Haskell’s \texttt{Show}-Class in Isabelle/HOL\(^*\)

Christian Sternagel René Thiemann

April 20, 2020

Abstract

We implemented a type-class for pretty-printing, similar to Haskell’s \texttt{Show}-class \cite{1}. Moreover, we provide instantiations for Isabelle/HOL’s standard types like \(\mathbb{B}\), \texttt{prod}, \texttt{sum}, \(\mathbb{N}\), \(\mathbb{Z}\), and \(\mathbb{Q}\). It is further possible, to automatically derive “to-string” functions for arbitrary user defined datatypes similar to Haskell’s “\texttt{deriving Show}”.

Contents

1 Converting Arbitrary Values to Readable Strings 1
1.1 The Show-Law 2
1.2 Show-Functions for Characters and Strings 4

2 Instances of the Show Class for Standard Types 6
2.1 Displaying Polynomials 9

3 Show for Real Numbers – Interface 10

4 Show for Complex Numbers 11

5 Show Implementation for Real Numbers via Rational Numbers 12

1 Converting Arbitrary Values to Readable Strings

A type class similar to Haskell’s \texttt{Show} class, allowing for constant-time concatenation of strings using function composition.

\begin{verbatim}
theory Show imports Main
\end{verbatim}

\(^*\)This research is supported by FWF (Austrian Science Fund) projects J3202 and P22767.
Deriving Generator-Aux
Deriving Derive-Manager

begin

type-synonym
 shows = string ⇒ string

— show-functions with precedence

type-synonym
 Ⅎa showsp = nat ⇒ Ⅎa ⇒ shows

1.1 The Show-Law

The "show law", shows-prec p x (r @ s) = shows-prec p x r @ s, states that
show-functions do not temper with or depend on output produced so far.

named-theorems show-law-simps (simplification rules for proving the show law)
named-theorems show-law-intros (introduction rules for proving the show law)

definition show-law :: Ⅎa showsp ⇒ Ⅎa ⇒ bool
 where
 show-law s x ←→ (∀ p y z. s p x (y @ z) = s p x y @ z)

lemma show-lawI:
 (∀ p y z. s p x (y @ z) = s p x y @ z) ⇒ show-law s x
⟨proof⟩

lemma show-lawE:
 show-law s x ⇒ (s p x (y @ z) = s p x y @ z ⇒ P) ⇒ P
⟨proof⟩

lemma show-lawD:
 show-law s x ⇒ s p x (y @ z) = s p x y @ z
⟨proof⟩

class show =
 fixes shows-prec :: Ⅎa showsp
 and shows-list :: Ⅎa list ⇒ shows
 assumes shows-prec-append [show-law-simps]: shows-prec p x (r @ s) = shows-prec p x r @ s and
 shows-list-append [show-law-simps]: shows-list xs (r @ s) = shows-list xs r @ s
begin

abbreviation shows x ≡ shows-prec 0 x
abbreviation show x ≡ shows x

end

Convert a string to a show-function that simply prepends the string unchanged.

definition shows-string :: string ⇒ shows
where
 shows-string = (@)

lemma shows-string-append [show-law-simps]:
shows-string x (r @ s) = shows-string x r @ s
⟨proof⟩

fun shows-sep :: (′a ⇒ shows) ⇒ shows ⇒ ′a list ⇒ shows
where
 shows-sep s sep [] = shows-string "" |
 shows-sep s sep [x] = s x |
 shows-sep s sep (x#xs) = s x o sep o shows-sep s sep xs

lemma shows-sep-map [show-law-simps]:
 assumes ∃r s. ∀x ∈ set xs. showsx x (r @ s) = showsx x r @ s
 and ∃r s. sep (r @ s) = sep r @ s
 shows shows-sep showsx sep xs (r @ s) = shows-sep showsx sep xs r @ s
⟨proof⟩

lemma shows-sep-append [show-law-simps]:
 assumes ∃r s. ∀x ∈ set xs. showsx x (r @ s) = showsx x r @ s
 and ∃r s. sep (r @ s) = sep r @ s
 shows shows-sep showsx sep xs (r @ s) = shows-sep showsx sep xs r @ s
⟨proof⟩

definition shows-list-gen :: (′a ⇒ shows) ⇒ string ⇒ string ⇒ string ⇒ string ⇒ ′a list ⇒ shows
where
 shows-list-gen showsx e l s r xs =
 (if xs = [] then shows-string e
 else shows-string l o shows-sep showsx (shows-string s) xs o shows-string r)

lemma shows-list-gen-append [show-law-simps]:
 assumes ∃r s. ∀x ∈ set xs. showsx x (r @ s) = showsx x r @ s
 shows shows-list-gen showsx e l sep r xs s @ t
 ⟨proof⟩

lemma shows-list-gen-map:
 shows-list-gen f e l sep r (map g xs) = shows-list-gen (f o g) e l sep r xs
⟨proof⟩

definition pshows-list :: nat ⇒ shows list ⇒ shows
where
 pshows-list p xs = shows-list-gen id "" "" "" "" "" "" "" xs

definition shows-p :: ′a showsp ⇒ nat ⇒ ′a list ⇒ shows
where
 [code del]: shows-p s p = pshows-list p o map (s 0)
lemma showsp-list-code [code]:
 showsp-list s p xs = shows-list-gen (s 0) "\"" "\"", "\"" xs
 \(\text{proof}\)

lemma show-law-list [show-law-intros]:
 \(\forall x. x \in \text{set} \, xs \implies \text{show-law} \, s \, x\) \implies
 \text{show-law} \, (\text{shows-list-gen} \, s \, 0) \, xs
 \(\text{proof}\)

lemma showsp-list-append [show-law-simps]:
 \(\forall y \, z. \forall x \in \text{set} \, xs. \, s \, p \, (x \, @ \, z) = s \, p \, x \, @ \, y \, z\) \implies
 \text{shows-list-gen} \, s \, p \, xs \, (y \, @ \, z) = \text{shows-list-gen} \, s \, p \, (x \, @ \, y) \, z
 \(\text{proof}\)

1.2 Show-Functions for Characters and Strings

instantiation char :: show

begin

definition shows-prec p (c::char) = (#) c

definition shows-list (cs::string) = shows-string cs

instance
 \(\text{proof}\)

end

definition shows-nl = shows (CHR 0x1c)
definition shows-space = shows (CHR 0x20)
definition shows-paren s = shows (CHR ') o s o shows (CHR ')
definition shows-quote s = shows (CHR 0x27) o s o shows (CHR 0x27)
abbreviation apply-if b s ≡ (if b then s else id) — conditional function application

Parenthesize only if precedence is greater than 0.
definition shows-pl (p::nat) = apply-if \(p > 0\) (shows (CHR '\()\'))
definition shows-pr (p::nat) = apply-if \(p > 0\) (shows (CHR '\)\'))

lemma
 shows-nl-append [show-law-simps]: shows-nl (x @ y) = shows-nl x o y and
 shows-space-append [show-law-simps]: shows-space (x @ y) = shows-space x o y
 and
 shows-paren-append [show-law-simps]: \(\forall x \, y. s \, (x \, @ \, y) = s \, x \, @ \, y\) \implies
 shows-paren s (x @ y) = shows-paren s x @ y
 and
 shows-quote-append [show-law-simps]: \(\forall x \, y. s \, (x \, @ \, y) = s \, x \, @ \, y\) \implies
 shows-quote s (x @ y) = shows-quote s x @ y
 and
 shows-pl-append [show-law-simps]: shows-pl p (x @ y) = shows-pl p x @ y and
 shows-pr-append [show-law-simps]: shows-pr p (x @ y) = shows-pr p x @ y
 \(\text{proof}\)
lemma o-append:
\[(\forall x, y. f (x @ y) = f x @ y) \implies g (x @ y) = g x @ y \implies (f \circ g) (x @ y) = (f \circ g) x @ y\]

⟨proof⟩

instantiation list :: (show) show
begin

definition shows-prec (p :: nat) (xs :: 'a list) = shows-list xs

definition shows-list (xss :: 'a list list) = showp-list shows-prec 0 xss

instance
⟨proof⟩
end

definition shows-lines :: 'a::show list ⇒ shows
where
shows-lines = shows-sep shows shows-nl

definition shows-many :: 'a::show list ⇒ shows
where
shows-many = shows-sep shows id

definition shows-words :: 'a::show list ⇒ shows
where
shows-words = shows-sep shows shows-space

lemma shows-lines-append [show-law-simps]:
shows-lines xs (r @ s) = shows-lines xs r @ s
⟨proof⟩

lemma shows-many-append [show-law-simps]:
shows-many xs (r @ s) = shows-many xs r @ s
⟨proof⟩

lemma shows-words-append [show-law-simps]:
shows-words xs (r @ s) = shows-words xs r @ s
⟨proof⟩

lemma shows-foldr-append [show-law-simps]:
assumes \(\forall r. \forall x \in \text{set } xs. \text{showx } x (r @ s) = \text{showx } x r @ s\)
shows foldr shows xs (r @ s) = foldr shows xs r @ s
⟨proof⟩

lemma shows-sep-cong [fundef-cong]:
assumes xs = ys and \(\forall x. x \in \text{set } ys \implies f x = g x\)
shows shows-sep f sep xs = shows-sep g sep ys
(proof)

lemma shows-list-gen-cong [fundef-cong]:
 assumes xs = ys and \(\forall x. x \in \text{set} \ ys \implies f x = g x \)
 shows shows-list-gen f e l sep r xs = shows-list-gen g e l sep r ys
(proof)

lemma showsp-list-cong [fundef-cong]:
 xs = ys \implies p = q \implies \langle \forall p. x \in \text{set} \ ys \implies f p x = g p x \rangle \implies showsp-list f p xs = showsp-list g q ys
(proof)

abbreviation (input) shows-cons :: string \Rightarrow shows \Rightarrow shows (infixr +##+ 10)
where
 s +##+ p \equiv shows-string s \circ p

abbreviation (input) shows-append :: shows \Rightarrow shows \Rightarrow shows (infixr +@+ 10)
where
 s +@+ p \equiv s \circ p

instantiation String.literal :: show
begin

 definition shows-prec-literal :: nat \Rightarrow String.literal \Rightarrow string \Rightarrow string
 where shows-prec p s = shows-string (String.explode s)

 definition shows-list-literal :: String.literal list \Rightarrow string \Rightarrow string
 where shows-list ss = shows-string (concat (map String.explode ss))

 lemma shows-list-literal-code [code]:
 shows-list = foldr (\lambda s. shows-string (String.explode s))
(proof)

 instance (proof)

end

Don’t use Haskell’s existing ”Show” class for code-generation, since it is not compatible to the formalized class.

code-reserved Haskell Show

end

2 Instances of the Show Class for Standard Types

theory Show-Instances
imports
 Show
HOL.Rat

begin

definition showsp-unit :: unit showsp
where
 showsp-unit p x = shows-string "()"

lemma show-law-unit [show-law-intros]:
 show-law showsp-unit x
 ⟨proof⟩

abbreviation showsp-char :: char showsp
where
 showsp-char ≡ shows-prec

lemma show-law-char [show-law-intros]:
 show-law showsp-char x
 ⟨proof⟩

primrec showsp-bool :: bool showsp
where
 showsp-bool p True = shows-string "True"
 showsp-bool p False = shows-string "False"

lemma show-law-bool [show-law-intros]:
 show-law showsp-bool x
 ⟨proof⟩

primrec pshowsp-prod :: (shows × shows) showsp
where
 pshowsp-prod p (x, y) = shows-string "(" o s1 1 x o shows-string ")" o y o shows-string ")"

definition showsp-prod :: 'a showsp ⇒ 'b showsp ⇒ ('a × 'b) showsp
where
 [code del]: showsp-prod s1 s2 p = pshowsp-prod p o map-prod (s1 1) (s2 1)

lemma showsp-prod-simps [simp, code]:
 showsp-prod s1 s2 p (x, y) =
 shows-string "(" o s1 1 x o shows-string ", " o s2 1 y o shows-string ")"
 ⟨proof⟩

lemma show-law-prod [show-law-intros]:
 (\x. x ∈ Basic-BNFs.fsts y ⇒ show-law s1 x) ⇒
 (\x. x ∈ Basic-BNFs.snds y ⇒ show-law s2 x) ⇒
 show-law (showsp-prod s1 s2) y
 ⟨proof⟩
fun string-of-digit :: nat ⇒ string
where
string-of-digit n =
 (if n = 0 then "0"
 else if n = 1 then "1"
 else if n = 2 then "2"
 else if n = 3 then "3"
 else if n = 4 then "4"
 else if n = 5 then "5"
 else if n = 6 then "6"
 else if n = 7 then "7"
 else if n = 8 then "8"
else "9")

fun showsp-nat :: nat showsp
where
showsp-nat p n =
 (if n < 10 then shows-string (string-of-digit n)
 else showsp-nat p (n div 10) o shows-string (string-of-digit (n mod 10)))
declare showsp-nat.simps [simp del]

lemma show-law-nat [show-law-intros]:
 show-law showsp-nat n
 ⟨proof⟩

lemma showsp-nat-append [show-law-simps]:
 showsp-nat p n (x @ y) = showsp-nat p n x @ y
 ⟨proof⟩

definition showsp-int :: int showsp
where
showsp-int p i =
 (if i < 0 then shows-string "−" o showsp-nat p (nat (− i)) else showsp-nat p (nat i))

lemma show-law-int [show-law-intros]:
 show-law showsp-int i
 ⟨proof⟩

lemma showsp-int-append [show-law-simps]:
 showsp-int p i (x @ y) = showsp-int p i x @ y
 ⟨proof⟩

definition showsp-rat :: rat showsp
where
showsp-rat p x =
 (case quotient-of x of (d, n) ⇒
 if n = 1 then showsp-int p d else showsp-int p d o shows-string "/" o showsp-int p n)
lemma show-law-rat [show-law-intros]:
show-law showsp-rat r
⟨proof⟩

lemma showsp-rat-append [show-law-simps]:
showsp-rat p r (x # y) = showsp-rat p r x # y
⟨proof⟩

Automatic show functions are not used for unit, prod, and numbers: for unit and prod, we do not want to display "Unity" and "Pair"; for nat, we do not want to display "Suc (Suc (... (Suc 0) ...))"; and neither int nor rat are datatypes.
⟨ML⟩
derive show option sum prod unit bool nat int rat
export-code
shows-prec :: 'a::show option showsp
shows-prec :: ('a::show, 'b::show) sum showsp
shows-prec :: ('a::show * 'b::show) showsp
shows-prec :: unit showsp
shows-prec :: char showsp
shows-prec :: bool showsp
shows-prec :: nat showsp
shows-prec :: int showsp
shows-prec :: rat showsp
checking
end

2.1 Displaying Polynomials
We define a method which converts polynomials to strings and registers it in the Show class.
theory Show-Poly
imports
 Show-Instances
 HOL-Computational-Algebra.Polynomial
begin

fun show-factor :: nat ⇒ string where
 show-factor 0 = []
| show-factor (Suc 0) = "x"
| show-factor n = "x"^"n" @ show n

fun show-coef-factor where
 show-coef-factor c n = (if n = 0 then show c else if c = 1 then show-factor n
else show c @ show-factor n)
fun show-poly-main :: nat ⇒ ′a :: {zero,one,show} list ⇒ string where
 show-poly-main - [] = "0"
| show-poly-main n [c] = show-coeff-factor c n
| show-poly-main n (c # cs) = (if c = 0 then show-poly-main (Suc n) cs else
 show-coeff-factor c n @ ′+′ @ show-poly-main (Suc n) cs)

definition show-poly :: ′a :: {zero,one,show} poly ⇒ string where
 show-poly p = show-poly-main 0 (coeffs p)

definition shows-poly :: ′a :: {zero,one,show} poly showsp
where
 shows-poly p x = shows-string (show-poly x)

instantiation poly :: ({show,one,zero}) show
begin
 definition shows-prec p (x :: ′a poly) = shows-poly p x
 definition shows-list (ps :: ′a poly list) = shows-list shows-prec 0 ps

lemma show-law-poly [show-law-simps]:
 shows-prec p (a :: ′a poly) (r @ s) = shows-prec p a r @ s
⟨proof⟩
instance ⟨proof⟩
end

end

3 Show for Real Numbers – Interface

We just demand that there is some function from reals to string and register
this as show-function. Implementations are available in one of the theories
Show-Real-Impl and ../Algebraic-Numbers/Show-Real.....

case theory Show-Real
imports
 HOL.Real
 Show
begin

consts show-real :: real ⇒ string

definition shows-p-real :: real showsp
where
 shows-p-real p x y =
 (show-real x @ y)
lemma show-law-real [show-law-intros]:
 show-law showsp-real r
⟨proof⟩

lemma showsp-real-append [show-law-simps]:
 showsp-real p r (x @ y) = showsp-real p r x @ y
⟨proof⟩

⟨ML⟩
derive show real
end

4 Show for Complex Numbers

We print complex numbers as real and imaginary parts. Note that by
transitivity, this theory demands that an implementations for show-real is
available, e.g., by using one of the theories Show-Real-Impl or ../Algebraic-
Numbers/Show-Real-....

theory Show-Complex
imports
 HOL.Complex
 Show-Real
begin

definition show-complex x = (
 let r = Re x; i = Im x in
 if (i = 0) then show-real r else if
 r = 0 then show-real i @ "i" else
 "(" @ show-real r @ "+" @ show-real i @ ")"
)

definition showsp-complex :: complex showsp
where
 showsp-complex p x y =
 (show-complex x @ y)

lemma show-law-complex [show-law-intros]:
 show-law showsp-complex r
⟨proof⟩

lemma showsp-complex-append [show-law-simps]:
 showsp-complex p r (x @ y) = showsp-complex p r x @ y
⟨proof⟩

⟨ML⟩
derive show complex

11
5 Show Implemention for Real Numbers via Rational Numbers

We just provide an implementation for show of real numbers where we assume that real numbers are implemented via rational numbers.

theory Show-Real-Impl
imports
 Show-Real
 Show-Instances
begin

 We now define show-real.
overloading show-real ≡ show-real
begin
 definition show-real
 where show-real x ≡
 (if (∃ y. x = Ratreal y) then show (THE y. x = Ratreal y) else "Irrational")
end

lemma show-real-code[code]: show-real (Ratreal x) = show x
⟨proof⟩
end

References