An Axiomatic Characterization of the Single-Source
Shortest Path Problem

By Christine Rizkallah

March 19, 2025

Abstract

This theory is split into two sections. In the first section, we give
a formal proof that a well-known axiomatic characterization of the
single-source shortest path problem is correct. Namely, we prove that
in a directed graph G = (V, F) with a non-negative cost function on
the edges the single-source shortest path function p: V — RU {00} is
the only function that satisfies a set of four axioms. The first axiom
states that the distance from the source vertex s to itself should be
equal to zero. The second states that the distance from s to a vertex
v € V should be infinity if and only if there is no path from s to v.
The third axiom is called triangle inequality and states that if there is
a path from s to v, and an edge (u,v) € E, the distance from s to v
is less than or equal to the distance from s to u plus the cost of (u,v).
The last axiom is called justification, it states that for every vertex v
other than s, if there is a path p from s to v in G, then there is a
predecessor edge (u,v) on p such that the distance from s to v is equal
to the distance from s to u plus the cost of (u,v).

In the second section, we give a formal proof of the correctness of
an axiomatic characterization of the single-source shortest path prob-
lem for directed graphs with general cost functions ¢ : E — R. The
axioms here are more involved because we have to account for poten-
tial negative cycles in the graph. The axioms are summarized in the
three isabelle locales.

Contents
1 Shortest Path (with non-negative edge costs) 2

2 Shortest Path (with general edge costs) 8
theory ShortestPath
imports
Graph-Theory. Graph-Theory
begin

1 Shortest Path (with non-negative edge costs)

The following theory is used in the verification of a certifying algorithm’s
checker for shortest path. For more information see [1].

locale basic-sp =
fin-digraph +
fixes dist :: 'a = ereal
fixes c :: 'b = real
fixes s :: 'a
assumes general-source-val: dist s < 0
assumes trian:
Ne. e € arcs G =
dist (head G e) < dist (tail G e) + ce

locale basic-just-sp =

basic-sp +

fixes num :: 'a = enat

assumes just:

Av. [v € verts G; v # s; num v # o] =
Jde€arcs G. v = head G e A

dist v = dist (tail G e) + ce A
num v = num (tail G e) + (enat 1)

locale shortest-path-pos-cost =
basic-just-sp +
assumes s-in-G: s € verts G
assumes tail-val: dist s = 0
assumes no-path: Av. v € verts G = dist v = 00 +— num v = 0
assumes pos-cost: /\e. ecarcs G=0<ce

locale basic-just-sp-pred =
basic-sp +
fixes num :: 'a = enat
fixes pred :: 'a = 'b option
assumes just:
Nv. [v € verts G; v # s; num v #] =

dee€ ares G.
e = the (pred v) A
v = head G e A

dist v = dist (tail G e) + ce A
num v = num (tail G e) + (enat 1)

sublocale basic-just-sp-pred C basic-just-sp

using basic-just-sp-pred-axioms

unfolding basic-just-sp-pred-def
basic-just-sp-pred-axioms-def

by unfold-locales (blast)

locale shortest-path-pos-cost-pred =

basic-just-sp-pred +

assumes s-in-G: s € verts G

assumes tail-val: dist s = 0

assumes no-path: \v. v € verts G = dist v = 00 +— num v = 00
assumes pos-cost: /\e. ecarcs G= 0<ce

sublocale shortest-path-pos-cost-pred C shortest-path-pos-cost
using shortest-path-pos-cost-pred-axioms
by unfold-locales
(auto simp: shortest-path-pos-cost-pred-def
shortest-path-pos-cost-pred-axioms-def)

lemma tail-value-helper:
assumes hd p = last p
assumes distinct p
assumes p # [|
shows p = [hd p]
by (metis assms distinct.simps(2) list.sel(1) neg-Nil-conv last-ConsR last-in-set)

lemma (in basic-sp) dist-le-cost:
fixes v :: ‘a
fixes p :: b list
assumes awalk s p v
shows dist v < awalk-cost ¢ p
using assms
proof (induct length p arbitrary: p v)
case (
hence s = v by auto
thus ?case using 0(1) general-source-val
by (metis awalk-cost-Nil length-0-conv zero-ereal-def)
next
case (Suc n)
then obtain p’ ¢ where p’e: p = p’ @ [¢]
by (cases p rule: rev-cases) auto
then obtain u where ewu: awalk s p’ u A awalk u [e] v
using awalk-append-iff Suc(3) by simp
then have du: dist u < ereal (awalk-cost ¢ p’)
using Suc p’e by simp
from ewu have ust: u = tail G e and vta: v = head G e
by auto
then have dist v < dist u + c e
using ewu du ust trian[where e=e] by force
with du have dist v < ereal (awalk-cost ¢ p') + c e
by (metis add-right-mono order-trans)
thus dist v < awalk-cost ¢ p
using awalk-cost-append p'e by simp
qed

lemma (in fin-digraph) witness-path:

assumes p ¢ s v = ereal r
shows 3 p. apath s p v A p ¢ s v = awalk-cost ¢ p
proof —
have sv: s —* v
using shortest-path-inf[of s v | assms by fastforce
{
fix p assume awalk s p v
then have no-neg-cyc:
- (Fw q. awalk w q w A w € set (awalk-verts s p) A awalk-cost ¢ ¢ < 0)
using neg-cycle-imp-inf-u assms by force
}

thus ?thesis using no-neg-cyc-reach-imp-path[OF sv] by presburger
qed

lemma (in basic-sp) dist-le-pu:
fixes v :: 'a
assumes v € verts G
shows dist v < pcswv
proof (rule ccontr)
assume nt: = Zthesis
show Fulse
proof (cases p ¢ s v)
show Ar. p ¢ s v = ereal r = False
proof —
fix r assume r-asm: p ¢ s v = ereal r
hence sv: s =* v
using shortest-path-inf[where u=s and v=v and f=c| by auto
obtain p where
awalk s p v
wcsv= awalk-cost ¢ p
using witness-path[OF r-asm| unfolding apath-def by force
thus Fulse using nt dist-le-cost by simp
qed
next
show p ¢ s v = co = Fulse using nt by simp
next
show ¢ s v = — 00 = Fulse using dist-le-cost
proof —
assume asm: (L ¢ S U = — 00
let ?C = (Az. ereal (awalk-cost ¢ x)) ‘{p. awalk s p v}
have dze€ ?C. x < dist v
using nt unfolding u-def not-le INF-less-iff by simp
then obtain p where
awalk s p v
awalk-cost ¢ p < dist v
by force
thus Fulse using dist-le-cost by force
qed
qed

qed

lemma (in basic-just-sp) dist-ge-ji:
fixes v :: 'a
assumes v € verts G
assumes num v # 0o
assumes dist v # —o0
assumes p ¢ s s = ereal 0
assumes dist s = 0
assumes Au. u€verts G = u#s =
num u # 0o = num u % enat 0
shows dist v > pcswv
proof —
obtain n where enat n = num v using assms(2) by force
thus “thesis using assms
proof (induct n arbitrary: v)
case 0 thus ?case by (cases v=s, auto)

next
case (Suc n)
thus “case
proof (cases v=3s)
case Fulse
obtain e where e-assms:
e € arcs G
v = head G ¢

dist v = dist (tail G e) + ereal (c e)
num v = num (tail G e) + enat 1
using just[OF Suc(3) False Suc(4)] by blast
then have nsinf:num (tail G e) # oo
by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))
then have ns:enat n = num (tail G e)
using e-assms(4) Suc(2) by force
have ds: dist (tail G e) = p c s (tail G e)
using Suc(1)[OF ns tail-in-verts|OF e-assms(1)] nsinf]
Suc(5—8) e-assms(3) dist-le-p| OF tail-in-verts|OF e-assms(1)]]
by simp
have dmuc:dist v > p ¢ s (tail G e) + ereal (¢ e)
using e-assms(3) ds by auto
thus ?thesis
proof (cases dist v = o)
case Fulse
have arc-to-ends G e = (tail G e, v)
unfolding arc-to-ends-def
by (simp add: e-assms(2))
obtain r where ur: ¢ s (tail G e) = ereal r
using e-assms(3) Suc(5) ds False
by (cases i ¢ s (tail G e), auto)
obtain p where
awalk s p (tail G) and

ps: poc s (tail G e) = ereal (awalk-cost ¢ p)
using witness-path|OF pr] unfolding apath-def
by blast

then have pe: awalk s (p Q [€]) v
using e-assms(1,2) by (auto simp: awalk-simps)

hence muc:p ¢ s v < p ¢ s (tail G e) + ereal (¢ e)

using ps min-cost-le-walk-cost| OF pe] by simp

thus dist v > p ¢ s v using dmuc by simp

qed simp
qged (simp add: Suc(6,7))
qed
qed

lemma (in shortest-path-pos-cost) tail-value-check:
fixes u :: 'a
assumes s € verts G
shows p ¢ s s = ereal 0
proof —
have «*: awalk s [| s using assms unfolding awalk-def by simp
hence p ¢ s s < ereal 0 using min-cost-le-walk-cost[OF %] by simp
moreover
have (Ap. awalk s p s = ereal(awalk-cost ¢ p) > ereal 0)
using pos-cost pos-cost-pos-awalk-cost by auto
hence p c s s > ereal 0
unfolding p-def by (blast intro: INF-greatest)
ultimately
show ?thesis by simp
qed

lemma (in shortest-path-pos-cost) num-not0:
fixes v :: ‘a
assumes v € verts G
assumes v % §
assumes num v # 0o
shows num v # enat 0
proof —
obtain ku where num v = ku + enat 1
using assms just by blast
thus ?thesis by (induct ku) auto
qed

lemma (in shortest-path-pos-cost) dist-ne-ninf:
fixes v :: ‘a
assumes v € verts G
shows dist v # —oc0
proof (cases num v =)
case Fulse
obtain n where enat n = num v

using False by force

thus ?thesis using assms False
proof (induct n arbitrary: v)
case 0 thus “case
using num-not0 tail-val by (cases v=s, auto)
next
case (Suc n)
thus Zcase
proof (cases v=s)
case True
thus “thesis using tail-val by simp
next
case Fulse
obtain e where e-assms:
e € ares G
dist v = dist (tail G e) + ereal (c e)
num v = num (tail G e) + enat 1
using just[OF Suc(3) False Suc(4)] by blast
then have nsinf:num (tail G e) # oo
by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))
then have ns:enat n = num (tail G e)
using e-assms(3) Suc(2) by force
have dist (tail G e) # — oo
by (rule Suc(1) [OF ns tail-in-verts|OF e-assms(1)] nsinf])
thus ?thesis using e-assms(2) by simp
qed
qged
next
case True
thus ?thesis using no-path[OF assms] by simp
qed

theorem (in shortest-path-pos-cost) correct-shortest-path:

fixes v :: ‘a

assumes v € verts G

shows dist v=p cswv

using no-path|OF assms(1)] dist-le-u[OF assms(1)]
dist-ge-u[OF assms(1) - dist-ne-ninf[OF assms(1)]
tail-value-check| OF s-in-G| tail-val num-not0]
by fastforce

corollary (in shortest-path-pos-cost-pred) correct-shortest-path-pred:
fixes v :: 'a
assumes v € verts G
shows dist v=p cswv

using correct-shortest-path assms by simp

end
theory ShortestPathNeg

imports ShortestPath

begin

2 Shortest Path (with general edge costs)

locale shortest-paths-locale-stepl =
fixes G :: (‘a, 'b) pre-digraph (structure)
fixes s :: a
fixes ¢ :: 'b = real
fixes num :: 'a = nat
fixes parent-edge :: 'a = 'b option
fixes dist :: ‘a = ereal
assumes graphG: fin-digraph G
assumes s-assms:
s € verts G
dist s # o0
parent-edge s = None
num s = 0
assumes parent-num-assms:
Nv. v € verts G; v # s; dist v # 0] =
(e € arcs G. parent-edge v = Some e A
head G e = v A dist (tail G e) # co N
num v = num (tail G e) + 1)
assumes noPedge: \e. e€arcs G =
dist (tail G e) # oo = dist (head G e) # oo

sublocale shortest-paths-locale-stepl C fin-digraph G
using graphG by auto

definition (in shortest-paths-locale-stepl) enum :: 'a = enat where
enum v = (if (dist v =00 V dist v = — 00) then oo else num v)

locale shortest-paths-locale-step2 =
shortest-paths-locale-step1 +
basic-just-sp G dist ¢ s enum +
assumes source-val: (Jv € verts G. enum v # 00) = dist s = 0
assumes no-edge- Vm-Vf:
Ne. e € arcs G = dist (tail G e) = — co =V r. dist (head G €) # ereal r

function (in shortest-paths-locale-step1) pwalk :: 'a = 'b list
where
pwalk v =
(if (v=1sV distv=o00V v ¢ verts G)
then []
else pwalk (tail G (the (parent-edge v))) Q [the (parent-edge v)]
)

by auto

termination (in shortest-paths-locale-step1)
using parent-num-assms
by (relation measure num, auto, fastforce)

lemma (in shortest-paths-locale-stepl) pwalk-simps:
v=sVdistv=o00Vv¢uverts G = pwalk v =[]
v# s = dist v # 0o = v € verts G =
pwalk v = pwalk (tail G (the (parent-edge v))) Q [the (parent-edge v)]
by auto

definition (in shortest-paths-locale-step1) pwalk-verts :: 'a = 'a set where
pwalk-verts v = {u. u € set (awalk-verts s (pwalk v))}

locale shortest-paths-locale-step3 =
shortest-paths-locale-step2 +
fixes C :: (Ya x('b awalk)) set
assumes C-se:
C C {(u, p). dist u # 0o A awalk u p u A awalk-cost ¢ p < 0}
assumes int-neg-cyc:
Av. v € verts G = dist v = —o0 =
(fst © C) N pwalk-verts v # {}

locale shortest-paths-locale-step2-pred =
shortest-paths-locale-stepl +
fixes pred :: 'a = 'b option
assumes bj: basic-just-sp-pred G dist ¢ s enum pred
assumes source-val: (Jv € verts G. enum v # 00) = dist s = 0
assumes no-edge- Vm-Vf:
Ne. e € arcs G = dist (tail G e) = — co =V r. dist (head G €) # ereal r

lemma (in shortest-paths-locale-stepl) num-s-is-min:
assumes v € verts G
assumes v # §
assumes dist v # 0o
shows num v > 0
using parent-num-assms[OF assms] by fastforce

lemma (in shortest-paths-locale-stepl) path-from-root-Vr-ex:
fixes v :: ‘a
assumes v € verts G
assumes v % §
assumes dist v £ 00
shows Jde. s =* tail G e A
e € arcs G A head G e = v A dist (tail G e) # oo A
parent-edge v = Some e A num v = num (tail G e) + 1
using assms
proof (induct num v — 1 arbitrary : v)

case (
obtain e where ee:
e € arcs G head G e = v dist (tail G e) # oo
parent-edge v = Some e num v = num (tail G e) + 1
using parent-num-assms[OF 0(2—4)] by fast
have tail Ge=s
using num-s-is-min[OF tail-in-verts [OF ee(1)] - ee(3)]
ee(5) 0(1) by auto
then show ?case using ee by auto
next
case (Suc n')
obtain e where ee:
e € arcs G head G e = v dist (tail G e) # oo
parent-edge v = Some e num v = num (tail G e) + 1
using parent-num-assms[OF Suc(8—5)] by fast
then have ss: tail G e # s
using num-s-is-min tail-in-verts
Suc(2) s-assms(4) by force
have nst: n’ = num (tail G e) — 1
using ee(5) Suc(2) by presburger
obtain e’ where reach: s —* tail G ¢’ and
et e’ € arcs G head G e’ = tail G e dist (tail G ') # o0
using Suc(1)[OF nst tail-in-verts|OF ee(1)] ss ee(3)] by blast
then have s —* tail G e
by (metis arc-implies-awalk reachable-awalk reachable-trans)
then show ?case using e’ ee by auto
qged

lemma (in shortest-paths-locale-stepl) path-from-root-Vr:
fixes v :: ‘a
assumes v € verts G
assumes dist v # 0o
shows s —* v
proof(cases v = s)
case True thus ?thesis using assms by simp
next
case Fulse
obtain e where s —* tail G e e € arcs G head G e = v
using path-from-root-Vr-ex| OF assms(1) False assms(2)] by blast
then have s —* tail G e tail G e — v
by (auto intro: in-arcs-imp-in-arcs-ends)
then show ?thesis by (rule reachable-adj-trans)
qed

lemma (in shortest-paths-locale-stepl) p-V-less-inf:
fixes v :: 'a
assumes v € verts G
assumes dist v # 0o

shows i ¢ s v #

10

using assms path-from-root-Vr p-reach-conv by force

lemma (in shortest-paths-locale-step2) enum-not0:
assumes v € verts G
assumes v # s
assumes enum v # 00
shows enum v # enat 0
using parent-num-assms|OF assms(1,2)] assms unfolding enum-def by auto

lemma (in shortest-paths-locale-step2) dist-Vf-p:
fixes v :: ‘a
assumes vG: v € verts G
assumes 3 r. dist v = ereal
shows dist v = cswv
proof —
have ds: dist s = 0
using assms source-val unfolding enum-def by force
have ews:awalk s [] s
using s-assms(1) unfolding awalk-def by simp
have mu: p ¢ s s = ereal 0
using min-cost-le-walk-cost|OF ews, where c=c|
awalk-cost-Nil ds dist-le-u[OF s-assms(1)] zero-ereal-def
by simp
thus ?thesis
using ds assms dist-le-u[OF vG]
dist-ge-u[OF vG - - mu ds enum-not0)]
unfolding enum-def by fastforce
qed

lemma (in shortest-paths-locale-stepl) pwalk-awalk:
fixes v :: ‘a
assumes v € verts G
assumes dist v £ 00
shows awalk s (pwalk v) v
proof (cases v=s)
case True
thus ?thesis
using assms pwalk.simps[where v=1v)
awalk-Nil-iff by presburger
next
case Fulse
from assms show ?thesis
proof (induct rule: pwalk.induct)
fix v
let ?e = the (parent-edge v)
let ?u = tail G ?e
assume ewu: = (v = sV dist v =00 V v & verts G) =
2u € verts G = dist 2u # 0o —
awalk s (pwalk ?u) ?u

11

assume vG: v € verts G
assume dv: dist v # 00
thus awalk s (pwalk v) v
proof (cases v = sV dist v =00 V v ¢ verts G)
case True
thus ?thesis
using pwalk.simps vG dv
awalk-Nil-iff by fastforce

next
case Fulse
obtain ¢ where ee:
e €carcs G
parent-edge v = Some e
head G e = v

dist (tail G e) # oo
using parent-num-assms False by blast
hence awalk s (pwalk ?u) %u
using ewu[OF Fulse| tail-in-verts by simp
hence awalk s (pwalk (tail G €) @ [e]) v
using ee(1—3) vG
by (auto simp: awalk-simps simp del: pwalk.simps)
also have pwalk (tail G e) Q [e] = pwalk v
using False ee(2) unfolding pwalk.simps[where v=v| by auto
finally show ?thesis .
qed
qged
qed

lemma (in shortest-paths-locale-step3) p-ninf:

fixes v :: 'a

assumes v € verts G

assumes dist v = — 00
shows ppcsv=—
proof —

have awalk s (pwalk v) v
using pwalk-awalk assms by force
moreover
obtain w where ww: w € fst * C' N pwalk-verts v
using int-neg-cyc[OF assms| by blast
then obtain ¢ where
awalk w q w
awalk-cost ¢ ¢ < 0
using C-se by auto
moreover
have w € set (awalk-verts s (pwalk v))
using ww unfolding pwalk-verts-def by fast
ultimately
show ?thesis using neg-cycle-imp-inf-u by force
qed

12

lemma (in shortest-paths-locale-step3) correct-shortest-path:
fixes v :: ‘a
assumes v € verts G
shows dist v=p cswv
proof(cases dist v)
show Ar. dist v = ereal r = dist v=p c s v
using dist-Vf-u[OF assms| by simp
next
show dist v =00 = distv=p csv
using p-V-less-inf[OF assms]
dist-le-u[OF assms] by simp
next
show dist v = —0c0o = distv=p cswv
using p-ninf[OF assms] by simp
qed

end

References

[1] E. Alkassar, S. Bohme, K. Mehlhorn, and C. Rizkallah. A framework
for the verification of certifying computations. Journal of Automated
Reasoning, 2013. To Appear.

13

	Shortest Path (with non-negative edge costs)
	Shortest Path (with general edge costs)

