An Axiomatic Characterization of the Single-Source
Shortest Path Problem

By Christine Rizkallah

March 19, 2025

Abstract

This theory is split into two sections. In the first section, we give
a formal proof that a well-known axiomatic characterization of the
single-source shortest path problem is correct. Namely, we prove that
in a directed graph G = (V, F) with a non-negative cost function on
the edges the single-source shortest path function p: V — RU {00} is
the only function that satisfies a set of four axioms. The first axiom
states that the distance from the source vertex s to itself should be
equal to zero. The second states that the distance from s to a vertex
v € V should be infinity if and only if there is no path from s to v.
The third axiom is called triangle inequality and states that if there is
a path from s to v, and an edge (u,v) € E, the distance from s to v
is less than or equal to the distance from s to u plus the cost of (u,v).
The last axiom is called justification, it states that for every vertex v
other than s, if there is a path p from s to v in G, then there is a
predecessor edge (u,v) on p such that the distance from s to v is equal
to the distance from s to u plus the cost of (u,v).

In the second section, we give a formal proof of the correctness of
an axiomatic characterization of the single-source shortest path prob-
lem for directed graphs with general cost functions ¢ : E — R. The
axioms here are more involved because we have to account for poten-
tial negative cycles in the graph. The axioms are summarized in the
three isabelle locales.

Contents
1 Shortest Path (with non-negative edge costs) 2

2 Shortest Path (with general edge costs) 4
theory ShortestPath
imports
Graph-Theory. Graph-Theory
begin

1 Shortest Path (with non-negative edge costs)

The following theory is used in the verification of a certifying algorithm’s
checker for shortest path. For more information see [1].

locale basic-sp =
fin-digraph +
fixes dist :: 'a = ereal
fixes c :: 'b = real
fixes s :: 'a
assumes general-source-val: dist s < 0
assumes trian:
Ne. e € arcs G =
dist (head G e) < dist (tail G e) + ce

locale basic-just-sp =

basic-sp +

fixes num :: 'a = enat

assumes just:

Av. [v € verts G; v # s; num v # o] =
Jde€arcs G. v = head G e A

dist v = dist (tail G e) + ce A
num v = num (tail G e) + (enat 1)

locale shortest-path-pos-cost =
basic-just-sp +
assumes s-in-G: s € verts G
assumes tail-val: dist s = 0
assumes no-path: Av. v € verts G = dist v = 00 +— num v = 0
assumes pos-cost: /\e. ecarcs G=0<ce

locale basic-just-sp-pred =
basic-sp +
fixes num :: 'a = enat
fixes pred :: 'a = 'b option
assumes just:
Nv. [v € verts G; v # s; num v #] =

dee€ ares G.
e = the (pred v) A
v = head G e A

dist v = dist (tail G e) + ce A
num v = num (tail G e) + (enat 1)

sublocale basic-just-sp-pred C basic-just-sp
(proof)

locale shortest-path-pos-cost-pred =
basic-just-sp-pred +
assumes s-in-G: s € verts G
assumes tail-val: dist s = 0

assumes no-path: \v. v € verts G = dist v = 00 <— num v = 00
assumes pos-cost: N\e. e € arcs G = 0 < ce

sublocale shortest-path-pos-cost-pred C shortest-path-pos-cost

(proof)

lemma tail-value-helper:
assumes hd p = last p
assumes distinct p
assumes p # [|
shows p = [hd p]
(proof)

lemma (in basic-sp) dist-le-cost:
fixes v :: ‘a
fixes p :: b list
assumes awalk s p v

shows dist v < awalk-cost ¢ p
(proof)

lemma (in fin-digraph) witness-path:
assumes [¢ s v = ereal T
shows 3 p. apath s p v A p ¢ s v = awalk-cost ¢ p

(proof)

lemma (in basic-sp) dist-le-pu:
fixes v :: 'a
assumes v € verts G

shows dist v < pcsw

(proof)

lemma (in basic-just-sp) dist-ge-ji:
fixes v :: 'a
assumes v € verts G
assumes num v # oo
assumes dist v # —o0
assumes [¢ s s = ereal 0
assumes dist s = 0
assumes Au. ucverts G = u#s =
num u # 0o => num u # enat 0
shows dist v > pcswv

(proof)

lemma (in shortest-path-pos-cost) tail-value-check:
fixes u :: ‘a
assumes s € verts G

shows ¢ s s = ereal 0

(proof)

lemma (in shortest-path-pos-cost) num-not0:
fixes v :: 'a
assumes v € verts G
assumes v # s
assumes num v # oo

shows num v # enat 0
(proof)

lemma (in shortest-path-pos-cost) dist-ne-ninf:
fixes v :: ‘a
assumes v € verts G

shows dist v # —o0
(proof)

theorem (in shortest-path-pos-cost) correct-shortest-path:
fixes v :: ‘a
assumes v € verts G

shows dist v=p cswv
{proof)

corollary (in shortest-path-pos-cost-pred) correct-shortest-path-pred:
fixes v :: ‘a
assumes v € verts G

shows dist v=p cswv

{proof)

end
theory ShortestPathNeg

imports ShortestPath

begin

2 Shortest Path (with general edge costs)

locale shortest-paths-locale-stepl =
fixes G :: (‘a, 'b) pre-digraph (structure)
fixes s :: ‘a
fixes c :: 'b = real
fixes num :: 'a = nat
fixes parent-edge :: 'a = 'b option
fixes dist :: 'a = ereal
assumes graphG: fin-digraph G
assumes s-assms:
s € verts G
dist s # oo
parent-edge s = None
num s = 0

assumes parent-num-assms:
Nv. [v € verts G; v # s; dist v # o0] =
(3 e € arcs G. parent-edge v = Some e A
head G e = v A dist (tail G e) # oo A
num v = num (tail G e) + 1)

assumes noPedge: Ne. e€arcs G =
dist (tail G e) # oo = dist (head G e) # o

sublocale shortest-paths-locale-stepl C fin-digraph G
(proof)

definition (in shortest-paths-locale-stepl) enum :: 'a = enat where
enum v = (if (dist v =00 V dist v = — 00) then co else num v)

locale shortest-paths-locale-step2 =
shortest-paths-locale-stepl +
basic-just-sp G dist ¢ s enum +
assumes source-val: (Jv € verts G. enum v # 00) = dist s = 0
assumes no-edge- Vm-Vf:
Ne. e € arcs G = dist (tail G e) = — co = V r. dist (head G €) # ereal r

function (in shortest-paths-locale-stepl) pwalk :: 'a = 'b list
where
pwalk v =
(if (v=1sV distv=o00V v ¢ verts G)
then []
else pwalk (tail G (the (parent-edge v))) Q [the (parent-edge v)]

(proof)
termination (in shortest-paths-locale-step1)

(proof)

lemma (in shortest-paths-locale-stepl) pwalk-simps:
v=sVdistv=o00Vv¢uverts G = pwalk v = ||
v# s = dist v # 0o => v € verts G =
pwalk v = pwalk (tail G (the (parent-edge v))) Q [the (parent-edge v)]

(proof)

definition (in shortest-paths-locale-stepl) pwalk-verts :: 'a = 'a set where
pwalk-verts v = {u. u € set (awalk-verts s (pwalk v))}

locale shortest-paths-locale-stepsd =
shortest-paths-locale-step2 +
fixes C :: (Ya x('b awalk)) set
assumes C-se:
C C {(u, p). dist u # oo A awalk u p u A awalk-cost ¢ p < 0}
assumes int-neg-cyc:
Nv. v € verts G = dist v = —c0 =

(fst © C) N pwalk-verts v # {}

locale shortest-paths-locale-step2-pred =
shortest-paths-locale-stepl +
fixes pred :: 'a = 'b option
assumes bj: basic-just-sp-pred G dist ¢ s enum pred
assumes source-val: (Jv € verts G. enum v # 00) = dist s = 0
assumes no-edge- Vm-Vf:
Ne. e € arcs G = dist (tail G e) = — co = V r. dist (head G €) # ereal r

lemma (in shortest-paths-locale-stepl) num-s-is-min:
assumes v € verts G
assumes v # §
assumes dist v # oo
shows num v > 0

(proof)

lemma (in shortest-paths-locale-stepl) path-from-root-Vr-ex:
fixes v :: 'a
assumes v € verts G
assumes v % §
assumes dist v # 00
shows de. s =* tail G e A
e € arcs G A head G e = v A dist (tail G e) # 0o A

parent-edge v = Some e A num v = num (tail G e) + 1

(proof)

lemma (in shortest-paths-locale-stepl) path-from-root-Vr:
fixes v :: ‘a
assumes v € verts G
assumes dist v # 0o

shows s —* v
(proof)

lemma (in shortest-paths-locale-stepl) p-V-less-inf:
fixes v :: 'a
assumes v € verts G
assumes dist v # 00
shows p ¢ s v # ©

{proof)

lemma (in shortest-paths-locale-step2) enum-not0:
assumes v € verts G
assumes v % §
assumes enum v # 00
shows enum v # enat 0

(proof)

lemma (in shortest-paths-locale-step2) dist-Vf-pu:
fixes v :: 'a
assumes vG: v € verts G
assumes dr. dist v = ereal r

shows dist v=p cswv

(proof)

lemma (in shortest-paths-locale-stepl) pwalk-awalk:
fixes v :: 'a
assumes v € verts G
assumes dist v # 0o
shows awalk s (pwalk v) v

(proof)

lemma (in shortest-paths-locale-step3) p-ninf:

fixes v :: ‘a

assumes v € verts G

assumes dist v = — 00
shows ppcsv=— o0
(proof)

lemma (in shortest-paths-locale-step3) correct-shortest-path:

fixes v :: ‘a

assumes v € verts G
shows dist v = cswv

(proof)

end

References

[1] E. Alkassar, S. Bohme, K. Mehlhorn, and C. Rizkallah. A framework
for the verification of certifying computations. Journal of Automated
Reasoning, 2013. To Appear.

	Shortest Path (with non-negative edge costs)
	Shortest Path (with general edge costs)

