An Axiomatic Characterization of the Single-Source Shortest Path Problem

By Christine Rizkallah

August 16, 2018

Abstract

This theory is split into two sections. In the first section, we give a formal proof that a well-known axiomatic characterization of the single-source shortest path problem is correct. Namely, we prove that in a directed graph $G = (V, E)$ with a non-negative cost function on the edges the single-source shortest path function $\mu : V \to \mathbb{R} \cup \{\infty\}$ is the only function that satisfies a set of four axioms. The first axiom states that the distance from the source vertex s to itself should be equal to zero. The second states that the distance from s to a vertex $v \in V$ should be infinity if and only if there is no path from s to v. The third axiom is called triangle inequality and states that if there is a path from s to v, and an edge $(u, v) \in E$, the distance from s to v is less than or equal to the distance from s to u plus the cost of (u, v). The last axiom is called justification, it states that for every vertex v other than s, if there is a path p from s to v in G, then there is a predecessor edge (u, v) on p such that the distance from s to v is equal to the distance from s to u plus the cost of (u, v).

In the second section, we give a formal proof of the correctness of an axiomatic characterization of the single-source shortest path problem for directed graphs with general cost functions $c : E \to \mathbb{R}$. The axioms here are more involved because we have to account for potential negative cycles in the graph. The axioms are summarized in the three isabelle locales.

Contents

1 Shortest Path (with non-negative edge costs) 2

2 Shortest Path (with general edge costs) 8

theory ShortestPath
imports Graph-Theory
begin
1 Shortest Path (with non-negative edge costs)

The following theory is used in the verification of a certifying algorithm’s checker for shortest path. For more information see [1].

locale basic-sp =
 fin-digraph +
fixes dist :: 'a ⇒ ereal
fixes c :: 'b ⇒ real
fixes s :: 'a
assumes general-source-val: dist s ≤ 0
assumes trian:
 ∀ e. e ∈ arcs G ⇒ dist (head G e) ≤ dist (tail G e) + c e

locale basic-just-sp =
 basic-sp +
fixes num :: 'a ⇒ enat
assumes just:
 ∀ v. [v ∈ verts G; v ≠ s; num v ≠ ∞] ⇒
 ∃ e ∈ arcs G. v = head G e ∧
 dist v = dist (tail G e) + c e ∧
 num v = num (tail G e) + (enat 1)

locale shortest-path-pos-cost =
 basic-just-sp +
assumes s-in-G: s ∈ verts G
assumes tail-val: dist s = 0
assumes no-path: ∀ v. v ∈ verts G ⇒ dist v = ∞ ⇐⇒ num v = ∞
assumes pos-cost: ∀ e. e ∈ arcs G ⇒ 0 ≤ c e

locale basic-just-sp-pred =
 basic-sp +
fixes num :: 'a ⇒ enat
fixes pred :: 'a ⇒ 'b option
assumes just:
 ∀ v. [v ∈ verts G; v ≠ s; num v ≠ ∞] ⇒
 ∃ e ∈ arcs G.
 e = the (pred v) ∧
 v = head G e ∧
 dist v = dist (tail G e) + c e ∧
 num v = num (tail G e) + (enat 1)

sublocale basic-just-sp-pred ⊆ basic-just-sp
using basic-just-sp-pred-axioms
unfolding basic-just-sp-pred-def
 basic-just-sp-pred-axioms-def
by unfold-locales (blast)

locale shortest-path-pos-cost-pred =
basic-just-sp-pred +
assumes s-in-G: s ∈ verts G
assumes tail-val: dist s = 0
assumes no-path: ∨ v. v ∈ verts G ⇒ dist v = ∞ ↔ num v = ∞
assumes pos-cost: ∨ e. e ∈ arcs G ⇒ 0 ≤ c e

sublocale shortest-path-pos-cost-pred ⊆ shortest-path-pos-cost
using shortest-path-pos-cost-pred-axioms
by unfold-locales
(auto simp: shortest-path-pos-cost-pred-def
 shortest-path-pos-cost-pred-axioms-def)

lemma tail-value-helper:
assumes hd p = last p
assumes distinct p
assumes p ≠ []
shows p = [hd p]
by (metis assms distinct.simps(2) list.sel(1) neq-Nil-conv last-ConsR last-in-set)

lemma (in basic-sp) dist-le-cost:
fixes v :: 'a
fixes p :: 'b list
assumes awalk s p v
shows dist v ≤ awalk-cost c p
using assms
proof (induct length p arbitrary: p v)
case 0
 hence s = v by auto
 thus ?case using 0(1) general-source-val
 by (metis awalk-cost-Nil length-0-conv zero-ereal-def)
case (Suc n)
 then obtain p′ e where p′: p = p′ @ [e]
 by (cases p rule: rev-cases) auto
 then obtain u where ewu: awalk s p′ u ∧ awalk u [e] v
 using awalk-append-iff Suc(3) by simp
 then have du: dist u ≤ ereal (awalk-cost c p′)
 using Suc p′e by simp
 from ewu have ust: u = tail G e and eta: v = head G e
 by auto
 then have dist v ≤ dist u + c e
 using ewu du ust trian[where e=e] by force
 with du have dist v ≤ ereal (awalk-cost c p′) + c e
 by (metis add-right-mono order-trans)
 thus dist v ≤ awalk-cost c p
 using awalk-cost-append p′e by simp
qed

lemma (in fin-digraph) witness-path:
assumes $\mu \cdot c \cdot s \cdot v = \text{ereal} \cdot r$
shows $\exists \ p . \ \text{apath} \ s \ p \ v \land \mu \cdot c \cdot s \cdot v = \text{awalk-cost} \ c \ p$

proof

have $sv : s \to^* v$
 using shortest-path-inf[of $s \cdot v \ c$] assms by fastforce

 fix p assume $\text{awalk} \ s \ p \ v$
 then have $\text{no-neg-cyc} :$
 $\neg (\exists w \ q . \ \text{awalk} \ w \ q \ w \land \ w \in \text{set} \ (\text{awalk-verts} \ s \ p) \land \text{awalk-cost} \ c \ q < 0)$
 using neg-cycle-imp-inf-μ assms by force

thus $?\text{thesis}$ using no-neg-cyc-reach-imp-path[OF sv] by presburger

qed

lemma (in basic-sp) dist-le-μ:

fixes $v :: 'a$

assumes $v \in \text{verts} \ G$

shows $\text{dist} \ v \leq \mu \cdot c \cdot s \cdot v$

proof (rule ccontr)

assume $nt : \neg ?\text{thesis}$

show $False$

proof (cases $\mu \cdot c \cdot s \cdot v$)

next

show $\mu \cdot c \cdot s \cdot v = \infty \Longrightarrow False$ using nt by simp

next

show $\mu \cdot c \cdot s \cdot v = - \infty \Longrightarrow False$ using dist-le-cost

proof

assume $asm : \mu \cdot c \cdot s \cdot v = - \infty$

let $\forall C = (\lambda x . \text{ereal} \ (\text{awalk-cost} \ c \ x)) \ \cdot \ \{ p . \ \text{awalk} \ s \ p \ v \}$

have $\exists x \in \ ?C . \ x < \text{dist} \ v$
 using nt unfolding μ-def not-le INF-less-iff by simp

then obtain p where
 $\text{awalk} \ s \ p \ v$
 $\text{awalk-cost} \ c \ p < \text{dist} \ v$
 by force

thus $False$ using dist-le-cost by force

qed

qed
lemma (in basic-just-sp) dist-ge-µ:
 fixes v :: 'a
 assumes v ∈ verts G
 assumes num v ≠ ∞
 assumes dist v ≠ −∞
 assumes µ c s s = ereal 0
 assumes dist s = 0
 assumes ∃ u. u∈verts G ⇒ u≠s ⇒
 num u ≠ ∞ ⇒ num u ≠ enat 0
 shows dist v ≥ µ c s v
proof –
 obtain n where enat n = num v using assms(2) by force
 thus ?thesis using assms
 proof (induct n arbitrary: v)
 case 0 thus ?case by (cases v=s, auto)
 next
 case (Suc n)
 thus ?case
 proof (cases v=s)
 case False
 obtain e where e-assms:
 e ∈ arcs G
 v = head G e
 dist v = dist (tail G e) + ereal (c e)
 num v = num (tail G e) + enat 1
 using just[OF Suc(3) False Suc(4)] by blast
 then have nsinf: num (tail G e) ≠ ∞
 by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))
 then have ns:enat n = num (tail G e)
 using e-assms(4) Suc(2) by force
 have ds: dist (tail G e) = µ c s (tail G e)
 using Suc(1)[OF ns tail-in-verts[OF e-assms(1)] nsinf]
 Suc(5−8) e-assms(3) dist-le-µ[OF tail-in-verts[OF e-assms(1)]]
 by simp
 have dmuc:dist v ≥ µ c s (tail G e) + ereal (c e)
 using e-assms(3) ds by auto
 thus ?thesis
 proof (cases dist v = ∞)
 case False
 have arc-to-ends G e = (tail G e, v)
 unfolding arc-to-ends-def
 by (simp add: e-assms(2))
 obtain r where µr: µ c s (tail G e) = ereal r
 using e-assms(3) Suc(5) ds False
 by (cases µ c s (tail G e), auto)
 obtain p where
 awalk s p (tail G e) and
\[\mu s: \mu c s (tail G e) = \text{ereal} (\text{awalk-cost} c p) \]

```

using witness-path[OF \mu r] unfolding apath-def
by blast
then have pe: awalk s (p @ [e]) v
using e-assms(1,2) by (auto simp: awalk-simps)
hence muc: \mu c s v \leq \mu c s (tail G e) + \text{ereal} (c e)
using \mu s min-cost-le-walk-cost[OF pe] by simp
thus dist v \geq \mu c s v using dmuc by simp
qed simp
```

```
lemma (in shortest-path-pos-cost) tail-value-check:
  fixes u :: 'a
  assumes s \in verts G
  shows \mu c s s = \text{ereal} 0
proof
  have \*: awalk s [] s using assms unfolding apath-def by simp
  hence \mu c s s \leq \text{ereal} 0 using min-cost-le-walk-cost[OF \*] by simp
  moreover
  have (\\p. awalk s p s \implies \text{ereal}(\text{awalk-cost} c p) \geq \text{ereal} 0)
  using pos-cost pos-cost-pos-awalk-cost by auto
  hence \mu c s s \geq \text{ereal} 0
  unfolding \mu-def by (blast intro: INF-greatest)
  ultimately
  show \?thesis by simp
qed
```

```
lemma (in shortest-path-pos-cost) num-not0:
  fixes v :: 'a
  assumes v \in verts G
  assumes v \neq s
  assumes num v \neq \infty
  shows num v \neq \text{enat} 0
proof
  obtain ku where num v = ku + \text{enat} 1
  using False by force
  using assms just by blast
  thus \?thesis by (induct ku) auto
qed
```

```
lemma (in shortest-path-pos-cost) dist-ne-ninf:
  fixes v :: 'a
  assumes v \in verts G
  shows dist v \neq -\infty
proof (cases num v = \infty)
case False
  obtain n where enat n = num v
  using False by force
```

6
thus ?thesis using assms False

proof (induct n arbitrary: v)

 case 0 thus ?case
 using num-not0 tail-val by (cases v=s, auto)

next

 case (Suc n)
 thus ?case
 proof (cases v=s)
 case True
 thus ?thesis using tail-val by simp
 next
 case False
 obtain e where e-assms: e ∈ arcs G
dist v = dist (tail G e) + ereal (c e)
num v = num (tail G e) + enat 1
 using just[OF Suc(3) False Suc(4)] by blast
then have nsinf:num (tail G e) ≠ ∞
by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))
then have ns:enat n = num (tail G e)
using e-assms(3) Suc(2) by force
have dist (tail G e) ≠ −∞
by (rule Suc(1) [OF ns tail-in-verts[OF e-assms(1)] nsinf])
thus ?thesis using e-assms(2) by simp
qed

next

 case True
 thus ?thesis using no-path[OF assms] by simp
qed

theorem (in shortest-path-pos-cost) correct-shortest-path:
 fixes v :: 'a
 assumes v ∈ verts G
 shows dist v = µ c s v
 using no-path[OF assms(1)] dist-le-µ[OF assms(1)]
dist-ge-µ[OF assms(1)] - dist-ne-ninf[OF assms(1)]
tail-value-check[OF s-in-G] tail-val num-not0
 by fastforce

corollary (in shortest-path-pos-cost-pred) correct-shortest-path-pred:
 fixes v :: 'a
 assumes v ∈ verts G
 shows dist v = µ c s v
 using correct-shortest-path assms by simp

end

theory ShortestPathNeg
imports ShortestPath

begin

2 Shortest Path (with general edge costs)

locale shortest-paths-locale-step1 =
 fixes G :: ('a, 'b) pre-digraph (structure)
 fixes s :: 'a
 fixes c :: 'b ⇒ real
 fixes num :: 'a ⇒ nat
 fixes parent-edge :: 'a ⇒ 'b option
 fixes dist :: 'a ⇒ ereal
 assumes graphG: fin-digraph G
 assumes s-assms: s ∈ verts G
 dist s ≠ ∞
 parent-edge s = None
 num s = 0
 assumes parent-num-assms:
 (∀ v. [v ∈ verts G; v ≠ s; dist v ≠ ∞] −⇒
 (∃ e ∈ arcs G. parent-edge v = Some e ∧
 head G e = v ∧ dist (tail G e) ≠ ∞ ∧
 num v = num (tail G e) + 1)
 assumes noPedge: ∀ e. e ∈ arcs G −⇒
 dist (tail G e) ≠ ∞ −⇒ dist (head G e) ≠ ∞

sublocale shortest-paths-locale-step1 ⊆ fin-digraph G
 using graphG by auto

definition (in shortest-paths-locale-step1) enum :: 'a ⇒ enat where
 enum v = (if (dist v = ∞ ∨ dist v = −∞) then ∞ else num v)

locale shortest-paths-locale-step2 =
 shortest-paths-locale-step1 +
 basic-just-sp G dist c s enum +
 assumes source-val: (∃ v ∈ verts G. enum v ≠ ∞) −⇒ dist s = 0
 assumes no-edge-Vm-Vf:
 (∀ e. e ∈ arcs G −⇒ dist (tail G e) = −∞ −⇒ ∀ r. dist (head G e) ≠ ereal r)

function (in shortest-paths-locale-step1) pwalk :: 'a ⇒ 'b list
 where
 pwalk v =
 (if (v = s ∨ dist v = ∞ ∨ v ∉ verts G)
 then []
 else pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]
)
 by auto
termination (in shortest-paths-locale-step1)
using parent-num-assms
by (relation measure num, auto, fastforce)

lemma (in shortest-paths-locale-step1) pwalk-simps:
v = s ∨ dist v = ∞ ∨ v ∉ verts G ⇒ pwalk v = []
v ≠ s ⇒ dist v ≠ ∞ ⇒ v ∈ verts G ⇒
pwalk v = pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]
by auto

definition (in shortest-paths-locale-step1) pwalk-verts :: 'a set where
pwalk-verts v = {u. u ∈ set (awalk-verts s (pwalk v))}

locale shortest-paths-locale-step3 =
shortest-paths-locale-step2 +
fixeds C :: ('a × ('b awalk)) set
assumes C-se: C ⊆ {(u, p). dist u ≠ ∞ ∧ awalk u p u ∧ awalk-cost c p < 0}
assumes int-neg-cyc: (∀v. v ∈ verts G ⇒ dist v = −∞ ⇒ (fst ' C) ∩ pwalk-verts v ≠ {}}

locale shortest-paths-locale-step2-pred =
shortest-paths-locale-step1 +
fixeds pred :: 'a ⇒ 'b option
assumes bj: basic-just-sp-pred G dist c s enum pred
assumes source-val: (∃v ∈ verts G. enum v ≠ ∞) ⇒ dist s = 0
assumes no-edge-Vm-Vf:
∀e. e ∈ arcs G ⇒ dist (tail G e) = −∞ ⇒ ∀r. dist (head G e) ≠ ereal r

lemma (in shortest-paths-locale-step1) num-s-is-min:
assumes v ∈ verts G
assumes v ≠ s
assumes dist v ≠ ∞
shows num v > 0
using parent-num-assms[OF assms] by fastforce

lemma (in shortest-paths-locale-step1) path-from-root-Vr-ex:
fixeds v :: 'a
assumes v ∈ verts G
assumes v ≠ s
assumes dist v ≠ ∞
shows ∃e. s →* tail G e ∧
e ∈ arcs G ∧ head G e = v ∧ dist (tail G e) ≠ ∞ ∧
parent-edge v = Some e ∧ num v = num (tail G e) + 1
using assms
proof (induct num v − 1 arbitrary : v)
case 0
 obtain e where ee:
 e ∈ arcs G head G e = v dist (tail G e) ≠ ∞
 parent-edge v = Some e num v = num (tail G e) + 1
 using parent-num-assms[OF 0(2−4)] by fast
 have tail G e = s
 using num-s-is-min[OF tail-in-verts [OF ee(1)] - ee(3)]
 ee(5) 0(1) by auto
 then show ?case using ee by auto
next
case (Suc n')
 obtain e where ee:
 e ∈ arcs G head G e = v dist (tail G e) ≠ ∞
 parent-edge v = Some e num v = num (tail G e) + 1
 using parent-num-assms[OF Suc(3−5)] by fast
 then have ss: tail G e ≠ s
 using num-s-is-min tail-in-verts
 Suc(2) s-assms(4) by force
 have nst: n' = num (tail G e) − 1
 using ee(5) Suc(2) by presburger
 obtain e' where reach: s →* tail G e' and
 e'; e' ∈ arcs G head G e' = tail G e dist (tail G e') ≠ ∞
 using Suc(1)[OF nst tail-in-verts[OF ee(1)] ss ee(3)] by blast
 then have s →* tail G e
 by (metis arc-implies-awalk reachable-awalk reachable-trans)
 then show ?case using e' ee by auto
qed

lemma (in shortest-paths-locale-step1) path-from-root-Vs:
 fixes v :: 'a
 assumes v ∈ verts G
 assumes dist v ≠ ∞
 shows s →* v
proof(cases v = s)
case True thus ?thesis using assms by simp
next
case False
 obtain e where s →* tail G e e ∈ arcs G head G e = v
 using path-from-root-Vs-ex[OF assms(1) False assms(2)] by blast
 then have s →* tail G e tail G e → v
 by (auto intro: in-arcs-imp-in-arcs-ends)
 then show ?thesis by (rule reachable-adj-trans)
qed

lemma (in shortest-paths-locale-step1) μ-V-less-inf:
 fixes v :: 'a
 assumes v ∈ verts G
 assumes dist v ≠ ∞
 shows μ c s v ≠ ∞
using assms path-from-root-Vr μ-reach-conv by force

lemma (in shortest-paths-locale-step2) enum-not0:
 assumes v ∈ verts G
 assumes v ≠ s
 assumes enum v ≠ ∞
 shows enum v ≠ enat 0
 using parent-num-assms[OF assms \(1, 2\)] assms unfolding enum-def by auto

lemma (in shortest-paths-locale-step2) dist-Vf-μ:
 fixes v :: 'a
 assumes vG: v ∈ verts G
 assumes ∃ r. dist v = ereal r
 shows dist v = μ c s v
proof
 have ds: dist s = 0
 using assms source-val unfolding enum-def by force
 have ews: awalk s [] s
 using s-assms(1) unfolding awalk-def by simp
 have mu: μ c s s = ereal 0
 using min-cost-le-walk-cost[OF ews, where c=c] awalk-cost-Nil ds dist-le-μ[OF s-assms(1)] zero-ereal-def by simp
 thus ?thesis
 using ds assms dist-le-μ[OF vG] dist-ge-μ[OF vG - - mu ds enum-not0] unfolding enum-def by fastforce
qed

lemma (in shortest-paths-locale-step1) pwalk-awalk:
 fixes v :: 'a
 assumes v ∈ verts G
 assumes dist v ≠ ∞
 shows awalk s (pwalk v) v
proof (cases v=s)
case True
 thus ?thesis
 using assms pwalk.simps[where v=v] awalk-Nil-iff by presburger
next
case False
from assms show ?thesis
proof (induct rule: pwalk.induct)
 fix v
 let ?e = the (parent-edge v)
 let ?u = tail G ?e
 assume ewu: ¬ (v = s ∨ dist v = ∞ ∨ v ∉ verts G) ⟹
 ?u ∈ verts G ⟹ dist ?u ≠ ∞ ⟹
 awalk s (pwalk ?u) ?u
assume \(v \in \text{verts } G \)
assume dist \(v \neq \infty \)
thus awalk \(s \ (pwalk \ v) \ v \)

proof (cases \(v = s \lor \text{dist } v = \infty \lor v \notin \text{verts } G \))

case True

thus \(?thesis\)
using pwalk.simps vG dv
awalk-Nil-iff by fastforce

next
case False

obtain \(e \) where \(ee \):
\(e \in \text{arcs } G \)
parent-edge \(v = \text{Some } e \)
head \(G \ e = v \)
dist (tail \(G \ e \)) \(\neq \infty \)
using parent-num-assms False by blast

hence awalk \(s \ (pwalk \ ?u) \ ?u \)
using ewu[OF False] tail-in-verts by simp

hence awalk \(s \ (pwalk \ (\text{tail } G \ e) \ @ \ [e]) \ v \)
using ee(1-3) vG
by (auto simp: awalk-cost c q < 0 simp del: awalk-cost)

also have \(pwalk \ (\text{tail } G \ e) \ @ \ [e] = pwalk \ v \)
using False ee(2) unfolding pwalk.simps[where \(v = v \)] by auto

finally show \(?thesis\).

qed

qed

lemma (in shortest-paths-locale-step3) \(\mu \text{-ninf} \):

fixes \(v :: 'a \)
assumes \(v \in \text{verts } G \)
assumes dist \(v = -\infty \)
shows \(\mu \ c \ s \ v = -\infty \)

proof

have awalk \(s \ (pwalk \ v) \ v \)
using pwalk-awalk assms by force

moreover

obtain \(w \) where \(ww \): \(w \in \text{fst } C \cap \text{pwalk-verts } v \)
using int-neg-cyc[OF assms] by blast

then obtain \(q \) where

awalk \(w \ q \ w \)
awalk-cost \(c \ q < 0 \)
using C-se by auto

moreover

have \(w \in \text{set } (\text{awalk-verts } s \ (pwalk \ v)) \)
using ww unfolding pwalk-verts-def by fast

ultimately

show \(?thesis\) using neg-cycle-imp-inf-\(\mu \) by force

qed
lemma (in shortest-paths-locale-step3) correct-shortest-path:
fixes v :: 'a
assumes v ∈ verts G
shows dist v = μ c s v
proof (cases dist v)
 show ⋀ r. dist v = ereal r ⇒ dist v = μ c s v
 using dist-Vf-μ[OF assms] by simp
 next
 show dist v = ∞ ⇒ dist v = μ c s v
 using μ-V-less-inf[OF assms] dist-le-μ[OF assms] by simp
 next
 show dist v = −∞ ⇒ dist v = μ c s v
 using μ-ninf[OF assms] by simp
qed

end

References