
‘Sets’ Revisited: Working with a Large Category in
Isabelle/HOL

Eugene W. Stark

February 4, 2026

Abstract

We revisit the problem of formalization of the category of sets and functions
in Isabelle/HOL, regarding it as a paradigm for the formalization of other large
categories. We follow a general plan in which we extend the “category” locale from
our previous article [3] with a few axioms that allow us to pass back and forth between
objects and arrows internal to the category and “real” sets and functions external
to it. Using this setup, we prove the standard properties of the category of sets as
consequences of the properties of the external notions. A key feature is the inclusion
of an axiom that allows us to obtain objects internal to the category corresponding to
externally given sets. To avoid inconsistency, our framework axiomatizes a notion of
“smallness” and only asserts the existence of objects corresponding to small sets. We
give two “top-level” interpretations of our “sets category” locale. One uses “finite”
as the notion of smallness and uses only standard HOL for its construction, which
results in a small category. The other uses the axiomatic extension of HOL given in
[2] to construct an interpretation that incorporates infinite sets as well, resulting in
a large (but locally small) category.

1

Contents

1 Introduction 4

2 Smallness 9
2.1 Basic Notions . 10
2.2 Smallness of Finite Sets . 11
2.3 Smallness of Binary Products . 11
2.4 Smallness of Sums . 12
2.5 Smallness of Powersets . 12
2.6 Smallness of the Set of Natural Numbers 13
2.7 Smallness of Function Spaces . 13

2.7.1 Small Functions . 14
2.7.2 Small Funcsets . 16

2.8 Smallness of Sets of Lists . 16

3 Universe 18
3.1 Embeddings . 18
3.2 Lifting . 19
3.3 Pairing . 20
3.4 Powering . 21
3.5 Tupling . 22
3.6 Universe . 23

4 The Category of Small Sets 25
4.1 Basic Definitions and Properties . 25
4.2 Categoricity . 31
4.3 Well-Pointedness . 31
4.4 Epis Split . 31
4.5 Equalizers . 33

4.5.1 Exported Notions . 35
4.6 Binary Products . 36

4.6.1 Exported Notions . 39
4.7 Binary Coproducts . 41

4.7.1 Exported Notions . 43

2

4.8 Small Products . 46
4.8.1 Exported Notions . 49

4.9 Small Coproducts . 50
4.9.1 Exported Notions . 53

4.10 Coequalizers . 54
4.10.1 Exported Notions . 56

4.11 Exponentials . 57
4.11.1 Exported Notions . 60

4.12 Subobject Classifier . 62
4.13 Natural Numbers Object . 64
4.14 Sets Category with Tupling and Infinity 66

5 Interpretations of universe 67
5.1 Interpretation using Natural Numbers . 67
5.2 Interpretation using ZFC-in-HOL . 69

6 Interpretations of sets-cat 73
6.1 Category of Finite Sets . 73
6.2 Category of ZFC Sets . 76

Bibliography 77

3

Chapter 1

Introduction

In a previous article [3] we formalized many basic notions and facts from category theory.
The formalization was carried out in HOL, in spite of the fact that HOL is significantly
weaker than set theories usually cited as foundations for category theory. The rationale
for doing so was that most of the central concepts in category theory have significant
content, even in contexts, such as small categories, that pose no foundational issues. At
some point, however, one wants to be able to work with categories that are not small;
the category of sets being the prototypical example. That is, we would like to have a
category S that first of all can be considered as a “set category”, in the sense that there
is fully faithful functorial way of mapping its objects to sets and its arrows to functions,
and which in addition has “enough objects” in the sense that if we given any “real” set
then there will exist a representative object of S whose elements correspond bijectively
to the elements of the given set. Such a category would enjoy the small completeness
and cocompleteness properties we would expect of the “real” category of sets.

Now, in standard HOL it is not possible to define a category of sets as described
above, because the normal axioms of HOL do not prove the existence of a type “large
enough” to provide (even up to equipollence) sets to represent the result of iterated
exponentiations starting from an infinite set. However, it is possible to get around this
restriction by adding additional axioms that assert the existence of such a type. This is
the approach taken in the article [2], which augments HOL with additional axioms whose
essence is to assert the existence of a new type V whose elements correspond to sets that
can be proved to exist in ZFC. To avoid obvious inconsistency, clearly not every set of
elements at type V can correspond to an element of V ; the sets that do correspond to
elements of V are declared to be “small”. The notion of smallness is then extended via
equipollence to obtain a notion of small sets at arbitrary types.

In the article [3] the present author used the ZFC-in-HOL axiomatization to define a
“set category” whose objects are in bijective correspondence with the small sets at type
V. This does produce a usable category of small sets, but there are some identifiable
deficiencies. First of all, the construction is very closely tied to the ZFC-in-HOL devel-
opment and the particular type V introduced there. It would be more flexible if somehow
the necessary assumptions could be distilled and expressed (using Isabelle’s locale fea-

4

ture, for example) as assumptions about an unspecified type named by a type variable,
or, more generally, as assumptions about a set of elements of such a type. Secondly, the
construction given in [3] was somewhat ad hoc, which although it served its purpose as
a proof-of-concept, did not pay much attention to the ultimate usability of the theory
nor provide much guidance as to how the construction might be generalized to produce
categories of sets with additional structure (a category of groups, for example).

The purpose of present article is to revisit the problem of formalizing the category
of sets in Isabelle/HOL while trying to address the above deficiencies. The approach we
have taken is as follows. We first attempt to decouple the underlying extensions needed to
HOL from the particular development in ZFC-in-HOL and to re-express these extensions,
independently of the particular type V, using Isabelle’s locale feature. This leads us to
identify two main aspects that need to be addressed: (1) the notion of “smallness” of a
set; and (2) and notion of a “universe”, comprising a collection of sets that is in some
sense closed under the usual set-theoretic constructions.

The notion of smallness is addressed by the theory Smallness, which introduces sev-
eral locales whose assumptions concern a function sml :: ’V set => bool which is un-
derstood as specifying a collection of sets, at some unspecified but fixed type ’V, which
are to be considered “small”. A base locale, smallness, assumes as a regularity condition
that the function sml respects equipollence and then uses polymorphism to extend this
function by equipollence to a function small :: ’a set => bool at every type. (It is done
this way because types mentioned in locale parameters are essentially fixed, whereas
functions defined in the body of a locale can be polymorphic.) Several extensions to the
smallness locale are then defined, corresponding to various assumptions about what sets
are to be considered as small. The small_finite locale is satisfied by notions of smallness
for which arbitrary finite sets are considered to be small. The small_nat locale is satisfied
by notions of smallness for which the set of natural numbers is small. The small_prod-
uct locale is satisfied by notions of smallness that are preserved under cartesian product.
The small_sum locale is satisfied by notions of smallness that are preserved under the
formation of small-indexed unions. The small_powerset locale is satisfied by notions of
smallness for which the set of all subsets of a small set is again small. The small_funcset
locale is satisfied by notions of smallness that are preserved by a suitable construction
of function spaces (this involves some technical issues that result from the the fact that
HOL requires all functions to be total).

The notion of a “universe” is addressed by the theory Universe. This theory intro-
duces several locales whose assumptions concern a set univ :: ’U set, at some unspecified
but fixed type ’U, which admits embeddings of various other sets; typically resulting
from constructions on univ itself. A base locale, embedding, defines the notion of an
injective embedding of another set into univ. The lifting locale is satisfied when the set
univ embeds the disjoint union of itself and an additional element. The pairing locale is
satisfied when the set univ embeds univ×univ. The powering locale is satisfied when the
set univ embeds the set of all its “small” subsets. The tupling locale is satisfied when the
set univ embeds the set of all “small extensional functions” on its elements (here, again,
there are some technical issues to be addressed). Finally, the universe locale combines
the tupling locale with the assumption that the set of natural numbers is small.

5

Having defined the above locales, we proceed to defining the sets_cat locale, which
axiomatizes the notion “category of sets and functions”. This definition follows a general
plan that can be applied to construct locales that axiomatize categories of other kinds
of algebraic structures. We first define the locale sets_cat_base, which is satisfied by
an arbitrary category C with terminal object together with a notion of smallness. The
sets_cat_base locale provides a convenient place to define correspondences, between
objects of C and sets and between arrows of C and functions. Specifically, after making
an arbitrary choice of terminal object, we define a function Set that takes each object to
the set of its global elements, and a function Fun that takes each arrow to the function on
global elements it induces by composition. Here we are exploiting the well-pointedness
of a category of sets and functions to simplify things a bit. To apply the same plan to
categories that are not well-pointed, we will have to use generalized elements instead,
which is possible, but more cumbersome.

The sets_cat_base locale is then extended to the sets_cat locale by adding four
axioms. The first axiom asserts that the set of global elements of every object is small.
The second axiom asserts that the mapping Fun that takes arrows to functions on global
elements is injective. The third axiom asserts that for every “real” function F from the
set of global elements of object a to the set of global elements of object b there is an
arrow f : a -> b of C such that Fun f = f. Finally, the fourth axiom, which we call
“repleteness”, asserts that for every small subset A of the set of arrows of C there exists
an object a of C such that the set of global elements of a is equipollent with A. Although
the restrictions imposed by Isabelle/HOL on locale definitions require that this axiom
be expressed with respect to a fixed type, namely the type of arrows of C, in the body
of the locale we can immediately extend the repleteness property to show the existence
of objects corresponding to small sets at arbitrary types, as long as a set for which we
want to obtain an object “embeds” via an injective mapping into the set of arrows of C.

The gist of the sets_cat axioms is to assert the existence of a “meta-functor” from
C to “real sets” (of global elements of C) and “real functions” (between sets of global
elements), which is full, faithful, and surjective from objects to small sets (of arrows of
C). Moreover, we can obtain an object corresponding to a given small set at an arbitrary
type, assuming that there is an embedding of that set into the set of arrows of C. So,
the image of C under this meta-functor is a “meta-category” whose objects are sets of
arrows of C and whose arrows are functions between such sets. This meta-category is in
general only equivalent to C, not isomorphic to it, because when we pass from a small set
A to the corresponding object mkide A and then back to the set Set(mkide A) of global
elements of mkide a, we recover a set that is only equipollent to A, rather than equal to
it. We therefore obtain a pair of inverse “comparison maps” between an externally given
small set A and the set of global elements of the object mkide a corresponding to it. The
map IN encodes each element of A as a corresponding global element of mkide A; the
inverse map OUT decodes each global element of mkide A to the corresponding element
of A. We use the just-outlined structure to prove a “categoricity” result which states
that, a category C that satisfies the sets_cat locale is, up to equivalence of categories,
the unique such category whose set of arrows has the same cardinality as that of C. The
same overall pattern can be applied to algebraic structures more general than sets, but

6

note that in this case the comparison maps will end up being isomorphisms for these
structures, rather than just invertible functions.

We then proceed to develop the consequences of the sets_cat axioms; proving a
set of properties roughly patterned after those in Lawvere’s “Elementary Theory of the
Category of Sets” [1]. In brief, we show that, if the collection of arrows of C forms a “uni-
verse”, then C is well-pointed, small-complete and small co-complete, cartesian closed,
has a subobject classifier and a natural numbers object, and splits all epimorphisms.
The fact that the correspondences, between objects and sets and between arrows and
functions, have been defined in terms of structure intrinsic to the category C means that
we can carry out the proofs without having to reference concrete details of the construc-
tion of a particular underlying type, such as that of the type V from ZFC_in_HOL. Of
particular interest is the pattern we use to show the existence of limits and colimits in
C. Consider the case of binary products as an example. We know that the set of global
elements of the product a ⊗ b of objects a and b of C should be equipollent with the
cartesian product Set a×Set b of the set of global elements of a and that of b. Moreover,
the sets of global elements of a and b are small (by the locale assumptions), so if we have
available as an additional assumption about smallness that it is preserved by cartesian
product, then we may conclude that the set Set a× Set b is also small. If we have also
assumed the existence of a pairing function, which injectively maps pairs of arrows of C
to arrows of C, then we may use repleteness to prove the existence of an object a ⊗ b
whose set of global elements is equipollent with Set a×Set b. Once the existence of this
object has been shown, then we can prove that it is in fact a categorical product of a and
b. To do this, we need to obtain the projections, but these are just the arrows of C that
correspond to the “real” projection functions on Set a×Set b. So to summarize, to show
that C admits a particular categorical construction, we first carry out a corresponding
construction on sets of global elements. This will typically result in a set at a higher
type than that of the arrows of C. To obtain an object of C we must show that this set
is small and in addition that it “embeds” back down into the set of arrows of C.

Finally, as everything described up to this point has been carried out axiomatically
(the locale assumptions are the axioms), to keep ourselves honest we have to show that
the axioms are actually consistent. We do this by constructing two “top-level” interpre-
tations of the sets_cat locale. One interpretation is carried out in “vanilla HOL” without
the use of ZFC_in_HOL and takes “finite” as the notion of smallness. It shows that
the category whose objects are the natural numbers and whose arrows correspond to
functions between finite sets, interprets the sets_cat_with_tupling locale, which satisfies
all the smallness and embedding assumptions we use, except for the assumption that the
set of natural numbers is small. The second interpretation, which uses ZFC_in_HOL,
shows that the category of sets we constructed in the previous article [3] interprets the
sets_cat_with_tupling locale as well as the small_nat locale, which asserts also that the
set of natural numbers is small.

In the end, what we achieve is a locale, sets_cat, which axiomatizes the notion of a
category of sets and functions, and which can be used to perform reasoning internal to
such a category without having to refer to details of a particular concrete construction.
When required, we can pass from inside the category to the “external world” via a fully

7

faithful functorial mapping. Functions that exist externally can be internalized as arrows
using the fullness of this mapping. In addition, sets that exist externally, at any type,
can be internalized as objects of the category, provided that we establish two facts: (1)
their smallness; and (2) that they can be embedded into the set of arrows of the category.
We have demonstrated this procedure by using it to prove the familiar properties of a
“set category”.

8

Chapter 2

Smallness

theory Smallness
imports HOL−Library.Equipollence
begin

The purpose of this theory is to axiomatize, using locales, a notion of “small set” that
is polymorphic over types and that is preserved by certain set-theoretic constructions in
the way we would usually expect. We first observe that we cannot simply define such
a notion within normal HOL, because HOL does not permit us to quantify over types,
nor does it permit us to show the existence of a single type “large enough” to admit sets
of all cardinalities that would result, say, by iterating the application of the powerset
operator starting with some infinite set. So any way of defining “smallness” is going to
require extending HOL in some way. Note that this is exactly what is already done in
the article [2], which axiomatizes a particular type V and then defines a polymorphic
function small using the properties of that type. However, we would prefer to have a
notion of smallness that is not tied to one particular type or construction.

Ideally, what we would like to do is to define a locale smallness, whose assumptions
express closure properties that we would like to hold for a function small :: ′a set ⇒
bool. This does not quite work, though, because the types involved in locale assumptions
are essentially fixed, so that the function small could not be applied polymorphically. A
workaround is to have the locale assumption express closure properties of a function sml
:: ′b ⇒ bool, where type ′b is essentially fixed, and then to define within the locale context
the actually polymorphic function small :: ′a ⇒ bool, which extends sml by equipollence
to an arbitrary type ′a. This is essentially what is done in [2], except rather than basing
the definition on a notion of smallness derived from a particular type V we are defining
a locale that takes the type and associated basic notion of smallness as a parameter.

In the development here we have defined a basic smallness locale, along with several
extensions that express various collections of closure properties. It is not yet clear how
useful this level of generality might turn out to be in practice, however at the very least,
this allows us to segregate the property “the set of natural number is small” from the
others. This allows us to consider two interpretations for “category of small sets and
functions”; one of which only has objects corresponding to finite sets and the other of

9

which also has objects corresponding to infinite sets.

2.1 Basic Notions
Here we define the base locale smallness, which takes as a parameter a function sml ::
′a set ⇒ bool that defines a basic notion of smallness at some fixed type, and extends
this basic notion by equipollence to arbitrary types. We assume that the basic notion of
smallness sml given as a parameter already respects equipollence, so that small and sml
coincide at type ′a.

locale smallness =
fixes sml :: ′V set ⇒ bool
assumes lepoll-small-ax: [[sml X ; lepoll Y X]] =⇒ sml Y
begin

definition small :: ′a set ⇒ bool
where small X ≡ ∃X0. sml X0 ∧ X ≈ X0

lemma smallI :
assumes sml X0 and X ≈ X0

shows small X
〈proof 〉

lemma smallE :
assumes small X
and

∧
X0. [[sml X0; X ≈ X0]] =⇒ T

shows T
〈proof 〉

lemma small-iff-sml:
shows small X ←→ sml X
〈proof 〉

lemma lepoll-small:
assumes small X and lepoll Y X
shows small Y
〈proof 〉

lemma smaller-than-small:
assumes small X and Y ⊆ X
shows small Y
〈proof 〉

lemma small-image [intro, simp]:
assumes small X
shows small (f ‘ X)
〈proof 〉

10

lemma small-image-iff [simp]: inj-on f A =⇒ small (f ‘ A) ←→ small A
〈proof 〉

lemma small-Collect [simp]: small X =⇒ small {x ∈ X . P x}
〈proof 〉

end

2.2 Smallness of Finite Sets
The locale small-finite is satisfied by notions of smallness that admit small sets of arbi-
trary finite cardinality.

locale small-finite =
smallness +

assumes small-finite-ax: ∃Y . sml Y ∧ eqpoll {1 ..n :: nat} Y
begin

lemma small-finite:
shows finite X =⇒ small X
〈proof 〉

lemma small-insert:
assumes small X
shows small (insert a X)
〈proof 〉

lemma small-insert-iff [iff]: small (insert a X) ←→ small X
〈proof 〉

end

2.3 Smallness of Binary Products
The locale small-product is satisfied by notions of smallness that are preserved under
cartesian product.

locale small-product =
smallness +

assumes small-product-ax: [[sml X ; sml Y]] =⇒ ∃Z . sml Z ∧ eqpoll (X × Y) Z
begin

lemma small-product [simp]:
assumes small X small Y shows small (X × Y)
〈proof 〉

end

11

2.4 Smallness of Sums
The locale small-sum is satisfied by notions of smallness that are preserved under the
formation of small-indexed unions.

locale small-sum =
small-finite +

assumes small-sum-ax: [[sml X ;
∧

x. x ∈ X =⇒ sml (F x)]]
=⇒ ∃U . sml U ∧ eqpoll (Sigma X F) U

begin

lemma small-binary-sum:
assumes small X and small Y
shows small (({False} × X) ∪ ({True} × Y))
〈proof 〉

lemma small-union:
assumes X : small X and Y : small Y
shows small (X ∪ Y)
〈proof 〉

lemma small-Union-spc:
assumes A0: sml A0 and B:

∧
x. x ∈ A0 =⇒ small (B x)

shows small (
⋃

x∈A0. B x)
〈proof 〉

lemma small-Union [simp, intro]:
assumes A: small A and B:

∧
x. x ∈ A =⇒ small (B x)

shows small (
⋃

x∈A. B x)
〈proof 〉

The small-sum locale subsumes the small-product locale, in the sense that any notion
of smallness that satisfies small-sum also satisfies small-product.

sublocale small-product
〈proof 〉

end

2.5 Smallness of Powersets
The locale small-powerset is satisfied by notions of smallness for which the set of all
subsets of a small set is again small.

locale small-powerset =
smallness +

assumes small-powerset-ax: sml X =⇒ ∃PX . sml PX ∧ eqpoll (Pow X) PX
begin

lemma small-powerset:

12

assumes small X
shows small (Pow X)
〈proof 〉

lemma large-UNIV :
shows ¬ small (UNIV :: ′a set)
〈proof 〉

end

2.6 Smallness of the Set of Natural Numbers
The locale small-nat is satisfied by notions of smallness for which the set of natural
numbers is small.

locale small-nat =
smallness +

assumes small-nat-ax: ∃X . sml X ∧ eqpoll X (UNIV :: nat set)
begin

lemma small-nat:
shows small (UNIV :: nat set)
〈proof 〉

end

2.7 Smallness of Function Spaces
The objective of this section is to define a locale that is satisfied by notions of smallness
for which “the set of functions between two small sets is small.” This is complicated
in HOL by the requirement that all functions be total, which forces us to define the
value of a function at points outside of what we would consider to be its domain. If
we don’t impose some restriction on the values taken on by a function outside of its
domain, then the set of functions between a domain and codomain set could be large,
even if the domain and codomain sets themselves are small. We could limit the possible
variation by restricting our consideration to “extensional” functions; i.e. those that take
on a particular default value outside of their domain, but it becomes awkward if we have
to make an a priori choice of what this value should be.

The approach we take here is to define the notion of a “popular value” of a function.
This will be a value, in the function’s range, whose preimage is a large set. The idea
here is that the default values of extensional functions will typically have their default
values as popular values (though this is not necessarily the case, as a function whose
domain type is small will not have any popular values according to this definition). We
then define a “small function” to be a function whose range is a small set and which
has at most one popular value. The “essential domain” of small function is the set of
arguments on which the value of the function is not a popular value. Then we can

13

consistently require of a smallness notion that, if A and B are small sets, that the set of
functions whose essential domains are contained in A and whose ranges are contained in
B, is again small.

2.7.1 Small Functions
context smallness
begin

abbreviation popular-value :: (′b ⇒ ′c) ⇒ ′c ⇒ bool
where popular-value F y ≡ ¬ small {x. F x = y}

definition some-popular-value :: (′b ⇒ ′c) ⇒ ′c
where some-popular-value F ≡ SOME y. popular-value F y

lemma popular-value-some-popular-value:
assumes ∃ y. popular-value F y
shows popular-value F (some-popular-value F)
〈proof 〉

abbreviation at-most-one-popular-value
where at-most-one-popular-value F ≡ ∃≤1 y. popular-value F y

definition small-function
where small-function F ≡ small (range F) ∧ at-most-one-popular-value F

lemma small-functionI [intro]:
assumes small (range f) and at-most-one-popular-value f
shows small-function f
〈proof 〉

lemma small-functionD [dest]:
assumes small-function f
shows small (range f) and at-most-one-popular-value f
〈proof 〉

end

If there are small sets of arbitrarily large finite cardinality, then the preimage of a
popular value of a function must be an infinite set (in particular, it must be nonempty,
since the empty set must be small). We can derive various useful consequences of this
fairly lax assumption.

context small-finite
begin

lemma popular-value-in-range:
assumes popular-value F v
shows v ∈ range F

14

〈proof 〉

lemma small-function-const:
shows small-function (λx. y)
〈proof 〉

definition inv-intoE

where inv-intoE X f ≡ λy. if y ∈ f ‘ X then inv-into X f y
else SOME x. popular-value f (f x)

lemma small-function-inv-intoE :
assumes small-function f and inj-on f X
shows small-function (inv-intoE X f)
〈proof 〉

end

context small-sum
begin

lemma small-function-comp:
assumes small-function f and small-function g
shows small-function (g ◦ f)
〈proof 〉

In the present context, a small function has a popular value if and only if its domain
type is large. This simplifies special cases that concern whether or not a function happens
to have any popular value at all.

lemma ex-popular-value-iff :
assumes small-function (F :: ′b ⇒ ′c)
shows (∃ v. popular-value F v) ←→ ¬ small (UNIV :: ′b set)
〈proof 〉

A consequence is that the preimage of the set of all unpopular values of a function is
small.

lemma small-preimage-unpopular :
fixes F :: ′b ⇒ ′c
assumes small-function F
shows small {x. F x 6= some-popular-value F}
〈proof 〉

Here we are working toward showing that a small function has a “small encoding”,
which consists of its graph for arguments that map to non-popular values, paired with
the single popular value it has on all other arguments.

abbreviation SF-Dom
where SF-Dom f ≡ {x. ¬ popular-value f (f x)}

abbreviation SF-Rng
where SF-Rng f ≡ f ‘ SF-Dom f

15

abbreviation SF-Grph
where SF-Grph f ≡ (λx. (x, f x)) ‘ SF-Dom f

abbreviation the-PV
where the-PV f ≡ THE y. popular-value f y

lemma small-SF-Dom:
assumes small-function f
shows small (SF-Dom f)
〈proof 〉

lemma small-SF-Rng:
assumes small-function f
shows small (SF-Rng f)
〈proof 〉

lemma small-SF-Grph:
assumes small-function f
shows small (SF-Grph f)
〈proof 〉

lemma small-function-expansion:
assumes small-function f
shows f = (λx. if x ∈ fst ‘ SF-Grph f then (THE y. (x, y) ∈ SF-Grph f) else the-PV f)
〈proof 〉

end

2.7.2 Small Funcsets
locale small-funcset =

small-sum +
small-powerset

begin

For a suitable definition of “between”, the set of small functions between small sets
is small.

lemma small-funcset:
assumes small X and small Y
shows small {f . small-function f ∧ SF-Dom f ⊆ X ∧ range f ⊆ Y }
〈proof 〉

end

2.8 Smallness of Sets of Lists
A notion of smallness that is preserved under sum and powerset, and in addition declares
the set of natural numbers to be small, is sufficiently inclusive as to include any set whose

16

existence is provable in ZFC. So it is not a surprise that we can show, for example, that
the set of lists with elements in a given small set is again small. We do not use this
particular fact in the present development, but we will have a use for it in a subsequent
article.

locale small-funcset-and-nat =
small-funcset +
small-nat

begin

definition list-as-fn :: ′b list ⇒ nat ⇒ ′b option
where list-as-fn l n = (if n ≥ length l then None else Some (l ! n))

lemma inj-list-as-fn:
shows inj list-as-fn
〈proof 〉

lemma small-function-list-as-fn:
shows small-function (list-as-fn l)
〈proof 〉

lemma small-listset:
assumes small Y
shows small {l. List.set l ⊆ Y }
〈proof 〉

end

end

17

Chapter 3

Universe

theory Universe
imports Smallness
begin

This section defines a “universe” to be a set univ that admits embeddings of various
other sets, typically the result of constructions on univ itself. These embeddings allow
us to perform constructions on univ that result in sets at higher types, and then to
encode the results of these constructions back down into univ. An example application
is showing that a category admits products: given objects a and b in a category whose
arrows form a universe univ, for each object x we may form the cartesian product hom
x a × hom x b ⊆ univ × univ and then use an embedding of univ × univ in univ (i.e. a
pairing function) to map the result back into univ. Assuming we can show that the
resulting set has the proper structure to be the set of arrows of an object of the category,
we obtain an object a × b with hom x (a × b) ∼= hom x a × hom x b, as required for a
product object in a category.

3.1 Embeddings
Here we define some basic notions pertaining to injections into a set univ.

locale embedding =
fixes univ :: ′U set
begin

abbreviation is-embedding-of
where is-embedding-of ι X ≡ inj-on ι X ∧ ι ‘ X ⊆ univ

definition some-embedding-of
where some-embedding-of X ≡ SOME ι. is-embedding-of ι X

abbreviation embeds
where embeds X ≡ ∃ ι. is-embedding-of ι X

18

lemma is-embedding-of-some-embedding-of :
assumes embeds X
shows is-embedding-of (some-embedding-of X) X
〈proof 〉

lemma embeds-subset:
assumes embeds X and Y ⊆ X
shows embeds Y
〈proof 〉

end

3.2 Lifting
The locale lifting axiomatizes a set univ that embeds itself, together with an additional
element. This is equivalent to univ being infinite.

locale lifting =
embedding univ

for univ :: ′U set +
assumes embeds-lift: embeds ({None} ∪ Some ‘ univ)
begin

definition some-lifting :: ′U option ⇒ ′U
where some-lifting ≡ some-embedding-of ({None} ∪ Some ‘ univ)

lemma some-lifting-is-embedding:
shows is-embedding-of some-lifting ({None} ∪ Some ‘ univ)
〈proof 〉

lemma some-lifting-in-univ [intro, simp]:
shows some-lifting None ∈ univ
and x ∈ univ =⇒ some-lifting (Some x) ∈ univ
〈proof 〉

lemma some-lifting-cancel:
shows [[x ∈ univ; some-lifting (Some x) = some-lifting None]] =⇒ False
and [[x ∈ univ; x ′ ∈ univ; some-lifting (Some x) = some-lifting (Some x ′)]] =⇒ x = x ′

〈proof 〉

lemma infinite-univ:
shows infinite univ
〈proof 〉

lemma embeds-bool:
shows embeds (UNIV :: bool set)
〈proof 〉

lemma embeds-nat:

19

shows embeds (UNIV :: nat set)
〈proof 〉

end

3.3 Pairing
The locale pairing axiomatizes a set univ that embeds univ × univ.

locale pairing =
embedding univ

for univ :: ′U set +
assumes embeds-pairs: embeds (univ × univ)
begin

definition some-pairing :: ′U ∗ ′U ⇒ ′U
where some-pairing ≡ some-embedding-of (univ × univ)

lemma some-pairing-is-embedding:
shows is-embedding-of some-pairing (univ × univ)
〈proof 〉

abbreviation pair
where pair x y ≡ some-pairing (x, y)

abbreviation is-pair :: ′U ⇒ bool
where is-pair x ≡ x ∈ some-pairing ‘ (univ × univ)

definition first :: ′U ⇒ ′U
where first x ≡ fst (inv-into (univ × univ) some-pairing x)

definition second :: ′U ⇒ ′U
where second x = snd (inv-into (univ × univ) some-pairing x)

lemma first-conv:
assumes x ∈ univ and y ∈ univ
shows first (pair x y) = x
〈proof 〉

lemma second-conv:
assumes x ∈ univ and y ∈ univ
shows second (pair x y) = y
〈proof 〉

lemma pair-conv:
assumes is-pair x
shows pair (first x) (second x) = x
〈proof 〉

20

lemma some-pairing-in-univ [intro, simp]:
shows [[x ∈ univ; y ∈ univ]] =⇒ pair x y ∈ univ
〈proof 〉

lemma some-pairing-cancel:
shows [[x ∈ univ; x ′ ∈ univ; y ∈ univ; y ′ ∈ univ; pair x y = pair x ′ y ′]]

=⇒ x = x ′ ∧ y = y ′

〈proof 〉

end

3.4 Powering
The powering locale axiomatizes a universe that embeds the set of all its “small” subsets.
Obviously, some condition on the subsets is required because (by Cantor’s Theorem) it
is not possible for a set to embed the set of all its subsets. The concept of “smallness”
used here is not fixed, but rather is taken as a parameter.

locale powering =
embedding univ +
smallness sml

for sml :: ′V set ⇒ bool
and univ :: ′U set +
assumes embeds-small-sets: embeds {X . X ⊆ univ ∧ small X}
begin

abbreviation some-embedding-of-small-sets :: (′U set) ⇒ ′U
where some-embedding-of-small-sets ≡ some-embedding-of {X . X ⊆ univ ∧ small X}

definition emb-set :: (′U set) ⇒ ′U
where emb-set ≡ some-embedding-of-small-sets

lemma emb-set-is-embedding:
shows is-embedding-of emb-set {X . X ⊆ univ ∧ small X}
〈proof 〉

lemma emb-set-in-univ [intro, simp]:
shows [[X ⊆ univ; small X]] =⇒ emb-set X ∈ univ
〈proof 〉

lemma emb-set-cancel:
shows [[X ⊆ univ; small X ; X ′ ⊆ univ; small X ′; emb-set X = emb-set X ′]] =⇒ X = X ′

〈proof 〉

If univ embeds the collection of all its small subsets, then univ itself must be large.
lemma large-univ:
shows ¬ small univ
〈proof 〉

21

end

3.5 Tupling
The tupling locale axiomatizes a set univ that embeds the set of all “small extensional
functions” on its elements. Here, the notion of “extensional function” is parametrized
by the default value null produced by such a function when it is applied to an argument
outside of univ. The default value null is neither assumed to be in univ nor outside of
it.

locale tupling =
lifting univ +
pairing univ +
powering sml univ +
small-funcset sml

for sml :: ′V set ⇒ bool
and univ :: ′U set
and null :: ′U
begin

EF is the set of extensional functions on univ. These map univ to univ ∪ {null} and
map values outside of univ to null. The default value null might or might not be an
element of univ. The set SEF is the subset of EF consisting of those functions that are
“small functions”.

definition EF
where EF ≡ {f . f ‘ univ ⊆ univ ∪ {null} ∧ (∀ x. x /∈ univ −→ f x = null)}

abbreviation SEF
where SEF ≡ Collect small-function ∩ EF

lemma EF-apply:
assumes F ∈ EF
shows x ∈ univ =⇒ F x ∈ univ ∪ {null}
and x /∈ univ =⇒ F x = null
〈proof 〉

Since univ is large, the set of all values at type ′U must also be large. This implies
that every small extensional function having type ′U as its domain type must have a
popular value.

lemma SEFs-have-popular-value:
assumes F ∈ SEF
shows ∃ v. popular-value F v
〈proof 〉

The following technical lemma uses powering to obtain an encoding of small exten-
sional functions as elements of univ. The idea is that a small extensional function F
mapping univ to univ ∪ {null} can be canonically described by a small subset of univ
× (univ ∪ {null}) consisting of all pairs (x, F x) ⊆ univ × (univ ∪ {null}) for which

22

F x is not a popular value, together with the single popular value of F taken at other
arguments x not represented by such pairs.

lemma embeds-SEF :
shows embeds SEF
〈proof 〉

definition some-embedding-of-small-functions :: (′U ⇒ ′U) ⇒ ′U
where some-embedding-of-small-functions ≡ some-embedding-of SEF

lemma some-embedding-of-small-functions-is-embedding:
shows is-embedding-of some-embedding-of-small-functions SEF
〈proof 〉

lemma some-embedding-of-small-functions-in-univ [intro, simp]:
assumes F ∈ SEF
shows some-embedding-of-small-functions F ∈ univ
〈proof 〉

lemma some-embedding-of-small-functions-cancel:
assumes F ∈ SEF and F ′ ∈ SEF
and some-embedding-of-small-functions F = some-embedding-of-small-functions F ′

shows F = F ′

〈proof 〉

end

3.6 Universe
The universe locale axiomatizes a set that is equipped with an embedding of its own
small extensional function space, and in addition the set of natural numbers is required
to be small (i.e. there is a small infinite set).

locale universe =
tupling sml univ null +
small-nat sml

for sml :: ′V set ⇒ bool
and univ :: ′U set
and null :: ′U
begin

For a fixed notion of smallness, the property of being a universe is respected by
equipollence; thus it is a property of the set itself, rather than something that depends
on the ambient type.

lemma is-respected-by-equipollence:
assumes eqpoll univ univ ′

shows universe sml univ ′

〈proof 〉

A universe admits an embedding of all lists formed from its elements.

23

sublocale small-funcset-and-nat 〈proof 〉

fun some-embedding-of-lists :: ′U list ⇒ ′U
where some-embedding-of-lists [] = some-lifting None
| some-embedding-of-lists (x # l) =

some-lifting (Some (some-pairing (x, some-embedding-of-lists l)))

lemma embeds-lists:
shows embeds {l. List.set l ⊆ univ}
and is-embedding-of some-embedding-of-lists {l. List.set l ⊆ univ}
〈proof 〉

A universe also admits an embedding of all small sets of lists formed from its elements.
lemma embeds-small-sets-of-lists:
shows is-embedding-of (λX . some-embedding-of-small-sets (some-embedding-of-lists ‘ X))

{X . X ⊆ {l. list.set l ⊆ univ} ∧ small X}
and embeds {X . X ⊆ {l. list.set l ⊆ univ} ∧ small X}
〈proof 〉

end

end

24

Chapter 4

The Category of Small Sets

theory SetsCat
imports Category3 .SetCat Category3 .CategoryWithPullbacks Category3 .CartesianClosedCategory

Category3 .EquivalenceOfCategories Category3 .Colimit Universe
begin

In this section we consider the category of small sets and functions between them
as an exemplifying instance of the pattern we propose for working with large categories
in HOL. We define a locale sets-cat, which axiomatizes a category with terminal object,
such that each object determines a “small” set (the set of its global elements), there is
an object corresponding to any externally given small set, and such that the hom-sets
between objects are in bijection with the small extensional functions between sets of
global elements. We show that this locale characterizes the category of small sets and
functions, in the sense that, for a fixed notion of smallness, any two interpretations of the
sets-cat locale are equivalent as categories. We then proceed to derive various familiar
properties of a category of sets; assuming in each case that the notion of “smallness”
satisfies suitable conditions as defined in the theory Smallness, and that the collection
of all arrows of the category satisfies suitable closure conditions as defined in the theory
Universe. In particular, we show if the collection of arrows forms a “universe”, then the
category is well-pointed, small-complete and small co-complete, cartesian closed, has a
subobject classifier and a natural numbers object, and splits all epimorphisms.

4.1 Basic Definitions and Properties
We will describe the category of small sets and functions as a certain kind of category
with terminal object, which has been equipped with a notion of “smallness” that specifies
what sets will correspond to objects in the category.

locale sets-cat-base =
smallness sml +
category-with-terminal-object C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)

25

begin

sublocale embedding ‹Collect arr› 〈proof 〉

Every object in the category determines a set: its set of global elements (we make an
arbitrary choice of terminal object).

abbreviation Set
where Set ≡ hom 1?

Every arrow in the category determines an extensional function between sets of global
elements.

definition Fun
where Fun f x ≡ if x ∈ Set (dom f) then f · x else null

abbreviation Hom
where Hom a b ≡ (Set a → Set b) ∩ {F . ∀ x. x /∈ Set a −→ F x = null}

lemma Fun-in-Hom:
assumes «f : a → b»
shows Fun f ∈ Hom a b
〈proof 〉

lemma Set-some-terminal:
shows Set some-terminal = {some-terminal}
〈proof 〉

lemma Fun-some-terminator :
assumes ide a
shows Fun t?[a] = (λx. if x ∈ Set a then 1? else null)
〈proof 〉

The following function will allow us to obtain an object corresponding to an externally
given set. The set of global elements of the object is to be equipollent with the given set.
We give the definition here, but of course it will be necessary to prove that this function
actually does produce such an object under suitable conditions.

definition mkide :: ′a set ⇒ ′U
where mkide A ≡ SOME a. ide a ∧ Set a ≈ A

end

The following locale states our axioms for the category of small sets and functions.
The axioms assert: (1) that the set of global elements of every object is small; (2) that the
mapping from hom-sets to extensional functions between small sets of global elements
is injective and surjective; and (3) that the category is “replete” in the sense that for
every small set of arrows of the category there exists an object whose set of elements is
equipollent with it.

locale sets-cat =
sets-cat-base sml C

26

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55) +
assumes small-Set: ide a =⇒ small (Set a)
and inj-Fun: [[ide a; ide b]] =⇒ inj-on Fun (hom a b)
and surj-Fun: [[ide a; ide b]] =⇒ Hom a b ⊆ Fun ‘ (hom a b)
and repleteness-ax: [[small A; A ⊆ Collect arr]] =⇒ ∃ a. ide a ∧ Set a ≈ A
begin

It is convenient to extend the repleteness property to apply to any small set, at any
type, which happens to have an embedding into the collection of arrows of the category.

lemma repleteness:
assumes small A and embeds A
shows ∃ a. ide a ∧ Set a ≈ A
〈proof 〉

We obtain a pair of inverse comparison maps between an externally given small set
A and the set of global elements of the object mkide a corresponding to it. The map
IN encodes each element of A as a global element of mkide A. The inverse map OUT
decodes global elements of mkide A to the corresponding elements of A. We will need to
pay attention to these comparison maps when relating notions internal to the category
to notions external to it. However, when working completely internally to the category
these maps do not appear at all.

definition OUT :: ′a set ⇒ ′U ⇒ ′a
where OUT A ≡ SOME F . bij-betw F (Set (mkide A)) A

abbreviation IN :: ′a set ⇒ ′a ⇒ ′U
where IN A ≡ inv-into (Set (mkide A)) (OUT A)

The following is the main fact that allows us to produce objects of the category. It
states that, given any small set A for which there is some embedding into the collection
of arrows of the category, there exists a corresponding object mkide A whose set of global
elements is equipollent to A.

lemma ide-mkide:
assumes small A and embeds A
shows [intro]: ide (mkide A)
and Set (mkide A) ≈ A
〈proof 〉

lemma bij-OUT :
assumes small A and embeds A
shows bij-betw (OUT A) (Set (mkide A)) A
〈proof 〉

lemma bij-IN :
assumes small A and embeds A
shows bij-betw (IN A) A (Set (mkide A))
〈proof 〉

27

lemma OUT-elem-of :
assumes small A and embeds A and «x : 1? → mkide A»
shows OUT A x ∈ A
〈proof 〉

lemma IN-in-hom:
assumes small A and embeds A and x ∈ A and a = mkide A
shows «IN A x : 1? → a»
〈proof 〉

lemma IN-OUT :
assumes small A and embeds A
shows x ∈ Set (mkide A) =⇒ IN A (OUT A x) = x
〈proof 〉

lemma OUT-IN :
assumes small A and embeds A
shows x ∈ A =⇒ OUT A (IN A x) = x
〈proof 〉

lemma Fun-IN :
assumes small A and embeds A and y ∈ A
shows Fun (IN A y) = (λx. if x = 1? then IN A y else null)
〈proof 〉

The following function enables us to obtain an arrow of the category by specifying
an extensional function between sets of global objects.

definition mkarr :: ′U ⇒ ′U ⇒ (′U ⇒ ′U) ⇒ ′U
where mkarr a b F ≡ if ide a ∧ ide b ∧ F ∈ Hom a b

then SOME f . «f : a → b» ∧ Fun f = F
else null

lemma mkarr-in-hom [intro]:
assumes ide a and ide b and F ∈ Hom a b
shows «mkarr a b F : a → b»
〈proof 〉

lemma arr-mkarr [intro, simp]:
assumes ide a and ide b and F ∈ Hom a b
shows arr (mkarr a b F)
〈proof 〉

lemma arr-mkarrD [dest]:
assumes arr (mkarr a b F)
shows ide a and ide b and F ∈ Hom a b
〈proof 〉

lemma arr-mkarrE [elim]:
assumes arr (mkarr a b F)

28

and [[ide a; ide b; F ∈ Hom a b]] =⇒ T
shows T
〈proof 〉

lemma dom-mkarr [simp]:
assumes arr (mkarr a b F)
shows dom (mkarr a b F) = a
〈proof 〉

lemma cod-mkarr [simp]:
assumes arr (mkarr a b F)
shows cod (mkarr a b F) = b
〈proof 〉

lemma Fun-mkarr [simp]:
assumes arr (mkarr a b F)
shows Fun (mkarr a b F) = F
〈proof 〉

lemma mkarr-Fun:
assumes «f : a → b»
shows mkarr a b (Fun f) = f
〈proof 〉

The locale assumptions ensure that, for any two objects a and b, there is a bijection
between the hom-set hom a b and the set Hom a b of extensional functions from Set a
to Set b.

lemma bij-Fun:
assumes ide a and ide b
shows bij-betw Fun (hom a b) (Hom a b)
and bij-betw (mkarr a b) (Hom a b) (hom a b)
〈proof 〉

lemma arr-eqI :
assumes par t u and Fun t = Fun u
shows t = u
〈proof 〉

lemma arr-eqI ′:
assumes in-hom f a b and in-hom g a b
and

∧
x. in-hom x 1? a =⇒ f · x = g · x

shows f = g
〈proof 〉

lemma Fun-arr :
assumes «f : a → b»
shows Fun f = (λx. if x ∈ Set a then f · x else null)
〈proof 〉

29

lemma Fun-ide:
assumes ide a
shows Fun a = (λx. if x ∈ Set a then x else null)
〈proof 〉

lemma Fun-comp:
assumes seq t u
shows Fun (t · u) = Fun t ◦ Fun u
〈proof 〉

lemma mkarr-comp:
assumes seq g f
shows mkarr (dom f) (cod g) (Fun g ◦ Fun f) = g · f
〈proof 〉

lemma comp-mkarr :
assumes arr (mkarr a b F) and arr (mkarr b c G)
shows mkarr b c G · mkarr a b F = mkarr a c (G ◦ F)
〈proof 〉

lemma app-mkarr :
assumes in-hom (mkarr a b F) a b and in-hom x 1? a
shows mkarr a b F · x = F x
〈proof 〉

lemma ide-as-mkarr :
assumes ide a
shows mkarr a a (λx. if x ∈ Set a then x else null) = a
〈proof 〉

An object a is terminal if and only if its set of global elements Set a is a singleton
set.

lemma terminal-char :
shows terminal a ←→ ide a ∧ (∃ !x. x ∈ Set a)
〈proof 〉

An object a is initial if and only if its set of global elements Set a is the empty set,
except in the degenerate situation in which every object is both an initial and a terminal
object.

lemma initial-char :
shows initial a ←→ ide a ∧ (Set a = {} ∨ (∀ b. ide b −→ terminal b))
〈proof 〉

An arrow is a monomorphism if and only if the corresponding function is injective.
lemma mono-char :
shows mono f ←→ arr f ∧ inj-on (Fun f) (Set (dom f))
〈proof 〉

An arrow is a retraction if and only if the corresponding function is surjective.

30

lemma retraction-char :
shows retraction f ←→ arr f ∧ Fun f ‘ Set (dom f) = Set (cod f)
〈proof 〉

An arrow is a isomorphism if and only if the corresponding function is a bijection.
lemma iso-char :
shows iso f ←→ arr f ∧ bij-betw (Fun f) (Set (dom f)) (Set (cod f))
〈proof 〉

lemma isomorphic-char :
shows isomorphic a b ←→ ide a ∧ ide b ∧ Set a ≈ Set b
〈proof 〉

end

4.2 Categoricity
The following is a kind of “categoricity in power” result which states that, for a fixed
notion of smallness, if C and D are “sets categories” whose collections of arrows are
equipollent, then in fact C and D are equivalent categories.

lemma categoricity:
assumes sets-cat sml C and sets-cat sml D
and Collect (partial-composition.arr C) ≈ Collect (partial-composition.arr D)
shows equivalent-categories C D
〈proof 〉

4.3 Well-Pointedness
context sets-cat
begin

lemma is-well-pointed:
assumes par f g and

∧
x. x ∈ Set (dom f) =⇒ f · x = g · x

shows f = g
〈proof 〉

end

4.4 Epis Split
In this section we assume that smallness encompasses sets of arbitrary finite cardinality,
and that the category has at least two arrows, so that we can show the existence of
an object with two global elements. If this fails to be the case, then the situation is
somewhat pathological and not very interesting.

locale sets-cat-with-bool =
sets-cat sml C +

31

small-finite sml
for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55) +
assumes embeds-bool-ax: embeds (UNIV :: bool set)
begin

definition two (2)
where two ≡ mkide {True, False}

lemma ide-two [intro, simp]:
shows ide two
and bij-betw (IN {True, False}) UNIV (Set two)
and bij-betw (OUT {True, False}) (Set two) UNIV
〈proof 〉

definition tt
where tt ≡ IN {True, False} True

definition ff
where ff ≡ IN {True, False} False

lemma tt-in-hom [intro]:
shows «tt : 1? → 2»
〈proof 〉

lemma ff-in-hom [intro]:
shows «ff : 1? → 2»
〈proof 〉

lemma tt-simps [simp]:
shows arr tt and dom tt = 1? and cod tt = 2
〈proof 〉

lemma ff-simps [simp]:
shows arr ff and dom ff = 1? and cod ff = 2
〈proof 〉

lemma Fun-tt:
shows Fun tt = (λx. if x ∈ Set 1? then tt else null)
〈proof 〉

lemma Fun-ff :
shows Fun ff = (λx. if x ∈ Set 1? then ff else null)
〈proof 〉

lemma mono-tt:
shows mono tt
〈proof 〉

32

lemma mono-ff :
shows mono ff
〈proof 〉

lemma tt-ne-ff :
shows tt 6= ff
〈proof 〉

lemma Set-two:
shows Set 2 = {tt, ff }
〈proof 〉

In the present context, an arrow is epi if and only if the corresponding function is
surjective. It follows that every epimorphism splits.

lemma epi-charSCB :
shows epi f ←→ arr f ∧ Fun f ‘ Set (dom f) = Set (cod f)
〈proof 〉

corollary epis-split:
assumes epi e
shows ∃m. e · m = cod e
〈proof 〉

end

4.5 Equalizers
In this section we show that the category of small sets and functions has equalizers of
parallel pairs of arrows. This is our first example of a general pattern that we will apply
repeatedly in the sequel to other categorical constructions. Given a parallel pair f, g
of arrows in a category of sets, we know that the global elements of the domain of the
equalizer will be in bijection with the set E of global elements x of dom f such that f
· x = g · x. So, we obtain this set, which in this case happens already to be a small
subset of the set of arrows of the category, and we obtain the corresponding object mkide
E, which will be the domain of the equalizer. This part of the proof uses the smallness
of E and the fact that it embeds in (actually, is a subset of) the set of arrows of the
category. Once we have shown the existence of the object mkide E, we can apply mkarr
to the inclusion of Set (mkide e) in Set (dom f) to obtain the equalizing arrow itself.
Showing that this arrow has the necessary universal property requires reasoning about
the comparison maps between E and Set (mkide e), but once that has been accomplished
we are left simply with a universal property that does not mention these maps.

The construction and proofs here are simpler than for the other constructions we
will consider, because the set E to which we apply mkide is already a subset of the
collection of arrows of the category – in particular it is at the same type. This means
that the smallness and embedding property required for the application of mkide holds
automatically, without any further assumptions. In general, though, a set to which we

33

wish to apply mkide will not be a subset of the set of arrows, nor will it even be at the
same type, so it will be necessary to reason about an encoding that embeds the elements
of this set into the set of arrows of the category.

locale equalizers-in-sets-cat =
sets-cat

begin

abbreviation Dom-equ
where Dom-equ f g ≡ {x. x ∈ Set (dom f) ∧ f · x = g · x}

definition dom-equ
where dom-equ f g ≡ mkide (Dom-equ f g)

abbreviation Equ
where Equ f g ≡ λx. if x ∈ Set (dom-equ f g) then OUT (Dom-equ f g) x else null

definition equ
where equ f g ≡ mkarr (dom-equ f g) (dom f) (Equ f g)

It is useful to include convenience facts about OUT and IN in the following, so that
we can avoid having to deal with the smallness and embedding conditions elsewhere.

lemma ide-dom-equ:
assumes par f g
shows ide (dom-equ f g)
and bij-betw (OUT (Dom-equ f g)) (Set (dom-equ f g)) (Dom-equ f g)
and bij-betw (IN (Dom-equ f g)) (Dom-equ f g) (Set (dom-equ f g))
and

∧
x. x ∈ Set (dom-equ f g) =⇒ OUT (Dom-equ f g) x ∈ Set (dom f)

and
∧

y. y ∈ Dom-equ f g =⇒ IN (Dom-equ f g) y ∈ Set (dom-equ f g)
and

∧
x. x ∈ Set (dom-equ f g) =⇒ IN (Dom-equ f g) (OUT (Dom-equ f g) x) = x

and
∧

y. y ∈ Dom-equ f g =⇒ OUT (Dom-equ f g) (IN (Dom-equ f g) y) = y
〈proof 〉

lemma Equ-in-Hom [intro]:
assumes par f g
shows Equ f g ∈ Hom (dom-equ f g) (dom f)
〈proof 〉

lemma equ-in-hom [intro, simp]:
assumes par f g
shows «equ f g : dom-equ f g → dom f »
〈proof 〉

lemma equ-simps [simp]:
assumes par f g
shows arr (equ f g) and dom (equ f g) = dom-equ f g and cod (equ f g) = dom f
〈proof 〉

lemma Fun-equ:
assumes par f g

34

shows Fun (equ f g) = Equ f g
〈proof 〉

lemma equ-equalizes:
assumes par f g
shows f · equ f g = g · equ f g
〈proof 〉

lemma equ-is-equalizer :
assumes par f g
shows has-as-equalizer f g (equ f g)
〈proof 〉

lemma has-equalizers:
assumes par f g
shows ∃ e. has-as-equalizer f g e
〈proof 〉

end

4.5.1 Exported Notions
As we don’t want to clutter the sets-cat locale with auxiliary definitions and facts that
no longer need to be used once we have completed the equalizer construction, we have
carried out the construction in a separate locale and we now transfer to the sets-cat locale
only those definitions and facts that we would like to export. In general, we will need
to export the objects and arrows mentioned by the universal property together with the
associated infrastructure for establishing the types of expressions that use them. We will
also need to export facts that allow us to externalize these arrows as functions between
sets of global elements, and we will need facts that give the types and inverse relationship
between the comparison maps.

context sets-cat
begin

interpretation Equ: equalizers-in-sets-cat sml C 〈proof 〉

abbreviation equ
where equ ≡ Equ.equ

abbreviation Equ
where Equ f g ≡ {x. x ∈ Set (dom f) ∧ f · x = g · x}

lemma equalizer-comparison-map-props:
assumes par f g
shows bij-betw (OUT (Equ f g)) (Set (dom (equ f g))) (Equ f g)
and bij-betw (IN (Equ f g)) (Equ f g) (Set (dom (equ f g)))
and

∧
x. x ∈ Set (dom (equ f g)) =⇒ OUT (Equ f g) x ∈ Set (dom f)

and
∧

y. y ∈ Equ f g =⇒ IN (Equ f g) y ∈ Set (dom (equ f g))

35

and
∧

x. x ∈ Set (dom (equ f g)) =⇒ IN (Equ f g) (OUT (Equ f g) x) = x
and

∧
y. y ∈ Equ f g =⇒ OUT (Equ f g) (IN (Equ f g) y) = y

〈proof 〉

lemma equ-is-equalizer :
assumes par f g
shows has-as-equalizer f g (equ f g)
〈proof 〉

lemma Fun-equ:
assumes par f g
shows Fun (equ f g) = (λx. if x ∈ Set (dom (equ f g))

then OUT {x. x ∈ Set (dom f) ∧ f · x = g · x} x
else null)

〈proof 〉

lemma has-equalizers:
assumes par f g
shows ∃ e. has-as-equalizer f g e
〈proof 〉

end

4.6 Binary Products
In this section we show that the category of small sets and functions has binary products.
We follow the same pattern as for equalizers, except that now the set to which we would
like to apply mkide to obtain a product object will consist of pairs of arrows, rather than
individual arrows. This means that we will need to assume the existence of a pairing
function that embeds the set of pairs of arrows of the category back into the original set of
arrows. Once again, in showing that the construction makes sense we will need to reason
about comparison maps, but once this is done we will be left simply with a universal
property which does not mention these maps. After that, we only have to work with the
comparison maps when relating notions internal to the category to notions external to
it.

The following locale specializes sets-cat by adding the assumption that there exists
a suitable pairing function. In addition, we need to assume that the smallness notion
being used is respected by pairing.

locale sets-cat-with-pairing =
sets-cat sml C +
small-product sml +
pairing ‹Collect arr›

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)

As previously, we carry out the details of the construction in an auxiliary locale and
later transfer to the sets-cat locale only those things that we want to export.

36

locale products-in-sets-cat =
sets-cat-with-pairing sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

lemma small-product-set:
assumes ide a and ide b
shows small (Set a × Set b)
〈proof 〉

lemma embeds-product-sets:
assumes ide a and ide b
shows embeds (Set a × Set b)
〈proof 〉

We define the product of two objects as the object determined by the cartesian
product of their sets of elements.

definition prodo

where prodo a b ≡ mkide (Set a × Set b)

lemma ide-prodo:
assumes ide a and ide b
shows ide (prodo a b)
and bij-betw (OUT (Set a × Set b)) (Set (prodo a b)) (Set a × Set b)
and bij-betw (IN (Set a × Set b)) (Set a × Set b) (Set (prodo a b))
and

∧
x. x ∈ Set (prodo a b) =⇒ OUT (Set a × Set b) x ∈ Set a × Set b

and
∧

y. y ∈ Set a × Set b =⇒ IN (Set a × Set b) y ∈ Set (prodo a b)
and

∧
x. x ∈ Set (prodo a b) =⇒ IN (Set a × Set b) (OUT (Set a × Set b) x) = x

and
∧

y. y ∈ Set a × Set b =⇒ OUT (Set a × Set b) (IN (Set a × Set b) y) = y
〈proof 〉

We next define the projection arrows from a product object in terms of the projection
functions on the underlying cartesian product of sets.

abbreviation P0 :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where P0 a b ≡ λx. if x ∈ Set (prodo a b) then snd (OUT (Set a × Set b) x) else null

abbreviation P1 :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where P1 a b ≡ λx. if x ∈ Set (prodo a b) then fst (OUT (Set a × Set b) x) else null

lemma P0-in-Hom:
assumes ide a and ide b
shows P0 a b ∈ Hom (prodo a b) b
〈proof 〉

lemma P1-in-Hom:
assumes ide a and ide b
shows P1 a b ∈ Hom (prodo a b) a
〈proof 〉

37

definition pr0 :: ′U ⇒ ′U ⇒ ′U
where pr0 a b ≡ mkarr (prodo a b) b (P0 a b)

definition pr1 :: ′U ⇒ ′U ⇒ ′U
where pr1 a b ≡ mkarr (prodo a b) a (P1 a b)

lemma pr-in-hom [intro]:
assumes ide a and ide b
shows in-hom (pr1 a b) (prodo a b) a
and in-hom (pr0 a b) (prodo a b) b
〈proof 〉

lemma pr-simps [simp]:
assumes ide a and ide b
shows arr (pr0 a b) and dom (pr0 a b) = prodo a b and cod (pr0 a b) = b
and arr (pr1 a b) and dom (pr1 a b) = prodo a b and cod (pr1 a b) = a
〈proof 〉

lemma Fun-pr :
assumes ide a and ide b
shows Fun (pr1 a b) = P1 a b
and Fun (pr0 a b) = P0 a b
〈proof 〉

Tupling of arrows is also defined in terms of the underlying cartesian product.
definition Tuple :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where Tuple f g ≡ (λx. if x ∈ Set (dom f)

then IN (Set (cod f) × Set (cod g)) (Fun f x, Fun g x)
else null)

definition tuple :: ′U ⇒ ′U ⇒ ′U
where tuple f g ≡ mkarr (dom f) (prodo (cod f) (cod g)) (Tuple f g)

lemma tuple-in-hom [intro]:
assumes «f : c → a» and «g : c → b»
shows «tuple f g : c → prodo a b»
〈proof 〉

lemma tuple-simps [simp]:
assumes span f g
shows arr (tuple f g)
and dom (tuple f g) = dom f
and cod (tuple f g) = prodo (cod f) (cod g)
〈proof 〉

In verifying the equations required for a categorical product, we unfortunately do
have to fuss with the comparison maps.

lemma comp-pr-tuple:

38

assumes span f g
shows pr1 (cod f) (cod g) · tuple f g = f
and pr0 (cod f) (cod g) · tuple f g = g
〈proof 〉

lemma Fun-tuple:
assumes span f g
shows Fun (tuple f g) =

(λx. if x ∈ Set (dom f)
then IN (Set (cod f) × Set (cod g)) (Fun f x, Fun g x)
else null)

〈proof 〉

lemma binary-product-pr :
assumes ide a and ide b
shows binary-product C a b (pr1 a b) (pr0 a b)
〈proof 〉

lemma has-binary-products:
shows has-binary-products
〈proof 〉

end

4.6.1 Exported Notions
We now transfer to the sets-cat-with-pairing locale just the things we want to export.
The projections are the main thing; most of the rest is inherited from the elemen-
tary-category-with-binary-products locale. We also need to include some infrastucture
for moving in and out of the category and working with the comparison maps.

context sets-cat-with-pairing
begin

interpretation Products: products-in-sets-cat 〈proof 〉

abbreviation pr0 :: ′U ⇒ ′U ⇒ ′U
where pr0 ≡ Products.pr0

abbreviation pr1 :: ′U ⇒ ′U ⇒ ′U
where pr1 ≡ Products.pr1

sublocale elementary-category-with-binary-products C pr0 pr1

〈proof 〉

lemma bin-prod-comparison-map-props:
assumes ide a and ide b
shows OUT (Set a × Set b) ∈ Set (prod a b) → Set a × Set b
and IN (Set a × Set b) ∈ Set a × Set b → Set (prod a b)
and

∧
x. x ∈ Set (prod a b) =⇒ IN (Set a × Set b) (OUT (Set a × Set b) x) = x

39

and
∧

y. y ∈ Set a × Set b =⇒ OUT (Set a × Set b) (IN (Set a × Set b) y) = y
and bij-betw (OUT (Set a × Set b)) (Set (prod a b)) (Set a × Set b)
and bij-betw (IN (Set a × Set b)) (Set a × Set b) (Set (prod a b))
〈proof 〉

lemma Fun-pr0:
assumes ide a and ide b
shows Fun (pr0 a b) = Products.P0 a b
〈proof 〉

lemma Fun-pr1:
assumes ide a and ide b
shows Fun (pr1 a b) = Products.P1 a b
〈proof 〉

lemma Fun-prod:
assumes «f : a → b» and «g : c → d»
shows Fun (prod f g) = (λx. if x ∈ Set (prod a c)

then tuple (Fun f (C (pr1 a c) x)) (Fun g (C (pr0 a c) x))
else null)

〈proof 〉

lemma prod-ide-eq:
assumes ide a and ide b
shows prod a b = mkide (Set a × Set b)
〈proof 〉

lemma tuple-eq:
assumes «f : x → a» and «g : x → b»
shows tuple f g = mkarr x (prod a b)

(λz. if z ∈ Set x
then IN (Set a × Set b) (Fun f z, Fun g z)
else null)

〈proof 〉

lemma tuple-point-eq:
assumes «x : 1? → a» and «y : 1? → b»
shows tuple x y = IN (Set a × Set b) (x, y)
〈proof 〉

lemma Fun-tuple:
assumes span f g
shows Fun (tuple f g) =

(λx. if x ∈ Set (dom f)
then IN (Set (cod f) × Set (cod g)) (Fun f x, Fun g x)
else null)

〈proof 〉

end

40

4.7 Binary Coproducts
In this section we prove the existence of binary coproducts, following the same approach
as for binary products. The required assumptions are slightly different, because here we
need smallness to be preserved by union.

locale sets-cat-with-cotupling =
sets-cat-with-bool sml C +
small-sum sml +
pairing ‹Collect arr›

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)

locale coproducts-in-sets-cat =
sets-cat-with-cotupling sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

abbreviation Coprod
where Coprod a b ≡ ({tt} × Set a) ∪ ({ff } × Set b)

lemma small-Coprod:
assumes ide a and ide b
shows small (Coprod a b)
〈proof 〉

lemma embeds-Coprod:
assumes ide a and ide b
shows embeds (Coprod a b)
〈proof 〉

definition coprodo

where coprodo a b ≡ mkide (Coprod a b)

lemma ide-coprodo:
assumes ide a and ide b
shows ide (coprodo a b)
and bij-betw (OUT (Coprod a b)) (Set (coprodo a b)) (Coprod a b)
and bij-betw (IN (Coprod a b)) (Coprod a b) (Set (coprodo a b))
and

∧
x. x ∈ Set (coprodo a b) =⇒ OUT (Coprod a b) x ∈ Coprod a b

and
∧

y. y ∈ Coprod a b =⇒ IN (Coprod a b) y ∈ Set (coprodo a b)
and

∧
x. x ∈ Set (coprodo a b) =⇒ IN (Coprod a b) (OUT (Coprod a b) x) = x

and
∧

y. y ∈ Coprod a b =⇒ OUT (Coprod a b) (IN (Coprod a b) y) = y
〈proof 〉

abbreviation In0 :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where In0 a b ≡ λx. if x ∈ Set b then IN (Coprod a b) (ff , x) else null

abbreviation In1 :: ′U ⇒ ′U ⇒ ′U ⇒ ′U

41

where In1 a b ≡ λx. if x ∈ Set a then IN (Coprod a b) (tt, x) else null

lemma In0-in-Hom:
assumes ide a and ide b
shows In0 a b ∈ Hom b (coprodo a b)
〈proof 〉

lemma In1-in-Hom:
assumes ide a and ide b
shows In1 a b ∈ Hom a (coprodo a b)
〈proof 〉

definition in0 :: ′U ⇒ ′U ⇒ ′U
where in0 a b ≡ mkarr b (coprodo a b) (In0 a b)

definition in1 :: ′U ⇒ ′U ⇒ ′U
where in1 a b ≡ mkarr a (coprodo a b) (In1 a b)

lemma in-in-hom [intro, simp]:
assumes ide a and ide b
shows in-hom (in1 a b) a (coprodo a b)
and in-hom (in0 a b) b (coprodo a b)
〈proof 〉

lemma in-simps [simp]:
assumes ide a and ide b
shows arr (in0 a b) and dom (in0 a b) = b and cod (in0 a b) = coprodo a b
and arr (in1 a b) and dom (in1 a b) = a and cod (in1 a b) = coprodo a b
〈proof 〉

lemma Fun-in:
assumes ide a and ide b
shows Fun (in1 a b) = In1 a b
and Fun (in0 a b) = In0 a b
〈proof 〉

definition Cotuple :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where Cotuple f g ≡ (λx. if x ∈ Set (coprodo (dom f) (dom g))

then if fst (OUT (Coprod (dom f) (dom g)) x) = tt
then Fun f (snd (OUT (Coprod (dom f) (dom g)) x))
else if fst (OUT (Coprod (dom f) (dom g)) x) = ff

then Fun g (snd (OUT (Coprod (dom f) (dom g)) x))
else null

else null)

definition cotuple :: ′U ⇒ ′U ⇒ ′U
where cotuple f g ≡ mkarr (coprodo (dom f) (dom g)) (cod f) (Cotuple f g)

lemma cotuple-in-hom [intro, simp]:

42

assumes «f : a → c» and «g : b → c»
shows «cotuple f g : coprodo a b → c»
〈proof 〉

lemma cotuple-simps [simp]:
assumes cospan f g
shows arr (cotuple f g)
and dom (cotuple f g) = coprodo (dom f) (dom g)
and cod (cotuple f g) = cod f
〈proof 〉

lemma comp-cotuple-in:
assumes cospan f g
shows cotuple f g · in1 (dom f) (dom g) = f
and cotuple f g · in0 (dom f) (dom g) = g
〈proof 〉

lemma Fun-cotuple:
assumes cospan f g
shows Fun (cotuple f g) =

(λx. if x ∈ Set (coprodo (dom f) (dom g))
then if fst (OUT (Coprod (dom f) (dom g)) x) = tt

then Fun f (snd (OUT (Coprod (dom f) (dom g)) x))
else if fst (OUT (Coprod (dom f) (dom g)) x) = ff

then Fun g (snd (OUT (Coprod (dom f) (dom g)) x))
else null

else null)
〈proof 〉

lemma binary-coproduct-in:
assumes ide a and ide b
shows binary-product (dual-category.comp C) a b (in1 a b) (in0 a b)
〈proof 〉

lemma has-binary-coproducts:
shows category.has-binary-products (dual-category.comp C)
〈proof 〉

end

4.7.1 Exported Notions
context sets-cat-with-cotupling
begin

interpretation Coproducts: coproducts-in-sets-cat 〈proof 〉

abbreviation in0 :: ′U ⇒ ′U ⇒ ′U
where in0 ≡ Coproducts.in0

43

abbreviation in1 :: ′U ⇒ ′U ⇒ ′U
where in1 ≡ Coproducts.in1

abbreviation Coprod :: ′U ⇒ ′U ⇒ (′U × ′U) set
where Coprod ≡ Coproducts.Coprod

abbreviation coprodo :: ′U ⇒ ′U ⇒ ′U
where coprodo ≡ Coproducts.coprodo

lemma ide-coprodo:
assumes ide a and ide b
shows ide (coprodo a b)
〈proof 〉

lemma in1-in-hom [intro, simp]:
assumes ide a and ide b
shows in-hom (in1 a b) a (coprodo a b)
〈proof 〉

lemma in0-in-hom [intro, simp]:
assumes ide a and ide b
shows in-hom (in0 a b) b (coprodo a b)
〈proof 〉

lemma in1-simps [simp]:
assumes ide a and ide b
shows arr (in1 a b) and dom (in1 a b) = a and cod (in1 a b) = coprodo a b
〈proof 〉

lemma in0-simps [simp]:
assumes ide a and ide b
shows arr (in0 a b) and dom (in0 a b) = b and cod (in0 a b) = coprodo a b
〈proof 〉

lemma bin-coprod-comparison-map-props:
assumes ide a and ide b
shows bij-betw (OUT (Coprod a b)) (Set (coprodo a b)) (Coprod a b)
and bij-betw (IN (Coprod a b)) (Coprod a b) (Set (coprodo a b))
and

∧
x. x ∈ Set (coprodo a b) =⇒ OUT (Coprod a b) x ∈ Coprod a b

and
∧

y. y ∈ Coprod a b =⇒ IN (Coprod a b) y ∈ Set (coprodo a b)
and

∧
x. x ∈ Set (coprodo a b) =⇒ IN (Coprod a b) (OUT (Coprod a b) x) = x

and
∧

y. y ∈ Coprod a b =⇒ OUT (Coprod a b) (IN (Coprod a b) y) = y
〈proof 〉

lemma Fun-in1:
assumes ide a and ide b
shows Fun (in1 a b) = Coproducts.In1 a b
〈proof 〉

44

lemma Fun-in0:
assumes ide a and ide b
shows Fun (in0 a b) = Coproducts.In0 a b
〈proof 〉

abbreviation cotuple
where cotuple ≡ Coproducts.cotuple

lemma cotuple-in-hom [intro, simp]:
assumes «f : a → c» and «g : b → c»
shows «cotuple f g : coprodo a b → c»
〈proof 〉

lemma cotuple-simps [simp]:
assumes cospan f g
shows arr (cotuple f g)
and dom (cotuple f g) = coprodo (dom f) (dom g)
and cod (cotuple f g) = cod f
〈proof 〉

abbreviation Cotuple
where Cotuple f g ≡ (λx. if x ∈ Set (coprodo (dom f) (dom g))

then if fst (OUT (Coprod (dom f) (dom g)) x) = tt
then Fun f (snd (OUT (Coprod (dom f) (dom g)) x))
else if fst (OUT (Coprod (dom f) (dom g)) x) = ff

then Fun g (snd (OUT (Coprod (dom f) (dom g)) x))
else null

else null)

lemma cotuple-eq:
assumes «f : a → c» and «g : b → c»
shows cotuple f g = mkarr (coprodo a b) c (Cotuple f g)
〈proof 〉

lemma Fun-cotuple:
assumes cospan f g
shows Fun (cotuple f g) = Cotuple f g
〈proof 〉

lemma binary-coproduct-in:
assumes ide a and ide b
shows binary-product (dual-category.comp C) a b (in1 a b) (in0 a b)
〈proof 〉

lemma has-binary-coproducts:
shows category.has-binary-products (dual-category.comp C)
〈proof 〉

45

end

4.8 Small Products
In this section we show that the category of small sets and functions has small products.
For this we need to assume that smallness is preserved by the formation of function
spaces.

locale sets-cat-with-tupling =
sets-cat sml C +
tupling sml ‹Collect arr› null

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

sublocale sets-cat-with-bool
〈proof 〉

sublocale sets-cat-with-pairing sml C 〈proof 〉
sublocale sets-cat-with-cotupling 〈proof 〉

end

locale small-products-in-sets-cat =
sets-cat-with-tupling sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

A product diagram is specified by an extensional function A from small index set I
to Collect ide, using null as the default value. An element of the product is given by an
extensional function F from I to Collect arr, such that F i ∈ Set (A i) for each i ∈ I.

abbreviation ProdX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) set
where ProdX I A ≡ {F . ∀ i. i ∈ I −→ F i ∈ Set (A i)} ∩ {F . ∀ i. i /∈ I −→ F i = null}

lemma ProdX-empty:
shows ProdX {} A = {λx. null}
〈proof 〉

definition prodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′U
where prodX I A ≡ mkide (ProdX I A)

lemma small-function-tuple:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and F ∈ ProdX I A
shows small-function F and range F ⊆ (

⋃
i∈I . Set (A i)) ∪ {null}

〈proof 〉

lemma small-ProdX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr

46

shows small (ProdX I A)
〈proof 〉

lemma embeds-ProdX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows embeds (ProdX I A)
〈proof 〉

lemma ide-prodX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows ide (prodX I A)
and bij-betw (OUT (ProdX I A)) (Set (prodX I A)) (ProdX I A)
and bij-betw (IN (ProdX I A)) (ProdX I A) (Set (prodX I A))
and

∧
x. x ∈ Set (prodX I A) =⇒ OUT (ProdX I A) x ∈ ProdX I A

and
∧

y. y ∈ ProdX I A =⇒ IN (ProdX I A) y ∈ Set (prodX I A)
and

∧
x. x ∈ Set (prodX I A) =⇒ IN (ProdX I A) (OUT (ProdX I A) x) = x

and
∧

y. y ∈ ProdX I A =⇒ OUT (ProdX I A) (IN (ProdX I A) y) = y
〈proof 〉

lemma terminal-prodX-empty:
shows terminal (prodX {} (A :: ′U ⇒ ′U))
〈proof 〉

abbreviation PrX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U ⇒ ′U
where PrX I A i ≡ λx. if x ∈ Set (prodX I A) then OUT (ProdX I A) x i else null

definition prX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U
where prX I A i ≡ mkarr (prodX I A) (A i) (PrX I A i)

lemma prX-in-hom [intro, simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows in-hom (prX I A i) (prodX I A) (A i)
〈proof 〉

lemma prX-simps [simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows arr (prX I A i) and dom (prX I A i) = prodX I A and cod (prX I A i) = A i
〈proof 〉

lemma Fun-prX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows Fun (prX I A i) = PrX I A i
〈proof 〉

definition TupleX :: ′a set ⇒ ′U ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U ⇒ ′U
where TupleX I c A F ≡ (λx. if x ∈ Set c then IN (ProdX I A) (λi. Fun (F i) x) else null)

47

lemma TupleX-in-Hom:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null

shows TupleX I c A F ∈ Hom c (prodX I A)
〈proof 〉

definition tupleX :: ′a set ⇒ ′U ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U
where tupleX I c A F ≡ mkarr c (prodX I A) (TupleX I c A F)

lemma tupleX-in-hom [intro, simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows «tupleX I c A F : c → prodX I A»
〈proof 〉

lemma tupleX-simps [simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows arr (tupleX I c A F)
and dom (tupleX I c A F) = c
and cod (tupleX I c A F) = prodX I A
〈proof 〉

lemma comp-prX-tupleX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null

shows i ∈ I =⇒ C (prX I A i) (tupleX I c A F) = F i
〈proof 〉

lemma Fun-tupleX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows Fun (tupleX I c A F) =
(λx. if x ∈ Set c then IN (ProdX I A) (λi. Fun (F i) x) else null)

〈proof 〉

lemma product-cone-prodX :
assumes discrete-diagram J C D and Collect (partial-composition.arr J) = I
and small I and I ⊆ Collect arr
shows has-as-product J D (prodX I D)
and product-cone J C D (prodX I D) (prX I D)
〈proof 〉

lemma has-small-products:
assumes small I and I ⊆ Collect arr
shows has-products I
〈proof 〉

48

end

4.8.1 Exported Notions
context sets-cat-with-tupling
begin

interpretation Products: small-products-in-sets-cat 〈proof 〉

abbreviation ProdX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) set
where ProdX ≡ Products.ProdX

abbreviation prodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′U
where prodX ≡ Products.prodX

abbreviation prX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U
where prX ≡ Products.prX

abbreviation tupleX :: ′a set ⇒ ′U ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U
where tupleX ≡ Products.tupleX

lemma small-prod-comparison-map-props:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows OUT (ProdX I A) ∈ Set (prodX I A) → ProdX I A
and IN (ProdX I A) ∈ ProdX I A → Set (prodX I A)
and

∧
x. x ∈ Set (prodX I A) =⇒ IN (ProdX I A) (OUT (ProdX I A) x) = x

and
∧

y. y ∈ ProdX I A =⇒ OUT (ProdX I A) (IN (ProdX I A) y) = y
and bij-betw (OUT (ProdX I A)) (Set (prodX I A)) (ProdX I A)
and bij-betw (IN (ProdX I A)) (ProdX I A) (Set (prodX I A))
〈proof 〉

lemma Fun-prX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows Fun (prX I A i) = Products.PrX I A i
〈proof 〉

lemma Fun-tupleX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows Fun (tupleX I c A F) =
(λx. if x ∈ Set c then IN (Products.ProdX I A) (λi. Fun (F i) x) else null)

〈proof 〉

lemma product-cone:
assumes discrete-diagram J C D and Collect (partial-composition.arr J) = I
and small I and I ⊆ Collect arr
shows has-as-product J D (prodX I D)
and product-cone J C D (prodX I D) (prX I D)

49

〈proof 〉

lemma has-small-products:
assumes small I and I ⊆ Collect arr
shows has-products I
〈proof 〉

Clearly it is not required that the index set I be actually a subset of Collect arr but
rather only that it be embedded in it. So we are free to form products indexed by small
sets at arbitrary types, as long as Collect arr is large enough to embed them. We do
have to satisfy the technical requirement that the index set I not exhaust the elements
at its type, which we introduced in the definition of has-products as a convenience to
avoid the use of coercion maps.

lemma has-small-products ′:
assumes small I and embeds I and I 6= UNIV
shows has-products I
〈proof 〉

end

4.9 Small Coproducts
In this section we show that the category of small sets and functions has small coproducts.
For this we need to assume the existence of a pairing function and also that the notion
of smallness is respected by small sums.

locale small-coproducts-in-sets-cat =
sets-cat-with-cotupling sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

The global elements of a coproduct CoprodX I A are in bijection with
⋃

i∈I . {i} ×
Set (A i).

abbreviation CoprodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a × ′U) set
where CoprodX I A ≡

⋃
i∈I . {i} × Set (A i)

definition coprodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′U
where coprodX I A ≡ mkide (CoprodX I A)

lemma small-CoprodX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows small (CoprodX I A)
〈proof 〉

lemma embeds-CoprodX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows embeds (CoprodX I A)

50

〈proof 〉

lemma ide-coprodX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows ide (coprodX I A)
and bij-betw (OUT (CoprodX I A)) (Set (coprodX I A)) (CoprodX I A)
and bij-betw (IN (CoprodX I A)) (CoprodX I A) (Set (coprodX I A))
and

∧
x. x ∈ Set (coprodX I A) =⇒ OUT (CoprodX I A) x ∈ CoprodX I A

and
∧

y. y ∈ CoprodX I A =⇒ IN (CoprodX I A) y ∈ Set (coprodX I A)
and

∧
x. x ∈ Set (coprodX I A) =⇒ IN (CoprodX I A) (OUT (CoprodX I A) x) = x

and
∧

y. y ∈ CoprodX I A =⇒ OUT (CoprodX I A) (IN (CoprodX I A) y) = y
〈proof 〉

abbreviation InX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U ⇒ ′U
where InX I A i ≡ λx. if x ∈ Set (A i) then IN (CoprodX I A) (i, x) else null

definition inX
where inX I A i ≡ mkarr (A i) (coprodX I A) (InX I A i)

lemma InX-in-Hom:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows InX I A i ∈ Hom (A i) (coprodX I A)
〈proof 〉

lemma inX-in-hom [intro, simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows in-hom (inX I A i) (A i) (coprodX I A)
〈proof 〉

lemma inX-simps [simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows arr (inX I A i) and dom (inX I A i) = A i and cod (inX I A i) = coprodX I A
〈proof 〉

lemma Fun-inX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows Fun (inX I A i) = InX I A i
〈proof 〉

definition CotupleX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U ⇒ ′U
where CotupleX I A F ≡

(λx. if x ∈ Set (coprodX I A)
then Fun (F (fst (OUT (CoprodX I A) x))) (snd (OUT (CoprodX I A) x))
else null)

51

lemma CotupleX-in-Hom:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null

shows CotupleX I A F ∈ Hom (coprodX I A) c
〈proof 〉

definition cotupleX
where cotupleX I c A F ≡ mkarr (coprodX I A) c (CotupleX I A F)

lemma cotupleX-in-hom [intro, simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows «cotupleX I c A F : coprodX I A → c»
〈proof 〉

lemma cotupleX-simps [simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows arr (cotupleX I c A F)
and dom (cotupleX I c A F) = coprodX I A
and cod (cotupleX I c A F) = c
〈proof 〉

lemma comp-cotupleX-inX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows i ∈ I =⇒ cotupleX I c A F · inX I A i = F i
〈proof 〉

lemma Fun-cotupleX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows Fun (cotupleX I c A F) =
(λx. if x ∈ Set (coprodX I A)

then Fun (F (fst (OUT (CoprodX I A) x))) (snd (OUT (CoprodX I A) x))
else null)

〈proof 〉

lemma coproduct-cocone-coprodX :
assumes discrete-diagram J C D and Collect (partial-composition.arr J) = I
and small I and I ⊆ Collect arr
shows has-as-coproduct J D (coprodX I D)
and coproduct-cocone J C D (coprodX I D) (inX I D)
〈proof 〉

lemma has-small-coproducts:
assumes small I and I ⊆ Collect arr
shows has-coproducts I
〈proof 〉

52

end

4.9.1 Exported Notions
context sets-cat-with-cotupling
begin

interpretation Coproducts: small-coproducts-in-sets-cat 〈proof 〉

abbreviation CoprodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a × ′U) set
where CoprodX ≡ Coproducts.CoprodX

abbreviation coprodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′U
where coprodX ≡ Coproducts.coprodX

abbreviation inX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U
where inX ≡ Coproducts.inX

abbreviation cotupleX :: ′a set ⇒ ′U ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U
where cotupleX ≡ Coproducts.cotupleX

lemma coprod-comparison-map-props:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows OUT (CoprodX I A) ∈ Set (coprodX I A) → CoprodX I A
and IN (CoprodX I A) ∈ CoprodX I A → Set (coprodX I A)
and

∧
x. x ∈ Set (coprodX I A) =⇒ IN (CoprodX I A) (OUT (CoprodX I A) x) = x

and
∧

y. y ∈ CoprodX I A =⇒ OUT (CoprodX I A) (IN (CoprodX I A) y) = y
and bij-betw (OUT (CoprodX I A)) (Set (coprodX I A)) (CoprodX I A)
and bij-betw (IN (CoprodX I A)) (CoprodX I A) (Set (coprodX I A))
〈proof 〉

lemma Fun-inX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows Fun (inX I A i) = Coproducts.InX I A i
〈proof 〉

lemma Fun-cotupleX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows Fun (cotupleX I c A F) =
(λx. if x ∈ Set (coprodX I A)

then Fun (F (fst (OUT (
⋃

i∈I . {i} × Set (A i)) x)))
(snd (OUT (

⋃
i∈I . {i} × Set (A i)) x))

else null)
〈proof 〉

lemma coproduct-cocone-coprodX :

53

assumes discrete-diagram J C D and Collect (partial-composition.arr J) = I
and small I and I ⊆ Collect arr
shows has-as-coproduct J D (coprodX I D)
and coproduct-cocone J C D (coprodX I D) (inX I D)
〈proof 〉

lemma has-small-coproducts:
assumes small I and I ⊆ Collect arr
shows has-coproducts I
〈proof 〉

end

4.10 Coequalizers
In this section we show that a sets category has coequalizers of parallel pairs of arrows.
For this, we need to assume that the set of arrows of the category embeds the set of all
its small subsets. The reason we need this assumption is to make it possible to obtain
an object corresponding to the set of equivalence classes that results from the quotient
construction.

locale sets-cat-with-powering =
sets-cat sml C +
powering sml ‹Collect arr›

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)

sublocale sets-cat-with-tupling ⊆ sets-cat-with-powering 〈proof 〉

locale coequalizers-in-sets-cat =
sets-cat-with-powering sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

The following defines the “equivalence closure” of a binary relation r on a set A, and
proves the characterization of it as the least equivalence relation on A that contains r.
For some reason I could not find such a thing in the Isabelle distribution, though I did
find a predicate version equivclp.

definition equivcl
where equivcl A r ≡ SOME r ′. r ⊆ r ′ ∧ equiv A r ′ ∧ (∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ r ′ ⊆ s ′)

lemma equivcl-props:
assumes r ⊆ A × A
shows ∃ r ′. r ⊆ r ′ ∧ equiv A r ′ ∧ (∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ r ′ ⊆ s ′)
and r ⊆ equivcl A r and equiv A (equivcl A r)
and

∧
s ′. r ⊆ s ′ ∧ equiv A s ′ =⇒ equivcl A r ⊆ s ′

〈proof 〉

54

The elements of the codomain of the coequalizer of f and g are the equivalence classes
of the least equivalence relation on Set (cod f) that relates f · x and g · x whenever x ∈
Set (dom f).

abbreviation Cod-coeq :: ′U ⇒ ′U ⇒ ′U set set
where Cod-coeq f g ≡ (λy. (equivcl (Set (cod f))

((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {y})) ‘ Set (cod f)

lemma small-Cod-coeq:
assumes par f g
shows small (Cod-coeq f g)
〈proof 〉

lemma embeds-Cod-coeq:
assumes par f g
shows embeds (Cod-coeq f g)
and Cod-coeq f g ⊆ Pow (Set (cod f))
〈proof 〉

definition cod-coeq
where cod-coeq f g ≡ mkide (Cod-coeq f g)

lemma ide-cod-coeq:
assumes par f g
shows ide (cod-coeq f g)
and bij-betw (OUT (Cod-coeq f g)) (Set (cod-coeq f g)) (Cod-coeq f g)
and bij-betw (IN (Cod-coeq f g)) (Cod-coeq f g) (Set (cod-coeq f g))
and

∧
x. x ∈ Set (cod-coeq f g) =⇒ OUT (Cod-coeq f g) x ∈ Cod-coeq f g

and
∧

y. y ∈ Cod-coeq f g =⇒ IN (Cod-coeq f g) y ∈ Set (cod-coeq f g)
and

∧
x. x ∈ Set (cod-coeq f g) =⇒ IN (Cod-coeq f g) (OUT (Cod-coeq f g) x) = x

and
∧

y. y ∈ Cod-coeq f g =⇒ OUT (Cod-coeq f g) (IN (Cod-coeq f g) y) = y
〈proof 〉

definition Coeq
where Coeq f g ≡ λy. if y ∈ Set (cod f)

then IN (Cod-coeq f g)
(equivcl (Set (cod f))

((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {y})
else null

lemma Coeq-in-Hom [intro]:
assumes par f g
shows Coeq f g ∈ Hom (cod f) (cod-coeq f g)
〈proof 〉

definition coeq
where coeq f g ≡ mkarr (cod f) (cod-coeq f g) (Coeq f g)

lemma coeq-in-hom [intro, simp]:
assumes par f g

55

shows «coeq f g : cod f → cod-coeq f g»
〈proof 〉

lemma coeq-simps [simp]:
assumes par f g
shows arr (coeq f g) and dom (coeq f g) = cod f and cod (coeq f g) = cod-coeq f g
〈proof 〉

lemma Fun-coeq:
assumes par f g
shows Fun (coeq f g) = Coeq f g
〈proof 〉

lemma coeq-coequalizes:
assumes par f g
shows coeq f g · f = coeq f g · g
〈proof 〉

lemma Coeq-surj:
assumes par f g and Set (cod f) 6= {} and y ∈ Set (cod-coeq f g)
shows ∃ x. x ∈ Set (cod f) ∧ Coeq f g x = y
〈proof 〉

lemma coeq-is-coequalizer :
assumes par f g and Set (cod f) 6= {}
shows has-as-coequalizer f g (coeq f g)
〈proof 〉

lemma has-coequalizers:
assumes par f g
shows ∃ e. has-as-coequalizer f g e
〈proof 〉

end

4.10.1 Exported Notions
context sets-cat-with-powering
begin

interpretation Coeq: coequalizers-in-sets-cat sml C 〈proof 〉

abbreviation Cod-coeq
where Cod-coeq ≡ Coeq.Cod-coeq

abbreviation coeq
where coeq ≡ Coeq.coeq

lemma coequalizer-comparison-map-props:

56

assumes par f g
shows bij-betw (OUT (Cod-coeq f g)) (Set (cod (coeq f g))) (Cod-coeq f g)
and bij-betw (IN (Cod-coeq f g)) (Cod-coeq f g) (Set (cod (coeq f g)))
and

∧
x. x ∈ Set (cod (coeq f g)) =⇒ OUT (Cod-coeq f g) x ∈ Cod-coeq f g

and
∧

y. y ∈ Cod-coeq f g =⇒ IN (Cod-coeq f g) y ∈ Set (cod (coeq f g))
and

∧
x. x ∈ Set (cod (coeq f g)) =⇒ IN (Cod-coeq f g) (OUT (Cod-coeq f g) x) = x

and
∧

y. y ∈ Cod-coeq f g =⇒ OUT (Cod-coeq f g) (IN (Cod-coeq f g) y) = y
〈proof 〉

lemma coeq-is-coequalizer :
assumes par f g and Set (cod f) 6= {}
shows has-as-coequalizer f g (coeq f g)
〈proof 〉

Since the fact Fun-coeq below is not very useful without the notions used in stating
it, the function equivcl and characteristic fact equivcl-props are also exported here. It
would be better if Fun-coeq could be expressed completely in terms of existing notions
from the library.

definition equivcl
where equivcl ≡ Coeq.equivcl

lemma equivcl-props:
assumes r ⊆ A × A
shows ∃ r ′. r ⊆ r ′ ∧ equiv A r ′ ∧ (∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ r ′ ⊆ s ′)
and r ⊆ equivcl A r and equiv A (equivcl A r)
and

∧
s ′. r ⊆ s ′ ∧ equiv A s ′ =⇒ equivcl A r ⊆ s ′

〈proof 〉

lemma Fun-coeq:
assumes par f g
shows Fun (coeq f g) = (λy. if y ∈ Set (cod f)

then IN (Cod-coeq f g)
(equivcl (Set (cod f))

((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {y})
else null)

〈proof 〉

lemma has-coequalizers:
assumes par f g
shows ∃ e. has-as-coequalizer f g e
〈proof 〉

end

4.11 Exponentials
In this section we show that the category is cartesian closed.

locale exponentials-in-sets-cat =

57

sets-cat-with-tupling sml C
for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

abbreviation app :: ′U ⇒ ′U ⇒ ′U
where app f ≡ inv-into SEF some-embedding-of-small-functions f

abbreviation Exp :: ′U ⇒ ′U ⇒ (′U ⇒ ′U) set
where Exp a b ≡ {F . F ∈ Set a → Set b ∧ (∀ x. x /∈ Set a −→ F x = null)}

definition exp :: ′U ⇒ ′U ⇒ ′U
where exp a b ≡ mkide (Exp a b)

lemma memb-Exp-popular-value:
assumes ide a and ide b and F ∈ Exp a b
and popular-value F y
shows y = null
〈proof 〉

lemma memb-Exp-imp-small-function:
assumes ide a and ide b and F ∈ Exp a b
shows small-function F
〈proof 〉

lemma small-Exp:
assumes ide a and ide b
shows small (Exp a b)
〈proof 〉

lemma embeds-Exp:
assumes ide a and ide b
shows embeds (Exp a b)
〈proof 〉

lemma ide-exp:
assumes ide a and ide b
shows ide (exp a b)
and bij-betw (OUT (Exp a b)) (Set (exp a b)) (Exp a b)
and bij-betw (IN (Exp a b)) (Exp a b) (Set (exp a b))
〈proof 〉

abbreviation Eval
where Eval b c ≡ (λfx. if fx ∈ Set (prod (exp b c) b)

then OUT (Exp b c)
(Fun (pr1 (exp b c) b) fx)
(Fun (pr0 (exp b c) b) fx)

else null)

58

definition eval
where eval b c ≡ mkarr (prod (exp b c) b) c (Eval b c)

lemma eval-in-hom [intro, simp]:
assumes ide b and ide c
shows «eval b c : prod (exp b c) b → c»
〈proof 〉

lemma eval-simps [simp]:
assumes ide b and ide c
shows arr (eval b c) and dom (eval b c) = prod (exp b c) b and cod (eval b c) = c
〈proof 〉

lemma Fun-eval:
assumes ide b and ide c
shows Fun (eval b c) = Eval b c
〈proof 〉

definition Curry
where Curry a b c ≡ λf . if «f : prod a b → c»

then mkarr a (exp b c)
(λx. if x ∈ Set a

then IN (Exp b c)
(λy. if y ∈ Set b

then C f (tuple x y)
else null)

else null)
else null

lemma Curry-in-hom [intro]:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows «Curry a b c f : a → exp b c»
and Fun (Curry a b c f) =

(λx. if x ∈ Set a
then IN (Exp b c) (λy. if y ∈ Set b then C f (tuple x y) else null)
else null)

〈proof 〉

lemma Curry-simps [simp]:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows arr (Curry a b c f) and dom (Curry a b c f) = a and cod (Curry a b c f) = exp b c
〈proof 〉

lemma Fun-Curry:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows Fun (Curry a b c f) =

59

(λx. if x ∈ Set a
then IN (Exp b c) (λy. if y ∈ Set b then C f (tuple x y) else null)
else null)

〈proof 〉

interpretation elementary-category-with-terminal-object C ‹1?› some-terminator
〈proof 〉

lemma is-category-with-terminal-object:
shows elementary-category-with-terminal-object C 1? some-terminator
and category-with-terminal-object C
〈proof 〉

interpretation elementary-cartesian-closed-category
C pr0 pr1 ‹1?› some-terminator exp eval Curry

〈proof 〉

lemma is-elementary-cartesian-closed-category:
shows elementary-cartesian-closed-category C pr0 pr1 1? some-terminator exp eval Curry
〈proof 〉

lemma is-cartesian-closed-category:
shows cartesian-closed-category C
〈proof 〉

end

4.11.1 Exported Notions
context sets-cat-with-tupling
begin

sublocale sets-cat-with-pairing 〈proof 〉

interpretation Expos: exponentials-in-sets-cat sml C 〈proof 〉

abbreviation Exp
where Exp ≡ Expos.Exp

abbreviation exp
where exp ≡ Expos.exp

lemma ide-exp:
assumes ide a and ide b
shows ide (exp a b)
〈proof 〉

lemma exp-comparison-map-props:
assumes ide a and ide b

60

shows OUT (Exp a b) ∈ Set (exp a b) → Exp a b
and IN (Exp a b) ∈ Exp a b → Set (exp a b)
and

∧
x. x ∈ Set (exp a b) =⇒ IN (Exp a b) (OUT (Exp a b) x) = x

and
∧

y. y ∈ Exp a b =⇒ OUT (Exp a b) (IN (Exp a b) y) = y
and bij-betw (OUT (Exp a b)) (Set (exp a b)) (Exp a b)
and bij-betw (IN (Exp a b)) (Exp a b) (Set (exp a b))
〈proof 〉

abbreviation Eval
where Eval ≡ Expos.Eval

abbreviation eval
where eval ≡ Expos.eval

lemma eval-in-hom [intro, simp]:
assumes ide b and ide c
shows «eval b c : prod (exp b c) b → c»
〈proof 〉

lemma eval-simps [simp]:
assumes ide b and ide c
shows arr (eval b c) and dom (eval b c) = prod (exp b c) b and cod (eval b c) = c
〈proof 〉

lemma Fun-eval:
assumes ide b and ide c
shows Fun (eval b c) = Eval b c
〈proof 〉

abbreviation Curry
where Curry ≡ Expos.Curry

lemma Curry-in-hom [intro, simp]:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows «Curry a b c f : a → exp b c»
〈proof 〉

lemma Curry-simps [simp]:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows arr (Curry a b c f)
and dom (Curry a b c f) = a and cod (Curry a b c f) = exp b c
〈proof 〉

lemma Fun-Curry:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows Fun (Curry a b c f) =

61

(λx. if x ∈ Set a
then IN (Exp b c) (λy. if y ∈ Set b then C f (tuple x y) else null)
else null)

〈proof 〉

theorem is-cartesian-closed:
shows elementary-cartesian-closed-category C pr0 pr1 1? some-terminator exp eval Curry
and cartesian-closed-category C
〈proof 〉

end

4.12 Subobject Classifier
In this section we show that a sets category has a subobject classifier, which is a cate-
gorical formulation of set comprehension. We give here a formal definition of subobject
classifier, because we have not done that elsewhere to date, but ultimately this definition
would perhaps be better placed with a development of the theory of elementary topoi,
which are cartesian closed categories with subobject classifier.

context category
begin

A subobject classifier is a monomorphism tt from a terminal object into an object Ω,
which we may regard as an “object of truth values”, such that for every monomorphism
m there exists a unique arrow χ : cod m → Ω, such that m is given by the pullback of
tt along χ.

definition subobject-classifier
where subobject-classifier tt ≡

mono tt ∧ terminal (dom tt) ∧
(∀m. mono m −→

(∃ !χ. «χ : cod m → cod tt» ∧
has-as-pullback tt χ (THE f . «f : dom m → dom tt») m))

lemma subobject-classifierI [intro]:
assumes «tt : one → Ω» and terminal one and mono tt
and

∧
m. mono m =⇒ ∃ !χ. «χ : cod m → Ω» ∧

has-as-pullback tt χ (THE f . «f : dom m → one») m
shows subobject-classifier tt
〈proof 〉

lemma subobject-classifierE [elim]:
assumes subobject-classifier tt
and [[mono tt; terminal (dom tt);∧

m. mono m =⇒ ∃ !χ. «χ : cod m → cod tt» ∧
has-as-pullback tt χ (THE f . «f : dom m → dom tt») m]]

=⇒ T
shows T

62

〈proof 〉

end

locale category-with-subobject-classifier =
category +

assumes has-subobject-classifier-ax: ∃ tt. subobject-classifier tt
begin

sublocale category-with-terminal-object
〈proof 〉

end

context sets-cat-with-bool
begin

For a sets category, the two-point object 2 (which exists in the current context
sets-cat-with-bool) serves as the object of truth values. The subobject classifier will
be the arrow tt : 1? → 2.

Here we define a mapping χ that takes a monomorphism m to a corresponding “pred-
icate” χ m : cod m → 2.

abbreviation Chi
where Chi m ≡ λy. if y ∈ Set (cod m)

then
if y ∈ Fun m ‘ Set (dom m) then tt else ff

else null

definition χ :: ′U ⇒ ′U
where χ m ≡ mkarr (cod m) 2 (Chi m)

lemma χ-in-hom [intro, simp]:
assumes «m : b → a» and mono m
shows «χ m : a → 2»
〈proof 〉

lemma χ-simps [simp]:
assumes «m : b → a» and mono m
shows arr (χ m) and dom (χ m) = a and cod (χ m) = 2
〈proof 〉

lemma Fun-χ:
assumes «m : b → a» and mono m
shows Fun (χ m) = Chi m
〈proof 〉

lemma bij-Fun-mono:
assumes «m : b → a» and mono m
shows bij-betw (Fun m) (Set b) {y. y ∈ Set a ∧ χ m · y = tt}

63

〈proof 〉

lemma has-subobject-classifier :
shows subobject-classifier tt
〈proof 〉

sublocale category-with-subobject-classifier
〈proof 〉

lemma is-category-with-subobject-classifier :
shows category-with-subobject-classifier C
〈proof 〉

end

4.13 Natural Numbers Object
In this section we show that a sets category has a natural numbers object, assuming
that the smallness notion is such that the set of natural numbers is small, and assuming
that that the collection of arrows admits lifting, so that the category has infinitely many
arrows.

locale sets-cat-with-infinity =
sets-cat sml C +
small-nat sml +
lifting ‹Collect arr›

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

abbreviation nat (N)
where nat ≡ mkide (UNIV :: nat set)

lemma ide-nat:
shows ide N
and bij-betw (OUT (UNIV :: nat set)) (Set N) (UNIV :: nat set)
and bij-betw (IN (UNIV :: nat set)) (UNIV :: nat set) (Set N)
〈proof 〉

abbreviation Zero
where Zero ≡ λx. if x ∈ Set 1? then IN (UNIV :: nat set) 0 else null

lemma Zero-in-Hom:
shows Zero ∈ Hom 1? N
〈proof 〉

definition zero
where zero ≡ mkarr 1? N Zero

64

lemma zero-in-hom [intro, simp]:
shows «zero : 1? → N»
〈proof 〉

lemma zero-simps [simp]:
shows arr zero and dom zero = 1? and cod zero = N
〈proof 〉

lemma Fun-zero:
shows Fun zero = Zero
〈proof 〉

abbreviation Succ
where Succ ≡ λx. if x ∈ Set N then IN (UNIV :: nat set) (Suc (OUT UNIV x)) else null

lemma Succ-in-Hom:
shows Succ ∈ Hom N N
〈proof 〉

definition succ
where succ ≡ mkarr N N Succ

lemma succ-in-hom [intro]:
shows «succ : N → N»
〈proof 〉

lemma succ-simps [simp]:
shows arr succ and dom succ = N and cod succ = N
〈proof 〉

lemma Fun-succ:
shows Fun succ = Succ
〈proof 〉

lemma nat-universality:
assumes «Z : 1? → a» and «S : a → a»
shows ∃ !f . «f : N → a» ∧ f · zero = Z ∧ f · succ = S · f
〈proof 〉

lemma has-natural-numbers-object:
shows ∃ a z s. «z : 1? → a» ∧ «s : a → a» ∧

(∀ a ′ z ′ s ′. «z ′ : 1? → a ′» ∧ «s ′ : a ′→ a ′» −→
(∃ !f . «f : a → a ′» ∧ f · z = z ′ ∧ f · s = s ′ · f))

〈proof 〉

end

65

4.14 Sets Category with Tupling and Infinity
Finally, if the collection of arrows of a sets category admits embeddings of all the usual
set-theoretic constructions, then the category supports all of the constructions consid-
ered; in particular it is small-complete and small-cocomplete, is cartesian closed, has a
subobject classifier (so that it is an elementary topos), and validates an axiom of infinity
in the form of the existence of a natural numbers object.

context sets-cat-with-tupling
begin

lemmas is-well-pointed epis-split has-binary-products has-binary-coproducts
has-small-products has-small-coproducts has-equalizers has-coequalizers
is-cartesian-closed has-subobject-classifier

end

locale sets-cat-with-tupling-and-infinity =
sets-cat-with-tupling sml C +
sets-cat-with-infinity sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

sublocale universe sml ‹Collect arr› null 〈proof 〉

lemmas has-natural-numbers-object

end

end

66

Chapter 5

Interpretations of universe

theory Universe-Interps
imports Universe ZFC-in-HOL.ZFC-Cardinals
begin

In this section we give two interpretations of locales defined in theory Universe. In
one interpretation, “finite” is taken as the notion of smallness and the set of natural
numbers is used to interpret the tupling locale. In the second interpretation, the notion
“small” is as defined in ZFC-in-HOL and the set of elements of the type V defined in
that theory is used as the universe. This interpretation interprets the universe locale,
which augments universe with the assumption small-nat that the set of natural numbers
is small. The purpose of constructing these interpretations is to show the consistency
of the universe locale assumptions (relative, of course to the consistency of HOL itself,
and of HOL as extended in ZFC-in-HOL), as well as to provide a starting point for the
construction of large categories, such as the category of small sets which is treated in
this article.

5.1 Interpretation using Natural Numbers
We first give an interpretation for the tupling locale, taking the set of natural numbers
as the universe and taking “finite” as the meaning of “small”.

context
begin

We first establish properties of finite :: nat set ⇒ bool as our notion of smallness.
interpretation smallness ‹finite :: nat set ⇒ bool›
〈proof 〉

The notion small defined by the smallness locale agrees with the notion finite given
as a locale parameter.

lemma finset-small-iff-finite:
shows local.small X ←→ finite X
〈proof 〉

67

interpretation small-finite ‹finite :: nat set ⇒ bool›
〈proof 〉

lemma small-finite-finset:
shows small-finite (finite :: nat set ⇒ bool)
〈proof 〉

interpretation small-product ‹finite :: nat set ⇒ bool›
〈proof 〉

lemma small-product-finset:
shows small-product (finite :: nat set ⇒ bool)
〈proof 〉

interpretation small-sum ‹finite :: nat set ⇒ bool›
〈proof 〉

lemma small-sum-finset:
shows small-sum (finite :: nat set ⇒ bool)
〈proof 〉

interpretation small-powerset ‹finite :: nat set ⇒ bool›
〈proof 〉

lemma small-powerset-finset:
shows small-powerset (finite :: nat set ⇒ bool)
〈proof 〉

interpretation small-funcset ‹finite :: nat set ⇒ bool› 〈proof 〉

As expected, the assumptions of locale small-nat are inconsistent with the present
context.

lemma large-nat-finset:
shows ¬ local.small (UNIV :: nat set)
〈proof 〉

Next, we develop embedding properties of UNIV :: nat set.
interpretation embedding ‹UNIV :: nat set› 〈proof 〉

interpretation lifting ‹UNIV :: nat set›
〈proof 〉

lemma nat-admits-lifting:
shows lifting (UNIV :: nat set)
〈proof 〉

interpretation pairing ‹UNIV :: nat set›
〈proof 〉

68

lemma nat-admits-pairing:
shows pairing (UNIV :: nat set)
〈proof 〉

interpretation powering ‹finite :: nat set ⇒ bool› ‹UNIV :: nat set›
〈proof 〉

lemma nat-admits-finite-powering:
shows powering (finite :: nat set ⇒ bool) (UNIV :: nat set)
〈proof 〉

interpretation tupling ‹finite :: nat set ⇒ bool› ‹UNIV :: nat set› 〈proof 〉

lemma nat-admits-finite-tupling:
shows tupling (finite :: nat set ⇒ bool) (UNIV :: nat set)
〈proof 〉

end

Finally, we give the interpretation of the tupling locale, stated in the top-level context
in order to make it clear that it can be established directly in HOL, without depending
somehow on any underlying locale assumptions.

interpretation nat-tupling: tupling ‹finite :: nat set ⇒ bool› ‹UNIV :: nat set› undefined
〈proof 〉

5.2 Interpretation using ZFC-in-HOL
We now give an interpretation for the universe locale, taking as the universe the set of
elements of type V defined in ZFC-in-HOL as the universe and using the notion small
also defined in that theory.

context
begin

We first develop properties of small, which we take as our notion of smallness.
interpretation smallness ‹ZFC-in-HOL.small :: V set ⇒ bool›
〈proof 〉

The notion small defined by the smallness locale agrees with the notion ZFC-in-HOL.small
given as a locale parameter.

lemma small-iff-ZFC-small:
shows local.small X ←→ ZFC-in-HOL.small X
〈proof 〉

interpretation small-finite ‹ZFC-in-HOL.small :: V set ⇒ bool›
〈proof 〉

69

lemma small-finite-ZFC :
shows small-finite (ZFC-in-HOL.small :: V set ⇒ bool)
〈proof 〉

interpretation small-product ‹ZFC-in-HOL.small :: V set ⇒ bool›
〈proof 〉

lemma small-product-ZFC :
shows small-product (ZFC-in-HOL.small :: V set ⇒ bool)
〈proof 〉

interpretation small-sum ‹ZFC-in-HOL.small :: V set ⇒ bool›
〈proof 〉

lemma small-sum-ZFC :
shows small-sum (ZFC-in-HOL.small :: V set ⇒ bool)
〈proof 〉

We need the following, which does not seem to be directly available in ZFC-in-HOL.
lemma ZFC-small-implies-small-powerset:
fixes X
assumes ZFC-in-HOL.small X
shows ZFC-in-HOL.small (Pow X)
〈proof 〉

interpretation small-powerset ‹ZFC-in-HOL.small :: V set ⇒ bool›
〈proof 〉

lemma small-powerset-ZFC :
shows small-powerset (ZFC-in-HOL.small :: V set ⇒ bool)
〈proof 〉

interpretation small-funcset ‹ZFC-in-HOL.small :: V set ⇒ bool› 〈proof 〉

lemma small-funcset-ZFC :
shows small-funcset (ZFC-in-HOL.small :: V set ⇒ bool)
〈proof 〉

interpretation small-nat ‹ZFC-in-HOL.small :: V set ⇒ bool›
〈proof 〉

lemma small-nat-ZFC :
shows small-nat (ZFC-in-HOL.small :: V set ⇒ bool)
〈proof 〉

interpretation small-funcset-and-nat ‹ZFC-in-HOL.small :: V set ⇒ bool› 〈proof 〉

lemma small-funcset-and-nat-ZFC :
shows small-funcset-and-nat (ZFC-in-HOL.small :: V set ⇒ bool)

70

〈proof 〉

Next, we develop embedding properties of UNIV :: V set.
interpretation embedding ‹UNIV :: V set› 〈proof 〉

interpretation lifting ‹UNIV :: V set›
〈proof 〉

lemma V-admits-lifting:
shows lifting (UNIV :: V set)
〈proof 〉

interpretation pairing ‹UNIV :: V set›
〈proof 〉

lemma V-admits-pairing:
shows pairing (UNIV :: V set)
〈proof 〉

interpretation powering ‹ZFC-in-HOL.small :: V set => bool› ‹UNIV :: V set›
〈proof 〉

lemma V-admits-small-powering:
shows powering (ZFC-in-HOL.small :: V set => bool) (UNIV :: V set)
〈proof 〉

interpretation tupling ‹ZFC-in-HOL.small :: V set => bool› ‹UNIV :: V set› undefined
〈proof 〉

lemma V-admits-small-tupling:
shows tupling (ZFC-in-HOL.small :: V set => bool) (UNIV :: V set)
〈proof 〉

interpretation universe ‹ZFC-in-HOL.small :: V set => bool› ‹UNIV :: V set› undefined
〈proof 〉

theorem V-is-universe:
shows universe (ZFC-in-HOL.small :: V set => bool) (UNIV :: V set)
〈proof 〉

end

Finally, we give the interpretation of the universe locale, stated in the top-level con-
text. Note however, that this is proved not in “vanilla HOL”, but rather in HOL as
extended by the axiomatization in ZFC-in-HOL.

interpretation ZFC-universe: universe ‹ZFC-in-HOL.small :: V set => bool› ‹UNIV :: V
set› undefined
〈proof 〉

71

end

72

Chapter 6

Interpretations of sets-cat

theory SetsCat-Interps
imports Category3 .ConcreteCategory Category3 .ZFC-SetCat Category3 .Colimit

SetsCat Universe-Interps
begin

In this section we construct two interpretations of the sets-cat locale: one using “finite”
as the notion of smallness and one that uses small from the theory ZFC-in-HOL. These
interpretations demonstrate the consistency of the variants of the sets-cat locale: the in-
terpretation using finiteness validates the sets-cat-with-tupling locale in unextended HOL,
and the interpretation in terms of ZFC-in-HOL validates the sets-cat-with-tupling-and-infinity
locale, assuming that the axiomatization of ZFC-in-HOL is consistent with HOL.

6.1 Category of Finite Sets
The finite-sets-cat locale defines a category having as objects the natural numbers and
as arrows from m to n the functions from m-element sets to n-element sets. In view of
SetsCat.categoricity, this is the unique interpretation (up to equivalence of categories) of
sets-cat having a countably infinite collection of arrows.

locale finite-sets-cat
begin

abbreviation OBJ
where OBJ ≡ UNIV :: nat set

abbreviation HOM
where HOM ≡ λm n. {1 ..m :: nat} →E {1 ..n :: nat}

abbreviation Id
where Id n ≡ λx :: nat. if x ∈ {1 ..n} then x else undefined

abbreviation Comp
where Comp - - m ≡ compose {1 ..m}

73

interpretation Fin: concrete-category OBJ HOM Id Comp
〈proof 〉

abbreviation comp
where comp ≡ Fin.COMP

lemma terminal-MkIde-1 :
shows Fin.terminal (Fin.MkIde 1)
〈proof 〉

sublocale category-with-terminal-object comp
〈proof 〉

notation some-terminal (1?)

sublocale sets-cat-base ‹finite :: nat set ⇒ bool› comp
〈proof 〉

sublocale small-finite ‹finite :: nat set ⇒ bool›
〈proof 〉

sublocale small-powerset ‹finite :: nat set ⇒ bool›
〈proof 〉

lemma finite-HOM :
shows finite (HOM m n)
〈proof 〉

lemma card-HOM :
shows card (HOM m n) = n ^ m
〈proof 〉

lemma terminal-charF SC :
shows Fin.terminal a ←→ a = Fin.MkIde 1
〈proof 〉

lemma MkIde-1-eq:
shows Fin.MkIde 1 = 1?

〈proof 〉

lemma finite-Set:
assumes Fin.ide a
shows finite (Set a)
〈proof 〉

lemma card-Set:
assumes Fin.ide a
shows card (Set a) = Fin.Dom a

74

〈proof 〉

abbreviation mkpoint
where mkpoint n k ≡ Fin.MkArr 1 n (λx. if x = 1 then k :: nat else undefined)

abbreviation valof
where valof x ≡ Fin.Map x (1 :: nat)

lemma mkpoint-in-hom [intro, simp]:
assumes k ∈ {1 ..n}
shows Fin.in-hom (mkpoint n k) (Fin.MkIde 1) (Fin.MkIde n)
〈proof 〉

lemma valof-in-range:
assumes Fin.in-hom x 1? a
shows valof x ∈ {1 ..Fin.Dom a}
〈proof 〉

lemma valof-mkpoint:
shows valof (mkpoint n k) = k
〈proof 〉

lemma mkpoint-valof :
assumes Fin.in-hom x 1? a
shows mkpoint (Fin.Dom a) (valof x) = x
〈proof 〉

lemma Map-arr-eq:
assumes Fin.in-hom f a b
shows Fin.Map f = (λk. if k ∈ {1 ..Fin.Dom a}

then Fin.Map (Fun f (mkpoint (Fin.Dom a) k)) 1
else undefined)

(is Fin.Map f = ?F)
〈proof 〉

sublocale sets-cat ‹finite :: nat set ⇒ bool› comp
〈proof 〉

lemma is-sets-cat:
shows sets-cat (finite :: nat set ⇒ bool) comp
〈proof 〉

sublocale small-product ‹finite :: nat set ⇒ bool›
〈proof 〉

sublocale sets-cat-with-pairing ‹finite :: nat set ⇒ bool› comp
〈proof 〉

lemma is-sets-cat-with-pairing:

75

shows sets-cat-with-pairing (finite :: nat set ⇒ bool) comp
〈proof 〉

sublocale lifting ‹Collect Fin.arr›
〈proof 〉

sublocale sets-cat-with-powering ‹finite :: nat set ⇒ bool› comp
〈proof 〉

lemma is-sets-cat-with-powering:
shows sets-cat-with-powering (finite :: nat set ⇒ bool) comp
〈proof 〉

sublocale small-sum ‹finite :: nat set ⇒ bool›
〈proof 〉

sublocale sets-cat-with-tupling ‹finite :: nat set ⇒ bool› comp
〈proof 〉

theorem is-sets-cat-with-tupling:
shows sets-cat-with-tupling (finite :: nat set ⇒ bool) comp
〈proof 〉

end

Here is the final top-level interpretation. Note that this is proved in “vanilla HOL”
without any additional axioms.

interpretation SetsCatf in: finite-sets-cat 〈proof 〉

6.2 Category of ZFC Sets
In this section we construct an interpretation of sets-cat-with-tupling-and-infinity, which
includes infinite sets. As this cannot be done in “vanilla HOL”, for this construction
we use ZFC-in-HOL, which extends HOL with axioms for a type V that models the
set-theoretic universe provided by ZFC. Actually, we have previously given, in theory
Category3 .ZFC-SetCat, a construction of a category of small sets and functions based
on ZFC-in-HOL. Since that work was already done, all we need to do here is to show
that the previously constructed category interprets the sets-cat-with-tupling-and-infinity
locale.

locale ZFC-sets-cat
begin

Here we import the previous construction from Category3 .ZFC-SetCat.
interpretation ZFC : ZFC-set-cat 〈proof 〉

We use the notion of “smallness” provided by ZFC-in-HOL.
sublocale smallness ‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool›

76

〈proof 〉

sublocale sets-cat-base ‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool› ZFC .comp
〈proof 〉

sublocale sets-cat ‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool› ZFC .comp
〈proof 〉

lemma is-sets-cat:
shows sets-cat (ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool) ZFC .comp
〈proof 〉

Arrows of the category can be encoded as elements of V.
abbreviation arr-to-V
where arr-to-V f ≡ vpair

(vpair (ZFC .V-of-ide (ZFC .dom f)) (ZFC .V-of-ide (ZFC .cod f)))
(ZFC .V-of-arr f)

lemma inj-arr-to-V :
shows inj-on arr-to-V (Collect ZFC .arr)
〈proof 〉

As it happens, V also embeds into the collection of arrows, so the two are equipollent.
Thus, the fact that V is a universe can be transferred to the collection of arrows. So we
can save ourselves some work here.

lemma eqpoll-Collect-arr-V :
shows Collect ZFC .arr ∪ {ZFC .null} ≈ (UNIV :: V set)
and Collect ZFC .arr ≈ (UNIV :: V set)
〈proof 〉

sublocale universe ‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool› ‹Collect ZFC .arr›
ZFC .null
〈proof 〉

sublocale sets-cat-with-tupling-and-infinity
‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool› ZFC .comp

〈proof 〉

theorem is-sets-cat-with-tupling-and-infinity:
shows sets-cat-with-tupling-and-infinity

(ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool) ZFC .comp
〈proof 〉

end

Here is the final top-level interpretation.
interpretation SetsCatZFC : ZFC-sets-cat 〈proof 〉

end

77

Bibliography

[1] F. W. Lavere. An elementary theory of the category of sets. Proceedings of the
National Academy of Sciences of the U.S.A., 52:1506–1511, 1964.

[2] L. C. Paulson. Zermelo fraenkel set theory in higher-order logic. Archive of Formal
Proofs, October 2019. https://isa-afp.org/entries/ZFC_in_HOL.html, Formal proof
development.

[3] E. W. Stark. Category theory with adjunctions and limits. Archive of Formal Proofs,
June 2016. http://isa-afp.org/entries/Category3.shtml, Formal proof development.

78

https://isa-afp.org/entries/ZFC_in_HOL.html
http://isa-afp.org/entries/Category3.shtml

	Introduction
	Smallness
	Basic Notions
	Smallness of Finite Sets
	Smallness of Binary Products
	Smallness of Sums
	Smallness of Powersets
	Smallness of the Set of Natural Numbers
	Smallness of Function Spaces
	Small Functions
	Small Funcsets

	Smallness of Sets of Lists

	Universe
	Embeddings
	Lifting
	Pairing
	Powering
	Tupling
	Universe

	The Category of Small Sets
	Basic Definitions and Properties
	Categoricity
	Well-Pointedness
	Epis Split
	Equalizers
	Exported Notions

	Binary Products
	Exported Notions

	Binary Coproducts
	Exported Notions

	Small Products
	Exported Notions

	Small Coproducts
	Exported Notions

	Coequalizers
	Exported Notions

	Exponentials
	Exported Notions

	Subobject Classifier
	Natural Numbers Object
	Sets Category with Tupling and Infinity

	Interpretations of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 universe
	Interpretation using Natural Numbers
	Interpretation using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ZFC-in-HOL

	Interpretations of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sets-cat
	Category of Finite Sets
	Category of ZFC Sets

	Bibliography

