
An Axiomatic Characterization of the Single-Source
Shortest Path Problem

By Christine Rizkallah

March 19, 2025

Abstract

This theory is split into two sections. In the first section, we give
a formal proof that a well-known axiomatic characterization of the
single-source shortest path problem is correct. Namely, we prove that
in a directed graph G = (V,E) with a non-negative cost function on
the edges the single-source shortest path function µ : V → R ∪ {∞} is
the only function that satisfies a set of four axioms. The first axiom
states that the distance from the source vertex s to itself should be
equal to zero. The second states that the distance from s to a vertex
v ∈ V should be infinity if and only if there is no path from s to v.
The third axiom is called triangle inequality and states that if there is
a path from s to v, and an edge (u, v) ∈ E, the distance from s to v
is less than or equal to the distance from s to u plus the cost of (u, v).
The last axiom is called justification, it states that for every vertex v
other than s, if there is a path p from s to v in G, then there is a
predecessor edge (u, v) on p such that the distance from s to v is equal
to the distance from s to u plus the cost of (u, v).

In the second section, we give a formal proof of the correctness of
an axiomatic characterization of the single-source shortest path prob-
lem for directed graphs with general cost functions c : E → R. The
axioms here are more involved because we have to account for poten-
tial negative cycles in the graph. The axioms are summarized in the
three isabelle locales.

Contents
1 Shortest Path (with non-negative edge costs) 2

2 Shortest Path (with general edge costs) 4
theory ShortestPath
imports

Graph-Theory.Graph-Theory
begin

1

1 Shortest Path (with non-negative edge costs)

The following theory is used in the verification of a certifying algorithm’s
checker for shortest path. For more information see [1].
locale basic-sp =

fin-digraph +
fixes dist :: ′a ⇒ ereal
fixes c :: ′b ⇒ real
fixes s :: ′a
assumes general-source-val: dist s ≤ 0
assumes trian:∧

e. e ∈ arcs G =⇒
dist (head G e) ≤ dist (tail G e) + c e

locale basic-just-sp =
basic-sp +
fixes num :: ′a ⇒ enat
assumes just:∧

v. [[v ∈ verts G; v 6= s; num v 6= ∞]] =⇒
∃ e ∈ arcs G. v = head G e ∧

dist v = dist (tail G e) + c e ∧
num v = num (tail G e) + (enat 1)

locale shortest-path-pos-cost =
basic-just-sp +
assumes s-in-G: s ∈ verts G
assumes tail-val: dist s = 0
assumes no-path:

∧
v. v ∈ verts G =⇒ dist v = ∞ ←→ num v = ∞

assumes pos-cost:
∧

e. e ∈ arcs G =⇒ 0 ≤ c e

locale basic-just-sp-pred =
basic-sp +
fixes num :: ′a ⇒ enat
fixes pred :: ′a ⇒ ′b option
assumes just:∧

v. [[v ∈ verts G; v 6= s; num v 6= ∞]] =⇒
∃ e ∈ arcs G.

e = the (pred v) ∧
v = head G e ∧
dist v = dist (tail G e) + c e ∧
num v = num (tail G e) + (enat 1)

sublocale basic-just-sp-pred ⊆ basic-just-sp
〈proof 〉

locale shortest-path-pos-cost-pred =
basic-just-sp-pred +
assumes s-in-G: s ∈ verts G
assumes tail-val: dist s = 0

2

assumes no-path:
∧

v. v ∈ verts G =⇒ dist v = ∞ ←→ num v = ∞
assumes pos-cost:

∧
e. e ∈ arcs G =⇒ 0 ≤ c e

sublocale shortest-path-pos-cost-pred ⊆ shortest-path-pos-cost
〈proof 〉

lemma tail-value-helper :
assumes hd p = last p
assumes distinct p
assumes p 6= []
shows p = [hd p]
〈proof 〉

lemma (in basic-sp) dist-le-cost:
fixes v :: ′a
fixes p :: ′b list
assumes awalk s p v
shows dist v ≤ awalk-cost c p
〈proof 〉

lemma (in fin-digraph) witness-path:
assumes µ c s v = ereal r
shows ∃ p. apath s p v ∧ µ c s v = awalk-cost c p
〈proof 〉

lemma (in basic-sp) dist-le-µ:
fixes v :: ′a
assumes v ∈ verts G
shows dist v ≤ µ c s v
〈proof 〉

lemma (in basic-just-sp) dist-ge-µ:
fixes v :: ′a
assumes v ∈ verts G
assumes num v 6= ∞
assumes dist v 6= −∞
assumes µ c s s = ereal 0
assumes dist s = 0
assumes

∧
u. u∈verts G =⇒ u 6=s =⇒

num u 6= ∞ =⇒ num u 6= enat 0
shows dist v ≥ µ c s v
〈proof 〉

lemma (in shortest-path-pos-cost) tail-value-check:
fixes u :: ′a
assumes s ∈ verts G
shows µ c s s = ereal 0
〈proof 〉

3

lemma (in shortest-path-pos-cost) num-not0 :
fixes v :: ′a
assumes v ∈ verts G
assumes v 6= s
assumes num v 6= ∞
shows num v 6= enat 0
〈proof 〉

lemma (in shortest-path-pos-cost) dist-ne-ninf :
fixes v :: ′a
assumes v ∈ verts G
shows dist v 6= −∞
〈proof 〉

theorem (in shortest-path-pos-cost) correct-shortest-path:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v
〈proof 〉

corollary (in shortest-path-pos-cost-pred) correct-shortest-path-pred:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v
〈proof 〉

end
theory ShortestPathNeg

imports ShortestPath

begin

2 Shortest Path (with general edge costs)
locale shortest-paths-locale-step1 =

fixes G :: (′a, ′b) pre-digraph (structure)
fixes s :: ′a
fixes c :: ′b ⇒ real
fixes num :: ′a ⇒ nat
fixes parent-edge :: ′a ⇒ ′b option
fixes dist :: ′a ⇒ ereal
assumes graphG: fin-digraph G
assumes s-assms:

s ∈ verts G
dist s 6= ∞
parent-edge s = None
num s = 0

4

assumes parent-num-assms:∧
v. [[v ∈ verts G; v 6= s; dist v 6= ∞]] =⇒

(∃ e ∈ arcs G. parent-edge v = Some e ∧
head G e = v ∧ dist (tail G e) 6= ∞ ∧
num v = num (tail G e) + 1)

assumes noPedge:
∧

e. e∈arcs G =⇒
dist (tail G e) 6= ∞ =⇒ dist (head G e) 6= ∞

sublocale shortest-paths-locale-step1 ⊆ fin-digraph G
〈proof 〉

definition (in shortest-paths-locale-step1) enum :: ′a ⇒ enat where
enum v = (if (dist v = ∞ ∨ dist v = − ∞) then ∞ else num v)

locale shortest-paths-locale-step2 =
shortest-paths-locale-step1 +
basic-just-sp G dist c s enum +
assumes source-val: (∃ v ∈ verts G. enum v 6= ∞) =⇒ dist s = 0
assumes no-edge-Vm-Vf :∧

e. e ∈ arcs G =⇒ dist (tail G e) = − ∞ =⇒ ∀ r . dist (head G e) 6= ereal r

function (in shortest-paths-locale-step1) pwalk :: ′a ⇒ ′b list
where

pwalk v =
(if (v = s ∨ dist v = ∞ ∨ v /∈ verts G)

then []
else pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]

)
〈proof 〉
termination (in shortest-paths-locale-step1)
〈proof 〉

lemma (in shortest-paths-locale-step1) pwalk-simps:
v = s ∨ dist v = ∞ ∨ v /∈ verts G =⇒ pwalk v = []
v 6= s =⇒ dist v 6= ∞ =⇒ v ∈ verts G =⇒

pwalk v = pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]
〈proof 〉

definition (in shortest-paths-locale-step1) pwalk-verts :: ′a ⇒ ′a set where
pwalk-verts v = {u. u ∈ set (awalk-verts s (pwalk v))}

locale shortest-paths-locale-step3 =
shortest-paths-locale-step2 +
fixes C :: (′a ×(′b awalk)) set
assumes C-se:

C ⊆ {(u, p). dist u 6= ∞ ∧ awalk u p u ∧ awalk-cost c p < 0}
assumes int-neg-cyc:∧

v. v ∈ verts G =⇒ dist v = −∞ =⇒

5

(fst ‘ C) ∩ pwalk-verts v 6= {}

locale shortest-paths-locale-step2-pred =
shortest-paths-locale-step1 +
fixes pred :: ′a ⇒ ′b option
assumes bj: basic-just-sp-pred G dist c s enum pred
assumes source-val: (∃ v ∈ verts G. enum v 6= ∞) =⇒ dist s = 0
assumes no-edge-Vm-Vf :∧

e. e ∈ arcs G =⇒ dist (tail G e) = − ∞ =⇒ ∀ r . dist (head G e) 6= ereal r

lemma (in shortest-paths-locale-step1) num-s-is-min:
assumes v ∈ verts G
assumes v 6= s
assumes dist v 6= ∞
shows num v > 0
〈proof 〉

lemma (in shortest-paths-locale-step1) path-from-root-Vr-ex:
fixes v :: ′a
assumes v ∈ verts G
assumes v 6= s
assumes dist v 6= ∞
shows ∃ e. s →∗ tail G e ∧

e ∈ arcs G ∧ head G e = v ∧ dist (tail G e) 6= ∞ ∧
parent-edge v = Some e ∧ num v = num (tail G e) + 1

〈proof 〉

lemma (in shortest-paths-locale-step1) path-from-root-Vr :
fixes v :: ′a
assumes v ∈ verts G
assumes dist v 6= ∞
shows s →∗ v
〈proof 〉

lemma (in shortest-paths-locale-step1) µ-V-less-inf :
fixes v :: ′a
assumes v ∈ verts G
assumes dist v 6= ∞
shows µ c s v 6= ∞
〈proof 〉

lemma (in shortest-paths-locale-step2) enum-not0 :
assumes v ∈ verts G
assumes v 6= s
assumes enum v 6= ∞
shows enum v 6= enat 0
〈proof 〉

6

lemma (in shortest-paths-locale-step2) dist-Vf-µ:
fixes v :: ′a
assumes vG: v ∈ verts G
assumes ∃ r . dist v = ereal r
shows dist v = µ c s v
〈proof 〉

lemma (in shortest-paths-locale-step1) pwalk-awalk:
fixes v :: ′a
assumes v ∈ verts G
assumes dist v 6= ∞
shows awalk s (pwalk v) v
〈proof 〉

lemma (in shortest-paths-locale-step3) µ-ninf :
fixes v :: ′a
assumes v ∈ verts G
assumes dist v = − ∞
shows µ c s v = − ∞
〈proof 〉

lemma (in shortest-paths-locale-step3) correct-shortest-path:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v
〈proof 〉

end

References

[1] E. Alkassar, S. Böhme, K. Mehlhorn, and C. Rizkallah. A framework
for the verification of certifying computations. Journal of Automated
Reasoning, 2013. To Appear.

7

	Shortest Path (with non-negative edge costs)
	Shortest Path (with general edge costs)

