
An Axiomatic Characterization of the Single-Source
Shortest Path Problem

By Christine Rizkallah

March 19, 2025

Abstract

This theory is split into two sections. In the first section, we give
a formal proof that a well-known axiomatic characterization of the
single-source shortest path problem is correct. Namely, we prove that
in a directed graph G = (V,E) with a non-negative cost function on
the edges the single-source shortest path function µ : V → R ∪ {∞} is
the only function that satisfies a set of four axioms. The first axiom
states that the distance from the source vertex s to itself should be
equal to zero. The second states that the distance from s to a vertex
v ∈ V should be infinity if and only if there is no path from s to v.
The third axiom is called triangle inequality and states that if there is
a path from s to v, and an edge (u, v) ∈ E, the distance from s to v
is less than or equal to the distance from s to u plus the cost of (u, v).
The last axiom is called justification, it states that for every vertex v
other than s, if there is a path p from s to v in G, then there is a
predecessor edge (u, v) on p such that the distance from s to v is equal
to the distance from s to u plus the cost of (u, v).

In the second section, we give a formal proof of the correctness of
an axiomatic characterization of the single-source shortest path prob-
lem for directed graphs with general cost functions c : E → R. The
axioms here are more involved because we have to account for poten-
tial negative cycles in the graph. The axioms are summarized in the
three isabelle locales.

Contents
1 Shortest Path (with non-negative edge costs) 2

2 Shortest Path (with general edge costs) 8
theory ShortestPath
imports

Graph-Theory.Graph-Theory
begin

1

1 Shortest Path (with non-negative edge costs)

The following theory is used in the verification of a certifying algorithm’s
checker for shortest path. For more information see [1].
locale basic-sp =

fin-digraph +
fixes dist :: ′a ⇒ ereal
fixes c :: ′b ⇒ real
fixes s :: ′a
assumes general-source-val: dist s ≤ 0
assumes trian:∧

e. e ∈ arcs G =⇒
dist (head G e) ≤ dist (tail G e) + c e

locale basic-just-sp =
basic-sp +
fixes num :: ′a ⇒ enat
assumes just:∧

v. [[v ∈ verts G; v 6= s; num v 6= ∞]] =⇒
∃ e ∈ arcs G. v = head G e ∧

dist v = dist (tail G e) + c e ∧
num v = num (tail G e) + (enat 1)

locale shortest-path-pos-cost =
basic-just-sp +
assumes s-in-G: s ∈ verts G
assumes tail-val: dist s = 0
assumes no-path:

∧
v. v ∈ verts G =⇒ dist v = ∞ ←→ num v = ∞

assumes pos-cost:
∧

e. e ∈ arcs G =⇒ 0 ≤ c e

locale basic-just-sp-pred =
basic-sp +
fixes num :: ′a ⇒ enat
fixes pred :: ′a ⇒ ′b option
assumes just:∧

v. [[v ∈ verts G; v 6= s; num v 6= ∞]] =⇒
∃ e ∈ arcs G.

e = the (pred v) ∧
v = head G e ∧
dist v = dist (tail G e) + c e ∧
num v = num (tail G e) + (enat 1)

sublocale basic-just-sp-pred ⊆ basic-just-sp
using basic-just-sp-pred-axioms
unfolding basic-just-sp-pred-def

basic-just-sp-pred-axioms-def
by unfold-locales (blast)

locale shortest-path-pos-cost-pred =

2

basic-just-sp-pred +
assumes s-in-G: s ∈ verts G
assumes tail-val: dist s = 0
assumes no-path:

∧
v. v ∈ verts G =⇒ dist v = ∞ ←→ num v = ∞

assumes pos-cost:
∧

e. e ∈ arcs G =⇒ 0 ≤ c e

sublocale shortest-path-pos-cost-pred ⊆ shortest-path-pos-cost
using shortest-path-pos-cost-pred-axioms
by unfold-locales

(auto simp: shortest-path-pos-cost-pred-def
shortest-path-pos-cost-pred-axioms-def)

lemma tail-value-helper :
assumes hd p = last p
assumes distinct p
assumes p 6= []
shows p = [hd p]
by (metis assms distinct.simps(2) list.sel(1) neq-Nil-conv last-ConsR last-in-set)

lemma (in basic-sp) dist-le-cost:
fixes v :: ′a
fixes p :: ′b list
assumes awalk s p v
shows dist v ≤ awalk-cost c p
using assms
proof (induct length p arbitrary: p v)
case 0

hence s = v by auto
thus ?case using 0 (1) general-source-val

by (metis awalk-cost-Nil length-0-conv zero-ereal-def)
next
case (Suc n)

then obtain p ′ e where p ′e: p = p ′ @ [e]
by (cases p rule: rev-cases) auto

then obtain u where ewu: awalk s p ′ u ∧ awalk u [e] v
using awalk-append-iff Suc(3) by simp

then have du: dist u ≤ ereal (awalk-cost c p ′)
using Suc p ′e by simp

from ewu have ust: u = tail G e and vta: v = head G e
by auto

then have dist v ≤ dist u + c e
using ewu du ust trian[where e=e] by force

with du have dist v ≤ ereal (awalk-cost c p ′) + c e
by (metis add-right-mono order-trans)

thus dist v ≤ awalk-cost c p
using awalk-cost-append p ′e by simp

qed

lemma (in fin-digraph) witness-path:

3

assumes µ c s v = ereal r
shows ∃ p. apath s p v ∧ µ c s v = awalk-cost c p

proof −
have sv: s →∗ v

using shortest-path-inf [of s v c] assms by fastforce
{

fix p assume awalk s p v
then have no-neg-cyc:
¬ (∃w q. awalk w q w ∧ w ∈ set (awalk-verts s p) ∧ awalk-cost c q < 0)

using neg-cycle-imp-inf-µ assms by force
}
thus ?thesis using no-neg-cyc-reach-imp-path[OF sv] by presburger

qed

lemma (in basic-sp) dist-le-µ:
fixes v :: ′a
assumes v ∈ verts G
shows dist v ≤ µ c s v

proof (rule ccontr)
assume nt: ¬ ?thesis
show False
proof (cases µ c s v)

show
∧

r . µ c s v = ereal r =⇒ False
proof −

fix r assume r-asm: µ c s v = ereal r
hence sv: s →∗ v

using shortest-path-inf [where u=s and v=v and f=c] by auto
obtain p where

awalk s p v
µ c s v = awalk-cost c p
using witness-path[OF r-asm] unfolding apath-def by force

thus False using nt dist-le-cost by simp
qed

next
show µ c s v = ∞ =⇒ False using nt by simp

next
show µ c s v = − ∞ =⇒ False using dist-le-cost
proof −

assume asm: µ c s v = − ∞
let ?C = (λx. ereal (awalk-cost c x)) ‘ {p. awalk s p v}
have ∃ x∈ ?C . x < dist v

using nt unfolding µ-def not-le INF-less-iff by simp
then obtain p where

awalk s p v
awalk-cost c p < dist v
by force

thus False using dist-le-cost by force
qed

qed

4

qed

lemma (in basic-just-sp) dist-ge-µ:
fixes v :: ′a
assumes v ∈ verts G
assumes num v 6= ∞
assumes dist v 6= −∞
assumes µ c s s = ereal 0
assumes dist s = 0
assumes

∧
u. u∈verts G =⇒ u 6=s =⇒

num u 6= ∞ =⇒ num u 6= enat 0
shows dist v ≥ µ c s v

proof −
obtain n where enat n = num v using assms(2) by force
thus ?thesis using assms
proof(induct n arbitrary: v)
case 0 thus ?case by (cases v=s, auto)
next
case (Suc n)

thus ?case
proof (cases v=s)
case False

obtain e where e-assms:
e ∈ arcs G
v = head G e
dist v = dist (tail G e) + ereal (c e)
num v = num (tail G e) + enat 1
using just[OF Suc(3) False Suc(4)] by blast

then have nsinf :num (tail G e) 6= ∞
by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))

then have ns:enat n = num (tail G e)
using e-assms(4) Suc(2) by force

have ds: dist (tail G e) = µ c s (tail G e)
using Suc(1)[OF ns tail-in-verts[OF e-assms(1)] nsinf]
Suc(5−8) e-assms(3) dist-le-µ[OF tail-in-verts[OF e-assms(1)]]
by simp

have dmuc:dist v ≥ µ c s (tail G e) + ereal (c e)
using e-assms(3) ds by auto

thus ?thesis
proof (cases dist v = ∞)
case False

have arc-to-ends G e = (tail G e, v)
unfolding arc-to-ends-def
by (simp add: e-assms(2))

obtain r where µr : µ c s (tail G e) = ereal r
using e-assms(3) Suc(5) ds False
by (cases µ c s (tail G e), auto)

obtain p where
awalk s p (tail G e) and

5

µs: µ c s (tail G e) = ereal (awalk-cost c p)
using witness-path[OF µr] unfolding apath-def
by blast

then have pe: awalk s (p @ [e]) v
using e-assms(1 ,2) by (auto simp: awalk-simps)

hence muc:µ c s v ≤ µ c s (tail G e) + ereal (c e)
using µs min-cost-le-walk-cost[OF pe] by simp
thus dist v ≥ µ c s v using dmuc by simp

qed simp
qed (simp add: Suc(6 ,7))

qed
qed

lemma (in shortest-path-pos-cost) tail-value-check:
fixes u :: ′a
assumes s ∈ verts G
shows µ c s s = ereal 0

proof −
have ∗: awalk s [] s using assms unfolding awalk-def by simp
hence µ c s s ≤ ereal 0 using min-cost-le-walk-cost[OF ∗] by simp
moreover
have (

∧
p. awalk s p s =⇒ ereal(awalk-cost c p) ≥ ereal 0)

using pos-cost pos-cost-pos-awalk-cost by auto
hence µ c s s ≥ ereal 0

unfolding µ-def by (blast intro: INF-greatest)
ultimately
show ?thesis by simp

qed

lemma (in shortest-path-pos-cost) num-not0 :
fixes v :: ′a
assumes v ∈ verts G
assumes v 6= s
assumes num v 6= ∞
shows num v 6= enat 0

proof −
obtain ku where num v = ku + enat 1

using assms just by blast
thus ?thesis by (induct ku) auto

qed

lemma (in shortest-path-pos-cost) dist-ne-ninf :
fixes v :: ′a
assumes v ∈ verts G
shows dist v 6= −∞

proof (cases num v = ∞)
case False

obtain n where enat n = num v
using False by force

6

thus ?thesis using assms False
proof(induct n arbitrary: v)
case 0 thus ?case

using num-not0 tail-val by (cases v=s, auto)
next
case (Suc n)

thus ?case
proof (cases v=s)
case True

thus ?thesis using tail-val by simp
next
case False

obtain e where e-assms:
e ∈ arcs G
dist v = dist (tail G e) + ereal (c e)
num v = num (tail G e) + enat 1
using just[OF Suc(3) False Suc(4)] by blast

then have nsinf :num (tail G e) 6= ∞
by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))

then have ns:enat n = num (tail G e)
using e-assms(3) Suc(2) by force

have dist (tail G e) 6= − ∞
by (rule Suc(1) [OF ns tail-in-verts[OF e-assms(1)] nsinf])

thus ?thesis using e-assms(2) by simp
qed

qed
next
case True

thus ?thesis using no-path[OF assms] by simp
qed

theorem (in shortest-path-pos-cost) correct-shortest-path:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v
using no-path[OF assms(1)] dist-le-µ[OF assms(1)]

dist-ge-µ[OF assms(1) - dist-ne-ninf [OF assms(1)]
tail-value-check[OF s-in-G] tail-val num-not0]
by fastforce

corollary (in shortest-path-pos-cost-pred) correct-shortest-path-pred:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v
using correct-shortest-path assms by simp

end
theory ShortestPathNeg

7

imports ShortestPath

begin

2 Shortest Path (with general edge costs)
locale shortest-paths-locale-step1 =

fixes G :: (′a, ′b) pre-digraph (structure)
fixes s :: ′a
fixes c :: ′b ⇒ real
fixes num :: ′a ⇒ nat
fixes parent-edge :: ′a ⇒ ′b option
fixes dist :: ′a ⇒ ereal
assumes graphG: fin-digraph G
assumes s-assms:

s ∈ verts G
dist s 6= ∞
parent-edge s = None
num s = 0

assumes parent-num-assms:∧
v. [[v ∈ verts G; v 6= s; dist v 6= ∞]] =⇒

(∃ e ∈ arcs G. parent-edge v = Some e ∧
head G e = v ∧ dist (tail G e) 6= ∞ ∧
num v = num (tail G e) + 1)

assumes noPedge:
∧

e. e∈arcs G =⇒
dist (tail G e) 6= ∞ =⇒ dist (head G e) 6= ∞

sublocale shortest-paths-locale-step1 ⊆ fin-digraph G
using graphG by auto

definition (in shortest-paths-locale-step1) enum :: ′a ⇒ enat where
enum v = (if (dist v = ∞ ∨ dist v = − ∞) then ∞ else num v)

locale shortest-paths-locale-step2 =
shortest-paths-locale-step1 +
basic-just-sp G dist c s enum +
assumes source-val: (∃ v ∈ verts G. enum v 6= ∞) =⇒ dist s = 0
assumes no-edge-Vm-Vf :∧

e. e ∈ arcs G =⇒ dist (tail G e) = − ∞ =⇒ ∀ r . dist (head G e) 6= ereal r

function (in shortest-paths-locale-step1) pwalk :: ′a ⇒ ′b list
where

pwalk v =
(if (v = s ∨ dist v = ∞ ∨ v /∈ verts G)

then []
else pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]

)
by auto

8

termination (in shortest-paths-locale-step1)
using parent-num-assms
by (relation measure num, auto, fastforce)

lemma (in shortest-paths-locale-step1) pwalk-simps:
v = s ∨ dist v = ∞ ∨ v /∈ verts G =⇒ pwalk v = []
v 6= s =⇒ dist v 6= ∞ =⇒ v ∈ verts G =⇒

pwalk v = pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]
by auto

definition (in shortest-paths-locale-step1) pwalk-verts :: ′a ⇒ ′a set where
pwalk-verts v = {u. u ∈ set (awalk-verts s (pwalk v))}

locale shortest-paths-locale-step3 =
shortest-paths-locale-step2 +
fixes C :: (′a ×(′b awalk)) set
assumes C-se:

C ⊆ {(u, p). dist u 6= ∞ ∧ awalk u p u ∧ awalk-cost c p < 0}
assumes int-neg-cyc:∧

v. v ∈ verts G =⇒ dist v = −∞ =⇒
(fst ‘ C) ∩ pwalk-verts v 6= {}

locale shortest-paths-locale-step2-pred =
shortest-paths-locale-step1 +
fixes pred :: ′a ⇒ ′b option
assumes bj: basic-just-sp-pred G dist c s enum pred
assumes source-val: (∃ v ∈ verts G. enum v 6= ∞) =⇒ dist s = 0
assumes no-edge-Vm-Vf :∧

e. e ∈ arcs G =⇒ dist (tail G e) = − ∞ =⇒ ∀ r . dist (head G e) 6= ereal r

lemma (in shortest-paths-locale-step1) num-s-is-min:
assumes v ∈ verts G
assumes v 6= s
assumes dist v 6= ∞
shows num v > 0

using parent-num-assms[OF assms] by fastforce

lemma (in shortest-paths-locale-step1) path-from-root-Vr-ex:
fixes v :: ′a
assumes v ∈ verts G
assumes v 6= s
assumes dist v 6= ∞
shows ∃ e. s →∗ tail G e ∧

e ∈ arcs G ∧ head G e = v ∧ dist (tail G e) 6= ∞ ∧
parent-edge v = Some e ∧ num v = num (tail G e) + 1

using assms
proof(induct num v − 1 arbitrary : v)

9

case 0
obtain e where ee:

e ∈ arcs G head G e = v dist (tail G e) 6= ∞
parent-edge v = Some e num v = num (tail G e) + 1
using parent-num-assms[OF 0 (2−4)] by fast

have tail G e = s
using num-s-is-min[OF tail-in-verts [OF ee(1)] - ee(3)]
ee(5) 0 (1) by auto

then show ?case using ee by auto
next
case (Suc n ′)

obtain e where ee:
e ∈ arcs G head G e = v dist (tail G e) 6= ∞
parent-edge v = Some e num v = num (tail G e) + 1
using parent-num-assms[OF Suc(3−5)] by fast

then have ss: tail G e 6= s
using num-s-is-min tail-in-verts
Suc(2) s-assms(4) by force

have nst: n ′ = num (tail G e) − 1
using ee(5) Suc(2) by presburger

obtain e ′ where reach: s →∗ tail G e ′ and
e ′: e ′ ∈ arcs G head G e ′ = tail G e dist (tail G e ′) 6= ∞
using Suc(1)[OF nst tail-in-verts[OF ee(1)] ss ee(3)] by blast

then have s →∗ tail G e
by (metis arc-implies-awalk reachable-awalk reachable-trans)

then show ?case using e ′ ee by auto
qed

lemma (in shortest-paths-locale-step1) path-from-root-Vr :
fixes v :: ′a
assumes v ∈ verts G
assumes dist v 6= ∞
shows s →∗ v

proof(cases v = s)
case True thus ?thesis using assms by simp
next
case False

obtain e where s →∗ tail G e e ∈ arcs G head G e = v
using path-from-root-Vr-ex[OF assms(1) False assms(2)] by blast

then have s →∗ tail G e tail G e → v
by (auto intro: in-arcs-imp-in-arcs-ends)

then show ?thesis by (rule reachable-adj-trans)
qed

lemma (in shortest-paths-locale-step1) µ-V-less-inf :
fixes v :: ′a
assumes v ∈ verts G
assumes dist v 6= ∞
shows µ c s v 6= ∞

10

using assms path-from-root-Vr µ-reach-conv by force

lemma (in shortest-paths-locale-step2) enum-not0 :
assumes v ∈ verts G
assumes v 6= s
assumes enum v 6= ∞
shows enum v 6= enat 0

using parent-num-assms[OF assms(1 ,2)] assms unfolding enum-def by auto

lemma (in shortest-paths-locale-step2) dist-Vf-µ:
fixes v :: ′a
assumes vG: v ∈ verts G
assumes ∃ r . dist v = ereal r
shows dist v = µ c s v

proof −
have ds: dist s = 0

using assms source-val unfolding enum-def by force
have ews:awalk s [] s

using s-assms(1) unfolding awalk-def by simp
have mu: µ c s s = ereal 0

using min-cost-le-walk-cost[OF ews, where c=c]
awalk-cost-Nil ds dist-le-µ[OF s-assms(1)] zero-ereal-def
by simp

thus ?thesis
using ds assms dist-le-µ[OF vG]
dist-ge-µ[OF vG - - mu ds enum-not0]
unfolding enum-def by fastforce

qed

lemma (in shortest-paths-locale-step1) pwalk-awalk:
fixes v :: ′a
assumes v ∈ verts G
assumes dist v 6= ∞
shows awalk s (pwalk v) v

proof (cases v=s)
case True

thus ?thesis
using assms pwalk.simps[where v=v]
awalk-Nil-iff by presburger

next
case False

from assms show ?thesis
proof (induct rule: pwalk.induct)

fix v
let ?e = the (parent-edge v)
let ?u = tail G ?e
assume ewu: ¬ (v = s ∨ dist v = ∞ ∨ v /∈ verts G) =⇒

?u ∈ verts G =⇒ dist ?u 6= ∞ =⇒
awalk s (pwalk ?u) ?u

11

assume vG: v ∈ verts G
assume dv: dist v 6= ∞
thus awalk s (pwalk v) v
proof (cases v = s ∨ dist v = ∞ ∨ v /∈ verts G)
case True

thus ?thesis
using pwalk.simps vG dv
awalk-Nil-iff by fastforce

next
case False

obtain e where ee:
e ∈arcs G
parent-edge v = Some e
head G e = v
dist (tail G e) 6= ∞
using parent-num-assms False by blast

hence awalk s (pwalk ?u) ?u
using ewu[OF False] tail-in-verts by simp

hence awalk s (pwalk (tail G e) @ [e]) v
using ee(1−3) vG
by (auto simp: awalk-simps simp del: pwalk.simps)

also have pwalk (tail G e) @ [e] = pwalk v
using False ee(2) unfolding pwalk.simps[where v=v] by auto

finally show ?thesis .
qed

qed
qed

lemma (in shortest-paths-locale-step3) µ-ninf :
fixes v :: ′a
assumes v ∈ verts G
assumes dist v = − ∞
shows µ c s v = − ∞

proof −
have awalk s (pwalk v) v

using pwalk-awalk assms by force
moreover

obtain w where ww: w ∈ fst ‘ C ∩ pwalk-verts v
using int-neg-cyc[OF assms] by blast

then obtain q where
awalk w q w
awalk-cost c q < 0
using C-se by auto

moreover
have w ∈ set (awalk-verts s (pwalk v))

using ww unfolding pwalk-verts-def by fast
ultimately

show ?thesis using neg-cycle-imp-inf-µ by force
qed

12

lemma (in shortest-paths-locale-step3) correct-shortest-path:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v

proof(cases dist v)
show

∧
r . dist v = ereal r =⇒ dist v = µ c s v

using dist-Vf-µ[OF assms] by simp
next
show dist v = ∞ =⇒ dist v = µ c s v

using µ-V-less-inf [OF assms]
dist-le-µ[OF assms] by simp

next
show dist v = −∞ =⇒ dist v = µ c s v

using µ-ninf [OF assms] by simp
qed

end

References

[1] E. Alkassar, S. Böhme, K. Mehlhorn, and C. Rizkallah. A framework
for the verification of certifying computations. Journal of Automated
Reasoning, 2013. To Appear.

13

	Shortest Path (with non-negative edge costs)
	Shortest Path (with general edge costs)

