Arrow's General Possibility Theorem

Peter Gammie
peteg42 at gmail.com

September 13, 2023

Contents

1 Overview 2
2 General Lemmas 2
2.1 Extra Finite-Set Lemmas 2
2.2 Extra bijection lemmas 3
2.3 Collections of witnesses: hasw, has 5
3 Preliminaries 8
3.1 Rational Preference Relations (RPRs) 9
3.2 Profiles 11
3.3 Choice Sets, Choice Functions 11
3.4 Social Choice Functions (SCFs) 13
3.5 Social Welfare Functions (SWFs) 13
3.6 General Properties of an SCF 14
3.7 Decisiveness and Semi-decisiveness 15
4 Arrow's General Possibility Theorem 16
4.1 Semi-decisiveness Implies Decisiveness 16
4.2 The Existence of a Semi-decisive Individual 23
4.3 Arrow's General Possibility Theorem 27
5 Sen's Liberal Paradox 27
5.1 Social Decision Functions (SDFs) 27
5.2 Sen's Liberal Paradox 30
6 May's Theorem 35
6.1 May's Conditions 35
6.2 The Method of Majority Decision satisfies May's conditions 37
6.3 Everything satisfying May's conditions is the Method of Majority Decision 39
6.4 The Plurality Rule 45
7 Bibliography 46

1 Overview

This is a fairly literal encoding of some of Armatya Sen's proofs [Sen70] in Isabelle/HOL. The author initially wrote it while learning to use the proof assistant, and some locutions remain naive. This work is somewhat complementary to the mechanisation of more recent proofs of Arrow's Theorem and the Gibbard-Satterthwaite Theorem by Tobias Nipkow [Nip08].

I strongly recommend Sen's book to anyone interested in social choice theory; his proofs are quite lucid and accessible, and he situates the theory quite well within the broader economic tradition.

2 General Lemmas

2.1 Extra Finite-Set Lemmas

Small variant of Finite-Set.finite-subset-induct: also assume $F \subseteq A$ in the induction hypothesis.
lemma finite-subset-induct' [consumes 2, case-names empty insert]:
assumes finite F and $F \subseteq A$
and empty: $P\}$
and insert: $\bigwedge a F . \llbracket$ finite $F ; a \in A ; F \subseteq A ; a \notin F ; P F \rrbracket \Longrightarrow P($ insert $a F)$
shows P F
proof -
from 〈finite F 〉
have $F \subseteq A \Longrightarrow$?thesis
proof induct
show P \{\} by fact
next
fix $x F$
assume finite F and $x \notin F$ and
$P: F \subseteq A \Longrightarrow P F$ and $i:$ insert $x \subseteq A$
show $P($ insert $x F)$
proof (rule insert)
from i show $x \in A$ by blast
from i have $F \subseteq A$ by blast
with P show $P F$.
show finite F by fact
show $x \notin F$ by fact
show $F \subseteq A$ by fact
qed
qed
with $\langle F \subseteq A\rangle$ show ?thesis by blast
qed
A slight improvement on List.finite-list-add distinct.
lemma finite-list: finite $A \Longrightarrow \exists l$. set $l=A \wedge$ distinct l
proof (induct rule: finite-induct)
case (insert $x F$)
then obtain l where set $l=F \wedge$ distinct l by auto
with insert have set $(x \# l)=$ insert $x F \wedge \operatorname{distinct}(x \# l)$ by auto
thus ?case by blast
qed auto

2.2 Extra bijection lemmas

lemma bij-betw-onto: bij-betw f $A B \Longrightarrow f^{\prime} A=B$ unfolding bij-betw-def by simp
lemma inj-on-UnI: 【inj-on $f A ; \operatorname{inj-on~} f B ; f^{\prime}(A-B) \cap f^{\prime}(B-A)=\{ \} \rrbracket \Longrightarrow \operatorname{inj}$-on $f(A \cup B)$ by (auto iff: inj-on-Un)
lemma card-compose-bij:
assumes bijf: bij-betw $f A A$
shows $\operatorname{card}\{a \in A . P(f a)\}=\operatorname{card}\{a \in A . P a\}$
proof -
from bijf have $T: f^{\prime}\{a \in A . P(f a)\}=\{a \in A . P a\}$
unfolding bij-betw-def by auto
from bijf have card $\{a \in A . P(f a)\}=\operatorname{card}(f$ ' $\{a \in A . P(f a)\})$
unfolding bij-betw-def by (auto intro: subset-inj-on card-image[symmetric])
with T show ?thesis by simp
qed
lemma card-eq-bij:
assumes card $A B$: card $A=\operatorname{card} B$
and finite A : finite A and finite B : finite B
obtains f where bij-betw $f A B$
proof -
from finite A obtain g where G : bij-betw $g A\{0 . .<\operatorname{card} A\}$ by (blast dest: ex-bij-betw-finite-nat)
from finite B obtain h where H : bij-betw $h\{0 . .<\operatorname{card} B\} B$ by (blast dest: ex-bij-betw-nat-finite)
from $G H \operatorname{card} A B$ have $I: \operatorname{inj}$-on $(h \circ g) A$
unfolding bij-betw-def by - (rule comp-inj-on, simp-all)
from $G H \operatorname{card} A B$ have $(h \circ g)$ ' $A=B$ unfolding bij-betw-def by auto (metis image-cong image-image)
with I have bij-betw $(h \circ g) A B$
unfolding bij-betw-def by blast
thus thesis ..
qed
lemma bij-combine:
assumes $A B C D: A \subseteq B C \subseteq D$
and bijf: bij-betw $f A C$
and bijg: bij-betw $g(B-A)(D-C)$
obtains h
where bij-betw $h B D$
and $\bigwedge x . x \in A \Longrightarrow h x=f x$
and $\bigwedge x . x \in B-A \Longrightarrow h x=g x$
proof -
let $? h=\lambda x$. if $x \in A$ then $f x$ else $g x$
have inj-on? $h(A \cup(B-A))$
proof (rule inj-on-UnI)
from bijf show inj-on ?h A
by - (rule inj-onI, auto dest: inj-onD bij-betw-imp-inj-on)
from bijg show inj-on ?h $(B-A)$
by - (rule inj-onI, auto dest: inj-onD bij-betw-imp-inj-on)
from bijf bijg show ?h' $(A-(B-A)) \cap ? h^{\prime}(B-A-A)=\{ \}$
by (simp, blast dest: bij-betw-onto)
qed
with $A B C D$ have inj-on ?h B by (auto iff:Un-absorb1)
moreover
have ? h ' $B=D$
proof -
from $A B C D$ have ? $h^{\prime} B=f^{\prime} A \cup g{ }^{\prime}(B-A)$ by (auto iff: image-Un Un-absorb1)
also from $A B C D$ bijf bijg have $\ldots=D$ by (blast dest: bij-betw-onto)
finally show? thesis .
qed
ultimately have bij-betw ? h $B D$
and $\bigwedge x . x \in A \Longrightarrow ? h x=f x$
and $\bigwedge x . x \in B-A \Longrightarrow$? $h x=g x$
unfolding bij-betw-def by auto
thus thesis ..
qed
lemma bij-complete:
assumes finite C : finite C
and $A B C: A \subseteq C B \subseteq C$
and bijf: bij-betw $f A B$
obtains f^{\prime} where bij-betw $f^{\prime} C C$
and $\bigwedge x . x \in A \Longrightarrow f^{\prime} x=f x$
and $\bigwedge x . x \in C-A \Longrightarrow f^{\prime} x \in C-B$
proof -
from finite $C A B C$ bijf have card $B=$ card A
unfolding bij-betw-def
by (auto iff: inj-on-iff-eq-card [symmetric] intro: finite-subset)
with finite $C A B C$ bijf have card $(C-A)=\operatorname{card}(C-B)$
by (auto iff: finite-subset card-Diff-subset)
with finite C obtain g where bijg: bij-betw $g(C-A)(C-B)$
by - (drule card-eq-bij, auto)
from $A B C$ bijf bijg
obtain f^{\prime} where bijf': bij-betw $f^{\prime} C C$
and $f^{\prime} f: \bigwedge x . x \in A \Longrightarrow f^{\prime} x=f x$
and $f^{\prime} g: \wedge x . x \in C-A \Longrightarrow f^{\prime} x=g x$
by - (drule bij-combine, auto)
from $f^{\prime} g$ bijg have $\bigwedge x . x \in C-A \Longrightarrow f^{\prime} x \in C-B$
by (blast dest: bij-betw-onto)
with bijf' f'f show thesis ..
qed
lemma card-greater:
assumes finite A : finite A
and c: card $\{x \in A . P x\}>\operatorname{card}\{x \in A . Q x\}$
obtains C
where $\operatorname{card}(\{x \in A . P x\}-C)=\operatorname{card}\{x \in A . Q x\}$
and $C \neq\{ \}$
and $C \subseteq\{x \in A . P x\}$
proof -

```
    let ?PA={ x\inA.Px}
    let ?QA={x\inA.Qx}
    from finiteA obtain p where P: bij-betw p {0..<card ?PA} ?PA
    using ex-bij-betw-nat-finite[where M=?PA]
    by (blast intro: finite-subset)
    let ?CN = {card ?QA..<card ?PA}
    let ?C = p'?CN
    have card ({x\inA.Px}-?C) = card ?QA
    proof -
    have nat-add-sub-shuffle: \xyz.\llbracket(x::nat)>y;x-y=z\rrbracket\Longrightarrowx-z=y by simp
    from P have T: p'{card ?QA..<card ?PA} \subseteq?PA
        unfolding bij-betw-def by auto
    from P have card?PA - card?QA = card ?C
        unfolding bij-betw-def
        by (auto iff: card-image subset-inj-on[where A=?CN])
    with c have card ?PA - card ?C = card ?QA by (rule nat-add-sub-shuffle)
    with finiteA P T have card (?PA - ?C) = card ?QA
        unfolding bij-betw-def by (auto iff: finite-subset card-Diff-subset)
    thus ?thesis.
    qed
    moreover
    from Pc}\mathrm{ have ?C }\not={
    unfolding bij-betw-def by auto
    moreover
    from P have ?C\subseteq{x\inA.Px}
    unfolding bij-betw-def by auto
    ultimately show thesis ..
qed
```


2.3 Collections of witnesses: hasw, has

Given a set of cardinality at least n, we can find up to n distinct witnesses. The built-in card function unfortunately satisfies:

$$
\text { Finite-Set.card.infinite: infinite } A \Longrightarrow \text { card } A=0
$$

These lemmas handle the infinite case uniformly.
Thanks to Gerwin Klein suggesting this approach.

```
definition hasw :: 'a list }=>\mathrm{ ' 'a set }=>\mathrm{ bool where
    hasw xs S\equiv set xs\subseteqS^ distinct xs
definition has :: nat }=>\mp@subsup{}{}{\prime}\mathrm{ 'a set }=>\mathrm{ bool where
    has n S \equiv\exists xs. hasw xs }S\wedge\mathrm{ length xs =n
declare hasw-def[simp]
lemma hasI[intro]: hasw xs S\Longrightarrow has (length xs)S by (unfold has-def, auto)
lemma card-has:
    assumes cardS: card S=n
    shows has n S
proof(cases n=0)
```

```
    case True thus ?thesis by (simp add: has-def)
next
    case False
    with cardS card-eq- 0 -iff [where \(A=S]\) have finiteS: finite \(S\) by simp
    show ?thesis
    proof (rule ccontr)
    assume nhas: \(\neg\) has \(n S\)
    with distinct-card[symmetric]
    have \(n x s: \neg(\exists\) xs. set \(x s \subseteq S \wedge\) distinct \(x s \wedge\) card \((\) set \(x s)=n)\)
            by (auto simp add: has-def)
        from finite-list finiteS
        obtain \(x s\) where \(S=\) set \(x s\) by blast
        with cardS nxs show False by auto
    qed
qed
lemma card-has-rev:
    assumes finiteS: finite \(S\)
    shows has \(n S \Longrightarrow\) card \(S \geq n\) (is ?lhs \(\Longrightarrow\) ? rhs)
proof -
    assume ?lhs
    then obtain \(x s\)
        where set \(x s \subseteq S \wedge n=\) length \(x s\)
            and dxs: distinct xs by (unfold has-def hasw-def, blast)
    with card-mono[OF finiteS] distinct-card[OF dxs, symmetric]
    show? ?hs by simp
qed
lemma has-0: has \(0 S\) by (simp add: has-def)
lemma has-suc-notempty: has (Suc n) \(S \Longrightarrow\} \neq S\)
    by (clarsimp simp add: has-def)
lemma has-suc-subset: has (Suc n) \(S \Longrightarrow\} \subset S\)
    by (rule psubsetI, (simp add: has-suc-notempty)+)
lemma has-notempty-1:
    assumes Sne: \(S \neq\{ \}\)
    shows has \(1 S\)
proof -
    from Sne obtain \(x\) where \(x \in S\) by blast
    hence set \([x] \subseteq S \wedge\) distinct \([x] \wedge\) length \([x]=1\) by auto
    thus ?thesis by (unfold has-def hasw-def, blast)
qed
lemma has-le-has:
    assumes h: has \(n S\)
        and \(n n^{\prime}: n^{\prime} \leq n\)
    shows has \(n^{\prime} S\)
proof -
    from \(h\) obtain \(x s\) where hasw xs \(S\) length \(x s=n\) by (unfold has-def, blast)
    with \(n n^{\prime}\) set-take-subset [where \(n=n^{\prime}\) and \(x s=x s\) ]
    have hasw (take \(n^{\prime}\) xs) \(S\) length (take \(\left.n^{\prime} x s\right)=n^{\prime}\)
```

```
    by (simp-all add: min-def, blast+)
    thus ?thesis by (unfold has-def, blast)
qed
lemma has-ge-has-not:
    assumes h: \neghas n S
        and nn':}n\leq\mp@subsup{n}{}{\prime
    shows \neghas n' }
    using hnn' by (blast dest: has-le-has)
    lemma has-eq:
    assumes h: has n S
        and hn': \neghas (Suc n) S
    shows card S=n
proof -
    from h obtain xs
        where xs: hasw xs S and lenxs: length xs = n by (unfold has-def,blast)
    have set xs =S
    proof
        from xs show set xs \subseteqS by simp
    next
        show S\subseteq set xs
        proof(rule ccontr)
            assume \negS\subseteq set xs
            then obtain x}\mathrm{ where }x\inSx\not\in\mathrm{ set xs by blast
            with lenxs xs have hasw (x# xs)S length (x# xs)=Suc n by simp-all
            with hn' show False by (unfold has-def, blast)
        qed
    qed
    with xs lenxs distinct-card show card S = n by auto
qed
lemma has-extend-witness:
    assumes h: has n S
    shows \llbracket set xs \subseteqS; length xs <n\rrbracket\Longrightarrow set xs \subsetS
proof(induct xs)
    case Nil
    with h has-suc-notempty show ?case by (cases n, auto)
next
    case (Cons x xs)
    have set (x#xs)}\not=
    proof
        assume Sxxs: set (x# xs)=S
        hence finiteS: finite S by auto
        from h obtain xs'
            where Sxs': set xs'\subseteqS
            and dlxs': distinct xs '}^^\mathrm{ length xs '}=
            by (unfold has-def hasw-def, blast)
            with distinct-card have card (set xs') = n by auto
            with finiteS Sxs' card-mono have card S \geqn by auto
            moreover
            from Sxxs Cons card-length[where xs=x # xs]
            have card S<n by auto
```

```
    ultimately show False by simp
    qed
    with Cons show ?case by auto
qed
lemma has-extend-witness':
    \llbracket has n S; hasw xs S; length xs <n\rrbracket\Longrightarrow # x. hasw (x # xs)S
    by (simp, blast dest: has-extend-witness)
lemma has-witness-two:
    assumes hasnS: has n S
        and }n\mp@subsup{n}{}{\prime}:2\leq
    shows \existsx y.hasw [x,y]S
proof -
    have has2S: has 2 S by (rule has-le-has[OF hasnS nn`)
    from has-extend-witness'[OF has2S, where xs=[]]
    obtain x where }x\inS\mathrm{ by auto
    with has-extend-witness'[OF has2S, where xs=[x]]
    show ?thesis by auto
qed
    lemma has-witness-three:
    assumes hasnS: has n S
        and nn': 3 \leqn
    shows \existsx y z. hasw [x,y,z]S
proof -
    from nn' obtain x y where hasw [x,y]S
        using has-witness-two[OF hasnS] by auto
    with nn' show ?thesis
        using has-extend-witness'[OF hasnS, where xs=[x,y]] by auto
    qed
    lemma finite-set-singleton-contra:
    assumes finiteS: finite S
        and Sne: S }\not={
        and cardS: card S>1\Longrightarrow False
    shows \existsj.S={j}
proof -
    from cardS Sne card-0-eq[OF finiteS] have Scard: card S=1 by auto
    from has-extend-witness[where xs=[],OF card-has[OF this]]
    obtain j where {j}}\subseteqS\mathrm{ by auto
    from card-seteq[OF finiteS this] Scard show ?thesis by auto
qed
```


3 Preliminaries

The auxiliary concepts defined here are standard [Rou79, Sen70, Tay05]. Throughout we make use of a fixed set A of alternatives, drawn from some arbitrary type ' a of suitable size. Taylor [Tay05] terms this set an agenda. Similarly we have a type ' i of individuals and a
population $I s$.

3.1 Rational Preference Relations (RPRs)

Definitions for rational preference relations (RPRs), which represent indifference or strict preference amongst some set of alternatives. These are also called weak orders or (ambiguously) ballots.

Unfortunately Isabelle's standard ordering operators and lemmas are typeclass-based, and as introducing new types is painful and we need several orders per type, we need to repeat some things.
type-synonym ' $a R P R=\left({ }^{\prime} a * ' a\right)$ set
abbreviation rpr-eq-syntax :: ' $a \Rightarrow{ }^{\prime} a R P R \Rightarrow{ }^{\prime} a \Rightarrow$ bool $(--\preceq-[50,1000,51] 50)$ where

$$
x r \preceq y==(x, y) \in r
$$

definition indifferent-pref $::{ }^{\prime} a \Rightarrow{ }^{\prime} a R P R \Rightarrow ' a \Rightarrow$ bool $(--\approx-[50,1000,51] 50)$ where $x r \approx y \equiv(x r \preceq y \wedge y r \preceq x)$
lemma indifferent-prefI[intro]: $\llbracket x r \preceq y ; y r \preceq x \rrbracket \Longrightarrow x r \approx y$
unfolding indifferent-pref-def by simp
lemma indifferent-prefD[dest]: $x r \approx y \Longrightarrow x r \preceq y \wedge y r \preceq x$
unfolding indifferent-pref-def by simp
definition strict-pref $::{ }^{\prime} a \Rightarrow{ }^{\prime} a R P R \Rightarrow{ }^{\prime} a \Rightarrow \operatorname{bool}\left(-_-[50,1000,51] 50\right)$ where $x r \prec y \equiv(x r \preceq y \wedge \neg(y r \preceq x))$
lemma strict-pref-def-irrefl[simp]: $\neg\left(x_{r} \prec x\right)$ unfolding strict-pref-def by blast
lemma strict-prefI[intro]: $\llbracket x r \preceq y ; \neg(y r \preceq x) \rrbracket \Longrightarrow x r \prec y$
unfolding strict-pref-def by simp
Traditionally, $x_{r} \preceq y$ would be written $x R y, x_{r} \approx y$ as $x I y$ and $x_{r} \prec y$ as $x P y$, where the relation r is implicit, and profiles are indexed by subscripting.

Complete means that every pair of distinct alternatives is ranked. The "distinct" part is a matter of taste, as it makes sense to regard an alternative as as good as itself. Here I take reflexivity separately.
definition complete $::$ 'a set \Rightarrow 'a $R P R \Rightarrow$ bool where
complete $A r \equiv(\forall x \in A . \forall y \in A-\{x\} . x r \preceq y \vee y r \preceq x)$
lemma completeI[intro]:
$(\bigwedge x y . \llbracket x \in A ; y \in A ; x \neq y \rrbracket \Longrightarrow x r \preceq y \vee y r \preceq x) \Longrightarrow$ complete $A r$ unfolding complete-def by auto
lemma complete $D[$ dest $]$:
\llbracket complete $A r ; x \in A ; y \in A ; x \neq y \rrbracket \Longrightarrow x r \preceq y \vee y r \preceq x$
unfolding complete-def by auto
lemma complete-less-not: \llbracket complete $A r$; hasw $[x, y] A ; \neg x r \prec y \rrbracket \Longrightarrow y r \preceq x$
unfolding complete-def strict-pref-def by auto
lemma complete－indiff－not：【complete $A r$ ；hasw $[x, y] A ; \neg x r \approx y \rrbracket \Longrightarrow x r \prec y \vee y r \prec x$
unfolding complete－def indifferent－pref－def strict－pref－def by auto
lemma complete－exh：
assumes complete Ar and hasw $[x, y] A$
obtains $(x P y) x r \prec y$
$\mid(y P x)$ y $r \prec x$
｜（xIy）$x r \approx y$
using assms unfolding complete－def strict－pref－def indifferent－pref－def by auto
Use the standard refl．Also define irreflexivity analogously to how refl is defined in the standard library．
declare refl－onI［intro］refl－onD［dest］
lemma complete－refl－on：
\llbracket complete $A r$ ；refl－on $A r ; x \in A ; y \in A \rrbracket \Longrightarrow x r \preceq y \vee y r \preceq x$
unfolding complete－def by auto
definition irrefl ：：＇a set $\Rightarrow{ }^{\prime} a R P R \Rightarrow$ bool where
irrefl $A r \equiv r \subseteq A \times A \wedge(\forall x \in A . \neg x r \preceq x)$
lemma irrefll［intro］：$\llbracket ~ r \subseteq A \times A ; \bigwedge x . x \in A \Longrightarrow \neg x r \preceq x \rrbracket \Longrightarrow$ irrefl $A r$
unfolding irrefl－def by simp
lemma irrefl $D[$ dest $]: \llbracket$ irrefl $A r ;(x, y) \in r \rrbracket \Longrightarrow h a s w[x, y] A$
unfolding irrefl－def by auto
lemma irrefl ${ }^{\prime}[$ dest $]$ ：
\llbracket irrefl $A r ; r \neq\{ \} \rrbracket \Longrightarrow \exists x y$ ．hasw $[x, y] A \wedge(x, y) \in r$
unfolding irrefl－def by auto
Rational preference relations，also known as weak orders and（I guess）complete pre－orders．
definition rpr ：：＇a set $\Rightarrow{ }^{\prime} a R P R \Rightarrow$ bool where
rpr Ar complete Ar ＾refl－on Ar trans r
lemma rprI［intro］：【 complete Ar；refl－on Ar；trans r】 $\Longrightarrow r p r A r$
unfolding rpr－def by simp
lemma rprD：rpr Ar complete Ar＾refl－on Ar＾trans r
unfolding rpr－def by simp
lemma rpr－in－set $[d e s t]: \llbracket r p r A r ; x r \preceq y \rrbracket \Longrightarrow\{x, y\} \subseteq A$
unfolding rpr－def refl－on－def by auto
lemma rpr－refl［dest］：$\llbracket r p r A r ; x \in A \rrbracket \Longrightarrow x r \preceq x$
unfolding rpr－def by blast
lemma rpr－less－not：$\llbracket r p r A r ; h a s w[x, y] A ; \neg x r \prec y \rrbracket \Longrightarrow y r \preceq x$
unfolding rpr－def by（auto simp add：complete－less－not）
lemma rpr－less－imp－le［simp］：$\llbracket x r \prec y \rrbracket \Longrightarrow x r \preceq y$
unfolding strict－pref－def by simp
lemma rpr－less－imp－neq $[$ simp $]: \llbracket x r \prec y \rrbracket \Longrightarrow x \neq y$
unfolding strict－pref－def by blast
unfolding strict－pref－def by blast
lemma rpr－less－trans［trans］：【x $r \prec y ; y r \prec z ; r p r A r \rrbracket \Longrightarrow x r \prec z$
unfolding rpr－def strict－pref－def trans－def by blast
lemma rpr－le－trans［trans］：$\llbracket x$ r$y ; y r \preceq z ; r p r A r \rrbracket \Longrightarrow x r \preceq z$ unfolding rpr－def trans－def by blast
lemma rpr－le－less－trans［trans］：【x $r \preceq y ; y r \prec z ; r p r A r \rrbracket \Longrightarrow x r \prec z$ unfolding rpr－def strict－pref－def trans－def by blast
lemma rpr－less－le－trans［trans］：【x $x \prec y ; y r \preceq z ; r p r A r \rrbracket \Longrightarrow x r \prec z$
unfolding rpr－def strict－pref－def trans－def by blast
lemma rpr－complete：$\llbracket r p r A r ; x \in A ; y \in A \rrbracket \Longrightarrow x r \preceq y \vee y r \preceq x$
unfolding rpr－def by（blast dest：complete－refl－on）

3．2 Profiles

A profile（also termed a collection of ballots）maps each individual to an RPR for that indi－ vidual．

```
type-synonym (' \(a,{ }^{\prime} i\) ) Profile \(=' i \Rightarrow{ }^{\prime} a R P R\)
definition profile :: 'a set \(\Rightarrow\) ' \(i\) set \(\Rightarrow\left({ }^{\prime} a\right.\), 'i) Profile \(\Rightarrow\) bool where
    profile \(A\) Is \(P \equiv I s \neq\{ \} \wedge(\forall i \in I s . \operatorname{rpr} A(P i))\)
lemma profileI \([\) intro \(]: \llbracket \bigwedge i . i \in I s \Longrightarrow \operatorname{rpr} A(P i) ; I s \neq\{ \} \rrbracket \Longrightarrow\) profile \(A\) Is \(P\)
    unfolding profile-def by simp
lemma profile-rprD[dest]: \(\llbracket\) profile \(A\) Is \(P ; i \in I s \rrbracket \Longrightarrow \operatorname{rpr} A(P i)\)
    unfolding profile-def by simp
lemma profile-non-empty: profile \(A\) Is \(P \Longrightarrow I s \neq\{ \}\)
    unfolding profile-def by simp
```


3．3 Choice Sets，Choice Functions

A choice set is the subset of A where every element of that subset is（weakly）preferred to every other element of A with respect to a given RPR．A choice function yields a non－empty choice set whenever A is non－empty．
definition choiceSet $::$＇a set \Rightarrow＇$a R P R \Rightarrow$＇a set where choiceSet $A r \equiv\{x \in A . \forall y \in A . x r \preceq y\}$
definition choiceFn ：：＇a set \Rightarrow＇a $R P R \Rightarrow$ bool where choiceFn $A r \equiv \forall A^{\prime} \subseteq A . A^{\prime} \neq\{ \} \longrightarrow$ choiceSet $A^{\prime} r \neq\{ \}$
lemma choiceSetI[intro]:
$\llbracket x \in A ; \bigwedge y . y \in A \Longrightarrow x r \preceq y \rrbracket \Longrightarrow x \in$ choiceSet A r
unfolding choiceSet-def by simp
lemma choiceFnI[intro]:
$\left(\bigwedge A^{\prime} . \llbracket A^{\prime} \subseteq A ; A^{\prime} \neq\{ \} \rrbracket \Longrightarrow\right.$ choiceSet $\left.A^{\prime} r \neq\{ \}\right) \Longrightarrow$ choiceFn Ar
unfolding choiceFn-def by simp
If a complete and reflexive relation is also quasi-transitive it will yield a choice function.
definition quasi-trans :: ' $a R P R \Rightarrow$ bool where
quasi-trans $r \equiv \forall x y z . x r \prec y \wedge y r \prec z \longrightarrow x r \prec z$
lemma quasi-transI[intro]:
$(\bigwedge x y z . \llbracket x r \prec y ; y r \prec z \rrbracket \Longrightarrow x r \prec z) \Longrightarrow$ quasi-trans r
unfolding quasi-trans-def by blast
lemma quasi-transD: 【x $r \prec y ; y r \prec z ;$ quasi-trans $r \rrbracket \Longrightarrow x r \prec z$
unfolding quasi-trans-def by blast
lemma trans-imp-quasi-trans: trans $r \Longrightarrow$ quasi-trans r
by (rule quasi-transI, unfold strict-pref-def trans-def, blast)
lemma r-c-qt-imp-cf:
assumes finite A : finite A
and c: complete Ar
and qt: quasi-trans r
and r : refl-on A r
shows choiceFn Ar
proof
fix B assume $B: B \subseteq A B \neq\{ \}$
with finite-subset finite A have finite B : finite B by auto
from finite $B B$ show choiceSet $B r \neq\{ \}$
proof (induct rule: finite-subset-induct')
case empty with B show ?case by auto
next
case (insert a B)
hence finite B : finite B
and $a A: a \in A$
and $A B: B \subseteq A$
and $a B: a \notin B$
and $c F: B \neq\{ \} \Longrightarrow$ choiceSet $B r \neq\{ \}$ by - blast
show ? case
proof (cases $B=\{ \})$
case True with aA r show ?thesis
unfolding choiceSet-def by blast
next
case False
with $c F$ obtain b where $b C F: b \in$ choiceSet $B r$ by blast
from $A B a A b C F$ complete-refl-on[OF cr]
have $a r \prec b \vee b r \preceq a$ unfolding choiceSet-def strict-pref-def by blast thus ?thesis proof
assume $a b: b r \preceq a$

```
            with bCF show ?thesis unfolding choiceSet-def by auto
        next
            assume ab: a r\precb
            have a\in choiceSet (insert a B)r
            proof(rule ccontr)
                    assume aCF: a\not\in choiceSet (insert a B)r
                    from }aB\mathrm{ have }\b.b\inB\Longrightarrowa\not=b\mathrm{ by auto
                    with aCF aA AB c r obtain b' where B: b
                    unfolding choiceSet-def complete-def strict-pref-def by blast
                    with ab qt have }\mp@subsup{b}{}{\prime}r\precb\mathrm{ by (blast dest: quasi-transD)
                    with bCF B show False unfolding choiceSet-def strict-pref-def by blast
                    qed
            thus ?thesis by auto
        qed
        qed
    qed
qed
lemma rpr-choiceFn: \llbracket finite A; rpr A r\rrbracket\Longrightarrow choiceFn A r
    unfolding rpr-def by (blast dest: trans-imp-quasi-trans r-c-qt-imp-cf)
```


3.4 Social Choice Functions (SCFs)

A social choice function (SCF), also called a collective choice rule by Sen [Sen70, p28], is a function that somehow aggregates society's opinions, expressed as a profile, into a preference relation.
type-synonym (' $a, ~ ' i) S C F=\left({ }^{\prime} a, ~ ' i\right)$ Profile $\Rightarrow{ }^{\prime} a R P R$
The least we require of an SCF is that it be complete and some function of the profile. The latter condition is usually implied by other conditions, such as iia.

```
definition
    \(S C F::\left({ }^{\prime} a,{ }^{\prime} i\right) S C F \Rightarrow{ }^{\prime}\) a set \(\Rightarrow{ }^{\prime} i\) set \(\Rightarrow\left({ }^{\prime} a\right.\) set \(\Rightarrow{ }^{\prime} i\) set \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} i\right)\) Profile \(\Rightarrow\) bool \() \Rightarrow\) bool
where
    SCF scf A Is Pcond \(\equiv(\forall P\). Pcond A Is \(P \longrightarrow(\) complete \(A(\) scf \(P)))\)
lemma \(S C F I[\) intro \(]\) :
    assumes \(c: \bigwedge P\). Pcond \(A\) Is \(P \Longrightarrow\) complete \(A(s c f P)\)
    shows SCF scf A Is Pcond
    unfolding SCF-def using assms by blast
lemma SCF-completeD[dest]:【SCF scf A Is Pcond; Pcond A Is P 】 \(\Longrightarrow\) complete \(A\) (scf P)
    unfolding \(S C F-\) def by blast
```


3.5 Social Welfare Functions (SWFs)

A Social Welfare Function (SWF) is an SCF that expresses the society's opinion as a single RPR.

In some situations it might make sense to restrict the allowable profiles.
definition
$S W F::\left({ }^{\prime} a,{ }^{\prime} i\right) S C F \Rightarrow{ }^{\prime}$ a set $\Rightarrow{ }^{\prime} i$ set $\Rightarrow\left({ }^{\prime}\right.$ a set $\Rightarrow{ }^{\prime} i$ set $\Rightarrow\left({ }^{\prime} a, ~ ' i\right)$ Profile \Rightarrow bool $) \Rightarrow$ bool where

```
    SWF swf A Is Pcond }\equiv(\forallP. Pcond A Is P\longrightarrowrpr A (swf P))
```

lemma $S W F-r p r[d e s t]: \llbracket S W F$ swf A Is Pcond; Pcond A Is $P \rrbracket \Longrightarrow \operatorname{rpr} A(s w f P)$ unfolding $S W F$-def by simp

3.6 General Properties of an SCF

An SCF has a universal domain if it works for all profiles.
definition universal-domain :: 'a set $\Rightarrow{ }^{\prime} i$ set $\Rightarrow\left({ }^{\prime} a, ~ ' i\right)$ Profile \Rightarrow bool where universal-domain A Is $P \equiv$ profile A Is P
declare universal-domain-def[simp]
An SCF is weakly Pareto-optimal if, whenever everyone strictly prefers x to y, the SCF does too.
definition
weak-pareto :: ('a, 'i) SCF $\Rightarrow{ }^{\prime}$ a set \Rightarrow 'i set $\Rightarrow\left({ }^{\prime}\right.$ a set $\Rightarrow{ }^{\prime} i$ set $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} i\right)$ Profile \Rightarrow bool $) \Rightarrow$ bool where
weak-pareto scf A Is Pcond \equiv
$\left(\forall P x y\right.$. Pcond A Is $\left.P \wedge x \in A \wedge y \in A \wedge\left(\forall i \in I s . x_{(P i)}^{\prec} y\right) \longrightarrow x_{(s c f P)} \prec y\right)$
lemma weak-paretoI[intro]:
$\left(\bigwedge P x y . \llbracket P \operatorname{cond} A\right.$ Is $\left.P ; x \in A ; y \in A ; \bigwedge i . i \in I s \Longrightarrow x_{(P i)}^{\prec} y \rrbracket \Longrightarrow x_{(s c f P)} \prec y\right)$
\Longrightarrow weak-pareto scf A Is Pcond
unfolding weak-pareto-def by simp
lemma weak-paretoD:
【 weak-pareto scf A Is Pcond; Pcond A Is P; $x \in A ; y \in A$; $\left(\bigwedge i . i \in I s \Longrightarrow x{ }_{(P i)} \prec y\right) \rrbracket \Longrightarrow x_{(s c f P)} \prec y$
unfolding weak-pareto-def by simp
An SCF satisfies independence of irrelevant alternatives if, for two preference profiles P and P^{\prime} where for all individuals i, alternatives x and y drawn from set S have the same order in $P i$ and $P^{\prime} i$, then alternatives x and y have the same order in scf P and $s c f P^{\prime}$.

```
definition iia :: (' \(\left.a,{ }^{\prime} i\right) S C F \Rightarrow{ }^{\prime}\) a set \(\Rightarrow\) 'i set \(\Rightarrow\) bool where
    iia scf S Is \(\equiv\)
        ( \(\forall\) P \(P^{\prime} x y\). profile \(S\) Is \(P \wedge\) profile \(S\) Is \(P^{\prime}\)
            \(\wedge x \in S \wedge y \in S\)
            \(\wedge\left(\forall i \in I s .\left(\left(x_{(P i)} \preceq y\right) \longleftrightarrow\left(x_{\left.\left.\left.\left(P^{\prime}{ }^{\prime}\right) \preceq y\right)\right) \wedge\left(\left(y_{(P i)} \preceq x\right) \longleftrightarrow\left(y_{\left(P^{\prime} i\right)} \preceq x\right)\right)\right) ~}^{x}\right.\right.\right.\)
                \(\left.\longrightarrow\left(\left(x_{(s c f P) \preceq} y\right) \longleftrightarrow\left(x_{\left(s c f P^{\prime}\right)} \preceq y\right)\right)\right)\)
lemma iiaI[intro]:
    \(\left(\bigwedge P P^{\prime} x y\right.\).
        【 profile \(S\) Is \(P\); profile \(S\) Is \(P^{\prime} ;\)
            \(x \in S ; y \in S\);
            \(\bigwedge i . i \in I s \Longrightarrow\left(\left(x_{(P i)} \preceq y\right) \longleftrightarrow\left(x_{\left(P^{\prime} i\right)} \preceq y\right)\right) \wedge\left(\left(y_{(P i)} \preceq x\right) \longleftrightarrow\left(y_{\left(P^{\prime} i\right)} \preceq x\right)\right)\)
    \(\left.\left.\left.\rrbracket \Longrightarrow\left(\left(x_{(s w f} P\right) \preceq y\right) \longleftrightarrow\left(x_{(s w f} P^{\prime}\right) \preceq y\right)\right)\right)\)
    \(\Longrightarrow\) iia swf \(S\) Is
    unfolding iia-def by \(\operatorname{simp}\)
```

lemma $i a=$:

```
【iia swf S Is;
    \(\{x, y\} \subseteq S\);
    \(a \in\{x, y\} ; b \in\{x, y\} ;\)
    \iab. \(\llbracket a \in\{x, y\} ; b \in\{x, y\} ; i \in I s \rrbracket \Longrightarrow\left(a_{\left(P^{\prime} i\right)} \preceq b\right) \longleftrightarrow\left(a_{(P i)} \preceq b\right) ;\)
    profile S Is P; profile S Is \(P^{\prime} \rrbracket\)
\(\Longrightarrow\left(a_{(s w f P)} \preceq b\right) \longleftrightarrow\left(a_{\left(s w f P^{\prime}\right)} \preceq b\right)\)
unfolding iia-def by (simp, blast)
```


3.7 Decisiveness and Semi-decisiveness

This notion is the key to Arrow's Theorem, and hinges on the use of strict preference [Sen70, p42].

A coalition C of agents is semi-decisive for x over y if, whenever the coalition prefers x to y and all other agents prefer the converse, the coalition prevails.
definition semidecisive $::\left({ }^{\prime} a,{ }^{\prime} i\right) S C F \Rightarrow$ 'a set \Rightarrow 'i set $\Rightarrow^{\prime} i$ set $\Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool where
semidecisive scf A Is C $x y \equiv$

$$
\begin{aligned}
& C \subseteq I_{s} \wedge\left(\forall P . \text { profile A Is } P_{\longrightarrow}^{\longrightarrow} x_{(s c f P)}^{\prec y)}\right.
\end{aligned}
$$

lemma semidecisiveI[intro]:

$\llbracket C \subseteq I s ;$

$$
\wedge P . \llbracket \text { profile A Is } P ; \wedge i . i \in C \Longrightarrow x_{(P i)} \prec y^{\prime} ; \wedge_{i . i \in I s}-C \Longrightarrow y_{(P i)} \prec x \rrbracket
$$

$\Longrightarrow x_{(s c f P)} \prec y \rrbracket \Longrightarrow$ semidecisive scf A Is $C x y$
unfolding semidecisive-def by simp
lemma semidecisive-coalitionD[dest]: semidecisive scf A Is Cxy C \Longrightarrow Is unfolding semidecisive-def by simp
lemma sd-ref: $\llbracket C \subseteq I s ; C \neq\{ \} \rrbracket \Longrightarrow$ semidecisive scf A Is $C x x$
unfolding semidecisive-def strict-pref-def by blast
A coalition C is decisive for x over y if, whenever the coalition prefers x to y, the coalition prevails.
definition decisive :: (' a, 'i) SCF $\Rightarrow{ }^{\prime} a$ set \Rightarrow ' i set $\Rightarrow{ }^{\prime} i$ set $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool where
decisive scf A Is C $x y \equiv$

$$
C \subseteq \text { Is } \wedge\left(\forall P . \text { profile A Is } P \wedge\left(\forall i \in C . x_{(P i)} \prec y\right) \longrightarrow x_{(s c f P)} \prec y\right)
$$

lemma decisiveI [intro]:
$\llbracket C \subseteq I s ; \wedge P$. $\mathbb{\text { profile }}$ A Is $\left.P ; \wedge i . i \in C \Longrightarrow x_{(P i)} \prec y \rrbracket \Longrightarrow x_{(s c f ~}\right)^{\prec} \prec y \rrbracket$ \Longrightarrow decisive scf A Is $C x y$
unfolding decisive-def by simp
lemma d-imp-sd: decisive scf A Is $C x y \Longrightarrow$ semidecisive scf A Is $C x y$
unfolding decisive-def by (rule semidecisiveI, blast+)
lemma decisive-coalitionD[dest]: decisive scf A Is $C x y \Longrightarrow C \subseteq$ Is unfolding decisive-def by simp

Anyone is trivially decisive for x against x.
lemma d-ref: $\llbracket C \subseteq I s ; C \neq\{ \} \rrbracket \Longrightarrow$ decisive scf A Is C x x
unfolding decisive-def strict-pref-def by simp
Agent j is a dictator if her preferences always prevail. This is the same as saying that she is decisive for all x and y.

```
definition dictator \(::\left({ }^{\prime} a,{ }^{\prime} i\right) S C F \Rightarrow\) 'a set \(\Rightarrow\) 'i set \(\Rightarrow\) ' \(i \Rightarrow\) bool where
    dictator scf \(A\) Is \(j \equiv j \in I s \wedge(\forall x \in A . \forall y \in A\). decisive scf \(A\) Is \(\{j\} x y)\)
lemma dictatorI[intro]:
    \(\llbracket j \in I s ; \bigwedge x y . \llbracket x \in A ; y \in A \rrbracket \Longrightarrow\) decisive scf \(A\) Is \(\{j\} x y \rrbracket \Longrightarrow\) dictator scf \(A\) Is \(j\)
    unfolding dictator-def by simp
lemma dictator-individual[dest]: dictator scf A Is \(j \Longrightarrow j \in I s\)
    unfolding dictator-def by simp
```


4 Arrow's General Possibility Theorem

The proof falls into two parts: showing that a semi-decisive individual is in fact a dictator, and that a semi-decisive individual exists. I take them in that order.

It might be good to do some of this in a locale. The complication is untangling where various witnesses need to be quantified over.

4.1 Semi-decisiveness Implies Decisiveness

I follow [Sen70, Chapter 3^{*}] quite closely here. Formalising his appeal to the iia assumption is the main complication here.

The witness for the first lemma: in the profile P^{\prime}, special agent j strictly prefers x to y to z, and doesn't care about the other alternatives. Everyone else strictly prefers y to each of x to z, and inherits the relative preferences between x and z from profile P.

The model has to be specific about ordering all the other alternatives, but these are immaterial in the proof that uses this witness. Note also that the following lemma is used with different instantiations of x, y and z, so we need to quantify over them here. This happens implicitly, but in a locale we would have to be more explicit.

This is just tedious.

```
lemma decisive1-witness:
    assumes has3A: hasw \([x, y, z]\) A
        and profile \(P\) : profile \(A\) Is \(P\)
        and \(j I s: j \in I s\)
    obtains \(P^{\prime}\)
    where profile \(A\) Is \(P^{\prime}\)
        and \(x_{\left(P^{\prime} j\right)} \prec y \wedge y_{\left(P^{\prime} j\right)} \prec z\)
        and \(\wedge i . i \neq j \Longrightarrow y_{\left(P^{\prime} i\right)} \prec x \wedge y_{\left(P^{\prime} i\right)} \prec z \wedge\left(\left(x_{\left.\left(P^{\prime} i\right) \preceq z\right)}=\left(x_{(P i) \preceq z)) \wedge\left(\left(z_{\left(P^{\prime} i\right)} \preceq x\right)\right.}\right.\right.\right.\)
    \(=(z(P i) \preceq x))\)
proof
    let \(? P^{\prime}=\lambda\). (if \(i=j\) then \((\{(x, u) \mid u . u \in A\}\)
        \(\cup\{(y, u) \mid u . u \in A-\{x\}\}\)
```

$$
\begin{aligned}
&\cup\{(z, u) \mid u \cdot u \in A-\{x, y\}\}) \\
& \text { else }(\{(y, u) \mid u \cdot u \in A\} \\
& \cup\{(x, u) \mid u \cdot u \in A-\{y, z\}\} \\
& \cup\{(z, u) \mid u \cdot u \in A-\{x, y\}\} \\
& \cup(\text { if } x(P i) \preceq z \text { then }\{(x, z)\} \text { else }\}) \\
& \cup(\text { if } z(P \text { i } \preceq x \text { then }\{(z, x)\} \text { else }\}))) \\
& \cup(A-\{x, y, z\}) \times(A-\{x, y, z\})
\end{aligned}
$$

show profile A Is ? P^{\prime}
proof
fix i assume $i I s: i \in I s$
show $\operatorname{rpr} A\left(? P^{\prime} i\right)$
$\operatorname{proof}($ cases $i=j)$
case True with has3A show ?thesis
by - (rule rprI, simp-all add: trans-def, blast+)
next
case False hence $i j: i \neq j$.
show ?thesis
proof
from iIs profileP have complete $A(P i)$ by (blast dest: rpr-complete)
with ij show complete $A\left(? P^{\prime} i\right)$ by (simp add: complete-def, blast)
from iIs profileP have refl-on $A(P i)$ by (auto simp add: rpr-def)
with has3A ij show refl-on $A\left(? P^{\prime} i\right)$ by (simp, blast)
from ij has3A show trans (? $\left.P^{\prime} i\right)$ by (clarsimp simp add: trans-def)
qed
qed
next
from profile P show $I s \neq\{ \}$ by (rule profile-non-empty)
qed
from has3A
show $x_{\left(? P^{\prime} j\right)} \prec y \wedge y_{\left(? P^{\prime} j\right)} \prec z$
 $\left.x)=\left(z\left(P_{i}\right) \preceq x\right)\right)$
unfolding strict-pref-def by auto
qed
The key lemma: in the presence of Arrow's assumptions, an individual who is semi-decisive for x and y is actually decisive for x over any other alternative z. (This is where the quantification becomes important.)
lemma decisive1:
assumes has3A: hasw $[x, y, z]$ A
and iia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf $A I s\{j\} x y$
shows decisive swf A Is $\{j\} x z$
proof
from $s d$ show $j I s:\{j\} \subseteq I s$ by blast
fix P
assume profileP: profile A Is P
and $j x z P: \bigwedge i . i \in\{j\} \Longrightarrow x_{(P i)} \prec z$
from has3A profileP jIs
obtain P^{\prime}

```
    where profileP': profile A Is P'
    and jxyz\mp@subsup{P}{}{\prime}: x (\mp@subsup{P}{}{\prime}j)}\mp@subsup{)}{}{\precyyy(\mp@subsup{P}{}{\prime}j\mp@subsup{)}{}{\prec}
```



```
(P'i)\preceq \) =(z (Pi)\preceq \) )
    by - (rule decisive1-witness, blast+)
    from iia have \ab.\llbracketa\in{x,z};b\in{x,z}\rrbracket\Longrightarrow(a
    proof(rule iiaE)
        from has3A show {x,z}\subseteqA by simp
    next
        fix i assume iIs: i\inIs
        fix }ab\mathrm{ assume ab:a}\in{x,z}b\in{x,z
        show (a}(\mp@subsup{P}{}{\prime}i)\preceqb)=(a(Pi)\preceqb
    proof(cases i=j)
        case False
        with ab iIs ixyzP' profileP profileP' has3A
        show ?thesis unfolding profile-def by auto
    next
        case True
        from profileP' jIs jxyzP' have x (\mp@subsup{P}{}{\prime}j)}\mp@subsup{}{j}{}\prec
            by (auto dest: rpr-less-trans)
        with True ab iIs jxzP profileP profileP' has3A
        show ?thesis unfolding profile-def strict-pref-def by auto
    qed
    qed (simp-all add: profileP profileP')
    moreover have x (swf P}\mp@subsup{P}{}{\prime}\mp@subsup{)}{}{\prec}
    proof -
```



```
    moreover
```



```
    with wp profileP' has3A have y (swf P' 生\precz by (auto dest: weak-paretoD)
    moreover note SWF-rpr[OF swf] profileP'
    ultimately show x (swf P')}\prec\mp@code{z
        unfolding universal-domain-def by (blast dest: rpr-less-trans)
    qed
    ultimately show x (swf P)}\prec~z\mathrm{ unfolding strict-pref-def by blast
qed
```

The witness for the second lemma: special agent j strictly prefers z to x to y, and everyone else strictly prefers z to x and y to x. (In some sense the last part is upside-down with respect to the first witness.)

```
lemma decisive2-witness:
    assumes has3A: hasw \([x, y, z] A\)
        and profileP: profile A Is P
        and \(j I s: j \in I s\)
    obtains \(P^{\prime}\)
    where profile \(A\) Is \(P^{\prime}\)
        and \(z_{\left(P^{\prime}{ }_{j}\right)} \prec x \wedge x{ }_{\left(P^{\prime}{ }_{j}\right)} \prec y\)
```



```
\(=(z(P i) \preceq y))\)
proof
```



```
                            \cup \{ ( x , u ) \| u . u \in A - \{ z \} \}
                            \cup \{ ( y , u ) \| u . u \in A - \{ x , z \} \} )
            else ({(z,u)|u.u\inA-{y}}
                            \cup \{ ( y , u ) \| u . u \in A - \{ z \} \}
                            \cup \{ ( x , u ) \| u . u \in A - \{ y , z \} \}
                            \cup ( \text { if } y ( P ~ ( P ) \preceq z ~ t h e n ~ \{ ( y , z ) \} ~ e l s e ~ \{ \} )
                            \cup(if z (P i)\preceq y then {(z,y)} else {})))
                            \cup ( A - \{ x , y , z \} ) \times ( A - \{ x , y , z \} )
    show profile A Is ?P'
    proof
    fix i assume iIs:i\inIs
    show rpr A (?P' i)
    proof(cases i=j)
        case True with has3A show ?thesis
            by - (rule rprI, simp-all add: trans-def, blast+)
    next
        case False hence ij:i\not=j .
        show ?thesis
        proof
            from iIs profileP have complete A (P i) by (auto simp add: rpr-def)
            with ij show complete A (?P' i) by (simp add: complete-def, blast)
            from iIs profileP have refl-on A (P i) by (auto simp add: rpr-def)
            with has3A ij show refl-on A (?P' i) by (simp, blast)
            from ij has3A show trans (?P' i) by (clarsimp simp add: trans-def)
        qed
    qed
    next
    show Is \not={} by (rule profile-non-empty[OF profileP])
    qed
    from has3A
```



```
y)}=(z(Pi)\preceqy)
    unfolding strict-pref-def by auto
qed
lemma decisive2:
    assumes has3A: hasw [x,y,z] A
            and iza: iia swf A Is
            and swf:SWF swf A Is universal-domain
            and wp: weak-pareto swf A Is universal-domain
            and sd: semidecisive swf A Is {j} x y
    shows decisive swf A Is {j} z y
proof
    from sd show jIs: {j}\subseteqIs by blast
    fix P
    assume profileP: profile A Is P
```



```
    from has3A profileP jIs
    obtain P'
        where profileP': profile A Is P'
```



```
(P'i)\preceq y) =(z (Pi)\preceq \))
    by - (rule decisive2-witness, blast+)
    from iia have \ab.\llbracketa\in{y,z};b\in{y,z}\rrbracket\Longrightarrow(a
    proof(rule iiaE)
        from has3A show {y,z}\subseteqA by simp
    next
        fix i assume iIs:i\inIs
    fix ab assume ab:a}\in{{y,z} b\in{y,z
    show (a (P',}\mp@subsup{)}{}{\prime}\preceqb)=(a(P (P)\preceqb
    proof(cases }i=j
        case False
        with ab iIs ixyzP' profileP profileP' has3A
        show ?thesis unfolding profile-def by auto
    next
        case True
        from profileP' jIs jxyzP' have z}\mp@subsup{}{(\mp@subsup{P}{}{\prime}j)}{}\mp@subsup{}{}{\prime
            by (auto dest: rpr-less-trans)
        with True ab iIs jyzP profileP profileP' has3A
        show ?thesis unfolding profile-def strict-pref-def by auto
    qed
    qed (simp-all add: profileP profileP')
    moreover have z
    proof -
    from profileP' sd jxyzP}\mp@subsup{P}{}{\prime}\mp@subsup{i}{}{\primexyzP
    moreover
```



```
    with wp profileP' has3A have z
    moreover note SWF-rpr[OF swf] profileP'
    ultimately show z
        unfolding universal-domain-def by (blast dest:rpr-less-trans)
    qed
    ultimately show z
qed
The following results permute \(x, y\) and \(z\) to show how decisiveness can be obtained from semi-decisiveness in all cases. Again, quite tedious.
lemma decisive3:
assumes has3A: hasw \([x, y, z] A\)
and iia: iia swf \(A\) Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf \(A\) Is universal-domain
and sd: semidecisive swf \(A\) Is \(\{j\} x z\)
shows decisive swf \(A\) Is \(\{j\}\) y \(z\)
using has3A decisive2 \([O F-\) iia swf wp sd] by (simp, blast)
lemma decisive4:
assumes has3A: hasw \([x, y, z]\) A
and iia: iia swf \(A\) Is
and swf: SWF swf A Is universal-domain
```

and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf $A I s\{j\} y z$
shows decisive swf A Is $\{j\}$ y x
using has3A decisive1 $[O F-$ iia swf wp sd] by (simp, blast)
lemma decisive5:
assumes has3A: hasw $[x, y, z] A$
and iia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf $A I s\{j\} x y$
shows decisive swf A Is $\{j\} y x$
proof -
from $s d$
have decisive swf A Is $\{j\} x z$ by (rule decisive1[OF has3A iia swf wp])
hence semidecisive swf A Is $\{j\} x z$ by (rule d-imp-sd)
hence decisive swf A Is $\{j\}$ y z by (rule decisive3[OF has3A iia swf wp])
hence semidecisive swf A Is $\{j\} y z$ by (rule d-imp-sd)
thus decisive swf A Is $\{j\}$ y x by (rule decisive4 [OF has3A iia swf wp])
qed
lemma decisive6:
assumes has3A: hasw $[x, y, z]$ A
and iia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is $\{j\}$ y x
shows decisive swf A Is $\{j\} y z$ decisive swf A Is $\{j\} z x$ decisive swf A Is $\{j\} x y$ proof -
from has3A have has3A': hasw $[y, x, z] A$ by auto
show decisive swf A Is $\{j\} y z$ by (rule decisive 1 [OF has3A' iia swf wp sd])
show decisive swf A Is $\{j\} z x$ by (rule decisive2[OF has3A' iia swf wp sd])
show decisive swf A Is $\{j\} x y$ by (rule decisive $5[O F$ has3A' iia swf wp sd])
qed
lemma decisive7:
assumes has3A: hasw $[x, y, z] A$
and iia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf $A I s\{j\} x y$
shows decisive swf A Is $\{j\} y z$ decisive swf A Is $\{j\} z x$ decisive swf A Is $\{j\} x y$
proof -
from $s d$
have decisive swf A Is $\{j\} y x$ by (rule decisive5[OF has3A iia swf wp])
hence semidecisive swf A Is $\{j\}$ y x by (rule d-imp-sd)
thus decisive swf A Is $\{j\} y z$ decisive swf A Is $\{j\} z x$ decisive swf A Is $\{j\} x y$
by (rule decisive6[OF has3A iia swf wp])+
qed
lemma j-decisive-xy:
assumes has3A: hasw $[x, y, z] A$
and iia: iia swf A Is
and swf: SWF swf A Is universal-domain and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf $A I s\{j\} x y$
and uv: hasw $[u, v]\{x, y, z\}$
shows decisive swf A Is $\{j\} u v$
using uv decisive1[OF has3A iia swf wp sd]
decisive2[OF has3A iia swf wp sd]
decisive5[OF has3A iia swf wp sd] decisive7[OF has3A iia swf wp sd]
by (simp, blast)
lemma j-decisive:
assumes has3A: has 3 A
and iia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and xyA: hasw $[x, y] A$
and sd: semidecisive swf A Is $\{j\} x y$
and uv: hasw $[u, v]$ A
shows decisive swf A Is $\{j\} u v$
proof -
from has-extend-witness' $[$ OF has3A xyA]
obtain z where $x y z A$: hasw $[x, y, z] A$ by auto
\{
assume $u x: u=x$ and $v y: v=y$
with $x y z A$ iia swf wp sd have ?thesis by (auto intro: j-decisive-xy)
\}
moreover
\{
assume $u x: u=x$ and $v N E y: v \neq y$
with uv xyA iia swf wp sd have ?thesis by(auto intro: j-decisive-xy[of $x y]$)
\}
moreover
\{
assume $u y: u=y$ and $v x: v=x$
with $x y z A$ iia swf wp sd have ?thesis by (auto intro: j-decisive-xy)
\}
moreover
\{
assume $u y: u=y$ and $v N E x: v \neq x$
with uv xyA iia swf wp sd have ?thesis by (auto intro: j-decisive-xy)
\}
moreover
\{
assume $u N E x y: u \notin\{x, y\}$ and $v x: v=x$
with $u v$ xyA iia swf wp sd have ?thesis by (auto intro: j-decisive-xy[of x y]) \}
moreover
\{
assume $u N E x y: u \notin\{x, y\}$ and $v y: v=y$
with $u v$ xyA iia swf wp sd have ?thesis by (auto intro: j-decisive-xy[of x y])
\}
moreover

```
{
    assume uNExy: u\not\in{x,y} and vNExy:v\not\in{x,y}
    with uv xyA iia swf wp sd
    have decisive swf A Is {j} xu by (auto intro: j-decisive-xy[where x=x and z=u])
    hence sdxu: semidecisive swf A Is {j} x u by (rule d-imp-sd)
    with uNExy vNExy uv xyA iia swf wp have ?thesis by (auto intro: j-decisive-xy[of x])
    }
    ultimately show ?thesis by blast
qed
```

The first result: if j is semidecisive for some alternatives u and v, then they are actually a dictator.
lemma sd-imp-dictator:
assumes has3A: has 3 A
and iia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and uv: hasw $[u, v] A$
and sd: semidecisive swf A Is $\{j\} u v$
shows dictator swf A Is j
proof
fix $x y$ assume $x: x \in A$ and $y: y \in A$
show decisive swf A Is $\{j\} x y$
proof (cases $x=y$)
case True with sd show decisive swf A Is $\{j\} x y$ by (blast intro: d-refl)
next
case False
with $x y$ iia swf wp has3A uv sd show decisive swf A Is $\{j\} x y$
by (auto intro: j-decisive)
qed
next
from sd show $j \in I$ s by blast
qed

4.2 The Existence of a Semi-decisive Individual

The second half of the proof establishes the existence of a semi-decisive individual. The required witness is essentially an encoding of the Condorcet pardox (aka "the paradox of voting" that shows we get tied up in knots if a certain agent didn't have dictatorial powers.
lemma sd-exists-witness:
assumes has3A: hasw $[x, y, z] A$
and $V s: I s=V 1 \cup V 2 \cup V 3$
$\wedge V 1 \cap V 2=\{ \} \wedge V 1 \cap V 3=\{ \} \wedge V 2 \cap V 3=\{ \}$
and $I s: I s \neq\{ \}$
obtains P
where profile A Is P
and $\forall i \in V 1 . x_{(P i)}{ }^{2} y^{\prime} \wedge y_{(P i)}$ 々z
and $\forall i \in V$. $z_{(P i)} \prec x \wedge x{ }_{(P i)}$ 々 y
and $\forall i \in V 3 . y_{(P i)}{ }^{\text {}} z^{\prime} \wedge z_{(P i)}^{\prec} x$
proof
let $? P=$
λi. (if $i \in V 1$ then $(\{(x, u) \mid u . u \in A\}$

```
                \cup{(y,u)| |.u\inA^u\not=x}
                \cup{(z,u)|u.u\inA\wedgeu\not=x\wedgeu\not=y})
            else
if i}\inV2\mathrm{ then ({ (z,u)|u.uєA}
            \cup \{ ( x , u ) \| u . u \in A \wedge u \neq z \}
            \cup \{ ( y , u ) \| u . u \in A \wedge u \neq x \wedge u \neq z \} )
        else ({(y,u)|u.u\inA}
            \cup{(z,u)|u.u\inA\wedgeu\not=y}
            \cup \{ ( x , u ) \| u . u \in A \wedge u \neq y \wedge u \neq z \} ) )
            \cup \{ ( u , v ) \| u v . u \in A - \{ x , y , z \} \wedge v \in A - \{ x , y , z \} \}
show profile A Is ?P
proof
    fix i assume iIs:i\inIs
    show rpr A (?P i)
    proof
            show complete A (?P i) by (simp add: complete-def, blast)
            from has3A iIs show refl-on A (?P i) by - (simp, blast)
            from has3A iIs show trans (?P i) by (clarsimp simp add: trans-def)
    qed
    next
    from Is show Is\not={} .
    qed
    from has3A Vs
```



```
    and }\foralli\inV2.z(?P i) \precx\wedge x (?P i) \precy
    and }\foralli\inV3.y(?P i)\precz\wedgez(?P i)\prec
    unfolding strict-pref-def by auto
qed
```

This proof is unfortunately long. Many of the statements rely on a lot of context, making it difficult to split it up.

```
lemma sd-exists:
    assumes has3A: has 3 A
        and finiteIs: finite Is
        and twols: has 2 Is
        and iia: iia swf A Is
        and swf: SWF swf A Is universal-domain
        and wp: weak-pareto swf A Is universal-domain
    shows \existsju v. hasw [u,v] A ^ semidecisive swf A Is {j} uv
proof -
    let ?P = \lambdaS.S\subseteqIs^S\not={}^(\existsu v. hasw [u,v] A^ semidecisive swf A Is S u v)
    obtain }uv\mathrm{ where uvA: hasw [u,v] A
        using has-witness-two[OF has 3A] by auto
            - The weak pareto requirement implies that the set of all individuals is decisive between any
given alternatives.
    hence decisive swf A Is Is u v
        by - (rule, auto intro: weak-paretoD[OF wp])
    hence semidecisive swf A Is Is u v by (rule d-imp-sd)
    with uvA twoIs has-suc-notempty[where n=1] nat-2[symmetric]
    have ?P Is by auto
        - Obtain a minimally-sized semi-decisive set.
    from ex-has-least-nat[where P=?P and m=card, OF this]
```

```
obtain \(V x y\) where \(V I s: V \subseteq I s\)
    and Vnotempty: \(V \neq\{ \}\)
    and xyA: hasw \([x, y] A\)
    and Vsd: semidecisive swf \(A\) Is \(V x y\)
    and Vmin: \(\wedge V^{\prime}\).? \(P V^{\prime} \Longrightarrow\) card \(V \leq\) card \(V^{\prime}\)
    by blast
    from VIs finiteIs have Vfinite: finite \(V\) by (rule finite-subset)
    - Show that minimal set contains a single individual.
    from Vfinite Vnotempty have \(\exists j . V=\{j\}\)
    proof (rule finite-set-singleton-contra)
    assume Vcard: \(1<\) card V
    then obtain \(j\) where \(j V:\{j\} \subseteq V\)
        using has-extend-witness[where \(x s=[]\), OF card-has[where \(n=\) card \(V]]\) by auto
            - Split an individual from the "minimal" set.
    let ? \(V 1=\{j\}\)
    let ? \(V 2=V-\) ? \(V 1\)
    let ? \(V 3=I s-V\)
    from \(j V\) card-Diff-singleton Vcard
    have V2card: card ? V2 > 0 card ? V2 \(<\) card \(V\) by auto
    hence V2notempty: \(\} \neq\) ? V2 by auto
    from \(j V\) VIs
    have jV2V3: \(I s=? V 1 \cup ? V 2 \cup ? V 3 \wedge ? V 1 \cap ? V 2=\{ \} \wedge ? V 1 \cap ? V 3=\{ \} \wedge ? V 2 \cap ? V 3=\)
\{\}
    by auto
        - Show that that individual is semi-decisive for \(x\) over \(z\).
    from has-extend-witness \({ }^{\prime}[O F\) has \(3 A\) xyA \(]\)
    obtain \(z\) where threeDist: hasw \([x, y, z] A\) by auto
    from sd-exists-witness[OF threeDist jV2V3] VIs Vnotempty
    obtain \(P\) where profile \(P\) : profile \(A\) Is \(P\)
                and V1xyzP: \(x_{(P j)} \prec y \wedge y_{(P j)} \prec z\)
and V2xyzP: \(\forall i \in\) ? V2. \(z_{(P i)} \prec x \wedge x_{(P i)} \prec y\)
and V3xyzP: \(\forall i \in ? V 3 . y_{(P i)} \prec z \wedge z_{(P i)}{ }_{(P x}\)
    by ( simp, blast)
    have \(x P z\) : \(x_{(s w f P)} \prec z\)
    proof (rule rpr-less-le-trans \([\) where \(y=y]\) )
    from profile \(P\) swf show rpr \(A(s w f P)\) by auto
    next
        - V2 is semi-decisive, and everyone else opposes their choice. Ergo they prevail.
    show \(x_{(\text {swf } P)} \prec y\)
    proof -
        from profileP V3xyzP
        have \(\forall i \in\) ?V3. \(y\) ( \(P i\) \()^{\prec} x\) by (blast dest: rpr-less-trans)
        with profileP V1xyzP V2xyzP Vsd
        show ?thesis unfolding semidecisive-def by auto
    qed
    next
        - This result is unfortunately quite tortuous.
    from \(S W F-r p r[O F s w f]\) show \(y_{(s w f P)} \preceq z\)
    proof(rule rpr-less-not[OF --notI])
            from threeDist show hasw \([z, y] A\) by auto
    next
        assume \(z P y: z_{(s w f P)} \prec y\)
```

```
    have semidecisive swf A Is ?V2 z y
    proof
        from VIs show V - {j}\subseteqIs by blast
    next
        fix P
        assume profileP': profile A Is P'
            and V2yz': \i.i\in?V2 \Longrightarrow z (\mp@subsup{P}{}{\prime}i)
            and nV2yz': \i. i\inIs - ?V2\Longrightarrow y y(P'i}\mp@subsup{}{(}{\prime}\prec
    from iia have \ab.\llbracketa\in{y,z};b\in{y,z}\rrbracket\Longrightarrow(a (swfP)\preceqb)=(a (swf P')\preceqb)
        proof(rule iiaE)
            from threeDist show yzA: {y,z}\subseteqA by simp
        next
            fix i assume iIs:i\inIs
        fix ab assume ab:a\in{y,z} b\in{y,z}
        with VIs profileP V2xyzP
        have V2yzP:\foralli\in?V2.z (P i)}\precy\mathrm{ by (blast dest:rpr-less-trans)
        show (a}\mp@subsup{(}{(\mp@subsup{P}{}{\prime}i)}{2}\mp@code{b)=(a
        proof(cases i\in?V2)
            case True
            with VIs profileP profileP' ab V2yz' V2yzP threeDist
            show ?thesis unfolding strict-pref-def profile-def by auto
            next
            case False
            from V1xyzP V3xyzP
            have \foralli\inIs - ?V2. y (P i)}\precz\mathrm{ by auto
            with iIs False VIs jV profileP profileP' ab nV2yz' threeDist
            show ?thesis unfolding profile-def strict-pref-def by auto
        qed
        qed (simp-all add: profileP profileP')
        with zPy show z (swf P')}\mp@subsup{)}{}{\prec}y\mathrm{ unfolding strict-pref-def by blast
    qed
    with VIs Vsd Vmin[where V = ?V2] V2card V2notempty threeDist show False
        by auto
    qed (simp add: profileP threeDist)
qed
have semidecisive swf A Is ?V1 x z
proof
    from jV VIs show {j}\subseteqIs by blast
next
    - Use iia to show the SWF must allow the individual to prevail.
    fix P
    assume profileP': profile A Is P'
        and V1yz': \i.i\in?V1\Longrightarrow \Longrightarrow (P\mp@subsup{P}{}{\prime}i)}\mp@subsup{)}{}{\prec}
        and nV1yz': \i. i i Is - ?V1 \Longrightarrow z}\mp@subsup{(P(\mp@subsup{P}{}{\prime}\mp@subsup{}{i)}{}\prec}{}{<
    from iia have \ab. \llbracketa\in{x,z};b\in{x,z}\rrbracket\Longrightarrow(a (swf P)\preceqb)=(a (swf P})\preceqb
    proof(rule iiaE)
        from threeDist show }xzA:{x,z}\subseteqA\mathrm{ by simp
    next
        fix i assume iIs:i\inIs
        fix ab assume ab:a\in{x,z} b\in{x,z}
        show (a (P'i)\preceqb)=(a
```

```
            proof(cases i \in?V1)
            case True
            with jV VIs profileP V1xyzP
            have \foralli & ?V1. x (P i)}\prec~z\mathrm{ by (blast dest:rpr-less-trans)
            with True jV VIs profileP profileP' ab V1yz' threeDist
            show ?thesis unfolding strict-pref-def profile-def by auto
            next
            case False
            from V2xyzP V3xyzP
            have }\foralli\inIs - ?V1. z (P i) \precx by aut
            with iIs False VIs jV profileP profileP' ab nV1yz' threeDist
            show ?thesis unfolding strict-pref-def profile-def by auto
            qed
            qed (simp-all add: profileP profileP')
            with xPz show x (swf P}\mp@subsup{P}{}{\prime}\mp@subsup{)}{}{\prec}z\mathrm{ unfolding strict-pref-def by blast
    qed
    with jV VIs Vsd Vmin[where V'=?V1] V2card threeDist show False
        by auto
qed
with xyA Vsd show ?thesis by blast
qed
```


4.3 Arrow's General Possibility Theorem

Finally we conclude with the celebrated "possibility" result. Note that we assume the set of individuals is finite; [Rou79] relaxes this with some fancier set theory. Having an infinite set of alternatives doesn't matter, though the result is a bit more plausible if we assume finiteness [Sen70, p54].
theorem ArrowGeneralPossibility:
assumes has3A: has 3 A
and finiteIs: finite Is
and has2Is: has 2 Is
and iia: iia swf A Is
and swf: SWF swf A Is universal-domain and wp: weak-pareto swf A Is universal-domain
obtains j where dictator swf A Is j
using sd-imp-dictator[OF has3A iia swf wp]
sd-exists[OF has3A finiteIs has2Is iia swf wp]
by blast

5 Sen's Liberal Paradox

5.1 Social Decision Functions (SDFs)

To make progress in the face of Arrow's Theorem, the demands placed on the social choice function need to be weakened. One approach is to only require that the set of alternatives that society ranks highest (and is otherwise indifferent about) be non-empty.

Following [Sen70, Chapter 4*], a Social Decision Function (SDF) yields a choice function for every profile.

```
definition
    \(S D F::\left({ }^{\prime} a,{ }^{\prime} i\right) S C F \Rightarrow{ }^{\prime}\) a set \(\Rightarrow\) ' \(i\) set \(\Rightarrow\left({ }^{\prime} a\right.\) set \(\Rightarrow{ }^{\prime} i\) set \(\Rightarrow\left({ }^{\prime} a,{ }^{\prime} i\right)\) Profile \(\Rightarrow\) bool \() \Rightarrow\) bool
where
    SDF sdf A Is Pcond \(\equiv(\forall P\). Pcond A Is \(P \longrightarrow\) choiceFn A \((\) sdf \(P))\)
lemma \(S D F I[\) intro \(]\) :
    \((\bigwedge P\). Pcond \(A\) Is \(P \Longrightarrow\) choiceFn \(A(\) sdf \(P)) \Longrightarrow\) SDF sdf A Is Pcond
    unfolding \(S D F\)-def by simp
lemma \(S W F-S D F\) :
    assumes finite \(A\) : finite \(A\)
    shows \(S W F\) scf A Is universal-domain \(\Longrightarrow S D F\) scf A Is universal-domain
    unfolding SDF-def SWF-def by (blast dest: rpr-choiceFn[OF finiteA])
```

In contrast to SWFs, there are SDFs satisfying Arrow's (relevant) requirements. The lemma uses a witness to show the absence of a dictatorship.

```
lemma SDF-nodictator-witness:
    assumes has2A: hasw \([x, y] A\)
        and has2Is: hasw \([i, j]\) Is
    obtains \(P\)
    where profile \(A\) Is \(P\)
        and \(x_{(P i)}{ }^{\prec} y\)
    and \(y_{(P j)} \prec x\)
proof
    let \(? P=\lambda k\). (if \(k=i\) then \((\{(x, u) \mid u . u \in A\}\)
                \(\cup\{(y, u) \mid u . u \in A-\{x\}\})\)
                    else \((\{(y, u) \mid u . u \in A\}\)
                        \(\cup\{(x, u) \mid u . u \in A-\{y\}\}))\)
            \(\cup(A-\{x, y\}) \times(A-\{x, y\})\)
    show profile \(A\) Is ?P
    proof
        fix \(i\) assume \(i i s: i \in I s\)
        from has2A show rpr A (?P i)
            by - (rule rprI, simp-all add: trans-def, blast+)
    next
        from has2Is show \(I s \neq\{ \}\) by auto
    qed
    from has2A has2Is
    show \(x_{(? P i)} \prec y\)
    and \(y_{(? P j)}\) 々 \(x\)
        unfolding strict-pref-def by auto
qed
lemma SDF-possibility:
    assumes finiteA: finite \(A\)
        and has2A: has 2 A
        and has2Is: has 2 Is
    obtains \(s d f\)
    where weak-pareto sdf A Is universal-domain
        and iia sdf A Is
```

and $\neg(\exists j$. dictator $s d f$ A Is $j)$
and $S D F$ sdf A Is universal-domain
proof -
let ?sdf $=\lambda P .\{(x, y) . x \in A \wedge y \in A$

$$
\begin{aligned}
\wedge & \neg((\forall i \in \operatorname{Is.} y(P i) \preceq x) \\
& \wedge(\exists i \in \operatorname{Is.y}(P i) \prec x))\}
\end{aligned}
$$

have weak-pareto ?sdf A Is universal-domain
by (rule, unfold strict-pref-def, auto dest: profile-non-empty)
moreover
have iia ?sdf A Is unfolding strict-pref-def by auto
moreover
have $\neg(\exists j$. dictator ?sdf A Is $j)$
proof
assume $\exists j$. dictator ? sdf A Is j
then obtain j where $j I s: j \in I s$
and $j D: \forall x \in A . \forall y \in A$. decisive ?sdf A Is $\{j\} x y$
unfolding dictator-def decisive-def by auto
from jIs has-witness-two[OF has2Is] obtain i where ijIs: hasw $[i, j]$ Is by auto
from has-witness-two[OF has2A] obtain $x y$ where $x y A$: hasw $[x, y] A$ by auto
from $x y A$ ijIs obtain P
where profile P : profile A Is P
and yPix: $x_{(P i)} \prec y$
and $y P j x: y_{(P j)} \prec x$
by (rule SDF-nodictator-witness)
from profileP jD jIs xyA yPjx have $y($?sdf $P) \prec x$
unfolding decisive-def by simp
moreover
from ijIs $x y A$ yPjx $y P i x$ have $x(? s d f P) \preceq y$
unfolding strict-pref-def by auto
ultimately show False
unfolding strict-pref-def by blast
qed
moreover
have SDF ?sdf A Is universal-domain
proof
fix P assume ud: universal-domain A Is P
show choiceFn A (?sdf P)
$\operatorname{proof}($ rule $r-c-q t-i m p-c f[O F$ finite $A])$
show complete $A(? s d f P)$ and refl-on $A(? s d f P)$
unfolding strict-pref-def by auto
show quasi-trans (?sdf P)
proof
fix $x y z$ assume $x y: x(\text { ?sdf } P)^{\prec} y$ and $y z: y(\text { ?sdf } P)^{\prec} z$
from $x y y z$ have $x y z A: x \in A y \in A z \in A$
unfolding strict-pref-def by auto
from $x y y z$ have $A x R y: \forall i \in I s . x(P i) \preceq y$
and ExPy: $\exists i \in I s . x{ }_{(P i)} \prec y$
and $A y R z: \forall i \in I s . y_{(P i)} \preceq z$
unfolding strict-pref-def by auto
from $A x R y$ AyRz ud have $A x R z: \forall i \in I s . x_{(P i)} \preceq z$

```
            by - (unfold universal-domain-def, blast dest: rpr-le-trans)
            from ExPy AyRz ud have ExPz: \existsi\inIs.x (P i)\precz
                by - (unfold universal-domain-def, blast dest: rpr-less-le-trans)
            from xyzA AxRz ExPz show x (?sdf P)}\prec~z\mathrm{ unfolding strict-pref-def by auto
        qed
    qed
    qed
    ultimately show thesis ..
qed
```

Sen makes several other stronger statements about SDFs later in the chapter. I leave these for future work.

5.2 Sen's Liberal Paradox

Having side-stepped Arrow's Theorem, Sen proceeds to other conditions one may ask of an SCF. His analysis of liberalism, mechanised in this section, has attracted much criticism over the years [AK96].

Following [Sen70, Chapter 6^{*}], a liberal social choice rule is one that, for each individual, there is a pair of alternatives that she is decisive over.

```
definition liberal :: ('a, 'i) SCF \(\Rightarrow\) 'a set \(\Rightarrow\) ' i set \(\Rightarrow\) bool where
    liberal scf \(A\) Is \(\equiv\)
        ( \(\forall i \in I s . \exists x \in A . \exists y \in A . x \neq y\)
            \(\wedge\) decisive scf \(A\) Is \(\{i\} x y \wedge\) decisive scf \(A\) Is \(\{i\} y x)\)
lemma liberalE:
    【liberal scf \(A\) Is; \(i \in I s \rrbracket\)
    \(\Longrightarrow \exists x \in A . \exists y \in A . x \neq y\)
                \(\wedge\) decisive scf \(A\) Is \(\{i\} x y \wedge\) decisive scf \(A\) Is \(\{i\} y x\)
    by (simp add: liberal-def)
```

This condition can be weakened to require just two such decisive individuals; if we required just one, we would allow dictatorships, which are clearly not liberal.
definition minimally-liberal :: ('a, 'i)SCF \Rightarrow 'a set \Rightarrow ' i set \Rightarrow bool where minimally-liberal scf A Is \equiv $(\exists i \in I s . \exists j \in$ Is. $i \neq j$
$\wedge(\exists x \in A . \exists y \in A . x \neq y$
\wedge decisive scf A Is $\{i\} x y \wedge$ decisive scf A Is $\{i\} y x)$
$\wedge(\exists x \in A . \exists y \in A . x \neq y$
\wedge decisive scf A Is $\{j\} x y \wedge$ decisive scf A Is $\{j\} y x)$)
lemma liberal-imp-minimally-liberal:
assumes has2Is: has 2 Is and L : liberal scf A Is
shows minimally-liberal scf A Is
proof -
from has-extend-witness[where $x s=[]$, OF has2Is]
obtain i where $i: i \in I s$ by auto
with has-extend-witness[where $x s=[i]$, OF has2Is]
obtain j where $j: j \in I s i \neq j$ by auto
from $L i j$ show ?thesis
unfolding minimally-liberal-def by (blast intro: liberalE) qed

The key observation is that once we have at least two decisive individuals we can complete the Condorcet (paradox of voting) cycle using the weak Pareto assumption. The details of the proof don't give more insight.

Firstly we need three types of profile witnesses (one of which we saw previously). The main proof proceeds by case distinctions on which alternatives the two liberal agents are decisive for.
lemmas liberal-witness-two $=$ SDF-nodictator-witness
lemma liberal-witness-three:
assumes threeA: hasw $[x, y, v] A$ and twoIs: hasw $[i, j]$ Is
obtains P
where profile A Is P
and $x_{(P i)} \prec y$
and $v(P j) \prec x$
and $\forall i \in$ Is. $y_{(P i)} \prec v$
proof -
let ?P $=$
λa. if $a=i$ then $\{(x, u) \mid u . u \in A\}$
$\cup\{(y, u) \mid u . u \in A-\{x\}\}$
$\cup(A-\{x, y\}) \times(A-\{x, y\})$
else $\{(y, u) \mid u . u \in A\}$
$\cup\{(v, u) \mid u . u \in A-\{y\}\}$
$\cup(A-\{v, y\}) \times(A-\{v, y\})$
have profile A Is ?P
proof
fix i assume $i i s: i \in I s$
show $\operatorname{rpr} A(? P i)$
proof
show complete $A(? P i)$ by (simp, blast)
from threeA iis show refl-on $A(? P$ i) by (simp, blast)
from threeA iis show trans (?P i) by (clarsimp simp add: trans-def)
qed
next
from twols show $I s \neq\{ \}$ by auto
qed
moreover
from threeA twoIs have $x_{(? P}{ }_{(?)} \prec y^{v}{ }_{(? P j)} \prec x \forall i \in$ Is. $y_{(? P}{ }_{(?)} \prec v$
unfolding strict-pref-def by auto
ultimately show ?thesis ..
qed
lemma liberal-witness-four:
assumes fourA: hasw $[x, y, u, v] A$
and twoIs: hasw $[i, j]$ Is
obtains P
where profile A Is P
and $x_{(P i)} \prec y$
and $u_{(P j)} \prec v$
and $\forall i \in I s . v_{(P i)} \prec x \wedge y_{(P i)} \prec u$
proof -
let ? $P=$
λa. if $a=i$ then $\{(v, w) \mid w . w \in A\}$
$\cup\{(x, w) \mid w . w \in A-\{v\}\}$
$\cup\{(y, w) \mid w . w \in A-\{v, x\}\}$
$\cup(A-\{v, x, y\}) \times(A-\{v, x, y\})$
else $\{(y, w) \mid w . w \in A\}$
$\cup\{(u, w) \mid w . w \in A-\{y\}\}$
$\cup\{(v, w) \mid w . w \in A-\{u, y\}\}$
$\cup(A-\{u, v, y\}) \times(A-\{u, v, y\})$
have profile A Is ?P
proof
fix i assume iis: $i \in I s$
show $\operatorname{rpr} A(? P i)$
proof
show complete $A(? P$ i) by (simp, blast)
from fourA iis show refl-on $A(? P$ i) by (simp, blast)
from fourA iis show trans (?P i) by (clarsimp simp add: trans-def)
qed
next
from twols show $I s \neq\{ \}$ by auto
qed
moreover

by (unfold strict-pref-def, auto)
ultimately show thesis ..
qed
The Liberal Paradox: having two decisive individuals, an SDF and the weak pareto assumption is inconsistent.

```
theorem LiberalParadox:
    assumes SDF:SDF sdf A Is universal-domain
        and ml: minimally-liberal sdf A Is
        and wp: weak-pareto sdf A Is universal-domain
    shows False
proof -
    from ml obtain ijx yuv
        where i:i\inIs and j:j\inIs and ij:i\not=j
            and x:x\inA and y:y\inA and u:u\inA and v:v\inA
            and xy: }x\not=
            and dixy: decisive sdf A Is {i} x y
            and diyx: decisive sdf A Is {i} y x
            and uv:}u\not=
            and djuv: decisive sdf A Is {j} uv
            and djvu: decisive sdf A Is {j} v u
    by (unfold minimally-liberal-def, auto)
    from ij ij have twoIs: hasw [i,j] Is by simp
    {
    assume xu:x=u and yv: y=v
    from xy x y have twoA: hasw [x,y] A by simp
    obtain P
```

```
    where profile A Is P x (P ( i) \prec y y (Pj)}\prec\mp@subsup{}{(P}{
    using liberal-witness-two[OF twoA twoIs] by blast
    with i j dixy djvu xu yv have False
    by (unfold decisive-def strict-pref-def, blast)
}
moreover
{
    assume xu: }x=u\mathrm{ and yv: }y\not=
    with xy uv xu x y v have threeA: hasw [x,y,v] A by simp
    obtain P
        where profileP: profile A Is P
            and xPiy: x (P i) \precy
            and vPjx:v
            and AyPv: \foralli GIs. y (Pi)}\prec\mp@code{v
        using liberal-witness-three[OF threeA twoIs] by blast
    from vPjx j djvu xu profileP have vPx:v (sdf P)}\prec\mp@subsup{)}{}{\prec
        by (unfold decisive-def strict-pref-def, auto)
    from xPiy i dixy profileP have xPy: x (sdf P)}\prec,
        by (unfold decisive-def strict-pref-def, auto)
    from AyPv weak-paretoD[OF wp-yv] profileP have yPv: y (sdf P)}\prec
        by auto
    from threeA profileP SDF have choiceSet {x,y,v} (sdf P)\not={}
        by (simp add: SDF-def choiceFn-def)
    with vPx xPy yPv have False
        by (unfold choiceSet-def strict-pref-def, blast)
}
moreover
{
    assume xv: }x=v\mathrm{ and yu: }y=
    from xy x y have twoA: hasw [x,y] A by auto
    obtain P
```



```
        using liberal-witness-two[OF twoA twoIs] by blast
    with ij dixy djuv xv yu have False
        by (unfold decisive-def strict-pref-def, blast)
}
moreover
{
    assume xv: }x=v\mathrm{ and }yu:y\not=
    with xy uv u x y have threeA: hasw [x,y,u] A by simp
    obtain P
    where profileP: profile A Is P
        and xPiy: x (P i)}\prec\mp@code{`
        and uPjx: u (P j)}\prec\mp@code{
        and AyPu:\foralli\inIs. y (Pi)}\prec\mp@code{u
    using liberal-witness-three[OF threeA twoIs] by blast
    from uPjx j djuv xv profileP have uPx:u(sdf P)}\prec~
    by (unfold decisive-def strict-pref-def, auto)
    from xPiy i dixy profileP have xPy: x (sdf P)}\prec,
    by (unfold decisive-def strict-pref-def, auto)
    from AyPu weak-paretoD[OF wp-y u] profileP have yPu:y (sdf P)}\prec~
```

```
    by auto
    from threeA profileP SDF have choiceSet {x,y,u} (sdf P)\not={}
        by (simp add: SDF-def choiceFn-def)
    with uPx xPy yPu have False
    by (unfold choiceSet-def strict-pref-def, blast)
}
moreover
{
    assume xu: }x\not=u\mathrm{ and }xv:x\not=v\mathrm{ and yu: }y=
    with v x y xy uv xu have threeA: hasw [y,x,v] A by simp
    obtain P
        where profileP: profile A Is P
        and yPix: y (Pi)}\prec\mp@code{
        and vPjy:v}\mp@subsup{v}{(Pj)}{~
        and AxPv:\foralli\inIs. x (Pi)}\mp@subsup{}{(P 诺}{
    using liberal-witness-three[OF threeA twoIs] by blast
    from yPix i diyx profileP have yPx:y(sdf P)}\prec~
    by (unfold decisive-def strict-pref-def, auto)
    from vPjy j djvu yu profileP have vPy:v (sdf P)}\prec>
        by (unfold decisive-def strict-pref-def, auto)
    from AxPv weak-paretoD[OF wp - x v] profileP have xPv: x (sdf P)}\prec~
        by auto
    from threeA profileP SDF have choiceSet {x,y,v} (sdf P)\not={}
        by (simp add: SDF-def choiceFn-def)
    with yPx vPy xPv have False
    by (unfold choiceSet-def strict-pref-def, blast)
}
moreover
{
    assume xu: }x\not=u\mathrm{ and }xv:x\not=v\mathrm{ and yv: y=v
    with u x y xy uv xu have threeA: hasw [y,x,u] A by simp
    obtain P
    where profileP: profile A Is P
        and yPix: y (Pi)}\prec<
        and uPjy:}\mp@subsup{u}{(Pj)}{~
        and AxPu:\foralli GIs. x (P i)\precu
    using liberal-witness-three[OF threeA twoIs] by blast
    from yPix i diyx profileP have yPx:y(sdf P)}\prec~
        by (unfold decisive-def strict-pref-def, auto)
    from uPjy j djuv yv profileP have uPy:u(sdf P)}\prec
        by (unfold decisive-def strict-pref-def, auto)
    from AxPu weak-paretoD[OF wp - x u] profileP have xPu: x (sdf P)}\prec~
    by auto
    from threeA profileP SDF have choiceSet {x,y,u} (sdf P)\not={}
    by (simp add: SDF-def choiceFn-def)
    with yPx uPy xPu have False
    by (unfold choiceSet-def strict-pref-def, blast)
}
moreover
{
    assume }xu:x\not=u\mathrm{ and }xv:x\not=v\mathrm{ and }yu:y\not=u\mathrm{ and }yv:y\not=
```

```
    with u v x y xy uv xu have fourA: hasw [x,y,u,v] A by simp
    obtain P
        where profileP: profile A Is P
            and xPiy: x (Pi)}\mp@subsup{}{(P)}{
            and uPjv:}u(Pj)\prec
            and AvPxAyPu: \foralli\inIs.v }\mp@subsup{}{(P i)}{}\precx\wedge y (Pi) \prec
            using liberal-witness-four[OF fourA twoIs] by blast
    from xPiy i dixy profileP have xPy: x (sdf P)}\prec,
        by (unfold decisive-def strict-pref-def, auto)
    from uPjv j djuv profileP have uPv:u(sdfP)}\prec
        by (unfold decisive-def strict-pref-def, auto)
    from AvPxAyPu weak-paretoD[OF wp] profileP x y uv
    have vPx:v (sdf P)\prec \prec and yPu: y (sdf P)}\prec~u\mathrm{ by auto
    from fourA profileP SDF have choiceSet {x,y,u,v} (sdf P)\not={}
        by (simp add:SDF-def choiceFn-def)
    with xPy uPv vPx yPu have False
        by (unfold choiceSet-def strict-pref-def, blast)
    }
    ultimately show False by blast
qed
```


6 May's Theorem

May's Theorem [May52] provides a characterisation of majority voting in terms of four conditions that appear quite natural for a priori unbiased social choice scenarios. It can be seen as a refinement of some earlier work by Arrow [Arr63, Chapter V.1].

The following is a mechanisation of Sen's generalisation [Sen70, Chapter 5*]; originally Arrow and May consider only two alternatives, whereas Sen's model maps profiles of full RPRs to a possibly intransitive relation that does at least generate a choice set that satisfies May's conditions.

6.1 May's Conditions

The condition of anonymity asserts that the individuals' identities are not considered by the choice rule. Rather than talk about permutations we just assert the result of the SCF is the same when the profile is composed with an arbitrary bijection on the set of individuals.

```
definition anonymous :: ('a, 'i) SCF \(\Rightarrow{ }^{\prime} a\) set \(\Rightarrow{ }^{\prime} i\) set \(\Rightarrow\) bool where
    anonymous scf \(A\) Is \(\equiv\)
    ( \(\forall P f x y\). profile \(A\) Is \(P \wedge\) bij-betw \(f\) Is Is \(\wedge x \in A \wedge y \in A\)
            \(\longrightarrow\left(x_{(s c f P) \preceq y)}=(x(s c f(P \circ f)) \preceq y)\right)\)
lemma anonymousI[intro]:
    ( \(\bigwedge P f x y\). \(\mathbb{P}\) profile \(A\) Is \(P\); bij-betw \(f\) Is Is;
        \(\left.\left.x \in A ; y \in A \rrbracket \Longrightarrow\left(x_{(s c f} P\right) \preceq y\right)=\left(x_{(\operatorname{scf}(P \circ f))} \preceq y\right)\right)\)
    \(\Longrightarrow\) anonymous scf \(A\) Is
```

 unfolding anonymous-def by simp
 lemma anonymousD：
\llbracket anonymous scf A Is；profile A Is $P ;$ bij－betw f Is $I s ; x \in A ; y \in A \rrbracket$
$\left.\Longrightarrow\left(x_{(s c f P)} \preceq y\right)=\left(x_{(s c f}(P \circ f)\right) \preceq y\right)$
unfolding anonymous－def by simp
Similarly，an SCF is neutral if it is insensitive to the identity of the alternatives．This is Sen＇s characterisation［Sen70，p72］．
definition neutral $::\left({ }^{\prime} a, ~ ' i\right) S C F \Rightarrow{ }^{\prime}$ a set \Rightarrow＇i set \Rightarrow bool where
neutral scf A Is \equiv
（ $\forall P P^{\prime} x y z w$ ．profile A Is $P \wedge$ profile A Is $P^{\prime} \wedge x \in A \wedge y \in A \wedge z \in A \wedge w \in A$

$\longrightarrow\left(x_{(s c f P)} \preceq y^{\longleftrightarrow} z_{\left.\left.\left.\left.\left(s c f P^{\prime}\right) \preceq w\right) \wedge\left(y_{(s c f P)} \preceq x \longleftrightarrow w_{(s c f} P^{\prime}\right) \preceq z\right)\right)\right) ~}^{\text {}}\right.$
lemma neutrall［intro］：
$\left(\bigwedge P P^{\prime} x y z w\right.$ ．
【 profile A Is P ；profile A Is $P^{\prime} ;\{x, y, z, w\} \subseteq A$ ；
$\bigwedge i . i \in I s \Longrightarrow x_{(P i)} \preceq y \longleftrightarrow z_{\left(P^{\prime} i\right)} \preceq w ;$
へi．$i \in I s \Longrightarrow y_{(P i)} \preceq x \longleftrightarrow w_{\left(P^{\prime} i\right)}$ 〔 $z \rrbracket$
$\Longrightarrow\left(x_{(s c f P)} \preceq y^{\longleftrightarrow} z_{\left.\left.\left.\left(s c f P^{\prime}\right) \preceq w\right) \wedge\left(y_{(s c f P)} \preceq x \longleftrightarrow w_{\left(s c f P^{\prime}\right)} \preceq z\right)\right)\right) ~}^{\text {}}\right.$
\Longrightarrow neutral scf A Is
unfolding neutral－def by simp
lemma neutralD：
【 neutral scf A Is； profile A Is P ；profile A Is $P^{\prime} ;\{x, y, z, w\} \subseteq A$ ；
$\bigwedge i . i \in I s \Longrightarrow x_{(P i)} \preceq y \longleftrightarrow z_{\left(P^{\prime} i\right)} \preceq w ;$
$\bigwedge i . i \in I s \Longrightarrow y_{(P i)} \preceq x \longleftrightarrow w_{\left(P^{\prime} i\right)} \preceq z \rrbracket$
$\left.\Longrightarrow x_{(s c f P)} \preceq y^{\longleftrightarrow} z_{\left(s c f P^{\prime}\right)} \preceq w\right) \wedge\left(y_{(\operatorname{scf} P)} \preceq x \longleftrightarrow w_{\left(s c f P^{\prime}\right)} \preceq z\right)$
unfolding neutral－def by simp
Neutrality implies independence of irrelevant alternatives．
lemma neutral－iia：neutral scf A Is \Longrightarrow iia scf A Is
unfolding neutral－def by（rule，auto）
Positive responsiveness is a bit like non－manipulability：if one individual improves their opinion of x ，then the result should shift in favour of x ．

```
definition positively-responsive :: ('a, 'i) SCF \(\Rightarrow{ }^{\prime}\) 'a set \(\Rightarrow{ }^{\prime}\) i set \(\Rightarrow\) bool where
positively-responsive scf \(A\) Is \(\equiv\)
( \(\forall P P^{\prime} x y\). profile \(A\) Is \(P \wedge\) profile A Is \(P^{\prime} \wedge x \in A \wedge y \in A\)
    \(\wedge\left(\forall i \in I s .\left(x_{\left(P_{i}\right)} \prec y \longrightarrow x_{\left(P^{\prime}{ }_{i}\right)} \prec y\right) \wedge\left(x_{(P i)} \approx y \longrightarrow x_{\left(P^{\prime}{ }_{i}\right)} \preceq y\right)\right)\)
    \(\wedge\left(\exists k \in I s .\left(x_{(P k)} \approx y \wedge x_{\left(P^{\prime} k\right)}^{\prec} y\right) \vee\left(y_{(P k)} \prec x \wedge x_{\left(P^{\prime} k\right)} \preceq y\right)\right)\)
    \(\left.\longrightarrow x_{(s c f P)} \preceq y^{\longrightarrow} x_{\left(s c f P^{\prime}\right)} \prec y\right)\)
```

lemma positively－responsiveI［intro］：
assumes $I: \wedge P P^{\prime} x y$ ．
\llbracket profile A Is P ；profile A Is $P^{\prime} ; x \in A ; y \in A$ ；
$\bigwedge i . \llbracket i \in I s ; x_{(P i)} \prec y \rrbracket \Longrightarrow x_{\left(P^{\prime} i\right)} \prec y ;$
$\bigwedge i . \llbracket i \in I s ; x(P i) \approx y \rrbracket \Longrightarrow x{ }_{\left(P^{\prime} i\right)}$ 亿 y ；
$\exists k \in I s .\left(x_{(P k)} \approx y \wedge x_{\left(P^{\prime} k\right)} \prec y\right) \vee\left(y_{(P k)} \prec x \wedge x_{\left(P^{\prime} k\right)} \preceq y\right) ;$

$$
\begin{aligned}
& x(\operatorname{scf} P) \preceq y \rrbracket \\
& \Longrightarrow x\left(s c f P^{\prime}\right)^{\prec} y
\end{aligned}
$$

shows positively－responsive scf A Is
unfolding positively－responsive－def
by（blast intro：I ）

```
lemma positively-responsiveD:
    【 positively-responsive scf A Is;
        profile \(A\) Is \(P\); profile \(A\) Is \(P^{\prime} ; x \in A ; y \in A\);
        \(\bigwedge i . \llbracket i \in I s ; x(P i) \prec y \rrbracket \Longrightarrow x_{\left(P^{\prime}{ }_{i}\right)}^{\prec y ; ~}\)
        \(\bigwedge i . \llbracket i \in I s ; x_{(P i)} \approx y \rrbracket \Longrightarrow x{ }_{\left(P^{\prime}{ }_{i}\right) \preceq y ; ~}^{y}\)
        \(\exists k \in I s .\left(x_{(P k)} \approx y \wedge x_{\left(P^{\prime} k\right)}^{\prec} y\right) \vee\left(y_{(P k)} \prec x \wedge x_{\left(P^{\prime} k\right)} \preceq y\right) ;\)
        \(x \xrightarrow[(\text { scf } P)]{\Longrightarrow}\) 〕】 1
            \(\Longrightarrow x_{\left(\text {scf } P^{\prime}\right)} \prec y\)
    unfolding positively-responsive-def
    apply clarsimp
    apply (erule all \(E[\) where \(x=P]\) )
    apply (erule allE [where \(\left.x=P^{\prime}\right]\) )
    apply (erule all \(E[\) where \(x=x]\) )
    apply (erule allE \([\) where \(x=y]\) )
    by auto
```


6．2 The Method of Majority Decision satisfies May＇s conditions

The method of majority decision（MMD）says that if the number of individuals who strictly prefer x to y is larger than or equal to those who strictly prefer the converse，then $x R y$ ． Note that this definition only makes sense for a finite population．

```
definition \(M M D::\) ' \(i\) set \(\Rightarrow\left({ }^{\prime} a, ~ ' i\right) S C F\) where
    MMD Is \(P \equiv\left\{(x, y)\right.\).card \(\left\{i \in\right.\) Is. \(\left.x_{(P i)} \prec y\right\} \geq \operatorname{card}\left\{i \in\right.\) Is. \(\left.\left.^{\prime} y_{(P i)} \prec x\right\}\right\}\)
```

The first part of May＇s Theorem establishes that the conditions are consistent，by showing that they are satisfied by MMD．

```
lemma MMD-l2r:
    fixes A :: 'a set
        and Is :: 'i set
    assumes finiteIs: finite Is
    shows SCF (MMD Is) A Is universal-domain
        and anonymous (MMD Is) A Is
        and neutral (MMD Is) A Is
        and positively-responsive (MMD Is) A Is
proof -
    show SCF (MMD Is) A Is universal-domain
    proof
        fix P show complete A (MMD Is P)
            by (rule completeI, unfold MMD-def, simp, arith)
    qed
    show anonymous (MMD Is) A Is
    proof
        fix P
        fix x y :: 'a
        fix f}\mathrm{ assume bijf:bij-betw f Is Is
```

```
    show \(\left.\left(x_{(M M D ~ I s ~}{ }_{(M)} \preceq y\right)=\left(x_{(M M D ~ I s ~}(P \circ f)\right) \preceq y\right)\)
    using card-compose-bij[OF bijf, where \(\left.P=\lambda i . x_{(P i)} \prec y\right]\)
        card-compose-bij[OF bijf, where \(P=\lambda i\). y \(\left.{ }_{(P i)^{\prec}} \prec x\right]\)
    unfolding \(M M D-d e f\) by simp
    qed
next
    show neutral (MMD Is) A Is
    proof
        fix \(P P^{\prime}\)
    fix \(x y z w\) assume \(x y z w A:\{x, y, z, w\} \subseteq A\)
    assume xyzw: \(\bigwedge i . i \in I s \Longrightarrow\left(x_{(P i)} \preceq y\right)=\left(z_{\left(P^{\prime} i\right)} \preceq w\right)\)
        and \(y x w z: \bigwedge i . i \in I s \Longrightarrow\left(y_{(P i)} \preceq x\right)=\left(w_{\left(P^{\prime} i\right)} \preceq z\right)\)
    from \(x y z w A\) xyzw yxwz
    have \(\left\{i \in\right.\) Is. \(\left.x_{(P i)} \prec y\right\}=\left\{i \in\right.\) Is. \(\left.z_{\left(P^{\prime} i\right)} \prec w\right\}\)
        and \(\left.\left\{i \in \text { Is. } y_{(P i}\right)^{\prec} x\right\}=\left\{i \in I s\right.\). w \(\left.\left(P^{\prime}{ }_{i}\right)^{\prec} z\right\}\)
        unfolding strict-pref-def by auto
    thus \(\left.\left.\left(x_{(M M D ~ I s ~}\right) \preceq y\right)=\left(z_{(M M D ~ I s ~} P^{\prime}\right) \preceq w\right) \wedge\)
            \(\left(y_{(M M D}\right.\) Is \(\left.\left.P\right) \preceq x\right)=\left(w\left(\right.\right.\) MMD Is \(\left.\left.P^{\prime}\right) \preceq z\right)\)
        unfolding MMD-def by simp
    qed
next
    show positively-responsive (MMD Is) A Is
    proof
    fix \(P P^{\prime}\) assume profile \(P\) : profile \(A\) Is \(P\)
    fix \(x y\) assume \(x y A: x \in A y \in A\)
    assume \(x P y\) : \(\bigwedge i . \llbracket i \in I s ; x(P i) \prec y \rrbracket \Longrightarrow x{ }_{\left(P^{\prime}{ }_{i}\right)} \prec y\)
        and \(x I y: \wedge i . \llbracket i \in I s ; x_{(P i)} \approx y \rrbracket \Longrightarrow x_{\left(P^{\prime} i\right)} \preceq y\)
        and \(k: \exists k \in I s . x_{(P k)} \approx y \wedge x_{\left(P^{\prime} k\right)} \prec y \vee y_{(P k)} \prec x \wedge x_{\left(P^{\prime} k\right)} \preceq y\)
        and xRSCFy: \(x_{(M M D}\) Is \(\left.P\right) \preceq y\)
    from \(k\) obtain \(k\)
        where \(k I s: k \in I s\)
            and kcond: \(\left(x_{(P k)} \approx y \wedge x_{\left(P^{\prime} k\right)}^{\prec} y\right) \vee\left(y_{(P k)} \prec x \wedge x_{\left(P^{\prime} k\right)} \preceq y\right)\)
        by blast
    let \(? x P y=\left\{i \in\right.\) Is. \(\left.x{ }_{(P i)^{\prec}} \prec y\right\}\)
    let ? \(x P^{\prime} y=\left\{i \in\right.\) Is. \(\left.x\left(P^{\prime}{ }_{i}\right)^{\prec} y\right\}\)
    let \({ }^{2} y P x=\left\{i \in I s . y_{(P i)}^{\prec} \prec x\right\}\)
    let \(? y P^{\prime} x=\left\{i \in\right.\) Is. \(\left.y\left(P^{\prime} i\right) \prec x\right\}\)
    from profile \(P\) xy \(A x P y\) xIy have \(y P^{\prime} x y P x: ? y P^{\prime} x \subseteq ? y P x\)
        unfolding strict-pref-def indifferent-pref-def
        by (blast dest: rpr-complete)
    with finiteIs have \(y P^{\prime} x y P x C\) : card \(? y P^{\prime} x \leq\) card ? \(y P x\)
        by (blast intro: card-mono finite-subset)
    from finiteIs \(x P y\) have \(x P y x P^{\prime} y C\) : card \(? x P y \leq \operatorname{card} ? x P^{\prime} y\)
        by (blast intro: card-mono finite-subset)
    show \(x\left(M M D \text { Is } P^{\prime}\right)^{\prec} y\)
    proof
        from \(x R S C F y x P y x P^{\prime} y C y P^{\prime} x y P x C\) show \(x\left(M M D\right.\) Is \(\left.P^{\prime}\right) \preceq y\)
            unfolding \(M M D-\) def by auto
    next
```

```
    {
```



```
    have card?xPy < card ?xP'y
    proof -
            from xIky have knP: k\not\in?xPy
                unfolding indifferent-pref-def strict-pref-def by blast
```



```
            from finiteIs xPy knP kP' show ?thesis
                by (blast intro: psubset-card-mono finite-subset)
    qed
    with xRSCFy yP'xyPxC have card ?yP'x < card ?xP'y
        unfolding MMD-def by auto
    }
    moreover
    {
    assume yPkx: y (P k) \precx and x\mp@subsup{R}{}{\prime}ky: x ( (P'k)\preceq \ y
    have card ?yP'x < card ?yPx
    proof -
        from kIs yPkx have kP:k\in?yPx by simp
        from kIs xR'ky have knP':k\not\in?yP'x
            unfolding strict-pref-def by blast
            from yP'xyPx kP knP' have ?yP'x \subset?yPx by blast
            with finiteIs show?thesis
                by (blast intro: psubset-card-mono finite-subset)
            qed
            with xRSCFy xPyxP'yC have card ?yP'x < card ?xP'y
                unfolding MMD-def by auto
    }
    moreover note kcond
    ultimately show }\neg(y(MMD Is P')\preceqx
        unfolding MMD-def by auto
    qed
    qed
qed
```


6.3 Everything satisfying May's conditions is the Method of Majority Decision

Now show that MMD is the only SCF that satisfies these conditions.
Firstly develop some theory about exchanging alternatives x and y in profile P.
definition swapAlts :: ' $a \Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a$ where
swapAlts $a b u \equiv$ if $u=a$ then b else if $u=b$ then a else u

```
lemma swapAlts-in-set-iff: \(\{a, b\} \subseteq A \Longrightarrow\) swapAlts a \(b u \in A \longleftrightarrow u \in A\)
    unfolding swapAlts-def by (simp split: if-split)
definition swapAltsP \(::\left({ }^{\prime} a, ' i\right)\) Profile \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow(' a, ' i)\) Profile where
    swapAltsP Pab\(\equiv(\lambda i .\{(u, v) .(s w a p A l t s ~ a b u\), swapAlts abv) \(\in P i\})\)
```



```
b
```

```
    unfolding swapAltsP-def swapAlts-def by simp-all
lemma profile-swapAltsP:
    assumes profileP: profile A Is P
        and abA: {a,b}\subseteqA
    shows profile A Is (swapAltsP P a b)
proof(rule profileI)
    from profileP show Is }\not={}\mathrm{ by (rule profile-non-empty)
next
    fix i assume iIs:i\inIs
    show rpr A (swapAltsP P a b i)
    proof(rule rprI)
        show refl-on A (swapAltsP P a b i)
        proof(rule refl-onI)
        from profileP iIs abA show swapAltsP P abi\subseteqA\timesA
            unfolding swapAltsP-def by (blast dest: swapAlts-in-set-iff)
        from profileP iIs abA show }\x.x\inA\Longrightarrowx(swapAltsP P a b i)\preceq
            unfolding swapAltsP-def swapAlts-def by auto
        qed
    next
        from profileP iIs abA show complete A (swapAltsP P abi)
        unfolding swapAltsP-def
        by - (rule completeI, simp, rule rpr-complete[where A=A],
                auto iff:swapAlts-in-set-iff)
    next
        from profileP iIs show trans (swapAltsP P a b i)
        unfolding swapAltsP-def by (blast dest: rpr-le-trans intro: transI)
    qed
qed
lemma profile-bij-profile:
    assumes profileP: profile A Is P
        and bijf: bij-betw f Is Is
    shows profile A Is (P\circf)
    using bij-betw-onto[OF bijf] profileP
    by - (rule, auto dest: profile-non-empty)
```

The locale keeps the conditions in scope for the next few lemmas. Note how weak the constraints on the sets of alternatives and individuals are; clearly there needs to be at least two alternatives and two individuals for conflict to occur, but it is pleasant that the proof uniformly handles the degenerate cases.

```
locale May =
    fixes A :: 'a set
    fixes Is :: 'i set
    assumes finiteIs: finite Is
    fixes scf :: ('a, 'i) SCF
    assumes SCF: SCF scf A Is universal-domain
        and anonymous: anonymous scf A Is
        and neutral: neutral scf A Is
        and positively-responsive: positively-responsive scf A Is
```


begin

Anonymity implies that, for any pair of alternatives, the social choice rule can only depend on the number of individuals who express any given preference between them. Note we also need iia, implied by neutrality, to restrict attention to alternatives x and y.

```
lemma anonymous-card:
    assumes profile \(P\) : profile \(A\) Is \(P\)
        and profile \(P^{\prime}\) : profile \(A\) Is \(P^{\prime}\)
        and xyA: hasw \([x, y] A\)
        and xytally: card \(\{i \in\) Is. \(x(P i) \prec y\}=\operatorname{card}\left\{i \in \operatorname{Is} . x_{\left(P^{\prime}{ }_{i}\right)} \prec y\right\}\)
        and yxtally: card \(\{i \in\) Is. \(y(P i) \prec x\}=\operatorname{card}\left\{i \in\right.\) Is. \(\left.y{ }_{\left(P^{\prime}{ }_{i}\right)} \prec x\right\}\)
    shows \(x_{(s c f P)} \preceq y^{\left.\longleftrightarrow x_{(s c f} P^{\prime}\right)}{ }^{\text {}} y^{\prime}\)
proof -
    let \(? x P y=\left\{i \in\right.\) Is. \(\left.x{ }_{(P i)} \prec y\right\}\)
    let ? \(x P^{\prime} y=\left\{i \in\right.\) Is. \(\left.x{ }_{\left(P^{\prime} i\right)} \prec y\right\}\)
    let \(? y P x=\left\{i \in I s . y_{(P i)}^{\prec x\}}\right.\)
    let \(? y P^{\prime} x=\left\{i \in\right.\) Is. \(y\left(P^{\prime}{ }_{i}{ }^{2} \prec x\right\}\)
    have disjPxy: \((? x P y \cup ? y P x)-? x P y=? y P x\)
        unfolding strict-pref-def by blast
    have \(\operatorname{disj} P^{\prime} x y:\left(? x P^{\prime} y \cup ? y P^{\prime} x\right)-? x P^{\prime} y=? y P^{\prime} x\)
        unfolding strict-pref-def by blast
    from finiteIs xytally
    obtain \(f\) where bijf: bij-betw \(f\) ? \(x P y\) ? \(x P^{\prime} y\)
        by - (drule card-eq-bij, auto)
    from finiteIs yxtally
    obtain \(g\) where bijg: bij-betw \(g\) ? \(y P x\) ? \(y P^{\prime} x\)
        by - (drule card-eq-bij, auto)
    from bijf bijg disjPxy disjP'xy
    obtain \(h\)
        where bijh: bij-betw \(h(? x P y \cup\) ? \(y P x)\left(? x P^{\prime} y \cup ? y P^{\prime} x\right)\)
        and \(h f: \bigwedge j . j \in ? x P y \Longrightarrow h j=f j\)
        and \(h g: \bigwedge j . j \in(? x P y \cup ? y P x)-? x P y \Longrightarrow h j=g j\)
    using bij-combine[where \(f=f\) and \(g=g\) and \(A=? x P y\) and \(B=? x P y \cup ? y P x\) and \(C=? x P^{\prime} y\) and
\(\left.D=? x P^{\prime} y \cup ? y P^{\prime} x\right]\)
    by auto
    from bijh finiteIs
    obtain \(h^{\prime}\) where \(b i j h^{\prime}\) : bij-betw \(h^{\prime}\) Is Is
                        and \(h h^{\prime}: \bigwedge j . j \in(? x P y \cup ? y P x) \Longrightarrow h^{\prime} j=h j\)
            and hrest: \(\bigwedge j . j \in I s-(? x P y \cup ? y P x) \Longrightarrow h^{\prime} j \in I s-\left(? x P^{\prime} y \cup ? y P^{\prime} x\right)\)
    by - (drule bij-complete, auto)
    from neutral-iia[OF neutral]
    have \(\left.\left.x_{(s c f}\left(P^{\prime} \circ h^{\prime}\right)\right) \preceq y^{\longleftrightarrow} x_{(s c f} P\right) \preceq y\)
    proof (rule iiaE)
    from \(x y A\) show \(\{x, y\} \subseteq A\) by \(\operatorname{simp}\)
    next
    fix \(i\) assume \(i I s: i \in I s\)
    fix \(a b\) assume \(a b: a \in\{x, y\} b \in\{x, y\}\)
    from profile \(P\) iIs have completePi: complete \(A(P i)\) by (auto dest: rprD)
    from completePi xyA
    show \(\left(a_{(P i)} \preceq b\right) \longleftrightarrow\left(a_{\left(\left(P^{\prime} \circ h^{\prime}\right) i\right)} \preceq b\right)\)
    proof(cases rule: complete-exh)
```

```
        case xPy with profileP profile P' xyA iIs ab hh' hf bijf show ?thesis
        unfolding strict-pref-def bij-betw-def by (simp, blast)
    next
        case yPx with profileP profileP' xyA iIs ab hh' hg bijg show ?thesis
        unfolding strict-pref-def bij-betw-def by (simp, blast)
    next
        case xIy with profileP profileP' xyA iIs ab hrest[where j=i] show ?thesis
        unfolding indifferent-pref-def strict-pref-def bij-betw-def
        by (simp, blast dest: rpr-complete)
    qed
    qed (simp-all add: profileP profile-bij-profile[OF profileP' bijh])
    moreover
    from anonymousD[OF anonymous profileP' bijh] xyA
    have x(scf P}\mp@subsup{P}{}{\prime}\y\longleftrightarrowx(scf(\mp@subsup{P}{}{\prime}\circ\mp@subsup{h}{}{\prime}))\preceqy by sim
    ultimately show ?thesis by simp
qed
```

Using the previous result and neutrality, it must be the case that if the tallies are tied for alternatives x and y then the social choice function is indifferent between those two alternatives.
lemma anonymous-neutral-indifference:
assumes profileP: profile A Is P
and $x y A$: hasw $[x, y] A$
and tallyP: card $\left\{i \in I s . x_{(P i)} \prec y\right\}=\operatorname{card}\left\{i \in I s . y_{(P i)} \prec x\right\}$
shows $\left.x_{(s c f} P\right) \approx y$
proof -

- Neutrality insists the results for P are symmetrical to those for swapAlts $P P$.
from $x y A$
have $\operatorname{symPP} P^{\prime}:(x(s c f P) \preceq y \longleftrightarrow y(s c f(s w a p A l t s P P x y)) \preceq x)$

$$
\wedge\left(y_{(\operatorname{scf} P) \preceq x \longleftrightarrow x(\operatorname{scf}(\text { swapAlts } P P x y)) \preceq y)}\right.
$$

by - (rule neutralD $[$ OF neutral profile P profile-swapAlts $P[O F$ profile $]]$], simp-all, (rule swapAltsP-ab)+)

- Anonymity and neutrality insist the results for P are identical to those for swapAlts P P.
 and card $\left\{i \in I s . y_{(P i)} \prec x\right\}=$ card $\left\{i \in\right.$ Is. $y_{(\text {swapAltsP } P \text { x }}$ y $\left.\left.i\right) \prec x\right\}$
unfolding swapAltsP-def swapAlts-def strict-pref-def by simp-all

and $y_{(\text {scf } P)} \preceq x \longleftrightarrow y_{(s c f}($ swapAlts $P P x y) \preceq x$
by - (rule anonymous-card[OF profileP profile-swapAltsP], clarsimp+)+
from $x y A S C F$-complete $D[O F S C F]$ profile P sym $P P^{\prime}$ idPP' show $x(s c f P) \approx y$ by (simp, blast) qed

Finally, if the tallies are not equal then the social choice function must lean towards the one with the higher count due to positive responsiveness.

```
lemma positively-responsive-prefer-witness:
    assumes profileP: profile \(A\) Is \(P\)
        and \(x y A\) : hasw \([x, y] A\)
        and tallyP: card \(\left\{i \in\right.\) Is. \(\left.x{ }_{(P i)}^{\prec} \prec\right\}>\) card \(\left\{i \in\right.\) Is. \(\left.y_{(P i)} \prec x\right\}\)
    obtains \(P^{\prime} k\)
    where profile \(A\) Is \(P^{\prime}\)
        and \(\bigwedge i . \llbracket i \in I s ; x_{\left(P^{\prime}{ }_{i}\right)}^{\prec y \rrbracket \Longrightarrow x_{(P i)} \prec y}\)
```

and $\bigwedge i . \llbracket i \in I s ; x\left(P^{\prime}{ }_{i}\right) \approx y \rrbracket \Longrightarrow x(P i) \preceq y$
and $k \in I s \wedge x_{\left(P^{\prime} k\right)} \approx y \wedge x(P k)^{\prec} y$

proof -
from tally P obtain C
where tally $P^{\prime}:$ card $\left(\left\{i \in\right.\right.$ Is. $\left.\left.x_{(P i)} \prec y\right\}-C\right)=$ card $\left\{i \in\right.$ Is. $\left.y_{(P i)} \prec x\right\}$
and $C: C \neq\{ \} C \subseteq I s$
and CxPy: $C \subseteq\left\{i \in\right.$ Is. $\left.x_{(P i)} \prec y\right\}$
by - (drule card-greater[OF finiteIs], auto)

- Add (b, a) and close under transitivity.
let $? P^{\prime}=\lambda$ i. if $i \in C$

$$
\text { then } \begin{array}{rl}
P & i \cup\{(y, x)\} \\
& \cup\left\{(y, u) \mid u \cdot x_{(P i) \preceq u\}}\right. \\
& \cup\left\{(u, x) \mid u \cdot u_{(P i) \preceq y\}}\right. \\
& \cup\left\{(v, u) \mid u v . x_{(P i)} \preceq u \wedge v_{(P i)} \preceq y\right\}
\end{array}
$$

else $P i$
have profile A Is ? P^{\prime}
proof
fix i assume $i I s: i \in I s$
show $\operatorname{rpr} A\left(? P^{\prime} i\right)$
proof
from profileP iIs show complete $A\left(? P^{\prime} i\right)$
unfolding complete-def by (simp, blast dest: rpr-complete)
from profileP iIs xyA show refl-on $A\left(? P^{\prime} i\right)$ by - (rule refl-onI, auto)
show trans $\left(? P^{\prime} i\right)$
proof $($ cases $i \in C)$
case False with profileP iIs show ?thesis
by (simp, blast dest: rpr-le-trans intro: transI)
next
case True with profileP iIs C CxPy xyA show ?thesis
unfolding strict-pref-def
by - (rule transI, simp, blast dest: rpr-le-trans rpr-complete)
qed
qed
next
from C show $I s \neq\{ \}$ by blast
qed
moreover
have $\bigwedge i . \llbracket i \in I s ; x_{\left(? P^{\prime} i\right)} \prec y \rrbracket \Longrightarrow x{ }_{(P i)} \prec y$
unfolding strict-pref-def by (simp split: if-split-asm)
moreover
from profileP C xyA
have $\bigwedge i . \llbracket i \in I s ; x_{\left(? P^{\prime} i\right)} \approx y \rrbracket \Longrightarrow x{ }_{(P i)} \preceq y$
unfolding indifferent-pref-def by (simp split: if-split-asm)
moreover
from $C C x P y$ obtain k where $k C: k \in C$ and $x P k y: x_{(P k)}^{\prec} y$ by blast
hence $x\left(? P^{\prime} k\right) \approx y$ by auto
with $C k C x P k y$ have $k \in I s \wedge x_{\left(? P^{\prime} k\right)} \approx y \wedge x_{(P k)} \prec y$ by blast
moreover
have card $\left\{i \in\right.$ Is. $\left.\left.x_{\left(? P^{\prime}\right.}{ }_{i}\right) \prec y\right\}=$ card $\left\{i \in\right.$ Is. $\left.y_{\left(? P^{\prime}\right.}{ }_{i}{ }^{2} \prec x\right\}$

```
    proof -
```



```
    proof -
        from C have }\i.\llbracketi\inIs;x(?\mp@subsup{P}{}{\prime}\mp@subsup{}{}{\prime}i)\precy\rrbracket\Longrightarrowi\inIs - C
            unfolding indifferent-pref-def strict-pref-def by auto
        thus?thesis by blast
    qed
    also have ...={i\inIs. x (Pi)}\mp@subsup{)}{}{\imath}y}-C\mathrm{ by auto
    finally have card {i\inIs. x (?P'i)}\mp@subsup{)}{}{\imath}y}=\operatorname{card}({i\inIs.x\mp@subsup{}{(Pi)}{~
        by simp
```



```
        by simp
    also have ... = card {i\inIs. y (?P' }\mp@subsup{}{()}{
    proof -
        from profileP xyA have \i. \llbracketi\inIs; y (?P' i)}\prec\mp@code{x\rrbracket\Longrightarrow y (Pi)\prec < 
            unfolding strict-pref-def by (simp split: if-split-asm, blast dest: rpr-complete)
        hence ?rhs \subseteq?lhs by blast
        moreover
        from profileP xyA have \i.\llbracketi\inIs; y (Pi)\prec \precx\rrbracket\Longrightarrow y (?P' (i)}\prec\mp@code{x
            unfolding strict-pref-def by simp
        hence ?lhs \subseteq?rhs by blast
        ultimately show?thesis by simp
    qed
    finally show ?thesis.
    qed
    ultimately show thesis ..
qed
lemma positively-responsive-prefer:
    assumes profileP: profile A Is P
        and xyA: hasw [x,y] A
        and tallyP: card {i\inIS. x (Pi)}\prec\mp@code{y}> card {i\inIs. y (Pi)}<<x
    shows x (scf P)}\mp@subsup{)}{}{\precy
proof -
    from assms obtain P'k
        where profile\mp@subsup{P}{}{\prime}: profile A Is P'
```



```
            and G:\i.\llbracketi\inIs; x (P''i)}\approx\mp@code{|\rrbracket\Longrightarrowx(Pi)\preceqy
            and pivot: k\inIs\wedge ( (P'k)\approxy^x}(Pk)\prec
```



```
    by - (drule positively-responsive-prefer-witness, auto)
    from profileP' xyA cardP' have x (scf P')}\approx
        by - (rule anonymous-neutral-indifference, auto)
    with xyA F G pivot show ?thesis
    by - (rule positively-responsiveD[OF positively-responsive profileP' profileP], auto)
qed
lemma MMD-r2l:
    assumes profileP: profile A Is P
    and xyA: hasw [x,y] A
```

```
    shows \(x_{(s c f P)} \preceq y^{\longleftrightarrow} x_{(M M D}\) Is \(\left.P\right) \preceq y\)
proof (cases rule: linorder-cases)
    assume card \(\left\{i \in I s . x_{(P i)}^{\prec} y\right\}=\operatorname{card}\left\{i \in\right.\) Is. \(\left.y_{(P i)} \prec x\right\}\)
    with profile \(P\) xyA show ?thesis
        using anonymous-neutral-indifference
        unfolding indifferent-pref-def MMD-def by simp
next
    assume card \(\left\{i \in\right.\) Is. \(\left.x{ }_{(P i)} \prec y\right\}>\operatorname{card}\left\{i \in\right.\) Is. \(\left.y_{(P i)} \prec x\right\}\)
    with profile \(P\) xyA show ?thesis
        using positively-responsive-prefer
        unfolding strict-pref-def MMD-def by simp
next
    assume card \(\left\{i \in\right.\) Is. \(\left.x_{(P i)} \prec y\right\}<\operatorname{card}\left\{i \in \operatorname{Is.} y_{(P i)} \prec x\right\}\)
    with profileP xyA show ?thesis
        using positively-responsive-prefer
        unfolding strict-pref-def MMD-def by clarsimp
qed
end
```

May's original paper [May52] goes on to show that the conditions are independent by exhibiting choice rules that differ from $M M D$ and satisfy the conditions remaining after any particular one is removed. I leave this to future work.

May also wrote a later article [May53] where he shows that the conditions are completely independent, i.e. for every partition of the conditions into two sets, there is a voting rule that satisfies one and not the other.

There are many later papers that characterise MMD with different sets of conditions.

6.4 The Plurality Rule

Goodin and List [GL06] show that May's original result can be generalised to characterise plurality voting. The following shows that this result is a short step from Sen's much earlier generalisation.

Plurality voting is a choice function that returns the alternative that receives the most votes, or the set of such alternatives in the case of a tie. Profiles are restricted to those where each individual casts a vote in favour of a single alternative.

```
type-synonym ('a, 'i)SVProfile \(={ }^{\prime} i \Rightarrow{ }^{\prime} a\)
definition suprofile :: 'a set \(\Rightarrow\) ' \(i\) set \(\Rightarrow\left({ }^{\prime} a, ' i\right)\) SVProfile \(\Rightarrow\) bool where
    svprofile \(A\) Is \(F \equiv I s \neq\{ \} \wedge F^{\prime} I s \subseteq A\)
definition plurality-rule \(::\) ' \(a\) set \(\Rightarrow\) ' \(i\) set \(\Rightarrow\left({ }^{\prime} a, ~ ' i\right)\) SVProfile \(\Rightarrow\) ' \(a\) set where
    plurality-rule A Is F
        \(\equiv\{x \in A . \forall y \in A . \operatorname{card}\{i \in I s . F i=x\} \geq \operatorname{card}\{i \in I s . F i=y\}\}\)
```

By translating single-vote profiles into RPRs in the obvious way, the choice function arising from $M M D$ coincides with traditional plurality voting.

```
definition \(M M D\)-plurality-rule \(::\) ' \(a\) set \(\Rightarrow\) ' \(i\) set \(\Rightarrow\left({ }^{\prime} a\right.\), 'i) Profile \(\Rightarrow\) 'a set where
    MMD-plurality-rule A Is \(P \equiv\) choiceSet \(A(M M D\) Is \(P)\)
```

```
definition single-vote-to- \(R P R\) :: 'a set \(\Rightarrow\) ' \(a \Rightarrow{ }^{\prime} a R P R\) where
    single-vote-to-RPR \(A \quad a \equiv\{(a, x) \mid x . x \in A\} \cup(A-\{a\}) \times(A-\{a\})\)
lemma single-vote-to-RPR-iff:
    \(\llbracket a \in A ; x \in A ; a \neq x \rrbracket \Longrightarrow\left(a_{(\text {single-vote-to-RPR } A \quad b)} \prec x\right) \longleftrightarrow(b=a)\)
    unfolding single-vote-to-RPR-def strict-pref-def by auto
lemma plurality-rule-equiv:
    plurality-rule \(A\) Is \(F=M M D\)-plurality-rule \(A\) Is (single-vote-to-RPR A \(\circ F)\)
proof -
    \{
        fix \(x y\)
        have \(\llbracket x \in A ; y \in A \rrbracket \Longrightarrow\)
            \((\) card \(\{i \in\) Is. \(F i=y\} \leq\) card \(\{i \in\) Is. \(F i=x\})=\)
            (card \(\left\{i \in\right.\) Is. \(\left.y_{(\text {single-vote-to-RPR } A(F i))} \prec x\right\}\)
            \(\leq\) card \(\left\{i \in\right.\) Is. \(\left.\left.x_{(\text {single-vote-to-RPR } A(F i))} \prec y\right\}\right)\)
        by (cases \(x=y\), auto iff: single-vote-to-RPR-iff)
    \}
    thus ?thesis
        unfolding plurality-rule-def MMD-plurality-rule-def choiceSet-def MMD-def
        by auto
qed
```

Thus it is clear that Sen's generalisation of May's result applies to this case as well.
Their paper goes on to show how strengthening the anonymity condition gives rise to a characterisation of approval voting that strictly generalises May's original theorem. As this requires some rearrangement of the proof I leave it to future work.

7 Bibliography

References

[AK96] Analyse \& Kritik, volume 18(1). 1996.
[Arr63] K. J. Arrow. Social Choice and Individual Values. John Wiley and Sons, second edition, 1963.
[GL06] R. E. Goodin and C. List. A conditional defense of plurality rule: Generalizing May's Theorem in a restricted informational environment. American Journal of Political Science, 50(4), 2006.
[May52] K. O. May. A set of independent, necessary and sufficient conditions for simple majority decision. Econometrica, 20(4), 1952.
[May53] K. O. May. A note on the complete independence of the conditions for simple majority decision. Econometrica, 21(1), 1953.
[Nip08] Tobias Nipkow. Arrow and gibbard-satterthwaite. Archive of Formal Proofs, September 2008. http://isa-afp.org/entries/ArrowImpossibilityGS.shtml, Formal proof development.
[Rou79] R. Routley. Repairing proofs of Arrow's General Impossibility Theorem and enlarging the scope of the theorem. Notre Dame Journal of Formal Logic, XX(4), 1979.
[Sen70] Amartya Sen. Collective Choice and Social Welfare. Holden Day, 1970.
[Tay05] A. D. Taylor. Social Choice and the Mathematics of Manipulation. Outlooks. Cambridge University Press, 2005.

