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Abstract

We implemented a type-class for pretty-printing, similar to Haskell’s
Show-class [1]. Moreover, we provide instantiations for Isabelle/HOL’s
standard types like B, prod, sum, N, Z, and Q. It is further possible,
to automatically derive “to-string” functions for arbitrary user defined
datatypes similar to Haskell’s “deriving Show”.
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1 Converting Arbitrary Values to Readable Strings

A type class similar to Haskell’s Show class, allowing for constant-time con-
catenation of strings using function composition.

theory Show

*This research is supported by FWF (Austrian Science Fund) projects J3202 and
P22767.



imports
Main
Deriving. Generator-Aux
Deriving. Derive-Manager
begin

type-synonym
shows = string = string

— show-functions with precedence
type-synonym
'a showsp = nat = 'a = shows

1.1 The Show-Law

The "show law", shows-prec p x (r @ s) = shows-prec p x r @ s, states that
show-functions do not temper with or depend on output produced so far.

named-theorems show-law-simps <simplification rules for proving the show law)
named-theorems show-law-intros <introduction rules for proving the show law»

definition show-law :: 'a showsp = 'a = bool
where
show-law sz +— Vpyz. spzx(yQz)=spzy @ 2)

lemma show-lawl:
Apyz.spr(yQz)=spxyQz) = show-law s
by (simp add: show-law-def)

lemma show-lawkE:
show-law sz = (spx (yQz)=spry@Qz—=— P)=— P
by (auto simp: show-law-def)

lemma show-lawD:
show-law sz = spz (yQz)=spzryQz
by (blast elim: show-lawE)

class show =
fixes shows-prec :: 'a showsp
and shows-list :: 'a list = shows
assumes shows-prec-append [show-law-simps]: shows-prec p x (r Q s) = shows-prec
pxr @Qsand
shows-list-append [show-law-simps]: shows-list xs (r Q s) = shows-list xs r Q s
begin

abbreviation shows x = shows-prec 0 x
abbreviation show z = shows x """’

end



Convert a string to a show-function that simply prepends the string
unchanged.

definition shows-string :: string = shows
where
shows-string = (Q)

lemma shows-string-append [show-law-simps]:
shows-string x (r Q s) = shows-string z r Q s
by (simp add: shows-string-def)

fun shows-sep :: ('a = shows) = shows = 'a list = shows
where
shows-sep s sep [| = shows-string
shows-sep s sep [z] = s x|
shows-sep s sep (x#xs) = s x 0 sep o shows-sep s sep xs

1m |

lemma shows-sep-append [show-law-simps]:

assumes Ars. Vo € set xs. showsz z (r Q s) = showsz zr Q s

and Ars. sep (r @ s) =sepr Qs

shows shows-sep showsz sep xs (r @ s) = shows-sep showsz sep xs r Q s
using assms
proof (induct xs)

case (Cons z zs) then show ?Zcase by (cases xs) (simp-all)
qed (simp add: show-law-simps)

lemma shows-sep-map:
shows-sep [ sep (map g xs) = shows-sep (f o g) sep xs
by (induct xs) (simp, case-tac xs, simp-all)

definition
shows-list-gen :: ('a = shows) = string = string = string = string = 'a list =
shows

where
shows-list-gen showsx e l s r xs =
(if xs = [] then shows-string e

else shows-string | o shows-sep showsz (shows-string s) xs o shows-string )

lemma shows-list-gen-append [show-law-simps]:

assumes Ar s. Va€set zs. showsz z (r Q s) = showsz z r Q s

shows shows-list-gen showsz e | sep r zs (s Q t) = shows-list-gen showsz e | sep
rassQt

using assms by (cases zs) (simp-all add: shows-list-gen-def show-law-simps)

lemma shows-list-gen-map:
shows-list-gen f e | sep r (map g xs) = shows-list-gen (f o g) e | sep r s
by (simp-all add: shows-list-gen-def shows-sep-map)

definition pshowsp-list :: nat = shows list = shows
where



pshowsp-list p xs = shows-list-gen id "[|"”" """, " """ xs

definition showsp-list :: 'a showsp = nat = 'a list = shows
where
[code del]: showsp-list s p = pshowsp-list p o map (s 0)

lemma showsp-list-code [code]:
showsp-list s p xs = shows-list-gen (s 0) "[|” [ ", """ as
by (simp add: showsp-list-def pshowsp-list-def shows-list-gen-map)

lemma show-law-list [show-law-intros]:
(Az. = € set xs = show-law s ) = show-law (showsp-list s) s
by (simp add: show-law-def showsp-list-code show-law-simps)

lemma showsp-list-append [show-law-simps]:
(ApyzVeesetas.spr(yQz)=spzyQz) =
showsp-list s p s (y Q z) = showsp-list s p s y Q 2z
by (simp add: show-law-simps showsp-list-def pshowsp-list-def)

1.2 Show-Functions for Characters and Strings

instantiation char :: show
begin

definition shows-prec p (c::char) = (#) ¢
definition shows-list (cs::string) = shows-string cs
instance
by standard (simp-all add: shows-prec-char-def shows-list-char-def show-law-simps)

end

definition shows-nl = shows (CHR '[+")

definition shows-space = shows (CHR ")

definition shows-paren s = shows (CHR "'("’) o s o shows (CHR ")")
definition shows-quote s = shows (CHR 0x27) o s o shows (CHR 0x27)
abbreviation apply-if b s = (if b then s else id) — conditional function application

Parenthesize only if precedence is greater than 0.

definition shows-pl (p::nat) = apply-if (p > 0) (shows (CHR "'("))
definition shows-pr (p::nat) = apply-if (p > 0) (shows (CHR '")"))

lemma

shows-nl-append [show-law-simps]: shows-nl (x @ y) = shows-nl z Q@ y and

shows-space-append [show-law-simps]: shows-space (z Q y) = shows-space T Q y
and

shows-paren-append [show-law-simps]:

Az y. s (zQy) =szQy) = shows-paren s (z Q y) = shows-paren s v Q

y and

shows-quote-append [show-law-simps]:



Az y. s (z@Qy)=szQy) = shows-quote s (x Q y) = shows-quote s © Q y
and
shows-pl-append [show-law-simps]: shows-pl p (x Q y) = shows-pl p x @ y and
shows-pr-append [show-law-simps): shows-pr p (z Q y) = shows-pr p x Q y
by (simp-all add: shows-nl-def shows-space-def shows-paren-def shows-quote-def
shows-pl-def shows-pr-def show-law-simps)

lemma o-append:

Nzy. f(zQy)=fzQy)=g(@Qy) =grQy= (fog) (+Qy)=(f
0g)zQ@y

by simp

ML-file <show-generator.ML»

local-setup «
Show-Generator.register-foreign-partial-and-full-showsp Q{type-name list} 0
Q@{term pshowsp-list}
Q{term showsp-list} (SOME Q{thm showsp-list-def})
Q@{term map} (SOME Q{thm list.map-comp}) [true] @{thm show-law-list}
)

instantiation list :: (show) show
begin

definition shows-prec (p :: nat) (zs :: 'a list) = shows-list xs
definition shows-list (zss :: 'a list list) = showsp-list shows-prec 0 xss

instance
by standard (simp-all add: show-law-simps shows-prec-list-def shows-list-list-def)

end

definition shows-lines :: 'a::show list = shows
where
shows-lines = shows-sep shows shows-nl

definition shows-many :: 'a::show list = shows
where
shows-many = shows-sep shows id

definition shows-words :: 'a::show list = shows
where
shows-words = shows-sep shows shows-space

lemma shows-lines-append [show-law-simps|:
shows-lines zs (r Q s) = shows-lines zs r Q s

by (simp add: shows-lines-def show-law-simps)

lemma shows-many-append [show-law-simps|:



shows-many zs (r @ s) = shows-many zs r Q s
by (simp add: shows-many-def show-law-simps)

lemma shows-words-append [show-law-simps]:
shows-words zs (r Q s) = shows-words zs r Q s
by (simp add: shows-words-def show-law-simps)

lemma shows-foldr-append [show-law-simps]:
assumes Ar s. Vo € set xs. showz z (r Q s) = showz zr Q s
shows foldr showz zs (r @ s) = foldr showz zs r Q s
using assms by (induct zs) (simp-all)

lemma shows-sep-cong [fundef-cong]:
assumes zs = ys and Az. z € set ys = fr =g«
shows shows-sep f sep rs = shows-sep g sep ys
using assms
proof (induct ys arbitrary: s)
case (Cons y ys)
then show ?case by (cases ys) simp-all
qed simp

lemma shows-list-gen-cong [fundef-cong]:
assumes zs = ys and Az. z € set ys = fz =gz
shows shows-list-gen f e | sep r xs = shows-list-gen g e [ sep r ys
using shows-sep-cong [of zs ys f g] assms by (cases zs) (auto simp: shows-list-gen-def)

lemma showsp-list-cong [fundef-cong]:
s = Ys — p = q —
(Apz.z€selys= fpax=gpz) = showsp-list f p xs = showsp-list g q ys
by (simp add: showsp-list-code cong: shows-list-gen-cong)

abbreviation (input) shows-cons :: string = shows = shows (infixr «+#+> 10)
where
s +#+ p = shows-string s o p

abbreviation (input) shows-append :: shows = shows = shows (infixr (+@Q+)
10)
where

s+Q+p=sop

instantiation String.literal :: show
begin

definition shows-prec-literal :: nat = String.literal = string = string
where shows-prec p s = shows-string (String.explode s)

definition shows-list-literal :: String.literal list = string = string
where shows-list ss = shows-string (concat (map String.explode ss))



lemma shows-list-literal-code [code]:
shows-list = foldr (As. shows-string (String.explode s))
proof
fix ss
show shows-list ss = foldr (As. shows-string (String.explode s)) ss
by (induct ss) (simp-all add: shows-list-literal-def shows-string-def)
qed

instance by standard
(simp-all add: shows-prec-literal-def shows-list-literal-def shows-string-def)

end

Don’t use Haskell’s existing "Show" class for code-generation, since it is
not compatible to the formalized class.

code-reserved (Haskell) Show

end

2 Instances of the Show Class for Standard Types

theory Show-Instances
imports
Show
HOL.Rat
begin

definition showsp-unit :: unit showsp
where
showsp-unit p x = shows-string "'()"
lemma show-law-unit [show-law-intros]:
show-law showsp-unit
by (rule show-lawl) (simp add: showsp-unit-def show-law-simps)

abbreviation showsp-char :: char showsp
where
showsp-char = shows-prec

lemma show-law-char [show-law-intros|:
show-law showsp-char x
by (rule show-lawl) (simp add: show-law-simps)

primrec showsp-bool :: bool showsp
where
showsp-bool p True = shows-string "' True'" |
showsp-bool p False = shows-string ''False’

lemma show-law-bool [show-law-intros]:



show-law showsp-bool x
by (rule show-lawl, cases x) (simp-all add: show-law-simps)

primrec pshowsp-prod :: (shows X shows) showsp
where
pshowsp-prod p (x, y) = shows-string
shows-string '")"'

"o

"(" o x o shows-string "', " o0 y o

definition showsp-prod :: 'a showsp = 'b showsp = (‘a x 'b) showsp
where
[code del]: showsp-prod s1 s2 p = pshowsp-prod p o map-prod (s1 1) (s2 1)

lemma showsp-prod-simps [simp, code]:
showsp-prod s1 s2 p (z, y) =
shows-string "'("" 0 s1 1 x o shows-string ', "' 0 s2 1 y o shows-string '")"
by (simp add: showsp-prod-def)

lemma show-law-prod [show-law-intros]:

(Az. © € Basic-BNFs.fsts y = show-law sl ) =
(Az. © € Basic-BNFs.snds y = show-law s2 ) =
show-law (showsp-prod s1 s2) y

proof (induct y)

case (Pair = y)

note x = Pair [unfolded prod-set-simps]

show Zcase
by (rule show-lawl)

(auto simp del: o-apply intro: o-append intro: show-lawD * simp: show-law-simps)
qed

definition string-of-digit :: nat = string
where

string-of-digit n =
(if n = 0 then "0"
else if n = 1 then "'1"
else if n = 2 then "'2"
else if n = 3 then "'3"
else if n = 4 then """
else if n = &5 then "'5"
else if n = 6 then "'6"
else if n. = 7 then ""7"
else if n = 8 then "'8"
else 79"

fun showsp-nat :: nat showsp
where
showsp-nat p n =
(if n < 10 then shows-string (string-of-digit n)
else showsp-nat p (n div 10) o shows-string (string-of-digit (n mod 10)))



declare showsp-nat.simps [simp del]

lemma show-law-nat [show-law-intros|:

show-law showsp-nat n

by (rule show-lawl, induct n rule: nat-less-induct) (simp add: show-law-simps
showsp-nat.simps)

lemma showsp-nat-append [show-law-simps]:
showsp-nat p n (x @ y) = showsp-nat pn z Q y
by (intro show-lawD show-law-intros)

definition showsp-int :: int showsp
where
showsp-int p i =
(if © < 0 then shows-string "'—'" o showsp-nat p (nat (— i)) else showsp-nat p
(nat 7))

lemma show-law-int [show-law-intros]:
show-law showsp-int i
by (rule show-lawl, cases i < 0) (simp-all add: showsp-int-def show-law-simps)

lemma showsp-int-append [show-law-simps]:
showsp-int p i (x @Q y) = showsp-int p iz Q y
by (intro show-lawD show-law-intros)

definition showsp-rat :: rat showsp
where
showsp-rat p v =
(case quotient-of x of (d, n) =
if n = 1 then showsp-int p d else showsp-int p d o shows-string ''/"" o showsp-int
pn)

lemma show-law-rat [show-law-intros|:
show-law showsp-rat r
by (rule show-lawl, cases quotient-of r) (simp add: showsp-rat-def show-law-simps)

lemma showsp-rat-append [show-law-simps]:
showsp-rat p r (x Q y) = showsp-rat p rx Q y
by (intro show-lawD show-law-intros)

Automatic show functions are not used for unit, prod, and numbers: for
unit and prod, we do not want to display "Unity”" and "Pair’’; for nat, we
do not want to display "“Suc (Suc (... (Suc 0) ...))"; and neither int nor rat
are datatypes.

local-setup «
Show-Generator.register-foreign-partial-and-full-showsp Q{type-name prod} 0
@{term pshowsp-prod}
@{term showsp-prod} (SOME Q{thm showsp-prod-def})
@{term map-prod} (SOME @{thm prod.map-comp}) [true, true]



@{thm show-law-prod}
#> Show-Generator.register-foreign-showsp Q{typ unit} Q{term showsp-unit}
@{thm show-law-unit}
#> Show-Generator.register-foreign-showsp @Q{typ bool} Q{term showsp-bool}
@Q{thm show-law-bool}
#> Show-Generator.register-foreign-showsp @Q{typ char} Q{term showsp-char}
@{thm show-law-char}
#> Show-Generator.register-foreign-showsp @Q{typ nat} Q{term showsp-nat} Q{thm
show-law-nat}
#> Show-Generator.register-foreign-showsp Q{typ int} Q{term showsp-int} Q{thm
show-law-int}
#> Show-Generator.register-foreign-showsp Q{typ rat} @Q{term showsp-rat} Q{thm
show-law-rat}
)

derive show option sum prod unit bool nat int rat

export-code
shows-prec :: 'a::show option showsp
shows-prec :: ('a::show, 'b::show) sum showsp
shows-prec :: (‘a::show X 'b::show) showsp
shows-prec :: unit showsp
shows-prec :: char showsp
shows-prec :: bool showsp
shows-prec :: nat showsp
shows-prec :: int showsp
shows-prec :: rat showsp
checking

end

2.1 Displaying Polynomials

We define a method which converts polynomials to strings and registers it
in the Show class.

theory Show-Poly
imports

Show-Instances

HOL- Computational-Algebra. Polynomial
begin

fun show-factor :: nat = string where
show-factor 0 = []

| show-factor (Suc 0) = ""z"

| show-factor n = "z7" @ show n

fun show-coeff-factor where

show-coeff-factor ¢ n = (if n = 0 then show c else if ¢ = 1 then show-factor n
else show ¢ @ show-factor n)

10



fun show-poly-main :: nat = 'a :: {zero,one,show} list = string where
show-poly-main - [| = 0"
| show-poly-main n [c] = show-coeff-factor ¢ n
| show-poly-main n (¢ # cs) = (if ¢ = 0 then show-poly-main (Suc n) cs else
show-coeff-factor ¢ n @ "' 4+ " Q show-poly-main (Suc n) cs)

definition show-poly :: ’a :: {zero,one,show}poly = string where
show-poly p = show-poly-main 0 (coeffs p)

definition showsp-poly :: 'a :: {zero,one,show}poly showsp
where
showsp-poly p x = shows-string (show-poly x)

instantiation poly :: ({show,one,zero}) show
begin

definition shows-prec p (z :: 'a poly) = showsp-poly p x
definition shows-list (ps :: 'a poly list) = showsp-list shows-prec 0 ps

lemma show-law-poly [show-law-simps]:
shows-prec p (a :: 'a poly) (r @Q s) = shows-prec p ar @ s
by (simp add: shows-prec-poly-def showsp-poly-def show-law-simps)

instance by standard (auto simp: shows-list-poly-def show-law-simps)
end

end

3 Show Based on String Literals

theory Shows-Literal
imports
Main
Show-Instances
begin

In this theory we provide an alternative to the show-class, where String.literal
instead of string is used, with the aim that target-language readable strings
are used in generated code. In particular when writing Isabelle functions
that produce strings such as STR "'this is info for the user: ..."” this class
might be useful.

To keep it simple, in contrast to show, here we do not enforce the show
law.

type-synonym showsl = String.literal = String.literal

11



definition showsl-of-shows :: shows = showsl where
showsl-of-shows shws s = String.implode (shws []) + s

definition showsl-lit :: String.literal = showsl where
showsl-lit = (+)

definition showsl-paren s = showsl-lit (STR "'("’) o s o showsl-lit (STR "))

fun showsl-sep :: (‘a = showsl) = showsl = 'a list = showsl
where

showsl-sep s sep [| = showsl-lit (STR """ |

showsl-sep s sep [z] = s x |

showsl-sep s sep (z#xs) = s x 0 sep o showsl-sep s sep s

definition
showsl-list-gen :: (‘a = showsl) = String.literal = String.literal
= String.literal = String.literal = 'a list = showsl
where
showsl-list-gen showslr e | s r xs =
(if xs = [] then showsl-lit e
else showsl-lit | o showsl-sep showslz (showsl-lit s) xs o showsl-lit r)

definition default-showsl-list :: (‘a = showsl) = 'a list = showsl where
default-showsl-list sl = showsl-list-gen sl (STR "|") (STR """y (STR ", ") (STR

//} //)
definition [code-unfold]: char-zero = (48 :: integer)
lemma char-zero: char-zero = integer-of-char (CHR "'0'') by code-simp

fun lit-of-digit :: nat = String.literal where
lit-of-digit n =
String.implode [char-of-integer (char-zero + integer-of-nat n)]

class showl =
fixes showsl :: 'a = showsl
and showsl-list :: 'a list = showsl

definition showsl-lines desc-empty = showsl-list-gen showsl desc-empty (STR ")

(STR //I) (STR ////)

abbreviation show! where showl & = showsl x (STR """

instantiation char :: showl

begin

definition showsl-char ¢ = showsl-lit (String.implode [c]) — Shouldn’t there be a
faster conversion than via strings?

definition showsl-list-char cs s = showsl-lit (String.implode cs) s

instance ..

12



end

instantiation String.literal :: showl

begin

definition showsl (s :: String.literal) = showsl-lit s

definition showsl-list (xs :: String.literal list) = default-showsl-list showsl xs
instance ..

end

instantiation bool :: show!
begin
definition showsl (b :: bool) = showsl-lit (if b then STR " True' else STR "'False'")

definition showsl-list (zs :: bool list) = default-showsl-list showsl zs
instance ..
end

instantiation nat :: showl
begin
fun showsl-nat :: nat = showsl where
showsl-nat n =

(if n < 10 then showsl-lit (lit-of-digit n)

else showsl-nat (n div 10) o showsl-lit (lit-of-digit (n mod 10)))
definition showsl-list (zs :: nat list) = default-showsl-list showsl xs
instance ..
end

instantiation int :: showl
begin
definition showsl-int i =
(if i < 0 then showsl-lit (STR "—"') o showsl (nat (— i)) else showsl (nat 7))
definition showsl-list (xs :: int list) = default-showsl-list showsl xs
instance ..
end

instantiation integer :: showl

begin

definition showsl-integer :: integer = showsl where showsl-integer i = showsl
(int-of-integer 1)

definition showsl-list-integer :: integer list = showsl where showsl-list-integer s
= default-showsl-list showsl xs

instance ..

end

instantiation rat :: showl
begin
definition showsl-rat © =
(case quotient-of x of (d, n) =

13



if n = 1 then showsl d else showsl d o showsl-lit (STR "'/"") o showsl n)
definition showsl-list (zs :: rat list) = default-showsl-list showsl xs
instance ..
end

instantiation unit :: show!

begin

definition showsl (z :: unit) = showsl-lit (STR "()")

definition showsl-list (xs :: unit list) = default-showsl-list showsl xs
instance ..

end

instantiation option :: (showl) showl
begin
fun showsl-option where
showsl-option None = showsl-lit (STR ''None'’)
| showsl-option (Some ) = showsl-lit (STR ""Some (") o showsl x o showsl-lit (STR
//) //)
definition showsl-list (xs :: 'a option list) = default-showsl-list showsl xs
instance ..
end

instantiation sum :: (showl,showl) showl
begin
fun showsl-sum where
showsl-sum (Inl z) = showsl-lit (STR "Inl (") o showsl z o showsl-lit (STR "')"")

| showsl-sum (Inr x) = showsl-lit (STR "Inr (") o showsl x o showsl-lit (STR '')")

definition showsl-list (zs :: ('a + 'b) list) = default-showsl-list showsl xs
instance ..
end

instantiation prod :: (showl,showl) showl
begin
fun showsl-prod where

showsl-prod (Pair x y) = showsl-lit (STR "'("') o showsl

o showsl-lit (STR ", ") o showsl y o showsl-lit (STR ')"")

definition showsl-list (zs :: ('a x 'b) list) = default-showsl-list showsl xs
instance ..
end

definition [code-unfold]: showsl-nl = showsl (STR '[<1")

definition add-index :: showsl = nat = showsl where
add-index s i = s o showsl-lit (STR "."") o showsl i

instantiation list :: (showl) showl

14



begin
definition showsl-list :: 'a list = showsl where
showsl-list (zs :: 'a list) = showl-class.showsl-list xs
definition showsl-list-list (zs :: 'a list list) = default-showsl-list showsl xs
instance ..
end

end

4 Show for Real Numbers — Interface

We just demand that there is some function from reals to string and register
this as show-function. Implementations are available in one of the theories

Show-Real-Impl and ../Algebraic-Numbers/Show-Real-....

theory Show-Real
imports
HOL.Real
Show
Shows-Literal
begin

consts show-real :: real = string

definition showsp-real :: real showsp
where
showsp-real p z y =
(show-real z @ y)

lemma show-law-real [show-law-intros]:
show-law showsp-real T
by (rule show-lawl) (simp add: showsp-real-def show-law-simps)

lemma showsp-real-append [show-law-simps]:
showsp-real p v (x @ y) = showsp-real p r z Q y
by (intro show-lawD show-law-intros)

local-setup «

Show-Generator.register-foreign-showsp Q{typ real} Q{term showsp-real} Q{thm
show-law-real}
)

derive show real

instantiation real :: showl

begin

definition showsl (z :: real) = showsl-lit (String.implode (show-real x))
definition showsl-list (xs :: real list) = default-showsl-list showsl xs
instance ..
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end

end

5 Show for Complex Numbers

We print complex numbers as real and imaginary parts. Note that by
transitivity, this theory demands that an implementations for show-real is
available, e.g., by using one of the theories Show-Real-Impl or ../Algebraic-
Numbers/Show-Real-....

theory Show-Complex

imports
HOL.Complex
Show-Real

begin

definition show-complex x = (
let r = Rex;i=1Imxin
if (i = 0) then show-real r else if
r = 0 then show-real i Q "'i" else
"("Q show-real r @ "+ Q show-real i Q@ 7))

definition showsp-complex :: complex showsp
where
showsp-complex p x y =
(show-complex x @ y)

lemma show-law-complex [show-law-intros]:
show-law showsp-complex r
by (rule show-lawl) (simp add: showsp-complex-def show-law-simps)

lemma showsp-complez-append [show-law-simps]:
showsp-complex p r (x Q y) = showsp-complex p r z Q y
by (intro show-lawD show-law-intros)

local-setup «

Show-Generator.register-foreign-showsp Q{typ complex} Q{term showsp-complex}
@{thm show-law-complez}
)

derive show complex
end
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6 Show Implemetation for Real Numbers via Ra-
tional Numbers

We just provide an implementation for show of real numbers where we as-
sume that real numbers are implemented via rational numbers.

theory Show-Real-Impl
imports
Show-Real
Show-Instances
begin

We now define show-real.

overloading show-real = show-real
begin
definition show-real
where show-real v =
(if (3 y. £ = Ratreal y) then show (THE y. x = Ratreal y) else "'Irrational’’)
end

lemma show-real-code[code]: show-real (Ratreal ) = show x
unfolding show-real-def by auto

end

We provide two parsers for natural numbers and integers, which are
verified in the sense that they are the inverse of the show-function for these
types. We therefore also prove that the show-functions are injective.

theory Number-Parser
imports
Show-Instances
begin

We define here the bind-operations for option and sum-type. We do not
import these operations from Certification-Monads.Strict-Sum and Parser-
Monad, since these imports would yield a cyclic dependency of the two AFP
entries Show and Certification-Monads.

definition obind where obind opt f = (case opt of None = None | Some z = f

z)

definition sbind where sbind su f = (case su of Inl e = Inl e | Inr r = fr)

context begin

A natural number parser which is proven correct:

definition nat-of-digit :: char = nat option where
nat-of-digit * =
if t = CHR "0 then Some 0
else if v = CHR "'1" then Some 1
else if 1 = CHR ""2'" then Some 2

17



else if t = CHR "'3" then Some 3
else if v = CHR "'} then Some 4
else if x = CHR "'5" then Some &5
else if t = CHR "'6' then Some 6
else if t = CHR """ then Some 7
else if t = CHR ""8'" then Some 8
else if t = CHR ""9" then Some 9
else None

private fun nat-of-string-aux :: nat = string = nat option
where
nat-of-string-auz n [| = Some n |
nat-of-string-auz n (d # s) = (obind (nat-of-digit d) (Am. nat-of-string-aux (10
xn + m)s))

definition nat-of-string s =
case if s = [| then None else nat-of-string-auz 0 s of
None = Inl (STR "cannot convert "' + String.implode s + STR "' to a number'’)
| Some n = Inrn

private lemma nat-of-string-auz-snoc:
nat-of-string-aux n (s Q [¢]) =
obind (nat-of-string-auz n s) (A I. obind (nat-of-digit ¢) (A m. Some (10 * | +

m)))

by (induct s arbitrary:n, auto simp: obind-def split: option.splits)

private lemma nat-of-string-auz-digit:
assumes mI10: m < 10
shows nat-of-string-auz n (s Q string-of-digit m) =
obind (nat-of-string-aux n s) (A . Some (10 = 1 + m))
proof —
from mi0 have m =0V m=1Vm=2Vm=8Vm=4Vm=5Vm
=6Vm=7Vm=8Vm=9
by presburger
thus ?thesis by (auto simp add: nat-of-digit-def nat-of-string-auz-snoc string-of-digit-def
obind-def split: option.splits)
qed

private lemmas shows-move = showsp-nat-append|of 0 - [|,simplified, folded shows-prec-nat-def]

private lemma nat-of-string-auz-show: nat-of-string-auz 0 (show m) = Some m
proof (induct m rule:less-induct)
case IH: (less m)
show ?case proof (cases m < 10)
case m10: True
show ?thesis
apply (unfold shows-prec-nat-def)
apply (subst showsp-nat.simps)
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using m10 nat-of-string-auz-digit] OF m10, of 0 []]
by (auto simp add:shows-string-def nat-of-string-def string-of-digit-def obind-def)
next
case m: Fulse
then have m div 10 < m by auto
note IH = IH[OF this]
show ?thesis apply (unfold shows-prec-nat-def, subst showsp-nat.simps)
using m apply (simp add: shows-prec-nat-def[symmetric] shows-string-def)
apply (subst shows-move)
using nat-of-string-auz-digit m IH
by (auto simp: nat-of-string-def obind-def)
qed
qed

lemma fixes m :: nat shows show-nonemp: show m # ||
apply (unfold shows-prec-nat-def)
apply (subst showsp-nat.simps)
apply (fold shows-prec-nat-def)
apply (unfold o-def)
apply (subst shows-move)
apply (auto simp: shows-string-def string-of-digit-def)
done

The parser nat-of-string is the inverse of show.

lemma nat-of-string-show[simp]: nat-of-string (show m) = Inr m
using nat-of-string-auz-show by (auto simp: nat-of-string-def show-nonemp)

end

We also provide a verified parser for integers.

fun safe-head where safe-head [| = None | safe-head (z#xs) = Some x

definition int-of-string :: string = String.literal + int
where int-of-string s =
if safe-head s = Some (CHR "—'') then sbind (nat-of-string (¢l s)) (A n. Inr (—
int n))
else sbind (nat-of-string s) (A n. Inr (int n))

definition digits :: char set where
digits = set ("0123456789")

lemma set-string-of-digit: set (string-of-digit ) C digits
unfolding digits-def string-of-digit-def by auto

lemma range-showsp-nat: set (showsp-nat p n s) C digits U set s
proof (induct p n arbitrary: s rule: showsp-nat.induct)
case (I pns)
then show ?case using set-string-of-digit[of n] set-string-of-digit[of n mod 10]
by (auto simp: showsp-nat.simps[of p n| shows-string-def) fastforce
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qed

lemma set-show-nat: set (show (n :: nat)) C digits
using range-showsp-nat[of 0 n Nil] unfolding shows-prec-nat-def by auto

lemma int-of-string-show[simp): int-of-string (show z) = Inr
proof —
have show © = showsp-int 0 z [|
by (simp add: shows-prec-int-def)
also have ... = (if z < 0 then =" Q show (nat (—x)) else show (nat x))
unfolding showsp-int-def if-distrib shows-prec-nat-def
by (simp add: shows-string-def)
also have int-of-string ... = Inr x
proof (cases z < 0)
case True
thus ?thesis unfolding int-of-string-def sbind-def by simp
next
case Fulse
from set-show-nat have set (show (nat z)) C digits .
hence CHR "—"' ¢ set (show (nat x)) unfolding digits-def by auto
hence safe-head (show (nat z)) # Some CHR ''—"
by (cases show (nat ), auto)
thus ?thesis using Fulse
by (simp add: int-of-string-def sbind-def)
qed
finally show ?thesis .
qged

hide-const (open) obind sbind
Eventually, we derive injectivity of the show-functions for nat and int.

lemma inj-show-nat: inj (show :: nat = string)
by (rule inj-on-inversel[of - X s. case nat-of-string s of Inr x = z], auto)

lemma inj-show-int: inj (show :: int = string)
by (rule inj-on-inversel[of - X s. case int-of-string s of Inr © = z], auto)

end
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