-zero)

also have ... = ((exp x) ∗ (1 + exp x) −(exp x)∗ (deriv (λw. ((λv. 1 )w + (λ u.
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exp u)w)) x)) / (1 + exp x)2
by (simp add: DERIV-imp-deriv)

also have ... = ((exp x) ∗ (1 + exp x) −(exp x) ∗ (deriv (λv. 1 ) x + deriv (λ
u. exp u) x)) / (1 + exp x)2

by (subst deriv-add, simp, simp add: field-differentiable-within-exp, auto)
also have ... = ((exp x) ∗ (1 + exp x) −(exp x) ∗ (exp x)) / (1 + exp x)2

by (simp add: DERIV-imp-deriv)
also have ... = (exp x + (exp x)2 −(exp x)2) / (1 + exp x)2

by (simp add: ring-class.ring-distribs(1 ))
also have ... = (exp x / (1 + exp x))∗(1 / (1 + exp x))

by (simp add: power2-eq-square)
also have ... = exp x / (1 + exp x)∗(1 − exp x / (1 + exp x))

by (metis add.inverse-inverse inverse-eq-divide sigmoid-alt-def sigmoid-def sig-
moid-symmetry)

finally show deriv (λx. exp x / (1 + exp x)) x = exp x / (1 + exp x) ∗ (1 −
exp x / (1 + exp x)).
qed

lemma sigmoid-derivative ′: (sigmoid has-real-derivative (sigmoid x ∗ (1 − sigmoid
x))) (at x)

by (metis field-differentiable-derivI sigmoid-derivative sigmoid-differentiable ′)

lemma deriv-one-minus-sigmoid:
deriv (λy. 1 − sigmoid y) x = sigmoid x ∗ (sigmoid x − 1 )
apply (subst deriv-diff )

apply simp
apply (metis UNIV-I differentiable-on-def real-differentiableE sigmoid-differentiable

field-differentiable-def )
apply (metis deriv-const diff-0 minus-diff-eq mult-minus-right sigmoid-derivative)
done

2.3 Logit, Softmax, and the Tanh Connection
Logit (Inverse of Sigmoid): The inverse of the sigmoid function, often called
the logit function, is defined by

σ−1(y) = ln
( y
1−y

)
, 0 < y < 1.

This transformation converts a probability y ∈ (0, 1) (the output of the
sigmoid) back into the corresponding log-odds.
definition logit :: real ⇒ real where

logit p = (if 0 < p ∧ p < 1 then ln (p / (1 − p)) else undefined)

lemma sigmoid-logit-comp:
0 < p ∧ p < 1 =⇒ sigmoid (logit p) = p

proof −
assume 0 < p ∧ p < 1
then show sigmoid (logit p ) = p
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by (smt (verit, del-insts) divide-pos-pos exp-ln-iff logit-def real-shrink-Galois
sigmoid-def )
qed

lemma logit-sigmoid-comp:
logit (sigmoid p ) = p
by (smt (verit, best) sigmoid-less-1 sigmoid-logit-comp sigmoid-pos sigmoid-strictly-increasing)

definition softmax :: real^ ′k ⇒ real^ ′k where
softmax z = (χ i. exp (z $ i) / (

∑
j∈UNIV . exp (z $ j)))

lemma tanh-sigmoid-relationship:
2 ∗ sigmoid (2 ∗ x) − 1 = tanh x

proof −
have 2 ∗ sigmoid (2 ∗ x) − 1 = 2 ∗ (1 / (1 + exp (− (2 ∗ x)))) − 1

by (simp add: inverse-eq-divide sigmoid-alt-def )
also have ... = (2 / (1 + exp (− (2 ∗ x)))) − 1

by simp
also have ... = (2 − (1 + exp (− (2 ∗ x)))) / (1 + exp (− (2 ∗ x)))

by (smt (verit, ccfv-SIG) diff-divide-distrib div-self exp-gt-zero)
also have ... = (exp x ∗ (exp x − exp (−x))) / (exp x ∗ (exp x + exp (−x)))
by (smt (z3 ) exp-not-eq-zero mult-divide-mult-cancel-left-if tanh-altdef tanh-real-altdef )

also have ... = (exp x − exp (−x)) / (exp x + exp (−x))
using exp-gt-zero by simp

also have ... = tanh x
by (simp add: tanh-altdef )

finally show ?thesis.
qed

end

3 Derivative Identities and Smoothness
theory Derivative-Identities-Smoothness

imports Sigmoid-Definition
begin

Second derivative: The second derivative of the sigmoid function σ can
be written as

σ′′(x) = σ(x) (1− σ(x)) (1− 2σ(x)).

This identity is useful when analysing the curvature of σ, particularly in
optimisation problems.
lemma sigmoid-second-derivative:

shows Nth-derivative 2 sigmoid x = sigmoid x ∗ (1 − sigmoid x) ∗ (1 − 2 ∗
sigmoid x)
proof −

have Nth-derivative 2 sigmoid x = deriv ((λw. deriv sigmoid w)) x
by (simp add: second-derivative-alt-def )
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also have ... = deriv ((λw. (λa. sigmoid a) w ∗ (((λu.1 ) − (λv. sigmoid v)) w
))) x

by (simp add: sigmoid-derivative)
also have ... = sigmoid x ∗ (deriv ((λu.1 ) − (λv. sigmoid v)) x) + deriv (λa.

sigmoid a) x ∗ ((λu.1 ) − (λv. sigmoid v)) x
by (rule deriv-mult,

simp add: sigmoid-differentiable ′,
simp add: Derivative.field-differentiable-diff sigmoid-differentiable ′)

also have ... = sigmoid x ∗ (deriv (λy. 1 − sigmoid y) x) + deriv (λa. sigmoid
a) x ∗ ((λu.1 ) − (λv. sigmoid v)) x

by (meson minus-apply)
also have ... = sigmoid x ∗ (deriv (λy. 1 − sigmoid y) x) + deriv (λa. sigmoid

a) x ∗ (λy. 1 − sigmoid y) x
by simp

also have ... = sigmoid x ∗ sigmoid x ∗ (sigmoid x −1 ) + sigmoid x ∗ (1 −
sigmoid x) ∗ (1 − sigmoid x)

by (simp add: deriv-one-minus-sigmoid sigmoid-derivative)
also have ... = sigmoid x ∗ (1 − sigmoid x) ∗ (1 − 2 ∗ sigmoid x)

by (simp add: right-diff-distrib)
finally show ?thesis.

qed

Here we present the proof of the general nth derivative of the sigmoid
function as given in the paper On the Derivatives of the Sigmoid by Ali
A. Minai and Ronald D. Williams [4]. Their original derivation is natural and
intuitive, guiding the reader step by step to the closed-form expression if one
did not know it in advance. By contrast, our Isabelle formalisation assumes
the final formula up front and then proves it directly by induction. Crucially,
we make essential use of Stirling numbers of the second kindas formalised in
the session Basic combinatorics in Isabelle/HOL (and the Archive of Formal
Proofs) by Amine Chaieb, Florian Haftmann, Lukas Bulwahn, and Manuel
Eberl.
theorem nth-derivative-sigmoid:∧

x. Nth-derivative n sigmoid x =
(
∑

k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k ∗ (sigmoid
x)^k)
proof (induct n)

case 0
show ?case

by simp
next

fix n x
assume induction-hypothesis:∧

x. Nth-derivative n sigmoid x =
(
∑

k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k ∗ (sigmoid
x)^k)

show Nth-derivative (Suc n) sigmoid x =
(
∑

k = 1 ..(Suc n)+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling ((Suc n)+1 )
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k ∗ (sigmoid x)^k)
proof −

have sigmoid-pwr-rule:
∧

k. deriv (λv. (sigmoid v)^k) x = k ∗ (sigmoid x)^(k
− 1 ) ∗ deriv (λu. sigmoid u) x

by (subst deriv-pow, simp add: sigmoid-differentiable ′, simp)
have index-shift: (

∑
j = 1 ..n+1 . ((−1 )^(j+1+1 ) ∗ fact (j − 1 ) ∗ Stirling

(n+1 ) j ∗ j ∗ ((sigmoid x)^(j+1 )))) =
(
∑

j = 2 ..n+2 . (−1 )^(j+1 ) ∗ fact (j − 2 ) ∗ Stirling (n+1 )
(j − 1 ) ∗ (j − 1 ) ∗ (sigmoid x)^j)

by (rule sum.reindex-bij-witness[of - λj. j −1 λj. j + 1 ], simp-all, auto)

have simplified-terms: (
∑

k = 1 ..n+1 . ((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling
(n+1 ) k ∗ k ∗ (sigmoid x)^k) +

((−1 )^(k+1 ) ∗ fact (k − 2 ) ∗ Stirling (n+1 )
(k−1 ) ∗ (k−1 ) ∗ (sigmoid x)^k)) =

(
∑

k = 1 ..n+1 . ((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling
(n+2 ) k ∗ (sigmoid x)^k))

proof −
have equal-terms: ∀ (k::nat) ≥ 1 .
((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k ∗ k ∗ (sigmoid x)^k) +
((−1 )^(k+1 ) ∗ fact (k − 2 ) ∗ Stirling (n+1 ) (k−1 ) ∗ (k−1 ) ∗ (sigmoid

x)^k) =
((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+2 ) k ∗ (sigmoid x)^k)

proof(clarify)
fix k::nat
assume 1 ≤ k

have real-of-int ((− 1 ) ^ (k + 1 ) ∗ fact (k − 1 ) ∗ int (Stirling (n + 1 ) k)
∗ int k) ∗ sigmoid x ^ k +

real-of-int ((− 1 ) ^ (k + 1 ) ∗ fact (k − 2 ) ∗ int (Stirling (n + 1 ) (k
− 1 )) ∗ int (k − 1 )) ∗ sigmoid x ^ k =

real-of-int (((− 1 ) ^ (k + 1 ) ∗ ((fact (k − 1 ) ∗ int (Stirling (n + 1 )
k) ∗ int k) +

(fact (k − 2 ) ∗ int (Stirling (n + 1 ) (k − 1 )) ∗ int
(k − 1 ))))) ∗ sigmoid x ^ k

by (metis (mono-tags, opaque-lifting) ab-semigroup-mult-class.mult-ac(1 )
distrib-left mult.commute of-int-add)

also have ... = real-of-int (((− 1 ) ^ (k + 1 ) ∗ ((fact (k − 1 ) ∗ int (Stirling
(n + 1 ) k) ∗ int k) +

((int (k − 1 ) ∗ fact (k − 2 )) ∗ int (Stirling
(n + 1 ) (k − 1 )))))) ∗ sigmoid x ^ k

by (simp add: ring-class.ring-distribs(1 ))
also have ... = real-of-int (((− 1 ) ^ (k + 1 ) ∗ ((fact (k − 1 ) ∗ int (Stirling

(n + 1 ) k) ∗ int k) +
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(fact (k − 1 ) ∗ int (Stirling (n + 1 ) (k −
1 )))))) ∗ sigmoid x ^ k

by (smt (verit, ccfv-threshold) Stirling.simps(3 ) add.commute diff-diff-left
fact-num-eq-if mult-eq-0-iff of-nat-eq-0-iff one-add-one plus-1-eq-Suc)

also have ... = real-of-int (((− 1 ) ^ (k + 1 ) ∗ fact (k − 1 )∗
( Stirling (n + 1 ) k ∗ k + Stirling (n + 1 ) (k − 1 ) )

)) ∗ sigmoid x ^ k
by (simp add: distrib-left)

also have ... = real-of-int ((− 1 ) ^ (k + 1 ) ∗ fact (k − 1 ) ∗ int (Stirling
(n + 2 ) k)) ∗ sigmoid x ^ k

by (smt (z3 ) Stirling.simps(4 ) Suc-eq-plus1 ‹1 ≤ k› add.commute
le-add-diff-inverse mult.commute nat-1-add-1 plus-nat.simps(2 ))

finally show real-of-int ((− 1 ) ^ (k + 1 ) ∗ fact (k − 1 ) ∗ int (Stirling (n
+ 1 ) k) ∗ int k) ∗ sigmoid x ^ k +

real-of-int ((− 1 ) ^ (k + 1 ) ∗ fact (k − 2 ) ∗ int (Stirling (n + 1 ) (k −
1 )) ∗ int (k − 1 )) ∗ sigmoid x ^ k =

real-of-int ((− 1 ) ^ (k + 1 ) ∗ fact (k − 1 ) ∗ int (Stirling (n + 2 ) k)) ∗
sigmoid x ^ k.

qed
from equal-terms show ?thesis

by simp
qed

have Nth-derivative (Suc n) sigmoid x = deriv (λ w. Nth-derivative n sigmoid
w) x

by simp
also have ... = deriv (λ w.

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling

(n+1 ) k ∗ (sigmoid w)^k) x
using induction-hypothesis by presburger

also have ... = (
∑

k = 1 ..n+1 . deriv (λw. (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗
Stirling (n+1 ) k ∗ (sigmoid w)^k) x)

by (rule deriv-sum, metis(mono-tags) DERIV-chain2 DERIV-cmult-Id field-differentiable-def
field-differentiable-power sigmoid-differentiable ′)

also have ... = (
∑

k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )
k ∗ deriv (λw. (sigmoid w)^k) x)

by(subst deriv-cmult, auto, simp add: field-differentiable-power sigmoid-differentiable ′)
also have ... = (

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )

k ∗ (k ∗ (sigmoid x)^(k − 1 ) ∗ deriv (λu. sigmoid u) x))
using sigmoid-pwr-rule by presburger

also have ... = (
∑

k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )
k ∗ (k ∗ (sigmoid x)^(k − 1 ) ∗ (sigmoid x ∗ (1 − sigmoid x))))

using sigmoid-derivative by presburger
also have ... = (

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )

k ∗ (k ∗ ((sigmoid x)^(k − 1 ) ∗ (sigmoid x)^1 ) ∗ (1 − sigmoid x)))
by (simp add: mult.assoc)

also have ... = (
∑

k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )
k ∗ (k ∗ (sigmoid x)^(k−1+1 ) ∗ (1 − sigmoid x)))
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by (metis (no-types, lifting) power-add)
also have ... = (

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )

k ∗ (k ∗ (sigmoid x)^k ∗ (1 −sigmoid x)))
by fastforce

also have ... = (
∑

k = 1 ..n+1 . ( (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling
(n+1 ) k ∗ (k ∗ (sigmoid x)^k)) ∗ (1 + −sigmoid x))

by (simp add: ab-semigroup-mult-class.mult-ac(1 ))
also have ... = (

∑
k = 1 ..n+1 . ( (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling

(n+1 ) k ∗ (k ∗ (sigmoid x)^k)) ∗1 +
(( (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k ∗

(k ∗ (sigmoid x)^k)) ∗ (−sigmoid x)))
by (meson vector-space-over-itself .scale-right-distrib)

also have ... = (
∑

k = 1 ..n+1 . ( (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling
(n+1 ) k ∗ (k ∗ (sigmoid x)^k)) +

( (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k ∗
(k ∗ (sigmoid x)^k)) ∗ (−sigmoid x))

by simp
also have ... = (

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )

k ∗ (k ∗ (sigmoid x)^k)) +
(
∑

k = 1 ..n+1 . ((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k
∗ (k ∗ (sigmoid x)^k)) ∗ (−sigmoid x))

by (metis (no-types) sum.distrib)
also have ... = (

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )

k ∗ (k ∗ (sigmoid x)^k)) +
(
∑

k = 1 ..n+1 . ((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k
∗ k ∗ ((sigmoid x)^k ∗ (−sigmoid x))))

by (simp add: mult.commute mult.left-commute)
also have ... = (

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )

k ∗ (k ∗ (sigmoid x)^k)) +
(
∑

j = 1 ..n+1 . ((−1 )^(j+1+1 ) ∗ fact (j − 1 ) ∗ Stirling (n+1 )
j ∗ j ∗ ((sigmoid x)^(j+1 ))))

by (simp add: mult.commute)
also have ... = (

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )

k ∗ (k ∗ (sigmoid x)^k)) +
(
∑

j = 2 ..n+2 . (−1 )^(j+1 ) ∗ fact (j − 2 ) ∗ Stirling (n+1 ) (j
− 1 ) ∗ (j − 1 ) ∗ (sigmoid x)^j)

using index-shift by presburger
also have ... = (

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )

k ∗ k ∗ (sigmoid x)^k) +
0 +
(
∑

j = 2 ..n+2 . (−1 )^(j+1 ) ∗ fact (j − 2 ) ∗ Stirling (n+1 ) (j
− 1 ) ∗ (j − 1 ) ∗ (sigmoid x)^j)

by (smt (verit, ccfv-SIG) ab-semigroup-mult-class.mult-ac(1 ) of-int-mult
of-int-of-nat-eq sum.cong)

also have ... = (
∑

k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )
k ∗ k ∗ (sigmoid x)^k) +

((−1 )^(1+1 ) ∗ fact (1 − 2 ) ∗ Stirling (n+1 ) (1 −
1 ) ∗ (1 − 1 ) ∗ (sigmoid x)^1 ) +

(
∑

k = 2 ..n+2 . (−1 )^(k+1 ) ∗ fact (k − 2 ) ∗ Stirling (n+1 ) (k
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− 1 ) ∗ (k −1 ) ∗ (sigmoid x)^k )
by simp

also have ... = (
∑

k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )
k ∗ k ∗ (sigmoid x)^k) +

(
∑

k = 1 ..n+2 . (−1 )^(k+1 ) ∗ fact (k − 2 ) ∗ Stirling (n+1 )
(k−1 ) ∗ (k−1 ) ∗ (sigmoid x)^k)

by (smt (verit) Suc-eq-plus1 Suc-leI add-Suc-shift add-cancel-left-left can-
cel-comm-monoid-add-class.diff-cancel nat-1-add-1 of-nat-0 sum.atLeast-Suc-atMost
zero-less-Suc)

also have ... = (
∑

k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )
k ∗ k ∗ (sigmoid x)^k) +

(
∑

k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 2 ) ∗ Stirling (n+1 )
(k−1 ) ∗ (k−1 ) ∗ (sigmoid x)^k) +

((−1 )^((n+2 )+1 ) ∗ fact ((n+2 ) − 2 ) ∗ Stirling (n+1 ) ((n+2 )−1 ) ∗
((n+2 )−1 ) ∗ (sigmoid x)^(n+2 ))

by simp
also have ... = (

∑
k = 1 ..n+1 . ((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 )

k ∗ k ∗ (sigmoid x)^k) +
((−1 )^(k+1 ) ∗ fact (k − 2 ) ∗ Stirling (n+1 ) (k−1 )

∗ (k−1 ) ∗ (sigmoid x)^k)) +
((−1 )^((n+2 )+1 ) ∗ fact ((n+2 ) − 2 ) ∗ Stirling (n+1 ) ((n+2 )−1 )

∗ ((n+2 )−1 ) ∗ (sigmoid x)^(n+2 ))
by (metis (no-types) sum.distrib)

also have ... = (
∑

k = 1 ..n+1 . ((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+2 )
k ∗ (sigmoid x)^k)) +

((−1 )^((n+2 )+1 ) ∗ fact ((n+2 ) − 2 ) ∗ Stirling
(n+1 ) ((n+2 )−1 ) ∗ ((n+2 )−1 ) ∗ (sigmoid x)^(n+2 ))

using simplified-terms by presburger
also have ... = (

∑
k = 1 ..n+1 . ((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling ((Suc

n) + 1 ) k ∗ (sigmoid x)^k)) +
(
∑

k = Suc n + 1 ..Suc n + 1 .((−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling ((Suc
n) + 1 ) k ∗ (sigmoid x)^(k)))

by(subst atLeastAtMost-singleton, simp)
also have ... = (

∑
k = 1 ..(Suc n)+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling

((Suc n)+1 ) k ∗ (sigmoid x)^k)
by (subst sum.cong[where B={1 ..n + 1}, where h = λk. ((−1 )^(k+1 ) ∗

fact (k − 1 ) ∗ Stirling ((Suc n) + 1 ) k ∗ (sigmoid x)^(k))], simp-all)
finally show ?thesis.

qed
qed

corollary nth-derivative-sigmoid-differentiable:
Nth-derivative n sigmoid differentiable (at x)

proof −
have (λx.

∑
k = 1 ..n+1 . (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k ∗

(sigmoid x)^k)
differentiable (at x)

proof −
have differentiable-terms:

∧
k. 1 ≤ k ∧ k ≤ n+1 =⇒
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(λx. (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k ∗ (sigmoid x)^k) differ-
entiable (at x)

proof(clarify)
fix k ::nat
assume 1 ≤ k
assume k ≤ n+1
show (λx. (−1 )^(k+1 ) ∗ fact (k − 1 ) ∗ Stirling (n+1 ) k ∗ (sigmoid x)^k)

differentiable (at x)
by (simp add: field-differentiable-imp-differentiable sigmoid-differentiable ′)

qed
then show ?thesis

by(subst differentiable-sum,simp+)
qed
then show ?thesis

using nth-derivative-sigmoid by presburger
qed

corollary next-deriviative-sigmoid: (Nth-derivative n sigmoid has-real-derivative
Nth-derivative (Suc n) sigmoid x) (at x)
by (simp add: DERIV-deriv-iff-real-differentiable nth-derivative-sigmoid-differentiable)

corollary deriv-sigmoid-has-deriv: (deriv sigmoid has-real-derivative deriv (deriv
sigmoid) x) (at x)
proof −

have ∀ f . Nth-derivative (Suc 0 ) f = deriv f
using Nth-derivative.simps(1 ,2 ) by presburger

then show ?thesis
by (metis (no-types) DERIV-deriv-iff-real-differentiable nth-derivative-sigmoid-differentiable)

qed

corollary sigmoid-second-derivative ′:
(deriv sigmoid has-real-derivative (sigmoid x ∗ (1 − sigmoid x) ∗ (1 − 2 ∗ sigmoid

x))) (at x)
using deriv-sigmoid-has-deriv second-derivative-alt-def sigmoid-second-derivative

by force

corollary smooth-sigmoid:
smooth-on sigmoid UNIV
unfolding smooth-on-def
by (meson C-k-on-def differentiable-imp-continuous-on differentiable-on-def nth-derivative-sigmoid-differentiable

open-UNIV sigmoid-differentiable)

lemma tendsto-exp-neg-at-infinity: ((λ(x :: real). exp (−x)) −−−→ 0 ) at-top
by real-asymp

end
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4 Asymptotic and Qualitative Properties
theory Asymptotic-Qualitative-Properties

imports Derivative-Identities-Smoothness
begin

4.1 Limits at Infinity of Sigmoid and its Derivative
— Asymptotic Behaviour — We have

lim
x→+∞

σ(x) = 1, lim
x→−∞

σ(x) = 0.

lemma lim-sigmoid-infinity: ((λx. sigmoid x) −−−→ 1 ) at-top
unfolding sigmoid-def by real-asymp

lemma lim-sigmoid-minus-infinity: (sigmoid −−−→ 0 ) at-bot
unfolding sigmoid-def by real-asymp

lemma sig-deriv-lim-at-top: (deriv sigmoid −−−→ 0 ) at-top
proof (subst tendsto-at-top-epsilon-def , clarify)

fix ε :: real
assume ε-pos: 0 < ε

Using the fact that σ(x)→ 1 as x→ +∞.
obtain N where N-def : ∀ x ≥ N . |sigmoid x − 1 | < ε / 2

using lim-sigmoid-infinity[unfolded tendsto-at-top-epsilon-def ] ε-pos
by (metis half-gt-zero)

have deriv-bound: ∀ x ≥ N . |deriv sigmoid x| ≤ |sigmoid x − 1 |
proof (clarify)

fix x
assume x ≥ N
hence |deriv sigmoid x| = |sigmoid x − 1 + 1 | ∗ |1 − sigmoid x|

by (simp add: abs-mult sigmoid-derivative)

also have ... ≤ |sigmoid x − 1 |
by (smt (verit) mult-cancel-right1 mult-right-mono sigmoid-range)

finally show |deriv sigmoid x| ≤ |sigmoid x − 1 |.
qed

have ∀ x ≥ N . |deriv sigmoid x| < ε
proof (clarify)

fix x
assume x ≥ N
hence |deriv sigmoid x| ≤ |sigmoid x − 1 |

using deriv-bound by simp
also have ... < ε / 2

using ‹x ≥ N › N-def by simp
also have ... < ε
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using ε-pos by simp
finally show |deriv sigmoid x| < ε .

qed

then show ∃N ::real. ∀ x≥N . |deriv sigmoid x − (0 ::real)| < ε
by (metis diff-zero)

qed

lemma sig-deriv-lim-at-bot: (deriv sigmoid −−−→ 0 ) at-bot
proof (subst tendsto-at-bot-epsilon-def , clarify)

fix ε :: real
assume ε-pos: 0 < ε

Using the fact that σ(x)→ 0 as x→ −∞.
obtain N where N-def : ∀ x ≤ N . |sigmoid x − 0 | < ε / 2

using lim-sigmoid-minus-infinity[unfolded tendsto-at-bot-epsilon-def ] ε-pos
by (meson half-gt-zero)

have deriv-bound: ∀ x ≤ N . |deriv sigmoid x| ≤ |sigmoid x − 0 |
proof (clarify)

fix x
assume x ≤ N
hence |deriv sigmoid x| = |sigmoid x − 0 + 0 | ∗ |1 − sigmoid x|

by (simp add: abs-mult sigmoid-derivative)
also have ... ≤ |sigmoid x − 0 |

by (smt (verit, del-insts) mult-cancel-left2 mult-left-mono sigmoid-range)
finally show |deriv sigmoid x| ≤ |sigmoid x − 0 |.

qed

have ∀ x ≤ N . |deriv sigmoid x| < ε
proof (clarify)

fix x
assume x ≤ N
hence |deriv sigmoid x| ≤ |sigmoid x − 0 |

using deriv-bound by simp
also have ... < ε / 2

using ‹x ≤ N › N-def by simp
also have ... < ε

using ε-pos by simp
finally show |deriv sigmoid x| < ε.

qed

then show ∃N ::real. ∀ x ≤ N . |deriv sigmoid x − (0 ::real)| < ε
by (metis diff-zero)

qed

4.2 Curvature and Inflection
lemma second-derivative-sigmoid-positive-on:

assumes x < 0
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shows Nth-derivative 2 sigmoid x > 0
proof −

have 1 − 2 ∗ sigmoid x > 0
using assms sigmoid-left-dom-range by force

then show Nth-derivative 2 sigmoid x > 0
by (simp add: sigmoid-range sigmoid-second-derivative)

qed

lemma second-derivative-sigmoid-negative-on:
assumes x > 0
shows Nth-derivative 2 sigmoid x < 0

proof −
have 1 − 2 ∗ sigmoid x < 0

by (smt (verit) assms sigmoid-strictly-increasing sigmoid-symmetry)
then show Nth-derivative 2 sigmoid x < 0

by (simp add: mult-pos-neg sigmoid-range sigmoid-second-derivative)
qed

lemma sigmoid-inflection-point:
Nth-derivative 2 sigmoid 0 = 0
by (simp add: sigmoid-alt-def sigmoid-second-derivative)

4.3 Monotonicity and Bounds of the First Derivative
lemma sigmoid-positive-derivative:
deriv sigmoid x > 0

by (simp add: sigmoid-derivative sigmoid-range)

lemma sigmoid-deriv-0 :
deriv sigmoid 0 = 1/4
proof −

have f1 : 1 / (1 + 1 ) = sigmoid 0
by (simp add: sigmoid-def )

then have f2 : ∀ r . sigmoid 0 ∗ (r + r) = r
by simp

then have f3 : ∀n. sigmoid 0 ∗ numeral (num.Bit0 n) = numeral n
by (metis (no-types) numeral-Bit0 )

have f4 : ∀ r . sigmoid r ∗ sigmoid (− r) = deriv sigmoid r
using sigmoid-derivative sigmoid-symmetry by presburger

have sigmoid 0 = 0 −→ deriv sigmoid 0 = 1 / 4
using f1 by force

then show ?thesis
using f4 f3 f2 by (metis (no-types) add.inverse-neutral divide-divide-eq-right

nonzero-mult-div-cancel-left one-add-one zero-neq-numeral)
qed

lemma deriv-sigmoid-increase-on-negatives:
assumes x2 < 0
assumes x1 < x2
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shows deriv sigmoid x1 < deriv sigmoid x2
by(rule DERIV-pos-imp-increasing, simp add: assms(2 ), metis assms(1 ) de-

riv-sigmoid-has-deriv
dual-order .strict-trans linorder-not-le nle-le second-derivative-alt-def sec-

ond-derivative-sigmoid-positive-on)

lemma deriv-sigmoid-decreases-on-positives:
assumes 0 < x1
assumes x1 < x2
shows deriv sigmoid x2 < deriv sigmoid x1
by(rule DERIV-neg-imp-decreasing, simp add: assms(2 ), metis assms(1 ) de-

riv-sigmoid-has-deriv
dual-order .strict-trans linorder-not-le nle-le second-derivative-alt-def sec-

ond-derivative-sigmoid-negative-on)

lemma sigmoid-derivative-upper-bound:
assumes x 6= 0
shows deriv sigmoid x < 1/4

proof(cases x ≤ 0 )
assume x≤0
then have neg-case: x < 0

using assms by linarith
then have deriv sigmoid x < deriv sigmoid 0
proof(rule DERIV-pos-imp-increasing-open)
show

∧
xa::real. x < xa =⇒ xa < 0 =⇒ ∃ y::real. (deriv sigmoid has-real-derivative

y) (at xa) ∧ 0 < y
by (metis (no-types) deriv-sigmoid-has-deriv second-derivative-alt-def sec-

ond-derivative-sigmoid-positive-on)
show continuous-on {x..0 ::real} (deriv sigmoid)
by (meson DERIV-atLeastAtMost-imp-continuous-on deriv-sigmoid-has-deriv)

qed
then show deriv sigmoid x < 1/4

by (simp add: sigmoid-deriv-0 )
next

assume ¬ x ≤ 0
then have 0 < x

by linarith
then have deriv sigmoid x < deriv sigmoid 0
proof(rule DERIV-neg-imp-decreasing-open)
show

∧
xa::real. 0 < xa =⇒ xa < x =⇒ ∃ y::real. (deriv sigmoid has-real-derivative

y) (at xa) ∧ y < 0
by (metis (no-types) deriv-sigmoid-has-deriv second-derivative-alt-def sec-

ond-derivative-sigmoid-negative-on)
show continuous-on {0 ..x::real} (deriv sigmoid)
by (meson DERIV-atLeastAtMost-imp-continuous-on deriv-sigmoid-has-deriv)

qed
then show deriv sigmoid x < 1/4

by (simp add: sigmoid-deriv-0 )
qed
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corollary sigmoid-derivative-range:
0 < deriv sigmoid x ∧ deriv sigmoid x ≤ 1/4
by (smt (verit, best) sigmoid-deriv-0 sigmoid-derivative-upper-bound sigmoid-positive-derivative)

4.4 Sigmoidal and Heaviside Step Functions
definition sigmoidal :: (real ⇒ real) ⇒ bool where

sigmoidal f ≡ (f −−−→ 1 ) at-top ∧ (f −−−→ 0 ) at-bot

lemma sigmoid-is-sigmoidal: sigmoidal sigmoid
unfolding sigmoidal-def
by (simp add: lim-sigmoid-infinity lim-sigmoid-minus-infinity)

definition heaviside :: real ⇒ real where
heaviside x = (if x < 0 then 0 else 1 )

lemma heaviside-right: x ≥ 0 =⇒ heaviside x = 1
by (simp add: heaviside-def )

lemma heaviside-left: x < 0 =⇒ heaviside x = 0
by (simp add: heaviside-def )

lemma heaviside-mono: x < y =⇒ heaviside x ≤ heaviside y
by (simp add: heaviside-def )

lemma heaviside-limit-neg-infinity:
(heaviside −−−→ 0 ) at-bot
by(rule tendsto-eventually, subst eventually-at-bot-dense, meson heaviside-def )

lemma heaviside-limit-pos-infinity:
(heaviside −−−→ 1 ) at-top
by(rule tendsto-eventually, subst eventually-at-top-dense, meson heaviside-def or-

der .asym)

lemma heaviside-is-sigmoidal: sigmoidal heaviside
by (simp add: heaviside-limit-neg-infinity heaviside-limit-pos-infinity sigmoidal-def )

4.5 Uniform Approximation by Sigmoids
lemma sigmoidal-uniform-approximation:

assumes sigmoidal σ
assumes (ε :: real) > 0 and (h :: real) > 0
shows ∃ (ω::real)>0 . ∀w≥ω. ∀ k<length (xs :: real list).

(∀ x. x − xs!k ≥ h −→ |σ (w ∗ (x − xs!k)) − 1 | < ε) ∧
(∀ x. x − xs!k ≤ −h −→ |σ (w ∗ (x − xs!k))| < ε)

proof −
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By the sigmoidal assumption, we extract the limits

lim
x→+∞

σ(x) = 1 (limit at_top) and lim
x→−∞

σ(x) = 0 (limit at_bot).

have lim-at-top: (σ −−−→ 1 ) at-top
using assms(1 ) unfolding sigmoidal-def by simp

then obtain Ntop where Ntop-def : ∀ x ≥ Ntop. |σ x − 1 | < ε
using assms(2 ) tendsto-at-top-epsilon-def by blast

have lim-at-bot: (σ −−−→ 0 ) at-bot
using assms(1 ) unfolding sigmoidal-def by simp

then obtain Nbot where Nbot-def : ∀ x ≤ Nbot. |σ x| < ε
using assms(2 ) tendsto-at-bot-epsilon-def by fastforce

Define ω to control the approximation.
obtain ω where ω-def : ω = max (max 1 (Ntop / h)) (−Nbot / h)

by blast
then have ω-pos: 0 < ω using assms(2 ) by simp

Show that ω satisfies the required property.
show ?thesis
proof (intro exI [where x = ω] allI impI conjI insert ω-pos)

fix w :: real and k :: nat and x :: real
assume w-ge-ω: ω ≤ w
assume k-bound: k < length xs

Case 1: x− xs!k ≥ h.
have w ∗ h ≥ Ntop

using ω-def assms(3 ) pos-divide-le-eq w-ge-ω by auto

then show x − xs!k ≥ h =⇒ |σ (w ∗ (x − xs!k)) − 1 | < ε
using Ntop-def
by (smt (verit) ω-pos mult-less-cancel-left w-ge-ω)

Case 2: x− xs!k ≤ −h.
have −w ∗ h ≤ Nbot

using ω-def assms(3 ) pos-divide-le-eq w-ge-ω
by (smt (verit, ccfv-SIG) mult-minus-left)

then show x − xs!k ≤ −h =⇒ |σ (w ∗ (x − xs!k))| < ε
using Nbot-def
by (smt (verit, best) ω-pos minus-mult-minus mult-less-cancel-left w-ge-ω)

qed
qed

end

5 Universal Approximation Theorem
theory Universal-Approximation
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imports Asymptotic-Qualitative-Properties
begin

In this theory, we formalize the Universal Approximation Theorem (UAT)
for continuous functions on a closed interval [a, b]. The theorem states that
any continuous function f : [a, b] → R can be uniformly approximated by
a finite linear combination of shifted and scaled sigmoidal functions. The
classical result was first proved by Cybenko [3] and later constructively by
Costarelli and Spigler [2], the latter approach forms the basis of our formal-
ization. Their paper is available online at https://link.springer.com/article/
10.1007/s10231-013-0378-y.
lemma uniform-continuity-interval:

fixes f :: real ⇒ real
assumes a < b
assumes continuous-on {a..b} f
assumes ε > 0

shows ∃ δ>0 . (∀ x y. x ∈ {a..b} ∧ y ∈ {a..b} ∧ |x − y| < δ −→ |f x − f y| < ε)
proof −

have uniformly-continuous-on {a..b} f
using assms(1 ,2 ) compact-uniformly-continuous by blast

thus ?thesis
unfolding uniformly-continuous-on-def
by (metis assms(3 ) dist-real-def )

qed

definition bounded-function :: (real ⇒ real) ⇒ bool where
bounded-function f ←→ bdd-above (range (λx. |f x|))

definition unif-part :: real ⇒ real ⇒ nat ⇒ real list where
unif-part a b N =

map (λk. a + (real k −1 ) ∗ ((b − a) / real N )) [0 ..<N+2 ]

value unif-part (0 ::real) 1 4

theorem sigmoidal-approximation-theorem:
assumes sigmoidal-function: sigmoidal σ
assumes bounded-sigmoidal: bounded-function σ
assumes a-lt-b: a < b
assumes contin-f : continuous-on {a..b} f
assumes eps-pos: 0 < ε
defines xs N ≡ unif-part a b N
shows ∃N ::nat. ∃ (w::real) > 0 .(N > 0 ) ∧

(∀ x ∈ {a..b}.
|(
∑

k∈{2 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ(w ∗ (x − xs
N ! k)))

+ f (a) ∗ σ(w ∗ (x − xs N ! 0 )) − f x| < ε)
proof−
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obtain η where η-def : η = ε / ((Sup ((λx. |f x|) ‘ {a..b})) + (2 ∗ (Sup ((λx.
|σ x|) ‘ UNIV ))) + 2 )

by blast

have η-pos: η > 0
unfolding η-def

proof −
have sup-abs-nonneg: Sup ((λx. |f x|) ‘ {a..b}) ≥ 0
proof −

have ∀ x ∈ {a..b}. |f x| ≥ 0
by simp

hence bdd-above ((λx. |f x|) ‘ {a..b})
by (metis a-lt-b bdd-above-Icc contin-f continuous-image-closed-interval

continuous-on-rabs order-less-le)
thus ?thesis

by (meson a-lt-b abs-ge-zero atLeastAtMost-iff cSUP-upper2 order-le-less)
qed

have sup-σ-nonneg: Sup ((λx. |σ x|) ‘ UNIV ) ≥ 0
proof −

have ∀ x ∈ {a..b}. |σ x| ≥ 0
by simp

hence bdd-above ((λx. |σ x|) ‘ UNIV )
using bounded-function-def bounded-sigmoidal by presburger

thus ?thesis
by (meson abs-ge-zero cSUP-upper2 iso-tuple-UNIV-I )

qed

obtain denom where denom-def : denom = (Sup ((λx. |f x|) ‘ {a..b})) + (2 ∗
(Sup ((λx. |σ x|) ‘ UNIV ))) + 2

by blast
have denom-pos: denom > 0
proof −

have two-sup-σ-nonneg: 0 ≤ 2 ∗ (Sup ((λx. |σ x|) ‘ UNIV ))
by(rule mult-nonneg-nonneg, simp, simp add: sup-σ-nonneg)

have 0 ≤ (Sup ((λx. |f x|) ‘ {a..b})) + 2 ∗ (Sup ((λx. |σ x|) ‘ UNIV ))
by(rule add-nonneg-nonneg, smt sup-abs-nonneg, smt two-sup-σ-nonneg)

then have denom ≥ 2 unfolding denom-def
by linarith

thus denom > 0 by linarith
qed
then show 0 < ε / ((SUP x ∈ {a..b}. |f x|) + 2 ∗ (SUP x ∈ UNIV . |σ x|)

+ 2 )
using eps-pos sup-σ-nonneg sup-abs-nonneg by auto

qed

have ∃ δ>0 . ∀ x y. x ∈ {a..b} ∧ y ∈ {a..b} ∧ |x − y| < δ −→ |f x − f y| < η
by(rule uniform-continuity-interval,(simp add: assms(3 ,4 ))+, simp add: η-pos)
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then obtain δ where δ-pos: δ > 0
and δ-prop: ∀ x ∈ {a..b}. ∀ y ∈ {a..b}. |x − y| < δ −→ |f x − f y| < η
by blast

obtain N where N-def : N = (nat (bmax 3 (max (2 ∗ (b − a) / δ) (1 / η))c)
+ 1 )

by simp

have N-defining-properties: N > 2 ∗ (b − a) / δ ∧ N > 3 ∧ N > 1 / η
unfolding N-def

proof −
have max 3 (max (2 ∗ (b − a) / δ) (1 / η)) ≥ 2 ∗ (b − a) / δ ∧

max 3 (max (2 ∗ (b − a) / δ) (1 / η)) ≥ 2 ∧
max 3 (max (2 ∗ (b − a) / δ) (1 / η)) ≥ 1 / η

unfolding max-def by simp
then show 2 ∗ (b − a) / δ < nat bmax 3 (max (2 ∗ (b − a) / δ) (1 / η))c

+ 1 ∧
3 < nat bmax 3 (max (2 ∗ (b − a) / δ) (1 / η))c +

1 ∧
1 / η < nat bmax 3 (max (2 ∗ (b − a) / δ) (1 / η))c + 1

by (smt (verit, best) floor-le-one numeral-Bit1 numeral-less-real-of-nat-iff nu-
meral-plus-numeral of-nat-1 of-nat-add of-nat-nat one-plus-numeral real-of-int-floor-add-one-gt)

qed
then have N-gt-3 : N > 3

by simp
then have N-pos: N > 0

by simp

obtain h where h-def : h = (b−a)/N
by simp

then have h-pos: h > 0
using N-defining-properties a-lt-b by force

have h-lt-δ-half : h < δ / 2
proof −

have N > 2 ∗ (b − a) / δ
using N-defining-properties by force

then have N /2 > (b − a) / δ
by (simp add: mult.commute)

then have (N /2 ) ∗ δ > (b − a)
by (smt (verit, ccfv-SIG) δ-pos divide-less-cancel nonzero-mult-div-cancel-right)
then have (δ /2 ) ∗ N > (b − a)

by (simp add: mult.commute)
then have (δ /2 ) > (b − a) / N
by (smt (verit, ccfv-SIG) δ-pos a-lt-b divide-less-cancel nonzero-mult-div-cancel-right

zero-less-divide-iff )
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then show h < δ / 2
using h-def by blast

qed

have one-over-N-lt-eta: 1 / N < η
proof −
have f1 : real N ≥ max (2 ∗ (b − a) / δ − 1 ) (1 / η)

unfolding N-def by linarith
have real N ≥ 1 / η

unfolding max-def using f1 max.bounded-iff by blast
hence f2 : 1 / real N ≤ η
using η-pos by (smt (verit, ccfv-SIG) divide-divide-eq-right le-divide-eq-1 mult.commute

zero-less-divide-1-iff )
then show 1 / real N < η

using N-defining-properties nle-le by fastforce
qed

have xs-eqs: xs N = map (λk. a + (real k − 1 ) ∗ ((b − a) / N )) [0 ..<N+2 ]
using unif-part-def xs-def by presburger

then have xs-els:
∧

k. k ∈ {0 ..N+1} −→ xs N ! k = a + (real k−1 ) ∗ h
by (metis (no-types, lifting) Suc-1 add-0 add-Suc-right atLeastAtMost-iff diff-zero

h-def linorder-not-le not-less-eq-eq nth-map-upt)

have zeroth-element: xs N !0 = a−h
by (simp add: xs-els)

have first-element: xs N !1 = a
by (simp add: xs-els)

have last-element: xs N !(N+1 ) = b
proof −

have xs N !(N+1 ) = a + N ∗ h
using xs-els by force

then show ?thesis
by (simp add: N-pos h-def )

qed

have difference-of-terms:
∧

j k . j ∈ {1 ..N+1} ∧ k ∈ {1 ..N+1} ∧ j≤ k −→ xs
N ! k − xs N ! j = h∗(real k−j)

proof(clarify)
fix j k
assume j-type: j ∈ {1 ..N + 1}
assume k-type: k ∈ {1 ..N + 1}
assume j-leq-k: j ≤ k
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have j-th-el: xs N ! j = (a + (real j−1 ) ∗ h)
using j-type xs-els by auto

have k-th-el: xs N ! k = (a + (real k−1 ) ∗ h)
using k-type xs-els by auto

then show xs N ! k − xs N ! j = h ∗ (real k − j)
by (smt (verit, del-insts) j-th-el left-diff-distrib ′ mult.commute)

qed
then have difference-of-adj-terms:

∧
k . k ∈ {1 ..N+1} −→ xs N ! k − xs N !

(k−1 ) = h
proof −

fix k :: nat
have k = 1 −→ k ∈ {1 ..N + 1} −→ xs N ! k − xs N ! (k − 1 ) = h

using first-element zeroth-element by auto
then show k ∈ {1 ..N + 1} −→ xs N ! k − xs N ! (k − 1 ) = h

using difference-of-terms le-diff-conv by fastforce
qed
have adj-terms-lt:

∧
k . k ∈ {1 ..N+1} −→ |xs N ! k − xs N ! (k − 1 )| < δ

proof(clarify)
fix k
assume k-type: k ∈ {1 ..N + 1}
then have |xs N ! k − xs N ! (k − 1 )| = h

using difference-of-adj-terms h-pos by auto
also have ... < δ /2

using h-lt-δ-half by auto
also have ... < δ

by (simp add: δ-pos)
finally show |xs N ! k − xs N ! (k − 1 )| < δ.

qed

from difference-of-terms have list-increasing:
∧

j k . j ∈ {1 ..N+1} ∧ k ∈
{1 ..N+1} ∧ j ≤ k −→ xs N ! j ≤ xs N !k

by (smt (verit, ccfv-SIG) h-pos of-nat-eq-iff of-nat-mono zero-less-mult-iff )
have els-in-ab:

∧
k. k ∈ {1 ..N+1} −→ xs N ! k ∈ {a..b}

using first-element last-element list-increasing by force

from sigmoidal-function N-pos h-pos have ∃ω > 0 . ∀w ≥ ω. ∀ k < length (xs
N ).

(∀ x. x − xs N !k ≥ h −→ |σ (w ∗ (x − xs N !k)) − 1 | < 1/N ) ∧
(∀ x. x − xs N !k ≤ −h −→ |σ (w ∗ (x − xs N !k))| < 1/N )

by(subst sigmoidal-uniform-approximation, simp-all)
then obtain ω where ω-pos: ω > 0

and ω-prop: ∀w ≥ ω. ∀ k < length (xs N ).
(∀ x. x − xs N !k ≥ h −→ |σ (w ∗ (x − xs N !k)) − 1 | < 1/N ) ∧
(∀ x. x − xs N !k ≤ −h −→ |σ (w ∗ (x − xs N !k))| < 1/N )
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by blast
then obtain w where w-def : w ≥ ω and w-prop: ∀ k < length (xs N ).

(∀ x. x − xs N !k ≥ h −→ |σ (w ∗ (x − xs N !k)) − 1 | < 1/N ) ∧
(∀ x. x − xs N !k ≤ −h −→ |σ (w ∗ (x − xs N !k))| < 1/N )

and w-pos: w > 0
by auto

obtain G-Nf where G-Nf-def :
G-Nf ≡ (λx.

(
∑

k∈{2 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x − xs N !
k)))

+ f (xs N ! 1 ) ∗ σ (w ∗ (x − xs N ! 0 )))
by blast

show ∃N w. 0 < w ∧ 0 < N ∧ (∀ x∈{a..b}. |(
∑

k = 2 ..N + 1 . (f (xs N ! k) −
f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x − xs N ! k))) + f a ∗ σ (w ∗ (x − xs N ! 0 )) − f
x| < ε)

proof (intro exI [where x=N ] exI [where x=w] conjI allI impI insert w-pos
N-pos xs-def , safe)

fix x::real
assume x-in-ab: x ∈ {a..b}

have ∃ i. i ∈ {1 ..N} ∧ x ∈ {xs N ! i .. xs N ! (i+1 )}
proof −

have intervals-cover : {xs N ! 1 .. xs N ! (N+1 )} ⊆ (
⋃

i∈{1 ..N}. {xs N ! i ..
xs N ! (i+1 )})

proof
fix x::real
assume x-def : x ∈ {xs N ! 1 .. xs N ! (N+1 )}
then have lower-bound: x ≥ xs N ! 1

by simp
from x-def have upper-bound: x ≤ xs N ! (N+1 )

by simp

obtain j where j-def : j = (GREATEST j. xs N ! j ≤ x ∧ j ∈ {1 ..N+1})
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by blast
have nonempty-definition: {j ∈ {1 ..N+1}. xs N ! j ≤ x} 6= {}

using lower-bound by force
then have j-exists:∃ j ∈ {1 ..N+1}. xs N ! j ≤ x

by blast
then have j-bounds: j ∈ {1 ..N+1}

by (smt (verit) GreatestI-nat atLeastAtMost-iff j-def )
have xs-j-leq-x: xs N ! j ≤ x

by (smt (verit, del-insts) GreatestI-ex-nat GreatestI-nat atLeastAtMost-iff
ex-least-nat-le j-def j-exists)

show x ∈ (
⋃

i ∈ {1 ..N}. {xs N ! i..xs N ! (i + 1 )})
proof(cases j = N+1 )

show j = N + 1 =⇒ x ∈ (
⋃

i ∈ {1 ..N}. {xs N ! i..xs N ! (i + 1 )})
using N-pos els-in-ab last-element upper-bound xs-j-leq-x by force

next
assume j-not-SucN :j 6= N + 1
then have j-type: j ∈ {1 ..N}

by (metis Suc-eq-plus1 atLeastAtMost-iff j-bounds le-Suc-eq)
then have Suc-j-type: j + 1 ∈ {2 ..N+1}

by (metis Suc-1 Suc-eq-plus1 atLeastAtMost-iff diff-Suc-Suc diff-is-0-eq)
have equal-sets: {j ∈ {1 ..N+1}. xs N ! j ≤ x} = {j ∈ {1 ..N}. xs N ! j

≤ x}
proof

show {j ∈ {1 ..N}. xs N ! j ≤ x} ⊆ {j ∈ {1 ..N + 1}. xs N ! j ≤ x}
by auto

show {j ∈ {1 ..N + 1}. xs N ! j ≤ x} ⊆ {j ∈ {1 ..N}. xs N ! j ≤ x}
by (safe, metis (no-types, lifting) Greatest-equality Suc-eq-plus1 j-not-SucN

atLeastAtMost-iff j-def le-Suc-eq)
qed

have xs-j1-not-le-x: ¬ (xs N ! (j+1 ) ≤ x)
proof(rule ccontr)

assume BWOC : ¬ ¬ xs N ! (j + 1 ) ≤ x
then have Suc-j-type ′:j+1 ∈ {1 ..N}

using Suc-j-type equal-sets add.commute by auto
from j-def show False

using equal-sets
by (smt (verit, del-insts) BWOC Greatest-le-nat One-nat-def

Suc-eq-plus1 Suc-j-type ′ Suc-n-not-le-n atLeastAtMost-iff mem-Collect-eq)
qed
then have x ∈ {xs N ! j .. xs N ! (j+1 )}

by (simp add: xs-j-leq-x)
then show ?thesis

using j-type by blast
qed

qed
then show ?thesis

using first-element last-element x-in-ab by fastforce
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qed
then obtain i where i-def : i ∈ {1 ..N} ∧ x ∈ {xs N ! i .. xs N ! (i+1 )}

by blast
then have i-ge-1 : i ≥ 1

using atLeastAtMost-iff by blast

have i-leq-N : i ≤ N
using i-def by presburger

then have xs-i: xs N ! i = a + (real i − 1 ) ∗ h
using xs-els by force

have xs-Suc-i: xs N ! (i + 1 ) = a + real i ∗ h
proof −

have (i+1 ) ∈ {0 ..N+1} −→ xs N ! (i+1 ) = a + (real (i+1 ) − 1 ) ∗ h
using xs-els by blast

then show ?thesis
using i-leq-N by fastforce

qed

from i-def have x-lower-bound-aux: x ≥ (xs N ! i)
using atLeastAtMost-iff by blast

then have x-lower-bound: x ≥ a + real (i−1 ) ∗ h
by (metis xs-i i-ge-1 of-nat-1 of-nat-diff )

from i-def have x-upper-bound-aux: xs N ! (i+1 ) ≥ x
using atLeastAtMost-iff by blast

then have x-upper-bound: a + real i ∗ h ≥ x
using xs-Suc-i by fastforce

obtain L where L-def :∧
i. L i = (if i = 1 ∨ i = 2 then

(λx. f (a) + (f (xs N ! 3 ) − f (xs N ! 2 )) ∗ σ (w ∗ (x − xs N ! 3 )) +
(f (xs N ! 2 ) − f (xs N ! 1 )) ∗ σ (w ∗ (x − xs N ! 2 )))

else
(λx. (

∑
k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 )))) + f (a) +

(f (xs N ! i) − f (xs N ! (i−1 ))) ∗ σ (w ∗ (x − xs N ! i)) +
(f (xs N ! (i+1 )) − f (xs N ! i)) ∗ σ (w ∗ (x − xs N ! (i+1 )))))

by force

obtain I-1 where I-1-def :
∧

i.1 ≤ i ∧ i ≤ N −→ I-1 i = (λx. |G-Nf x − L i
x|)

by force

obtain I-2 where I-2-def :
∧

i. 1 ≤ i ∧ i ≤ N −→ I-2 i = (λx. |L i x − f x|)
by force
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have triange-inequality-main:
∧

i x. 1 ≤ i ∧ i ≤ N −→ |G-Nf x − f x| ≤ I-1 i
x + I-2 i x

using I-1-def I-2-def by force

have x-minus-xk-ge-h-on-Left-Half :
∀ k. k ∈ {0 ..i−1} −→ x − xs N ! k ≥ h

proof (clarify)
fix k
assume k-def : k ∈ {0 ..i−1}
then have k-pred-lt-i-pred: real k− 1 < real i−1

using i-ge-1 by fastforce
have x − xs N !k = x − (a + (real k − 1 ) ∗ h)
proof(cases k=0 )

show k = 0 =⇒ x − xs N ! k = x − (a + (real k − 1 ) ∗ h)
by (simp add: zeroth-element)

next
assume k-nonzero: k 6= 0
then have k-def2 : k ∈ {1 ..N+1}

using i-def k-def less-diff-conv2 by auto
then have x − xs N ! k = x − (a + (real k − 1 ) ∗ h)

by (simp add: xs-els)
then show ?thesis

using k-nonzero by force
qed
also have ... ≥ h
proof(cases k=0 )

show k = 0 =⇒ h ≤ x − (a + (real k − 1 ) ∗ h)
using x-in-ab by force

next
assume k-nonzero: k 6= 0
then have k-type: k ∈ {1 ..N}

using i-leq-N k-def by fastforce
have difference-of-terms: (xs N !i) − (a+(real k − 1 )∗h) = ((real i−1 ) −

(real k−1 ))∗h
by (simp add: xs-i left-diff-distrib ′)

then have first-inequality: x − (a + (real k − 1 ) ∗ h) ≥ (xs N !i) − (a+(real
k − 1 )∗h)

using i-def by auto
have second-inequality: (xs N !i) − (a+(real k − 1 )∗h) ≥ h

using difference-of-terms h-pos k-def k-nonzero by force
then show ?thesis

using first-inequality by auto
qed
finally show h ≤ x − xs N ! k.
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qed

have x-minus-xk-le-neg-h-on-Right-Half :
∀ k. k ∈ {i+2 ..N+1} −→ x − xs N ! k ≤ −h

proof (clarify)
fix k
assume k-def : k ∈ {i+2 ..N+1}
then have i-lt-k-pred: i < k−1
by (metis Suc-1 add-Suc-right atLeastAtMost-iff less-diff-conv less-eq-Suc-le)

then have k-nonzero: k 6= 0
by linarith

from i-lt-k-pred have i-minus-k-pred-leq-Minus-One: i − real (k − 1 ) ≤ −1
by simp

have x − xs N !k = x − (a + (real k − 1 ) ∗ h)
proof−

have k-def2 : k ∈ {1 ..N+1}
using i-def k-def less-diff-conv2 by auto

then have x − xs N ! k = x − (a + (real k − 1 ) ∗ h)
using xs-els by force

then show ?thesis
using i-lt-k-pred by force

qed
also have ... ≤ −h
proof −

have x-upper-limit: (xs N !(i+1 )) = (a+(real i)∗h)
using i-def xs-els by fastforce

then have difference-of-terms: (xs N !(i+1 )) − (a+(real k − 1 )∗h) = ((real
i) − (real k−1 ))∗h

by (smt (verit, ccfv-threshold) diff-is-0-eq i-lt-k-pred left-diff-distrib ′

nat-less-real-le nle-le of-nat-1 of-nat-diff of-nat-le-0-iff )
then have first-inequality: x − (a + (real k − 1 ) ∗ h) ≤ (xs N !(i+1 )) −

(a+(real k − 1 )∗h)
using i-def by fastforce

have second-inequality: (xs N !(i+1 )) − (a+(real k − 1 )∗h) ≤ −h
by (metis diff-is-0-eq ′ difference-of-terms h-pos i-lt-k-pred i-minus-k-pred-leq-Minus-One

linorder-not-le mult.left-commute mult.right-neutral mult-minus1-right nle-le not-less-zero
of-nat-1 of-nat-diff ordered-comm-semiring-class.comm-mult-left-mono)

then show ?thesis
by (smt (z3 ) combine-common-factor difference-of-terms first-inequality

x-upper-limit)
qed
finally show x − xs N ! k ≤ −h.

qed

have I1-final-bound: I-1 i x < (1+ (Sup ((λx. |f x|) ‘ {a..b}))) ∗ η
proof −
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have I1-decomp:
I-1 i x ≤ (

∑
k∈{2 ..i−1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x −

xs N ! k)) − 1 |)
+ |f (a)| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 |
+ (

∑
k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x

− xs N ! k))|)
proof (cases i < 3 )

assume i-lt-3 : i < 3
then have i-is-1-or-2 : i = 1 ∨ i = 2

using i-ge-1 by linarith
then have empty-summation:

(
∑

k = 2 ..i − 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x − xs
N ! k)) − 1 |) = 0

by fastforce
have Lix: L i x = f (a) + (f (xs N ! 3 ) − f (xs N ! 2 )) ∗ σ (w ∗ (x − xs N

! 3 )) + (f (xs N ! 2 ) − f (xs N ! 1 )) ∗ σ (w ∗ (x − xs N ! 2 ))
using L-def i-is-1-or-2 by presburger

have I-1 i x = |G-Nf x − L i x|
by (meson I-1-def i-ge-1 i-leq-N )

also have ... = |(
∑

k∈{2 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ
(w ∗ (x − xs N ! k)))

+ f (xs N ! 1 ) ∗ σ (w ∗ (x − xs
N ! 0 ))

− f (a)
− (f (xs N ! 3 ) − f (xs N ! 2 )) ∗ σ (w ∗ (x

− xs N ! 3 ))
− (f (xs N ! 2 ) − f (xs N ! 1 )) ∗ σ (w ∗ (x

− xs N ! 2 ))|
by (simp add: G-Nf-def Lix)

also have ... = |(
∑

k∈{3 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ
(w ∗ (x − xs N ! k)))

+ f (xs N ! 1 ) ∗ σ (w ∗ (x − xs
N ! 0 ))

− f (a)
− (f (xs N ! 3 ) − f (xs N ! 2 )) ∗ σ (w ∗ (x

− xs N ! 3 ))|
proof −

from N-pos have (
∑

k∈{2 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗
σ (w ∗ (x − xs N ! k))) =

(f (xs N ! 2 ) − f (xs N ! 1 )) ∗ σ (w ∗ (x − xs N ! 2 )) +
(
∑

k∈{3 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x −
xs N ! k)))

by(subst sum.atLeast-Suc-atMost, auto)
then show ?thesis

by linarith
qed
also have ... = |(

∑
k∈{4 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ
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(w ∗ (x − xs N ! k)))
+ f (xs N ! 1 ) ∗ σ (w ∗ (x − xs

N ! 0 ))
− f (a)|

proof −
from N-gt-3 have (

∑
k∈{3 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 )))

∗ σ (w ∗ (x − xs N ! k))) =
(f (xs N ! 3 ) − f (xs N ! 2 )) ∗ σ (w ∗ (x − xs N ! 3 )) +

(
∑

k∈{4 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x −
xs N ! k)))

by(subst sum.atLeast-Suc-atMost, simp-all)
then show ?thesis

by linarith
qed
also have ... = |(

∑
k∈{4 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ

(w ∗ (x − xs N ! k)))
+ f (a) ∗ (σ (w ∗ (x − xs N !

0 )) − 1 )|
proof −

have ∀ real1 real2 real3 . (real1 ::real) + real2 ∗ real3 − real2 = real1 +
real2 ∗ (real3 − 1 )

by (simp add: right-diff-distrib ′)
then show ?thesis

using first-element by presburger
qed
also have ... ≤ |(

∑
k∈{4 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ

(w ∗ (x − xs N ! k)))|
+ |f (a) ∗ (σ (w ∗ (x − xs N !

0 )) − 1 )|
by linarith

also have ... ≤ (
∑

k∈{4 ..N+1}. |(f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ
(w ∗ (x − xs N ! k))|)

+ |f (a) ∗ (σ (w ∗ (x − xs N !
0 )) − 1 )|

using add-mono by blast
also have ... = (

∑
k∈{4 ..N+1}. |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗ |σ

(w ∗ (x − xs N ! k))|)
+ |f (a)| ∗ |(σ (w ∗ (x − xs N !

0 )) − 1 )|
by (simp add: abs-mult)

also have ... ≤ (
∑

k∈{i+2 ..N+1}. |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗
|σ (w ∗ (x − xs N ! k))|)

+ |f (a)| ∗ |(σ (w ∗ (x − xs N !
0 )) − 1 )|

proof(cases i=1 )
assume i-is-1 : i = 1
have union: {i+2} ∪ {4 ..N+1} = {i+2 ..N+1}
proof(safe)

show
∧

n. i + 2 ∈ {i+2 ..N + 1}
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using N-gt-3 i-is-1 by presburger
show

∧
n. n ∈ {4 ..N + 1} =⇒ n ∈ {i+2 ..N + 1}

using i-is-1 by auto
show

∧
n. n ∈ {i+2 ..N + 1} =⇒ n /∈ {4 ..N + 1} =⇒ n /∈ {} =⇒ n

= i + 2
using i-is-1 by presburger

qed
have (

∑
k∈{4 ..N+1}. |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗ |σ (w ∗ (x

− xs N ! k))|)
+ |f (a)| ∗ |(σ (w ∗ (x − xs N !

0 )) − 1 )| ≤
(
∑

k∈{i+2}. |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗ |σ (w ∗ (x − xs
N ! k))|)

+
(
∑

k∈{4 ..N+1}. |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗ |σ (w ∗ (x
− xs N ! k))|)

+ |f (a)| ∗ |(σ (w ∗ (x − xs N !
0 )) − 1 )|

by auto
also have ... = (

∑
k∈{i+2 ..N+1}. |(f (xs N ! k) − f (xs N ! (k − 1 )))|

∗ |σ (w ∗ (x − xs N ! k))|)
+ |f (a)| ∗ |(σ (w ∗ (x − xs N !

0 )) − 1 )|
proof −

have (
∑

k∈{i+2}. |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗ |σ (w ∗ (x −
xs N ! k))|) +

(
∑

k∈{4 ..N+1}. |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗ |σ (w ∗ (x
− xs N ! k))|) =

(
∑

k∈({i+2} ∪ {4 ..N+1}). |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗
|σ (w ∗ (x − xs N ! k))|)

by (subst sum.union-disjoint, simp-all, simp add: i-is-1 )
then show ?thesis

using union by presburger
qed
finally show ?thesis.

next
show i 6= 1 =⇒

(
∑

k = 4 ..N + 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x
− xs N ! k))|) + |f a| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 |

≤ (
∑

k = i + 2 ..N + 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k))|) + |f a| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 |

using i-is-1-or-2 by auto
qed
finally show ?thesis

using empty-summation by linarith
next

assume main-case: ¬ i < 3
then have three-leq-i: i ≥ 3

by simp
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have disjoint: {2 ..i−1} ∩ {i..N+1} = {}
by auto

have union: {2 ..i−1} ∪ {i..N+1} = {2 ..N+1}
proof(safe)

show
∧

n. n ∈ {2 ..i − 1} =⇒ n ∈ {2 ..N+1}
using i-leq-N by force

show
∧

n. n∈ {i..N + 1} =⇒ n ∈ {2 ..N + 1}
using three-leq-i by force

show
∧

n. n ∈ {2 ..N + 1} =⇒ n /∈ {i..N + 1} =⇒ n ∈ {2 ..i − 1}
by (metis Nat.le-diff-conv2 Suc-eq-plus1 atLeastAtMost-iff i-ge-1 not-less-eq-eq)

qed

have sum-of-terms: (
∑

k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 )))
∗ σ (w ∗ (x − xs N ! k))) +

(
∑

k∈{i..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ
(w ∗ (x − xs N ! k))) =

(
∑

k∈{2 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ
(w ∗ (x − xs N ! k)))

using sum.union-disjoint by (smt (verit, ccfv-threshold) disjoint union
finite-atLeastAtMost)

have I-1 i x = |G-Nf x − L i x|
using I-1-def i-ge-1 i-leq-N by presburger

also have ... = |G-Nf x − ((
∑

k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k −
1 )))) + f (a) +

(f (xs N ! i) − f (xs N ! (i−1 ))) ∗ σ (w ∗ (x − xs N ! i)) +
(f (xs N ! (i+1 )) − f (xs N ! i)) ∗ σ (w ∗ (x − xs N ! (i+1 ))))|

by (smt (verit, ccfv-SIG) main-case L-def less-add-one nat-1-add-1 nu-
meral-Bit1 numeral-le-iff numerals(1 ) semiring-norm(70 ) three-leq-i)

also have ... = |(
∑

k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ
(w ∗ (x − xs N ! k))) +

(
∑

k∈{i..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w
∗ (x − xs N ! k))) + f (xs N ! 1 ) ∗ σ (w ∗ (x − xs N ! 0 )) −

(
∑

k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ) − f (a)
− (f (xs N ! i) − f (xs N ! (i − 1 )))∗ σ (w ∗ (x − xs N ! i)) −

(f (xs N !
(i+1 )) − f (xs N ! i))∗ σ (w ∗ (x − xs N ! (i+1 )))|

by (smt (verit, ccfv-SIG) G-Nf-def sum-mono sum-of-terms)

also have ... = |((
∑

k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ
(w ∗ (x − xs N ! k)))

−(
∑

k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ))+
(
∑

k∈{i..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w
∗ (x − xs N ! k))) + f (xs N ! 1 ) ∗ σ (w ∗ (x − xs N ! 0 ))

− f (a) − (f (xs N ! i) − f (xs N ! (i − 1 )))∗ σ (w ∗ (x −
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xs N ! i)) −
(f (xs N ! (i+1 )) − f (xs N ! i))∗ σ (w ∗ (x − xs N ! (i+1 )))|

by linarith
also have ... = |(

∑
k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ

(w ∗ (x − xs N ! k))
−(f (xs N ! k) − f (xs N ! (k − 1 ))) )+

(
∑

k∈{i..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w
∗ (x − xs N ! k))) + f (xs N ! 1 ) ∗ σ (w ∗ (x − xs N ! 0 ))

− f (a) − (f (xs N ! (i)) − f (xs N ! (i − 1 )))∗ σ (w ∗ (x − xs N ! (i))) −
(f (xs N ! (i+1 )) − f (xs N ! (i)))∗ σ (w ∗ (x − xs N ! (i+1 )))|

by (simp add: sum-subtractf )
also have ... = |(

∑
k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ

(w ∗ (x − xs N ! k)) − 1 )) +
(
∑

k∈{i..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x −
xs N ! k))) +

f (xs N ! 1 ) ∗ σ (w ∗ (x − xs N ! 0 )) −
f (a) −
(f (xs N ! (i)) − f (xs N ! (i − 1 ))) ∗ σ (w ∗ (x − xs N ! (i))) −
(f (xs N ! (i+1 )) − f (xs N ! (i))) ∗ σ (w ∗ (x − xs N ! (i+1 )))|

by (simp add: right-diff-distrib ′)
also have ... = |(

∑
k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ

(w ∗ (x − xs N ! k)) − 1 )) +
(
∑

k∈{i..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x −
xs N ! k))) +

f (a) ∗ σ (w ∗ (x − xs N ! 0 )) −
f (a) −
(f (xs N ! (i)) − f (xs N ! (i − 1 ))) ∗ σ (w ∗ (x − xs N ! (i))) −
(f (xs N ! (i+1 )) − f (xs N ! (i))) ∗ σ (w ∗ (x − xs N ! (i+1 )))|

using first-element by fastforce
also have ... = |(

∑
k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ

(w ∗ (x − xs N ! k)) − 1 )) +
(
∑

k∈{i..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x − xs N
! k))) +

f (a) ∗ (σ (w ∗ (x − xs N ! 0 )) −1 )
−(f (xs N ! (i)) − f (xs N ! (i − 1 ))) ∗ σ (w ∗ (x − xs N ! (i)))
−(f (xs N ! (i+1 )) − f (xs N ! (i))) ∗ σ (w ∗ (x − xs N ! (i+1 )))|
by (simp add: add-diff-eq right-diff-distrib ′)

also have ...= |(
∑

k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ
(w ∗ (x − xs N ! k)) − 1 )) +

f (a) ∗ (σ (w ∗ (x − xs N ! 0 )) − 1 ) +
(
∑

k∈{i+1 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x
− xs N ! k)))

− (f (xs N ! (i+1 )) − f (xs N ! (i ))) ∗ σ (w ∗ (x − xs N ! (i+1 )))|
proof −

from i-leq-N have (
∑

k∈{i..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 )))
∗ σ (w ∗ (x − xs N ! k))) =

(f (xs N ! (i)) − f (xs N ! (i − 1 ))) ∗ σ (w ∗ (x − xs N ! (i))) +
(
∑

k∈{i+1 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x
− xs N ! k)))
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by(subst sum.atLeast-Suc-atMost, linarith, auto)
then show ?thesis

by linarith
qed
also have ...= |(

∑
k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ

(w ∗ (x − xs N ! k)) − 1 )) +
f (a) ∗ (σ (w ∗ (x − xs N ! 0 )) − 1 ) +
(
∑

k∈{i+2 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ
(w ∗ (x − xs N ! k)))|

proof −
from i-leq-N have (

∑
k∈{i+1 ..N+1}. (f (xs N ! k) − f (xs N ! (k −

1 ))) ∗ σ (w ∗ (x − xs N ! k))) =
(f (xs N ! (i+1 )) − f (xs N ! (i))) ∗ σ (w ∗ (x − xs N ! (i+1 ))) +
(
∑

k∈{i+2 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x
− xs N ! k)))

by(subst sum.atLeast-Suc-atMost, linarith, auto)
then show ?thesis

by linarith
qed
show ?thesis
proof −

have inequality-pair : |
∑

n = 2 ..i − 1 . (f (xs N ! n) − f (xs N ! (n −
1 ))) ∗ (σ (w ∗ (x − xs N ! n)) − 1 )| ≤

(
∑

n = 2 ..i − 1 . |(f (xs N ! n) − f (xs N ! (n − 1 )))
∗ (σ (w ∗ (x − xs N ! n)) − 1 )|) ∧

|f a ∗ (σ (w ∗ (x − xs N ! 0 )) − 1 )| + |
∑

n = i +
2 ..N + 1 . (f (xs N ! n) − f (xs N ! (n − 1 ))) ∗ σ (w ∗ (x − xs N ! n))|

≤ |f a ∗ (σ (w ∗ (x − xs N ! 0 )) − 1 )| + (
∑

n = i +
2 ..N + 1 . |(f (xs N ! n) − f (xs N ! (n − 1 ))) ∗ σ (w ∗ (x − xs N ! n))|)

using add-le-cancel-left by blast
have I-1 i x = |(

∑
k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ

(w ∗ (x − xs N ! k)) − 1 )) +
f (a) ∗ (σ (w ∗ (x − xs N ! 0 )) − 1 ) +

(
∑

k = i + 2 ..N+1 . (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗
σ (w ∗ (x − xs N ! k)))|

using ‹|(
∑

k = 2 ..i − 1 . (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ (w ∗
(x − xs N ! k)) − 1 )) + f a ∗ (σ (w ∗ (x − xs N ! 0 )) − 1 ) + (

∑
k = i + 1 ..N

+ 1 . (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x − xs N ! k))) − (f (xs N !
(i + 1 )) − f (xs N ! i)) ∗ σ (w ∗ (x − xs N ! (i + 1 )))| = |(

∑
k = 2 ..i − 1 . (f

(xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ (w ∗ (x − xs N ! k)) − 1 )) + f a ∗ (σ (w
∗ (x − xs N ! 0 )) − 1 ) + (

∑
k = i + 2 ..N + 1 . (f (xs N ! k) − f (xs N ! (k −

1 ))) ∗ σ (w ∗ (x − xs N ! k)))|›
calculation by presburger

also have ... ≤|(
∑

k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ
(w ∗ (x − xs N ! k)) − 1 ))|

+ |f (a) ∗ (σ (w ∗ (x − xs N ! 0 )) − 1 )|
+|(

∑
k∈{i+2 ..N+1}. (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ

(w ∗ (x − xs N ! k)))|
by linarith
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also have ...≤ (
∑

k∈{2 ..i−1}. |(f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ (σ
(w ∗ (x − xs N ! k)) − 1 )|)

+ |f (a) ∗ (σ (w ∗ (x − xs N ! 0 )) − 1 )|
+ (

∑
k∈{i+2 ..N+1}. |(f (xs N ! k) − f (xs N ! (k − 1 ))) ∗

σ (w ∗ (x − xs N ! k))|)
using inequality-pair by linarith

also have ...≤ (
∑

k∈{2 ..i−1}. |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗ |(σ
(w ∗ (x − xs N ! k)) − 1 )|)

+ |f (a)| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 |
+ (

∑
k∈{i+2 ..N+1}. |(f (xs N ! k) − f (xs N ! (k − 1 )))| ∗

|σ (w ∗ (x − xs N ! k))|)
proof −

have f1 :
∧

k. k ∈ {2 ..i−1} −→ |(f (xs N ! k) − f (xs N ! (k − 1 ))) ∗
(σ (w ∗ (x − xs N ! k)) − 1 )| ≤ |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x
− xs N ! k)) − 1 |

by (simp add: abs-mult)
have f2 :

∧
k. k ∈ {i+2 ..N+1} −→ |(f (xs N ! k) − f (xs N ! (k − 1 )))

∗ σ (w ∗ (x − xs N ! k))| ≤ |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x − xs
N ! k))|

by (simp add: abs-mult)
have f3 : |f (a) ∗ (σ (w ∗ (x − xs N ! 0 )) − 1 )| = |f (a)| ∗ |σ (w ∗ (x

− xs N ! 0 )) − 1 |
using abs-mult by blast

then show ?thesis
by (smt (verit, best) f1 f2 sum-mono)

qed
finally show ?thesis.

qed
qed
also have ... < (

∑
k∈{2 ..i−1}. η ∗ (1/N )) +

|f (a)| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 | +
(
∑

k∈{i+2 ..N+1}. η ∗ (1/N ))
proof(cases i ≥ 3 )

assume i-geq-3 : 3 ≤ i
show (

∑
k = 2 ..i − 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x −

xs N ! k)) − 1 |) + |f a| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 | +
(
∑

k = i + 2 ..N + 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x
− xs N ! k))|)

< (
∑

k = 2 ..i − 1 . η ∗ (1 / N )) + |f a| ∗ |σ (w ∗ (x − xs N ! 0 )) −
1 | +

(
∑

k = i + 2 ..N + 1 . η ∗ (1 / N ))
proof(cases ∀ k. k ∈ {2 ..i−1} −→ |σ (w ∗ (x − xs N ! k)) − 1 | = 0 )

assume all-terms-zero: ∀ k. k ∈ {2 ..i − 1} −→ |σ (w ∗ (x − xs N ! k))
− 1 | = 0

from i-geq-3 have (
∑

k∈{2 ..i−1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗
|σ (w ∗ (x − xs N ! k)) − 1 |) < (

∑
k∈{2 ..i−1}. η ∗ (1/N ))

by (subst sum-strict-mono, force+, (simp add: N-pos η-pos all-terms-zero)+)
show ?thesis
proof(cases i = N )
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assume i = N
then show ?thesis

using ‹(
∑

k = 2 ..i − 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗
(x − xs N ! k)) − 1 |) < (

∑
k = 2 ..i − 1 . η ∗ (1 / N ))› by auto

next
assume i 6= N
then have i-lt-N : i < N

using i-leq-N le-neq-implies-less by blast
show ?thesis
proof(cases ∀ k. k ∈ {i+2 ..N+1} −→ |σ (w ∗ (x − xs N ! k))| = 0 )
assume all-second-terms-zero: ∀ k. k ∈ {i + 2 ..N + 1} −→ |σ (w ∗ (x

− xs N ! k))| = (0 ::real)
from i-lt-N have (

∑
k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k −

1 ))| ∗ |σ (w ∗ (x − xs N ! k))|) < (
∑

k∈{i+2 ..N+1}. η ∗ (1/N ))
by(subst sum-strict-mono, force+, (simp add: η-pos all-second-terms-zero)+)

then show ?thesis
proof −

show ?thesis
using ‹(

∑
k = 2 ..i − 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ

(w ∗ (x − xs N ! k)) − 1 |) < (
∑

k = 2 ..i − 1 . η ∗ (1 / N ))›
‹(
∑

k = i + 2 ..N + 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))|
∗ |σ (w ∗ (x − xs N ! k))|) < (

∑
k = i + 2 ..N + 1 . η ∗ (1 / N ))› by linarith

qed
next

assume second-terms-not-all-zero: ¬ (∀ k. k ∈ {i + 2 ..N + 1} −→ |σ
(w ∗ (x − xs N ! k))| = 0 )

obtain NonZeroTerms where NonZeroTerms-def : NonZeroTerms =
{k ∈ {i + 2 ..N + 1}. |σ (w ∗ (x − xs N ! k))| 6= 0}

by blast
obtain ZeroTerms where ZeroTerms-def : ZeroTerms = {k ∈ {i +

2 ..N + 1}. |σ (w ∗ (x − xs N ! k))| = 0}
by blast

have zero-terms-eq-zero: (
∑

k ∈ ZeroTerms. |f (xs N ! k) − f (xs N !
(k − 1 ))| ∗ |σ (w ∗ (x − xs N ! k))|) = 0

by (simp add: ZeroTerms-def )
have disjoint: ZeroTerms ∩ NonZeroTerms = {}

using NonZeroTerms-def ZeroTerms-def by blast
have union: ZeroTerms ∪ NonZeroTerms = {i+2 ..N+1}
proof(safe)

show
∧

n. n ∈ ZeroTerms =⇒ n ∈ {i + 2 ..N + 1}
using ZeroTerms-def by force

show
∧

n. n ∈ NonZeroTerms =⇒ n ∈ {i + 2 ..N + 1}
using NonZeroTerms-def by blast
show

∧
n. n ∈ {i + 2 ..N + 1} =⇒ n /∈ NonZeroTerms =⇒ n ∈

ZeroTerms
using NonZeroTerms-def ZeroTerms-def by blast

qed
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have (
∑

k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k))|) <

(
∑

k∈{i+2 ..N+1}. η ∗ ((1 ::real) / real N ))
proof −
have (

∑
k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w

∗ (x − xs N ! k))|) =
(
∑

k∈NonZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k))|)

proof −
have (

∑
k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ

(w ∗ (x − xs N ! k))|) =
(
∑

k∈ZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗
(x − xs N ! k))|)

+ (
∑

k∈NonZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ
(w ∗ (x − xs N ! k))|)

by (smt disjoint finite-Un finite-atLeastAtMost union sum.union-disjoint)
then show ?thesis

using zero-terms-eq-zero by linarith
qed
also have ... < (

∑
k∈NonZeroTerms. η ∗ (1 / N ))

proof(rule sum-strict-mono)
show finite NonZeroTerms

by (metis finite-Un finite-atLeastAtMost union)
show NonZeroTerms 6= {}

using NonZeroTerms-def second-terms-not-all-zero by blast
fix y
assume y-subtype: y ∈ NonZeroTerms
then have y-type: y ∈ {i+2 ..N+1}

by (metis Un-iff union)
then have y-suptype: y ∈ {1 ..N + 1}

by simp

have parts-lt-eta:
∧

k. k∈{i+2 ..N+1} −→ |(f (xs N ! k) − f (xs N
! (k − 1 )))| < η

proof(clarify)
fix k
assume k-type: k ∈ {i + 2 ..N + 1}
then have k − 1 ∈ {i+1 ..N}

by force
then have |(xs N ! k) − (xs N ! (k − 1 ))| < δ −→ |f (xs N ! k)

− f (xs N ! (k − 1 ))| < η
using δ-prop atLeastAtMost-iff els-in-ab le-diff-conv by auto

then show |f (xs N ! k) − f (xs N ! (k − 1 ))| < η
using adj-terms-lt i-leq-N k-type by fastforce

qed
then have f-diff-lt-eta: |f (xs N ! y) − f (xs N ! (y − 1 ))| < η

using y-type by blast
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have lt-minus-h: x − xs N !y ≤ −h
using x-minus-xk-le-neg-h-on-Right-Half y-type by blast

then have sigma-lt-inverseN : |σ (w ∗ (x − xs N ! y))| < 1 / N
proof −

have ¬ Suc N < y
using y-suptype by force

then show ?thesis
by (smt (z3 ) Suc-1 Suc-eq-plus1 lt-minus-h add.commute

add.left-commute diff-zero length-map length-upt not-less-eq w-prop xs-eqs)
qed

show |f (xs N ! y) − f (xs N ! (y − 1 ))| ∗ |σ (w ∗ (x − xs N ! y))|
< η ∗ (1 / N )

using f-diff-lt-eta mult-strict-mono sigma-lt-inverseN by fastforce
qed

also have ... ≤ (
∑

k∈NonZeroTerms. η ∗ (1 / N )) + (
∑

k∈ZeroTerms.
η ∗ (1 / N ))

using η-pos by force
also have ... = (

∑
k∈{i+2 ..N+1}. η ∗ (1 / N ))

by (smt disjoint finite-Un finite-atLeastAtMost union sum.union-disjoint)

finally show ?thesis.
qed
then show ?thesis

using ‹(
∑

k = 2 ..i − 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k)) − 1 |) < (

∑
k = 2 ..i − 1 . η ∗ (1 / N ))› by linarith

qed
qed

next

assume first-terms-not-all-zero: ¬ (∀ k. k ∈ {2 ..i − 1} −→ |σ (w ∗ (x −
xs N ! k)) − 1 | = 0 )

obtain BotNonZeroTerms where BotNonZeroTerms-def : BotNonZe-
roTerms = {k ∈ {2 ..i − 1}. |σ (w ∗ (x − xs N ! k)) − 1 | 6= 0}

by blast
obtain BotZeroTerms where BotZeroTerms-def : BotZeroTerms = {k ∈

{2 ..i − 1}. |σ (w ∗ (x − xs N ! k)) − 1 | = 0}
by blast

have bot-zero-terms-eq-zero: (
∑

k ∈ BotZeroTerms. |f (xs N ! k) − f (xs
N ! (k − 1 ))| ∗ |σ (w ∗ (x − xs N ! k)) −1 |) = 0

by (simp add: BotZeroTerms-def )
have bot-disjoint: BotZeroTerms ∩ BotNonZeroTerms = {}

using BotNonZeroTerms-def BotZeroTerms-def by blast

have bot-union: BotZeroTerms ∪ BotNonZeroTerms = {2 ..i − 1}
proof(safe)

show
∧

n. n ∈ BotZeroTerms =⇒ n ∈ {2 ..i − 1}
using BotZeroTerms-def by force
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show
∧

n. n ∈ BotNonZeroTerms =⇒ n ∈ {2 ..i − 1}
using BotNonZeroTerms-def by blast

show
∧

n. n ∈ {2 ..i − 1} =⇒ n /∈ BotNonZeroTerms =⇒ n ∈
BotZeroTerms

using BotNonZeroTerms-def BotZeroTerms-def by blast
qed

have (
∑

k∈{2 ..i − 1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x
− xs N ! k)) −1 |) <

(
∑

k∈{2 ..i − 1}. η ∗ (1 / N ))
proof −

have disjoint-sum: sum (λk. η ∗ (1 / N )) BotNonZeroTerms + sum
(λk. η ∗ (1 / N )) BotZeroTerms = sum (λk. η ∗ (1 / N )) {2 ..i − 1}

proof −
from bot-disjoint have sum (λk. η ∗ (1 / real N )) BotNonZeroTerms

+ sum (λk. η ∗ (1 / N )) BotZeroTerms =
sum (λk. η ∗ (1 / real N )) (BotNonZeroTerms ∪ BotZeroTerms)
by(subst sum.union-disjoint, (metis(mono-tags) bot-union finite-Un

finite-atLeastAtMost)+, auto)
then show ?thesis

by (metis add.commute bot-disjoint bot-union finite-Un fi-
nite-atLeastAtMost sum.union-disjoint)

qed

have (
∑

k∈{2 ..i − 1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗ (x
− xs N ! k)) − 1 |) =

(
∑

k∈BotNonZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k)) − 1 |)

proof −
have (

∑
k∈{2 ..i − 1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗

(x − xs N ! k)) −1 |) =
(
∑

k∈BotZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k)) −1 |)

+ (
∑

k∈BotNonZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ
(w ∗ (x − xs N ! k)) −1 |)

by (smt bot-disjoint finite-Un finite-atLeastAtMost bot-union
sum.union-disjoint)

then show ?thesis
using bot-zero-terms-eq-zero by linarith

qed
also have ... < (

∑
k∈BotNonZeroTerms. η ∗ (1 / N ))

proof(rule sum-strict-mono)
show finite BotNonZeroTerms

by (metis finite-Un finite-atLeastAtMost bot-union)
show BotNonZeroTerms 6= {}

using BotNonZeroTerms-def first-terms-not-all-zero by blast
fix y
assume y-subtype: y ∈ BotNonZeroTerms
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then have y-type: y ∈ {2 ..i − 1}
by (metis Un-iff bot-union)

then have y-suptype: y ∈ {1 ..N + 1}
using i-leq-N by force

have parts-lt-eta:
∧

k. k∈{2 ..i − 1} −→ |(f (xs N ! k) − f (xs N ! (k
− 1 )))| < η

proof(clarify)
fix k
assume k-type: k ∈ {2 ..i − 1}
then have |(xs N ! k) − (xs N ! (k − 1 ))| < δ −→ |f (xs N ! k) − f

(xs N ! (k − 1 ))| < η
by (metis δ-prop add.commute add-le-imp-le-diff atLeastAtMost-iff

diff-le-self dual-order .trans els-in-ab i-leq-N nat-1-add-1 trans-le-add2 )
then show |f (xs N ! k) − f (xs N ! (k − 1 ))| < η

using adj-terms-lt i-leq-N k-type by fastforce
qed
then have f-diff-lt-eta: |f (xs N ! y) − f (xs N ! (y − 1 ))| < η

using y-type by blast
have lt-minus-h: x − xs N !y ≥ h

using x-minus-xk-ge-h-on-Left-Half y-type by force
then have bot-sigma-lt-inverseN : |σ (w ∗ (x − xs N ! y)) −1 | < (1

/ N )
by (smt (z3 ) Suc-eq-plus1 add-2-eq-Suc ′ atLeastAtMost-iff diff-zero

length-map length-upt less-Suc-eq-le w-prop xs-eqs y-suptype)
then show |f (xs N ! y) − f (xs N ! (y − 1 ))| ∗ |σ (w ∗ (x − xs N !

y)) − 1 | < η ∗ (1 / N )
by (smt (verit, del-insts) f-diff-lt-eta mult-strict-mono)

qed
also have ... ≤ (

∑
k∈BotNonZeroTerms. η ∗ (1 / N )) + (

∑
k∈BotZeroTerms.

η ∗ (1 / N ))
using η-pos by force

also have ... = (
∑

k∈{2 ..i − 1}. η ∗ (1 / N ))
using sum.union-disjoint disjoint-sum by force

finally show ?thesis.
qed

show ?thesis
proof(cases i = N )

assume i = N
then show ?thesis

using ‹(
∑

k = 2 ..i − 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗
(x − xs N ! k)) − 1 |) < (

∑
k = 2 ..i − 1 . η ∗ (1 / N ))› by auto

next
assume i 6= N
then have i-lt-N : i < N

using i-leq-N le-neq-implies-less by blast
show ?thesis
proof(cases ∀ k. k ∈ {i+2 ..N+1} −→ |σ (w ∗ (x − xs N ! k))| = 0 )
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assume all-second-terms-zero: ∀ k. k ∈ {i + 2 ..N + 1} −→ |σ (w ∗ (x
− xs N ! k))| = 0

from i-lt-N have (
∑

k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k −
1 ))| ∗ |σ (w ∗ (x − xs N ! k))|) < (

∑
k∈{i+2 ..N+1}. η ∗ (1/N ))

by (subst sum-strict-mono, fastforce+, (simp add: η-pos all-second-terms-zero)+)
then show ?thesis

using ‹(
∑

k = 2 ..i − 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k)) − 1 |) < (

∑
k = 2 ..i − 1 . η ∗ (1 / N ))› by linarith

next

assume second-terms-not-all-zero: ¬ (∀ k. k ∈ {i + 2 ..N + 1} −→ |σ
(w ∗ (x − xs N ! k))| = 0 )

obtain TopNonZeroTerms where TopNonZeroTerms-def : TopNonZe-
roTerms = {k ∈ {i + 2 ..N + 1}. |σ (w ∗ (x − xs N ! k))| 6= 0}

by blast
obtain TopZeroTerms where TopZeroTerms-def : TopZeroTerms = {k

∈ {i + 2 ..N + 1}. |σ (w ∗ (x − xs N ! k))| = 0}
by blast

have zero-terms-eq-zero: (
∑

k∈TopZeroTerms. |f (xs N ! k) − f (xs N
! (k − 1 ))| ∗ |σ (w ∗ (x − xs N ! k))|) = 0

by (simp add: TopZeroTerms-def )
have disjoint: TopZeroTerms ∩ TopNonZeroTerms = {}

using TopNonZeroTerms-def TopZeroTerms-def by blast
have union: TopZeroTerms ∪ TopNonZeroTerms = {i+2 ..N+1}
proof(safe)

show
∧

n. n ∈ TopZeroTerms =⇒ n ∈ {i + 2 ..N + 1}
using TopZeroTerms-def by force

show
∧

n. n ∈ TopNonZeroTerms =⇒ n ∈ {i + 2 ..N + 1}
using TopNonZeroTerms-def by blast

show
∧

n. n ∈ {i + 2 ..N + 1} =⇒ n /∈ TopNonZeroTerms =⇒ n ∈
TopZeroTerms

using TopNonZeroTerms-def TopZeroTerms-def by blast
qed

have (
∑

k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k))|) <

(
∑

k∈{i+2 ..N+1}. η ∗ (1 / N ))
proof −
have (

∑
k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w

∗ (x − xs N ! k))|) =
(
∑

k∈TopNonZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ
(w ∗ (x − xs N ! k))|)

proof −
have (

∑
k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ

(w ∗ (x − xs N ! k))|) =
(
∑

k∈TopZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ
(w ∗ (x − xs N ! k))|)

+ (
∑

k∈TopNonZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))|
∗ |σ (w ∗ (x − xs N ! k))|)
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by (smt disjoint finite-Un finite-atLeastAtMost union sum.union-disjoint)
then show ?thesis

using zero-terms-eq-zero by linarith
qed
also have ... < (

∑
k∈TopNonZeroTerms. η ∗ (1 / N ))

proof(rule sum-strict-mono)
show finite TopNonZeroTerms

by (metis finite-Un finite-atLeastAtMost union)
show TopNonZeroTerms 6= {}

using TopNonZeroTerms-def second-terms-not-all-zero by blast
fix y
assume y-subtype: y ∈ TopNonZeroTerms
then have y-type: y ∈ {i+2 ..N+1}

by (metis Un-iff union)
then have y-suptype: y ∈ {1 ..N + 1}

by simp
have parts-lt-eta:

∧
k. k∈{i+2 ..N+1} −→ |(f (xs N ! k) − f (xs N

! (k − 1 )))| < η
proof(clarify)

fix k
assume k-type: k ∈ {i + 2 ..N + 1}
then have k − 1 ∈ {i+1 ..N}

by force
then have |(xs N ! k) − (xs N ! (k − 1 ))| < δ −→ |f (xs N ! k)

− f (xs N ! (k − 1 ))| < η
using δ-prop atLeastAtMost-iff els-in-ab le-diff-conv by auto

then show |f (xs N ! k) − f (xs N ! (k − 1 ))| < η
using adj-terms-lt i-leq-N k-type by fastforce

qed
then have f-diff-lt-eta: |f (xs N ! y) − f (xs N ! (y − 1 ))| < η

using y-type by blast
have lt-minus-h: x − xs N !y ≤ −h

using x-minus-xk-le-neg-h-on-Right-Half y-type by blast
then have sigma-lt-inverseN : |σ (w ∗ (x − xs N ! y))| < 1 / N
proof −

have ¬ Suc N < y
using y-suptype by force

then show ?thesis
by (smt (z3 ) Suc-1 Suc-eq-plus1 lt-minus-h add.commute

add.left-commute diff-zero length-map length-upt not-less-eq w-prop xs-eqs)
qed
then show |f (xs N ! y) − f (xs N ! (y − 1 ))| ∗ |σ (w ∗ (x − xs N

! y))| < η ∗ (1 / N )
by (smt (verit, best) f-diff-lt-eta mult-strict-mono)

qed
also have ... ≤ (

∑
k∈TopNonZeroTerms. η ∗ (1 / N )) +

(
∑

k∈TopZeroTerms. η ∗ (1 / N ))
using η-pos by force
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also have ... = (
∑

k∈{i+2 ..N+1}. η ∗ (1 / N ))
by (smt disjoint finite-Un finite-atLeastAtMost union sum.union-disjoint)

finally show ?thesis.
qed
then show ?thesis

using ‹(
∑

k = 2 ..i − 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k)) − 1 |) < (

∑
k = 2 ..i − 1 . η ∗ (1 / N ))› by linarith

qed
qed

qed
next

assume ¬ 3 ≤ i
then have i-leq-2 : i ≤ 2

by linarith
then have first-empty-sum: (

∑
k = 2 ..i − 1 . |f (xs N ! k) − f (xs N ! (k

− 1 ))| ∗ |σ (w ∗ (x − xs N ! k)) − 1 |) = 0
by force

from i-leq-2 have second-empty-sum: (
∑

k = 2 ..i − 1 . η ∗ (1 / N )) = 0
by force

have i-lt-N : i < N
using N-defining-properties i-leq-2 by linarith

have (
∑

k = i + 2 ..N + 1 . |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗
(x − xs N ! k))|) <

(
∑

k = i + 2 ..N + 1 . η ∗ (1 / N ))
proof(cases ∀ k. k ∈ {i+2 ..N+1} −→ |σ (w ∗ (x − xs N ! k))| = 0 )

assume all-second-terms-zero: ∀ k. k ∈ {i + 2 ..N + 1} −→ |σ (w ∗ (x
− xs N ! k))| = 0

from i-lt-N have (
∑

k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k −
1 ))| ∗ |σ (w ∗ (x − xs N ! k))|) < (

∑
k∈{i+2 ..N+1}. η ∗ (1/N ))

by (subst sum-strict-mono, fastforce+, (simp add: η-pos all-second-terms-zero)+)
then show ?thesis.

next
assume second-terms-not-all-zero: ¬ (∀ k. k ∈ {i + 2 ..N + 1} −→ |σ

(w ∗ (x − xs N ! k))| = 0 )
obtain NonZeroTerms where NonZeroTerms-def : NonZeroTerms =

{k ∈ {i + 2 ..N + 1}. |σ (w ∗ (x − xs N ! k))| 6= 0}
by blast
obtain ZeroTerms where ZeroTerms-def : ZeroTerms = {k ∈ {i +

2 ..N + 1}. |σ (w ∗ (x − xs N ! k))| = 0}
by blast

have zero-terms-eq-zero: (
∑

k∈ZeroTerms. |f (xs N ! k) − f (xs N !
(k − 1 ))| ∗ |σ (w ∗ (x − xs N ! k))|) = 0

by (simp add: ZeroTerms-def )
have disjoint: ZeroTerms ∩ NonZeroTerms = {}

using NonZeroTerms-def ZeroTerms-def by blast
have union: ZeroTerms ∪ NonZeroTerms = {i+2 ..N+1}
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proof(safe)
show

∧
n. n ∈ ZeroTerms =⇒ n ∈ {i + 2 ..N + 1}

using ZeroTerms-def by force
show

∧
n. n ∈ NonZeroTerms =⇒ n ∈ {i + 2 ..N + 1}

using NonZeroTerms-def by blast
show

∧
n. n ∈ {i + 2 ..N + 1} =⇒ n /∈ NonZeroTerms =⇒ n ∈

ZeroTerms
using NonZeroTerms-def ZeroTerms-def by blast

qed

have (
∑

k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k))|) <

(
∑

k∈{i+2 ..N+1}. η ∗ (1 / N ))
proof −
have (

∑
k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w

∗ (x − xs N ! k))|) =
(
∑

k∈NonZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w
∗ (x − xs N ! k))|)

proof −
have (

∑
k∈{i+2 ..N+1}. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ

(w ∗ (x − xs N ! k))|) =
(
∑

k∈ZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ (w ∗
(x − xs N ! k))|)

+ (
∑

k∈NonZeroTerms. |f (xs N ! k) − f (xs N ! (k − 1 ))| ∗ |σ
(w ∗ (x − xs N ! k))|)

by (smt disjoint finite-Un finite-atLeastAtMost union sum.union-disjoint)
then show ?thesis

using zero-terms-eq-zero by linarith
qed
also have ... < (

∑
k∈NonZeroTerms. η ∗ (1 / N ))

proof(rule sum-strict-mono)
show finite NonZeroTerms

by (metis finite-Un finite-atLeastAtMost union)
show NonZeroTerms 6= {}

using NonZeroTerms-def second-terms-not-all-zero by blast
fix y
assume y-subtype: y ∈ NonZeroTerms
then have y-type: y ∈ {i+2 ..N+1}

by (metis Un-iff union)
then have y-suptype: y ∈ {1 ..N + 1}

by simp

have parts-lt-eta:
∧

k. k∈{i+2 ..N+1} −→ |(f (xs N ! k) − f (xs N
! (k − 1 )))| < η

proof(clarify)
fix k
assume k-type: k ∈ {i + 2 ..N + 1}
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then have k − 1 ∈ {i+1 ..N}
by force

then have |(xs N ! k) − (xs N ! (k − 1 ))| < δ −→ |f (xs N ! k)
− f (xs N ! (k − 1 ))| < η

using δ-prop atLeastAtMost-iff els-in-ab le-diff-conv by auto

then show |f (xs N ! k) − f (xs N ! (k − 1 ))| < η
using adj-terms-lt i-leq-N k-type by fastforce

qed
then have f-diff-lt-eta: |f (xs N ! y) − f (xs N ! (y − 1 ))| < η

using y-type by blast
have lt-minus-h: x − xs N !y ≤ −h

using x-minus-xk-le-neg-h-on-Right-Half y-type by blast
then have sigma-lt-inverseN : |σ (w ∗ (x − xs N ! y))| < 1 / N
proof −

have ¬ Suc N < y
using y-suptype by force

then show ?thesis
by (smt (z3 ) Suc-1 Suc-eq-plus1 lt-minus-h add.commute

add.left-commute diff-zero length-map length-upt not-less-eq w-prop xs-eqs)
qed

show |f (xs N ! y) − f (xs N ! (y − 1 ))| ∗ |σ (w ∗ (x − xs N ! y))|
< η ∗ (1 / N )

using f-diff-lt-eta mult-strict-mono sigma-lt-inverseN by fastforce
qed

also have ... ≤ (
∑

k∈NonZeroTerms. η ∗ (1 / N )) + (
∑

k∈ZeroTerms.
η ∗ (1 / N ))

using η-pos by force
also have ... = (

∑
k∈{i+2 ..N+1}. η ∗ (1 / N ))

by (smt disjoint finite-Un finite-atLeastAtMost union sum.union-disjoint)

finally show ?thesis.
qed
then show ?thesis.

qed
then show ?thesis

using first-empty-sum second-empty-sum by linarith
qed

also have ... = |f (a)| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 | + (
∑

k∈{2 ..i−1}. η
∗ (1/N )) + (

∑
k∈{i+2 ..N+1}. η ∗ (1/N ))

by simp
also have ... ≤ |f (a)| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 | + (

∑
k∈{2 ..N+1}. η

∗ (1/N ))
proof −

have (
∑

k∈{2 ..i−1}. η ∗ (1/N )) + (
∑

k∈{i+2 ..N+1}. η ∗ (1/N )) ≤
(
∑

k∈{2 ..N+1}. η ∗ (1/N ))

51



proof(cases i≥ 3 )
assume 3 ≤ i
have disjoint: {2 ..i−1} ∩ {i+2 ..N+1} = {}

by auto
from i-leq-N have subset: {2 ..i−1} ∪ {i+2 ..N+1} ⊆ {2 ..N+1}

by auto
have sum-union: sum (λk. η ∗ (1 / N )) {2 ..i−1} + sum (λk. η ∗ (1 /

N )) {i+2 ..N+1} =
sum (λk. η ∗ (1 / N )) ({2 ..i−1} ∪ {i+2 ..N+1})

by (metis disjoint finite-atLeastAtMost sum.union-disjoint)
from subset η-pos have sum (λk. η ∗ (1 / N )) ({2 ..i−1} ∪ {i+2 ..N+1})

≤ sum (λk. η ∗ (1 / N )) {2 ..N+1}
by(subst sum-mono2 , simp-all)

then show ?thesis
using sum-union by auto

next
assume ¬ 3 ≤ i
then have i-leq-2 : i ≤ 2

by linarith
then have first-term-zero: (

∑
k = 2 ..i − 1 . η ∗ (1 / N )) = 0

by force
from η-pos have (

∑
k = i + 2 ..N + 1 . η ∗ (1 / N )) ≤ (

∑
k = 2 ..N +

1 . η ∗ (1 / N ))
by(subst sum-mono2 , simp-all)

then show ?thesis
using first-term-zero by linarith

qed
then show ?thesis

by linarith
qed
also have ... = |f (a)| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 | + (N ∗ η ∗ (1/N ))
proof −

have (
∑

k∈{2 ..N+1}. η ∗ (1/N )) = (N ∗ η ∗ (1/N ))
by(subst sum-constant, simp)

then show ?thesis
by presburger

qed
also have ... = |f (a)| ∗ |σ (w ∗ (x − xs N ! 0 )) − 1 | + η

by (simp add: N-pos)
also have ... ≤ |f (a)| ∗ (1/N ) + η
proof −

have |σ (w ∗ (x − xs N ! 0 )) − 1 | < 1/N
by (smt (z3 ) Suc-eq-plus1-left ω-prop add-2-eq-Suc ′ add-gr-0 atLeastAt-

Most-iff diff-zero
length-map length-upt w-def x-in-ab xs-eqs zero-less-one zeroth-element)

then show ?thesis
by (smt (verit, ccfv-SIG) mult-less-cancel-left)

qed
also have ... ≤ |f (a)| ∗ η + η
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by (smt (verit, best) mult-left-mono one-over-N-lt-eta)
also have ... = (1 + |f (a)|) ∗ η

by (simp add: distrib-right)
also have ... ≤ (1+ (SUP x ∈ {a..b}. |f x|)) ∗ η
proof −

from a-lt-b have |f (a)| ≤ (SUP x ∈ {a..b}. |f x|)
by (subst cSUP-upper , simp-all, metis bdd-above-Icc contin-f continu-

ous-image-closed-interval continuous-on-rabs order-less-le)
then show ?thesis

by (simp add: η-pos)
qed
finally show ?thesis.

qed

have x-i-pred-minus-x-lt-delta: |xs N !(i−1 ) − x| < δ
proof −

have |xs N !(i−1 ) − x| ≤ |xs N !(i−1 ) − xs N !i| + |xs N !i − x|
by linarith

also have ... ≤ 2∗h
proof −

have first-inequality: |xs N !(i−1 ) − xs N !i| ≤ h
using difference-of-adj-terms h-pos i-ge-1 i-leq-N by fastforce

have second-inequality: |xs N !i − x| ≤ h
by (smt (verit) left-diff-distrib ′ mult-cancel-right1 x-lower-bound-aux

x-upper-bound-aux xs-Suc-i xs-i)
show ?thesis

using first-inequality second-inequality by fastforce
qed
also have ... < δ

using h-lt-δ-half by auto
finally show ?thesis.

qed
have I2-final-bound: I-2 i x < (2 ∗ (Sup ((λx. |σ x|) ‘ UNIV )) + 1 ) ∗ η
proof(cases i ≥ 3 )
assume three-lt-i: 3 ≤ i
have telescoping-sum: sum (λk. f (xs N ! k) − f (xs N ! (k − 1 ))) {2 ..i−1}

+ f a = f (xs N ! (i−1 ))
proof(cases i = 3 )

show i = 3 =⇒ (
∑

k = 2 ..i − 1 . f (xs N ! k) − f (xs N ! (k − 1 ))) + f a
= f (xs N ! (i − 1 ))

using first-element by force
next

assume i 6= 3
then have i-gt-3 : i > 3

by (simp add: le-neq-implies-less three-lt-i)
have sum (λk. f (xs N ! k) − f (xs N ! (k − 1 ))) {2 ..i−1} = f (xs N !(i−1 ))

− f (xs N !(2−1 ))
proof −

have f1 : 1 ≤ i − Suc 1
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using three-lt-i by linarith
have index-shift: (

∑
k ∈ {2 ..i−1}. f (xs N ! (k − 1 ))) = (

∑
k ∈ {1 ..i−2}.

f (xs N ! k))
by (rule sum.reindex-bij-witness[of - λj. j +1 λj. j −1 ], simp-all,

presburger+)
have sum (λk. f (xs N ! k) − f (xs N ! (k − 1 ))) {2 ..i−1} =

(
∑

k ∈ {2 ..i−1}. f (xs N ! k)) − (
∑

k ∈ {2 ..i−1}. f (xs N ! (k − 1 )))
by (simp add: sum-subtractf )

also have ... = (
∑

k ∈ {2 ..i−1}. f (xs N ! k)) − (
∑

k ∈ {1 ..i−2}. f (xs
N ! k))

using index-shift by presburger
also have ... = (

∑
k ∈ {2 ..i−1}. f (xs N ! k)) − (f (xs N ! 1 ) + (

∑
k ∈

{2 ..i−2}. f (xs N ! k)))
using f1 by (metis (no-types) Suc-1 sum.atLeast-Suc-atMost)

also have ... = ((
∑

k ∈ {2 ..i−1}. f (xs N ! k)) − (
∑

k ∈ {2 ..i−2}. f
(xs N ! k))) − f (xs N ! 1 )

by linarith
also have ... = (f (xs N ! (i−1 )) + (

∑
k ∈ {2 ..i−2}. f (xs N ! k)) −

(
∑

k ∈ {2 ..i−2}. f (xs N ! k))) − f (xs N ! 1 )
proof −

have disjoint: {2 ..i−2} ∩ {i−1} = {}
by force

have union: {2 ..i−2} ∪ {i−1} = {2 ..i−1}
proof(safe)

show
∧

n. n ∈ {2 ..i − 2} =⇒ n ∈ {2 ..i − 1}
by fastforce

show
∧

n. i − 1 ∈ {2 ..i − 1}
using three-lt-i by force

show
∧

n. n ∈ {2 ..i − 1} =⇒ n /∈ {2 ..i − 2} =⇒ n /∈ {} =⇒ n = i
− 1

by presburger
qed

have (
∑

k ∈ {2 ..i−2}. f (xs N ! k)) + f (xs N ! (i−1 )) = (
∑

k ∈
{2 ..i−2}. f (xs N ! k)) + (

∑
k ∈ {i−1}. f (xs N ! k))

by auto
also have ... = (

∑
k ∈ {2 ..i−2} ∪ {i−1}. f (xs N ! k))

using disjoint by force
also have ... = (

∑
k ∈ {2 ..i−1}. f (xs N ! k))

using union by presburger
finally show ?thesis

by linarith
qed
also have ... = f (xs N ! (i−1 )) − f (xs N ! 1 )

by auto
finally show ?thesis

by simp
qed
then show ?thesis

using first-element by auto
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qed

have I2-decomp: I-2 i x = |L i x − f x|
using I-2-def i-ge-1 i-leq-N by presburger

also have ... = | (((
∑

k∈{2 ..i−1}. (f (xs N ! k) − f (xs N ! (k − 1 )))) +
f (a)) +

(f (xs N ! i) − f (xs N ! (i−1 ))) ∗ σ (w ∗ (x − xs N ! i)) +
(f (xs N ! (i+1 )) − f (xs N ! i)) ∗ σ (w ∗ (x − xs N ! (i+1 ))))

− f x|
using L-def three-lt-i by auto

also have ... = | f (xs N ! (i−1 )) − f x +
(f (xs N ! i) − f (xs N ! (i−1 ))) ∗ σ (w ∗ (x − xs N ! i)) +
(f (xs N ! (i+1 )) − f (xs N ! i)) ∗ σ (w ∗ (x − xs N ! (i+1 )))|

using telescoping-sum by fastforce
also have ... ≤ | f (xs N ! (i−1 )) − f x| +

|(f (xs N ! i) − f (xs N ! (i−1 ))) ∗ σ (w ∗ (x − xs N ! i))| +
|(f (xs N ! (i+1 )) − f (xs N ! i)) ∗ σ (w ∗ (x − xs N ! (i+1 )))|

by linarith
also have ... = | f (xs N ! (i−1 )) − f x| +

|(f (xs N ! i) − f (xs N ! (i−1 )))| ∗ | σ (w ∗ (x − xs N ! i))| +
|(f (xs N ! (i+1 )) − f (xs N ! i))| ∗ |σ (w ∗ (x − xs N ! (i+1 )))|

by (simp add: abs-mult)
also have ... < η + η ∗ | σ (w ∗ (x − xs N ! i))| + η ∗ |σ (w ∗ (x − xs N

! (i+1 )))|
proof −

from x-in-ab x-i-pred-minus-x-lt-delta
have first-inequality: |f (xs N ! (i−1 )) − f x| < η

by(subst δ-prop,
metis Suc-eq-plus1 add-0 add-le-imp-le-diff atLeastAtMost-iff els-in-ab

i-leq-N less-imp-diff-less linorder-not-le numeral-3-eq-3 order-less-le three-lt-i,
simp-all)

from els-in-ab i-leq-N le-diff-conv three-lt-i
have second-inequality: |(f (xs N ! i) − f (xs N ! (i−1 )))| < η

by(subst δ-prop,
simp-all,

metis One-nat-def add.commute atLeastAtMost-iff adj-terms-lt i-ge-1
trans-le-add2 )

have third-inequality: |(f (xs N ! (i+1 )) − f (xs N ! i))| < η
proof(subst δ-prop)

show xs N ! (i + 1 ) ∈ {a..b} and xs N ! i ∈ {a..b} and True
using els-in-ab i-ge-1 i-leq-N by auto

show |xs N ! (i + 1 ) − xs N ! i| < δ
using adj-terms-lt
by (metis Suc-eq-plus1 Suc-eq-plus1-left Suc-le-mono add-diff-cancel-left ′

atLeastAtMost-iff i-leq-N le-add2 )
qed
then show ?thesis

by (smt (verit, best) first-inequality mult-right-mono second-inequality)
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qed
also have ... = (| σ (w ∗ (x − xs N ! i))| + |σ (w ∗ (x − xs N ! (i+1 )))| +

1 ) ∗ η
by (simp add: mult.commute ring-class.ring-distribs(1 ))

also have ... ≤ (2∗ (Sup ((λx. |σ x|) ‘ UNIV )) + 1 ) ∗ η
proof −

from bounded-sigmoidal have first-inequality: | σ (w ∗ (x − xs N ! i))| ≤
(Sup ((λx. |σ x|) ‘ UNIV ))

by (metis UNIV-I bounded-function-def cSUP-upper2 dual-order .refl)

from bounded-sigmoidal have second-inequality: | σ (w ∗ (x − xs N ! (i+1 )))|
≤ (Sup ((λx. |σ x|) ‘ UNIV ))

unfolding bounded-function-def
by (subst cSUP-upper , simp-all)

then show ?thesis
using η-pos first-inequality by auto

qed
finally show ?thesis.

next
assume ¬ 3 ≤ i
then have i-is-1-or-2 : i = 1 ∨ i = 2

using i-ge-1 by linarith
have x-near-a: |a − x| < δ
proof(cases i = 1 )

show i = 1 =⇒ |a − x| < δ
using first-element h-pos x-i-pred-minus-x-lt-delta x-lower-bound-aux ze-

roth-element by auto
show i 6= 1 =⇒ |a − x| < δ

using first-element i-is-1-or-2 x-i-pred-minus-x-lt-delta by auto
qed

have Lix: L i x = f (a) + (f (xs N ! 3 ) − f (xs N ! 2 )) ∗ σ (w ∗ (x − xs N !
3 )) + (f (xs N ! 2 ) − f (xs N ! 1 )) ∗ σ (w ∗ (x − xs N ! 2 ))

using L-def i-is-1-or-2 by presburger
have I-2 i x = |L i x − f x|

using I-2-def i-ge-1 i-leq-N by presburger
also have ... = |(f a − f x) + (f (xs N ! 3 ) − f (xs N ! 2 )) ∗ σ (w ∗ (x −

xs N ! 3 )) + (f (xs N ! 2 ) − f (xs N ! 1 )) ∗ σ (w ∗ (x − xs N ! 2 ))|
using Lix by linarith

also have ... ≤ |(f a − f x)| + |(f (xs N ! 3 ) − f (xs N ! 2 )) ∗ σ (w ∗ (x −
xs N ! 3 ))| + |(f (xs N ! 2 ) − f (xs N ! 1 )) ∗ σ (w ∗ (x − xs N ! 2 ))|

by linarith
also have ... ≤ |(f a − f x)| + |f (xs N ! 3 ) − f (xs N ! 2 )| ∗ |σ (w ∗ (x −

xs N ! 3 ))| + |f (xs N ! 2 ) − f (xs N ! 1 )| ∗ |σ (w ∗ (x − xs N ! 2 ))|
by (simp add: abs-mult)

also have ... < η + η ∗ | σ (w ∗ (x − xs N ! 3 ))| + |f (xs N ! 2 ) − f (xs
N ! 1 )| ∗ |σ (w ∗ (x − xs N ! 2 ))|

proof −
from x-in-ab x-near-a have first-inequality: |f a − f x| < η
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by(subst δ-prop, auto)
have second-inequality: |f (xs N ! 3 ) − f (xs N ! 2 )| < η
proof(subst δ-prop, safe)

show xs N ! 3 ∈ {a..b}
using N-gt-3 els-in-ab by force

show xs N ! 2 ∈ {a..b}
using N-gt-3 els-in-ab by force

from N-gt-3 have xs N ! 3 − xs N ! 2 = h
by(subst xs-els, auto, smt (verit, best) h-pos i-is-1-or-2 mult-cancel-right1

nat-1-add-1 of-nat-1 of-nat-add xs-Suc-i xs-i)
then show |xs N ! 3 − xs N ! 2 | < δ

using adj-terms-lt first-element zeroth-element by fastforce
qed
then show ?thesis

by (smt (verit, best) first-inequality mult-right-mono)
qed
also have ... ≤ η + η ∗ | σ (w ∗ (x − xs N ! 3 ))| + η ∗ |σ (w ∗ (x − xs N

! 2 ))|
proof −

have third-inequality: |f (xs N ! 2 ) − f (xs N ! 1 )| < η
proof(subst δ-prop, safe)

show xs N ! 2 ∈ {a..b}
using N-gt-3 els-in-ab by force

show xs N ! 1 ∈ {a..b}
using N-gt-3 els-in-ab by force

from N-pos first-element have xs N ! 2 − xs N ! 1 = h
by(subst xs-els, auto)

then show |xs N ! 2 − xs N ! 1 | < δ
using adj-terms-lt first-element zeroth-element by fastforce

qed
show ?thesis

by (smt (verit, best) mult-right-mono third-inequality)
qed
also have ... = (| σ (w ∗ (x − xs N ! 3 ))| + |σ (w ∗ (x − xs N ! 2 ))| + 1 )∗η

by (simp add: mult.commute ring-class.ring-distribs(1 ))
also have ... ≤ (2∗(Sup ((λx. |σ x|) ‘ UNIV )) + 1 ) ∗ η
proof −

from bounded-sigmoidal have first-inequality: | σ (w ∗ (x − xs N ! 3 ))| ≤
Sup ((λx. |σ x|) ‘ UNIV )

unfolding bounded-function-def
by (subst cSUP-upper , simp-all)

from bounded-sigmoidal have second-inequality: | σ (w ∗ (x − xs N ! 2 ))|
≤ Sup ((λx. |σ x|) ‘ UNIV )

unfolding bounded-function-def
by (subst cSUP-upper , simp-all)

then show ?thesis
using η-pos first-inequality by force

qed
finally show ?thesis.
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qed

have |(
∑

k = 2 ..N + 1 . (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗ (x − xs
N ! k))) + f a ∗ σ (w ∗ (x − xs N ! 0 )) − f x| ≤ I-1 i x + I-2 i x

using G-Nf-def i-ge-1 i-leq-N triange-inequality-main first-element by blast
also have ... < (1+ (Sup ((λx. |f x|) ‘ {a..b}))) ∗ η + (2 ∗ (Sup ((λx. |σ x|) ‘

UNIV )) + 1 ) ∗ η
using I1-final-bound I2-final-bound by linarith

also have ... = ((Sup ((λx. |f x|) ‘ {a..b})) + 2∗(Sup ((λx. |σ x|) ‘ UNIV )) +
2 )∗ η

by (simp add: distrib-right)
also have ... = ε

using η-def η-pos by force
finally show |(

∑
k = 2 ..N + 1 . (f (xs N ! k) − f (xs N ! (k − 1 ))) ∗ σ (w ∗

(x − xs N ! k))) + f a ∗ σ (w ∗ (x − xs N ! 0 )) − f x| < ε.
qed

qed

end
theory Sigmoid-Universal-Approximation

imports Limits-Higher-Order-Derivatives
Sigmoid-Definition
Derivative-Identities-Smoothness
Asymptotic-Qualitative-Properties
Universal-Approximation

begin

end
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