Arrow’s General Possibility Theorem

Peter Gammie
petegd2 at gmail.com

March 19, 2025

Contents
1 Overview

2 General Lemmas
2.1 Extra Finite-Set Lemmas,
2.2 Extra bijection lemmas. oL
2.3 Collections of witnesses: hasw, has

3 Preliminaries
3.1 Rational Preference Relations (RPRs)
3.2 Profiles
3.3 Choice Sets, Choice Functions
3.4 Social Choice Functions (SCFs)
3.5 Social Welfare Functions (SWFs)
3.6 General Propertiesof an SCF
3.7 Decisiveness and Semi-decisiveness

4 Arrow’s General Possibility Theorem
4.1 Semi-decisiveness Implies Decisiveness
4.2 The Existence of a Semi-decisive Individual
4.3 Arrow’s General Possibility Theorem

5 Sen’s Liberal Paradox
5.1 Social Decision Functions (SDFs)
5.2 Sen’s Liberal Paradox

6 May’s Theorem
6.1 May’s Conditions
6.2 The Method of Majority Decision satisfies May’s conditions
6.3 Everything satisfying May’s conditions is the Method of Majority Decision . .
6.4 The Plurality Rule

7 Bibliography

W N NN

© © 00 0o =3 ot G

10

11
14
15

15
15
16

17
18
19
20
22

23

1 Overview

This is a fairly literal encoding of some of Armatya Sen’s proofs [Sen70] in Isabelle/HOL. The
author initially wrote it while learning to use the proof assistant, and some locutions remain
naive. This work is somewhat complementary to the mechanisation of more recent proofs of
Arrow’s Theorem and the Gibbard-Satterthwaite Theorem by Tobias Nipkow [Nip08§].

I'strongly recommend Sen’s book to anyone interested in social choice theory; his proofs are
quite lucid and accessible, and he situates the theory quite well within the broader economic
tradition.

2 General Lemmas

2.1 Extra Finite-Set Lemmas

Small variant of Finite-Set.finite-subset-induct: also assume F C A in the induction hypoth-
esis.

lemma finite-subset-induct’ [consumes 2, case-names empty insert]:
assumes finite F and FF C A
and empty: P {}
and insert: Aa F. [finite F; a € A; F C A;a¢ F; PF]| = P (insert a F)
shows P F'
(proof)

A slight improvement on List.finite-list - add distinct.

lemma finite-list: finite A = 1. set | = A A distinct |
{proof)

2.2 Extra bijection lemmas

lemma bij-betw-onto: bij-betw f A B = f ‘A = B (proof)

lemma inj-on-Unl: [inj-on f A; inj-on f B; f ‘(A — B)Nnf*(B— A) ={}] = inj-on f (AU B)
(proof)

lemma card-compose-bij:

assumes bijf: bij-betw f A A

shows card { a € A. P (fa) } =card { a € A. Pa }
(proof)

lemma card-eq-bij:
assumes cardAB: card A = card B
and finiteA: finite A and finiteB: finite B
obtains f where bij-betw f A B

(proof)

lemma bij-combine:
assumes ABCD: AC BCCD
and bijf: bij-betw f A C
and bijg: bij-betw g (B — A) (D — C)

obtains £
where bij-betw h B D
and A\v.z2 € A= hz=fz
and A\z.z2 € B-— A= hzx=gzx
(proof)

lemma bij-complete:
assumes finiteC": finite C
and ABC: AC CBCC
and bijf: biyj-betw f A B
obtains f’ where bij-betw f' C C
and A\z. 2 € A= f'z=fx
and A\z.z2€ C — A= f'2ze€ C - B
(proof)

lemma card-greater:
assumes finiteA: finite A
and c:card {x € A. Pz} >card {2z € A Quz}

obtains C
where card { v € A. Pz} — C)=card {z € A. Quz }
and C # {}
and CC{ze€ A Pz}

(proof)

2.3 Collections of witnesses: hasw, has

Given a set of cardinality at least n, we can find up to n distinct witnesses. The built-in card
function unfortunately satisfies:

Finite-Set.card.infinite: infinite A = card A = 0

These lemmas handle the infinite case uniformly.
Thanks to Gerwin Klein suggesting this approach.

definition hasw :: ‘a list = 'a set = bool where
hasw xzs S = set xs C S A distinct zs

definition has :: nat = ’a set = bool where
has n § = Jzs. hasw xs S A length xs = n

declare hasw-def[simp]
lemma hasl[intro]: hasw zs S = has (length xs) S (proof)

lemma card-has:
assumes cardS: card S = n
shows has n S

(proof)

lemma card-has-rev:
assumes finiteS: finite S
shows has n S = card S > n (is ?lhs = ?rhs)

{proof)

lemma has-0: has 0 S {proof)

lemma has-suc-notempty: has (Suc n) S = {} # S

(proof)

lemma has-suc-subset: has (Sucn) S = {} C S

(proof)

lemma has-notempty-1:
assumes Sne: S # {}
shows has 1 §

(proof)

lemma has-le-has:
assumes h: has n S
and nn”: n’ < n
shows has n’ S

(proof)

lemma has-ge-has-not:
assumes h: —hasn S
and nn"n < n’
shows —has n’ S

(proof)

lemma has-eq:
assumes h: has n S
and hn”: —has (Suc n) S
shows card S = n

(proof)

lemma has-extend-witness:
assumes h: has n S
shows [set zs C S; length s < n]| = set xs C S

(proof)

lemma has-extend-witness'”:
[has n S; hasw xs S; length zs < n | = Jz. hasw (x # xs) S
(proof)

lemma has-witness-two:
assumes hasnS: has n S
and nn”: 2 < n
shows Jz y. hasw [z,y] S
(proof)

lemma has-witness-three:
assumes hasnS: has n S
and nn: & < n
shows Jz y 2. hasw [z,y,2] S

(proof)

lemma finite-set-singleton-contra:
assumes finiteS: finite S
and Sne: S # {}
and cardS: card S > 1 = Fulse
shows 3j. § = {j}
(proof)

3 Preliminaries

The auxiliary concepts defined here are standard [Rou79, Sen70, Tay05]. Throughout we
make use of a fixed set A of alternatives, drawn from some arbitrary type 'a of suitable size.
Taylor [Tay05] terms this set an agenda. Similarly we have a type i of individuals and a
population Is.

3.1 Rational Preference Relations (RPRs)

Definitions for rational preference relations (RPRs), which represent indifference or strict pref-
erence amongst some set of alternatives. These are also called weak orders or (ambiguously)
ballots.

Unfortunately Isabelle’s standard ordering operators and lemmas are typeclass-based, and
as introducing new types is painful and we need several orders per type, we need to repeat
some things.

type-synonym ‘a RPR = (‘a * 'a) set

abbreviation rpr-eg-syntaz :: ‘a = ‘a RPR = 'a = bool («- .= - [50, 1000, 51] 50) where
z=y==(z,y) €r

definition indifferent-pref :: ‘a = 'a RPR = 'a = bool («- -~ -» [50, 1000, 51] 50) where
TR y=(x 2y ANy =2 1)

lemma indifferent-prefl[intro]: [z = y; y rX 2] = z = y
(proof)

lemma indifferent-prefD[dest]: z vy y = z r=X y Ny r=3 T
(proof)

definition strict-pref :: ‘a = ‘a RPR = 'a = bool («- -< - [50, 1000, 51] 50) where
2=y = (22 y Ay r2 7))

lemma strict-pref-def-irrefi[simp|: — (z r< z) (proof)

lemma strict-prefl[intro]: [z += y; 2 (y r=2) | = 7 < y

(proof)

Traditionally, z ,= y would be written x Ry, .~ yasx [y and z < y as x P y, where
the relation r is implicit, and profiles are indexed by subscripting.

Complete means that every pair of distinct alternatives is ranked. The "distinct" part is
a matter of taste, as it makes sense to regard an alternative as as good as itself. Here I take

reflexivity separately.

definition complete :: 'a set = 'a RPR = bool where
complete Ar= (Ve e AVye A—{z}. 2 =y Vy =2

lemma completel[intro]:
Ny [zeAyeAiz#y] =z yVyr=3z) = complete A r
(proof)

lemma completeD|dest]:
[complete Ar;ze A;ye Aja#y] =z, =yVySz

(proof)

lemma complete-less-not: [complete A r; hasw [z,y] A; ~z <y = y ==z
(proof)

lemma complete-indiff-not: | complete A r; hasw [z,y] A; "z = y] =z <y V y <2

(proof)

lemma complete-exh:
assumes complete A r
and hasw [z,y] A
obtains (zPy) z < y
| (yPz) y r<x
| (aly) =y
(proof)
Use the standard refl. Also define irreflexivity analogously to how refl is defined in the
standard library.

declare refl-onl[intro] refl-onD|dest]
lemma complete-refi-on:

[complete A r; reflon Ar;z € A;ye Al =z, yVyrz
(proof)

definition irrefl :: ‘a set = ‘a RPR = bool where
irreflAr=rCAx ANNVz €A -z = 2)

lemma irrefil[intro]: [r CA X A; N\ 2 € A=~z = z] = irreflAr

(proof)

lemma irrefiD[dest]: [irrefl A r; (z, y) € r | = hasw [z,y] A
(proof)

lemma irrefiD'[dest]:
[irreffl Ar;r#{}] = Jzy. hasw [z,y] AN (z, y) € 1
(proof)

Rational preference relations, also known as weak orders and (I guess) complete pre-orders.

definition rpr :: 'a set = 'a RPR = bool where
rpr A r = complete A r A refl-on A r A trans r

lemma rpri[intro]: | complete A r; refl-on A r; transr]| = mpr A r

(proof)

lemma rprD: rpr A r = complete A r N\ refl-on A r A trans r
(proof)

lemma rpr-in-set[dest]: [rpr Ar;z = y] = {z,y} C A

(proof)

lemma rpr-refl[dest]: [rpr Ar;z € Al =z =z
(proof)

lemma rpr-less-not: [rpr A r; hasw [z,y] 4;, "z <=y = y =z

(proof)

lemma rpr-less-imp-le[simp]: [z <y] = z 1=y
(proof)

lemma rpr-less-imp-neq(simpl: [z <=y] = x # y

(proof)

lemma rpr-less-trans[trans]: [z 7<= y; y r< 2z, mpr A1] = 2 < 2

(proof)

lemma rpr-le-trans[trans]: [z = y; y r=X 2z mpr Ar] = z = 2
(proof)

lemma rpr-le-less-transftrans]: [z = y; y r<2z; pr Ar] = 2 < 2

(proof)

lemma rpr-less-le-trans[trans]: [< y; y r= z;rpr Ar] = 2 < 2
(proof)

lemma rpr-complete: [rpr Az € A;ye Al =2 =yVyr=z
(proof)

3.2 Profiles

A profile (also termed a collection of ballots) maps each individual to an RPR for that indi-
vidual.

type-synonym (‘a, i) Profile = 'i = 'a RPR

definition profile :: 'a set = 'i set = (‘a, 'i) Profile = bool where
profile A Is P =1Is # {} AN (Vi € Is. rpr A (P 1))

lemma profilel [intro]: [\i. i € Is = rpr A (P 4); Is # {} | = profile A Is P
(proof)

lemma profile-rprD|dest]: [profile A Is P; i € Is | = rpr A (P i)
(proof)

lemma profile-non-empty: profile A Is P = Is # {}
(proof)

3.3 Choice Sets, Choice Functions

A choice set is the subset of A where every element of that subset is (weakly) preferred to
every other element of A with respect to a given RPR. A choice function yields a non-empty
choice set whenever A is non-empty.

definition choiceSet :: 'a set = 'a RPR = 'a set where
choiceSet Ar={reA.Vye A z =<y}

definition choiceFn :: 'a set = 'a RPR = bool where
choicefn A r =VA' C A A" # {} — choiceSet A’ r # {}

lemma choiceSetI[intro]:
[z€ A N\Ny.y€e A=z =y] = z € choiceSet A r
(proof)

lemma choiceFnl[introl:
(NA. [A" C A; A" # {} | = choiceSet A’ r # {}) = choiceFn A r
(proof)

If a complete and reflexive relation is also quasi-transitive it will yield a choice function.

definition quasi-trans :: 'a RPR = bool where
quasi-trans r =V y 2. 2 p= Yy ANy r= 2 — T p= 2

lemma quasi-transl[intro]:
Neyz o<y, yr<z] = < 2z) = quasi-trans r

(proof)

lemma quasi-transD: [r< y; y r< 2; quasi-trans r | = z < 2
(proof)

lemma trans-imp-quasi-trans: trans r —> quasi-trans r

(proof)

lemma r-c-gt-imp-cf:
assumes finiteA: finite A
and c: complete A r
and qt: quasi-trans r
and 7: refl-on A r
shows choiceF'n A r

{proof)

lemma rpr-choiceFn: [finite A; rpr A r | = choiceFn A r

(proof)

3.4 Social Choice Functions (SCFs)

A social choice function (SCF), also called a collective choice rule by Sen [Sen70, p28], is a
function that somehow aggregates society’s opinions, expressed as a profile, into a preference
relation.

type-synonym (’a, i) SCF = (‘a, 'i) Profile = 'a RPR

The least we require of an SCF is that it be complete and some function of the profile.
The latter condition is usually implied by other conditions, such as iza.

definition

SCF :: ('a, ') SCF = 'a set = 'i set = ('a set = 'i set = ('a, 'i) Profile = bool) = bool
where

SCF scf A Is Pcond = (Y P. Pcond A Is P — (complete A (scf P)))

lemma SCFI[intro:
assumes c¢: AP. Pcond A Is P => complete A (scf P)
shows SCF scf A Is Pcond

(proof)

lemma SCF-completeD[dest]: [SCF scf A Is Pcond; Pcond A Is P | = complete A (scf P)
(proof)

3.5 Social Welfare Functions (SWFs)

A Social Welfare Function (SWF) is an SCF that expresses the society’s opinion as a single
RPR.
In some situations it might make sense to restrict the allowable profiles.

definition

SWEF :: (‘a, 'i) SCF = 'a set = 'i set = ('a set = i set = ('a, i) Profile = bool) = bool
where

SWEF swf A Is Pcond = (VP. Pcond A Is P — rpr A (swf P))

lemma SWE-rpr(dest]: [SWF swf A Is Pcond; Pcond A Is P | = rpr A (swf P)
(proof)

3.6 General Properties of an SCF

An SCF has a universal domain if it works for all profiles.

definition universal-domain :: 'a set = 'i set = ('a, i) Profile = bool where
universal-domain A Is P = profile A Is P

declare universal-domain-def[simp)

An SCF is weakly Pareto-optimal if, whenever everyone strictly prefers z to y, the SCF
does too.

definition
weak-pareto :: ('a, i) SCF = 'a set = 'i set = (‘a set = 'i set = ('a, i) Profile = bool) = bool
where
weak-pareto scf A Is Pcond =
(VPzy. Pcond AIsPANx e ANye AN (Vz’els.x(Pi)<) — T (s¢f P)™ y)

lemma weak-paretol [intro:
(AP zy. [Pcond A Is Pz € A; y € A; Ni. i€ls = (P i)~ y =z (scf P)= Y)
= weak-pareto scf A Is Pcond

(proof)

lemma weak-paretoD:
[weak-pareto scf A Is Pcond; Pcond A Is P; xz € A; y € A,

< (/\;>l€ [5:>I(Pi)< y)H:>x(scfP)< Y
proo

An SCF satisfies independence of irrelevant alternatives if, for two preference profiles P
and P’ where for all individuals 4, alternatives and y drawn from set S have the same order
in P i and P’ i, then alternatives z and y have the same order in scf P and scf P’.

definition iia :: (‘a, i) SCF = 'a set = 'i set = bool where
ita scf S Is =
(VP P’z y. profile S Is P A profile S Is P’
NzeSANyels
ANNVies. ((z (P)= y) — (x(

)=
— ((= (scfP)j y) (= (scf P') jy

) A (Y (py= @) = (0 (pr = 7))
)

lemma iial[intro):
(AP P'zy.
[profile S Is P; profile S Is P’
reS;yes;
Ni-icls = ((z (py=y) = (@ pr yZ) Ay (py=2) = (¥ (pr = 7))
] = (& (suf)2) <= (& (quy)= 9)))
= dia swf S Is

(proof)

lemma diaF:

[iia swf S Is;
{:c,y} cS;
a € {z, y}; b € {z, y};
Niab [ac{z, y};be{z, y};iels] = (a (P’ i)~ b) «— (a (P)= b);
profile S Is P; profile S Is P']

= (a (swa)j b) «— (a (swa/)j b)

(proof)

3.7 Decisiveness and Semi-decisiveness

This notion is the key to Arrow’s Theorem, and hinges on the use of strict preference [Sen70,
p42].

A coalition C of agents is semi-decisive for z over y if, whenever the coalition prefers x to
y and all other agents prefer the converse, the coalition prevails.

definition semidecisive :: ('a, i) SCF = 'a set = i set = 'i set = 'a = 'a = bool where

semidecisive scf A Is Cz y =
C CIsAN(VP. profile AlsP AN (Vie C. x (P i)~ NWANMiels—C.y (P i)~)

— T (scf P)_< y)
lemma semidecisivel[intro]:
[CCIs;
AP. [profile A Is P; \i. i € C:>‘T(Pi)'< y; Ni. i € Is — C:>y(PZ-)—<x]]
= T (sef P)S Y] = semidecisive scf A Is C x y

(proof)

10

lemma semidecisive-coalitionD]dest]: semidecisive scf A Is Cxy = C C Is

(proof)

lemma sd-refl: [C C Is; C # {} | = semidecisive scf A Is C x x
(proof)

A coalition C'is decisive for = over y if, whenever the coalition prefers z to y, the coalition
prevails.

definition decisive :: (‘a, ') SCF = 'a set = "i set = i set = 'a = 'a = bool where
decisive scf A Is Cx y =
C CIsN(VP.profile AlsP AN (NieC.z (P i)~ y) — (sef P)=)

lemma decisivel [intro]:
[C C Is; AP. [profile A Is P; \i. i € C =z pp= y] = T (s¢f P)= y]
= decisive scf A Is Cz y
(proof)

lemma d-imp-sd: decisive scf A Is C x y = semidecisive scf A Is C z y

(proof)

lemma decisive-coalitionD[dest]: decisive scf A Is Cxy = C C Is
(proof)

Anyone is trivially decisive for z against x.

lemma d-refl: [C C Is; C # {} | = decisive scf A Is C z x
(proof)

Agent j is a dictator if her preferences always prevail. This is the same as saying that she
is decisive for all z and y.

definition dictator :: ('a, i) SCF = 'a set = 'i set = i = bool where
dictator scf Alsj=j€ Is N (Vz € A.Vy € A. decisive scf A Is {j} z y)

lemma dictatorl [introl:
[jelss; Ney. [z € Ay y e A] = decisive scf A Is {j} zy]| = dictator scf A Is j
(proof)

lemma dictator-individual[dest]: dictator scf A Is j = j € Is
(proof)

4 Arrow’s General Possibility Theorem

The proof falls into two parts: showing that a semi-decisive individual is in fact a dictator,
and that a semi-decisive individual exists. I take them in that order.

It might be good to do some of this in a locale. The complication is untangling where
various witnesses need to be quantified over.

11

4.1 Semi-decisiveness Implies Decisiveness

I follow [Sen70, Chapter 3*] quite closely here. Formalising his appeal to the 4ia assumption
is the main complication here.

The witness for the first lemma: in the profile P’, special agent j strictly prefers x to y to
z, and doesn’t care about the other alternatives. Everyone else strictly prefers y to each of x
to z, and inherits the relative preferences between x and z from profile P.

The model has to be specific about ordering all the other alternatives, but these are
immaterial in the proof that uses this witness. Note also that the following lemma is used
with different instantiations of x, y and z, so we need to quantify over them here. This
happens implicitly, but in a locale we would have to be more explicit.

This is just tedious.

lemma decisivel-witness:
assumes has3A: hasw [z,y,2] A
and profileP: profile A Is P
and jls: j € Is
obtains P’
where profile A Is P’

and z (P/])-< Y A Y (P/j)< z

and /\Z 7 75] =y (P'i)< x N Y (P/Z')_< FAVAN ((33 (P'i)j z) = (x (P Z)j Z)) N ((Z (P'i)j .73)
= (z(pp= 1)
(proof)

The key lemma: in the presence of Arrow’s assumptions, an individual who is semi-decisive
for z and y is actually decisive for = over any other alternative z. (This is where the quan-
tification becomes important.)

lemma decisivel:
assumes has3A: hasw [z,y,2] A
and idia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} z y
shows decisive swf A Is {j} = z

(proof)

The witness for the second lemma: special agent j strictly prefers z to x to y, and everyone
else strictly prefers z to z and y to . (In some sense the last part is upside-down with respect
to the first witness.)

lemma decisive2-witness:
assumes has3A: hasw [z,y,2] A
and profileP: profile A Is P
and jls: j € Is
obtains P’
where profile A Is P’
and z (P’j)< VAN (P’j)< Y
and \i. i # j = 2 (P)= TNY (pry= T A ((y (P’)= z) = (y (P> z)) N ((z (P’)= y)
= (Z (P Z‘)ﬁ y))
(proof)

12

lemma decisive2:
assumes has3A: hasw [z,y,2] A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} z y
shows decisive swf A Is {j} zy
(proof)

The following results permute z, y and z to show how decisiveness can be obtained from
semi-decisiveness in all cases. Again, quite tedious.

lemma decisive3:
assumes has8A: hasw [z,y,2] A
and 7ia: ila swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} = 2
shows decisive swf A Is {j} y 2

(proof)

lemma decisives:

assumes has3A: hasw [z,y,2] A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} y z

shows decisive swf A Is {j} y =

(proof)

lemma decisives:
assumes has3A: hasw [z,y,2] A
and dia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} z y
shows decisive swf A Is {j} y «

(proof)

lemma decisive6:
assumes has8A: hasw [z,y,2] A
and dia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} y
shows decisive swf A Is {j} y z decisive swf A Is {j} z x decisive swf A Is {j} z y
(proof)

lemma decisive?:
assumes has3A: hasw [z,y,2] A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} z y

13

shows decisive swf A Is {j} y z decisive swf A Is {j} z x decisive swf A Is {j} z y
(proof)

lemma j-decisive-xy:

assumes has3A: hasw [z,y,2] A
and dia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} z y
and wv: hasw [u,v] {z,y,2}

shows decisive swf A Is {j} v v

(proof)

lemma j-decisive:
assumes has3A: has 3 A
and dia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and zyA: hasw [z,y] A
and sd: semidecisive swf A Is {j} z y
and wv: hasw [u,v] A
shows decisive swf A Is {j} u v
(proof)

The first result: if j is semidecisive for some alternatives v and v, then they are actually
a dictator.

lemma sd-imp-dictator:

assumes has3A: has 3 A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and wv: hasw [u,v] A
and sd: semidecisive swf A Is {j} u v

shows dictator swf A Is j

(proof)

4.2 The Existence of a Semi-decisive Individual

The second half of the proof establishes the existence of a semi-decisive individual. The
required witness is essentially an encoding of the Condorcet pardox (aka "the paradox of
voting" that shows we get tied up in knots if a certain agent didn’t have dictatorial powers.

lemma sd-exists-witness:
assumes has3A: hasw [z,y,2] A
and Vs: Is= V1 U V2 U V3
AVINV2={AVINVE={AV2NnV3={}
and Is: Is # {}
obtains P
where profile A Is P
and Vi € VZ.x(pZ-)< y N Yypi=*
and Vi € V2. Z(p i)~ a:/\x(Pi)< Y
and Vi € V3. y(PZ-)< zZ Nz (PZ-)-< T

(proof)

14

This proof is unfortunately long. Many of the statements rely on a lot of context, making
it difficult to split it up.

lemma sd-exists:

assumes has3A: has 8 A
and finitels: finite Is
and twols: has 2 Is
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain

shows 3j u v. hasw [u,v] A A semidecisive swf A Is {j} u v

(proof)

4.3 Arrow’s General Possibility Theorem

Finally we conclude with the celebrated “possibility” result. Note that we assume the set of
individuals is finite; [Rou79] relaxes this with some fancier set theory. Having an infinite set
of alternatives doesn’t matter, though the result is a bit more plausible if we assume finiteness
[Sen70, p5H4].

theorem ArrowGeneralPossibility:
assumes has3A: has 3 A
and finitels: finite Is
and has2ls: has 2 Is
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
obtains j where dictator swf A Is j

(proof)

5 Sen’s Liberal Paradox

5.1 Social Decision Functions (SDFs)

To make progress in the face of Arrow’s Theorem, the demands placed on the social choice
function need to be weakened. One approach is to only require that the set of alternatives
that society ranks highest (and is otherwise indifferent about) be non-empty.
Following [Sen70, Chapter 4*], a Social Decision Function (SDF) yields a choice function

for every profile.
definition

SDF :: ('a, i) SCF = 'a set = i set = ('a set = 'i set = ('a, 'i) Profile = bool) = bool
where

SDF sdf A Is Pcond = (VY P. Pcond A Is P — choiceFn A (sdf P))

lemma SDFI[intro]:
(AP. Pcond A Is P = choiceFin A (sdf P)) = SDF sdf A Is Pcond

(proof)

lemma SWF-SDF:
assumes finiteA: finite A

15

shows SWF scf A Is universal-domain =—> SDF scf A Is universal-domain

(proof)

In contrast to SWFs, there are SDFs satisfying Arrow’s (relevant) requirements. The
lemma uses a witness to show the absence of a dictatorship.

lemma SDF-nodictator-witness:
assumes has24: hasw [z,y] A
and has2ls: hasw [i,j] Is
obtains P
where profile A Is P
and z PiH=Y
and y (P j)< x

(proof)

lemma SDF-possibility:
assumes finiteA: finite A
and has2A: has 2 A
and has2ls: has 2 Is
obtains sdf
where weak-pareto sdf A Is universal-domain
and dia sdf A Is
and —(3j. dictator sdf A Is j)
and SDF sdf A Is universal-domain

(proof)

Sen makes several other stronger statements about SDFs later in the chapter. I leave these
for future work.

5.2 Sen’s Liberal Paradox

Having side-stepped Arrow’s Theorem, Sen proceeds to other conditions one may ask of an
SCF. His analysis of liberalism, mechanised in this section, has attracted much criticism over
the years [AK96].

Following [Sen70, Chapter 6*|, a liberal social choice rule is one that, for each individual,
there is a pair of alternatives that she is decisive over.

definition liberal :: (‘a, i) SCF = 'a set = 'i set = bool where
liberal scf A Is =
(Viels.dz e A.Jye A.z #y
A decisive scf A Is {i} x y A decisive scf A Is {i} y x)

lemma liberalE:
[liberal scf A Is; i € Is |
= dee A dyec A z#y
A decisive scf A Is {i} © y N decisive scf A Is {i} y x
(proof)

This condition can be weakened to require just two such decisive individuals; if we required
just one, we would allow dictatorships, which are clearly not liberal.

definition minimally-liberal :: ('a, 'i) SCF = 'a set = i set = bool where
manimally-liberal scf A Is =
Ficls.3jels i#j

16

ANEFzeA IJyed z#y

A decisive scf A Is {i} x y N decisive scf A Is {i} y x)
AN(dze A Jye A x#y

A decisive scf A Is {j} © y N decisive scf A Is {j} y z))

lemma liberal-imp-minimally-liberal:
assumes has2ls: has 2 Is
and L: liberal scf A Is
shows minimally-liberal scf A Is

{proof)

The key observation is that once we have at least two decisive individuals we can complete
the Condorcet (paradox of voting) cycle using the weak Pareto assumption. The details of
the proof don’t give more insight.

Firstly we need three types of profile witnesses (one of which we saw previously). The
main proof proceeds by case distinctions on which alternatives the two liberal agents are
decisive for.

lemmas liberal-witness-two = SDF-nodictator-witness

lemma liberal-witness-three:
assumes threeA: hasw [z,y,v] A
and twols: hasw [i,j] Is
obtains P
where profile A Is P
and z PH=Y
and v PH=7
and Vi € Is. y (Pi)= v

{proof)

lemma liberal-witness-four:
assumes fourA: hasw [z,y,u,v] A
and twols: hasw [i,j] Is
obtains P
where profile A Is P
and z (P)=Y
and u (Pj=V
and Vi € Is. U(PZ-)<:E/\y(Pi)< U
(proof)

The Liberal Paradox: having two decisive individuals, an SDF and the weak pareto as-
sumption is inconsistent.

theorem LiberalParadox:
assumes SDF: SDF sdf A Is universal-domain
and mi: minimally-liberal sdf A Is
and wp: weak-pareto sdf A Is universal-domain
shows Fulse

{proof)

17

6 May’s Theorem

May’s Theorem [May52] provides a characterisation of majority voting in terms of four con-
ditions that appear quite natural for a priori unbiased social choice scenarios. It can be seen
as a refinement of some earlier work by Arrow [Arr63, Chapter V.1].

The following is a mechanisation of Sen’s generalisation [Sen70, Chapter 5*]; originally
Arrow and May consider only two alternatives, whereas Sen’s model maps profiles of full
RPRs to a possibly intransitive relation that does at least generate a choice set that satisfies
May’s conditions.

6.1 May’s Conditions

The condition of anonymity asserts that the individuals’ identities are not considered by the
choice rule. Rather than talk about permutations we just assert the result of the SCF is the
same when the profile is composed with an arbitrary bijection on the set of individuals.
definition anonymous :: (‘a, i) SCF = 'a set = 'i set = bool where

anonymous scf A Is =
(VP fxy. profile A Is P A bij-betw fIsIs Nz € ANy€e A

@ (s P)ZY) = (sef (P o)= W)

lemma anonymousl|introl:
(AP fzy. [profile A Is P; bij-betw f Is Is;
rediy Al = (= (s P)=Y) = (& (sef (Po)3 V)
= anonymous scf A Is
(proof)

lemma anonymousD:
[anonymous scf A Is; profile A Is P; bij-betw fIs Is; x € A; y € A]
= (T (sef P)Z V) = @ (sef (Po)= Y)
(proof)
Similarly, an SCF is neutral if it is insensitive to the identity of the alternatives. This is
Sen’s characterisation [Sen70, p72].

definition neutral :: ('a, 'i) SCF = 'a set = 'i set = bool where
neutral scf A Is =
(VPP zyzw. profile AIs P A profile AlsP'Ne e ANye ANze ANwe A
A (Vi€ Is. x(Pi)j Y Z(P’i)j w) A (Vi € Is. ?J(Pz')j T w(P’i)j z)

— ((z (sef PYS Y = 2 (5¢f P w) A (y (sef P)S @ = W (505 p1y= z)))

lemma neutrall[intro]:
(AP P zyzw.
[profile A Is P; profile A Is P’; {z,y,z,w} C A4;
/\z'.iels:>x(pi)j y<—>z(P/i)j w;
/\z'.ieIs:>y(Pi)jw<—>w(Pzi)jz]]
— ((w (SCfP)j Yy <— 2z (SCfPl)j ’IU) N (y (SCfP)j T <— W (SCfP/)j Z)))
= neutral scf A Is
(proof)

lemma neutralD:
[neutral scf A Is;

18

profile A Is P; profile A Is P’; {x,y,z,w} C A;

/\z'.iefs:>1:(pi)j y—= 2 (pry3w;
= (z (sef PYS Y < 2 (scfpl)j w) A (y (sef YD T w (scfP’)j 2)
(proof)

Neutrality implies independence of irrelevant alternatives.

lemma neutral-iia: neutral scf A Is = iia scf A Is
(proof)
Positive responsiveness is a bit like non-manipulability: if one individual improves their
opinion of z, then the result should shift in favour of x.
definition positively-responsive :: (‘a, 'i) SCF = 'a set = 'i set = bool where
positively-responsive scf A Is =
(VP P’z y. profile A Is P A profile AIs PPNz € ANy €A
ANWViels (z (PH)=y—1 (P’z')'< y) A (z (PORY — T (P’z')j Y))
A3k e Is. (z (PR)SY Az (P’ k)'< y) V (y (PE)=T AT (P/k)j ¥))
T (sef P)S Y T T (sef PYTY)

lemma positively-responsivel [intro]:
assumes I: AP P’z y.
[profile A Is P; profile A Is P'; x € A; y € A;
Ni. [[iGIS;x(Pi)< vl = T (pr = Y;
Ni. [[Z'GIS;I(Pi)%y]] :>I(P'7;)j Y3
ke Is. (z (PR)SYNT (prpy~ y) V (y PRSTAT (P’k)j v);
T (scf P)j y]
==z (scf P/)'< y
shows positively-responsive scf A Is
(proof)

lemma positively-responsiveD:

[positively-responsive scf A Is;
profile A Is P; profile A Is P'; x € A; y € A;
Ni. [[iels;a:(Pi)<y]] — T (pr =Y
Ni. [[iEIS;ZL'(Pi)R‘Jy]] :x(p/i)j Y;
ke Is. (z (Pk)% AN (P’k)-< y) V (y (Pk)—< HAVANN (P’ k)j v);
T (sef)Z V]

— (scf Pl)-< Y
(proof)

6.2 The Method of Majority Decision satisfies May’s conditions

The method of majority decision (MMD) says that if the number of individuals who strictly
prefer x to y is larger than or equal to those who strictly prefer the converse, then = R y.
Note that this definition only makes sense for a finite population.

definition MMD :: 'i set = ('a, 'i) SCF where
MMD Is P = { (z, y) . card{iefs.x(}pi)—< y } > card { i € Is. y(PZ-)—<:17}}

The first part of May’s Theorem establishes that the conditions are consistent, by showing
that they are satisfied by MMD.

19

lemma MMD-I2r:

fixes A :: 'a set
and Is :: i set

assumes finitels: finite Is

shows SCF (MMD Is) A Is universal-domain
and anonymous (MMD Is) A Is
and neutral (MMD Is) A Is
and positively-responsive (MMD Is) A Is

(proof)

6.3 Everything satisfying May’s conditions is the Method of Majority De-
cision
Now show that MMD is the only SCF that satisfies these conditions.

Firstly develop some theory about exchanging alternatives x and y in profile P.

definition swapAlts :: 'a = 'a = 'a = 'a where
swapAlts a b v = if u = a then b else if u = b then a else u

lemma swapAlts-in-set-iff: {a, b} C A = swapAltsabu € A+— ue A
(proof)

definition swapAltsP :: (‘a, i) Profile = 'a = 'a = ('a, i) Profile where
swapAltsP P a b = (Ni. { (u, v) . (swapAlts a b u, swapAlts a b v) € P i })

lemma swapAltsP-ab: a (P i)j be—b (swapAltsP P a b i)j ab (P i)j a<—a (swapAltsP P a b i)j
b
(proof)

lemma profile-swapAltsP:
assumes profileP: profile A Is P
and abA: {a,b} C A
shows profile A Is (swapAltsP P a b)
(proof)

lemma profile-bij-profile:
assumes profileP: profile A Is P
and bijf: bij-betw f Is Is
shows profile A Is (P o f)
(proof)

The locale keeps the conditions in scope for the next few lemmas. Note how weak the
constraints on the sets of alternatives and individuals are; clearly there needs to be at least
two alternatives and two individuals for conflict to occur, but it is pleasant that the proof
uniformly handles the degenerate cases.

locale May =
fixes A :: 'a set

fixes Is :: i set
assumes finitels: finite Is

fixes scf :: (‘a, i) SCF

20

assumes SCF: SCF scf A Is universal-domain

and anonymous: anonymous scf A Is

and neutral: neutral scf A Is

and positively-responsive: positively-responsive scf A Is
begin

Anonymity implies that, for any pair of alternatives, the social choice rule can only depend
on the number of individuals who express any given preference between them. Note we also
need 4ia, implied by neutrality, to restrict attention to alternatives x and y.

lemma anonymous-card:
assumes profileP: profile A Is P
and profileP’: profile A Is P’
and zyA: hasw [z,y] A
and zytally: card { i € Is. x PiH=<Y }=card {i€ sz (P)= Y }
and yatally: card { i € Is. y (PH= 7 }=card {i€ s y (P)= ® }
shows z (scfP)j YT (Scfpl)j Yy
(proof)

Using the previous result and neutrality, it must be the case that if the tallies are tied
for alternatives x and y then the social choice function is indifferent between those two
alternatives.

lemma anonymous-neutral-indifference:
assumes profileP: profile A Is P
and zyA: hasw [z,y] A
and tallyP: card { i € Is. x (PH=Y Y=card {i€Is. y (Pi= % }
shows z (sef Y=Y
(proof)

Finally, if the tallies are not equal then the social choice function must lean towards the
one with the higher count due to positive responsiveness.
lemma positively-responsive-prefer-witness:
assumes profileP: profile A Is P
and zyA: hasw [z,y] A
and tallyP: card { i € Is. z PH=Y }>card{i€elsy (Pi)= 2 }
obtains P’ k
where profile A Is P’
and Ai. [i € Is; z (pr <yl = = (p =<y
and Ai. [i € Is; z (P i)~ y = =z PV
andke[s/\x(P/k)%y/\x(Pk)<y
and card { i € Is. T (p’)= y } = card { i € Is. y(P/Z.)<J:}
(proof)

lemma positively-responsive-prefer:
assumes profileP: profile A Is P
and zyA: hasw [z,y] A
and tallyP: card { i € Is. z (Pi)= Y Y >card{i€elsy (Pi)= T }
shows z (scf P)= Y

(proof)

lemma MMD-r2l:

21

assumes profileP: profile A Is P
and zyA: hasw [z,y] A
shows = (yor p)= Y «— & (MMD Is P)Z Y
(proof)

end

May’s original paper [May52] goes on to show that the conditions are independent by
exhibiting choice rules that differ from MMD and satisfy the conditions remaining after any
particular one is removed. I leave this to future work.

May also wrote a later article [May53] where he shows that the conditions are completely
independent, i.e. for every partition of the conditions into two sets, there is a voting rule that
satisfies one and not the other.

There are many later papers that characterise MMD with different sets of conditions.

6.4 The Plurality Rule

Goodin and List [GL06] show that May’s original result can be generalised to characterise
plurality voting. The following shows that this result is a short step from Sen’s much earlier
generalisation.

Plurality voting is a choice function that returns the alternative that receives the most
votes, or the set of such alternatives in the case of a tie. Profiles are restricted to those where
each individual casts a vote in favour of a single alternative.

type-synonym (‘a, i) SVProfile = 'i = 'a

definition svprofile :: 'a set = i set = ('a, 'i) SVProfile = bool where
svprofile AIsF=Is#A{} NF‘IsCA

definition plurality-rule :: 'a set = 'i set = ('a, i) SVProfile = 'a set where

plurality-rule A Is F
={rzecA. VyeA card{i€ls. Fi=zx}>cad{icls. Fi=y}}

By translating single-vote profiles into RPRs in the obvious way, the choice function arising
from MMD coincides with traditional plurality voting.

definition MMD-plurality-rule :: 'a set = 'i set = ('a, 'i) Profile = 'a set where
MMD-plurality-rule A Is P = choiceSet A (MMD Is P)

definition single-vote-to-RPR :: 'a set = 'a = 'a RPR where
single-vote-to-RPR A a = { (a, z) |[z. 2 € A} U (4 — {a}) x (A — {a})

lemma single-vote-to-RPR-iff:
[acdizediarta] = (a (single-vote-to-RPR A b)™ z) «— (b= a)

(proof)

lemma plurality-rule-equiv:
plurality-rule A Is F = MMD-plurality-rule A Is (single-vote-to-RPR A o F)

(proof)

Thus it is clear that Sen’s generalisation of May’s result applies to this case as well.
Their paper goes on to show how strengthening the anonymity condition gives rise to a
characterisation of approval voting that strictly generalises May’s original theorem. As this

22

requires some rearrangement of the proof I leave it to future work.

7 Bibliography

References

[AK96]
[Arr63]

[GLOG6]

[May52]

[May53]

[NipOg]

[Rou79]

[Sen70]

[Tay05]

Analyse & Kritik, volume 18(1). 1996.

K. J. Arrow. Social Choice and Individual Values. John Wiley and Sons, second
edition, 1963.

R. E. Goodin and C. List. A conditional defense of plurality rule: Generalizing May’s
Theorem in a restricted informational environment. American Journal of Political
Science, 50(4), 2006.

K. O. May. A set of independent, necessary and sufficient conditions for simple
majority decision. Econometrica, 20(4), 1952.

K. O. May. A note on the complete independence of the conditions for simple
majority decision. FEconometrica, 21(1), 1953.

Tobias Nipkow. Arrow and gibbard-satterthwaite. Archive of Formal Proofs, Septem-
ber 2008. http://isa-afp.org/entries/ArrowlmpossibilityGS.shtml, Formal proof de-
velopment.

R. Routley. Repairing proofs of Arrow’s General Impossibility Theorem and en-
larging the scope of the theorem. Notre Dame Journal of Formal Logic, XX(4),
1979.

Amartya Sen. Collective Choice and Social Welfare. Holden Day, 1970.

A. D. Taylor. Social Choice and the Mathematics of Manipulation. Outlooks. Cam-
bridge University Press, 2005.

23

http://isa-afp.org/entries/ArrowImpossibilityGS.shtml

	Overview
	General Lemmas
	Extra Finite-Set Lemmas
	Extra bijection lemmas
	Collections of witnesses: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hasw, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 has

	Preliminaries
	Rational Preference Relations (RPRs)
	Profiles
	Choice Sets, Choice Functions
	Social Choice Functions (SCFs)
	Social Welfare Functions (SWFs)
	General Properties of an SCF
	Decisiveness and Semi-decisiveness

	Arrow's General Possibility Theorem
	Semi-decisiveness Implies Decisiveness
	The Existence of a Semi-decisive Individual
	Arrow's General Possibility Theorem

	Sen's Liberal Paradox
	Social Decision Functions (SDFs)
	Sen's Liberal Paradox

	May's Theorem
	May's Conditions
	The Method of Majority Decision satisfies May's conditions
	Everything satisfying May's conditions is the Method of Majority Decision
	The Plurality Rule

	Bibliography

