
Arrow’s General Possibility Theorem

Peter Gammie
peteg42 at gmail.com

March 19, 2025

Contents
1 Overview 2

2 General Lemmas 2
2.1 Extra Finite-Set Lemmas . 2
2.2 Extra bijection lemmas . 3
2.3 Collections of witnesses: hasw, has . 5

3 Preliminaries 8
3.1 Rational Preference Relations (RPRs) . 9
3.2 Profiles . 11
3.3 Choice Sets, Choice Functions . 11
3.4 Social Choice Functions (SCFs) . 13
3.5 Social Welfare Functions (SWFs) . 13
3.6 General Properties of an SCF . 14
3.7 Decisiveness and Semi-decisiveness . 15

4 Arrow’s General Possibility Theorem 16
4.1 Semi-decisiveness Implies Decisiveness . 16
4.2 The Existence of a Semi-decisive Individual 23
4.3 Arrow’s General Possibility Theorem . 27

5 Sen’s Liberal Paradox 27
5.1 Social Decision Functions (SDFs) . 27
5.2 Sen’s Liberal Paradox . 30

6 May’s Theorem 35
6.1 May’s Conditions . 35
6.2 The Method of Majority Decision satisfies May’s conditions 37
6.3 Everything satisfying May’s conditions is the Method of Majority Decision . . 39
6.4 The Plurality Rule . 45

7 Bibliography 46

1

1 Overview
This is a fairly literal encoding of some of Armatya Sen’s proofs [Sen70] in Isabelle/HOL. The
author initially wrote it while learning to use the proof assistant, and some locutions remain
naive. This work is somewhat complementary to the mechanisation of more recent proofs of
Arrow’s Theorem and the Gibbard-Satterthwaite Theorem by Tobias Nipkow [Nip08].

I strongly recommend Sen’s book to anyone interested in social choice theory; his proofs are
quite lucid and accessible, and he situates the theory quite well within the broader economic
tradition.

2 General Lemmas
2.1 Extra Finite-Set Lemmas
Small variant of Finite-Set.finite-subset-induct: also assume F ⊆ A in the induction hypoth-
esis.
lemma finite-subset-induct ′ [consumes 2 , case-names empty insert]:

assumes finite F and F ⊆ A
and empty: P {}
and insert:

∧
a F . [[finite F ; a ∈ A; F ⊆ A; a /∈ F ; P F]] =⇒ P (insert a F)

shows P F
proof −

from ‹finite F›
have F ⊆ A =⇒ ?thesis
proof induct

show P {} by fact
next

fix x F
assume finite F and x /∈ F and

P: F ⊆ A =⇒ P F and i: insert x F ⊆ A
show P (insert x F)
proof (rule insert)

from i show x ∈ A by blast
from i have F ⊆ A by blast
with P show P F .
show finite F by fact
show x /∈ F by fact
show F ⊆ A by fact

qed
qed
with ‹F ⊆ A› show ?thesis by blast

qed

A slight improvement on List.finite-list - add distinct.
lemma finite-list: finite A =⇒ ∃ l. set l = A ∧ distinct l
proof(induct rule: finite-induct)

case (insert x F)
then obtain l where set l = F ∧ distinct l by auto
with insert have set (x#l) = insert x F ∧ distinct (x#l) by auto

2

thus ?case by blast
qed auto

2.2 Extra bijection lemmas
lemma bij-betw-onto: bij-betw f A B =⇒ f ‘ A = B unfolding bij-betw-def by simp

lemma inj-on-UnI : [[inj-on f A; inj-on f B; f ‘ (A − B) ∩ f ‘ (B − A) = {}]] =⇒ inj-on f (A ∪ B)
by (auto iff : inj-on-Un)

lemma card-compose-bij:
assumes bijf : bij-betw f A A
shows card { a ∈ A. P (f a) } = card { a ∈ A. P a }

proof −
from bijf have T : f ‘ { a ∈ A. P (f a) } = { a ∈ A. P a }

unfolding bij-betw-def by auto
from bijf have card { a ∈ A. P (f a) } = card (f ‘ { a ∈ A. P (f a) })

unfolding bij-betw-def by (auto intro: subset-inj-on card-image[symmetric])
with T show ?thesis by simp

qed

lemma card-eq-bij:
assumes cardAB: card A = card B

and finiteA: finite A and finiteB: finite B
obtains f where bij-betw f A B

proof −
from finiteA obtain g where G: bij-betw g A {0 ..<card A}

by (blast dest: ex-bij-betw-finite-nat)
from finiteB obtain h where H : bij-betw h {0 ..<card B} B

by (blast dest: ex-bij-betw-nat-finite)
from G H cardAB have I : inj-on (h ◦ g) A

unfolding bij-betw-def by − (rule comp-inj-on, simp-all)
from G H cardAB have (h ◦ g) ‘ A = B

unfolding bij-betw-def by auto (metis image-cong image-image)
with I have bij-betw (h ◦ g) A B

unfolding bij-betw-def by blast
thus thesis ..

qed

lemma bij-combine:
assumes ABCD: A ⊆ B C ⊆ D

and bijf : bij-betw f A C
and bijg: bij-betw g (B − A) (D − C)

obtains h
where bij-betw h B D

and
∧

x. x ∈ A =⇒ h x = f x
and

∧
x. x ∈ B − A =⇒ h x = g x

proof −
let ?h = λx. if x ∈ A then f x else g x
have inj-on ?h (A ∪ (B − A))
proof(rule inj-on-UnI)

from bijf show inj-on ?h A
by − (rule inj-onI , auto dest: inj-onD bij-betw-imp-inj-on)

3

from bijg show inj-on ?h (B − A)
by − (rule inj-onI , auto dest: inj-onD bij-betw-imp-inj-on)

from bijf bijg show ?h ‘ (A − (B − A)) ∩ ?h ‘ (B − A − A) = {}
by (simp, blast dest: bij-betw-onto)

qed
with ABCD have inj-on ?h B by (auto iff : Un-absorb1)
moreover
have ?h ‘ B = D
proof −

from ABCD have ?h ‘ B = f ‘ A ∪ g ‘ (B − A) by (auto iff : image-Un Un-absorb1)
also from ABCD bijf bijg have . . . = D by (blast dest: bij-betw-onto)
finally show ?thesis .

qed
ultimately have bij-betw ?h B D

and
∧

x. x ∈ A =⇒ ?h x = f x
and

∧
x. x ∈ B − A =⇒ ?h x = g x

unfolding bij-betw-def by auto
thus thesis ..

qed

lemma bij-complete:
assumes finiteC : finite C

and ABC : A ⊆ C B ⊆ C
and bijf : bij-betw f A B

obtains f ′ where bij-betw f ′ C C
and

∧
x. x ∈ A =⇒ f ′ x = f x

and
∧

x. x ∈ C − A =⇒ f ′ x ∈ C − B
proof −

from finiteC ABC bijf have card B = card A
unfolding bij-betw-def
by (auto iff : inj-on-iff-eq-card [symmetric] intro: finite-subset)

with finiteC ABC bijf have card (C − A) = card (C − B)
by (auto iff : finite-subset card-Diff-subset)

with finiteC obtain g where bijg: bij-betw g (C − A) (C − B)
by − (drule card-eq-bij, auto)

from ABC bijf bijg
obtain f ′ where bijf ′: bij-betw f ′ C C

and f ′f :
∧

x. x ∈ A =⇒ f ′ x = f x
and f ′g:

∧
x. x ∈ C − A =⇒ f ′ x = g x

by − (drule bij-combine, auto)
from f ′g bijg have

∧
x. x ∈ C − A =⇒ f ′ x ∈ C − B

by (blast dest: bij-betw-onto)
with bijf ′ f ′f show thesis ..

qed

lemma card-greater :
assumes finiteA: finite A

and c: card { x ∈ A. P x } > card { x ∈ A. Q x }
obtains C

where card ({ x ∈ A. P x } − C) = card { x ∈ A. Q x }
and C 6= {}
and C ⊆ { x ∈ A. P x }

proof −

4

let ?PA = { x ∈ A . P x }
let ?QA = { x ∈ A . Q x }
from finiteA obtain p where P: bij-betw p {0 ..<card ?PA} ?PA

using ex-bij-betw-nat-finite[where M=?PA]
by (blast intro: finite-subset)

let ?CN = {card ?QA..<card ?PA}
let ?C = p ‘ ?CN
have card ({ x ∈ A. P x } − ?C) = card ?QA
proof −

have nat-add-sub-shuffle:
∧

x y z. [[(x::nat) > y; x − y = z]] =⇒ x − z = y by simp
from P have T : p ‘ {card ?QA..<card ?PA} ⊆ ?PA

unfolding bij-betw-def by auto
from P have card ?PA − card ?QA = card ?C

unfolding bij-betw-def
by (auto iff : card-image subset-inj-on[where A=?CN])

with c have card ?PA − card ?C = card ?QA by (rule nat-add-sub-shuffle)
with finiteA P T have card (?PA − ?C) = card ?QA

unfolding bij-betw-def by (auto iff : finite-subset card-Diff-subset)
thus ?thesis .

qed
moreover
from P c have ?C 6= {}

unfolding bij-betw-def by auto
moreover
from P have ?C ⊆ { x ∈ A. P x }

unfolding bij-betw-def by auto
ultimately show thesis ..

qed

2.3 Collections of witnesses: hasw, has
Given a set of cardinality at least n, we can find up to n distinct witnesses. The built-in card
function unfortunately satisfies:

Finite-Set.card.infinite: infinite A =⇒ card A = 0

These lemmas handle the infinite case uniformly.
Thanks to Gerwin Klein suggesting this approach.

definition hasw :: ′a list ⇒ ′a set ⇒ bool where
hasw xs S ≡ set xs ⊆ S ∧ distinct xs

definition has :: nat ⇒ ′a set ⇒ bool where
has n S ≡ ∃ xs. hasw xs S ∧ length xs = n

declare hasw-def [simp]

lemma hasI [intro]: hasw xs S =⇒ has (length xs) S by (unfold has-def , auto)

lemma card-has:
assumes cardS : card S = n
shows has n S

proof(cases n = 0)

5

case True thus ?thesis by (simp add: has-def)
next

case False
with cardS card-eq-0-iff [where A=S] have finiteS : finite S by simp
show ?thesis
proof(rule ccontr)

assume nhas: ¬ has n S
with distinct-card[symmetric]
have nxs: ¬ (∃ xs. set xs ⊆ S ∧ distinct xs ∧ card (set xs) = n)

by (auto simp add: has-def)
from finite-list finiteS
obtain xs where S = set xs by blast
with cardS nxs show False by auto

qed
qed

lemma card-has-rev:
assumes finiteS : finite S
shows has n S =⇒ card S ≥ n (is ?lhs =⇒ ?rhs)

proof −
assume ?lhs
then obtain xs

where set xs ⊆ S ∧ n = length xs
and dxs: distinct xs by (unfold has-def hasw-def , blast)

with card-mono[OF finiteS] distinct-card[OF dxs, symmetric]
show ?rhs by simp

qed

lemma has-0 : has 0 S by (simp add: has-def)

lemma has-suc-notempty: has (Suc n) S =⇒ {} 6= S
by (clarsimp simp add: has-def)

lemma has-suc-subset: has (Suc n) S =⇒ {} ⊂ S
by (rule psubsetI , (simp add: has-suc-notempty)+)

lemma has-notempty-1 :
assumes Sne: S 6= {}
shows has 1 S

proof −
from Sne obtain x where x ∈ S by blast
hence set [x] ⊆ S ∧ distinct [x] ∧ length [x] = 1 by auto
thus ?thesis by (unfold has-def hasw-def , blast)

qed

lemma has-le-has:
assumes h: has n S

and nn ′: n ′ ≤ n
shows has n ′ S

proof −
from h obtain xs where hasw xs S length xs = n by (unfold has-def , blast)
with nn ′ set-take-subset[where n=n ′ and xs=xs]
have hasw (take n ′ xs) S length (take n ′ xs) = n ′

6

by (simp-all add: min-def , blast+)
thus ?thesis by (unfold has-def , blast)

qed

lemma has-ge-has-not:
assumes h: ¬has n S

and nn ′: n ≤ n ′

shows ¬has n ′ S
using h nn ′ by (blast dest: has-le-has)

lemma has-eq:
assumes h: has n S

and hn ′: ¬has (Suc n) S
shows card S = n

proof −
from h obtain xs

where xs: hasw xs S and lenxs: length xs = n by (unfold has-def , blast)
have set xs = S
proof

from xs show set xs ⊆ S by simp
next

show S ⊆ set xs
proof(rule ccontr)

assume ¬ S ⊆ set xs
then obtain x where x ∈ S x /∈ set xs by blast
with lenxs xs have hasw (x # xs) S length (x # xs) = Suc n by simp-all
with hn ′ show False by (unfold has-def , blast)

qed
qed
with xs lenxs distinct-card show card S = n by auto

qed

lemma has-extend-witness:
assumes h: has n S
shows [[set xs ⊆ S ; length xs < n]] =⇒ set xs ⊂ S

proof(induct xs)
case Nil
with h has-suc-notempty show ?case by (cases n, auto)

next
case (Cons x xs)
have set (x # xs) 6= S
proof

assume Sxxs: set (x # xs) = S
hence finiteS : finite S by auto
from h obtain xs ′

where Sxs ′: set xs ′ ⊆ S
and dlxs ′: distinct xs ′ ∧ length xs ′ = n

by (unfold has-def hasw-def , blast)
with distinct-card have card (set xs ′) = n by auto
with finiteS Sxs ′ card-mono have card S ≥ n by auto
moreover
from Sxxs Cons card-length[where xs=x # xs]
have card S < n by auto

7

ultimately show False by simp
qed
with Cons show ?case by auto

qed

lemma has-extend-witness ′:
[[has n S ; hasw xs S ; length xs < n]] =⇒ ∃ x. hasw (x # xs) S
by (simp, blast dest: has-extend-witness)

lemma has-witness-two:
assumes hasnS : has n S

and nn ′: 2 ≤ n
shows ∃ x y. hasw [x,y] S

proof −
have has2S : has 2 S by (rule has-le-has[OF hasnS nn ′])
from has-extend-witness ′[OF has2S , where xs=[]]
obtain x where x ∈ S by auto
with has-extend-witness ′[OF has2S , where xs=[x]]
show ?thesis by auto

qed

lemma has-witness-three:
assumes hasnS : has n S

and nn ′: 3 ≤ n
shows ∃ x y z. hasw [x,y,z] S

proof −
from nn ′ obtain x y where hasw [x,y] S

using has-witness-two[OF hasnS] by auto
with nn ′ show ?thesis

using has-extend-witness ′[OF hasnS , where xs=[x,y]] by auto
qed

lemma finite-set-singleton-contra:
assumes finiteS : finite S

and Sne: S 6= {}
and cardS : card S > 1 =⇒ False

shows ∃ j. S = {j}
proof −

from cardS Sne card-0-eq[OF finiteS] have Scard: card S = 1 by auto
from has-extend-witness[where xs=[], OF card-has[OF this]]
obtain j where {j} ⊆ S by auto
from card-seteq[OF finiteS this] Scard show ?thesis by auto

qed

3 Preliminaries
The auxiliary concepts defined here are standard [Rou79, Sen70, Tay05]. Throughout we
make use of a fixed set A of alternatives, drawn from some arbitrary type ′a of suitable size.
Taylor [Tay05] terms this set an agenda. Similarly we have a type ′i of individuals and a

8

population Is.

3.1 Rational Preference Relations (RPRs)
Definitions for rational preference relations (RPRs), which represent indifference or strict pref-
erence amongst some set of alternatives. These are also called weak orders or (ambiguously)
ballots.

Unfortunately Isabelle’s standard ordering operators and lemmas are typeclass-based, and
as introducing new types is painful and we need several orders per type, we need to repeat
some things.
type-synonym ′a RPR = (′a ∗ ′a) set

abbreviation rpr-eq-syntax :: ′a ⇒ ′a RPR ⇒ ′a ⇒ bool (‹- -� -› [50 , 1000 , 51] 50) where
x r� y == (x, y) ∈ r

definition indifferent-pref :: ′a ⇒ ′a RPR ⇒ ′a ⇒ bool (‹- -≈ -› [50 , 1000 , 51] 50) where
x r≈ y ≡ (x r� y ∧ y r� x)

lemma indifferent-prefI [intro]: [[x r� y; y r� x]] =⇒ x r≈ y
unfolding indifferent-pref-def by simp

lemma indifferent-prefD[dest]: x r≈ y =⇒ x r� y ∧ y r� x
unfolding indifferent-pref-def by simp

definition strict-pref :: ′a ⇒ ′a RPR ⇒ ′a ⇒ bool (‹- -≺ -› [50 , 1000 , 51] 50) where
x r≺ y ≡ (x r� y ∧ ¬(y r� x))

lemma strict-pref-def-irrefl[simp]: ¬ (x r≺ x) unfolding strict-pref-def by blast

lemma strict-prefI [intro]: [[x r� y; ¬(y r� x)]] =⇒ x r≺ y
unfolding strict-pref-def by simp

Traditionally, x r� y would be written x R y, x r≈ y as x I y and x r≺ y as x P y, where
the relation r is implicit, and profiles are indexed by subscripting.

Complete means that every pair of distinct alternatives is ranked. The "distinct" part is
a matter of taste, as it makes sense to regard an alternative as as good as itself. Here I take
reflexivity separately.
definition complete :: ′a set ⇒ ′a RPR ⇒ bool where

complete A r ≡ (∀ x ∈ A. ∀ y ∈ A − {x}. x r� y ∨ y r� x)

lemma completeI [intro]:
(
∧

x y. [[x ∈ A; y ∈ A; x 6= y]] =⇒ x r� y ∨ y r� x) =⇒ complete A r
unfolding complete-def by auto

lemma completeD[dest]:
[[complete A r ; x ∈ A; y ∈ A; x 6= y]] =⇒ x r� y ∨ y r� x
unfolding complete-def by auto

lemma complete-less-not: [[complete A r ; hasw [x,y] A; ¬ x r≺ y]] =⇒ y r� x
unfolding complete-def strict-pref-def by auto

9

lemma complete-indiff-not: [[complete A r ; hasw [x,y] A; ¬ x r≈ y]] =⇒ x r≺ y ∨ y r≺ x
unfolding complete-def indifferent-pref-def strict-pref-def by auto

lemma complete-exh:
assumes complete A r

and hasw [x,y] A
obtains (xPy) x r≺ y
| (yPx) y r≺ x
| (xIy) x r≈ y

using assms unfolding complete-def strict-pref-def indifferent-pref-def by auto

Use the standard refl. Also define irreflexivity analogously to how refl is defined in the
standard library.
declare refl-onI [intro] refl-onD[dest]

lemma complete-refl-on:
[[complete A r ; refl-on A r ; x ∈ A; y ∈ A]] =⇒ x r� y ∨ y r� x
unfolding complete-def by auto

definition irrefl :: ′a set ⇒ ′a RPR ⇒ bool where
irrefl A r ≡ r ⊆ A × A ∧ (∀ x ∈ A. ¬ x r� x)

lemma irreflI [intro]: [[r ⊆ A × A;
∧

x. x ∈ A =⇒ ¬ x r� x]] =⇒ irrefl A r
unfolding irrefl-def by simp

lemma irreflD[dest]: [[irrefl A r ; (x, y) ∈ r]] =⇒ hasw [x,y] A
unfolding irrefl-def by auto

lemma irreflD ′[dest]:
[[irrefl A r ; r 6= {}]] =⇒ ∃ x y. hasw [x,y] A ∧ (x, y) ∈ r
unfolding irrefl-def by auto

Rational preference relations, also known as weak orders and (I guess) complete pre-orders.
definition rpr :: ′a set ⇒ ′a RPR ⇒ bool where

rpr A r ≡ complete A r ∧ refl-on A r ∧ trans r

lemma rprI [intro]: [[complete A r ; refl-on A r ; trans r]] =⇒ rpr A r
unfolding rpr-def by simp

lemma rprD: rpr A r =⇒ complete A r ∧ refl-on A r ∧ trans r
unfolding rpr-def by simp

lemma rpr-in-set[dest]: [[rpr A r ; x r� y]] =⇒ {x,y} ⊆ A
unfolding rpr-def refl-on-def by auto

lemma rpr-refl[dest]: [[rpr A r ; x ∈ A]] =⇒ x r� x
unfolding rpr-def by blast

lemma rpr-less-not: [[rpr A r ; hasw [x,y] A; ¬ x r≺ y]] =⇒ y r� x
unfolding rpr-def by (auto simp add: complete-less-not)

lemma rpr-less-imp-le[simp]: [[x r≺ y]] =⇒ x r� y

10

unfolding strict-pref-def by simp

lemma rpr-less-imp-neq[simp]: [[x r≺ y]] =⇒ x 6= y
unfolding strict-pref-def by blast

lemma rpr-less-trans[trans]: [[x r≺ y; y r≺ z; rpr A r]] =⇒ x r≺ z
unfolding rpr-def strict-pref-def trans-def by blast

lemma rpr-le-trans[trans]: [[x r� y; y r� z; rpr A r]] =⇒ x r� z
unfolding rpr-def trans-def by blast

lemma rpr-le-less-trans[trans]: [[x r� y; y r≺ z; rpr A r]] =⇒ x r≺ z
unfolding rpr-def strict-pref-def trans-def by blast

lemma rpr-less-le-trans[trans]: [[x r≺ y; y r� z; rpr A r]] =⇒ x r≺ z
unfolding rpr-def strict-pref-def trans-def by blast

lemma rpr-complete: [[rpr A r ; x ∈ A; y ∈ A]] =⇒ x r� y ∨ y r� x
unfolding rpr-def by (blast dest: complete-refl-on)

3.2 Profiles
A profile (also termed a collection of ballots) maps each individual to an RPR for that indi-
vidual.
type-synonym (′a, ′i) Profile = ′i ⇒ ′a RPR

definition profile :: ′a set ⇒ ′i set ⇒ (′a, ′i) Profile ⇒ bool where
profile A Is P ≡ Is 6= {} ∧ (∀ i ∈ Is. rpr A (P i))

lemma profileI [intro]: [[
∧

i. i ∈ Is =⇒ rpr A (P i); Is 6= {}]] =⇒ profile A Is P
unfolding profile-def by simp

lemma profile-rprD[dest]: [[profile A Is P; i ∈ Is]] =⇒ rpr A (P i)
unfolding profile-def by simp

lemma profile-non-empty: profile A Is P =⇒ Is 6= {}
unfolding profile-def by simp

3.3 Choice Sets, Choice Functions
A choice set is the subset of A where every element of that subset is (weakly) preferred to
every other element of A with respect to a given RPR. A choice function yields a non-empty
choice set whenever A is non-empty.
definition choiceSet :: ′a set ⇒ ′a RPR ⇒ ′a set where

choiceSet A r ≡ { x ∈ A . ∀ y ∈ A. x r� y }

definition choiceFn :: ′a set ⇒ ′a RPR ⇒ bool where
choiceFn A r ≡ ∀A ′ ⊆ A. A ′ 6= {} −→ choiceSet A ′ r 6= {}

11

lemma choiceSetI [intro]:
[[x ∈ A;

∧
y. y ∈ A =⇒ x r� y]] =⇒ x ∈ choiceSet A r

unfolding choiceSet-def by simp

lemma choiceFnI [intro]:
(
∧

A ′. [[A ′ ⊆ A; A ′ 6= {}]] =⇒ choiceSet A ′ r 6= {}) =⇒ choiceFn A r
unfolding choiceFn-def by simp

If a complete and reflexive relation is also quasi-transitive it will yield a choice function.
definition quasi-trans :: ′a RPR ⇒ bool where

quasi-trans r ≡ ∀ x y z. x r≺ y ∧ y r≺ z −→ x r≺ z

lemma quasi-transI [intro]:
(
∧

x y z. [[x r≺ y; y r≺ z]] =⇒ x r≺ z) =⇒ quasi-trans r
unfolding quasi-trans-def by blast

lemma quasi-transD: [[x r≺ y; y r≺ z; quasi-trans r]] =⇒ x r≺ z
unfolding quasi-trans-def by blast

lemma trans-imp-quasi-trans: trans r =⇒ quasi-trans r
by (rule quasi-transI , unfold strict-pref-def trans-def , blast)

lemma r-c-qt-imp-cf :
assumes finiteA: finite A

and c: complete A r
and qt: quasi-trans r
and r : refl-on A r

shows choiceFn A r
proof

fix B assume B: B ⊆ A B 6= {}
with finite-subset finiteA have finiteB: finite B by auto
from finiteB B show choiceSet B r 6= {}
proof(induct rule: finite-subset-induct ′)

case empty with B show ?case by auto
next

case (insert a B)
hence finiteB: finite B

and aA: a ∈ A
and AB: B ⊆ A
and aB: a /∈ B
and cF : B 6= {} =⇒ choiceSet B r 6= {} by − blast

show ?case
proof(cases B = {})

case True with aA r show ?thesis
unfolding choiceSet-def by blast

next
case False
with cF obtain b where bCF : b ∈ choiceSet B r by blast
from AB aA bCF complete-refl-on[OF c r]
have a r≺ b ∨ b r� a unfolding choiceSet-def strict-pref-def by blast
thus ?thesis
proof

assume ab: b r� a

12

with bCF show ?thesis unfolding choiceSet-def by auto
next

assume ab: a r≺ b
have a ∈ choiceSet (insert a B) r
proof(rule ccontr)

assume aCF : a /∈ choiceSet (insert a B) r
from aB have

∧
b. b ∈ B =⇒ a 6= b by auto

with aCF aA AB c r obtain b ′ where B: b ′ ∈ B b ′ r≺ a
unfolding choiceSet-def complete-def strict-pref-def by blast

with ab qt have b ′ r≺ b by (blast dest: quasi-transD)
with bCF B show False unfolding choiceSet-def strict-pref-def by blast

qed
thus ?thesis by auto

qed
qed

qed
qed

lemma rpr-choiceFn: [[finite A; rpr A r]] =⇒ choiceFn A r
unfolding rpr-def by (blast dest: trans-imp-quasi-trans r-c-qt-imp-cf)

3.4 Social Choice Functions (SCFs)
A social choice function (SCF), also called a collective choice rule by Sen [Sen70, p28], is a
function that somehow aggregates society’s opinions, expressed as a profile, into a preference
relation.
type-synonym (′a, ′i) SCF = (′a, ′i) Profile ⇒ ′a RPR

The least we require of an SCF is that it be complete and some function of the profile.
The latter condition is usually implied by other conditions, such as iia.
definition

SCF :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ (′a set ⇒ ′i set ⇒ (′a, ′i) Profile ⇒ bool) ⇒ bool
where

SCF scf A Is Pcond ≡ (∀P. Pcond A Is P −→ (complete A (scf P)))

lemma SCFI [intro]:
assumes c:

∧
P. Pcond A Is P =⇒ complete A (scf P)

shows SCF scf A Is Pcond
unfolding SCF-def using assms by blast

lemma SCF-completeD[dest]: [[SCF scf A Is Pcond; Pcond A Is P]] =⇒ complete A (scf P)
unfolding SCF-def by blast

3.5 Social Welfare Functions (SWFs)
A Social Welfare Function (SWF) is an SCF that expresses the society’s opinion as a single
RPR.

In some situations it might make sense to restrict the allowable profiles.
definition

SWF :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ (′a set ⇒ ′i set ⇒ (′a, ′i) Profile ⇒ bool) ⇒ bool
where

13

SWF swf A Is Pcond ≡ (∀P. Pcond A Is P −→ rpr A (swf P))

lemma SWF-rpr [dest]: [[SWF swf A Is Pcond; Pcond A Is P]] =⇒ rpr A (swf P)
unfolding SWF-def by simp

3.6 General Properties of an SCF
An SCF has a universal domain if it works for all profiles.
definition universal-domain :: ′a set ⇒ ′i set ⇒ (′a, ′i) Profile ⇒ bool where

universal-domain A Is P ≡ profile A Is P

declare universal-domain-def [simp]

An SCF is weakly Pareto-optimal if, whenever everyone strictly prefers x to y, the SCF
does too.
definition

weak-pareto :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ (′a set ⇒ ′i set ⇒ (′a, ′i) Profile ⇒ bool) ⇒ bool
where

weak-pareto scf A Is Pcond ≡
(∀P x y. Pcond A Is P ∧ x ∈ A ∧ y ∈ A ∧ (∀ i ∈ Is. x (P i)≺ y) −→ x (scf P)≺ y)

lemma weak-paretoI [intro]:
(
∧

P x y. [[Pcond A Is P; x ∈ A; y ∈ A;
∧

i. i∈Is =⇒ x (P i)≺ y]] =⇒ x (scf P)≺ y)
=⇒ weak-pareto scf A Is Pcond
unfolding weak-pareto-def by simp

lemma weak-paretoD:
[[weak-pareto scf A Is Pcond; Pcond A Is P; x ∈ A; y ∈ A;

(
∧

i. i ∈ Is =⇒ x (P i)≺ y)]] =⇒ x (scf P)≺ y
unfolding weak-pareto-def by simp

An SCF satisfies independence of irrelevant alternatives if, for two preference profiles P
and P ′ where for all individuals i, alternatives x and y drawn from set S have the same order
in P i and P ′ i, then alternatives x and y have the same order in scf P and scf P ′.
definition iia :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ bool where

iia scf S Is ≡
(∀P P ′ x y. profile S Is P ∧ profile S Is P ′

∧ x ∈ S ∧ y ∈ S
∧ (∀ i ∈ Is. ((x (P i)� y) ←→ (x (P ′ i)� y)) ∧ ((y (P i)� x) ←→ (y (P ′ i)� x)))
−→ ((x (scf P)� y) ←→ (x (scf P ′)� y)))

lemma iiaI [intro]:
(
∧

P P ′ x y.
[[profile S Is P; profile S Is P ′;

x ∈ S ; y ∈ S ;∧
i. i ∈ Is =⇒ ((x (P i)� y) ←→ (x (P ′ i)� y)) ∧ ((y (P i)� x) ←→ (y (P ′ i)� x))

]] =⇒ ((x (swf P)� y) ←→ (x (swf P ′)� y)))
=⇒ iia swf S Is
unfolding iia-def by simp

lemma iiaE :

14

[[iia swf S Is;
{x,y} ⊆ S ;
a ∈ {x, y}; b ∈ {x, y};∧

i a b. [[a ∈ {x, y}; b ∈ {x, y}; i ∈ Is]] =⇒ (a (P ′ i)� b) ←→ (a (P i)� b);
profile S Is P; profile S Is P ′]]

=⇒ (a (swf P)� b) ←→ (a (swf P ′)� b)
unfolding iia-def by (simp, blast)

3.7 Decisiveness and Semi-decisiveness
This notion is the key to Arrow’s Theorem, and hinges on the use of strict preference [Sen70,
p42].

A coalition C of agents is semi-decisive for x over y if, whenever the coalition prefers x to
y and all other agents prefer the converse, the coalition prevails.
definition semidecisive :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ ′i set ⇒ ′a ⇒ ′a ⇒ bool where

semidecisive scf A Is C x y ≡
C ⊆ Is ∧ (∀P. profile A Is P ∧ (∀ i ∈ C . x (P i)≺ y) ∧ (∀ i ∈ Is − C . y (P i)≺ x)
−→ x (scf P)≺ y)

lemma semidecisiveI [intro]:
[[C ⊆ Is;∧

P. [[profile A Is P;
∧

i. i ∈ C =⇒ x (P i)≺ y;
∧

i. i ∈ Is − C =⇒ y (P i)≺ x]]

=⇒ x (scf P)≺ y]] =⇒ semidecisive scf A Is C x y
unfolding semidecisive-def by simp

lemma semidecisive-coalitionD[dest]: semidecisive scf A Is C x y =⇒ C ⊆ Is
unfolding semidecisive-def by simp

lemma sd-refl: [[C ⊆ Is; C 6= {}]] =⇒ semidecisive scf A Is C x x
unfolding semidecisive-def strict-pref-def by blast

A coalition C is decisive for x over y if, whenever the coalition prefers x to y, the coalition
prevails.
definition decisive :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ ′i set ⇒ ′a ⇒ ′a ⇒ bool where

decisive scf A Is C x y ≡
C ⊆ Is ∧ (∀P. profile A Is P ∧ (∀ i ∈ C . x (P i)≺ y) −→ x (scf P)≺ y)

lemma decisiveI [intro]:
[[C ⊆ Is;

∧
P. [[profile A Is P;

∧
i. i ∈ C =⇒ x (P i)≺ y]] =⇒ x (scf P)≺ y]]

=⇒ decisive scf A Is C x y
unfolding decisive-def by simp

lemma d-imp-sd: decisive scf A Is C x y =⇒ semidecisive scf A Is C x y
unfolding decisive-def by (rule semidecisiveI , blast+)

lemma decisive-coalitionD[dest]: decisive scf A Is C x y =⇒ C ⊆ Is
unfolding decisive-def by simp

Anyone is trivially decisive for x against x.
lemma d-refl: [[C ⊆ Is; C 6= {}]] =⇒ decisive scf A Is C x x

15

unfolding decisive-def strict-pref-def by simp

Agent j is a dictator if her preferences always prevail. This is the same as saying that she
is decisive for all x and y.
definition dictator :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ ′i ⇒ bool where

dictator scf A Is j ≡ j ∈ Is ∧ (∀ x ∈ A. ∀ y ∈ A. decisive scf A Is {j} x y)

lemma dictatorI [intro]:
[[j ∈ Is;

∧
x y. [[x ∈ A; y ∈ A]] =⇒ decisive scf A Is {j} x y]] =⇒ dictator scf A Is j

unfolding dictator-def by simp

lemma dictator-individual[dest]: dictator scf A Is j =⇒ j ∈ Is
unfolding dictator-def by simp

4 Arrow’s General Possibility Theorem
The proof falls into two parts: showing that a semi-decisive individual is in fact a dictator,
and that a semi-decisive individual exists. I take them in that order.

It might be good to do some of this in a locale. The complication is untangling where
various witnesses need to be quantified over.

4.1 Semi-decisiveness Implies Decisiveness
I follow [Sen70, Chapter 3*] quite closely here. Formalising his appeal to the iia assumption
is the main complication here.

The witness for the first lemma: in the profile P ′, special agent j strictly prefers x to y to
z, and doesn’t care about the other alternatives. Everyone else strictly prefers y to each of x
to z, and inherits the relative preferences between x and z from profile P .

The model has to be specific about ordering all the other alternatives, but these are
immaterial in the proof that uses this witness. Note also that the following lemma is used
with different instantiations of x, y and z, so we need to quantify over them here. This
happens implicitly, but in a locale we would have to be more explicit.

This is just tedious.
lemma decisive1-witness:

assumes has3A: hasw [x,y,z] A
and profileP: profile A Is P
and jIs: j ∈ Is

obtains P ′

where profile A Is P ′

and x (P ′ j)≺ y ∧ y (P ′ j)≺ z
and

∧
i. i 6= j =⇒ y (P ′ i)≺ x ∧ y (P ′ i)≺ z ∧ ((x (P ′ i)� z) = (x (P i)� z)) ∧ ((z (P ′ i)� x)

= (z (P i)� x))
proof

let ?P ′ = λi. (if i = j then ({ (x, u) | u. u ∈ A }
∪ { (y, u) | u. u ∈ A − {x} }

16

∪ { (z, u) | u. u ∈ A − {x,y} })
else ({ (y, u) | u. u ∈ A }
∪ { (x, u) | u. u ∈ A − {y,z} }
∪ { (z, u) | u. u ∈ A − {x,y} }
∪ (if x (P i)� z then {(x,z)} else {})
∪ (if z (P i)� x then {(z,x)} else {})))

∪ (A − {x,y,z}) × (A − {x,y,z})
show profile A Is ?P ′

proof
fix i assume iIs: i ∈ Is
show rpr A (?P ′ i)
proof(cases i = j)

case True with has3A show ?thesis
by − (rule rprI , simp-all add: trans-def , blast+)

next
case False hence ij: i 6= j .
show ?thesis
proof

from iIs profileP have complete A (P i) by (blast dest: rpr-complete)
with ij show complete A (?P ′ i) by (simp add: complete-def , blast)
from iIs profileP have refl-on A (P i) by (auto simp add: rpr-def)
with has3A ij show refl-on A (?P ′ i) by (simp, blast)
from ij has3A show trans (?P ′ i) by (clarsimp simp add: trans-def)

qed
qed

next
from profileP show Is 6= {} by (rule profile-non-empty)

qed
from has3A
show x (?P ′ j)≺ y ∧ y (?P ′ j)≺ z
and

∧
i. i 6= j =⇒ y (?P ′ i)≺ x ∧ y (?P ′ i)≺ z ∧ ((x (?P ′ i)� z) = (x (P i)� z)) ∧ ((z (?P ′ i)�

x) = (z (P i)� x))
unfolding strict-pref-def by auto

qed

The key lemma: in the presence of Arrow’s assumptions, an individual who is semi-decisive
for x and y is actually decisive for x over any other alternative z. (This is where the quan-
tification becomes important.)
lemma decisive1 :

assumes has3A: hasw [x,y,z] A
and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} x y

shows decisive swf A Is {j} x z
proof

from sd show jIs: {j} ⊆ Is by blast
fix P
assume profileP: profile A Is P

and jxzP:
∧

i. i ∈ {j} =⇒ x (P i)≺ z
from has3A profileP jIs
obtain P ′

17

where profileP ′: profile A Is P ′

and jxyzP ′: x (P ′ j)≺ y y (P ′ j)≺ z
and ixyzP ′:

∧
i. i 6= j −→ y (P ′ i)≺ x ∧ y (P ′ i)≺ z ∧ ((x (P ′ i)� z) = (x (P i)� z)) ∧ ((z

(P ′ i)� x) = (z (P i)� x))
by − (rule decisive1-witness, blast+)

from iia have
∧

a b. [[a ∈ {x, z}; b ∈ {x, z}]] =⇒ (a (swf P)� b) = (a (swf P ′)� b)
proof(rule iiaE)

from has3A show {x,z} ⊆ A by simp
next

fix i assume iIs: i ∈ Is
fix a b assume ab: a ∈ {x, z} b ∈ {x, z}
show (a (P ′ i)� b) = (a (P i)� b)
proof(cases i = j)

case False
with ab iIs ixyzP ′ profileP profileP ′ has3A
show ?thesis unfolding profile-def by auto

next
case True
from profileP ′ jIs jxyzP ′ have x (P ′ j)≺ z

by (auto dest: rpr-less-trans)
with True ab iIs jxzP profileP profileP ′ has3A
show ?thesis unfolding profile-def strict-pref-def by auto

qed
qed (simp-all add: profileP profileP ′)
moreover have x (swf P ′)≺ z
proof −

from profileP ′ sd jxyzP ′ ixyzP ′ have x (swf P ′)≺ y by (simp add: semidecisive-def)
moreover
from jxyzP ′ ixyzP ′ have

∧
i. i ∈ Is =⇒ y (P ′ i)≺ z by (case-tac i=j, auto)

with wp profileP ′ has3A have y (swf P ′)≺ z by (auto dest: weak-paretoD)

moreover note SWF-rpr [OF swf] profileP ′

ultimately show x (swf P ′)≺ z
unfolding universal-domain-def by (blast dest: rpr-less-trans)

qed
ultimately show x (swf P)≺ z unfolding strict-pref-def by blast

qed

The witness for the second lemma: special agent j strictly prefers z to x to y, and everyone
else strictly prefers z to x and y to x. (In some sense the last part is upside-down with respect
to the first witness.)
lemma decisive2-witness:

assumes has3A: hasw [x,y,z] A
and profileP: profile A Is P
and jIs: j ∈ Is

obtains P ′

where profile A Is P ′

and z (P ′ j)≺ x ∧ x (P ′ j)≺ y
and

∧
i. i 6= j =⇒ z (P ′ i)≺ x ∧ y (P ′ i)≺ x ∧ ((y (P ′ i)� z) = (y (P i)� z)) ∧ ((z (P ′ i)� y)

= (z (P i)� y))
proof

18

let ?P ′ = λi. (if i = j then ({ (z, u) | u. u ∈ A }
∪ { (x, u) | u. u ∈ A − {z} }
∪ { (y, u) | u. u ∈ A − {x,z} })

else ({ (z, u) | u. u ∈ A − {y} }
∪ { (y, u) | u. u ∈ A − {z} }
∪ { (x, u) | u. u ∈ A − {y,z} }
∪ (if y (P i)� z then {(y,z)} else {})
∪ (if z (P i)� y then {(z,y)} else {})))

∪ (A − {x,y,z}) × (A − {x,y,z})
show profile A Is ?P ′

proof
fix i assume iIs: i ∈ Is
show rpr A (?P ′ i)
proof(cases i = j)

case True with has3A show ?thesis
by − (rule rprI , simp-all add: trans-def , blast+)

next
case False hence ij: i 6= j .
show ?thesis
proof

from iIs profileP have complete A (P i) by (auto simp add: rpr-def)
with ij show complete A (?P ′ i) by (simp add: complete-def , blast)
from iIs profileP have refl-on A (P i) by (auto simp add: rpr-def)
with has3A ij show refl-on A (?P ′ i) by (simp, blast)
from ij has3A show trans (?P ′ i) by (clarsimp simp add: trans-def)

qed
qed

next
show Is 6= {} by (rule profile-non-empty[OF profileP])

qed
from has3A
show z (?P ′ j)≺ x ∧ x (?P ′ j)≺ y
and

∧
i. i 6= j =⇒ z (?P ′ i)≺ x ∧ y (?P ′ i)≺ x ∧ ((y (?P ′ i)� z) = (y (P i)� z)) ∧ ((z (?P ′ i)�

y) = (z (P i)� y))
unfolding strict-pref-def by auto

qed

lemma decisive2 :
assumes has3A: hasw [x,y,z] A

and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} x y

shows decisive swf A Is {j} z y
proof

from sd show jIs: {j} ⊆ Is by blast
fix P
assume profileP: profile A Is P

and jyzP:
∧

i. i ∈ {j} =⇒ z (P i)≺ y
from has3A profileP jIs
obtain P ′

where profileP ′: profile A Is P ′

19

and jxyzP ′: z (P ′ j)≺ x x (P ′ j)≺ y
and ixyzP ′:

∧
i. i 6= j −→ z (P ′ i)≺ x ∧ y (P ′ i)≺ x ∧ ((y (P ′ i)� z) = (y (P i)� z)) ∧ ((z

(P ′ i)� y) = (z (P i)� y))
by − (rule decisive2-witness, blast+)

from iia have
∧

a b. [[a ∈ {y, z}; b ∈ {y, z}]] =⇒ (a (swf P)� b) = (a (swf P ′)� b)
proof(rule iiaE)

from has3A show {y,z} ⊆ A by simp
next

fix i assume iIs: i ∈ Is
fix a b assume ab: a ∈ {y, z} b ∈ {y, z}
show (a (P ′ i)� b) = (a (P i)� b)
proof(cases i = j)

case False
with ab iIs ixyzP ′ profileP profileP ′ has3A
show ?thesis unfolding profile-def by auto

next
case True
from profileP ′ jIs jxyzP ′ have z (P ′ j)≺ y

by (auto dest: rpr-less-trans)
with True ab iIs jyzP profileP profileP ′ has3A
show ?thesis unfolding profile-def strict-pref-def by auto

qed
qed (simp-all add: profileP profileP ′)
moreover have z (swf P ′)≺ y
proof −

from profileP ′ sd jxyzP ′ ixyzP ′ have x (swf P ′)≺ y by (simp add: semidecisive-def)
moreover
from jxyzP ′ ixyzP ′ have

∧
i. i ∈ Is =⇒ z (P ′ i)≺ x by (case-tac i=j, auto)

with wp profileP ′ has3A have z (swf P ′)≺ x by (auto dest: weak-paretoD)

moreover note SWF-rpr [OF swf] profileP ′

ultimately show z (swf P ′)≺ y
unfolding universal-domain-def by (blast dest: rpr-less-trans)

qed
ultimately show z (swf P)≺ y unfolding strict-pref-def by blast

qed

The following results permute x, y and z to show how decisiveness can be obtained from
semi-decisiveness in all cases. Again, quite tedious.
lemma decisive3 :

assumes has3A: hasw [x,y,z] A
and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} x z

shows decisive swf A Is {j} y z
using has3A decisive2 [OF - iia swf wp sd] by (simp, blast)

lemma decisive4 :
assumes has3A: hasw [x,y,z] A

and iia: iia swf A Is
and swf : SWF swf A Is universal-domain

20

and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} y z

shows decisive swf A Is {j} y x
using has3A decisive1 [OF - iia swf wp sd] by (simp, blast)

lemma decisive5 :
assumes has3A: hasw [x,y,z] A

and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} x y

shows decisive swf A Is {j} y x
proof −

from sd
have decisive swf A Is {j} x z by (rule decisive1 [OF has3A iia swf wp])
hence semidecisive swf A Is {j} x z by (rule d-imp-sd)
hence decisive swf A Is {j} y z by (rule decisive3 [OF has3A iia swf wp])
hence semidecisive swf A Is {j} y z by (rule d-imp-sd)
thus decisive swf A Is {j} y x by (rule decisive4 [OF has3A iia swf wp])

qed

lemma decisive6 :
assumes has3A: hasw [x,y,z] A

and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} y x

shows decisive swf A Is {j} y z decisive swf A Is {j} z x decisive swf A Is {j} x y
proof −

from has3A have has3A ′: hasw [y,x,z] A by auto
show decisive swf A Is {j} y z by (rule decisive1 [OF has3A ′ iia swf wp sd])
show decisive swf A Is {j} z x by (rule decisive2 [OF has3A ′ iia swf wp sd])
show decisive swf A Is {j} x y by (rule decisive5 [OF has3A ′ iia swf wp sd])

qed

lemma decisive7 :
assumes has3A: hasw [x,y,z] A

and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} x y

shows decisive swf A Is {j} y z decisive swf A Is {j} z x decisive swf A Is {j} x y
proof −

from sd
have decisive swf A Is {j} y x by (rule decisive5 [OF has3A iia swf wp])
hence semidecisive swf A Is {j} y x by (rule d-imp-sd)
thus decisive swf A Is {j} y z decisive swf A Is {j} z x decisive swf A Is {j} x y

by (rule decisive6 [OF has3A iia swf wp])+
qed

lemma j-decisive-xy:
assumes has3A: hasw [x,y,z] A

and iia: iia swf A Is

21

and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} x y
and uv: hasw [u,v] {x,y,z}

shows decisive swf A Is {j} u v
using uv decisive1 [OF has3A iia swf wp sd]

decisive2 [OF has3A iia swf wp sd]
decisive5 [OF has3A iia swf wp sd]
decisive7 [OF has3A iia swf wp sd]

by (simp, blast)

lemma j-decisive:
assumes has3A: has 3 A

and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and xyA: hasw [x,y] A
and sd: semidecisive swf A Is {j} x y
and uv: hasw [u,v] A

shows decisive swf A Is {j} u v
proof −

from has-extend-witness ′[OF has3A xyA]
obtain z where xyzA: hasw [x,y,z] A by auto
{

assume ux: u = x and vy: v = y
with xyzA iia swf wp sd have ?thesis by (auto intro: j-decisive-xy)

}
moreover
{

assume ux: u = x and vNEy: v 6= y
with uv xyA iia swf wp sd have ?thesis by(auto intro: j-decisive-xy[of x y])

}
moreover
{

assume uy: u = y and vx: v = x
with xyzA iia swf wp sd have ?thesis by (auto intro: j-decisive-xy)

}
moreover
{

assume uy: u = y and vNEx: v 6= x
with uv xyA iia swf wp sd have ?thesis by (auto intro: j-decisive-xy)

}
moreover
{

assume uNExy: u /∈ {x,y} and vx: v = x
with uv xyA iia swf wp sd have ?thesis by (auto intro: j-decisive-xy[of x y])

}
moreover
{

assume uNExy: u /∈ {x,y} and vy: v = y
with uv xyA iia swf wp sd have ?thesis by (auto intro: j-decisive-xy[of x y])

}
moreover

22

{
assume uNExy: u /∈ {x,y} and vNExy: v /∈ {x,y}
with uv xyA iia swf wp sd
have decisive swf A Is {j} x u by (auto intro: j-decisive-xy[where x=x and z=u])
hence sdxu: semidecisive swf A Is {j} x u by (rule d-imp-sd)
with uNExy vNExy uv xyA iia swf wp have ?thesis by (auto intro: j-decisive-xy[of x])

}
ultimately show ?thesis by blast

qed

The first result: if j is semidecisive for some alternatives u and v, then they are actually
a dictator.
lemma sd-imp-dictator :

assumes has3A: has 3 A
and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and uv: hasw [u,v] A
and sd: semidecisive swf A Is {j} u v

shows dictator swf A Is j
proof

fix x y assume x: x ∈ A and y: y ∈ A
show decisive swf A Is {j} x y
proof(cases x = y)

case True with sd show decisive swf A Is {j} x y by (blast intro: d-refl)
next

case False
with x y iia swf wp has3A uv sd show decisive swf A Is {j} x y

by (auto intro: j-decisive)
qed

next
from sd show j ∈ Is by blast

qed

4.2 The Existence of a Semi-decisive Individual
The second half of the proof establishes the existence of a semi-decisive individual. The
required witness is essentially an encoding of the Condorcet pardox (aka "the paradox of
voting" that shows we get tied up in knots if a certain agent didn’t have dictatorial powers.
lemma sd-exists-witness:

assumes has3A: hasw [x,y,z] A
and Vs: Is = V1 ∪ V2 ∪ V3

∧ V1 ∩ V2 = {} ∧ V1 ∩ V3 = {} ∧ V2 ∩ V3 = {}
and Is: Is 6= {}

obtains P
where profile A Is P

and ∀ i ∈ V1 . x (P i)≺ y ∧ y (P i)≺ z
and ∀ i ∈ V2 . z (P i)≺ x ∧ x (P i)≺ y
and ∀ i ∈ V3 . y (P i)≺ z ∧ z (P i)≺ x

proof
let ?P =
λi. (if i ∈ V1 then ({ (x, u) | u. u ∈ A }

23

∪ { (y, u) | u. u ∈ A ∧ u 6= x }
∪ { (z, u) | u. u ∈ A ∧ u 6= x ∧ u 6= y })

else
if i ∈ V2 then ({ (z, u) | u. u ∈ A }

∪ { (x, u) | u. u ∈ A ∧ u 6= z }
∪ { (y, u) | u. u ∈ A ∧ u 6= x ∧ u 6= z })

else ({ (y, u) | u. u ∈ A }
∪ { (z, u) | u. u ∈ A ∧ u 6= y }
∪ { (x, u) | u. u ∈ A ∧ u 6= y ∧ u 6= z }))
∪ { (u, v) | u v. u ∈ A − {x,y,z} ∧ v ∈ A − {x,y,z}}

show profile A Is ?P
proof

fix i assume iIs: i ∈ Is
show rpr A (?P i)
proof

show complete A (?P i) by (simp add: complete-def , blast)
from has3A iIs show refl-on A (?P i) by − (simp, blast)
from has3A iIs show trans (?P i) by (clarsimp simp add: trans-def)

qed
next

from Is show Is 6= {} .
qed
from has3A Vs
show ∀ i ∈ V1 . x (?P i)≺ y ∧ y (?P i)≺ z
and ∀ i ∈ V2 . z (?P i)≺ x ∧ x (?P i)≺ y
and ∀ i ∈ V3 . y (?P i)≺ z ∧ z (?P i)≺ x
unfolding strict-pref-def by auto

qed

This proof is unfortunately long. Many of the statements rely on a lot of context, making
it difficult to split it up.
lemma sd-exists:

assumes has3A: has 3 A
and finiteIs: finite Is
and twoIs: has 2 Is
and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain

shows ∃ j u v. hasw [u,v] A ∧ semidecisive swf A Is {j} u v
proof −

let ?P = λS . S ⊆ Is ∧ S 6= {} ∧ (∃ u v. hasw [u,v] A ∧ semidecisive swf A Is S u v)
obtain u v where uvA: hasw [u,v] A

using has-witness-two[OF has3A] by auto
— The weak pareto requirement implies that the set of all individuals is decisive between any

given alternatives.
hence decisive swf A Is Is u v

by − (rule, auto intro: weak-paretoD[OF wp])
hence semidecisive swf A Is Is u v by (rule d-imp-sd)
with uvA twoIs has-suc-notempty[where n=1] nat-2 [symmetric]
have ?P Is by auto

— Obtain a minimally-sized semi-decisive set.
from ex-has-least-nat[where P=?P and m=card, OF this]

24

obtain V x y where VIs: V ⊆ Is
and Vnotempty: V 6= {}
and xyA: hasw [x,y] A
and Vsd: semidecisive swf A Is V x y
and Vmin:

∧
V ′. ?P V ′ =⇒ card V ≤ card V ′

by blast
from VIs finiteIs have Vfinite: finite V by (rule finite-subset)

— Show that minimal set contains a single individual.
from Vfinite Vnotempty have ∃ j. V = {j}
proof(rule finite-set-singleton-contra)

assume Vcard: 1 < card V
then obtain j where jV : {j} ⊆ V

using has-extend-witness[where xs=[], OF card-has[where n=card V]] by auto
— Split an individual from the "minimal" set.

let ?V1 = {j}
let ?V2 = V − ?V1
let ?V3 = Is − V
from jV card-Diff-singleton Vcard
have V2card: card ?V2 > 0 card ?V2 < card V by auto
hence V2notempty: {} 6= ?V2 by (auto simp del: diff-shunt)
from jV VIs
have jV2V3 : Is = ?V1 ∪ ?V2 ∪ ?V3 ∧ ?V1 ∩ ?V2 = {} ∧ ?V1 ∩ ?V3 = {} ∧ ?V2 ∩ ?V3 =

{}
by auto

— Show that that individual is semi-decisive for x over z.
from has-extend-witness ′[OF has3A xyA]
obtain z where threeDist: hasw [x,y,z] A by auto
from sd-exists-witness[OF threeDist jV2V3] VIs Vnotempty
obtain P where profileP: profile A Is P

and V1xyzP: x (P j)≺ y ∧ y (P j)≺ z
and V2xyzP: ∀ i ∈ ?V2 . z (P i)≺ x ∧ x (P i)≺ y
and V3xyzP: ∀ i ∈ ?V3 . y (P i)≺ z ∧ z (P i)≺ x

by (simp, blast)
have xPz: x (swf P)≺ z
proof(rule rpr-less-le-trans[where y=y])

from profileP swf show rpr A (swf P) by auto
next

— V2 is semi-decisive, and everyone else opposes their choice. Ergo they prevail.
show x (swf P)≺ y
proof −

from profileP V3xyzP
have ∀ i ∈ ?V3 . y (P i)≺ x by (blast dest: rpr-less-trans)
with profileP V1xyzP V2xyzP Vsd
show ?thesis unfolding semidecisive-def by auto

qed
next

— This result is unfortunately quite tortuous.
from SWF-rpr [OF swf] show y (swf P)� z
proof(rule rpr-less-not[OF - - notI])

from threeDist show hasw [z, y] A by auto
next

assume zPy: z (swf P)≺ y

25

have semidecisive swf A Is ?V2 z y
proof

from VIs show V − {j} ⊆ Is by blast
next

fix P ′

assume profileP ′: profile A Is P ′

and V2yz ′:
∧

i. i ∈ ?V2 =⇒ z (P ′ i)≺ y
and nV2yz ′:

∧
i. i ∈ Is − ?V2 =⇒ y (P ′ i)≺ z

from iia have
∧

a b. [[a ∈ {y, z}; b ∈ {y, z}]] =⇒ (a (swf P)� b) = (a (swf P ′)� b)
proof(rule iiaE)

from threeDist show yzA: {y,z} ⊆ A by simp
next

fix i assume iIs: i ∈ Is
fix a b assume ab: a ∈ {y, z} b ∈ {y, z}
with VIs profileP V2xyzP
have V2yzP: ∀ i ∈ ?V2 . z (P i)≺ y by (blast dest: rpr-less-trans)
show (a (P ′ i)� b) = (a (P i)� b)
proof(cases i ∈ ?V2)

case True
with VIs profileP profileP ′ ab V2yz ′ V2yzP threeDist
show ?thesis unfolding strict-pref-def profile-def by auto

next
case False
from V1xyzP V3xyzP
have ∀ i ∈ Is − ?V2 . y (P i)≺ z by auto
with iIs False VIs jV profileP profileP ′ ab nV2yz ′ threeDist
show ?thesis unfolding profile-def strict-pref-def by auto

qed
qed (simp-all add: profileP profileP ′)
with zPy show z (swf P ′)≺ y unfolding strict-pref-def by blast

qed
with VIs Vsd Vmin[where V ′=?V2] V2card V2notempty threeDist show False

by auto
qed (simp add: profileP threeDist)

qed
have semidecisive swf A Is ?V1 x z
proof

from jV VIs show {j} ⊆ Is by blast
next

— Use iia to show the SWF must allow the individual to prevail.
fix P ′

assume profileP ′: profile A Is P ′

and V1yz ′:
∧

i. i ∈ ?V1 =⇒ x (P ′ i)≺ z
and nV1yz ′:

∧
i. i ∈ Is − ?V1 =⇒ z (P ′ i)≺ x

from iia have
∧

a b. [[a ∈ {x, z}; b ∈ {x, z}]] =⇒ (a (swf P)� b) = (a (swf P ′)� b)
proof(rule iiaE)

from threeDist show xzA: {x,z} ⊆ A by simp
next

fix i assume iIs: i ∈ Is
fix a b assume ab: a ∈ {x, z} b ∈ {x, z}
show (a (P ′ i)� b) = (a (P i)� b)

26

proof(cases i ∈ ?V1)
case True
with jV VIs profileP V1xyzP
have ∀ i ∈ ?V1 . x (P i)≺ z by (blast dest: rpr-less-trans)
with True jV VIs profileP profileP ′ ab V1yz ′ threeDist
show ?thesis unfolding strict-pref-def profile-def by auto

next
case False
from V2xyzP V3xyzP
have ∀ i ∈ Is − ?V1 . z (P i)≺ x by auto
with iIs False VIs jV profileP profileP ′ ab nV1yz ′ threeDist
show ?thesis unfolding strict-pref-def profile-def by auto

qed
qed (simp-all add: profileP profileP ′)
with xPz show x (swf P ′)≺ z unfolding strict-pref-def by blast

qed
with jV VIs Vsd Vmin[where V ′=?V1] V2card threeDist show False

by auto
qed
with xyA Vsd show ?thesis by blast

qed

4.3 Arrow’s General Possibility Theorem
Finally we conclude with the celebrated “possibility” result. Note that we assume the set of
individuals is finite; [Rou79] relaxes this with some fancier set theory. Having an infinite set
of alternatives doesn’t matter, though the result is a bit more plausible if we assume finiteness
[Sen70, p54].
theorem ArrowGeneralPossibility:

assumes has3A: has 3 A
and finiteIs: finite Is
and has2Is: has 2 Is
and iia: iia swf A Is
and swf : SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain

obtains j where dictator swf A Is j
using sd-imp-dictator [OF has3A iia swf wp]

sd-exists[OF has3A finiteIs has2Is iia swf wp]
by blast

5 Sen’s Liberal Paradox
5.1 Social Decision Functions (SDFs)
To make progress in the face of Arrow’s Theorem, the demands placed on the social choice
function need to be weakened. One approach is to only require that the set of alternatives
that society ranks highest (and is otherwise indifferent about) be non-empty.

27

Following [Sen70, Chapter 4*], a Social Decision Function (SDF) yields a choice function
for every profile.
definition

SDF :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ (′a set ⇒ ′i set ⇒ (′a, ′i) Profile ⇒ bool) ⇒ bool
where

SDF sdf A Is Pcond ≡ (∀P. Pcond A Is P −→ choiceFn A (sdf P))

lemma SDFI [intro]:
(
∧

P. Pcond A Is P =⇒ choiceFn A (sdf P)) =⇒ SDF sdf A Is Pcond
unfolding SDF-def by simp

lemma SWF-SDF :
assumes finiteA: finite A
shows SWF scf A Is universal-domain =⇒ SDF scf A Is universal-domain
unfolding SDF-def SWF-def by (blast dest: rpr-choiceFn[OF finiteA])

In contrast to SWFs, there are SDFs satisfying Arrow’s (relevant) requirements. The
lemma uses a witness to show the absence of a dictatorship.
lemma SDF-nodictator-witness:

assumes has2A: hasw [x,y] A
and has2Is: hasw [i,j] Is

obtains P
where profile A Is P

and x (P i)≺ y
and y (P j)≺ x

proof
let ?P = λk. (if k = i then ({ (x, u) | u. u ∈ A }

∪ { (y, u) | u. u ∈ A − {x} })
else ({ (y, u) | u. u ∈ A }
∪ { (x, u) | u. u ∈ A − {y} }))

∪ (A − {x,y}) × (A − {x,y})
show profile A Is ?P
proof

fix i assume iis: i ∈ Is
from has2A show rpr A (?P i)

by − (rule rprI , simp-all add: trans-def , blast+)
next

from has2Is show Is 6= {} by auto
qed
from has2A has2Is
show x (?P i)≺ y
and y (?P j)≺ x
unfolding strict-pref-def by auto

qed

lemma SDF-possibility:
assumes finiteA: finite A

and has2A: has 2 A
and has2Is: has 2 Is

obtains sdf
where weak-pareto sdf A Is universal-domain

and iia sdf A Is

28

and ¬(∃ j. dictator sdf A Is j)
and SDF sdf A Is universal-domain

proof −
let ?sdf = λP. { (x, y) . x ∈ A ∧ y ∈ A

∧ ¬ ((∀ i ∈ Is. y (P i)� x)
∧ (∃ i ∈ Is. y (P i)≺ x)) }

have weak-pareto ?sdf A Is universal-domain
by (rule, unfold strict-pref-def , auto dest: profile-non-empty)

moreover
have iia ?sdf A Is unfolding strict-pref-def by auto
moreover
have ¬(∃ j. dictator ?sdf A Is j)
proof

assume ∃ j. dictator ?sdf A Is j
then obtain j where jIs: j ∈ Is

and jD: ∀ x ∈ A. ∀ y ∈ A. decisive ?sdf A Is {j} x y
unfolding dictator-def decisive-def by auto

from jIs has-witness-two[OF has2Is] obtain i where ijIs: hasw [i,j] Is
by auto

from has-witness-two[OF has2A] obtain x y where xyA: hasw [x,y] A by auto
from xyA ijIs obtain P

where profileP: profile A Is P
and yPix: x (P i)≺ y
and yPjx: y (P j)≺ x

by (rule SDF-nodictator-witness)
from profileP jD jIs xyA yPjx have y (?sdf P)≺ x

unfolding decisive-def by simp
moreover
from ijIs xyA yPjx yPix have x (?sdf P)� y

unfolding strict-pref-def by auto
ultimately show False

unfolding strict-pref-def by blast
qed
moreover
have SDF ?sdf A Is universal-domain
proof

fix P assume ud: universal-domain A Is P
show choiceFn A (?sdf P)
proof(rule r-c-qt-imp-cf [OF finiteA])

show complete A (?sdf P) and refl-on A (?sdf P)
unfolding strict-pref-def by auto

show quasi-trans (?sdf P)
proof

fix x y z assume xy: x (?sdf P)≺ y and yz: y (?sdf P)≺ z
from xy yz have xyzA: x ∈ A y ∈ A z ∈ A

unfolding strict-pref-def by auto
from xy yz have AxRy: ∀ i ∈ Is. x (P i)� y

and ExPy: ∃ i ∈ Is. x (P i)≺ y
and AyRz: ∀ i ∈ Is. y (P i)� z

unfolding strict-pref-def by auto
from AxRy AyRz ud have AxRz: ∀ i ∈ Is. x (P i)� z

29

by − (unfold universal-domain-def , blast dest: rpr-le-trans)
from ExPy AyRz ud have ExPz: ∃ i ∈ Is. x (P i)≺ z

by − (unfold universal-domain-def , blast dest: rpr-less-le-trans)
from xyzA AxRz ExPz show x (?sdf P)≺ z unfolding strict-pref-def by auto

qed
qed

qed
ultimately show thesis ..

qed

Sen makes several other stronger statements about SDFs later in the chapter. I leave these
for future work.

5.2 Sen’s Liberal Paradox
Having side-stepped Arrow’s Theorem, Sen proceeds to other conditions one may ask of an
SCF. His analysis of liberalism, mechanised in this section, has attracted much criticism over
the years [AK96].

Following [Sen70, Chapter 6*], a liberal social choice rule is one that, for each individual,
there is a pair of alternatives that she is decisive over.
definition liberal :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ bool where

liberal scf A Is ≡
(∀ i ∈ Is. ∃ x ∈ A. ∃ y ∈ A. x 6= y
∧ decisive scf A Is {i} x y ∧ decisive scf A Is {i} y x)

lemma liberalE :
[[liberal scf A Is; i ∈ Is]]
=⇒ ∃ x ∈ A. ∃ y ∈ A. x 6= y

∧ decisive scf A Is {i} x y ∧ decisive scf A Is {i} y x
by (simp add: liberal-def)

This condition can be weakened to require just two such decisive individuals; if we required
just one, we would allow dictatorships, which are clearly not liberal.
definition minimally-liberal :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ bool where

minimally-liberal scf A Is ≡
(∃ i ∈ Is. ∃ j ∈ Is. i 6= j
∧ (∃ x ∈ A. ∃ y ∈ A. x 6= y
∧ decisive scf A Is {i} x y ∧ decisive scf A Is {i} y x)

∧ (∃ x ∈ A. ∃ y ∈ A. x 6= y
∧ decisive scf A Is {j} x y ∧ decisive scf A Is {j} y x))

lemma liberal-imp-minimally-liberal:
assumes has2Is: has 2 Is

and L: liberal scf A Is
shows minimally-liberal scf A Is

proof −
from has-extend-witness[where xs=[], OF has2Is]
obtain i where i: i ∈ Is by auto
with has-extend-witness[where xs=[i], OF has2Is]
obtain j where j: j ∈ Is i 6= j by auto
from L i j show ?thesis

30

unfolding minimally-liberal-def by (blast intro: liberalE)
qed

The key observation is that once we have at least two decisive individuals we can complete
the Condorcet (paradox of voting) cycle using the weak Pareto assumption. The details of
the proof don’t give more insight.

Firstly we need three types of profile witnesses (one of which we saw previously). The
main proof proceeds by case distinctions on which alternatives the two liberal agents are
decisive for.
lemmas liberal-witness-two = SDF-nodictator-witness

lemma liberal-witness-three:
assumes threeA: hasw [x,y,v] A

and twoIs: hasw [i,j] Is
obtains P

where profile A Is P
and x (P i)≺ y
and v (P j)≺ x
and ∀ i ∈ Is. y (P i)≺ v

proof −
let ?P =
λa. if a = i then { (x, u) | u. u ∈ A }

∪ { (y, u) | u. u ∈ A − {x} }
∪ (A − {x,y}) × (A − {x,y})

else { (y, u) | u. u ∈ A }
∪ { (v, u) | u. u ∈ A − {y} }
∪ (A − {v,y}) × (A − {v,y})

have profile A Is ?P
proof

fix i assume iis: i ∈ Is
show rpr A (?P i)
proof

show complete A (?P i) by (simp, blast)
from threeA iis show refl-on A (?P i) by (simp, blast)
from threeA iis show trans (?P i) by (clarsimp simp add: trans-def)

qed
next

from twoIs show Is 6= {} by auto
qed
moreover
from threeA twoIs have x (?P i)≺ y v (?P j)≺ x ∀ i ∈ Is. y (?P i)≺ v

unfolding strict-pref-def by auto
ultimately show ?thesis ..

qed

lemma liberal-witness-four :
assumes fourA: hasw [x,y,u,v] A

and twoIs: hasw [i,j] Is
obtains P

where profile A Is P
and x (P i)≺ y
and u (P j)≺ v

31

and ∀ i ∈ Is. v (P i)≺ x ∧ y (P i)≺ u
proof −

let ?P =
λa. if a = i then { (v, w) | w. w ∈ A }

∪ { (x, w) | w. w ∈ A − {v} }
∪ { (y, w) | w. w ∈ A − {v,x} }
∪ (A − {v,x,y}) × (A − {v,x,y})

else { (y, w) | w. w ∈ A }
∪ { (u, w) | w. w ∈ A − {y} }
∪ { (v, w) | w. w ∈ A − {u,y} }
∪ (A − {u,v,y}) × (A − {u,v,y})

have profile A Is ?P
proof

fix i assume iis: i ∈ Is
show rpr A (?P i)
proof

show complete A (?P i) by (simp, blast)
from fourA iis show refl-on A (?P i) by (simp, blast)
from fourA iis show trans (?P i) by (clarsimp simp add: trans-def)

qed
next

from twoIs show Is 6= {} by auto
qed
moreover
from fourA twoIs have x (?P i)≺ y u (?P j)≺ v ∀ i ∈ Is. v (?P i)≺ x ∧ y (?P i)≺ u

by (unfold strict-pref-def , auto)
ultimately show thesis ..

qed

The Liberal Paradox: having two decisive individuals, an SDF and the weak pareto as-
sumption is inconsistent.
theorem LiberalParadox:

assumes SDF : SDF sdf A Is universal-domain
and ml: minimally-liberal sdf A Is
and wp: weak-pareto sdf A Is universal-domain

shows False
proof −

from ml obtain i j x y u v
where i: i ∈ Is and j: j ∈ Is and ij: i 6= j

and x: x ∈ A and y: y ∈ A and u: u ∈ A and v: v ∈ A
and xy: x 6= y
and dixy: decisive sdf A Is {i} x y
and diyx: decisive sdf A Is {i} y x
and uv: u 6= v
and djuv: decisive sdf A Is {j} u v
and djvu: decisive sdf A Is {j} v u

by (unfold minimally-liberal-def , auto)
from i j ij have twoIs: hasw [i,j] Is by simp
{

assume xu: x = u and yv: y = v
from xy x y have twoA: hasw [x,y] A by simp
obtain P

32

where profile A Is P x (P i)≺ y y (P j)≺ x
using liberal-witness-two[OF twoA twoIs] by blast

with i j dixy djvu xu yv have False
by (unfold decisive-def strict-pref-def , blast)

}
moreover
{

assume xu: x = u and yv: y 6= v
with xy uv xu x y v have threeA: hasw [x,y,v] A by simp
obtain P

where profileP: profile A Is P
and xPiy: x (P i)≺ y
and vPjx: v (P j)≺ x
and AyPv: ∀ i ∈ Is. y (P i)≺ v

using liberal-witness-three[OF threeA twoIs] by blast
from vPjx j djvu xu profileP have vPx: v (sdf P)≺ x

by (unfold decisive-def strict-pref-def , auto)
from xPiy i dixy profileP have xPy: x (sdf P)≺ y

by (unfold decisive-def strict-pref-def , auto)
from AyPv weak-paretoD[OF wp - y v] profileP have yPv: y (sdf P)≺ v

by auto
from threeA profileP SDF have choiceSet {x,y,v} (sdf P) 6= {}

by (simp add: SDF-def choiceFn-def)
with vPx xPy yPv have False

by (unfold choiceSet-def strict-pref-def , blast)
}
moreover
{

assume xv: x = v and yu: y = u
from xy x y have twoA: hasw [x,y] A by auto
obtain P

where profile A Is P x (P i)≺ y y (P j)≺ x
using liberal-witness-two[OF twoA twoIs] by blast

with i j dixy djuv xv yu have False
by (unfold decisive-def strict-pref-def , blast)

}
moreover
{

assume xv: x = v and yu: y 6= u
with xy uv u x y have threeA: hasw [x,y,u] A by simp
obtain P

where profileP: profile A Is P
and xPiy: x (P i)≺ y
and uPjx: u (P j)≺ x
and AyPu: ∀ i ∈ Is. y (P i)≺ u

using liberal-witness-three[OF threeA twoIs] by blast
from uPjx j djuv xv profileP have uPx: u (sdf P)≺ x

by (unfold decisive-def strict-pref-def , auto)
from xPiy i dixy profileP have xPy: x (sdf P)≺ y

by (unfold decisive-def strict-pref-def , auto)
from AyPu weak-paretoD[OF wp - y u] profileP have yPu: y (sdf P)≺ u

33

by auto
from threeA profileP SDF have choiceSet {x,y,u} (sdf P) 6= {}

by (simp add: SDF-def choiceFn-def)
with uPx xPy yPu have False

by (unfold choiceSet-def strict-pref-def , blast)
}
moreover
{

assume xu: x 6= u and xv: x 6= v and yu: y = u
with v x y xy uv xu have threeA: hasw [y,x,v] A by simp
obtain P

where profileP: profile A Is P
and yPix: y (P i)≺ x
and vPjy: v (P j)≺ y
and AxPv: ∀ i ∈ Is. x (P i)≺ v

using liberal-witness-three[OF threeA twoIs] by blast
from yPix i diyx profileP have yPx: y (sdf P)≺ x

by (unfold decisive-def strict-pref-def , auto)
from vPjy j djvu yu profileP have vPy: v (sdf P)≺ y

by (unfold decisive-def strict-pref-def , auto)
from AxPv weak-paretoD[OF wp - x v] profileP have xPv: x (sdf P)≺ v

by auto
from threeA profileP SDF have choiceSet {x,y,v} (sdf P) 6= {}

by (simp add: SDF-def choiceFn-def)
with yPx vPy xPv have False

by (unfold choiceSet-def strict-pref-def , blast)
}
moreover
{

assume xu: x 6= u and xv: x 6= v and yv: y = v
with u x y xy uv xu have threeA: hasw [y,x,u] A by simp
obtain P

where profileP: profile A Is P
and yPix: y (P i)≺ x
and uPjy: u (P j)≺ y
and AxPu: ∀ i ∈ Is. x (P i)≺ u

using liberal-witness-three[OF threeA twoIs] by blast
from yPix i diyx profileP have yPx: y (sdf P)≺ x

by (unfold decisive-def strict-pref-def , auto)
from uPjy j djuv yv profileP have uPy: u (sdf P)≺ y

by (unfold decisive-def strict-pref-def , auto)
from AxPu weak-paretoD[OF wp - x u] profileP have xPu: x (sdf P)≺ u

by auto
from threeA profileP SDF have choiceSet {x,y,u} (sdf P) 6= {}

by (simp add: SDF-def choiceFn-def)
with yPx uPy xPu have False

by (unfold choiceSet-def strict-pref-def , blast)
}
moreover
{

assume xu: x 6= u and xv: x 6= v and yu: y 6= u and yv: y 6= v

34

with u v x y xy uv xu have fourA: hasw [x,y,u,v] A by simp
obtain P

where profileP: profile A Is P
and xPiy: x (P i)≺ y
and uPjv: u (P j)≺ v
and AvPxAyPu: ∀ i ∈ Is. v (P i)≺ x ∧ y (P i)≺ u

using liberal-witness-four [OF fourA twoIs] by blast
from xPiy i dixy profileP have xPy: x (sdf P)≺ y

by (unfold decisive-def strict-pref-def , auto)
from uPjv j djuv profileP have uPv: u (sdf P)≺ v

by (unfold decisive-def strict-pref-def , auto)
from AvPxAyPu weak-paretoD[OF wp] profileP x y u v
have vPx: v (sdf P)≺ x and yPu: y (sdf P)≺ u by auto
from fourA profileP SDF have choiceSet {x,y,u,v} (sdf P) 6= {}

by (simp add: SDF-def choiceFn-def)
with xPy uPv vPx yPu have False

by (unfold choiceSet-def strict-pref-def , blast)
}
ultimately show False by blast

qed

6 May’s Theorem
May’s Theorem [May52] provides a characterisation of majority voting in terms of four con-
ditions that appear quite natural for a priori unbiased social choice scenarios. It can be seen
as a refinement of some earlier work by Arrow [Arr63, Chapter V.1].

The following is a mechanisation of Sen’s generalisation [Sen70, Chapter 5*]; originally
Arrow and May consider only two alternatives, whereas Sen’s model maps profiles of full
RPRs to a possibly intransitive relation that does at least generate a choice set that satisfies
May’s conditions.

6.1 May’s Conditions
The condition of anonymity asserts that the individuals’ identities are not considered by the
choice rule. Rather than talk about permutations we just assert the result of the SCF is the
same when the profile is composed with an arbitrary bijection on the set of individuals.
definition anonymous :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ bool where

anonymous scf A Is ≡
(∀P f x y. profile A Is P ∧ bij-betw f Is Is ∧ x ∈ A ∧ y ∈ A
−→ (x (scf P)� y) = (x (scf (P ◦ f))� y))

lemma anonymousI [intro]:
(
∧

P f x y. [[profile A Is P; bij-betw f Is Is;
x ∈ A; y ∈ A]] =⇒ (x (scf P)� y) = (x (scf (P ◦ f))� y))

=⇒ anonymous scf A Is
unfolding anonymous-def by simp

35

lemma anonymousD:
[[anonymous scf A Is; profile A Is P; bij-betw f Is Is; x ∈ A; y ∈ A]]
=⇒ (x (scf P)� y) = (x (scf (P ◦ f))� y)
unfolding anonymous-def by simp

Similarly, an SCF is neutral if it is insensitive to the identity of the alternatives. This is
Sen’s characterisation [Sen70, p72].
definition neutral :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ bool where

neutral scf A Is ≡
(∀P P ′ x y z w. profile A Is P ∧ profile A Is P ′ ∧ x ∈ A ∧ y ∈ A ∧ z ∈ A ∧ w ∈ A
∧ (∀ i ∈ Is. x (P i)� y ←→ z (P ′ i)� w) ∧ (∀ i ∈ Is. y (P i)� x ←→ w (P ′ i)� z)

−→ ((x (scf P)� y ←→ z (scf P ′)� w) ∧ (y (scf P)� x ←→ w (scf P ′)� z)))

lemma neutralI [intro]:
(
∧

P P ′ x y z w.
[[profile A Is P; profile A Is P ′; {x,y,z,w} ⊆ A;∧

i. i ∈ Is =⇒ x (P i)� y ←→ z (P ′ i)� w;∧
i. i ∈ Is =⇒ y (P i)� x ←→ w (P ′ i)� z]]

=⇒ ((x (scf P)� y ←→ z (scf P ′)� w) ∧ (y (scf P)� x ←→ w (scf P ′)� z)))
=⇒ neutral scf A Is
unfolding neutral-def by simp

lemma neutralD:
[[neutral scf A Is;

profile A Is P; profile A Is P ′; {x,y,z,w} ⊆ A;∧
i. i ∈ Is =⇒ x (P i)� y ←→ z (P ′ i)� w;∧
i. i ∈ Is =⇒ y (P i)� x ←→ w (P ′ i)� z]]

=⇒ (x (scf P)� y ←→ z (scf P ′)� w) ∧ (y (scf P)� x ←→ w (scf P ′)� z)
unfolding neutral-def by simp

Neutrality implies independence of irrelevant alternatives.
lemma neutral-iia: neutral scf A Is =⇒ iia scf A Is

unfolding neutral-def by (rule, auto)

Positive responsiveness is a bit like non-manipulability: if one individual improves their
opinion of x, then the result should shift in favour of x.
definition positively-responsive :: (′a, ′i) SCF ⇒ ′a set ⇒ ′i set ⇒ bool where

positively-responsive scf A Is ≡
(∀P P ′ x y. profile A Is P ∧ profile A Is P ′ ∧ x ∈ A ∧ y ∈ A
∧ (∀ i ∈ Is. (x (P i)≺ y −→ x (P ′ i)≺ y) ∧ (x (P i)≈ y −→ x (P ′ i)� y))
∧ (∃ k ∈ Is. (x (P k)≈ y ∧ x (P ′ k)≺ y) ∨ (y (P k)≺ x ∧ x (P ′ k)� y))
−→ x (scf P)� y −→ x (scf P ′)≺ y)

lemma positively-responsiveI [intro]:
assumes I :

∧
P P ′ x y.

[[profile A Is P; profile A Is P ′; x ∈ A; y ∈ A;∧
i. [[i ∈ Is; x (P i)≺ y]] =⇒ x (P ′ i)≺ y;∧
i. [[i ∈ Is; x (P i)≈ y]] =⇒ x (P ′ i)� y;
∃ k ∈ Is. (x (P k)≈ y ∧ x (P ′ k)≺ y) ∨ (y (P k)≺ x ∧ x (P ′ k)� y);

36

x (scf P)� y]]
=⇒ x (scf P ′)≺ y

shows positively-responsive scf A Is
unfolding positively-responsive-def
by (blast intro: I)

lemma positively-responsiveD:
[[positively-responsive scf A Is;

profile A Is P; profile A Is P ′; x ∈ A; y ∈ A;∧
i. [[i ∈ Is; x (P i)≺ y]] =⇒ x (P ′ i)≺ y;∧
i. [[i ∈ Is; x (P i)≈ y]] =⇒ x (P ′ i)� y;
∃ k ∈ Is. (x (P k)≈ y ∧ x (P ′ k)≺ y) ∨ (y (P k)≺ x ∧ x (P ′ k)� y);
x (scf P)� y]]
=⇒ x (scf P ′)≺ y

unfolding positively-responsive-def
apply clarsimp
apply (erule allE [where x=P])
apply (erule allE [where x=P ′])
apply (erule allE [where x=x])
apply (erule allE [where x=y])
by auto

6.2 The Method of Majority Decision satisfies May’s conditions
The method of majority decision (MMD) says that if the number of individuals who strictly
prefer x to y is larger than or equal to those who strictly prefer the converse, then x R y.
Note that this definition only makes sense for a finite population.
definition MMD :: ′i set ⇒ (′a, ′i) SCF where

MMD Is P ≡ { (x, y) . card { i ∈ Is. x (P i)≺ y } ≥ card { i ∈ Is. y (P i)≺ x } }

The first part of May’s Theorem establishes that the conditions are consistent, by showing
that they are satisfied by MMD.
lemma MMD-l2r :

fixes A :: ′a set
and Is :: ′i set

assumes finiteIs: finite Is
shows SCF (MMD Is) A Is universal-domain

and anonymous (MMD Is) A Is
and neutral (MMD Is) A Is
and positively-responsive (MMD Is) A Is

proof −
show SCF (MMD Is) A Is universal-domain
proof

fix P show complete A (MMD Is P)
by (rule completeI , unfold MMD-def , simp, arith)

qed
show anonymous (MMD Is) A Is
proof

fix P
fix x y :: ′a
fix f assume bijf : bij-betw f Is Is

37

show (x (MMD Is P)� y) = (x (MMD Is (P ◦ f))� y)
using card-compose-bij[OF bijf , where P=λi. x (P i)≺ y]

card-compose-bij[OF bijf , where P=λi. y (P i)≺ x]
unfolding MMD-def by simp

qed
next

show neutral (MMD Is) A Is
proof

fix P P ′

fix x y z w assume xyzwA: {x,y,z,w} ⊆ A
assume xyzw:

∧
i. i ∈ Is =⇒ (x (P i)� y) = (z (P ′ i)� w)

and yxwz:
∧

i. i ∈ Is =⇒ (y (P i)� x) = (w (P ′ i)� z)
from xyzwA xyzw yxwz
have { i ∈ Is. x (P i)≺ y } = { i ∈ Is. z (P ′ i)≺ w }
and { i ∈ Is. y (P i)≺ x } = { i ∈ Is. w (P ′ i)≺ z }
unfolding strict-pref-def by auto

thus (x (MMD Is P)� y) = (z (MMD Is P ′)� w) ∧
(y (MMD Is P)� x) = (w (MMD Is P ′)� z)

unfolding MMD-def by simp
qed

next
show positively-responsive (MMD Is) A Is
proof

fix P P ′ assume profileP: profile A Is P
fix x y assume xyA: x ∈ A y ∈ A
assume xPy:

∧
i. [[i ∈ Is; x (P i)≺ y]] =⇒ x (P ′ i)≺ y

and xIy:
∧

i. [[i ∈ Is; x (P i)≈ y]] =⇒ x (P ′ i)� y
and k: ∃ k∈Is. x (P k)≈ y ∧ x (P ′ k)≺ y ∨ y (P k)≺ x ∧ x (P ′ k)� y
and xRSCFy: x (MMD Is P)� y

from k obtain k
where kIs: k ∈ Is

and kcond: (x (P k)≈ y ∧ x (P ′ k)≺ y) ∨ (y (P k)≺ x ∧ x (P ′ k)� y)
by blast

let ?xPy = { i ∈ Is. x (P i)≺ y }
let ?xP ′y = { i ∈ Is. x (P ′ i)≺ y }
let ?yPx = { i ∈ Is. y (P i)≺ x }
let ?yP ′x = { i ∈ Is. y (P ′ i)≺ x }
from profileP xyA xPy xIy have yP ′xyPx: ?yP ′x ⊆ ?yPx

unfolding strict-pref-def indifferent-pref-def
by (blast dest: rpr-complete)

with finiteIs have yP ′xyPxC : card ?yP ′x ≤ card ?yPx
by (blast intro: card-mono finite-subset)

from finiteIs xPy have xPyxP ′yC : card ?xPy ≤ card ?xP ′y
by (blast intro: card-mono finite-subset)

show x (MMD Is P ′)≺ y
proof

from xRSCFy xPyxP ′yC yP ′xyPxC show x (MMD Is P ′)� y
unfolding MMD-def by auto

next

38

{
assume xIky: x (P k)≈ y and xP ′ky: x (P ′ k)≺ y
have card ?xPy < card ?xP ′y
proof −

from xIky have knP: k /∈ ?xPy
unfolding indifferent-pref-def strict-pref-def by blast

from kIs xP ′ky have kP ′: k ∈ ?xP ′y by simp
from finiteIs xPy knP kP ′ show ?thesis

by (blast intro: psubset-card-mono finite-subset)
qed
with xRSCFy yP ′xyPxC have card ?yP ′x < card ?xP ′y

unfolding MMD-def by auto
}
moreover
{

assume yPkx: y (P k)≺ x and xR ′ky: x (P ′ k)� y
have card ?yP ′x < card ?yPx
proof −

from kIs yPkx have kP: k ∈ ?yPx by simp
from kIs xR ′ky have knP ′: k /∈ ?yP ′x

unfolding strict-pref-def by blast
from yP ′xyPx kP knP ′ have ?yP ′x ⊂ ?yPx by blast
with finiteIs show ?thesis

by (blast intro: psubset-card-mono finite-subset)
qed
with xRSCFy xPyxP ′yC have card ?yP ′x < card ?xP ′y

unfolding MMD-def by auto
}
moreover note kcond
ultimately show ¬(y (MMD Is P ′)� x)

unfolding MMD-def by auto
qed

qed
qed

6.3 Everything satisfying May’s conditions is the Method of Majority De-
cision

Now show that MMD is the only SCF that satisfies these conditions.

Firstly develop some theory about exchanging alternatives x and y in profile P .
definition swapAlts :: ′a ⇒ ′a ⇒ ′a ⇒ ′a where

swapAlts a b u ≡ if u = a then b else if u = b then a else u

lemma swapAlts-in-set-iff : {a, b} ⊆ A =⇒ swapAlts a b u ∈ A ←→ u ∈ A
unfolding swapAlts-def by (simp split: if-split)

definition swapAltsP :: (′a, ′i) Profile ⇒ ′a ⇒ ′a ⇒ (′a, ′i) Profile where
swapAltsP P a b ≡ (λi. { (u, v) . (swapAlts a b u, swapAlts a b v) ∈ P i })

lemma swapAltsP-ab: a (P i)� b ←→ b (swapAltsP P a b i)� a b (P i)� a ←→ a (swapAltsP P a b i)�
b

39

unfolding swapAltsP-def swapAlts-def by simp-all

lemma profile-swapAltsP:
assumes profileP: profile A Is P

and abA: {a,b} ⊆ A
shows profile A Is (swapAltsP P a b)

proof(rule profileI)
from profileP show Is 6= {} by (rule profile-non-empty)

next
fix i assume iIs: i ∈ Is
show rpr A (swapAltsP P a b i)
proof(rule rprI)

show refl-on A (swapAltsP P a b i)
proof(rule refl-onI)

from profileP iIs abA show swapAltsP P a b i ⊆ A × A
unfolding swapAltsP-def by (blast dest: swapAlts-in-set-iff)

from profileP iIs abA show
∧

x. x ∈ A =⇒ x (swapAltsP P a b i)� x
unfolding swapAltsP-def swapAlts-def by auto

qed
next

from profileP iIs abA show complete A (swapAltsP P a b i)
unfolding swapAltsP-def
by − (rule completeI , simp, rule rpr-complete[where A=A],

auto iff : swapAlts-in-set-iff)
next

from profileP iIs show trans (swapAltsP P a b i)
unfolding swapAltsP-def by (blast dest: rpr-le-trans intro: transI)

qed
qed

lemma profile-bij-profile:
assumes profileP: profile A Is P

and bijf : bij-betw f Is Is
shows profile A Is (P ◦ f)
using bij-betw-onto[OF bijf] profileP
by − (rule, auto dest: profile-non-empty)

The locale keeps the conditions in scope for the next few lemmas. Note how weak the
constraints on the sets of alternatives and individuals are; clearly there needs to be at least
two alternatives and two individuals for conflict to occur, but it is pleasant that the proof
uniformly handles the degenerate cases.
locale May =

fixes A :: ′a set

fixes Is :: ′i set
assumes finiteIs: finite Is

fixes scf :: (′a, ′i) SCF
assumes SCF : SCF scf A Is universal-domain

and anonymous: anonymous scf A Is
and neutral: neutral scf A Is
and positively-responsive: positively-responsive scf A Is

40

begin

Anonymity implies that, for any pair of alternatives, the social choice rule can only depend
on the number of individuals who express any given preference between them. Note we also
need iia, implied by neutrality, to restrict attention to alternatives x and y.
lemma anonymous-card:

assumes profileP: profile A Is P
and profileP ′: profile A Is P ′

and xyA: hasw [x,y] A
and xytally: card { i ∈ Is. x (P i)≺ y } = card { i ∈ Is. x (P ′ i)≺ y }
and yxtally: card { i ∈ Is. y (P i)≺ x } = card { i ∈ Is. y (P ′ i)≺ x }

shows x (scf P)� y ←→ x (scf P ′)� y
proof −

let ?xPy = { i ∈ Is. x (P i)≺ y }
let ?xP ′y = { i ∈ Is. x (P ′ i)≺ y }
let ?yPx = { i ∈ Is. y (P i)≺ x }
let ?yP ′x = { i ∈ Is. y (P ′ i)≺ x }
have disjPxy: (?xPy ∪ ?yPx) − ?xPy = ?yPx

unfolding strict-pref-def by blast
have disjP ′xy: (?xP ′y ∪ ?yP ′x) − ?xP ′y = ?yP ′x

unfolding strict-pref-def by blast
from finiteIs xytally
obtain f where bijf : bij-betw f ?xPy ?xP ′y

by − (drule card-eq-bij, auto)
from finiteIs yxtally
obtain g where bijg: bij-betw g ?yPx ?yP ′x

by − (drule card-eq-bij, auto)
from bijf bijg disjPxy disjP ′xy
obtain h

where bijh: bij-betw h (?xPy ∪ ?yPx) (?xP ′y ∪ ?yP ′x)
and hf :

∧
j. j ∈ ?xPy =⇒ h j = f j

and hg:
∧

j. j ∈ (?xPy ∪ ?yPx) − ?xPy =⇒ h j = g j
using bij-combine[where f=f and g=g and A=?xPy and B =?xPy ∪ ?yPx and C=?xP ′y and

D=?xP ′y ∪ ?yP ′x]
by auto

from bijh finiteIs
obtain h ′ where bijh ′: bij-betw h ′ Is Is

and hh ′:
∧

j. j ∈ (?xPy ∪ ?yPx) =⇒ h ′ j = h j
and hrest:

∧
j. j ∈ Is − (?xPy ∪ ?yPx) =⇒ h ′ j ∈ Is − (?xP ′y ∪ ?yP ′x)

by − (drule bij-complete, auto)
from neutral-iia[OF neutral]
have x (scf (P ′ ◦ h ′))� y ←→ x (scf P)� y
proof(rule iiaE)

from xyA show {x, y} ⊆ A by simp
next

fix i assume iIs: i ∈ Is
fix a b assume ab: a ∈ {x, y} b ∈ {x, y}
from profileP iIs have completePi: complete A (P i) by (auto dest: rprD)
from completePi xyA
show (a (P i)� b) ←→ (a ((P ′ ◦ h ′) i)� b)
proof(cases rule: complete-exh)

41

case xPy with profileP profileP ′ xyA iIs ab hh ′ hf bijf show ?thesis
unfolding strict-pref-def bij-betw-def by (simp, blast)

next
case yPx with profileP profileP ′ xyA iIs ab hh ′ hg bijg show ?thesis

unfolding strict-pref-def bij-betw-def by (simp, blast)
next

case xIy with profileP profileP ′ xyA iIs ab hrest[where j=i] show ?thesis
unfolding indifferent-pref-def strict-pref-def bij-betw-def
by (simp, blast dest: rpr-complete)

qed
qed (simp-all add: profileP profile-bij-profile[OF profileP ′ bijh ′])
moreover
from anonymousD[OF anonymous profileP ′ bijh ′] xyA
have x (scf P ′)� y ←→ x (scf (P ′ ◦ h ′))� y by simp
ultimately show ?thesis by simp

qed

Using the previous result and neutrality, it must be the case that if the tallies are tied
for alternatives x and y then the social choice function is indifferent between those two
alternatives.
lemma anonymous-neutral-indifference:

assumes profileP: profile A Is P
and xyA: hasw [x,y] A
and tallyP: card { i ∈ Is. x (P i)≺ y } = card { i ∈ Is. y (P i)≺ x }

shows x (scf P)≈ y
proof −

— Neutrality insists the results for P are symmetrical to those for swapAltsP P.
from xyA
have symPP ′: (x (scf P)� y ←→ y (scf (swapAltsP P x y))� x)

∧ (y (scf P)� x ←→ x (scf (swapAltsP P x y))� y)
by − (rule neutralD[OF neutral profileP profile-swapAltsP[OF profileP]],

simp-all, (rule swapAltsP-ab)+)
— Anonymity and neutrality insist the results for P are identical to those for swapAltsP P.

from xyA tallyP have card {i ∈ Is. x (P i)≺ y} = card { i ∈ Is. x (swapAltsP P x y i)≺ y }
and card {i ∈ Is. y (P i)≺ x} = card { i ∈ Is. y (swapAltsP P x y i)≺ x }

unfolding swapAltsP-def swapAlts-def strict-pref-def by simp-all
with profileP xyA have idPP ′: x (scf P)� y ←→ x (scf (swapAltsP P x y))� y

and y (scf P)� x ←→ y (scf (swapAltsP P x y))� x
by − (rule anonymous-card[OF profileP profile-swapAltsP], clarsimp+)+

from xyA SCF-completeD[OF SCF] profileP symPP ′ idPP ′ show x (scf P)≈ y by (simp, blast)
qed

Finally, if the tallies are not equal then the social choice function must lean towards the
one with the higher count due to positive responsiveness.
lemma positively-responsive-prefer-witness:

assumes profileP: profile A Is P
and xyA: hasw [x,y] A
and tallyP: card { i ∈ Is. x (P i)≺ y } > card { i ∈ Is. y (P i)≺ x }

obtains P ′ k
where profile A Is P ′

and
∧

i. [[i ∈ Is; x (P ′ i)≺ y]] =⇒ x (P i)≺ y

42

and
∧

i. [[i ∈ Is; x (P ′ i)≈ y]] =⇒ x (P i)� y
and k ∈ Is ∧ x (P ′ k)≈ y ∧ x (P k)≺ y
and card { i ∈ Is. x (P ′ i)≺ y } = card { i ∈ Is. y (P ′ i)≺ x }

proof −
from tallyP obtain C

where tallyP ′: card ({ i ∈ Is. x (P i)≺ y } − C) = card { i ∈ Is. y (P i)≺ x }
and C : C 6= {} C ⊆ Is
and CxPy: C ⊆ { i ∈ Is. x (P i)≺ y }

by − (drule card-greater [OF finiteIs], auto)
— Add (b, a) and close under transitivity.

let ?P ′ = λi. if i ∈ C
then P i ∪ { (y, x) }

∪ { (y, u) |u. x (P i)� u }
∪ { (u, x) |u. u (P i)� y }
∪ { (v, u) |u v. x (P i)� u ∧ v (P i)� y }

else P i
have profile A Is ?P ′

proof
fix i assume iIs: i ∈ Is
show rpr A (?P ′ i)
proof

from profileP iIs show complete A (?P ′ i)
unfolding complete-def by (simp, blast dest: rpr-complete)

from profileP iIs xyA show refl-on A (?P ′ i)
by − (rule refl-onI , auto)

show trans (?P ′ i)
proof(cases i ∈ C)

case False with profileP iIs show ?thesis
by (simp, blast dest: rpr-le-trans intro: transI)

next
case True with profileP iIs C CxPy xyA show ?thesis

unfolding strict-pref-def
by − (rule transI , simp, blast dest: rpr-le-trans rpr-complete)

qed
qed

next
from C show Is 6= {} by blast

qed
moreover
have

∧
i. [[i ∈ Is; x (?P ′ i)≺ y]] =⇒ x (P i)≺ y

unfolding strict-pref-def by (simp split: if-split-asm)
moreover
from profileP C xyA
have

∧
i. [[i ∈ Is; x (?P ′ i)≈ y]] =⇒ x (P i)� y

unfolding indifferent-pref-def by (simp split: if-split-asm)
moreover
from C CxPy obtain k where kC : k ∈ C and xPky: x (P k)≺ y by blast
hence x (?P ′ k)≈ y by auto
with C kC xPky have k ∈ Is ∧ x (?P ′ k)≈ y ∧ x (P k)≺ y by blast
moreover
have card { i ∈ Is. x (?P ′ i)≺ y } = card { i ∈ Is. y (?P ′ i)≺ x }

43

proof −
have { i ∈ Is. x (?P ′ i)≺ y } = { i ∈ Is. x (?P ′ i)≺ y } − C
proof −

from C have
∧

i. [[i ∈ Is; x (?P ′ i)≺ y]] =⇒ i ∈ Is − C
unfolding indifferent-pref-def strict-pref-def by auto

thus ?thesis by blast
qed
also have . . . = { i ∈ Is. x (P i)≺ y } − C by auto
finally have card { i ∈ Is. x (?P ′ i)≺ y } = card ({ i ∈ Is. x (P i)≺ y } − C)

by simp
with tallyP ′ have card { i ∈ Is. x (?P ′ i)≺ y } = card { i ∈ Is. y (P i)≺ x }

by simp
also have . . . = card { i ∈ Is. y (?P ′ i)≺ x } (is card ?lhs = card ?rhs)
proof −

from profileP xyA have
∧

i. [[i ∈ Is; y (?P ′ i)≺ x]] =⇒ y (P i)≺ x
unfolding strict-pref-def by (simp split: if-split-asm, blast dest: rpr-complete)

hence ?rhs ⊆ ?lhs by blast
moreover
from profileP xyA have

∧
i. [[i ∈ Is; y (P i)≺ x]] =⇒ y (?P ′ i)≺ x

unfolding strict-pref-def by simp
hence ?lhs ⊆ ?rhs by blast
ultimately show ?thesis by simp

qed
finally show ?thesis .

qed
ultimately show thesis ..

qed

lemma positively-responsive-prefer :
assumes profileP: profile A Is P

and xyA: hasw [x,y] A
and tallyP: card { i ∈ Is. x (P i)≺ y } > card { i ∈ Is. y (P i)≺ x }

shows x (scf P)≺ y
proof −

from assms obtain P ′ k
where profileP ′: profile A Is P ′

and F :
∧

i. [[i ∈ Is; x (P ′ i)≺ y]] =⇒ x (P i)≺ y
and G:

∧
i. [[i ∈ Is; x (P ′ i)≈ y]] =⇒ x (P i)� y

and pivot: k ∈ Is ∧ x (P ′ k)≈ y ∧ x (P k)≺ y
and cardP ′: card { i ∈ Is. x (P ′ i)≺ y } = card { i ∈ Is. y (P ′ i)≺ x }

by − (drule positively-responsive-prefer-witness, auto)
from profileP ′ xyA cardP ′ have x (scf P ′)≈ y

by − (rule anonymous-neutral-indifference, auto)
with xyA F G pivot show ?thesis

by − (rule positively-responsiveD[OF positively-responsive profileP ′ profileP], auto)
qed

lemma MMD-r2l:
assumes profileP: profile A Is P

and xyA: hasw [x,y] A

44

shows x (scf P)� y ←→ x (MMD Is P)� y
proof(cases rule: linorder-cases)

assume card { i ∈ Is. x (P i)≺ y } = card { i ∈ Is. y (P i)≺ x }
with profileP xyA show ?thesis

using anonymous-neutral-indifference
unfolding indifferent-pref-def MMD-def by simp

next
assume card { i ∈ Is. x (P i)≺ y } > card { i ∈ Is. y (P i)≺ x }
with profileP xyA show ?thesis

using positively-responsive-prefer
unfolding strict-pref-def MMD-def by simp

next
assume card { i ∈ Is. x (P i)≺ y } < card { i ∈ Is. y (P i)≺ x }
with profileP xyA show ?thesis

using positively-responsive-prefer
unfolding strict-pref-def MMD-def by clarsimp

qed

end

May’s original paper [May52] goes on to show that the conditions are independent by
exhibiting choice rules that differ from MMD and satisfy the conditions remaining after any
particular one is removed. I leave this to future work.

May also wrote a later article [May53] where he shows that the conditions are completely
independent, i.e. for every partition of the conditions into two sets, there is a voting rule that
satisfies one and not the other.

There are many later papers that characterise MMD with different sets of conditions.

6.4 The Plurality Rule
Goodin and List [GL06] show that May’s original result can be generalised to characterise
plurality voting. The following shows that this result is a short step from Sen’s much earlier
generalisation.

Plurality voting is a choice function that returns the alternative that receives the most
votes, or the set of such alternatives in the case of a tie. Profiles are restricted to those where
each individual casts a vote in favour of a single alternative.
type-synonym (′a, ′i) SVProfile = ′i ⇒ ′a

definition svprofile :: ′a set ⇒ ′i set ⇒ (′a, ′i) SVProfile ⇒ bool where
svprofile A Is F ≡ Is 6= {} ∧ F ‘ Is ⊆ A

definition plurality-rule :: ′a set ⇒ ′i set ⇒ (′a, ′i) SVProfile ⇒ ′a set where
plurality-rule A Is F
≡ { x ∈ A . ∀ y ∈ A. card { i ∈ Is . F i = x } ≥ card { i ∈ Is . F i = y } }

By translating single-vote profiles into RPRs in the obvious way, the choice function arising
from MMD coincides with traditional plurality voting.
definition MMD-plurality-rule :: ′a set ⇒ ′i set ⇒ (′a, ′i) Profile ⇒ ′a set where

MMD-plurality-rule A Is P ≡ choiceSet A (MMD Is P)

45

definition single-vote-to-RPR :: ′a set ⇒ ′a ⇒ ′a RPR where
single-vote-to-RPR A a ≡ { (a, x) |x. x ∈ A } ∪ (A − {a}) × (A − {a})

lemma single-vote-to-RPR-iff :
[[a ∈ A; x ∈ A; a 6= x]] =⇒ (a (single-vote-to-RPR A b)≺ x) ←→ (b = a)
unfolding single-vote-to-RPR-def strict-pref-def by auto

lemma plurality-rule-equiv:
plurality-rule A Is F = MMD-plurality-rule A Is (single-vote-to-RPR A ◦ F)

proof −
{

fix x y
have [[x ∈ A; y ∈ A]] =⇒
(card {i ∈ Is. F i = y} ≤ card {i ∈ Is. F i = x}) =
(card {i ∈ Is. y (single-vote-to-RPR A (F i))≺ x}
≤ card {i ∈ Is. x (single-vote-to-RPR A (F i))≺ y})

by (cases x=y, auto iff : single-vote-to-RPR-iff)
}
thus ?thesis

unfolding plurality-rule-def MMD-plurality-rule-def choiceSet-def MMD-def
by auto

qed

Thus it is clear that Sen’s generalisation of May’s result applies to this case as well.
Their paper goes on to show how strengthening the anonymity condition gives rise to a

characterisation of approval voting that strictly generalises May’s original theorem. As this
requires some rearrangement of the proof I leave it to future work.

7 Bibliography

References
[AK96] Analyse & Kritik, volume 18(1). 1996.

[Arr63] K. J. Arrow. Social Choice and Individual Values. John Wiley and Sons, second
edition, 1963.

[GL06] R. E. Goodin and C. List. A conditional defense of plurality rule: Generalizing May’s
Theorem in a restricted informational environment. American Journal of Political
Science, 50(4), 2006.

[May52] K. O. May. A set of independent, necessary and sufficient conditions for simple
majority decision. Econometrica, 20(4), 1952.

[May53] K. O. May. A note on the complete independence of the conditions for simple
majority decision. Econometrica, 21(1), 1953.

[Nip08] Tobias Nipkow. Arrow and gibbard-satterthwaite. Archive of Formal Proofs, Septem-
ber 2008. http://isa-afp.org/entries/ArrowImpossibilityGS.shtml, Formal proof de-
velopment.

46

http://isa-afp.org/entries/ArrowImpossibilityGS.shtml

[Rou79] R. Routley. Repairing proofs of Arrow’s General Impossibility Theorem and en-
larging the scope of the theorem. Notre Dame Journal of Formal Logic, XX(4),
1979.

[Sen70] Amartya Sen. Collective Choice and Social Welfare. Holden Day, 1970.

[Tay05] A. D. Taylor. Social Choice and the Mathematics of Manipulation. Outlooks. Cam-
bridge University Press, 2005.

47

	Overview
	General Lemmas
	Extra Finite-Set Lemmas
	Extra bijection lemmas
	Collections of witnesses: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 hasw, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 has

	Preliminaries
	Rational Preference Relations (RPRs)
	Profiles
	Choice Sets, Choice Functions
	Social Choice Functions (SCFs)
	Social Welfare Functions (SWFs)
	General Properties of an SCF
	Decisiveness and Semi-decisiveness

	Arrow's General Possibility Theorem
	Semi-decisiveness Implies Decisiveness
	The Existence of a Semi-decisive Individual
	Arrow's General Possibility Theorem

	Sen's Liberal Paradox
	Social Decision Functions (SDFs)
	Sen's Liberal Paradox

	May's Theorem
	May's Conditions
	The Method of Majority Decision satisfies May's conditions
	Everything satisfying May's conditions is the Method of Majority Decision
	The Plurality Rule

	Bibliography

