
Invertibility in Sequent Calculi

Peter Chapman

School of Computer Science, University of St Andrews
Email: pc@cs.st-andrews.ac.uk

Abstract. The invertibility of the rules of a sequent calculus is impor-
tant for guiding proof search and can be used in some formalised proofs
of Cut admissibility. We present sufficient conditions for when a rule is
invertible with respect to a calculus. We illustrate the conditions with ex-
amples. It must be noted we give purely syntactic criteria; no guarantees
are given as to the suitability of the rules.

1 Introduction

In this paper, we give an overview of some results about invertibility in sequent
calculi. The framework is outlined in §2. The results are mainly concerned with
multisuccedent calculi that have a single principal formula. We will use, as our
running example throughout, the calculus G3cp. In §4, we look at the formal-
isation of single-succedent calculi; in §5, the formalisation in Nominal Isabelle
for first-order calculi is shown; in §6 the results for modal logic are examined.
We return to multisuccedent calculi in §7 to look at manipulating rule sets.

2 Formalising the Framework

2.1 Formulae and Sequents

A formula is either a propositional variable, the constant ⊥, or a connective
applied to a list of formulae. We thus have a type variable indexing formulae,
where the type variable will be a set of connectives. In the usual way, we index
propositional variables by use of natural numbers. So, formulae are given by the
datatype:
datatype ′a form = At nat

| Compound ′a ′a form list
| ff

For G3cp, we define the datatype Gp, and give the following abbreviations:
datatype Gp = con | dis | imp
type-synonym Gp-form = Gp form

abbreviation con-form (infixl ‹∧∗› 80) where
p ∧∗ q ≡ Compound con [p,q]

abbreviation dis-form (infixl ‹∨∗› 80) where
p ∨∗ q ≡ Compound dis [p,q]

abbreviation imp-form (infixl ‹⊃› 80) where
p ⊃ q ≡ Compound imp [p,q]

A sequent is a pair of multisets of formulae. Sequents are indexed by the con-
nectives used to index the formulae. To add a single formula to a multiset of
formulae, we use the symbol ⊕, whereas to join two multisets, we use the sym-
bol +.

2.2 Rules and Rule Sets

A rule is a list of sequents (called the premisses) paired with a sequent (called the
conclusion). The two rule sets used for multisuccedent calculi are the axioms,
and the uniprincipal rules (i.e. rules having one principal formula). Both are
defined as inductive sets. There are two clauses for axioms, corresponding to L⊥
and normal axioms:
inductive-set Ax where

id: ([], H At i I ⇒∗ H At i I) ∈ Ax
| Lbot: ([], H ff I ⇒∗ ∅) ∈ Ax

The set of uniprincipal rules, on the other hand, must not have empty premisses,
and must have a single, compound formula in its conclusion. The function mset
takes a sequent, and returns the multiset obtained by adding the antecedent and
the succedent together:
inductive-set upRules where

I : [[mset c ≡ H Compound R Fs I ; ps 6= []]] =⇒ (ps,c) ∈ upRules

For G3cp, we have the following six rules, which we then show are a subset of
the set of uniprincipal rules:
inductive-set g3cp
where

conL: ([H A I + H B I ⇒∗ ∅], H A ∧∗ B I ⇒∗ ∅) ∈ g3cp
| conR: ([∅ ⇒∗ H A I, ∅ ⇒∗ H B I], ∅ ⇒∗ H A ∧∗ B I) ∈ g3cp
| disL: ([H A I ⇒∗ ∅, H B I ⇒∗ ∅], H A ∨∗ BI ⇒∗ ∅) ∈ g3cp
| disR: ([∅ ⇒∗ H A I + H B I], ∅ ⇒∗ H A ∨∗ B I) ∈ g3cp
| impL: ([∅ ⇒∗ H A I, H B I ⇒∗ ∅], H A ⊃ B I ⇒∗ ∅) ∈ g3cp
| impR: ([H A I ⇒∗ H B I], ∅ ⇒∗ H A ⊃ B I) ∈ g3cp

lemma g3cp-upRules:
shows g3cp ⊆ upRules
proof−

{
fix ps c
assume (ps,c) ∈ g3cp
then have (ps,c) ∈ upRules by (induct) auto

}
thus g3cp ⊆ upRules by auto
qed

We have thus given the active parts of the G3cp calculus. We now need to
extend these active parts with passive parts.

Given a sequent C, we extend it with another sequent S by adding the two
antecedents and the two succedents. To extend an active part (Ps,C) with a
sequent S, we extend every P ∈ Ps and C with S:

overloading
extend ≡ extend
extendRule ≡ extendRule

begin

definition extend
where extend forms seq ≡ (antec forms + antec seq) ⇒∗ (succ forms + succ seq)

definition extendRule
where extendRule forms R ≡ (map (extend forms) (fst R), extend forms (snd R))

end

Given a rule set R, the extension of R, called R?, is then defined as another
inductive set:

inductive-set extRules :: ′a rule set ⇒ ′a rule set (‹-∗›)
for R :: ′a rule set
where I : r ∈ R =⇒ extendRule seq r ∈ R∗

The rules of G3cp all have unique conclusions. This is easily formalised:

overloading uniqueConclusion ≡ uniqueConclusion
begin

definition uniqueConclusion :: ′a rule set ⇒ bool
where uniqueConclusion R ≡ ∀ r1 ∈ R. ∀ r2 ∈ R. (snd r1 = snd r2) −→ (r1 =

r2)

end

lemma g3cp-uc:
shows uniqueConclusion g3cp
apply (auto simp add:uniqueConclusion-def Ball-def)
apply (rule g3cp.cases) apply auto by (rotate-tac 1 ,rule g3cp.cases,auto)+

2.3 Principal Rules and Derivations

A formula A is left principal for an active part R iff the conclusion of R is of
the form A ⇒ ∅. The definition of right principal is then obvious. We have an
inductive predicate to check these things:
inductive rightPrincipal :: ′a rule ⇒ ′a form ⇒ bool

where
up: C = (∅ ⇒∗ HCompound F FsI) =⇒

rightPrincipal (Ps,C) (Compound F Fs)

As an example, we show that if A ∧ B is principal for an active part in G3cp,
then ∅ ⇒ A is a premiss of that active part:
lemma principal-means-premiss:
assumes a: rightPrincipal r (A ∧∗ B)
and b: r ∈ g3cp
shows (∅ ⇒∗ H A I) ∈ set (fst r)
proof−

from a and b obtain Ps where req: r = (Ps, ∅ ⇒∗ H A∧∗B I)
by (cases r) auto

with b have Ps = [∅ ⇒∗ H A I, ∅ ⇒∗ H B I]
apply (cases r) by (rule g3cp.cases) auto

with req show (∅ ⇒∗ H A I) ∈ set (fst r) by auto
qed

A sequent is derivable at height 0 if it is the conclusion of a rule with no premisses.
If a rule has m premisses, and the maximum height of the derivation of any of
the premisses is n, then the conclusion will be derivable at height n + 1. We
encode this as pairs of sequents and natural numbers. A sequent S is derivable
at a height n in a rule system R iff (S, n) belongs to the inductive set derivable
R:
inductive-set derivable :: ′a rule set ⇒ ′a deriv set

for R :: ′a rule set
where
base: [[([],C) ∈ R]] =⇒ (C ,0) ∈ derivable R

| step: [[r ∈ R ; (fst r) 6=[] ; ∀ p ∈ set (fst r). ∃ n ≤ m. (p,n) ∈ derivable R]]
=⇒ (snd r ,m + 1) ∈ derivable R

In some instances, we do not care about the height of a derivation, rather that
the root is derivable. For this, we have the additional definition of derivable’,
which is a set of sequents:
inductive-set derivable ′ :: ′a rule set ⇒ ′a sequent set

for R :: ′a rule set
where
base: [[([],C) ∈ R]] =⇒ C ∈ derivable ′ R

| step: [[r ∈ R ; (fst r) 6= [] ; ∀ p ∈ set (fst r). p ∈ derivable ′ R]]
=⇒ (snd r) ∈ derivable ′ R

It is desirable to switch between the two notions. Shifting from derivable at
a height to derivable is simple: we delete the information about height. The

converse is more complicated and involves an induction on the length of the
premiss list:
lemma deriv-to-deriv:
assumes (C ,n) ∈ derivable R
shows C ∈ derivable ′ R
using assms by (induct) auto

lemma deriv-to-deriv2 :
assumes C ∈ derivable ′ R
shows ∃ n. (C ,n) ∈ derivable R
using assms

proof (induct)
case (base C)
then have (C ,0) ∈ derivable R by auto
then show ?case by blast

next
case (step r)
then obtain ps c where r = (ps,c) and ps 6= [] by (cases r) auto
with step(3) have aa: ∀ p ∈ set ps. ∃ n. (p,n) ∈ derivable R by auto
then have ∃ m. ∀ p ∈ set ps. ∃ n≤m. (p,n) ∈ derivable R
proof (induct ps) — induction on the list

case Nil
then show ?case by auto

next
case (Cons a as)
then have ∃ m. ∀ p ∈ set as. ∃ n≤m. (p,n) ∈ derivable R by auto
then obtain m where ∀ p ∈ set as. ∃ n≤m. (p,n) ∈ derivable R by auto
moreover from ‹∀ p ∈ set (a # as). ∃ n. (p,n) ∈ derivable R› have
∃ n. (a,n) ∈ derivable R by auto

then obtain m ′ where (a,m ′) ∈ derivable R by blast
ultimately have ∀ p ∈ set (a # as). ∃ n≤(max m m ′). (p,n) ∈ derivable R

by auto — max returns the maximum of two integers
then show ?case by blast

qed
then obtain m where ∀ p ∈ set ps. ∃ n≤m. (p,n) ∈ derivable R by blast
with ‹r = (ps,c)› and ‹r ∈ R› have (c,m+1) ∈ derivable R using ‹ps 6= []› and

derivable.step[where r=(ps,c) and R=R and m=m] by auto
then show ?case using ‹r = (ps,c)› by auto

qed

3 Formalising the Results

A variety of “helper” lemmata are used in the proofs, but they are not shown.
The proof tactics themselves are hidden in the following proof, except where
they are interesting. Indeed, only the interesting parts of the proof are shown
at all. The main result of this section is that a rule is invertible if the premisses
appear as premisses of every rule with the same principal formula. The proof is
interspersed with comments.

lemma rightInvertible:
fixes Γ ∆ :: ′a form multiset
assumes rules: R ′ ⊆ upRules ∧ R = Ax ∪ R ′

and a: (Γ ⇒∗ ∆ ⊕ Compound F Fs,n) ∈ derivable R∗
and b: ∀ r ′ ∈ R. rightPrincipal r ′ (Compound F Fs) −→

(Γ ′ ⇒∗ ∆ ′) ∈ set (fst r ′)
shows ∃ m≤n. (Γ +Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗
using assms

The height of derivations is decided by the length of the longest branch. Thus,
we need to use strong induction: i.e. ∀m ≤ n. If P (m) then P (n+ 1).
proof (induct n arbitrary:Γ ∆ rule:nat-less-induct)
case (1 n Γ ∆)
then have IH :∀m<n. ∀Γ ∆. (Γ ⇒∗ ∆ ⊕ Compound F Fs, m) ∈ derivable R∗ −→

(∀ r ′ ∈ R. rightPrincipal r ′ (Compound F Fs) −→
(Γ ′ ⇒∗ ∆ ′) ∈ set (fst r ′)) −→
(∃m ′≤m. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′, m ′) ∈ derivable R∗)

and a ′: (Γ ⇒∗ ∆ ⊕ Compound F Fs,n) ∈ derivable R∗
and b ′: ∀ r ′ ∈ R. rightPrincipal r ′ (Compound F Fs) −→

(Γ ′ ⇒∗ ∆ ′) ∈ set (fst r ′)
by auto

show ?case
proof (cases n) — Case analysis on n

case 0
then obtain r S where extendRule S r = ([],Γ ⇒∗ ∆ ⊕ Compound F Fs)

and r ∈ Ax ∨ r ∈ R ′ by auto — At height 0, the premisses are empty
moreover
{assume r ∈ Ax
then obtain i where ([], H At i I ⇒∗ H At i I) = r ∨

r = ([], H ff I ⇒∗ ∅)
using characteriseAx[where r=r] by auto

moreover — Case split on the kind of axiom used
{assume r = ([], H At i I ⇒∗ H At i I)
then have At i ∈# Γ ∧ At i ∈# ∆ by auto
then have At i ∈# Γ + Γ ′ ∧ At i ∈# ∆ + ∆ ′ by auto
then have (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,0) ∈ derivable R∗ using rules by auto

}
moreover
{assume r = ([],Hff I ⇒∗ ∅)
then have ff ∈# Γ by auto
then have ff ∈# Γ + Γ ′ by auto
then have (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,0) ∈ derivable R∗ using rules by auto

}
ultimately have (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,0) ∈ derivable R∗ by blast

}
moreover
{assume r ∈ R ′ — This leads to a contradiction
then obtain Ps C where Ps 6= [] and r = (Ps,C) by auto
moreover obtain S where r = ([],S) by blast — Contradiction
ultimately have (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,0) ∈ derivable R∗ using rules by simp

}
ultimately show ∃ m≤n. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗ by blast

In the case where n = n′ +1 for some n′, we know the premisses are empty, and
every premiss is derivable at a height lower than n′:

case (Suc n ′)
then have (Γ ⇒∗ ∆ ⊕ Compound F Fs,n ′+1) ∈ derivable R∗ using a ′ by simp
then obtain Ps where (Ps, Γ ⇒∗ ∆ ⊕ Compound F Fs) ∈ R∗ and

Ps 6= [] and
∀ p ∈ set Ps. ∃ n≤n ′. (p,n) ∈ derivable R∗ by auto

then obtain r S where r ∈ Ax ∨ r ∈ R ′

and extendRule S r = (Ps, Γ ⇒∗ ∆ ⊕ Compound F Fs) by auto
moreover

{assume r ∈ Ax — Gives a contradiction
then have fst r = [] apply (cases r) by (rule Ax.cases) auto
moreover obtain x y where r = (x,y) by (cases r)
then have x 6= [] using ‹Ps 6= []›

and ‹extendRule S r = (Ps, Γ ⇒∗ ∆ ⊕ Compound F Fs)› by auto
ultimately have ∃ m≤n. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗ by auto

}
moreover

{assume r ∈ R ′

obtain ps c where r = (ps,c) by (cases r) auto
have (rightPrincipal r (Compound F Fs)) ∨

¬(rightPrincipal r (Compound F Fs))
by blast — The formula is principal, or not

If the formula is principal, then Γ ′ ⇒ ∆′ is amongst the premisses of r:

{assume rightPrincipal r (Compound F Fs)
then have (Γ ′ ⇒∗ ∆ ′) ∈ set ps using b ′ by auto
then have extend S (Γ ′ ⇒∗ ∆ ′) ∈ set Ps

using ‹extendRule S r = (Ps,Γ ⇒∗ ∆ ⊕ Compound F Fs)›
by (simp)

moreover have S = (Γ ⇒∗ ∆) by (cases S) auto
ultimately have (Γ + Γ ′ ⇒∗ ∆ + ∆ ′) ∈ set Ps by (simp add:extend-def)
then have ∃ m≤n ′. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗

using ‹∀ p ∈ set Ps. ∃ n≤n ′. (p,n) ∈ derivable R∗› by auto
then have ∃ m≤n. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗ by (auto)

}

If the formula is not principal, then it must appear in the premisses. The first
two lines give a characterisation of the extension and conclusion, respectively.
Then, we apply the induction hypothesis at the lower height of the premisses:

{assume ¬ rightPrincipal r (Compound F Fs)
obtain Φ Ψ where S = (Φ ⇒∗ Ψ) by (cases S) (auto)
then obtain G H where c = (G ⇒∗ H) by (cases c) (auto)
then have H Compound F Fs I 6= H — Proof omitted

have Ψ + H = ∆ ⊕ Compound F Fs

using ‹S = (Φ ⇒∗ Ψ)› and ‹r = (ps,c)› and ‹c = (G ⇒∗ H)› by auto
moreover from ‹r = (ps,c)› and ‹c = (G ⇒∗ H)›
have H = ∅ ∨ (∃ A. H = HAI) by auto
ultimately have Compound F Fs ∈# Ψ — Proof omitted
then have ∃ Ψ1 . Ψ = Ψ1 ⊕ Compound F Fs by (auto)

then obtain Ψ1 where S = (Φ ⇒∗ Ψ1 ⊕ Compound F Fs) by auto
have ∀ p ∈ set Ps. (Compound F Fs ∈# succ p) — Appears in every premiss

by (auto)
then have ∀ p ∈ set Ps. ∃ Φ ′ Ψ ′ m. m≤n ′ ∧

(Φ ′ + Γ ′ ⇒∗ Ψ ′ + ∆ ′,m) ∈ derivable R∗ ∧
p = (Φ ′ ⇒∗ Ψ ′ ⊕ Compound F Fs) using IH by (arith)

To this set of new premisses, we apply a new instance of r, with a different
extension:

obtain Ps ′ where eq: Ps ′ = map (extend (Φ + Γ ′ ⇒∗ Ψ1 + ∆ ′)) ps by auto
have (Ps ′,Γ + Γ ′ ⇒∗ ∆ + ∆ ′) ∈ R∗ by simp
then have ∀ p ∈ set Ps ′. ∃ n≤n ′. (p,n) ∈ derivable R∗ by auto

then have ∃ m≤n. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗
using ‹(Ps ′,Γ + Γ ′ ⇒∗ ∆ + ∆ ′) ∈ R∗› by (auto)

All of the cases are now complete.
ultimately show ∃ m≤n. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗ by blast
qed

As an example, we show the left premiss of R∧ in G3cp is derivable at
a height not greater than that of the conclusion. The two results used in the
proof (principal-means-premiss and rightInvertible) are those we have
previously shown:
lemma conRInvert:
assumes (Γ ⇒∗ ∆ ⊕ (A ∧∗ B),n) ∈ derivable (g3cp ∪ Ax)∗
shows ∃ m≤n. (Γ ⇒∗ ∆ ⊕ A,m) ∈ derivable (g3cp ∪ Ax)∗
proof−
have ∀ r ∈ g3cp. rightPrincipal r (A ∧∗ B) −→ (∅ ⇒∗ H A I) ∈ set (fst r)

using principal-means-premiss by auto
with assms show ?thesis using rightInvertible by (auto)
qed

We can obviously show the equivalent proof for left rules, too:
lemma leftInvertible:
fixes Γ ∆ :: ′a form multiset
assumes rules: R ′ ⊆ upRules ∧ R = Ax ∪ R ′

and a: (Γ ⊕ Compound F Fs ⇒∗ ∆,n) ∈ derivable R∗
and b: ∀ r ′ ∈ R. leftPrincipal r ′ (Compound F Fs) −→ (Γ ′ ⇒∗ ∆ ′) ∈ set (fst r ′)

shows ∃ m≤n. (Γ +Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗

A rule is invertible iff every premiss is derivable at a height lower than that
of the conclusion. A set of rules is invertible iff every rule is invertible. These
definitions are easily formalised:

overloading
invertible ≡ invertible
invertible-set ≡ invertible-set

begin

definition invertible
where invertible r R ≡

∀ n S . (r ∈ R ∧ (snd (extendRule S r),n) ∈ derivable R∗) −→
(∀ p ∈ set (fst (extendRule S r)). ∃ m ≤ n. (p,m) ∈ derivable R∗)

definition invertible-set
where invertible-set R ≡ ∀ (ps,c) ∈ R. invertible (ps,c) R

end

A set of multisuccedent uniprincipal rules is invertible if each rule has a different
conclusion. G3cp has the unique conclusion property (as shown in §2.2). Thus,
G3cp is an invertible set of rules:
lemma unique-to-invertible:
assumes R ′ ⊆ upRules ∧ R = Ax ∪ R ′

and uniqueConclusion R ′

shows invertible-set R

lemma g3cp-invertible:
shows invertible-set (Ax ∪ g3cp)
using g3cp-uc and g3cp-upRules

and unique-to-invertible[where R ′=g3cp and R=Ax ∪ g3cp]
by auto

3.1 Conclusions

For uniprincipal multisuccedent calculi, the theoretical results have been for-
malised. Moreover, the running example demonstrates that it is straightforward
to implement such calculi and reason about them. Indeed, it will be this class of
calculi for which we will prove more results in §7.

4 Single Succedent Calculi

We must be careful when restricting sequents to single succedents. If we have
sequents as a pair of multisets, where the second is restricted to having size at
most 1, then how does one extend the active part of L⊃ from G3ip? The left
premiss will be A ⊃ B ⇒ A, and the extension will be Γ ⇒ C. The extend
function must be able to correctly choose to discard the C.

Rather than taking this route, we instead restrict to single formulae in the
succedents of sequents. This raises its own problems, since now how does one
represent the empty succedent? We introduce a dummy formula Em, which will
stand for the empty formula:

datatype ′a form = At nat
| Compound ′a ′a form list
| ff
| Em

When we come to extend a sequent, say Γ ⇒ C, with another sequent, say
Γ ′ ⇒ C ′, we only “overwrite” the succedent if C is the empty formula:
overloading

extend ≡ extend
extendRule ≡ extendRule

begin

definition extend
where extend forms seq ≡

if (succ seq = Em)
then (antec forms + antec seq) ⇒∗ (succ forms)
else (antec forms + antec seq ⇒∗ succ seq)

definition extendRule
where extendRule forms R ≡ (map (extend forms) (fst R), extend forms (snd R))

end

Given this, it is possible to have right weakening, where we overwrite the empty
formula if it appears as the succedent of the root of a derivation:
lemma dpWeakR:
assumes (Γ ⇒∗ Em,n) ∈ derivable R∗
and R ′ ⊆ upRules
and R = Ax ∪ R ′

shows (Γ ⇒∗ C ,n) ∈ derivable R∗ — Proof omitted

Of course, if C = Em, then the above lemma is trivial. The burden is on the
user not to “use” the empty formula as a normal formula. An invertibility lemma
can then be formalised:
lemma rightInvertible:
assumes R ′ ⊆ upRules ∧ R = Ax ∪ R ′

and (Γ ⇒∗ Compound F Fs,n) ∈ derivable R∗
and ∀ r ′ ∈ R. rightPrincipal r ′ (Compound F Fs) −→ (Γ ′ ⇒∗ E) ∈ set (fst r ′)
and E 6= Em
shows ∃ m≤n. (Γ +Γ ′ ⇒∗ E ,m) ∈ derivable R∗

lemma leftInvertible:
assumes R ′ ⊆ upRules ∧ R = Ax ∪ R ′

and (Γ ⊕ Compound F Fs ⇒∗ δ,n) ∈ derivable R∗
and ∀ r ′ ∈ R. leftPrincipal r ′ (Compound F Fs) −→ (Γ ′ ⇒∗ Em) ∈ set (fst r ′)
shows ∃ m≤n. (Γ +Γ ′ ⇒∗ δ,m) ∈ derivable R∗

G3ip can be expressed in this formalism:

inductive-set g3ip
where

conL: ([H A I + H B I ⇒∗ Em], H A ∧∗ B I ⇒∗ Em) ∈ g3ip
| conR: ([∅ ⇒∗ A, ∅ ⇒∗ B], ∅ ⇒∗ (A ∧∗ B)) ∈ g3ip
| disL: ([H A I ⇒∗ Em, H B I ⇒∗ Em], H A ∨∗ BI ⇒∗ Em) ∈ g3ip
| disR1 : ([∅ ⇒∗ A], ∅ ⇒∗ (A ∨∗ B)) ∈ g3ip
| disR2 : ([∅ ⇒∗ B], ∅ ⇒∗ (A ∨∗ B)) ∈ g3ip
| impL: ([H A ⊃ B I ⇒∗ A, H B I ⇒∗ Em], H (A ⊃ B) I ⇒∗ Em) ∈ g3ip
| impR: ([H A I ⇒∗ B], ∅ ⇒∗ (A ⊃ B)) ∈ g3ip

As expected, R⊃ can be shown invertible:

lemma impRInvert:
assumes (Γ ⇒∗ (A ⊃ B), n) ∈ derivable (Ax ∪ g3ip)∗ and B 6= Em
shows ∃ m≤n. (Γ ⊕ A ⇒∗ B, m) ∈ derivable (Ax ∪ g3ip)∗
proof−

have ∀ r ∈ (Ax ∪ g3ip). rightPrincipal r (A ⊃ B) −→
(HAI ⇒∗ B) ∈ set (fst r)

proof− — Showing that A ⇒ B is a premiss of every rule with A⊃B principal
{fix r
assume r ∈ (Ax ∪ g3ip)
moreover assume rightPrincipal r (A ⊃ B)
ultimately have r ∈ g3ip by auto — If A⊃B was principal, then r /∈ Ax
from ‹rightPrincipal r (A ⊃ B)› have snd r = (∅ ⇒∗ (A ⊃ B)) by auto
with ‹r ∈ g3ip› and ‹rightPrincipal r (A ⊃ B)›

have r = ([HAI ⇒∗ B], ∅ ⇒∗ (A⊃B)) by (rule g3ip.cases) auto
then have (HAI ⇒∗ B) ∈ set (fst r) by auto

}
thus ?thesis by auto
qed

with assms show ?thesis using rightInvertible by auto
qed

5 First-Order Calculi

To formalise first-order results we use the package Nominal Isabelle. The details,
for the most part, are the same as in §2. However, we lose one important feature:
that of polymorphism.

Recall we defined formulae as being indexed by a type of connectives. We
could then give abbreviations for these indexed formulae. Unfortunately this
feature (indexing by types) is not yet supported in Nominal Isabelle. Nested
datatypes are also not supported. Thus, strings are used for the connectives
(both propositional and first-order) and lists of formulae are simulated to nest
via a mutually recursive definition:

nominal-datatype form = At nat var list
| Cpd0 string form-list

| Cpd1 string «var»form (‹- (∇ [-].-)›)
| ff

and form-list = FNil
| FCons form form-list

Formulae are quantified over a single variable at a time. This is a restriction
imposed by Nominal Isabelle.

There are two new uniprincipal rule sets in addition to the propositional
rule set: first-order rules without a freshness proviso and first-order rules with a
freshness proviso. Freshness provisos are particularly easy to encode in Nominal
Isabelle. We also show that the rules with a freshness proviso form a subset of
the first-order rules. The function set-of-prem takes a list of premisses, and
returns all the formulae in that list:
inductive-set provRules where

[[mset c = H F ∇ [x].A I ; ps 6= [] ; x] set-of-prem (ps − A)]]
=⇒ (ps,c) ∈ provRules

inductive-set nprovRules where
[[mset c = H F ∇ [x].A I ; ps 6= []]]

=⇒ (ps,c) ∈ nprovRules

lemma nprovContain:
shows provRules ⊆ nprovRules
proof−
{fix ps c
assume (ps,c) ∈ provRules
then have (ps,c) ∈ nprovRules by (cases) auto

}
then show ?thesis by auto
qed

Substitution is defined in the usual way:
nominal-primrec

subst-form :: var ⇒ var ⇒ form ⇒ form (‹[-,-]-›)
and subst-forms :: var ⇒ var ⇒ form-list ⇒ form-list (‹[-,-]-›)
where

[z,y](At P xs) = At P ([z;y]xs)
| x](z,y) =⇒ [z,y](F ∇ [x].A) = F ∇ [x].([z,y]A)
| [z,y](Cpd0 F Fs) = Cpd0 F ([z,y]Fs)
| [z,y]ff = ff
| [z,y]FNil = FNil
| [z,y](FCons f Fs) = FCons ([z,y]f) ([z,y]Fs)

Substitution is extended to multisets in the obvious way.
To formalise the condition “no specific substitutions”, an inductive predicate

is introduced. If some formula in the multiset Γ is a non-trivial substitution,
then multSubst Γ :

definition multSubst :: form multiset ⇒ bool where
multSubst-def : multSubst Γ ≡ (∃ A ∈ (set-mset Γ). ∃ x y B. [y,x]B = A ∧ y 6=x)

The notation [z; y]xs stands for substitution of a variable in a variable list. The
details are simple, and so are not shown.

Extending the rule sets with passive parts depends upon which kind of active
part is being extended. The active parts with freshness contexts have additional
constraints upon the multisets which are added:

inductive-set extRules :: rule set ⇒ rule set (‹ -∗›)
for R :: rule set
where

id: [[r ∈ R ; r ∈ Ax]] =⇒ extendRule S r ∈ R∗
| sc: [[r ∈ R ; r ∈ upRules]] =⇒ extendRule S r ∈ R∗
| np: [[r ∈ R ; r ∈ nprovRules]] =⇒ extendRule S r ∈ R∗
| p: [[(ps,c) ∈ R ; (ps,c) ∈ provRules ; mset c = H F ∇ [x].A I ; x] set-of-seq S]]

=⇒ extendRule S (ps,c) ∈ R∗

The final clause says we can only use an S which is suitable fresh.
The only lemma which is unique to first-order calculi is the Substitution

Lemma. We show the crucial step in the proof; namely that one can substitute a
fresh variable into a formula and the resultant formula is unchanged. The proof
is not particularly edifying and is omitted:

lemma formSubst:
shows y] x ∧ y] A =⇒ F ∇ [x].A = F ∇ [y].([y,x]A)

Using the above lemma, we can change any sequent to an equivalent new sequent
which does not contain certain variables. Therefore, we can extend with any
sequent:

lemma extend-for-any-seq:
fixes S :: sequent
assumes rules: R1 ⊆ upRules ∧ R2 ⊆ nprovRules ∧ R3 ⊆ provRules

and rules2 : R = Ax ∪ R1 ∪ R2 ∪ R3
and rin: r ∈ R

shows extendRule S r ∈ R∗

We only show the interesting case: where the last inference had a freshness
proviso:

assume r ∈ R3
then have r ∈ provRules using rules by auto
obtain ps c where r = (ps,c) by (cases r) auto
then have r1 : (ps,c) ∈ R

and r2 : (ps,c) ∈ provRules using ‹r ∈ provRules› and rin by auto
with ‹r = (ps,c)› obtain F x A

where (c = (∅ ⇒∗ HF ∇ [x].AI) ∨
c = (HF ∇ [x].AI ⇒∗ ∅)) ∧ x] set-of-prem (ps − A)

using provRuleCharacterise and ‹r ∈ provRules› by auto

then have mset c = H F ∇ [x].A I ∧ x] set-of-prem (ps − A) by auto
moreover obtain y where fr : y] x ∧

y] A ∧
y] set-of-seq S ∧
(y :: var)] set-of-prem (ps−A)

using getFresh by auto
then have fr2 : y] set-of-seq S by auto
ultimately have mset c = H F ∇ [y].([y,x]A) I ∧ y] set-of-prem (ps − A)

using formSubst and fr by auto
then have mset c = H F ∇ [y].([y,x]A) I by auto
then have extendRule S (ps,c) ∈ R∗ using r1 and r2 and fr2

and extRules.p by auto
then have extendRule S r ∈ R∗ using ‹r = (ps,c)› by simp

We can then give the two inversion lemmata. The principal case (where the last
inference had a freshness proviso) for the right inversion lemma is shown:
lemma rightInvert:
fixes Γ ∆ :: form multiset
assumes rules: R1 ⊆ upRules ∧ R2 ⊆ nprovRules ∧ R3 ⊆ provRules ∧ R = Ax ∪
R1 ∪ R2 ∪ R3

and a: (Γ ⇒∗ ∆ ⊕ F ∇ [x].A,n) ∈ derivable R∗
and b: ∀ r ′ ∈ R. rightPrincipal r ′ (F ∇ [x].A) −→ (Γ ′ ⇒∗ ∆ ′) ∈ set (fst r ′)
and c: ¬ multSubst Γ ′ ∧ ¬ multSubst ∆ ′

shows ∃ m≤n. (Γ +Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗

assume r ∈ R3
obtain ps c where r = (ps,c) by (cases r) auto
then have r ∈ provRules using rules and ‹r ∈ R3 › by auto
have rightPrincipal r (F ∇ [x].A) ∨ ¬ rightPrincipal r (F ∇ [x].A) by blast
moreover

{assume rightPrincipal r (F ∇ [x].A)
then have (Γ ′ ⇒∗ ∆ ′) ∈ set ps using ‹r = (ps,c)› and ‹r ∈ R3 › and rules

by auto
then have extend S (Γ ′ ⇒∗ ∆ ′) ∈ set Ps using

‹extendRule S r = (Ps,Γ ⇒∗ ∆ ⊕ F ∇ [x].A)›
and ‹r = (ps,c)› by (simp add:extendContain)

moreover from ‹rightPrincipal r (F ∇ [x].A)› have
c = (∅ ⇒∗ HF ∇ [x].AI)
using ‹r = (ps,c)› by (cases) auto

with ‹extendRule S r = (Ps,Γ ⇒∗ ∆ ⊕ F ∇ [x].A)› have S = (Γ ⇒∗ ∆)
using ‹r = (ps,c)› by (cases S) auto

ultimately have (Γ + Γ ′ ⇒∗ ∆ + ∆ ′) ∈ set Ps by (simp add:extend-def)
then have ∃ m≤n ′. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗

using ‹∀ p ∈ set Ps. ∃ n≤n ′. (p,n) ∈ derivable R∗› by auto
then have ∃ m≤n. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗

using ‹n = Suc n ′› by (simp)
}

lemma leftInvert:

fixes Γ ∆ :: form multiset
assumes rules: R1 ⊆ upRules ∧ R2 ⊆ nprovRules ∧ R3 ⊆ provRules ∧ R = Ax ∪
R1 ∪ R2 ∪ R3

and a: (Γ ⊕ F ∇ [x].A ⇒∗ ∆,n) ∈ derivable R∗
and b: ∀ r ′ ∈ R. leftPrincipal r ′ (F ∇ [x].A) −→ (Γ ′ ⇒∗ ∆ ′) ∈ set (fst r ′)
and c: ¬ multSubst Γ ′ ∧ ¬ multSubst ∆ ′

shows ∃ m≤n. (Γ +Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable R∗

In both cases, the assumption labelled c captures the “no specific substitution”
condition. Interestingly, it is never used throughout the proof. This highlights
the difference between the object- and meta-level existential quantifiers.

Owing to the lack of indexing within datatypes, it is difficult to give an
example demonstrating these results. It would be little effort to change the theory
file to accommodate type variables when they are supported in Nominal Isabelle,
at which time an example would be simple to write.

6 Modal Calculi

Some new techniques are needed when formalising results about modal calculi.
A set of modal operators must index formulae (and sequents and rules), there
must be a method for modalising a multiset of formulae and we need to be able
to handle implicit weakening rules.

The first of these is easy; instead of indexing formulae by a single type vari-
able, we index on a pair of type variables, one which contains the propositional
connectives, and one which contains the modal operators:
datatype (′a, ′b) form = At nat

| Compound ′a (′a, ′b) form list
| Modal ′b (′a, ′b) form list
| ff

datatype-compat form

overloading
uniqueConclusion ≡ uniqueConclusion
modaliseMultiset ≡ modaliseMultiset

begin

definition uniqueConclusion :: (′a, ′b) rule set ⇒ bool
where uniqueConclusion R ≡ ∀ r1 ∈ R. ∀ r2 ∈ R. (snd r1 = snd r2) −→ (r1 =r2)

Modalising multisets is relatively straightforward. We use the notation ! · Γ ,
where ! is a modal operator and Γ is a multiset of formulae:
definition modaliseMultiset :: ′b ⇒ (′a, ′b) form multiset ⇒ (′a, ′b) form multiset

where modaliseMultiset a Γ ≡ {# Modal a [p]. p ∈# Γ #}

end

Similarly to §5, two new rule sets are created. The first are the normal modal
rules:

inductive-set modRules2 where
[[ps 6= [] ; mset c = H Modal M Ms I]] =⇒ (ps,c) ∈ modRules2

The second are the modalised context rules. Taking a subset of the normal modal
rules, we extend using a pair of modalised multisets for context. We create a
new inductive rule set called p-e, for “prime extend”, which takes a set of modal
active parts and a pair of modal operators (say ! and •), and returns the set of
active parts extended with ! · Γ ⇒ • ·∆:

inductive-set p-e :: (′a, ′b) rule set ⇒ ′b ⇒ ′b ⇒ (′a, ′b) rule set
for R :: (′a, ′b) rule set and M N :: ′b
where
[[(Ps, c) ∈ R ; R ⊆ modRules2]] =⇒ extendRule (M ·Γ ⇒∗ N ·∆) (Ps, c) ∈ p-e R

M N

We need a method for extending the conclusion of a rule without extending the
premisses. Again, this is simple:

overloading extendConc ≡ extendConc
begin

definition extendConc :: (′a, ′b) sequent ⇒ (′a, ′b) rule ⇒ (′a, ′b) rule
where extendConc S r ≡ (fst r , extend S (snd r))

end

The extension of a rule set is now more complicated; the inductive definition has
four clauses, depending on the type of rule:

inductive-set ext :: (′a, ′b) rule set ⇒ (′a, ′b) rule set ⇒ ′b ⇒ ′b ⇒ (′a, ′b) rule set
for R R ′ :: (′a, ′b) rule set and M N :: ′b
where
ax: [[r ∈ R ; r ∈ Ax]] =⇒ extendRule seq r ∈ ext R R ′ M N

| up: [[r ∈ R ; r ∈ upRules]] =⇒ extendRule seq r ∈ ext R R ′ M N
| mod1 : [[r ∈ p-e R ′ M N ; r ∈ R]] =⇒ extendConc seq r ∈ ext R R ′ M N
| mod2 : [[r ∈ R ; r ∈ modRules2]] =⇒ extendRule seq r ∈ ext R R ′ M N

Note the new rule set carries information about which set contains the modalised
context rules and which modal operators which extend those prime parts.

We have two different inversion lemmata, depending on whether the rule was
a modalised context rule, or some other kind of rule. We only show the former,
since the latter is much the same as earlier proofs. The interesting cases are
picked out:

lemma rightInvert:
fixes Γ ∆ :: (′a, ′b) form multiset
assumes rules: R1 ⊆ upRules ∧ R2 ⊆ modRules2 ∧ R3 ⊆ modRules2 ∧

R = Ax ∪ R1 ∪ (p-e R2 M1 M2) ∪ R3 ∧
R ′ = Ax ∪ R1 ∪ R2 ∪ R3

and a: (Γ ⇒∗ ∆ ⊕ Modal M Ms,n) ∈ derivable (ext R R2 M1 M2)
and b: ∀ r ′ ∈ R ′. rightPrincipal r ′ (Modal M Ms) R ′ −→

(Γ ′ ⇒∗ ∆ ′) ∈ set (fst r ′)
and neq: M2 6= M

shows ∃ m≤n. (Γ +Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable (ext R R2 M1 M2)

This is the case where the last inference was a normal modal inference:
{assume r ∈ modRules2
obtain ps c where r = (ps,c) by (cases r) auto
with ‹r ∈ modRules2 › obtain T Ts where c = (∅ ⇒∗ H Modal T Ts I) ∨

c = (H Modal T TsI ⇒∗ ∅)
using modRule2Characterise[where Ps=ps and C=c] by auto

moreover
{assume c = (∅ ⇒∗ H Modal T Ts I)
then have bb: rightPrincipal r (Modal T Ts) R ′ using ‹r = (ps,c)› and ‹r ∈ R›
proof−

We need to know r ∈ R so that we can extend the active part
from ‹c = (∅ ⇒∗ HModal T TsI)› and

‹r = (ps,c)› and
‹r ∈ R› and
‹r ∈ modRules2 ›

have (ps,∅ ⇒∗ HModal T TsI) ∈ R by auto
with rules have (ps, ∅ ⇒∗ HModal T TsI) ∈ p-e R2 M1 M2 ∨

(ps, ∅ ⇒∗ HModal T TsI) ∈ R3 by auto
moreover

{assume (ps, ∅ ⇒∗ HModal T TsI) ∈ R3
then have (ps, ∅ ⇒∗ HModal T TsI) ∈ R ′ using rules by auto

}
moreover

{assume (ps,∅ ⇒∗ HModal T TsI) ∈ p-e R2 M1 M2

In this case, we show that ∆′ and Γ ′ must be empty. The details are generally
suppressed:

then obtain Γ ′ ∆ ′ r ′

where aa: (ps, ∅ ⇒∗ HModal T TsI) = extendRule (M1 ·Γ ′ ⇒∗ M2 ·∆ ′) r ′

∧ r ′ ∈ R2 by auto
then have M1 ·Γ ′ = ∅ and M2 ·∆ ′ = ∅

by (auto simp add:modaliseMultiset-def)

The other interesting case is where the last inference was a modalised context
inference:
{assume ba: r ∈ p-e R2 M1 M2 ∧

extendConc S r = (Ps, Γ ⇒∗ ∆ ⊕ Modal M Ms)
with rules obtain F Fs Γ ′′ ∆ ′′ ps r ′ where

ca: r = extendRule (M1 ·Γ ′′ ⇒∗ M2 ·∆ ′′) r ′ and
cb: r ′ ∈ R2 and

cc: r ′ = (ps, ∅ ⇒∗ HModal F FsI) ∨ r ′ = (ps,HModal F FsI ⇒∗ ∅)
from ba and rules

have extendConc (Γ1 + Γ ′ ⇒∗ ∆2 + ∆ ′) r ∈ (ext R R2 M1 M2) by auto
moreover from ba and ca have fst (extendConc (Γ1 + Γ ′ ⇒∗ ∆2 + ∆ ′) r) = Ps

by (auto simp add:extendConc-def)
ultimately have (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,n ′+1) ∈ derivable (ext R R2 M1 M2)

by auto
then have ∃ m≤n. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′,m) ∈ derivable (ext R R2 M1 M2)

using ‹n = Suc n ′› by auto
}

ultimately have ∃m≤n. (Γ + Γ ′ ⇒∗ ∆ + ∆ ′, m) ∈ derivable (ext R R2 M1 M2)
by blast

The other case, where the last inference was a left inference, is more straightfor-
ward, and so is omitted.

We guarantee no other rule has the same modal operator in the succedent
of a modalised context rule using the condition M 6= M2. Note this lemma only
allows one kind of modalised context rule. In other words, it could not be applied
to a calculus with the rules:

! · Γ ⇒ A, • ·∆
Γ ′, ! · Γ ⇒ •A, • ·∆,∆′ R1

• · Γ ⇒ A, ! ·∆
Γ ′, • · Γ ⇒ •A, ! ·∆,∆′ R2

since, if ([∅ ⇒ A], ∅ ⇒ •A) ∈ R, then R1 ∈ p-e R ! •, whereas R2 ∈ p-e R • !.
Similarly, we cannot have modalised context rules which have more than one
modalised multiset in the antecedent or succedent of the active part. For instance:

! · Γ1, • · Γ2 ⇒ A, ! ·∆1, • ·∆2

Γ ′, ! · Γ1, • · Γ2 ⇒ •A, ! ·∆1, • ·∆2,∆
′

cannot belong to any p-e set. It would be a simple matter to extend the definition
of p-e to take a set of modal operators, however this has not been done.

As an example, classical modal logic can be formalised. The (modal) rules
for this calculus are then given in two sets, the latter of which will be extended
with 2 · Γ ⇒ 3 ·∆:
inductive-set g3mod2
where

diaR: ([∅ ⇒∗ H A I], ∅ ⇒∗ H 3 A I) ∈ g3mod2
| boxL: ([H A I ⇒∗ ∅], H 2 A I ⇒∗ ∅) ∈ g3mod2

inductive-set g3mod1
where

boxR: ([∅ ⇒∗ HAI],∅ ⇒∗ H 2 A I) ∈ g3mod1
| diaL: ([HAI ⇒∗ ∅],H 3 A I ⇒∗ ∅) ∈ g3mod1

We then show the strong admissibility of the rule:

Γ ⇒ 2A,∆

Γ ⇒ A,∆

lemma invertBoxR:
assumes R = Ax ∪ g3up ∪ (p-e g3mod1 2 3) ∪ g3mod2
and (Γ ⇒∗ ∆ ⊕ (2 A),n) ∈ derivable (ext R g3mod1 2 3)
shows ∃ m≤n. (Γ ⇒∗ ∆ ⊕ A,m) ∈ derivable (ext R g3mod1 2 3)
proof−
from assms show ?thesis
using principal and rightInvert and g3 by auto

qed

where principal is the result which fulfils the principal formula conditions given
in the inversion lemma, and g3 is a result about rule sets.

7 Manipulating Rule Sets

The removal of superfluous and redundant rules [1] will not be harmful to in-
vertibility: removing rules means that the conditions of earlier sections are more
likely to be fulfilled. Here, we formalise the results that the removal of such
rules from a calculus L will create a new calculus L′ which is equivalent. In
other words, if a sequent is derivable in L, then it is derivable in L′. The results
formalised in this section are for uniprincipal multisuccedent calculi.

When dealing with lists of premisses, a rule R with premisses P will be
redundant given a rule R′ with premisses P ′ if there exists some p such that
P = p#P ′. There are other ways in which a rule could be redundant; say if
P = Q@P ′, or if P = P ′@Q, and so on. The order of the premisses is not really
important, since the formalisation operates on the finite set based upon the list.
The more general “append” lemma could be proved from the lemma we give; we
prove the inductive step case in the proof of such an append lemma. This is a
height preserving transformation. Some of the proof is shown:

lemma removeRedundant:
assumes r1 = (p#ps,c) ∧ r1 ∈ upRules
and r2 = (ps,c) ∧ r2 ∈ upRules
and R1 ⊆ upRules ∧ R = Ax ∪ R1
and (T ,n) ∈ derivable (R ∪ {r1} ∪ {r2})∗
shows ∃ m≤n. (T ,m) ∈ derivable (R ∪ {r2})∗
proof (induct n rule:nat-less-induct)
case 0
have (T ,0) ∈ derivable (R ∪ {r1} ∪ {r2})∗ by simp
then have ([],T) ∈ (R ∪ {r1} ∪ {r2})∗ by (cases) auto
then obtain S r where ext: extendRule S r = ([],T) and

r ∈ (R ∪ {r1} ∪ {r2}) by (rule extRules.cases) auto
then have r ∈ R ∨ r = r1 ∨ r = r2 using c by auto

It cannot be the case that r = r1 or r = r2, since those are uniprincipal rules,
whereas anything with an empty set of premisses must be an axiom. Since R
contains the set of axioms, so will R∪ r2:

then have r ∈ (R ∪ {r2}) using c by auto
then have (T ,0) ∈ derivable (R ∪ {r2})∗ by auto

then show ∃ m≤n. (T ,m) ∈ derivable (R ∪ {r2})∗ using ‹n=0 › by auto
next
case (Suc n ′)
have (T ,n ′+1) ∈ derivable (R ∪ {r1} ∪ {r2})∗ by simp
then obtain Ps where e: Ps 6= []

and f : (Ps,T) ∈ (R ∪ {r1} ∪ {r2})∗
and g: ∀ P ∈ set Ps. ∃ m≤n ′. (P,m) ∈ derivable (R ∪ {r1} ∪ {r2})∗
by auto

have g ′: ∀ P ∈ set Ps. ∃ m≤n ′. (P,m) ∈ derivable (R ∪ {r2})∗
from f obtain S r where ext: extendRule S r = (Ps,T)

and r ∈ (R ∪ {r1} ∪ {r2}) by (rule extRules.cases) auto
then have r ∈ (R ∪ {r2}) ∨ r = r1 by auto

Either r is in the new rule set or r is the redundant rule. In the former case,
there is nothing to do:

assume r ∈ (R ∪ {r2})
then have (Ps,T) ∈ (R ∪ {r2})∗ by auto
with g ′ have (T ,n) ∈ derivable (R ∪ {r2})∗ using ‹n = Suc n ′› by auto

In the latter case, the last inference was redundant. Therefore the premisses,
which are derivable at a lower height than the conclusion, contain the premisses
of r2 (these premisses are extend S ps). This completes the proof:

assume r = r1
with ext have map (extend S) (p # ps) = Ps using a by (auto)
then have ∀ P ∈ set (map (extend S) (p#ps)).

∃ m≤n ′. (P,m) ∈ derivable (R ∪ {r2})∗
using g ′ by simp

then have h: ∀ P ∈ set (map (extend S) ps).
∃ m≤n ′. (P,m) ∈ derivable (R ∪ {r2})∗ by auto

Recall that to remove superfluous rules, we must know that Cut is admissible in
the original calculus [1]. Again, we add the two distinguished premisses at the
head of the premiss list; general results about permutation of lists will achieve
a more general result. Since one uses Cut in the proof, this will in general not
be height-preserving:
lemma removeSuperfluous:
assumes r1 = ((∅ ⇒∗ HAI) # ((HAI ⇒∗ ∅) # ps),c) ∧ r1 ∈ upRules
and R1 ⊆ upRules ∧ R = Ax ∪ R1
and (T ,n) ∈ derivable (R ∪ {r1})∗
and CA: ∀ Γ ∆ A. ((Γ ⇒∗ ∆ ⊕ A) ∈ derivable ′ R∗ −→

(Γ ⊕ A ⇒∗ ∆) ∈ derivable ′ R∗) −→
(Γ ⇒∗ ∆) ∈ derivable ′ R∗

shows T ∈ derivable ′ R∗

Combinable rules can also be removed. We encapsulate the combinable criterion
by saying that if (p#P, T) and (q#P, T) are rules in a calculus, then we get an
equivalent calculus by replacing these two rules by ((extend p q)#P, T). Since
the extend function is commutative, the order of p and q in the new rule is not
important. This transformation is height preserving:
lemma removeCombinable:
assumes a: r1 = (p # ps,c) ∧ r1 ∈ upRules
and b: r2 = (q # ps,c) ∧ r2 ∈ upRules
and c: r3 = (extend p q # ps, c) ∧ r3 ∈ upRules
and d: R1 ⊆ upRules ∧ R = Ax ∪ R1
and (T ,n) ∈ derivable (R ∪ {r1} ∪ {r2})∗
shows (T ,n) ∈ derivable (R ∪ {r3})∗

8 Conclusions

Only a portion of the formalisation was shown; a variety of intermediate lemmata
were not made explicit. This was necessary, for the Isabelle theory files run to
almost 8000 lines. However, these files do not have to be replicated for each new
calculus. It takes very little effort to define a new calculus. Furthermore, proving
invertibility is now a quick process; less than 25 lines of proof in most cases.

theory SequentInvertibility
imports MultiSequents SingleSuccedent NominalSequents ModalSequents SRCTrans-
forms
begin

end

References

1. A. Avron and I. Lev. Canonical propositional Gentzen-type systems. In Auto-
mated Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy,
June 18-23, 2001, Proceedings, volume 2083 of Lecture Notes in Computer Science.
Springer, 2001.

	Invertibility in Sequent Calculi

