Shivers’ Control Flow Analysis

Joachim Breitner

March 19, 2025

Abstract

In his dissertation [3], Olin Shivers introduces a concept of control flow graphs
for functional languages, provides an algorithm to statically derive a safe approxi-
mation of the control flow graph and proves this algorithm correct. In this research
project [1], Shivers’ algorithms and proofs are formalized using the HOLCF exten-
sion of the logic HOL in the theorem prover Isabelle.

Contents

The definitions
Syntax
Standard semantics
Exact nonstandard semantics

Abstract nonstandard semantics

The main results

The exact call cache is a map
5.1. Preparations
5.2. The proof e

The abstract semantics is correct

6.1. Abstraction functions
6.2. Lemmas about abstraction functions
6.3. Approximation relation L
6.4. Lemmas about the approximation relation

12

16

16
16
18

6.5. Lemma 7 s 23

6.6. Lemmas 8and 9 23
7. Generic Computability 24
7.1. Non-branching case o 24
7.2. Branching case e 25
8. The abstract semantics is computable 26
8.1. Towards finiteness 28
8.2. A decomposition 30
8.3. The iterative equation 30
I11. The auxiliary theories 30
9. Syntax tree helpers 30
10. General utility lemmas 35
11.Set-valued maps 36
12.Sets of maps 38
13.HOLCEF Utility lemmas 40
14.Fixed point transformations 43

Part |I.
The definitions

1. Syntax

theory CPSScheme
imports Main
begin

First, we define the syntax tree of a program in our toy functional language, using
continuation passing style, corresponding to section 3.2 in Shivers’ dissertation.

We assume that the program to be investigated is already parsed into a syntax tree.
Furthermore, we assume that distinct labels were added to distinguish different code
positions and that the program has been alphatised, i.e. that each variable name is only

bound once. This binding position is, as a convenience, considered part of the variable
name.

type-synonym label = nat
type-synonym var = label x string

definition binder :: var = label where [simp]: binder v = fst v

The syntax consists now of lambda abstractions, call expressions and values, which can
either be lambdas, variable references, constants or primitive operations. A program is
a lambda expression.

Shivers’ language has as the set of basic values integers plus a special value for false. We
simplified this to just the set of integers. The conditional If considers zero as false and
any other number as true.

Shivers also restricts the values in a call expression: No constant maybe be used as the
called value, and no primitive operation may occur as an argument. This restriction is
dropped here and just leads to runtime errors when evaluating the program.

datatype prim = Plus label | If label label
datatype lambda = Lambda label var list call
and call = App label val val list
| Let label (var x lambda) list call
and val = L lambda | R label var | C label int | P prim

datatype-compat lambda call val
type-synonym prog = lambda

lemmas mutual-lambda-call-var-inducts =
compat-lambda.induct
compat-call.induct
compat-val.induct
compat-val-list.induct
compat-nat-char-list-prod-lambda-prod-list.induct
compat-nat-char-list-prod-lambda-prod.induct

Three example programs. These were generated using the Haskell implementation of
Shivers’ algorithm that we wrote as a prototype[2].

abbreviation ex! == (Lambda 1 [(1,"cont”)] (App 2 (R 3 (1,”cont”)) [(C 4 0)]))
abbreviation ez2 == (Lambda 1 [(1,"”cont’)] (App 2 (P (Plus 3)) [(C 4 1), (C51), (R 6
(1, "cont"))

abbreviation exd == (Lambda 1 [(1,"cont)] (Let 2 [((2,"'rec’),(Lambda 3 [(3,"p"), (3,""),
(3,¢-")] (App 4 (P (If 5 6)) [(R 7 (3,"i")), (L (Lambda 8 || (App 9 (P (Plus 10)) [(R 11
(3,"p")), (R 12 (3,"i")), (L (Lambda 13 [(13,""p-"")] (App 14 (P (Plus 15)) [(R 16 (3,"i'")),
(C 17 (- 1)), (L (Lambda 18 [(18,"i-")] (App 19 (R 20 (2,"rec’)) [(R 21 (13,”p-")), (

22 (18,"-")), (R 23 (3,"c-"))))))N)), (L (Lambda 24 | (App 25 (R 26 (3,"¢-")) [(R 27
(3,"p"NINDN] (App 28 (R 29 (2,"rec”)) [(C 30 0), (C 31 10), (R 32 (1,"cont"))])))

end

2. Standard semantics

theory Fuval
imports HOLCF HOLCF Utils CPSScheme
begin

We begin by giving the standard semantics for our language. Although this is not
actually used to show any results, it is helpful to see that the later algorithms “look
similar” to the evaluation code and the relation between calls done during evaluation
and calls recorded by the control flow graph.

We follow the definition in Figure 3.1 and 3.2 of Shivers’ dissertation, with the clarifi-
cations from Section 4.1. As explained previously, our set of values encompasses just
the integers, there is no separate value for false. Also, values and procedures are not
distinguished by the type system.

Due to recursion, one variable can have more than one currently valid binding, and due
to closures all bindings can possibly be accessed. A simple call stack is therefore not
sufficient. Instead we have a contour counter, which is increased in each evaluation step.
It can also be thought of as a time counter. The variable environment maps tuples
of variables and contour counter to values, thus allowing a variable to have more than
one active binding. A contour environment lists the currently visible binding for each
binding position and is preserved when a lambda expression is turned into a closure.

type-synonym contour = nat
type-synonym benv = label — contour
type-synonym closure = lambda x benv

The set of semantic values consist of the integers, closures, primitive operations and a
special value Stop. This is passed as an argument to the program and represents the
terminal continuation. When this value occurs in the first position of a call, the program
terminates.
datatype d = DI int

| DC closure

| DP prim

| Stop

type-synonym venv = var X contour — d

The function A evaluates a syntactic value into a semantic datum. Constants and
primitive operations are left untouched. Variable references are resolved in two stages:
First the current binding contour is fetched from the binding environment 3, then the
stored value is fetched from the variable environment ve. A lambda expression is bundled
with the current contour environment to form a closure.

fun evalV :: val = benv = venv = d (A)
where A (C - i) pve= DIi
| A (P prim) 8 ve = DP prim
| A(R-war) B ve =
(case B (binder var) of
Some | = (case ve (var,l) of Some d = d))
| A (L lam) 8 ve = DC (lam,)

The answer domain of our semantics is the set of integers, lifted to obtain an additional
element denoting bottom. Shivers distinguishes runtime errors from non-termination.
Here, both are represented by L.

type-synonym ans = int lift

To be able to do case analysis on the custom datatypes lambda, d, call and prim inside
a function defined with fizrec, we need continuity results for them. These are all of the
same shape and proven by case analysis on the discriminator.

lemma cont2cont-case-lambda [simp, cont2cont]:
assumes Aa b c. cont (A\z. fzab c)
shows cont (Az. case-lambda (f z) 1)

(proof)

lemma cont2cont-case-d [simp, cont2cont]:
assumes Ay. cont (A\z. fI = y)
and Ay. cont (Az. 2z y)
and Ay. cont (Az. f3z y)
and cont (\z. f} z)
shows cont (Az. case-d (f1 z) (f2 z) (f3 z) (f4) d)

(proof)

lemma cont2cont-case-call [simp, cont2cont):
assumes Aa b c. cont (A\z. fl za b c)
and Aabc. cont (A\z. f2zab c)
shows cont (Az. case-call (f1 z) (f2 z))

(proof)

lemma cont2cont-case-prim [simp, cont2cont):
assumes Ay. cont (A\z. fI z y)
and Ay z. cont (A\z. f2zy 2)
shows cont (Az. case-prim (f1 z) (f2 z) p)

(proof)

As usual, the semantics of a functional language is given as a denotational semantics.
To that end, two functions are defined here: F applies a procedure to a list of argu-
ments. Here closures are unwrapped, the primitive operations are implemented and the
terminal continuation Stop is handled. C evaluates a call expression, either by evaluating
procedure and arguments and passing them to F, or by adding the bindings of a Let
expression to the environment.

Note how the contour counter is incremented before each call to F or when a Let ex-
pression is evaluated.

With mutually recursive equations, such as those given here, the existence of a function
satisfying these is not obvious. Therefore, the fizrec command from the HOLCF package
is used. This takes a set of equations and builds a functional from that. It mechanically
proofs that this functional is continuous and thus a least fixed point exists. This is then
used to define F and C and proof the equations given here. To use the HOLCF setup,
the continuous function arrow — with application operator - is used and our types are
wrapped in discr and [ift to indicate which partial order is to be used.

type-synonym fstate = (d x d list x venv X contour)
type-synonym cstate = (call X benv x venv X contour)

fixrec evalF' :: fstate discr — ans (¢F»)
and evalC :: cstate discr — ans («C»)
where evalF-fstate = (case undiscr fstate of
(DC (Lambda lab vs ¢, B), as, ve, b) =
(if length vs = length as
then let B’ = (3 (lab — b);
ve' = map-upds ve (map (Av.(v,b)) vs) as
in C-(Discr (c,8’,ve’,b))

else 1)
| (DP (Plus c),[DI a1, DI a2, cnt],ve,b) =
let b’ = Suc b;
B =lcr b

in F-(Discr (cnt,[DI (al + a2)],ve,b’))
| (DP (prim.If ct cf),[DI v, contt, contf],ve,b) =

(if v#£0
then let b’ = Suc b;
B = [ct — b

in F-(Discr (contt,[],ve,b"))
else let b’ = Suc b;
B =lcf — 1]
in F-(Discr (contf,[],ve,b")))
| (Stop,|DI i),-,-) = Def i
|-=1

| C-cstate = (case undiscr cstate of
(App lab f vs,B,ve,b) =

let f'=Af B ve
as = map (Av. A v 8 ve) vs;
b = Suc b
in F-(Discr (f’,as,ve,b’))
| (Let lab Is ¢',3,ve,b) =
let b’ = Suc b;
8" = B (lab — b');
ve' = ve ++ map-of (map (A(v,0). ((v,b"), A (L 1) 8’ ve)) ls)
in C-(Discr (¢',B',ve’,b"))

To evaluate a full program, it is passed to F with proper initializations of the other
arguments. We test our semantics function against two example programs and observe
that the expected value is returned.

definition evalCPS :: prog = ans ({PR»)
where PR [= (let ve = Map.empty;
B = Map.empty;
f=A(LI) B ve
in F-(Discr (f,[Stop],ve,0)))

lemma correct-ex1: PR exl = Def 0

(proof)

lemma correct-ex2: PR ex2 = Def 2
(proof)

end

3. Exact nonstandard semantics

theory ExCF
imports HOLCF HOLCF Utils CPSScheme Utils
begin

We now alter the standard semantics given in the previous section to calculate a control
flow graph instead of the return value. At this point, we still “run” the program in full,
so this is not yet the static analysis that we aim for. Instead, this is the reference for
the correctness proof of the static analysis: If an edge is recorded here, we expect it to
be found by the static analysis as well.

In preparation of the correctness proof we change the type of the contour counters.
Instead of plain natural numbers as in the previous sections we use lists of labels, re-
membering at each step which part of the program was just evaluated.

Note that for the exact semantics, this is information is not used in any way and it would
have been possible to just use natural numbers again. This is reflected by the preorder
instance for the contours which only look at the length of the list, but not the entries.

definition contour = (UNIV::label list set)

typedef contour = contour

{proof)

definition initial-contour (<by»)
where by = Abs-contour ||

definition nb
where nb b ¢ = Abs-contour (¢ # Rep-contour b)

instantiation contour :: preorder

begin

definition le-contour-def: b < b’ <+— length (Rep-contour b) < length (Rep-contour b’)
definition less-contour-def: b < b’ +— length (Rep-contour b) < length (Rep-contour b’)
instance (proof)

end

Three simple lemmas helping Isabelle to automatically prove statements about contour
numbers.

lemma nb-le-less[iff]: nb b ¢ < b +— b < b’

{proof)

lemma nb-less[iff]: b’ < nbbc+— b <b

(proof)

declare less-imp-le[where ‘a = contour, intro]

The other types used in our semantics functions have not changed.
type-synonym benv = label — contour

type-synonym closure = lambda x benv

datatype d = DI int
| DC closure
| DP prim
| Stop

type-synonym venv = var X contour — d

As we do not use the type system to distinguish procedural from non-procedural values,
we define a predicate for that.

primrec isProc

where isProc (DI -) = False

| isProc (DC' -) rue
| isProc (DP -) = True
| isProc Stop = True

To please HOLCF, we declare the discrete partial order for our types:

instantiation contour :: discrete-cpo

begin

definition [simp]: (z::contour) C y +— z =y
instance (proof)

end

instantiation d :: discrete-cpo begin
definition [simp]: (z::d) Cy+— x =y
instance (proof)

end

instantiation call :: discrete-cpo begin
definition [simp]: (z::icall) Ty +— =y
instance (proof)

end

The evaluation function for values has only changed slightly: To avoid worrying about
incorrect programs, we return zero when a variable lookup fails. If the labels in the
program given are correct, this will not happen. Shivers makes this explicit in Section
4.1.3 by restricting the function domains to the valid programs. This is omitted here.

fun evalV :: val = benv = venv = d (A)
where A (C - i) pve= DI i
| A (P prim) 8 ve = DP prim
| A (R-wvar) S ve =
(case B (binder var) of
Some | = (case ve (var,l) of Some d = d | None = DI 0)
| None = DI 0)
| A (L lam) 8 ve = DC (lam, B)

To be able to do case analysis on the custom datatypes lambda, d, call and prim inside
a function defined with fizrec, we need continuity results for them. These are all of the
same shape and proven by case analysis on the discriminator.

lemma cont2cont-case-lambda [simp, cont2cont):
assumes Aa b c. cont (Az. fzabc)
shows cont (Az. case-lambda (f) 1)

(proof)

lemma cont2cont-case-d [simp, cont2cont]:
assumes Ay. cont (Az. fI x y)
and Ay. cont (Az. 2z y)

and Ay. cont (Az. f3z y)
and cont (A\z. f4 x)
shows cont (Az. case-d (f1 z) (f2 z) (f3 z) (f4 =) d)
(proof)

lemma cont2cont-case-call [simp, cont2cont]:
assumes Aa b c. cont (A\z. fl za b c)
and Aabc. cont (Ax. f2xabc)
shows cont (Az. case-call (f1 z) (f2 z))

(proof)

lemma cont2cont-case-prim [simp, cont2cont]:
assumes Ay. cont (A\z. fI z y)
and Ay z. cont (A\z. 2z y 2)
shows cont (Az. case-prim (f1 z) (f2 z) p)

(proof)

Now, our answer domain is not any more the integers, but rather call caches. These
are represented as sets containing tuples of call sites (given by their label) and binding
environments to the called value. The argument types are unaltered.

In the functions F and C, upon every call, a new element is added to the resulting set.
The STOP continuation now ignores its argument and retuns the empty set instead.
This corresponds to Figure 4.2 and 4.3 in Shivers’ dissertation.

type-synonym ccache = ((label x benv) x d) set
type-synonym ans = ccache

type-synonym fstate = (d x d list X venv x contour)
type-synonym cstate = (call X benv X venv X contour)

fixrec evalF :: fstate discr — ans ({F»)
and evalC :: cstate discr — ans («C»)
where F-fstate = (case undiscr fstate of
(DC (Lambda lab vs ¢, B), as, ve, b) =
(if length vs = length as
then let B’ = B (lab — b);
ve' = map-upds ve (map (Av.(v,b)) vs) as
in C-(Discr (c,B',ve’,b))
else 1)
| (DP (Plus ¢),[DI a1, DI a2, cnt],ve,b) =
(if isProc ent
then let b’ = nb b c;
8 =lcm 1]
in F-(Discr (ent,[DI (al + a2)],ve,b"))
U {((c, B),cnt)}
else 1)
| (DP (prim.If ct cf),[DI v, contt, contf],ve,b) =

10

(if isProc contt A isProc contf
then
(if v#£0
then let b’ = nb b ct;
B = [ct — b
in (F-(Discr (contt,[],ve,b"))
U {((ct, B),contt)})
else let b = nb b cf;
8 = [cf v B
in (F-(Discr (contf,[],ve,b")))
O {((cf, B)conif)})
else 1)

| (St0p7[DI ﬂv"') = {}
|-=1
)
| C-cstate = (case undiscr cstate of
(App lab f vs,B,ve,b) =
let f'=Af B ve;
as = map (Av. A v B ve) vs;
b’ = nb b lab
in if isProc f'
then F-(Discr (f’,as,ve,b")) U {((lab, B).f")}
else L
| (Let lab Is ¢’,B,ve,b) =
let b’ = nb b lab;
8" = B (lab = b');
ve' = ve ++ map-of (map (A(v,0). ((v,b"), A (L 1) B’ ve)) ls)
in C-(Discr (c¢',8’,ve’,b"))

In preparation of later proofs, we give the cases of the generated induction rule names
and also create a large rule to deconstruct the an value of type fstate into the various
cases that were used in the definition of F.

lemmas evalF-evalC-induct = evalF-evalC.induct|case-names Admissibility Bottom Next)]

lemmas cl-cases = prod.ezhaust|OF lambda.exhaust, of - X a - . a]
lemmas ds-cases-plus = list.exhaust|
OF - d.ezhaust, of - - \a -. a,
OF - list.exhaust, of - - A\- x -. x,
OF - - d.exhaust, of - - A\- - - a -. a,
OF - - list.exhaust,of - - A\- - - - x -. x,
OF - - - list.ezhaust,of - - A- - - - - - - x. T
]
lemmas ds-cases-if = list.exhaust|OF - d.exhaust, of - - Aa -. a,
OF - list.exhaust|OF - list.exzhaust|OF - list.exhaust, of - - A\- z. z], of - - A- z. z], of - - A\- z
- 7]
lemmas ds-cases-stop = list.exhaust|OF - d.exhaust, of - - Aa -. a,
OF - list.exhaust, of - - A- © -.]

11

lemmas fstate-case = prod-cases/|OF d.exhaust, of - Az - - - . z,

OF - cl-cases prim.exhaust, of - -A----a.a X - - - - a. a,

OF - case-split ds-cases-plus ds-cases-if ds-cases-stop,

of --Xas------ vs - . length vs = length as A - ds - - --.ds A -ds---- - .ds A -ds - -
ds,

case-names ¢ Closure v x x Pluszxxzxxxxx xx If-True If-False x z x x x Stop zxzx x
z]

The exact semantics of a program again uses F with properly initialized arguments. For
the first two examples, we see that the function works as expected.
definition evalCPS :: prog = ans ({PR»)
where PR [= (let ve = Map.empty;
B8 = Map.empty;
f=A(LI) B ve
in F-(Discr (f,[Stop],ve,bp)))

lemma correct-exl: PR exl = {((2,[1 — bo]), Stop)}
(proof)

lemma correct-ex2: PR ex2 = {((2, [1 — by]), DP (Plus 3)),
((8,[3 — nbby 2]), Stop)}
(proof)

end

4. Abstract nonstandard semantics

theory AbsCF
imports HOLCF HOLCF Utils CPSScheme Utils SetMap
begin

default-sort type

After having defined the exact meaning of a control graph, we now alter the algorithm
into a statically computable. We note that the contour pointer in the exact semantics is
taken from an infinite set. This is unavoidable, as recursion depth is unbounded. But if
this were not the case and the set were finite, the function would be calculable, having
finite range and domain.

Therefore, we make the set of contour counter values finite and accept that this makes
our result less exact, but calculable. We also do not work with values any more but only
remember, for each variable, what possible lambdas can occur there. Because we do not

have exact values any more, in a conditional expression, both branches are taken.

We want to leave the exact choice of the finite contour set open for now. Therefore, we

12

define a type class capturing the relevant definitions and the fact that the set is finite.
Isabelle expects type classes to be non-empty, so we show that the unit type is in this
type class.

class contour = finite +
fixes nb-a :: 'a = label = 'a («nby)
and a-ingtial-contour :: 'a (<bg»)

instantiation unit :: contour
begin

definition nb - - = O
definition l;) =()

instance (proof)

end

Analogous to the previous section, we define types for binding environments, closures,
procedures, semantic values (which are now sets of possible procedures) and variable
environment. Their types are parametrized by the chosen set of abstract contours.

The abstract variable environment is a partial map to sets in Shivers’ dissertation. As
he does not need to distinguish between a key not in the map and a key mapped to the
empty set, this presentation is redundant. Therefore, I encoded this as a function from
keys to sets of values. The theory Shivers— CFA.SetMap contains functions and lemmas
to work with such maps, symbolized by an appended dot (e.g. {}., U.).

type-synonym ‘c a-benv = label — ‘¢ («- benuv [1000])
type-synonym ‘c a-closure = lambda x 'c benv (¢- closure> [1000])

datatype 'c proc («- procy [1000])
= PC 'c closure
| PP prim
| AStop

type-synonym ’c a-d = 'c proc set («- d» [1000])

type-synonym ’c a-venv = var X ‘c = 'c (i(<— venvy [1000))

The evaluation function now ignores constants and returns singletons for primitive op-
erations and lambda expressions.

fun evalV-a :: val = 'c benv = 'c venv = 'c d (<A
where A (C -14) 8 ve = {}

~

| A (P prim) 8 ve = {PP prim}
| A(R - war) B ve =
(case B (binder var) of
Some | = ve (var,l)

| None = {})

13

~

| A (L lam) 8 ve = {PC (lam, B)}

The types of the calculated graph, the arguments to F and C resemble closely the types
in the exact case, with each type replaced by its abstract counterpart.

type-synonym ’c a-ccache = ((label x ’c @) x 'c proc) set (- ccaches [1000])
type-synonym ’c a-ans = 'c ccache («- ans> [1000])

type-synonym ’c a-fstate = ('c proc x 'c d list x 'c venv x ‘e) («-]%> [1000])
type-synonym ’c a-cstate = (call x 'c benv x 'c venv x 'c) («- cstater [1000))

And yet again, cont2cont results need to be shown for our custom data types.

lemma cont2cont-case-lambda [simp, cont2cont]:
assumes Aa b c. cont (Az. fzabc)
shows cont (Az. case-lambda (f z) 1)

(proof)

lemma cont2cont-case-proc [simp, cont2cont]:
assumes Ay. cont (Az. fI xz y)
and Ay. cont (\z. 2z y)
and cont (Az. f3 x)
shows cont (Az. case-proc (f1 z) (f2 z) (f3 z) d)

(proof)

lemma cont2cont-case-call [simp, cont2cont]:
assumes Aa b c. cont (A\z. fl za b c)
and Aabc. cont (\z. f2zab c)
shows cont (Az. case-call (f1 z) (f2) ¢)

(proof)

lemma cont2cont-case-prim [simp, cont2cont):
assumes Ay. cont (A\z. fI = y)
and Ay z. cont (A\z. 2z y 2)
shows cont (Az. case-prim (f1 z) (f2 z) p)

(proof)

We can now define the abstract nonstandard semantics, based on the equations in Figure
4.5 and 4.6 of Shivers’ dissertation. In the AStop case, {} is returned, while for wrong
arguments, L is returned. Both actually represent the same value, the empty set, so this
is just a aesthetic difference.

fixrec a-evalF :: ‘c:contour fstate discr — 'c ans (F»)
and a-evalC :: 'c::contour cstate discr — 'c ans («C>)
where ﬁ-fstate = (case undiscr fstate of
(PC (Lambda lab vs ¢, B), as, ve, b) =
(if length vs = length as
then let B’ = B (lab — b);

14

ve! = wve U. (U. (map (A(v,a). {(v,d) := a}.) (zip vs as)))
in CA-(Dz'scr (¢,B',ve’,b))
else 1)
| (PP (Plus c),[-,-,cnts],ve,b) =
let b = nb b ¢;
B =lc— b
in ({ cntecents. F-(Discr (ent,[{}],ve,b’)))
@]
{((e, B), cont) | cont . cont € cnts}
| (PP (prim.1If ct cf),[-, cnits, cnifs],ve,b) =
((let b" =nb b ct;
B = [ct — b
in (U entecentts . F-(Discr (ent,]],ve,b")))
U{((et, B), cnt) | cnt . cnt € cnits}
)U(

let b' = nb b cf;
B=lef s b
in (J ent€cntfs . F-(Discr (cnt,[],ve,b’)))
) U{((cf, B), cnt) | cnt . cnt € cnifs}
| (AStop,[-],-,-) = {}
|-=1
)

| C-cstate = (case undiscr cstate of
(App lab f vs,B,ve,b) =
lethZ.Kfﬁve;
as = map (Av. A B wve) wvs;
b’ = nb b lab
in (Jf' € fs. F-(Discr (f',as,ve,b")))
U{((lad, B).f") [f7- f'€ fs}
| (Let lab Is ¢’,B,ve,b) =
let b = nb b lab:
8" = B (lab = b');
ve’ = ve U. (J. (map (A(0,0). {(v,") := (A (L 1) B’ ve)}.) Is))
in C-(Discr (c',8ve’,b)

Again, we name the cases of the induction rule and build a nicer case analysis rule for
arguments of type fstate.

lemmas a-evalF-evalC-induct = a-evalF-a-evalC.induct|case-names Admissibility Bottom Next)

fun a-evalF-cases

where a-evalF-cases (PC (Lambda lab vs ¢, B)) as ve b = undefined
| a-evalF-cases (PP (Plus cp)) [al, a2, cnt] ve b = undefined
| a-evalF-cases (PP (prim.If cpl cp2)) [v,entt,cntf] ve b = undefined
| a-evalF-cases AStop [v] ve b = undefined

15

lemmas a-fstate-case-x = a-evalF-cases.cases|
OF case-split, of - \- vs - - as - - . length vs = length as,
case-names Closure Closure-inv Plus If Stop]

lemmas a-cl-cases = prod.exhaust|OF lambda.exhaust, of - XA a - . a
lemmas a-ds-cases = list.exhaust|

OF - list.exhaust, of - - - z. x,

OF - - list.exhaust ,of - - A\- - - z. x ,

OF - - - list.ezhaust,of - - A\- - - - - T. T

]
lemmas a-ds-cases-stop = list.exhaust|OF - list.exhaust, of - - \- x.]
lemmas a-fstate-case = prod-cases4 [OF proc.ezhaust, of - Az - - - . ,

OF a-cl-cases prim.exhaust, of -\ ----a.a-X----a. a,

OF case-split a-ds-cases a-ds-cases a-ds-cases-stop,

of -X-as------ vs - . length vs = length as - X\ -ds - ---.ds XA -ds---- - .ds A -ds - -.
ds]

Not surprisingly, the abstract semantics of a whole program is defined using F with
suitably initialized arguments. The function the-elem extracts a value from a singleton
set. This works because we know that A returns such a set when given a lambda
expression.

definition evalCPS-a :: prog = ('c::contour) ans (<PR»)
where PR | = (let ve = {}.;
B8 = Map.empty;
f=A(LI B ve
in F-(Discr (the-elem f,[{AStop}],ve,bp)))

end

Part II.
The main results

5. The exact call cache is a map

theory ExCFSV
imports FzCF
begin

5.1. Preparations

Before we state the main result of this section, we need to define

16

o the set of binding environments occurring in a semantic value (which exists only
if it is a closure),

e the set of binding environments in a variable environment, using the previous
definition,

« the set of contour counters occurring in a semantic value and

e the set of contour counters occurring in a variable environment.

fun benv-in-d :: d = benv set
where benv-in-d (DC (1,8)) = {5}
| benv-in-d - = {}

definition benv-in-ve :: venv = benv set
where benv-in-ve ve = |J{benv-in-d d | d . d € ran ve}

fun contours-in-d :: d = contour set
where contours-in-d (DC (1,5)) = ran 8
| contours-in-d - = {}

definition contours-in-ve :: venv = contour set
where contours-in-ve ve = |J {contours-in-d d | d . d € ran ve}

The following 6 lemmas allow us to calculate the above definition, when applied to
constructs used in our semantics function, e.g. map updates, empty maps etc.

lemma benv-in-ve-upds:
assumes eq-length: length vs = length ds
and V febenv-in-ve ve. Q
and V d’'eset ds. V f€benv-in-d d’. Q
shows V fgebenv-in-ve (ve(map (Av. (v, ")) vs [—] ds)). Q 5
(proof)

lemma benv-in-eval:
assumes V 3’'€benv-in-ve ve. Q '
and Q
shows V fc€benv-in-d (A v 5 ve). Q B
(proof)

lemma contours-in-ve-empty[simpl: contours-in-ve Map.empty = {}

(proof)

lemma contours-in-ve-upds:
assumes eq-length: length vs = length ds
and V b’e contours-in-ve ve. Q b’
and V d’eset ds. V b'econtours-in-d d’. Q b’
shows V b'econtours-in-ve (ve(map (Av. (v, b)) vs [—] ds)). Q b’
(proof)

17

lemma contours-in-ve-upds-binds:
assumes V b’e contours-in-ve ve. Q b’
and Vb'eran 5. Q b’
shows V b’econtours-in-ve (ve ++ map-of (map (A(v,0). ((v,6"), A (L 1) B’ ve)) ls)). Q b’
(proof)

lemma contours-in-eval:
assumes Y b’€ contours-in-ve ve. Q b’
and Vb'e ran 5. Q b’
shows V b’e contours-in-d (A f ve). Q b’
(proof)

5.2. The proof

The set returned by F and C is actually a partial map from callsite/binding environment
pairs to called values. The corresponding predicate in Isabelle is single-valued.

We would like to show an auxiliary result about the contour counter passed to F and C
(such that it is an unused counter when passed to F and others) first. Unfortunately,
this is not possible with induction proofs over fixed points: While proving the inductive
case, one does not show results for the function in question, but for an information-
theoretical approximation. Thus, any previously shown results are not available. We
therefore intertwine the two inductions in one large proof.

This is a proof by fixpoint induction, so we have are obliged to show that the predicate
is admissible and that it holds for the base case, i.e. the empty set. For the proof
of admissibiliy, HOLCF provides a number of introduction lemmas that, together with
some additions in Shivers— CFA.HOLCF Utils and the continuity lemmas, mechanically
proove admissibiliy. The base case is trivial.

The remaining case is the preservation of the properties when applying the recursive
equations to a function known to have have the desired property. Here, we break the
proof into the various cases that occur in the definitions of F and C and use the induction
hypothesises.

lemma cc-single-valued’:
[Vb' € contours-in-ve ve. b’ < b
; Vb’ € contours-in-d d. b’ < b
;Vd' € set ds. Vb' € contours-in-d d’. b’ < b
]
_—
(single-valued (F-(Discr (d,ds,ve,b)))
A (VY ((lab,p),t) € F-(Discr (d,ds,ve, b)). 3 b". b" € ran B AN b <)
)

and [b € ran B’

18

cVo'eran B. b < b
: Vb’ € contours-in-ve ve. b’ < b

]

_—
(single-valued (C-(Discr (c¢,B’,ve,b)))
A (Y ((lab,B),t) € C-(Discr (¢,8’,ve,b)). 3 b". b" € ran B A b < D)
)

(proof)

lemma single-valued (PR prog)

(proof)
end

6. The abstract semantics is correct

theory AbsCFCorrect
imports AbsCF ExCF
begin

default-sort type

The intention of the abstract semantics is to safely approximate the real control flow.
This means that every call recorded by the exact semantics must occur in the result
provided by the abstract semantics, which in turn is allowed to predict more calls than
actually done.

6.1. Abstraction functions

This relation is expressed by abstraction functions and approximation relations. For
each of our data types, there is an abstraction function abs-<type>, mapping the a
value from the exact setup to the corresponding value in the abstract view. The approx-
imation relation then expresses the fact that one abstract value of such a type is safely
approximated by another.

Because we need an abstraction function for contours, we extend the contour type class
by the abstraction functions and two equations involving the nb and by symbols.

class contour-a = contour +
fixes abs-cnt :: contour = 'a .
assumes abs-cnt-nb[simp|: abs-cnt (nb b lab) = nb (abs-cnt b) lab

~

and abs-cnt-initial[simp]: abs-cnt(by) = bg

instantiation unit :: contour-a
begin

definition abs-cnt - = ()
instance (proof)

19

end

It would be unwieldly to always write out abs-<type> x. We would rather like to write
|z| if the type of z is known, as Shivers does it as well. Isabelle allows one to use the
same syntax for different symbols. In that case, it generates more than one parse tree
and picks the (hopefully unique) tree that typechecks.

Unfortunately, this does not work well in our case: There are eight abs-<type> functions
and some expressions later have multiple occurrences of these, causing an exponential
blow-up of combinations.

Therefore, we use a module by Christian Sternagel and Alexander Krauss for ad-hoc
overloading, where the choice of the concrete function is done at parse time and im-
mediately. This is used in the following to set up the the symbol |-| for the family of
abstraction functions.

consts abs :: 'a = b («|-]»)

adhoc-overloading
abs = abs-cnt

definition abs-benv :: benv = 'ci:contour-a benv
where abs-benv 8 = map-option abs-cnt o 3

adhoc-overloading
abs = abs-benv

primrec abs-closure :: closure = 'c::contour-a closure
where abs-closure (1,5) = (1,|8])

adhoc-overloading
abs = abs-closure

primrec abs-d :: d = 'c::contour-a d
where abs-d (DI i) = {}
| abs-d (DP p) = {PP p}
| abs-d (DC cl) = {PC |cl|}
| abs-d (Stop) = {AStop}

adhoc-overloading
abs = abs-d

definition abs-venv :: venv = 'c::contour-a venv
where abs-venv ve = (A(v,b-a). |J{(case ve (v,b) of Some d = |d| | None = {}) | b. |b] =
b-a })

adhoc-overloading
abs = abs-venv

20

—

definition abs-ccache :: ccache = 'c::contour-a ccache
where abs-ccache cc = (| ((¢,0),d) € cc . {((c,abs-benv B), p) | p . pEabs-d d})

adhoc-overloading
abs = abs-ccache

—

fun abs-fstate :: fstate = 'c::contour-a fstate
where abs-fstate (d,ds,ve,b) = (the-elem |d|, map abs-d ds, |vel, ||)

adhoc-overloading
abs = abs-fstate

fun abs-cstate :: cstate = 'c::contour-a cstate
where abs-cstate (c,B,ve,b) = (¢, |B], |vel, |b])

adhoc-overloading
abs = abs-cstate

6.2. Lemmas about abstraction functions

Some results about the abstractions functions.

lemma abs-benv-empty[simp|: |Map.empty| = Map.empty
(proof)

lemma abs-benv-upd[simp]: |B(c—b)| = |B] (¢ — |b])
(proof)

lemma the-elem-is-Proc:
assumes isProc cnt
shows the-elem |cnt| € |ent

(proof)
lemma [simp]: [{}| = {} (proof)

lemma abs-cache-singleton [simp]: |{((¢,8),d)} = {((¢, 18]), p) |p- p € |d|}
(proof)

lemma abs-venv-empty[simp|: |Map.empty| = {}.

{proof)

6.3. Approximation relation

The family of relations defined here capture the notion of safe approximation.

consts approz :: 'a = 'a = bool (- 5)

21

. _ _
definition venv-approz :: 'c venv ='c venv = bool
where venv-approx = smap-less

adhoc-overloading
appror = vVenuv-approx

0 . - —
definition ccache-approx :: 'c ccache ='c ccache = bool
where ccache-approx = less-eq

adhoc-overloading
approx = ccache-approx

definition d-approz :: ‘c d='c d= bool
where d-approx = less-eq

adhoc-overloading
appror = d-approx

definition ds-approz :: 'c d list ='c d list = bool
where ds-approx = list-all2 d-approx

adhoc-overloading
approx = ds-approx

inductive fstate-approx :: 'c]% ='c]% = bool
where [ve S ve'; ds 5 ds’ |

~
~

= fstate-approz (proc,ds,ve,b) (proc,ds’,ve’,b)

adhoc-overloading
appror = fstate-approx

inductive cstate-approz :: 'c cstate ='c cstate = bool
where [ve < ve' | = cstate-approz (c,B,ve,b) (c,5,ve’,b)

adhoc-overloading
approxr = cstate-approx

6.4. Lemmas about the approximation relation

Most of the following lemmas reduce an approximation statement about larger struc-
tures, as they are occurring the semantics functions, to statements about the compo-
nents.

lemma venv-approz-trans|trans]:
fixes vel ve2 ved :: 'c venv
shows [vel S ve2; ve2 S ved | = (vel S ve3d)

(proof)

22

lemma abs-venv-union: |vel ++ ve2| 5 |vel| U. |ve2|

(proof)

lemma abs-venv-map-of-rev: |map-of (rev)| S UJ. (map (A(v,k). |[v— k]|) 1)
(proof)

lemma abs-venv-map-of: |map-of I| S \J. (map (A(v,k). |[v— k]|) 1)
(proof)

lemma abs-venv-singleton: |[(v,b) — d]| = {(v,|b]) :=|d|}.

{proof)

lemma ccache-approz-empty|simp):
fixes z :: ‘c ccache
shows {} S z

(proof)

lemmas ccache-approz-trans[trans] = subset-trans[where ‘a = ((label x 'c be%) x 'c proc),
folded ccache-approz-def]

lemmas Un-mono-approxz = Un-mono[where 'a = ((label x 'c @) x 'c proc), folded ccache-approz-def]

lemmas Un-upper!-approz = Un-upperl|[where ‘a = ((label x ‘c @) x 'c proc), folded
ccache-approz-def]

lemmas Un-upper2-approz = Un-upper2[where ‘a = ((label x ‘c @) x 'c proc), folded
ccache-approx-def]

lemma abs-ccache-union: |c1 U c2| < |c1| U |c2]

{proof)

lemma d-approz-empty[simp]: {} S (d::'c d)
{proof)

lemma ds-approz-empty[simp]: [| <]

{proof)

6.5. Lemma 7

Shivers’ lemma 7 says that A safely approximates A.

lemma lemma7:
assumes |ve::venv| < ve-a

shows |A f B ve| < A f || ve-a
(proof)

6.6. Lemmas 8 and 9

The main goal of this section is to show that F safely approximates F and that C
safely approximates C. This has to be shown at once, as the functions are mutually

23

recursive and requires a fixed point induction. To that end, we have to augment the set
of continuity lemmas.

lemma cont2cont-abs-ccache[cont2cont,simp]:
assumes cont f
shows cont (Az. abs-ccache(f x))

(proof)

Shivers proves these lemmas using parallel fixed point induction over the two fixed
points (the one from the exact semantics and the one from the abstract semantics). But
it is simpler and equivalent to just do induction over the exact semantics and keep the
abstract semantics functions fixed, so this is what I am doing.

lemma lemma89:

fixes fstate-a :: 'c::contour-a f/sta\te and cstate-a :: 'c::contour-a cstate

shows |fstate| < fstate-a = |F-(Discr fstate)| F-(Discr fstate-a)
and |cstate| 3 cstate-a = |C-(Discr cstate)| 3 C-(Discr cstate-a)

(proof)

a
=

And finally, we lift this result to PR and PR.

lemma lemma6: [PR 1| 5 PRI

(proof)
end
7. Generic Computability

theory Computability
imports HOLCF HOLCF Utils
begin

Shivers proves the computability of the abstract semantics functions only by generic and
slightly simplified example. This theory contains the abstract treatment in Section 4.4.3.
Later, we will work out the details apply this to PR.

7.1. Non-branching case

After the following lemma (which could go into HOL.Set-Interval), we show Shivers’
Theorem 10. This says that the least fixed point of the equation

fz=gaxzUf (rx
is given by

fx:Ug(rix).

1>0

24

The proof follows the standard proof of showing an equality involving a fixed point:
First we show that the right hand side fulfills the above equation and then show that
our solution is less than any other solution to that equation.
lemma insert-greater Than:

insert (n:nat) {n<.} = {n..}
(proof)
lemma theorem10:

fixes g :: ‘a:icpo — 'b:type set and r 2 'a — a

shows fiz-(A fz. gz U f-(r-z)) = (A z. (i. g-(r*-z)))
(proof)

7.2. Branching case

Actually, our functions are more complicated than the one above: The abstract semantics

functions recurse with multiple arguments. So we have to handle a recursive equation
of the kind

fx=gaU U fr

a€R x

By moving to the power-set relatives of our function, e.g.

gY = Uga andRY = URa
acA aER

the equation becomes
fY =gY U [(BY)

(which is shown in Lemma 11) and we can apply Theorem 10 to obtain Theorem 12.

We define the power-set relative for a function together with some properties.

definition powerset-lift :: (‘a::cpo — 'b::type set) = 'a set — b set ()
where f= (A S. (JyeS . f-y))

lemma powerset-lift-singleton|simp]:
Ha} = fa
(proof)

lemma powerset-lift-union|simp]:
F(AUB) =fAUfB
(proof)

lemma UNION-commute:(|Jz€A. JyeB . Pz y) = (JyeB. Jz€A . Pz y)
{proof)

lemma powerset-lift-UNION:
(UzeS. g(A) = g(JzeS. A x)

25

(proof)

lemma powerset-lift-iterate- UNION:
(UzeS. (9" (A z)) = (9~ (UzeS. A x)
(proof)

lemmas powerset-distr = powerset-lift-UNION powerset-lift-iterate- UNION

Lemma 11 shows that if a function satisfies the relation with the branching R, its power-
set function satisfies the powerset variant of the equation.
lemma lemmall:
fixes f :: 'a — 'bsetand g :: 'a — 'b set and R :: 'a — 'a set
assumes Az. f-z = gz U (JyeR 2. f-y)
shows f.5 = ¢S U f(R-S)
(proof)

Theorem 10 as it will be used in Theorem 12.

lemmas theorem10ps = theorem10|of g 1] for g r

Now we can show Lemma 12: If F' is the least solution to the recursive power-set equation,
then x — F' z is the least solution to the equation with branching R.

We fix the type variable ‘a to be a discrete cpo, as otherwise z — {x} is not continuous.

lemma theorem12’:
fixes g :: ‘a::discrete-cpo — 'b::type set and R :: 'a — 'a set
assumes F-fir: F = fiz-(A F x. gz U F-(R-x))
shows fiz-(A fz. go U (JyeR-z. f-y)) = (A z. F-{z})
(proof)

lemma theorem12:
fixes g :: ‘a::discrete-cpo — 'b::type set and R :: 'a — 'a set
shows fiz-(A fz. gz U (JyeRz. fy)z = g(UJi((R)"{z}))
(proof)

end

8. The abstract semantics is computable

theory AbsCFComp
imports AbsCF Computability FizTransform CPSUtils MapSets
begin

default-sort type

The point of the abstract semantics is that it is computable. To show this, we exploit

26

the special structure of F and C: Each call adds some elements to the result set and
joins this with the results from a number of recursive calls. So we separate these two
actions into separate functions. These take as arguments the direct sum of f/sta\te and
cg\ate, i.e. we treat the two mutually recursive functions now as one.

abs-g gives the local result for the given argument.

fixrec abs-g :: (‘c::contour f/Sta\te + 'c cstate) discr — 'c ans
where abs-g-x = (case undiscr x of
(Inl (PC (Lambda lab vs ¢, B), as, ve, b)) = {}
| (Inl (PP (Plus c),[-,~,cnts],ve,b)) =
let b’ = nb b c;
B =[c+— b
in {((c, B), cont) | cont . cont € cnts}
| (Inl (PP (prim.If ct cf),[-, cntts, cnifs],ve,b)) =
((letd' = nb b ct;

B = [ct — b
in {((ct, B), cnt) | ent . cnt € cnits}
o
let b' = nb b cf;
B =[cf = b]
: in {((cf, B), ent) | cnt . cnt € cnifs}
| (Inl (AStOp,H,-;)) = {}
| (Inl-) = L
|

(Inr (App lab f vs,B,ve,b)) =
lethZﬁf,Bve; N
as = map (Av. A v 3 ve) vs;
b’ = nb b lab
in {((lad, B).f") | " - f'€ fs}
| (Inr (Let lab ls ¢’,8,ve,b)) = {}
)

abs-R gives the set of arguments passed to the recursive calls.

fixrec abs-R :: ('c::contour Jga\te + 'c estate) discr — ('c::contour J% + ’c cstate) discr
set

where abs-R-z = (case undiscr x of
(Inl (PC (Lambda lab vs ¢, B), as, ve, b)) =
(if length vs = length as
then let B/ = (3 (lab — b);
ve! = wve U. (U. (map (A(v,a). {(v,d) := a}.) (zip vs as)))
in {Discr (Inr (c,f’,ve’,b))}

else 1)
| (Inl (PP (Plus c),[-,-,cnts],ve,b)) =
let b = nb b c;
B =[c— 0

in (U ent€cents. {Discr (Inl (ent,[{}],ve,b")})

27

| (Inl (PP (prim.If ct cf),[-, cntts, entfs],ve,b)) =
((letb'=nbb ct

B = [ct — b
in (J ent€entts . {Discr (Inl (cnt,[],ve,b’))})
)u(
let b = nb b cf;
8= lcf > Y

in (\J entecentfs . {Discr (Inl (ent,[],ve,b’))})

)
| (Inl (AStop,[-],--)) = {}
| (Inl-) = L
| (Inr (App lab f vs,B,ve,b)) =
letfs-Avae, R
as = map (Av. A v (3 ve) vs;
b’ =nb b lab
in (Uf' € fs. {Discr (Inl (f',as,ve,b"))})
| (Inr (Let lab Is ¢’,B,ve,b)) =
let b’ = nb b lab;
8" = B (lab v b');
ve! = ve U. (J. (map (A(0,0). {(v,b") := (A (L 1) B’ ve)}.) Is))
in {Discr (Inr (c',p’,ve’,b"))

The initial argument vector, as created by PR.

definition initial-r :: prog = ('c::contour]@?te + e cst/a\te) discr
where initial-r prog = Discr (Inl
(the-clem (A (L prog) Map.empty {}.), [{AStop}], {}., b))

8.1. Towards finiteness

We need to show that the set of possible arguments for a given program p is finite.
Therefore, we define the set of possible procedures, of possible arguments to JF, or possible
arguments to C and of possible arguments.

definition proc-poss :: prog = ’'c::contour proc set
where proc-poss p = PC * (lambdas p x maps-over (labels p) UNIV) U PP ‘ prims p U
{AStop}

definition fstate-poss :: prog = 'c::contour a-fstate set
where fstate-poss p = (proc-poss p x NList (Pow (proc-poss p)) (call-list-lengths p) x smaps-over
(vars p x UNIV) (proc-poss p) x UNIV)

definition cstate-poss :: prog = ’c::contour a-cstate set
where cstate-poss p = (calls p X maps-over (labels p) UNIV x smaps-over (vars p x UNIV)
(proc-poss p) x UNIV)

28

definition arg-poss :: prog = (’'c::contour a-fstate + 'c a-cstate) discr set
where arg-poss p = Discr * (fstate-poss p <+> cstate-poss p)

Using the auxiliary results from Shivers— CFA.CPSUtils, we see that the argument space
as defined here is finite.

lemma finite-arg-space: finite (arg-poss p)

{proof)

But is it closed? I.e. if we pass a member of arg-poss to abs-R, are the generated recursive
call arguments also in arg-poss? This is shown in arg-space-complete, after proving an
auxiliary result about the possible outcome of a call to A and an admissibility lemma.

lemma evalV-possible:
assumes f: f € A d [ve
and d: d € vals p
and ve: ve € smaps-over (vars p X UNIV) (proc-poss p)
and S: B € maps-over (labels p) UNIV
shows f € proc-poss p

(proof)

lemma adm-subset: cont (Az. fz) = adm (\z. fz C 5)
(proof)

lemma arg-space-complete:
state € arg-poss p = abs-R-state C arg-poss p

(proof)

This result is now lifted to the powerset of abs-R.

lemma arg-space-complete-ps: states C arg-poss p = (abs-R)-states C arg-poss p

(proof)

We are not so much interested in the finiteness of the set of possible arguments but
rather of the the set of occurring arguments, when we start with the initial argument.
But as this is of course a subset of the set of possible arguments, this is not hard to
show.

lemma UN-iterate-less:
assumes start: z € S
and step: \y. yCS = (fy) C
shows (|Ji. iterate i-f-{z}) C S
(proof)

S

lemma args-finite: finite (|Ji. iterate i-(abs-R)-{initial-r p}) (is finite 25)
(proof)

29

8.2. A decomposition

The functions abs-¢g and abs-R are derived from F and C. This connection has yet to
expressed explicitly.

lemma Un-commute-helper:(a U b) U (¢ U d) = (a U ¢) U (b U d)
(proof)

lemma a-evalF-decomp:
F = fst (sum-to-tup-(fix-(A fz. (Jy€abs-R-z. f-y) U abs-g-x)))
(proof)

8.3. The iterative equation

Because of the special form of F (and thus 737\3) derived in the previous lemma, we
can apply our generic results from Shivers— CFA.Computability and express the abstract
semantics as the image of a finite set under a computable function.

lemma a-cvalF-iterative:

~

F-(Discr x) = abs-g-(J 1. iterate i-(abs-R)-{Discr (Inl z)})
(proof)

lemma a-eval CPS-interative:
PR prog = abs-g-(i. iterate i-(abs-R)-{initial-r prog})
(proof)

end

Part IlI.
The auxiliary theories

9. Syntax tree helpers

theory CPSUtils
imports CPSScheme
begin

This theory defines the sets lambdas p, calls p, calls p, vars p, labels p and prims p as
the subexpressions of the program p. Finiteness is shown for each of these sets, and
some rules about how these sets relate. All these rules are proven more or less the same
ways, which is very inelegant due to the nesting of the type and the shape of the derived
induction rule.

30

It would be much nicer to start with these rules and define the set inductively. Unfor-
tunately, that approach would make it very hard to show the finiteness of the sets in
question.

fun lambdas :: lambda = lambda set
and lambdasC :: call = lambda set
and lambdasV :: val = lambda set
where lambdas (Lambda [vs ¢) = ({Lambda | vs ¢} U lambdasC c)
| lambdasC (App 1 d ds) = lambdasV d U |J (lambdasV * set ds)
| lambdasC (Let | binds ¢’) = (U (-, y)€set binds. lambdas y) U lambdasC ¢’
| lambdasV (L 1) = lambdas 1
| lambdasV - = {}

fun calls :: lambda = call set
and callsC' :: call = call set
and callsV :: val = call set
where calls (Lambda | vs ¢) = callsC ¢
| callsC (App 1 d ds) = {App 1 d ds} U callsV d U (| (callsV ¢ (set ds)))
| callsC (Let l binds ¢') = {call.Let 1 binds ¢’} U (U (-, y)€Eset binds. calls y) U callsC ¢")
| callsV (L1) = calls |
| callsV - ={}

lemma finite-lambdas[simp]: finite (lambdas) and finite (lambdasC c¢) finite (lambdasV v)
(proof)

lemma finite-calls[simp]: finite (calls I) and finite (callsC ¢) finite (callsV v)
(proof)

fun vars :: lambda = var set
and varsC :: call = var set
and varsV :: val = var set
where vars (Lambda - vs ¢) = set vs U varsC' ¢
| varsC (App - a as) = varsV a U | (varsV ¢ (set as))
| varsC (Let - binds ¢’) = (| (v, l)€set binds. {v} U vars l) U varsC ¢’
| varsV (L 1) = vars |
| varsV (R - v) = {v}
| varsV - = {}

lemma finite-vars[simp|: finite (vars 1) and finite (varsC c) finite (varsV v)

(proof)

fun label :: lambda + call = label
where label (Inl (Lambda 1 - -)) =1
| label (Inr (App 1 --)) =1
| label (Inr (Letl--)) =1

fun labels :: lambda = label set

and labelsC :: call = label set

and labelsV :: val = label set

where labels (Lambda | vs ¢) = {1} U labelsC ¢

31

| labelsC (App 1 a as) = {1} U labelsV a U | (labelsV * (set as))

| labelsC (Let 1 binds ¢’) = {1} U (U (v, y)€set binds. labels y) U labelsC ¢’
| labelsV (L 1) = labels |

| labelsV (R 1-) = {l}

| labelsV - = {}

lemma finite-labels[simp]: finite (labels 1) and finite (labelsC c) finite (labelsV v)
(proof)

fun prims :: lambda = prim set
and primsC :: call = prim set
and primsV :: val = prim set
where prims (Lambda - vs ¢) = primsC ¢
| primsC (App - a as) = primsV a U | (primsV * (set as))
| primsC (Let - binds ¢') = (I (-, y)€set binds. prims y) U primsC ¢’
| primsV (L 1) = prims |
| primsV (R lv) = {}
| primsV (P prim) = {prim}
| primsV (Clv) = {}

lemma finite-prims[simp|: finite (prims 1) and finite (primsC c) finite (primsV v)
(proof)

fun wvals :: lambda = val set
and wvalsC' :: call = wval set
and valsV :: val = wval set
where vals (Lambda - vs ¢) = valsC ¢

| valsC (App - a as) = valsV a U |J (valsV ‘ (set as))

| valsC (Let - binds ¢') = (U (-, y)€set binds. vals y) U valsC ¢’
| valsV (L'1) = {L I} U wvals 1
| valsV (R 1v) ={R v}
| valsV (P prim) = {P prim}
| valsV (C'lv) = {C v}

lemma
fixes list2 :: (var x lambda) list and ¢ :: varxlambda
shows lambdas!: Lambda [vs ¢ € lambdas x = ¢ € calls x
and Lambda | vs ¢ € lambdasC y = ¢ € callsC y
and Lambda | vs ¢ € lambdasV z = ¢ € callsV 2
and V z€ set list. Lambda [vs ¢ € lambdasV z — ¢ € callsV z
and Vze€ set list2. Lambda | vs ¢ € lambdas (snd) — ¢ € calls (snd 1)
and Lambda | vs ¢ € lambdas (snd t) => ¢ € calls (snd t)

(proof)

lemma
shows lambdas2: Lambda | vs ¢ € lambdas x = | € labels x
and Lambda | vs ¢ € lambdasC y = 1| € labelsC' y
and Lambda [vs ¢ € lambdasV z = | € labelsV z
and V z€ set list. Lambda | vs ¢ € lambdasV z — | € labelsV z

32

and Vze set (list2 :: (var x lambda) list) . Lambda | vs ¢ € lambdas (snd) — 1 € labels
(snd x)
and Lambda | vs ¢ € lambdas (snd (t:: varxlambda)) => | € labels (snd t)

(proof)

lemma

shows lambdas3: Lambda | vs ¢ € lambdas © = set vs C wvars x

and Lambda [vs ¢ € lambdasC y => set vs C varsC' y

and Lambda [vs ¢ € lambdasV z —> set vs C varsV z

and V z€ set list. Lambda [vs ¢ € lambdasV z —> set vs C wvarsV z

and Vze set (list2 :: (var x lambda) list) . Lambda | vs ¢ € lambdas (snd) — set vs C
vars (snd x)

and Lambda | vs ¢ € lambdas (snd (t:: varxlambda)) = set vs C vars (snd t)

(proof)

lemma
shows app1: App I d ds € calls t = d € vals x
and App l d ds € callsC y = d € valsC y
and App [d ds € callsV z = d € valsV z
and V z€ set list. App 1 d ds € callsV z — d € valsV z
and Vze€ set (list2 :: (var x lambda) list) . App I d ds € calls (snd £) — d € vals (snd x)
and App | d ds € calls (snd (t:: varxlambda)) = d € vals (snd t)

(proof)

lemma

shows app2: App 1 d ds € calls t = set ds C wvals x

and App l d ds € callsC y = set ds C valsC' y

and App l d ds € callsV z = set ds C valsV z

and V z€ set list. App 1 d ds € callsV z — set ds C valsV z

and V z€ set (list2 :: (var X lambda) list) . App 1 d ds € calls (snd) — set ds C vals (snd
7)

and App [d ds € calls (snd (t:: varxlambda)) = set ds C wvals (snd t)
(proof)

lemma

shows letl: Let | binds ¢’ € calls t = | € labels x

and Let | binds ¢’ € callsC y = 1 € labelsC y

and Let | binds ¢’ € callsV z = | € labelsV z

and V z€ set list. Let | binds ¢’ € callsV z — | € labelsV z

and Vze€ set (list2 :: (var X lambda) list) . Let [binds ¢’ € calls (snd) — 1 € labels (snd
T

)

and Let | binds ¢’ € calls (snd (t:: varxlambda)) = | € labels (snd t)
(proof)

lemma
shows let2: Let | binds ¢’ € calls t = ¢’ € calls x
and Let | binds ¢’ € callsC y = ¢’ € callsC y
and Let [binds ¢’ € callsV 2 = ¢’ € callsV 2
and V z€ set list. Let [binds ¢’ € callsV z — ¢’ € callsV z

33

and Vze set (list2 :: (var x lambda) list) . Let | binds ¢' € calls (snd) — ¢’ € calls (snd
z)
and Let | binds ¢’ € calls (snd (t:: varxlambda)) = ¢’ € calls (snd t)

(proof)

lemma

shows let3: Let | binds ¢’ € calls 1 = fst ‘ set binds C vars =

and Let | binds ¢’ € callsC y = fst set binds C varsC y

and Let [binds ¢’ € callsV z = fst ‘ set binds C varsV z

and V z€ set list. Let | binds ¢’ € callsV z — fst * set binds C varsV z

and Vze set (list2 :: (var x lambda) list) . Let | binds ¢’ € calls (snd) — fst set binds C
vars (snd x)

and Let [binds ¢’ € calls (snd (t:: varxlambda)) = fst ¢ set binds C vars (snd t)

(proof)

lemma

shows let): Let | binds ¢’ € calls 1 = snd * set binds C lambdas z

and Let | binds ¢’ € callsC y = snd * set binds C lambdasC y

and Let | binds ¢’ € callsV z = snd ‘ set binds C lambdasV z

and V z¢€ set list. Let | binds ¢’ € callsV z — snd ‘ set binds C lambdasV z

and Vze set (list2 :: (var x lambda) list) . Let | binds ¢’ € calls (snd) — snd * set binds
C lambdas (snd x)

and Let | binds ¢’ € calls (snd (t:: varxlambda)) = snd * set binds C lambdas (snd t)

(proof)

lemma
shows vals1: P prim € vals p = prim € prims p

and P prim € valsC y = prim € primsC' y

and P prim € valsV z = prim € primsV z

and V z€ set list. P prim € valsV z — prim € primsV z

and Vze€ set (list2 :: (var x lambda) list) . P prim € wvals (snd £) — prim € prims (snd
7)

and P prim € vals (snd (t:: varxlambda)) = prim € prims (snd t)

(proof)

lemma
shows vals2: R | var € vals p = var € vars p
and R [var € valsC y = var € varsC'y
and R [var € valsV z = var € varsV z
and V z€ set list. R [var € valsV z — var € varsV z
and Vze set (list2 :: (var x lambda) list) . R | var € vals (snd x) — var € vars (snd x)
and R [var € vals (snd (t:: varxlambda)) = var € vars (snd t)

(proof)

lemma
shows vals3: L | € vals p = | € lambdas p
and L[€ valsC y = | € lambdasC y
and L] € valsV z = | € lambdasV z
and V z€ set list. L'l € valsV z — | € lambdasV z

34

and Vze set (list2 :: (var x lambda) list) . L 1 € vals (snd) — 1 € lambdas (snd x)
and L | € vals (snd (t:: varxlambda)) => | € lambdas (snd t)

(proof)

definition nList :: 'a set => nat => ’a list set
where nList An = {l. set | < A A length | = n}

lemma finite-nList[intro:
assumes finA: finite A
shows finite (nList A n)

(proof)

definition NList :: 'a set => nat set => 'a list set
where NList AN =) n€ N.nList An

lemma finite-Nlist[intro):
[finite A; finite N | = finite (NList A N)
(proof)

definition call-list-lengths
where call-list-lengths p = {0,1,2,3} U (Ac. case ¢ of (App - - ds) = length ds | - = 0) °
calls p

lemma finite-call-list-lengths[simp)|: finite (call-list-lengths p)
{proof)

end

10. General utility lemmas

theory Utils imports Main
begin

This is a potpourri of various lemmas not specific to our project. Some of them could
very well be included in the default Isabelle library.

Lemmas about the single-valued predicate.

lemma single-valued-empty|simp]:single-valued {}

(proof)

lemma single-valued-insert:
assumes single-valued rel
and A zy . [(z,y) € rel; z=a] = y=>
shows single-valued (insert (a,b) rel)

(proof)

35

Lemmas about ran, the range of a finite map.

lemma ran-upd: ran (m (k — v)) C ran m U {v}
(proof)

lemma ran-map-of: ran (map-of xs) C snd * set s

{proof)

lemma ran-concat: ran (m! ++ m2) C ran m1 U ran m2

(proof)

lemma ran-upds:
assumes eg-length: length ks = length vs
shows ran (map-upds m ks vs) C ran m U set vs

(proof)

lemma ran-upd-mem|[simp]: v € ran (m (k — v))
(proof)

Lemmas about map, zip and fst/snd

lemma map-fst-zip: length xs = length ys = map fst (zip xs ys) = xs

(proof)

lemma map-snd-zip: length zs = length ys = map snd (zip xs ys) = ys
(proof)

end

11. Set-valued maps

theory SetMap
imports Main
begin

For the abstract semantics, we need methods to work with set-valued maps, i.e. func-
tions from a key type to sets of values. For this type, some well known operations are
introduced and properties shown, either borrowing the nomenclature from finite maps
(sdom, sran,...) or of sets ({}., U.,...).

definition
sdom :: ('a => 'b set) => 'a set where
sdom m = {a. m a ~= {}}

definition
sran 2 (‘a => 'b set) => 'b set where

sran m = {b. Ja. b € m a}

lemma sranl: b € ma = b € sran m

36

{proof)

lemma sdom-not-memlelim]: a ¢ sdom m = m a = {}

{proof)

definition smap-empty (<{}.»)
where {}. & = {}

definition smap-union :: (‘a::type = 'b::type set) = (‘a = 'b set) = ('a = 'b set) (- U. -»)
where smapl U. smap2 k = smapl k U smap2 k

primrec smap-Union :: ('a::type = 'b::type set) list = ‘a = b set («\J.-)
where [simp]:(J. [| = {}.
(m#ms) =m U. |J. ms

definition smap-singleton :: 'a::type = 'bi:type set = ‘a = b set («{ - := -}»)
where {k := vs}. = {}. (k := vs)

definition smap-less :: (a = 'b set) = (‘a = 'b set) = bool («-/ C. - [50, 51] 50)
where smap-less m1 m2 = (Vk. m1 k C m2 k)

lemma sdom-empty[simp): sdom {}. = {}

{proof)

lemma sdom-singleton[simp]: sdom {k := vs}. C {k}
{proof)

lemma sran-singleton[simp: sran {k := vs}. = vs
{proof)

lemma sran-empty[simp]: sran {}. = {}

{proof)

lemma sdom-union[simp]: sdom (m U. n) = sdom m U sdom n

{proof)

lemma sran-union[simp]: sran (m U. n) = sran m U sran n

{proof)

lemma smap-empty[simp]: {}. C. {}.
{proof)

lemma smap-less-refl: m C. m

{proof)

lemma smap-less-trans[trans]: [m1 C. m2; m2 C. m3 | = m1 C. m3

{proof)

lemma smap-union-mono: [vel C. vel’; ve2 C. ve2’]| = vel U. ve2 C. vel’ U. ve2’

37

{proof)

lemma smap-Union-union: m1 U. |J.ms = |J.(mI1#ms)

{proof)

lemma smap-Union-mono:
assumes list-all2 smap-less ms1 ms2
shows |J. ms! C. |J. ms2

(proof)

lemma smap-singleton-mono: v C v/ = {k := v}. C. {k := v’}

(proof)

lemma smap-union-comm: m1 U. m2 = m2 U. ml
(proof)

lemma smap-union-emptyl [simpl: {}. U. m = m

(proof)

lemma smap-union-empty2[simpl: m U. {}. = m

{proof)

lemma smap-union-assoc [simpl: (m1 U. m2) U. m8 = ml U. (m2 U. m3)

(proof)

lemma smap-Union-append[simp]: |J. (m1@m2) = (IJ. m1) U. (J. m2)
{proof)

lemma smap-Union-rev[simpl: |J. (revl) = . I

{proof)

lemma smap- Union-map-rev[simpl: J. (map f (rev 1)) = . (map f1)
{proof)

end

12. Sets of maps

theory MapSets
imports SetMap Utils
begin

In the section about the finiteness of the argument space, we need the fact that the set of
maps from a finite domain to a finite range is finite, and the same for the set-valued maps
defined in Shivers— CFA.SetMap. Both these sets are defined (maps-over, smaps-over)
and the finiteness is shown.

definition maps-over :: 'a::type set = 'b::type set = (‘a — 'b) set

38

where maps-over A B = {m. dom m C A A ran m C B}

lemma maps-over-empty|[simpl:
Map.empty € maps-over A B
(proof)

lemma maps-over-upd:
assumes m € maps-over A B
andve Aand k € B

shows m(v — k) € maps-over A B

{proof)

lemma maps-over-finite[introl:
assumes finite A and finite B shows finite (maps-over A B)
(proof)

definition smaps-over :: 'a::type set = 'bitype set = (‘a = 'b set) set
where smaps-over A B = {m. sdom m C A A sran m C B}

lemma smaps-over-empty[simp:
{}. € smaps-over A B

(proof)

lemma smaps-over-singleton:
assumes k € A and vs C B
shows {k := vs}. € smaps-over A B

{proof)

lemma smaps-over-un:
assumes ml1 € smaps-over A B and m2 € smaps-over A B
shows m1 U. m2 € smaps-over A B

(proof)

lemma smaps-over-Union:
assumes set ms C smaps-over A B
shows | J.ms € smaps-over A B

(proof)

lemma smaps-over-im:
[f€ma;mée smaps-over AB]| = f€B

(proof)

lemma smaps-over-finite[introl:
assumes finite A and finite B shows finite (smaps-over A B)

(proof)

end

39

13. HOLCF Utility lemmas

theory HOLCF Utils
imports HOLCF
begin

We use HOLCF to define the denotational semantics. By default, HOLCF does not turn
the regular set type into a partial order, so this is done here. Some of the lemmas here
are contributed by Brian Huffman.

We start by making the type bool a pointed chain-complete partial order.
instantiation bool :: po
begin
definition
zCy«—(z—y)
instance (proof)
end

instance bool :: chfin
(proof)

instance bool :: pcpo

(proof)

lemma is-lub-bool: S <<| (True € S)

{proof)

lemma lub-bool: lub S = (True € S)
(proof)

lemma bottom-eq-False[simp]: L = False

(proof)

To convert between the squared syntax used by HOLCF and the regular, round syntax
for sets, we state some of the equivalencies.
instantiation set :: (type) po
begin
definition
ACB+— ACB
instance (proof)
end

lemma sqgsubset-is-subset: AC B<+— A C B

{proof)

lemma is-lub-set: S <<| |JS
{proof)

40

lemma lub-is-union: lub S = JS

{proof)

instance set :: (type) cpo

{proof)

lemma emptyset-is-bot[simp]: {} T S
{proof)

instance set :: (type) pcpo

(proof)

lemma bot-bool-is-emptyset[simp]: L = {}

{proof)

To actually use these instance in fizrec definitions or fixed-point inductions, we need
continuity requrements for various boolean and set operations.

lemma cont2cont-disj [simp, cont2cont]:
assumes f: cont (Az. fz) and g¢: cont (\z. g)
shows cont (Az. fo V g z)

(proof)

lemma cont2cont-imp[simp, cont2cont]:
assumes f: cont (Az. = fz) and g: cont (Az. g z)
shows cont (Az. fz — g)

(proof)

lemma cont2cont-Collect [simp, cont2cont]:
assumes Ay. cont (Az. fz y)
shows cont (Az. {y. fz y})

(proof)

lemma cont2cont-mem [simp, cont2cont]:
assumes cont (Az. f z)
shows cont (Az. y € fx)

(proof)

lemma cont2cont-union [simp, cont2cont):
cont (Az. fx) = cont (A\z. g x)
= cont (A\z. fz U gx)

(proof)

lemma cont2cont-insert [simp, cont2cont):
assumes cont (Az. fz)
shows cont (Az. insert y (f x))

(proof)

41

lemmas adm-subset = adm-below|where ?'b = ‘a::type set, unfolded sqsubset-is-subset]

lemma cont2cont-UNION [cont2cont,simp]:
assumes cont f
and A y. cont (\z. g z y)
shows cont (Az. |Jye fz. gz y)
(proof)

lemma cont2cont-Let-simple[simp,cont2cont]:
assumes cont (Az. g x t)
shows cont (Az. let y = tin gz y)

(proof)

lemma cont2cont-case-list [simp, cont2cont]:
assumes Ay. cont (Az. fI x)
and Ay z. cont (A\z. 22y 2)
shows cont (Az. case-list (f1 z) (f2 x) 1)

(proof)

As with the continuity lemmas, we need admissibility lemmas.

lemma adm-not-mem:
assumes cont (Az. f z)
shows adm (Az. y ¢ fz)

(proof)

lemma adm-id[simp]: adm (A\z . z)
(proof)

lemma adm-Not[simp|: adm Not

(proof)

lemma adm-prod-split:
assumes adm (Ap. f (fst p) (snd p))
shows adm (A\(z,y). fz y)

(proof)

lemma adm-ball”:
assumes A y. adm (Az. y € Az — Pz y)
shows adm (Az.Vy € Ax . Pzy)

(proof)

lemma adm-not-conj:
ladm (Az. = P 2); adm (Az. = Q 2)] = adm (Az. - (P z A Q x))
(proof)

lemma adm-single-valued:
assumes cont (Az. f z)

42

shows adm (Az. single-valued (f x))

(proof)

To match Shivers’ syntax we introduce the power-syntax for iterated function applica-
tion.

abbreviation niceiterate (<(-7)» [1000] 1000)
where niceiterate f i = iterate i-f

end

14. Fixed point transformations

theory FixTransform
imports HOLCF
begin

default-sort type

In his treatment of the computabily, Shivers gives proofs only for a generic example and
leaves it to the reader to apply this to the mutually recursive functions used for the
semantics. As we carry this out, we need to transform a fixed point for two functions
(implemented in HOLCF as a fixed point over a tuple) to a simple fixed point equation.
The approach here works as long as both functions in the tuple have the same return
type, using the equation

XA . xB _ xA+B

Generally, a fixed point can be transformed using any retractable continuous function:

lemma fiz-transform:

assumes Az. g-(f-2)=z

shows fiz-F = g-(fiz-(f oo F o0 g))
(proof)

The functions we use here convert a tuple of functions to a function taking a direct sum
as parameters and back. We only care about discrete arguments here.

definition tup-to-sum :: (‘a discr — 'c¢) x ('b discr — '¢) — (‘a + 'b) discr — ci:icpo
where tup-to-sum = (A p s. (A(f,9).
case undiscr s of Inl x = f-(Discr x)
| Inr © = g-(Discr x)) p)

definition sum-to-tup :: (('a + 'b) discr — 'c) — ('a discr — 'c) x ('b discr — 'c::cpo)

where sum-to-tup = (A f. (A z. f-(Discr (Inl (undiscr x))),
A z. f-(Discr (Inr (undiscr z)))))

43

As so often when working with HOLCF, some continuity lemmas are required.

lemma cont2cont-case-sum[simp,cont2cont]:
assumes cont f and cont g
shows cont (Az. case-sum (f z) (g z))

(proof)

lemma cont2cont-circ[simp,cont2cont]:
cont (\f. f o g)
(proof)

lemma cont2cont-split-pair|cont2cont,simp):
assumes f1: cont f
and f2: A\ z. cont (f z)
and ¢g1: cont g
and ¢2: A\ z. cont (g z)
shows cont (A(a, b). (fa b, g ab))
(proof)

Using these continuity lemmas, we can show that our function are actually continuous
and thus allow us to apply them to a value.

lemma sum-to-tup-app:
sum-to-tup-f = (A z. f-(Discr (Inl (undiscr x))), A x. f-(Discr (Inr (undiscr))))
(proof)

lemma tup-to-sum-app:
tup-to-sum-p = (A s. (A(f,9).
case undiscr s of Inl x = f-(Discr x)
| Inr © = g-(Discr x)) p)
(proof)

Generally, lambda abstractions with discrete domain are continuous and can be resolved
immediately.

lemma discr-app[simp]:
(A s. fs)(Diser z) = f (Discr z)
(proof)

Our transformation functions are inverse to each other, so we can use them to transform
a fixed point.
lemma tup-to-sum-to-tup|[simp]:

shows sum-to-tup-(tup-to-sum-F) = F

(proof)

lemma fiz-transform-pair-sum:
shows fiz-F = sum-to-tup-(fiz-(tup-to-sum oo F oo sum-to-tup))

(proof)

44

After such a transformation, we want to get rid of these helper functions again. This is
done by the next two simplification lemmas.

lemma tup-sum-oo[simp]:
assumes f1: cont F
and f2: A\ z. cont (F x)
and g1: cont G
and ¢2: A\ z. cont (G z)
shows tup-to-sum oo (A p. (A(a, b). (F ab, Gab)) p) oo sum-to-tup
= (A fs. (case undiscr s of
Inlz =
F (A s. f-(Discr (Inl (undiscr s))))
(A s. f-(Discr (Inr (undiscr s))))-
(Discr x)
| Inr z =
G (A s. f-(Diser (Inl (undiscr s))))
(A s. f-(Discr (Inr (undiscr s))))-
(Discr x)))
(proof)

lemma fst-sum-to-tup[simp]:
fst (sum-to-tup-x) = (A za. x-(Discr (Inl (undiscr za))))
(proof)

end

References

[1] J. Breitner. Control flow in functional languages. Student research project, Karl-
sruher Institut fir Technologie (KIT), November 2010.

[2] J. Breitner. Implementation of Shivers’ Control-Flow Analysis. http://hackage.
haskell.org /package /shivers-cfg-0.1, November 2010.

[3] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, 1991.

45

http://hackage.haskell.org/package/shivers-cfg-0.1
http://hackage.haskell.org/package/shivers-cfg-0.1

	The definitions
	Syntax
	Standard semantics
	Exact nonstandard semantics
	Abstract nonstandard semantics

	The main results
	The exact call cache is a map
	Preparations
	The proof

	The abstract semantics is correct
	Abstraction functions
	Lemmas about abstraction functions
	Approximation relation
	Lemmas about the approximation relation
	Lemma 7
	Lemmas 8 and 9

	Generic Computability
	Non-branching case
	Branching case

	The abstract semantics is computable
	Towards finiteness
	A decomposition
	The iterative equation

	The auxiliary theories
	Syntax tree helpers
	General utility lemmas
	Set-valued maps
	Sets of maps
	HOLCF Utility lemmas
	Fixed point transformations

