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1 Overview

This is a fairly literal encoding of some of Armatya Sen’s proofs [Sen70] in Isabelle/HOL. The
author initially wrote it while learning to use the proof assistant, and some locutions remain
naive. This work is somewhat complementary to the mechanisation of more recent proofs of
Arrow’s Theorem and the Gibbard-Satterthwaite Theorem by Tobias Nipkow [Nip08§].

I'strongly recommend Sen’s book to anyone interested in social choice theory; his proofs are
quite lucid and accessible, and he situates the theory quite well within the broader economic
tradition.

2 General Lemmas

2.1 Extra Finite-Set Lemmas

Small variant of Finite-Set.finite-subset-induct: also assume F C A in the induction hypoth-
esis.

lemma finite-subset-induct’ [consumes 2, case-names empty insert]:
assumes finite F and FF C A
and empty: P {}
and insert: Aa F. [finite F; a € A; F C A;a¢ F; PF]| = P (insert a F)
shows P F
proof —
from «finite F»
have F' C A — ?thesis
proof induct
show P {} by fact
next
fix z F
assume finite F' and z ¢ F and
P.FCA=— PFandi insertx F C A
show P (insert z F')
proof (rule insert)
from ¢ show z € A by blast
from ¢ have F' C A by blast
with P show P F' .
show finite F' by fact
show z ¢ F by fact
show F' C A by fact
qed
qed
with <F' C A» show ?thesis by blast
qed

A slight improvement on List.finite-list - add distinct.

lemma finite-list: finite A = 3. set | = A A distinct |
proof (induct rule: finite-induct)
case (insert z F)
then obtain | where set [ = F' A distinct | by auto
with insert have set (z#1) = insert © F' A distinct (z#1) by auto



thus “case by blast
qed auto

2.2 Extra bijection lemmas

lemma bij-betw-onto: bij-betw f A B = f * A = B unfolding bij-betw-def by simp

lemma inj-on-Unl: [ inj-on f A; inj-on fB; f ‘(A — B)Nf*(B - A) ={}] = inj-onf (AU B)
by (auto iff: inj-on-Un)

lemma card-compose-bij:
assumes bijf: bij-betw f A A
shows card { a € A. P (fa) } =card { a € A. Pa }
proof —
from bijf have T: f ‘{ a € A. P (fa) } ={a€ A Pa}
unfolding bij-betw-def by auto
from bijf have card { a € A. P (fa) } = card (f ‘{a€ A. P (fa) })
unfolding bij-betw-def by (auto intro: subset-inj-on card-image|symmetric|)
with T show ?thesis by simp
qged

lemma card-eq-bij:
assumes cardAB: card A = card B
and finiteA: finite A and finiteB: finite B
obtains f where bij-betw f A B
proof —
from finiteA obtain g where G: bij-betw g A {0..<card A}
by (blast dest: ex-bij-betw-finite-nat)
from finiteB obtain h where H: bij-betw h {0..<card B} B
by (blast dest: ex-bij-betw-nat-finite)
from G H cardAB have I: inj-on (h o g) A
unfolding bij-betw-def by — (rule comp-inj-on, simp-all)
from G H cardAB have (hog) ‘A= DB
unfolding bij-betw-def by auto (metis image-cong image-image)
with I have bij-betw (h o g) A B
unfolding bij-betw-def by blast
thus thesis ..
qed

lemma bij-combine:
assumes ABCD: AC BCCD
and bijf: bij-betw f A C
and bijg: bij-betw g (B — A) (D — C)
obtains h
where bij-betw h B D
and A\z. 2 € A= hz=fz
and A\e. 2 € B— A= hzx=gz
proof —
let ?h = Az. if v € A then fz else g x
have inj-on ?h (AU (B — A))
proof (rule inj-on-Unl)
from bijf show inj-on ?h A
by — (rule inj-onl, auto dest: inj-onD bij-betw-imp-inj-on)



from bijg show inj-on ?h (B — A)
by — (rule inj-onl, auto dest: inj-onD bij-betw-imp-inj-on)

from bijf bijg show ?h ‘(A — (B — A) N % ‘(B—A—- A) ={}
by (simp, blast dest: bij-betw-onto)

qed

with ABCD have inj-on ?h B by (auto iff: Un-absorbl)

moreover

have ?h ‘B =D

proof —
from ABCD have ?h ‘B =f ‘AU g ‘(B — A) by (auto iff: image-Un Un-absorbl)
also from ABCD bijf bijg have ... = D by (blast dest: bij-betw-onto)
finally show ?thesis .

qed

ultimately have bij-betw ?h B D
and A\v. 2 € A= %hz=fz
and A\z.2 € B—- A= %ha=gz
unfolding bij-betw-def by auto
thus thesis ..
qed

lemma bij-complete:
assumes finiteC": finite C
and ABC: AC CBCC
and bijf: bij-betw f A B
obtains f’ where bij-betw f’' C C
and \z.2 € A = f'z=fx
and A\v.2€ C — A= f'2€ C-B
proof —
from finiteC ABC bijf have card B = card A
unfolding bij-betw-def
by (auto iff: inj-on-iff-eq-card [symmetric] intro: finite-subset)
with finiteC ABC bijf have card (C — A) = card (C — B)
by (auto iff: finite-subset card-Diff-subset)
with finiteC' obtain g where bijg: bij-betw g (C — A) (C — B)
by — (drule card-eq-bij, auto)
from ABC bijf bijg
obtain f’ where bijf": bij-betw f' C C
and f'fi N\e.ze A= fz=fz
and f'lg: N\e.2 e C — A= flz=gzx
by — (drule bij-combine, auto)
from f'g bijg have A\o. 1€ C — A= f'z € C — B
by (blast dest: bij-betw-onto)
with bijf’ f'f show thesis ..
qed

lemma card-greater:
assumes finiteA: finite A
and c:card {x € A. Pz} >card {2z € A Quz}

obtains C
where card ({z € A. Pz} — C)=card {z € A. Quz }
and C # {}
and CC{zec A Pz}

proof —



let PA={z€A. Pz}
let 7QA={z€A.Quz}
from finiteA obtain p where P: bij-betw p {0..<card ?PA} ?PA
using ez-bij-betw-nat-finite[where M=?PA]
by (blast intro: finite-subset)
let ?CN = {card ?QA..<card ?PA}
let 2C =p * ?CN
have card ({ x € A. Pz } — 2C) = card ?QA
proof —
have nat-add-sub-shuffle: Az y z. [ (z::nat) > y; 2 — y=2] = z — z = y by simp
from P have T: p ‘ {card ?QA..<card ?PA} C ?PA
unfolding bij-betw-def by auto
from P have card ?PA — card ?QA = card ?C
unfolding bij-betw-def
by (auto iff: card-image subset-inj-on[where A=?CN])
with ¢ have card ?PA — card ?C = card ?QA by (rule nat-add-sub-shuffle)
with finiteA P T have card (?PA — ?C) = card ?QA
unfolding bij-betw-def by (auto iff: finite-subset card-Diff-subset)
thus ?thesis .
qed
moreover
from P ¢ have ?C # {}
unfolding bij-betw-def by auto
moreover
from P have ?C C {2z € A. Pz }
unfolding bij-betw-def by auto
ultimately show thesis ..
qed

2.3 Collections of witnesses: hasw, has

Given a set of cardinality at least n, we can find up to n distinct witnesses. The built-in card
function unfortunately satisfies:

Finite-Set.card.infinite: infinite A = card A = 0

These lemmas handle the infinite case uniformly.
Thanks to Gerwin Klein suggesting this approach.

definition hasw :: 'a list = 'a set = bool where

hasw zs S = set xs C S A distinct zs

definition has :: nat = ’a set = bool where
has n S = Jzs. hasw xs S A length xs = n

declare hasw-def[simp]
lemma hasl[intro]: hasw zs S = has (length xs) S by (unfold has-def, auto)
lemma card-has:

assumes cardS: card S = n

shows has n S
proof(cases n = 0)



case True thus ?thesis by (simp add: has-def)
next
case Fulse
with cardS card-eq-0-iff [where A=S] have finiteS: finite S by simp
show ?thesis
proof (rule ccontr)
assume nhas: - has n S
with distinct-card[symmetric]
have nzs: = (3 xs. set zs C S A distinct xs A card (set zs) = n)
by (auto simp add: has-def)
from finite-list finiteS
obtain zs where S = set xs by blast
with cardS nzs show Fualse by auto
qed
qed

lemma card-has-rev:
assumes finiteS: finite S
shows has n S = card S > n (is ?lhs = %rhs)
proof —
assume ?lhs
then obtain zs
where set s C S A\ n = length zs
and dzs: distinct xs by (unfold has-def hasw-def, blast)
with card-mono[OF finiteS] distinct-card[OF dxs, symmetric]
show ?rhs by simp
qed

lemma has-0: has 0 S by (simp add: has-def)

lemma has-suc-notempty: has (Suc n) S = {} # S
by (clarsimp simp add: has-def)

lemma has-suc-subset: has (Sucn) S = {} C S
by (rule psubsetl, (simp add: has-suc-notempty)+)

lemma has-notempty-1:
assumes Sne: S # {}
shows has 1 S
proof —
from Sne obtain z where z € S by blast
hence set [z] C S A distinct [z] A length [z] = 1 by auto
thus ?thesis by (unfold has-def hasw-def, blast)
qed

lemma has-le-has:
assumes h: has n S
and nn: n' <n
shows has n’ S
proof —
from h obtain xs where hasw xs S length zs = n by (unfold has-def, blast)
with nn’ set-take-subset[where n=n’ and zs=zs|
have hasw (take n’ zs) S length (take n' zs) = n’



by (simp-all add: min-def, blast+)
thus %thesis by (unfold has-def, blast)
qed

lemma has-ge-has-not:
assumes h: —has n S
and nn":n < n’
shows —has n’ S
using h nn’ by (blast dest: has-le-has)

lemma has-eq:
assumes h: has n S
and hn': —has (Suc n) S
shows card S = n
proof —
from h obtain zs
where zs: hasw zs S and lenzs: length xs = n by (unfold has-def, blast)
have set zs = S
proof
from zs show set zs C S by simp
next
show S C set zs
proof(rule ccontr)
assume — S C set xs
then obtain =z where z € Sz ¢ set xs by blast
with lenzs xs have hasw (z # zs) S length (x # zs) = Suc n by simp-all
with hn’ show Fualse by (unfold has-def, blast)
qged
qed
with zs lenzs distinct-card show card S = n by auto
qed

lemma has-extend-witness:
assumes h: has n S
shows [ set zs C S; length s < n ]| = set xs C S
proof (induct zs)
case Nil
with h has-suc-notempty show ?Zcase by (cases n, auto)
next
case (Cons z xs)
have set (z # xs) # S
proof
assume Szzs: set (z # xs) = S
hence finiteS: finite S by auto
from h obtain zs’
where Szs’: set zs’ C S
and dlxs”: distinct xs’ A length xs’ = n
by (unfold has-def hasw-def, blast)
with distinct-card have card (set xs') = n by auto
with finiteS Szs’ card-mono have card S > n by auto
moreover
from Szxs Cons card-length|where zs=z # s
have card S < n by auto



ultimately show Fualse by simp
qed
with Cons show Zcase by auto
qed

lemma has-extend-witness’:
[ has n S; hasw xs S; length s < n | = Jz. hasw (x # xs) S
by (simp, blast dest: has-extend-witness)

lemma has-witness-two:
assumes hasnS: has n S
and nn”: 2 < n
shows 3z y. hasw [z,y] S
proof —
have has2S: has 2 S by (rule has-le-has|OF hasnS nn'])
from has-extend-witness’|OF has2S, where xs=|]]
obtain z where z € S by auto
with has-extend-witness'|OF has2S, where rs=[z]]
show ?thesis by auto
qed

lemma has-witness-three:
assumes hasnS: has n S
and nn”: & < n
shows 3z y 2. hasw [z,y,2] S
proof —
from nn’ obtain z y where hasw [z,y] S
using has-witness-two[ OF hasnS] by auto
with nn’ show ?thesis
using has-extend-witness'|OF hasnS, where zs=[z,y]] by auto
qed

lemma finite-set-singleton-contra:
assumes finiteS: finite S
and Sne: S # {}
and cardS: card S > 1 = Fulse
shows 3j. § = {j}

proof —
from cardS Sne card-0-eq|OF finiteS] have Scard: card S = 1 by auto
from has-exstend-witness[where xzs=[], OF card-has[OF this]]

obtain j where {j} C S by auto
from card-seteq[OF finiteS this] Scard show ?thesis by auto
qed

3 Preliminaries

The auxiliary concepts defined here are standard [Rou79, Sen70, Tay05]. Throughout we
make use of a fixed set A of alternatives, drawn from some arbitrary type ’a of suitable size.
Taylor [Tay05] terms this set an agenda. Similarly we have a type i of individuals and a



population Is.

3.1 Rational Preference Relations (RPRs)

Definitions for rational preference relations (RPRs), which represent indifference or strict pref-
erence amongst some set of alternatives. These are also called weak orders or (ambiguously)
ballots.

Unfortunately Isabelle’s standard ordering operators and lemmas are typeclass-based, and
as introducing new types is painful and we need several orders per type, we need to repeat
some things.

type-synonym ‘a RPR = ('a * 'a) set

abbreviation rpr-eg-syntaz :: ‘a = ‘a RPR = 'a = bool («- -<X - [50, 1000, 51] 50) where
zr3y==(z,9) €r

definition indifferent-pref :: 'a = 'a RPR = 'a = bool («- .~ -» [50, 1000, 51] 50) where
e y=(z =2y Ay =)

lemma indifferent-prefI[intro]: [z = y; y r=X 2z ] = z = y
unfolding indifferent-pref-def by simp

lemma indifferent-prefD]dest]: x y= y = z vy y ANy y3 &
unfolding indifferent-pref-def by simp

definition strict-pref :: ‘a = 'a RPR = 'a = bool (<- -< - [50, 1000, 51] 50) where
Tr=y=(r,2yA-(yr=201)

lemma strict-pref-def-irrefl[simpl: = (z r< z) unfolding strict-pref-def by blast

lemma strict-prefl[intro]: [z y= y; 7(y r=2) ] = z <y
unfolding strict-pref-def by simp

Traditionally, = = y would be written x Ry, z y~ yasz I y and z < y as ¢ P y, where
the relation r is implicit, and profiles are indexed by subscripting.

Complete means that every pair of distinct alternatives is ranked. The "distinct" part is
a matter of taste, as it makes sense to regard an alternative as as good as itself. Here I take
reflexivity separately.

definition complete :: 'a set = 'a RPR = bool where
complete Ar= Nz e AVye A—{z}. 2, <yVy,=<2

lemma completel [intro):
Ny [zeAjyeAsz#y] =z yVyr3z) = complete Ar
unfolding complete-def by auto

lemma completeD]dest]:
[ complete Aryz e A;ye Ajx#y] =z =yVy=Sz
unfolding complete-def by auto

lemma complete-less-not: | complete A r; hasw [z,y] A; —z <=y = y 1=z
unfolding complete-def strict-pref-def by auto



lemma complete-indiff-not: | complete A r; hasw [z,y] A; "z = y] =z <y Vyr<zx
unfolding complete-def indifferent-pref-def strict-pref-def by auto

lemma complete-exh:
assumes complete A r
and hasw [z,y] A
obtains (zPy) z < y
| (yPz) y r= =
| (zly) = v~y
using assms unfolding complete-def strict-pref-def indifferent-pref-def by auto
Use the standard refl. Also define irreflexivity analogously to how refl is defined in the
standard library.

declare refl-onl[intro] refl-onD|dest]
lemma complete-refi-on:

[ complete A r; reflon Ar;z € A;ye Al =z, yVyr=z
unfolding complete-def by auto

definition irrefl :: ‘a set = 'a RPR = bool where
irreflAr=rCAx ANNVz e A -z = 2)

lemma irrefil[intro]: [r CA X A; N\ € A=~z = z] = irreflAr
unfolding irrefi-def by simp

lemma irrefiD[dest]: [ irrefl A r; (z, y) € r | = hasw [z,y] A
unfolding irrefi-def by auto

lemma irrefiD'[dest]:
[irrefl Ar;r#{}] = Jzy. hasw [z,y] AN (z, y) € 1
unfolding irrefi-def by auto

Rational preference relations, also known as weak orders and (I guess) complete pre-orders.

definition rpr :: ‘a set = ‘a RPR = bool where
rpr A r = complete A r A refl-on A r A trans r

lemma rpri[intro|: | complete A r; refl-on A r; trans r | = rpr A r
unfolding rpr-def by simp

lemma rprD: rpr A r = complete A r A refl-on A r A trans r
unfolding rpr-def by simp

lemma rpr-in-set[dest]: [ rpr Ar;z =y ] = {z,y} C A
unfolding rpr-def refl-on-def by auto

lemma rpr-refi[dest]: [ rpr Ariz € A] = = = x
unfolding rpr-def by blast

lemma rpr-less-not: [ rpr A r; hasw [z,y] 4; 2z <y = y =<z
unfolding rpr-def by (auto simp add: complete-less-not)

lemma rpr-less-imp-le[simp]: [z <y ] = z +=y
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unfolding strict-pref-def by simp

lemma rpr-less-imp-neq[simp): [z r<=y ] = z # y
unfolding strict-pref-def by blast

lemma rpr-less-trans[trans]: [ v< y; y r< 2z, tpr Ar ] = z < 2
unfolding rpr-def strict-pref-def trans-def by blast

lemma rpr—le—tmns[tmns]: [ TRy y Sz rprAr ]] == T =z
unfolding rpr-def trans-def by blast

lemma rpr-le-less-transftrans]: [z y= y; y r<2; pr A1 ] = 2 < 2
unfolding rpr-def strict-pref-def trans-def by blast

lemma rpr-less-le-transftrans]: [z p< y; y 1= 2z; pr Ar ]| = 2 < 2
unfolding rpr-def strict-pref-def trans-def by blast

lemma rpr-complete: [ rpr Az € Ayye Al =z =yVyr=<z
unfolding rpr-def by (blast dest: complete-refl-on)

3.2 Profiles

A profile (also termed a collection of ballots) maps each individual to an RPR for that indi-
vidual.

type-synonym (‘a, i) Profile = 'i = 'a RPR

definition profile :: 'a set = 'i set = (‘a, 'i) Profile = bool where
profile A Is P = Is # {} AN (Vi € Is. rpr A (P 1))

lemma profilel [intro]: [ N\i. i € Is = rpr A (P 4); Is # {} | = profile A Is P
unfolding profile-def by simp

lemma profile-rprD|dest]: [ profile A Is P; i € Is | = rpr A (P i)
unfolding profile-def by simp

lemma profile-non-empty: profile A Is P = Is # {}
unfolding profile-def by simp

3.3 Choice Sets, Choice Functions

A choice set is the subset of A where every element of that subset is (weakly) preferred to
every other element of A with respect to a given RPR. A choice function yields a non-empty
choice set whenever A4 is non-empty.

definition choiceSet :: 'a set = 'a RPR = 'a set where
choiceSet Ar={ze€A.Vye A z <y}

definition choiceFn :: 'a set = 'a RPR = bool where
choiceFn A r =V A' C A. A’ # {} — choiceSet A’ r # {}
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lemma choiceSetI[intro):
[z€ A N\Ny.y€ A=z =y ] = z € choiceSet A r
unfolding choiceSet-def by simp

lemma choiceFnl[introl:
(NA. [ A" C A; A" # {} | = choiceSet A’ r # {}) = choiceFn A r
unfolding choiceFn-def by simp

If a complete and reflexive relation is also quasi-transitive it will yield a choice function.

definition quasi-trans :: 'a RPR = bool where
quasi-trans r =V y 2. ¢ p= Y ANy r=2 — T p= 2

lemma quasi-transl[intro]:
Neyz [zr=<yyr<2z] = <2 = quasi-trans r
unfolding quasi-trans-def by blast

lemma quasi-transD: [  r< y; y r< 2; quasi-trans r | = © < 2
unfolding quasi-trans-def by blast

lemma trans-imp-quasi-trans: trans r => quasi-trans r
by (rule quasi-transl, unfold strict-pref-def trans-def, blast)

lemma r-c-gt-imp-cf:
assumes finiteA: finite A
and c: complete A r
and ¢t: quasi-trans r
and r: refl-on A r
shows choiceF'n A r
proof
fix B assume B: BC A B # {}
with finite-subset finiteA have finiteB: finite B by auto
from finiteB B show choiceSet B r # {}
proof (induct rule: finite-subset-induct’)
case empty with B show ?case by auto
next
case (insert a B)
hence finiteB: finite B
and ad: a € A
and AB: BC A
and aB: a ¢ B
and cF: B # {} = choiceSet B r # {} by — blast
show ?Zcase
proof(cases B = {})
case True with aA r show %thesis
unfolding choiceSet-def by blast
next
case Fulse
with cF obtain b where bCF: b € choiceSet B r by blast
from AB aA bCF complete-refl-on[OF c¢ 7]
have a < b V b =< a unfolding choiceSet-def strict-pref-def by blast
thus ?thesis
proof
assume ab: b = a

12



with bCF show ?thesis unfolding choiceSet-def by auto
next
assume ab: a < b
have a € choiceSet (insert a B) r
proof (rule ccontr)
assume aCF: a ¢ choiceSet (insert a B) r
from aB have Ab. b € B = a # b by auto
with aCF aA AB c r obtain b’ where B: b’ € Bb' < a
unfolding choiceSet-def complete-def strict-pref-def by blast
with ab gt have b’ < b by (blast dest: quasi-transD)
with bCF B show Fulse unfolding choiceSet-def strict-pref-def by blast
qed
thus ?thesis by auto
qed
qed
qed
qed

lemma rpr-choiceFn: [ finite A; rpr A v | = choiceFn A r
unfolding rpr-def by (blast dest: trans-imp-quasi-trans r-c-qt-imp-cf)

3.4 Social Choice Functions (SCFs)

A social choice function (SCF), also called a collective choice rule by Sen [Sen70, p28], is a
function that somehow aggregates society’s opinions, expressed as a profile, into a preference
relation.

type-synonym (‘a, i) SCF = (‘a, 'i) Profile = 'a RPR

The least we require of an SCF is that it be complete and some function of the profile.
The latter condition is usually implied by other conditions, such as ia.

definition

SCF :: ('a, i) SCF = 'a set = 'i set = (a set = 'i set = ('a, i) Profile = bool) = bool
where

SCF scf A Is Pcond = (¥ P. Pcond A Is P — (complete A (scf P)))

lemma SCFI[intro]:
assumes c¢: AP. Pcond A Is P = complete A (scf P)
shows SCF scf A Is Pcond
unfolding SCF-def using assms by blast

lemma SCF-completeD[dest]: | SCF sc¢f A Is Pcond; Pcond A Is P | = complete A (scf P)
unfolding SCF-def by blast

3.5 Social Welfare Functions (SWFs)

A Social Welfare Function (SWF) is an SCF that expresses the society’s opinion as a single
RPR.
In some situations it might make sense to restrict the allowable profiles.
definition
SWF :: ('a, i) SCF = 'a set = 'i set = (‘a set = 'i set = ('a, i) Profile = bool) = bool
where

13



SWEF swf A Is Pcond = (VP. Pcond A Is P — rpr A (swf P))

lemma SWE-rpr(dest]: [ SWF swf A Is Pcond; Pcond A Is P | = rpr A (swf P)
unfolding SWF-def by simp

3.6 General Properties of an SCF

An SCF has a universal domain if it works for all profiles.

definition universal-domain :: 'a set = 'i set = ('a, i) Profile = bool where
universal-domain A Is P = profile A Is P

declare universal-domain-def[simp)

An SCF is weakly Pareto-optimal if, whenever everyone strictly prefers z to y, the SCF
does too.

definition
weak-pareto :: ('a, i) SCF = 'a set = 'i set = (‘a set = 'i set = ('a, i) Profile = bool) = bool
where
weak-pareto scf A Is Pcond =
(VPzy. Pecond AIsPANx e ANye AN (Vz’els.x(Pi)< Y) T (5¢f P) )

lemma weak-paretol [intro:
(AP zy. [Pcond A Is Pz € A; y € A; Ni. i€ls = (P i)~ y =z (scf P)= )
= weak-pareto scf A Is Pcond
unfolding weak-pareto-def by simp

lemma weak-paretoD:
[ weak-pareto scf A Is Pcond; Pcond A Is P; z € A; y € A

(Ni. i € Is =« (P i)~ y]== (sef P)= U
unfolding weak-pareto-def by simp

An SCF satisfies independence of irrelevant alternatives if, for two preference profiles P
and P’ where for all individuals 4, alternatives r and y drawn from set S have the same order
in P i and P’ i, then alternatives z and y have the same order in scf P and scf P’.

definition iia :: (‘a, i) SCF = 'a set = 'i set = bool where
tia scf S Is =
(VP P’z y. profile S Is P A profile S Is P’
NzeSANyels
)

) y)) A ((y (P )= T) < (y (P )= z)))
— ((z (scfp)j y) «— (z (scfp')i )

)

lemma iial[intro):
(AP P’ zy.
[ profile S Is P; profile S Is P’
xe S;yes,;
Nii€ls= (@ (py=y) = (@ p 2 y) ANy (py= o) =y (pry= o)
1= (& gy )= 9) > (2 gy 1= )
= dia swf S Is
unfolding idia-def by simp

lemma e F:
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[ iia swf S Is;
{zy} € 5
a € {z, y}; b € {z, y};
Niab [ace{z, y};bef{a, y};iels] = (a (P )= b) +— (a P )= b);
profile S Is P; profile S Is P']
= (@ (suf )= 0) < (0 (quy py= b)
unfolding iia-def by (simp, blast)

3.7 Decisiveness and Semi-decisiveness

This notion is the key to Arrow’s Theorem, and hinges on the use of strict preference [Sen70,
p42].

A coalition C of agents is semi-decisive for x over y if, whenever the coalition prefers z to
y and all other agents prefer the converse, the coalition prevails.

definition semidecisive :: ('a, i) SCF = 'a set = 'i set = 'i set = 'a = 'a = bool where
semidecisive scf A Is Cx y =

C CIsN(VP.profile AIsP AN (NieC.z (P i)~ YWANMiels— C.y (P i)~ )
— (scfP)< )

lemma semidecisivel[intro]:
[ C C Is;
AP. [ profile A Is P; \i. i € C=zpy=y Ni.iels — Czy(Pi)<x]]
= T (sef )<Y ] = semidecisive scf A Is C z y
unfolding semidecisive-def by simp

lemma semidecisive-coalitionD[dest]: semidecisive scf A Is Cxy = C C Is
unfolding semidecisive-def by simp

lemma sd-refl: [ C C Is; C # {} | = semidecisive scf A Is C z x
unfolding semidecisive-def strict-pref-def by blast
A coalition C is decisive for x over y if, whenever the coalition prefers z to y, the coalition
prevails.

definition decisive :: (‘a, i) SCF = 'a set = 'i set = i set = 'a = 'a = bool where
decisive scf A Is Cx y =
C CIsN(VP.profile AIsP AN (Nie C.z (P i)~ y) — (sef P)= )

lemma decisivel[introl:
[ C C Is; AP. [ profile A Is P; N\i. i € C =z pp= y] = T (s¢f P)= y]
= decisive scf A Is C x y
unfolding decisive-def by simp

lemma d-imp-sd: decisive scf A Is C © y = semidecisive scf A Is C x y
unfolding decisive-def by (rule semidecisivel, blast+)

lemma decisive-coalitionD[dest]: decisive scf A Is Cxy = C C Is
unfolding decisive-def by simp

Anyone is trivially decisive for z against x.

lemma d-refl: [ C C Is; C # {} | = decisive scf A Is Czx
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unfolding decisive-def strict-pref-def by simp

Agent j is a dictator if her preferences always prevail. This is the same as saying that she
is decisive for all z and y.

definition dictator :: (‘a, i) SCF = 'a set = i set = i = bool where
dictator scf Alsj=jeIsN (Vz € A. Vy € A. decisive scf A Is {j} x y)

lemma dictatorl [intro]:
[jelss Ney. [z € Ay y € A] = decisive scf A Is {j} zy ]| = dictator scf A Is j
unfolding dictator-def by simp

lemma dictator-individual[dest]: dictator scf A Is j = j € Is
unfolding dictator-def by simp

4 Arrow’s General Possibility Theorem

The proof falls into two parts: showing that a semi-decisive individual is in fact a dictator,
and that a semi-decisive individual exists. I take them in that order.

It might be good to do some of this in a locale. The complication is untangling where
various witnesses need to be quantified over.

4.1 Semi-decisiveness Implies Decisiveness

I follow [Sen70, Chapter 3*] quite closely here. Formalising his appeal to the 4ia assumption
is the main complication here.

The witness for the first lemma: in the profile P’, special agent j strictly prefers x to y to
z, and doesn’t care about the other alternatives. Everyone else strictly prefers y to each of x
to z, and inherits the relative preferences between x and z from profile P.

The model has to be specific about ordering all the other alternatives, but these are
immaterial in the proof that uses this witness. Note also that the following lemma is used
with different instantiations of z, y and z, so we need to quantify over them here. This
happens implicitly, but in a locale we would have to be more explicit.

This is just tedious.

lemma decisivel-witness:
assumes has3A: hasw [z,y,2] A
and profileP: profile A Is P
and jls: j € Is
obtains P’
where profile A Is P’
and z (P’j)< y ANy (P’j)< z
and /\Z Z%]:> Y (P,i)< T Ay (P/Z-)< z N ((I (P,i)j Z) = (I (P l)j Z)) A ((Z (P,i)j l’)
=(z(pp= 1)
proof
let P/ = Xi. (if i = jthen ({ (z, uv) |u. u € A}
U{(y, v |uwuved—{z}}
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Uiz u)|uwued—{zy}})
else ({ (y, u) | u.ue A}
U{(z,u|uwuwed-{yz}}
U{(zuluwuved—A{zy}}
U (if z (P )= % then {(z,2)} else {})
U (if 2 (P @ then {(z,z)} else {})))
U (A = A{z,y,2}) x (A4 = {zy,2})
show profile A Is ?P’
proof

fix 7 assume ils: ¢ € Is
show rpr A (2P’ )
proof(cases i = j)
case True with has3A show ?Zthesis
by — (rule rprl, simp-all add: trans-def, blast+)
next
case Fulse hence ij: 1 # j .
show ?thesis
proof
from ils profileP have complete A (P i) by (blast dest: rpr-complete)
with i show complete A (?P' i) by (simp add: complete-def, blast)
from ils profileP have refl-on A (P i) by (auto simp add: rpr-def)
with has3A ij show refl-on A (P’ i) by (simp, blast)
from 7j has3A show trans (P’ i) by (clarsimp simp add: trans-def)
qed
qed
next
from profileP show Is # {} by (rule profile-non-empty)
qed
from has3A
show z (2P’ ])< y Ny (2P’ H=A
and Ai. z7£]:>y(gp )<$/\y( )<z/\ ((I(QP )= <2) = (= (Pz')j 2)) A ((Z(?‘P’i)j
z) = (2 (p =2 7))
unfolding strict-pref-def by auto
qed

The key lemma: in the presence of Arrow’s assumptions, an individual who is semi-decisive
for x and y is actually decisive for z over any other alternative z. (This is where the quan-
tification becomes important.)

lemma decisivel :
assumes has3A: hasw [z,y,2] A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} z y
shows decisive swf A Is {j} = 2
proof
from sd show jls: {j} C Is by blast
fix P
assume profileP: profile A Is P
and jzzP: N\i. i € {j} = = (Pi)=*#
from has3A profileP jls
obtain P’
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where profileP’: profile A Is P’
and jzyzP': (P =YY (P =2
and dzyzP Ni. i #£j — vy (P iy=TAY (pry=< 2z A ((z (P i) z) = (z (P )= z2)) A ((z
(P )= @) = (2 (py= )
by — (rule decisivel-witness, blast+)
from dia have Aa b. [ a € {z, z}; b€ {z, 2} | = (a (swf P)= b) = (a (swf P b)
proof (rule iiaE)
from has3A show {z,z} C A by simp
next
fix ¢ assume ils: i € Is
fix a b assume ab: a € {x, 2z} b € {z, 2z}
show (a (P i) b) = (a (P )= b)
proof(cases i = j)
case Fulse
with ab ils izyzP' profileP profileP’ has3A
show ?thesis unfolding profile-def by auto
next
case True
from profileP’ jls jxyzP' have z (P )= 7
by (auto dest: rpr-less-trans)
with True ab ils jzzP profileP profileP’ has3A
show ?thesis unfolding profile-def strict-pref-def by auto
qed
qed (simp-all add: profileP profileP’)
moreover have (swf P’)< z
proof —
from profileP’ sd jzyzP' izyzP' have z (swf P)y= Y by (simp add: semidecisive-def)
moreover
from joyzP' izyzP’ have \i. i € Is =y Rk by (case-tac i=j, auto)
with wp profileP’ has3A have y (swf P’)'< z by (auto dest: weak-paretoD)

moreover note SWF-rpr|OF swf] profileP’
ultimately show z (swf P’)< z
unfolding universal-domain-def by (blast dest: rpr-less-trans)
qed
ultimately show z (swf P)= ? unfolding strict-pref-def by blast
qed

The witness for the second lemma: special agent j strictly prefers z to x to y, and everyone
else strictly prefers z to z and y to . (In some sense the last part is upside-down with respect
to the first witness.)

lemma decisive2-witness:
assumes has3A: hasw [z,y,2] A
and profileP: profile A Is P
and jls: j € Is
obtains P’
where profile A Is P’
and z (P =7 ANz (P’ H=Y
and \i. i #j = 2z (P )= TN Y (pry= T A ((y (P )= z)=(y (P )= z)) A ((z (P )= )
=(zrenzy)
proof
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U{(z,u)|uuved—-{z}}
U{(y, v | u ueAd—{zz}})

else ({ (2 u) | v ue A — {y} }
U{(y,u)|uvued—{z}}
U{(z,u) | uvuved—{yz}}
U (ify (P i)j z then {(y,2)} else {})
U (i 2 (p gy= v then {(z:0)} else {})))

U (A — {oph) x (A — {z.,2})
show profile A Is 2P’
proof
fix ¢ assume ils: | € Is
show rpr A (2P’ 1)
proof(cases i = j)
case True with has3A show ?Zthesis
by — (rule rprl, simp-all add: trans-def, blast+)
next
case Fulse hence ij: i # j .
show ?thesis
proof
from ils profileP have complete A (P i) by (auto simp add: rpr-def)
with i show complete A (?P' i) by (simp add: complete-def, blast)
from ils profileP have refl-on A (P i) by (auto simp add: rpr-def)
with has3A ij show refl-on A (P’ i) by (simp, blast)
from ij has3A show trans (2P’ i) by (clarsimp simp add: trans-def)
qed
qed
next
show Is # {} by (rule profile-non-empty[OF profileP])
qed
from has3A
show z (2P' HS TN T (2pr =Y
and \i. i £ j = 2 (2P' )= TN Y (9p7 = TN ((y (op" i) 2) = (y (P 9= 2) A ((z (op" §) =
y) = (p =)
unfolding strict-pref-def by auto
qed

lemma decisive2:
assumes has3A: hasw [z,y,2] A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} z y
shows decisive swf A Is {j} zy
proof
from sd show jls: {j} C Is by blast
fix P
assume profileP: profile A Is P
and jyzP: N\i. i € {j} = 2 (PH=Y
from has3A profileP jls
obtain P’
where profileP": profile A Is P’
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and jzyzP": z (P HZTT (pr =Y
and izyzP" Ni. i #£j — 2 (P iy= T AY (pry= @A ((y (P )= z) = (y (P )= z) A ((=
(P’ 9= y) = (# P> y))
by — (rule decisive2-witness, blast+)
from 7ia have Aa b. [a € {y, z}; b e {y, 2} | = (a (swa)j b) = (a (Swfpl)j b)
proof (rule iiaE)
from has3A show {y,z} C A by simp
next
fix i assume ils: ¢ € Is
fix a b assume ab: a € {y, 2} b € {y, 2}
show (a (P i) b) = (a (P )= b)
proof(cases i = j)
case Fulse
with ab ils ixyzP’ profileP profileP’ has3A
show ?thesis unfolding profile-def by auto
next
case True
from profileP’ jls jryzP’ have z (P =Y
by (auto dest: rpr-less-trans)
with True ab ils jyzP profileP profileP’ has3A
show ?thesis unfolding profile-def strict-pref-def by auto
qed
qed (simp-all add: profileP profileP’)
moreover have z (swf P’)< Y
proof —
from profileP’ sd jryzP' izy2P’ have x (swf P)= Y by (simp add: semidecisive-def)
moreover
from jryzP' izyzP’ have \i. i € Is = 2 (P )= @ by (case-tac i=j, auto)
with wp profileP’ has3A have z (swf PY= T by (auto dest: weak-paretoD)

moreover note SWF-rpr[OF swf| profileP’
ultimately show 2z (Swal)‘< Y
unfolding universal-domain-def by (blast dest: rpr-less-trans)
qed
ultimately show z (swf P)= Y unfolding strict-pref-def by blast
qed

The following results permute z, y and z to show how decisiveness can be obtained from
semi-decisiveness in all cases. Again, quite tedious.

lemma decisive3:

assumes has3A: hasw [z,y,2] A
and dia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} = z

shows decisive swf A Is {j} y z

using has3A decisive2|OF - iia swf wp sd] by (simp, blast)

lemma decisives:
assumes has$A: hasw [z,y,2] A
and dia: iia swf A Is
and swf: SWF swf A Is universal-domain
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and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} y z
shows decisive swf A Is {j} y
using has3A decisivel [OF - iia swf wp sd] by (simp, blast)

lemma decisives:
assumes has3A: hasw [z,y,2] A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} z y
shows decisive swf A Is {j} y «
proof —
from sd
have decisive swf A Is {j} x z by (rule decisivel [OF has8A iia swf wp)])
hence semidecisive swf A Is {j} = z by (rule d-imp-sd)
hence decisive swf A Is {j} y z by (rule decisive3[OF has3A iia swf wp))
hence semidecisive swf A Is {j} y z by (rule d-imp-sd)
thus decisive swf A Is {j} y « by (rule decisive4 |OF has3A iia swf wp))
qed

lemma decisive6':
assumes has3A: hasw [z,y,2] A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} y
shows decisive swf A Is {j} y z decisive swf A Is {j} z x decisive swf A Is {j} z y
proof —
from has3A have has3A’": hasw [y,z,2z] A by auto
show decisive swf A Is {j} y z by (rule decisivel [OF has3A’ iia swf wp sd])
show decisive swf A Is {j} z x by (rule decisive2|OF has8A’ iia swf wp sd))
show decisive swf A Is {j} z y by (rule decisive5[OF has3A’ iia swf wp sd])
qed

lemma decisive?:
assumes has3A: hasw [z,y,2] A
and dia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} z y
shows decisive swf A Is {j} y z decisive swf A Is {j} z x decisive swf A Is {j} z y
proof —
from sd
have decisive swf A Is {j} y « by (rule decisive5|OF has3A iia swf wp))
hence semidecisive swf A Is {j} y z by (rule d-imp-sd)
thus decisive swf A Is {j} y z decisive swf A Is {j} z x decisive swf A Is {j} = y
by (rule decisive6[OF has3A dia swf wp))+
qged

lemma j-decisive-zy:

assumes has3A: hasw [z,y,2] A
and 7ia: iia swf A Is

21



and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and sd: semidecisive swf A Is {j} = y
and wv: hasw [u,v] {z,y,2}
shows decisive swf A Is {j} v v
using uv decisivel [OF has3A iia swf wp sd]
decisive2| OF has3A iia swf wp sd)
decisive5[OF has3A iia swf wp sd)
decisive7|OF has3A iia swf wp sd)
by (simp, blast)

lemma j-decisive:
assumes has3A: has 3 A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and zyA: hasw [z,y] A
and sd: semidecisive swf A Is {j} z y
and wv: hasw [u,v] A
shows decisive swf A Is {j} u v
proof —
from has-extend-witness'|OF has3A xyA|
obtain z where zyzA: hasw [z,y,2] A by auto
{
assume uz: u = z and vy: v = y
with zyzA iia swf wp sd have Zthesis by (auto intro: j-decisive-zy)

}

moreover
{
assume uz: v = z and vNEy: v # y
with wv zyA dia swf wp sd have ?thesis by(auto intro: j-decisive-zy|of = y])
}
moreover
{
assume uy: v = y and vz: v = x
with zyzA iia swf wp sd have Zthesis by (auto intro: j-decisive-zy)

}

moreover
{
assume uy: v = y and vNEz: v # x
with wv zyA dia swf wp sd have ?thesis by (auto intro: j-decisive-zy)

}

moreover

{

assume uNEzy: u ¢ {z,y} and vz: v =z
with wv zyA dia swf wp sd have ?thesis by (auto intro: j-decisive-zy[of = y])

}

moreover

{

assume uNEzy: v ¢ {z,y} and vy: v = y
with wv zyA dia swf wp sd have ?thesis by (auto intro: j-decisive-zy[of = y))

}

moreover
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assume uNFEzy: u ¢ {z,y} and vNEzy: v ¢ {z,y}
with wv zyA iia swf wp sd
have decisive swf A Is {j} = u by (auto intro: j-decisive-zy[where z=z and z=u))
hence sdzu: semidecisive swf A Is {j} = u by (rule d-imp-sd)
with uNEzy vNEzy uv zyA dia swf wp have ?thesis by (auto intro: j-decisive-zy|of z])
}
ultimately show ¢thesis by blast
qed

The first result: if j is semidecisive for some alternatives v and v, then they are actually
a dictator.

lemma sd-imp-dictator:
assumes has3A: has 3 A
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
and wv: hasw [u,v] A
and sd: semidecisive swf A Is {j} v v
shows dictator swf A Is j
proof
fix x y assume z: z € Aand y: y € A
show decisive swf A Is {j} =y
proof(cases x = y)
case True with sd show decisive swf A Is {j} = y by (blast intro: d-refl)
next
case Fulse
with z y iia swf wp has3A wv sd show decisive swf A Is {j} = y
by (auto intro: j-decisive)
qed
next
from sd show j € Is by blast
qed

4.2 The Existence of a Semi-decisive Individual

The second half of the proof establishes the existence of a semi-decisive individual. The
required witness is essentially an encoding of the Condorcet pardox (aka "the paradox of
voting" that shows we get tied up in knots if a certain agent didn’t have dictatorial powers.

lemma sd-exists-witness:
assumes has3A: hasw [z,y,2] A
and Vs: Is= V1 U V2 U V3
AVINV2={AVINVE={}AV2NV3={}
and Is: Is # {}
obtains P
where profile A Is P
and Vi € V1. ‘T(Pi)< Yy Ny (Pi)< z
and Vi € V2. z (P i)~ T AT PiH=Y
and Vi € V3. Yy piySENZ(PpH=T
proof
let 7P =
Xi. (ifi € Vithen ({ (z,u) |u. u€ A}
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U{(y,u) |]uv.u€e ANu#z}
U{(z,u) |u.ue ANutzANu#y})

else

ifi € Vchen({(z7u)|u.u€A}

U{(z,u)|u.ue ANu+#z2}

U{(y,u) |v.ue ANu#zAu#z})

else ({ (y,u)|uv.ue A}

U{(z,u) |uv.uec AANu#y}

U{(z,u) |]uve ANu#yANu#z}))

U{(u,v) |uv.ued—{zyzt Nved—{zyz}}

show profile A Is ?P

proof
fix 7 assume ils: i € Is
show rpr A (2P 1)
proof
show complete A (2P i) by (simp add: complete-def, blast)
from has34 ils show refl-on A (?P i) by — (simp, blast)
from has3A ils show trans (¢P i) by (clarsimp simp add: trans-def)
qged
next
from Is show Is # {} .
qed
from has3A Vs
show Vi e V1. x (2P )= Y ANy (7P §)= %
and Vi € V2. 2 (7P )= @ AT (2P )= Y
and Vi e V3. y (2P )= 7 Az (2P )= T
unfolding strict-pref-def by auto
qed

This proof is unfortunately long. Many of the statements rely on a lot of context, making
it difficult to split it up.

lemma sd-exists:
assumes has3A: has 3 A
and finitels: finite Is
and twols: has 2 Is
and dia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
shows 3j v v. hasw [u,v] A A semidecisive swf A Is {j} u v
proof —
let 2P =XS. S CIs A S #{} AN (Juv. hasw [u,v] A A semidecisive swf A Is S u v)
obtain u v where wvA: hasw [u,v] A
using has-witness-two[OF hasé’A} by auto
— The weak pareto requirement implies that the set of all individuals is decisive between any
given alternatives.
hence decisive swf A Is Is u v
by — (rule, auto intro: weak-paretoD|OF wp])
hence semidecisive swf A Is Is u v by (rule d-imp-sd)
with wwA twols has-suc-notemptywhere n=1] nat-2[symmetric]
have ?P Is by auto
— Obtain a minimally-sized semi-decisive set.
from ez-has-least-nat[where P=¢P and m=card, OF this)]
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obtain V z y where Vis: V C Is
and Vnotempty: V # {}
and zyA: hasw [z,y] A
and Vsd: semidecisive swf A Is V x y
and Vmin: A\V'. P V' = card V < card V'’
by blast
from Vs finitels have Vfinite: finite V by (rule finite-subset)
— Show that minimal set contains a single individual.
from Vfinite Vnotempty have 3j. V = {j}
proof (rule finite-set-singleton-contra)
assume Veard: 1 < card V
then obtain j where jV: {j} C V

using has-extend-witness|where zs=[], OF card-hasjwhere n=card V]| by auto
— Split an individual from the "minimal" set.
let V1 = {j}

let 2V2 =V — 2V1
let 2V3 =1s—V
from jV card-Diff-singleton Veard
have V2card: card ?V2 > 0 card ?V2 < card V by auto
hence V2notempty: {} # ?V2 by (auto simp del: diff-shunt)
from jV Vs
have jV2V38: Is = 2V1 U 2V2 U 2VE A 2VI N 2V2 ={} A 2VI N 2V3 ={} A ?V2 N 2V8 =
{}
by auto
— Show that that individual is semi-decisive for = over z.
from has-extend-witness'|OF has34 xyA]
obtain z where threeDist: hasw [z,y,2] A by auto
from sd-exists-witness|OF threeDist jV2V3] VIs Vnotempty
obtain P where profileP: profile A Is P
and VizyzP: x PH=Y ANy (Pj=?
and V2zxyzP: Vi € ?V2. 2 (PH=TANT(py=Y
and V3zyzP: Vi € V3. y (Pi)< 2Nz (py=T
by (simp, blast)
have zPz: z (swf P)= %
proof(rule rpr-less-le-trans[where y=y])
from profileP swf show rpr A (swf P) by auto
next
— V2 is semi-decisive, and everyone else opposes their choice. Ergo they prevail.
show z (swf P)= Y
proof —
from profileP V3xyzP
have Vi € ?V3. y (Pi= by (blast dest: rpr-less-trans)
with profileP VizyzP V2zyzP Vsd
show ?thesis unfolding semidecisive-def by auto
qed
next
— This result is unfortunately quite tortuous.
from SWF-rpr[OF swf] show y (swf P)= #
proof (rule rpr-less-not[OF - - notl))
from threeDist show hasw [z, y] A by auto
next
assume zPy: z (swf P)= Y
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have semidecisive swf A Is ?V2 z y
proof
from VIs show V — {j} C Is by blast
next
fix P’
assume profileP’: profile A Is P’
and V2yz" Ni. i € V2 = 2 (P =Y
and nV2yz" N\i.i € ls — ?2V2 =y (P )= %

from ia have Aab. [a € {y, z}; b€ {y, 2} | = (a (suwf P)= b) = (a (swf P)= b)
proof (rule iiaFE)
from threeDist show yzA: {y,z} C A by simp
next
fix 7 assume ils: i € Is
fix a b assume ab: a € {y, 2z} b € {y, 2}
with VIs profileP V2zyzP
have V2yzP: Vi € ?V2. 2 (PH=Y by (blast dest: rpr-less-trans)
show (a (P )= b) = (a P = b)
proof(cases i € ?V2)
case True
with VIs profileP profileP’ ab V2yz' V2yzP threeDist
show ?thesis unfolding strict-pref-def profile-def by auto
next
case Fulse
from VizyzP V3zyzP
have Vi e Is — 2V2. y (Pi)= % by auto
with ils False Vs jV profileP profileP’ ab nV2yz' threeDist
show ?thesis unfolding profile-def strict-pref-def by auto
qged
qed (simp-all add: profileP profileP’)
with zPy show 2z (swf P)= Y unfolding strict-pref-def by blast

qed
with VIs Vsd Vmin[where V'=2V2] V2card V2notempty threeDist show False
by auto
qged (simp add: profileP threeDist)
qged
have semidecisive swf A Is ?V1 x 2
proof
from jV VIs show {j} C Is by blast
next
— Use #ia to show the SWF must allow the individual to prevail.
fix P’

assume profileP’: profile A Is P’
and Viyz: Ni. i€ 2Vl =« (P’ )= ?
and nVIiyz" Ni.i € ls — 2Vl = 2 (P )=
from iia have Aa b. [ a € {z, z}; b€ {z, 2} | = (a (swf P)= b) = (a (swf P b)
proof(rule iiaFE)
from threeDist show 2zA: {z,z} C A by simp
next
fix ¢ assume ils: i € Is
fix a b assume ab: a € {z, 2} b € {z, 2z}
show (a (P )= b) = (a (P )= b)
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proof(cases i € ?V1)
case True
with jV VIs profileP VixyzP
have Vi € ?V1. z (Pi)=< 2 by (blast dest: rpr-less-trans)
with True jV VIs profileP profileP’ ab V1yz' threeDist
show ?thesis unfolding strict-pref-def profile-def by auto
next
case Fulse
from V2zyzP V3zyzP
have Vi € Is — ?V1. z (Pi)= T by auto
with ils False VIs jV profileP profileP’ ab nV1yz' threeDist
show ?thesis unfolding strict-pref-def profile-def by auto
qed
qed (simp-all add: profileP profileP’)
with zPz show z (swf P)= % unfolding strict-pref-def by blast
qed
with jV VIs Vsd Vmin[where V'=2V1]| V2card threeDist show False
by auto
qed
with zyA Vsd show ?thesis by blast
qed

4.3 Arrow’s General Possibility Theorem

Finally we conclude with the celebrated “possibility” result. Note that we assume the set of
individuals is finite; [Rou79] relaxes this with some fancier set theory. Having an infinite set
of alternatives doesn’t matter, though the result is a bit more plausible if we assume finiteness
[Sen70, pH4].

theorem ArrowGeneralPossibility:
assumes has3A: has 8 A
and finitels: finite Is
and has2ls: has 2 Is
and 7ia: iia swf A Is
and swf: SWF swf A Is universal-domain
and wp: weak-pareto swf A Is universal-domain
obtains j where dictator swf A Is j
using sd-imp-dictator[OF has3A iia swf wp]
sd-ezists|OF has3A finitels has2ls iia swf wp]
by blast

5 Sen’s Liberal Paradox

5.1 Social Decision Functions (SDFs)

To make progress in the face of Arrow’s Theorem, the demands placed on the social choice
function need to be weakened. One approach is to only require that the set of alternatives
that society ranks highest (and is otherwise indifferent about) be non-empty.
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Following [Sen70, Chapter 4*], a Social Decision Function (SDF) yields a choice function
for every profile.

definition

SDF :: ('a, i) SCF = 'a set = i set = ('a set = 'i set = ('a, 'i) Profile = bool) = bool
where

SDF sdf A Is Pcond = (VY P. Pcond A Is P — choiceFn A (sdf P))

lemma SDFI[intro]:
(AP. Pcond A Is P = choiceFn A (sdf P)) = SDF sdf A Is Pcond
unfolding SDF-def by simp

lemma SWF-SDF:
assumes finiteA: finite A
shows SWF scf A Is universal-domain = SDF scf A Is universal-domain
unfolding SDF-def SWEF-def by (blast dest: rpr-choiceFn[OF finiteA])

In contrast to SWFs, there are SDFs satisfying Arrow’s (relevant) requirements. The
lemma uses a witness to show the absence of a dictatorship.

lemma SDF-nodictator-witness:
assumes has24: hasw [z,y] A
and has2ls: hasw [i,j] Is
obtains P
where profile A Is P
and z (Pi)=Y
and Y (P ])< x
proof
let 2P = Ak. (if k = i then ({ (z, u) | u. u € A}
U (g u) | wued—{z}})
else ({ (y, u) |u.ue A}
U{(z,u)|uued—{y}})
U (A - {:c,y}) x (A - {a:,y})
show profile A Is 7P
proof
fix 7 assume iis: i € Is
from has2A show rpr A (9P i)
by — (rule rprl, simp-all add: trans-def, blast+)
next
from has2ls show Is # {} by auto
qed
from has2A has2Is
show (2P )= Y
and y (2P )= 7
unfolding strict-pref-def by auto
qed

lemma SDF-possibility:
assumes finiteA: finite A
and has2A: has 2 A
and has2ls: has 2 Is
obtains sdf
where weak-pareto sdf A Is universal-domain
and dia sdf A Is
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and —(3j. dictator sdf A Is j)
and SDF sdf A Is universal-domain
proof —
let sdf = AP. {(z,y) .z € ANye A
A= ((Vielsy (P )= )
AN@EFielsy (P i)~ z)) }
have weak-pareto ?sdf A Is universal-domain
by (rule, unfold strict-pref-def, auto dest: profile-non-empty)
moreover
have iia ?sdf A Is unfolding strict-pref-def by auto
moreover
have —(3j. dictator ?sdf A Is j)
proof
assume 3j. dictator ?sdf A Is j
then obtain j where jls: j € Is
and jD:Vz € A. Vy € A. decisive ?sdf A Is {j} z y
unfolding dictator-def decisive-def by auto
from jIs has-witness-two[OF has2ls] obtain ¢ where ijls: hasw [i,j] Is
by auto
from has-witness-two| OF has2A] obtain = y where zyA: hasw [z,y] A by auto
from zyA ijls obtain P
where profileP: profile A Is P
and yPiz: z (P)=Y
and yPjz: y (Pj)* T
by (rule SDF-nodictator-witness)
from profileP jD jls xyA yPjx have y (2sdf P)< T
unfolding decisive-def by simp
moreover
from ijls zyA yPjz yPirz have x (2sdf P)j Yy
unfolding strict-pref-def by auto
ultimately show False
unfolding strict-pref-def by blast
qed
moreover
have SDF ?sdf A Is universal-domain
proof
fix P assume ud: universal-domain A Is P
show choiceFn A (?sdf P)
proof(rule r-c-qt-imp-cf[OF finiteA])
show complete A (?sdf P) and refl-on A (?sdf P)
unfolding strict-pref-def by auto
show quasi-trans (?sdf P)
proof
fix z y z assume zy: z (2sdf P)= Y and yz: y (2sdf P)= #
from zy yz have zyzA: z € Aye Aze€ A
unfolding strict-pref-def by auto
from zy yz have AzRy: Vi € Is. x (P i)j Yy
and EzPy: 3i € Is. ¢ (Pi)=Y
and AyRz: Vi € Is. y (P i)j z
unfolding strict-pref-def by auto
from AzRy AyRz ud have AzRz: Vi € Is. « (P i)j z
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by — (unfold universal-domain-def, blast dest: rpr-le-trans)
from EzPy AyRz ud have ExPz: 3i € Is. x (Pi)=*
by — (unfold universal-domain-def, blast dest: rpr-less-le-trans)
from xyzA AxRz ExPz show x (2sdf P)= 2 unfolding strict-pref-def by auto
qed
qged
qed
ultimately show thesis ..
qed

Sen makes several other stronger statements about SDFs later in the chapter. I leave these
for future work.

5.2 Sen’s Liberal Paradox

Having side-stepped Arrow’s Theorem, Sen proceeds to other conditions one may ask of an
SCF. His analysis of liberalism, mechanised in this section, has attracted much criticism over
the years [AK96].

Following [Sen70, Chapter 6*|, a liberal social choice rule is one that, for each individual,
there is a pair of alternatives that she is decisive over.

definition liberal :: (‘a, i) SCF = 'a set = 'i set = bool where
liberal scf A Is =
(Viels.dz e A.Jye A z#y
A decisive scf A Is {i}  y A decisive scf A Is {i} y x)

lemma liberalE:
[ liberal scf A Is; i € Is ]
= drxe A Jyc A x#y
A decisive scf A Is {i} x y N decisive scf A Is {i} y z
by (simp add: liberal-def)

This condition can be weakened to require just two such decisive individuals; if we required
just one, we would allow dictatorships, which are clearly not liberal.

definition minimally-liberal :: ('a, 'i) SCF = 'a set = i set = bool where
manimally-liberal scf A Is =
FielsJjels.i#j
ANFBze A Jye A x#y
A decisive scf A Is {i} z y N decisive scf A Is {i} y x)
ANEFzeA IJyed a#y
A decisive scf A Is {j} x y A decisive scf A Is {j} y x))

lemma liberal-imp-minimally-liberal:
assumes has2ls: has 2 Is
and L: liberal scf A Is
shows minimally-liberal scf A Is
proof —
from has-ezstend-witness|where xzs=[|, OF has2Is)
obtain ¢ where i: i € Is by auto
with has-extend-witness[where xs=[i], OF has2Is]
obtain j where j: j € Is i # j by auto
from L ¢ j show ?thesis
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unfolding minimally-liberal-def by (blast intro: liberalE)
qed

The key observation is that once we have at least two decisive individuals we can complete
the Condorcet (paradox of voting) cycle using the weak Pareto assumption. The details of
the proof don’t give more insight.

Firstly we need three types of profile witnesses (one of which we saw previously). The
main proof proceeds by case distinctions on which alternatives the two liberal agents are
decisive for.

lemmas liberal-witness-two = SDF-nodictator-witness

lemma liberal-witness-three:
assumes threeA: hasw [z,y,v] A
and twols: hasw [i,j] Is
obtains P
where profile A Is P
and z (Pi)=Y
and v PH=7
and Vi€ Is. y (Pi)= v
proof —
let ?P =
Aa. if a = ithen { (z, u) | u. u € A}
U{(yuw)|uwuwed—{z}}
U (A - {x,y}) x (A N {x,y})
else { (y, w) |u. ue€ A}
O (v w) | wuwe - {y}}
U (A= {ug}) x (4 — {vg))
have profile A Is ?P
proof
fix ¢ assume 7is: ¢ € Is
show rpr A (2P i)
proof
show complete A (7P i) by (simp, blast)
from threeA iis show refl-on A (7P i) by (simp, blast)
from threeA iis show trans (?P i) by (clarsimp simp add: trans-def)
qged
next
from twols show Is # {} by auto
qed
moreover
from threeA twols have x (2P )XYV (2p =T Vielsy (2P )=V
unfolding strict-pref-def by auto
ultimately show %thesis ..
qed

lemma liberal-witness-four:
assumes fourA: hasw [z,y,u,v] A
and twols: hasw [i,j] Is
obtains P
where profile A Is P
and z PH=Y
and u (Pj=V
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and Vi € Is. V(PSR TANY (py=u
proof —
let 7P =
Aa. if a = ithen { (v, w) | w. we A}
U{(z,w) | w weAd—{v}}
U{(y, w) | wweAd-—{vz}}
U (A - {v,x,y}) X (A - {v,x,y})
else { (y, w) | w. we A}
Of (wyw) | w.we A —{y})
U{(v,w)|w wed-—{uy}}
U (A = {uwyd) x (A — {uo})
have profile A Is ?P
proof
fix { assume iis: ¢ € Is
show rpr A (2P i)
proof
show complete A (7P i) by (simp, blast)
from fourA iis show refl-on A (7P i) by (simp, blast)
from fourA iis show trans (?P i) by (clarsimp simp add: trans-def)
qged
next
from twols show Is # {} by auto
qed
moreover
from fourA twols have z (7P )= YU (2p )=V Viels v (2P )= 7 Ay (2P §)= U
by (unfold strict-pref-def, auto)
ultimately show thesis ..
qed

The Liberal Paradox: having two decisive individuals, an SDF and the weak pareto as-
sumption is inconsistent.

theorem LiberalParadox:
assumes SDF: SDF sdf A Is universal-domain
and ml: minimally-liberal sdf A Is
and wp: weak-pareto sdf A Is universal-domain
shows Fulse
proof —
from ml obtain i jz y u v
where 7: 1 € Isand j: j € Is and 4: i # j
and z: z € Aand y: y € Aand uv: v € Aand v: v € A
and zy: x # y
and dizy: decisive sdf A Is {i} z y
and diyx: decisive sdf A Is {i} y =
and uv: u # v
and djuv: decisive sdf A Is {j} v v
and djvu: decisive sdf A Is {j} v u
by (unfold minimally-liberal-def, auto)
from ¢ j ¢j have twols: hasw [i,j] Is by simp
{
assume zu: ¢z = v and yv: y = v
from zy x y have twoA: hasw [z,y] A by simp
obtain P
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where profile A Is P x PHZYVY(PHST
using liberal-witness-two| OF twoA twols] by blast
with ¢ j dizy djvu ru yv have False
by (unfold decisive-def strict-pref-def, blast)
}

moreover
{
assume zu: ¢z = v and yv: y # v
with zy wv zu x y v have threeA: hasw [z,y,0] A by simp
obtain P
where profileP: profile A Is P
and zPiy: PH=Y
and vPjz: v PH=?
and AyPv: Vi € Is. y (Py= v
using liberal-witness-three| OF threeA twols] by blast
from vPjz j djvu zu profileP have vPz: v (sdf P)< T
by (unfold decisive-def strict-pref-def, auto)
from zPiy i dizy profileP have xPy: z (sdf P)= Y
by (unfold decisive-def strict-pref-def, auto)
from AyPv weak-paretoD[OF wp - y v] profileP have yPuv: y (sdf )=V
by auto
from threeA profileP SDF have choiceSet {z,y,v} (sdf P) # {}
by (simp add: SDF-def choiceFn-def)
with vPx 2Py yPv have Fualse
by (unfold choiceSet-def strict-pref-def, blast)
}
moreover
{
assume zv: z = v and yu: y = u
from zy x y have twoA: hasw [z,y] A by auto
obtain P
where profile A Is P x PHZYY(PHRT
using liberal-witness-two[ OF twoA twols] by blast
with i j dizy djuv zv yu have Fualse
by (unfold decisive-def strict-pref-def, blast)
}
moreover
{
assume zv: £ = v and yu: y # u
with zy wv u z y have threeA: hasw [z,y,u] A by simp
obtain P
where profileP: profile A Is P
and zPiy: PH=Y
and uPjz: u (PH=T
and AyPu: Vi € Is. y (Pi)= U
using liberal-witness-three| OF threeA twols] by blast
from uPjx j djuv zv profileP have uPz: u (sdf P)= T
by (unfold decisive-def strict-pref-def, auto)
from xPiy i dizy profileP have zPy: z (sdf P)= Y
by (unfold decisive-def strict-pref-def, auto)
from AyPu weak-paretoD][OF wp - y u] profileP have yPu: y (sdf P)= U
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by auto
from threeA profileP SDF have choiceSet {z,y,u} (sdf P) # {}
by (simp add: SDF-def choiceFn-def)
with uPz xPy yPu have False
by (unfold choiceSet-def strict-pref-def, blast)
}

moreover
{
assume zu: ¥ # v and av: x # v and yu: y = u
with v 2 y zy uwv zu have threeA: hasw [y,z,v] A by simp
obtain P
where profileP: profile A Is P
and yPiz: y (Pi)= 7T
and vPjy: v PH=Y
and AzPv: Vi € Is. x (Pi)= v
using liberal-witness-three| OF threeA twols] by blast
from yPiz i diyx profileP have yPx: y (sdf P)= T
by (unfold decisive-def strict-pref-def, auto)
from vPjy j djvu yu profileP have vPy: v (sdf P)= Y
by (unfold decisive-def strict-pref-def, auto)
from AxzPv weak-paretoD[OF wp - z v] profileP have zPv: x (sdf P)= ¥
by auto
from threeA profileP SDF have choiceSet {z,y,v} (sdf P) # {}
by (simp add: SDF-def choiceFn-def)
with yPx vPy xPv have Fulse
by (unfold choiceSet-def strict-pref-def, blast)

}

moreover
{
assume zu: x # v and av: x # v and yv: y = v
with v z y zy wv 2u have threeA: hasw [y,z,u] A by simp
obtain P
where profileP: profile A Is P
and yPiz: y (P)=7
and uPjy: u PH=Y
and AzPu: Vi € Is. x (Pi)=u
using liberal-witness-three| OF threeA twols] by blast
from yPiz i diyx profileP have yPx: y (sdf P)= T
by (unfold decisive-def strict-pref-def, auto)
from wPjy j djuv yv profileP have uPy: u (sdf P)= Y
by (unfold decisive-def strict-pref-def, auto)
from AxzPu weak-paretoD[OF wp - x u] profileP have zPu: x (sdf P)= U
by auto
from threeA profileP SDF have choiceSet {z,y,u} (sdf P) # {}
by (simp add: SDF-def choiceFn-def)
with yPx uPy xPu have Fualse
by (unfold choiceSet-def strict-pref-def, blast)

}

moreover

{

assume zu:  # v and zv: z # v and yu: y # u and yv: y # v
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with v v x y 2y ww zu have fourA: hasw [z,y,u,v] A by simp
obtain P
where profileP: profile A Is P
and zPiy: PH=Y
and uPjv: u PHZY
and AvPrAyPu: Vi € Is. v PHZTNY Py
using liberal-witness-four| OF fourA twols] by blast
from zPiy i dizy profileP have zPy: z (sdf P)= Y
by (unfold decisive-def strict-pref-def, auto)
from uPjv j djuv profileP have uPv: u (sdf P)= ¥
by (unfold decisive-def strict-pref-def, auto)
from AvPzAyPu weak-paretoD]OF wp)] profileP x y u v
have vPx: v (sdf P)= T and yPu: y (sdf P)= U by auto
from fourA profileP SDF have choiceSet {z,y,u,v} (sdf P) # {}
by (simp add: SDF-def choiceFn-def)
with zPy uPv vPzr yPu have Fualse
by (unfold choiceSet-def strict-pref-def, blast)
}

ultimately show Fulse by blast
qed

6 May’s Theorem

May’s Theorem [May52] provides a characterisation of majority voting in terms of four con-
ditions that appear quite natural for a priori unbiased social choice scenarios. It can be seen
as a refinement of some earlier work by Arrow [Arr63, Chapter V.1].

The following is a mechanisation of Sen’s generalisation [Sen70, Chapter 5*]; originally
Arrow and May consider only two alternatives, whereas Sen’s model maps profiles of full
RPRs to a possibly intransitive relation that does at least generate a choice set that satisfies
May’s conditions.

6.1 May’s Conditions

The condition of anonymity asserts that the individuals’ identities are not considered by the
choice rule. Rather than talk about permutations we just assert the result of the SCF is the
same when the profile is composed with an arbitrary bijection on the set of individuals.

definition anonymous :: ('a, i) SCF = 'a set = 'i set = bool where

anonymous scf A Is =
(VP fxy. profile A Is P A bij-betw fIsIsNx € ANye A

@ (sef P)ZY) = (sef (P o )= W)

lemma anonymousl|intro]:
(AP fzy. [ profile A Is P; bij-betw f Is Is;
zediye Al = (= (5o )2 ¥) = (T (s¢f (P o ) Y)
= anonymous scf A Is
unfolding anonymous-def by simp
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lemma anonymousD:
[ anonymous scf A Is; profile A Is P; bij-betw fIs Is; x € A; y € A
= (T (sef P)Z V) = @ (sef (P o )= )
unfolding anonymous-def by simp
Similarly, an SCF is neutral if it is insensitive to the identity of the alternatives. This is
Sen’s characterisation [Sen70, p72].

definition neutral :: ('a, 'i) SCF = 'a set = 'i set = bool where
neutral scf A Is =
(VP P'zyzw. profile AIs P AN profile AIsP' Nz e ANye ANze AhNwe A
ANNViels z (P)S Y= 2 (p = w) A (Viels. y (P2 T = w (pry)= z)

— (= (sef PYS Y < 2 (5¢f P w) A (y (scf P)S T 4 W (gep p1y= z)))

lemma neutrall [intro]:
(NPP' zyzw.
[ profile A Is P; profile A Is P'; {z,y,z,w} C 4;
/\i.iEIs:>:z:(Pi)j y<—>Z(P’i)j w;
/\z'.iEIs:>y(Pi)jx<—>w(Pzi)jz]]
= ((= (scfP)j y<— 2z (scfP')j w) A (y (scfP)j Te—w (scfP')j 2)))
= neutral scf A Is
unfolding neutral-def by simp

lemma neutralD:
[ neutral scf A Is;
profile A Is P; profile A Is P’; {z,y,z,w} C A;
/\i.iels:>x(Pz~)j y<—>z(P/i)j w;
/\i.ieIs:y(Pi)ijw(Pli)jz]]
= (z (scf PYS Y < 2 (5¢f PN w) A (y (scf P)S T W (gop p1)= Z)
unfolding neutral-def by simp
Neutrality implies independence of irrelevant alternatives.

lemma neutral-iia: neutral scf A Is = iia scf A Is
unfolding neutral-def by (rule, auto)

Positive responsiveness is a bit like non-manipulability: if one individual improves their
opinion of z, then the result should shift in favour of x.
definition positively-responsive :: ('a, i) SCF = 'a set = 'i set = bool where
positively-responsive scf A Is =
(VP P’ zy. profile AIs P A profile AIsP' Nz e Anye A
ANNViels (z (PH=Yy —z (P’z')< y) A (z PRy — @ (P’i)j Y))
N (Hk € Is. (I (P k)% yANzT (Plk)-< y) V (y (P ]{3)_< TNz (P/k)j y))
— T (SCfP)j y—x (SCfP/)_< y)

lemma positively-responsivel [intro):
assumes I: AP P’z y.
[ profile A Is P; profile A Is P'; x € A; y € 4;
/\i. [[Z'GIS;:B(PZ»)-< y]] :>x(P'i)_< ;
Ai. [[iels;x(Pi)%y]]:>x(Pli)j v
ke Is. (z (PRRYNT (prpy= y) VvV (y (PR)STNT (prp= Y);
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z (sef P)= V]

==z (scf P ')< Yy
shows positively-responsive scf A Is
unfolding positively-responsive-def
by (blast intro: I)

lemma positively-responsiveD:

[ positively-responsive scf A Is;

profile A Is P; profile A Is P'; x € A; y € A;

Ni. [i¢€ Is; z (p )= y] — T (pr =Y

Ni. [iEIs;x(Pi);:zy]] — T (p 2 Y

dk € Is. (:L' (Pk)% Yy NzT (P/k,)-< y) V (y (Pk)-< T N\x (P/ k)j y),

T (scf P)j y]

= T (scf P')—< y

unfolding positively-responsive-def
apply clarsimp
apply (erule allE
apply (erule allE
apply (erule allE
apply (erule allE
by auto

where z=P])
where z=P"))
where z=z|)
where z=y))

6.2 The Method of Majority Decision satisfies May’s conditions

The method of majority decision (MMD) says that if the number of individuals who strictly
prefer x to y is larger than or equal to those who strictly prefer the converse, then x R y.
Note that this definition only makes sense for a finite population.

definition MMD :: i set = (‘a, ') SCF where
MMD Is P = { (z, y) . card{z'els.x(PZ-)< y} > card { i € Is. y(pi)<x}}

The first part of May’s Theorem establishes that the conditions are consistent, by showing
that they are satisfied by MMD.

lemma MMD-I2r:
fixes A :: ‘a set
and Is :: i set
assumes finitels: finite Is
shows SCF (MMD Is) A Is universal-domain
and anonymous (MMD Is) A Is
and neutral (MMD Is) A Is
and positively-responsive (MMD Is) A Is
proof —
show SCF (MMD Is) A Is universal-domain
proof
fix P show complete A (MMD Is P)
by (rule completel, unfold MMD-def, simp, arith)
qed
show anonymous (MMD Is) A Is
proof
fix P
fixzy:'a
fix f assume bijf: bij-betw f Is Is
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show (¢ (prvp 15 PYZS ¥) = (T (MMD 15 (P o £))S Y)
using card-compose-bij| OF bijf, where P=M\i. x (P i)~ Yl
card-compose-bij[OF bijf, where P=\i. y (P i)~ ]
unfolding MMD-def by simp
qed
next
show neutral (MMD Is) A Is
proof
fix PP’
fix z y z w assume zyzwA: {z,y,z,w} C A
assume zyzw: N\i. i € Is = (z (P )= y) = (2 (P’ )= w)
and yzwz: Ni. i € Is = (y P> z) = (w (P )= z)
from zyzwA zyzw yrwz
have{iels.x(Pi)-<y}:{iEIs.z(P/i)—<w}
and{iels.y(}pi)—<x}:{iGIs.w(P/Z-)—<z}
unfolding strict-pref-def by auto
thus (2 (yyp 15 P)= Y) = (2 (mmp 15 Py= W) A
(v (mmD 15 )= ®) = (W (mup 15 P = 2)
unfolding MMD-def by simp
qed
next
show positively-responsive (MMD Is) A Is
proof
fix P P’ assume profileP: profile A Is P
fix x y assume zyd: t € Ay € A
assume zPy: N\i. [i € Is; z (P i)~ y = = (P’ Z.)< Yy
and zly: N\i. [i € Is; (P i)~ Yy = = (P )3 Y
and k: 3k€ls. z (PRHRYNT (P B)=Y Vypp=sTAha (P’k)j Y
from k obtain &
where kls: k € Is
and kcond: (z (PRRYNT (prp= y) V (y (PR ETNT (prp= Y)
by blast
let 22Py ={ i€ Is. (P i)~ v}
let 2P’y ={ i€ Is. z (P §)= v}
let 2yPr ={ i€ sy (P i)~ z }
let ?yP'z ={i€ls. y (P )= }
from profileP zyA xPy xzly have yP’zyPx: ?yP'z C ?yPx
unfolding strict-pref-def indifferent-pref-def
by (blast dest: rpr-complete)
with finitels have yP’ryPzC: card ?yP'z < card ?yPz
by (blast intro: card-mono finite-subset)
from finitels Py have zPyzP'yC: card ?zPy < card ?zP'y
by (blast intro: card-mono finite-subset)
show z (MMD Is PY= Y
proof
from zRSCFy zPyzP'yC yP'zyPxC show z (MMD Is P’)j Yy
unfolding MMD-def by auto
next

38



{
assume zlky: z (P K™Y and zP’ky: z (P’ k)* Yy
have card ?zPy < card ?zP'y
proof —
from zlky have knP: k ¢ ?xPy
unfolding indifferent-pref-def strict-pref-def by blast
from kIs xP’ky have kP’ k € ?zP’y by simp
from finitels xPy knP kP’ show ?thesis
by (blast intro: psubset-card-mono finite-subset)
qed
with tRSCFy yP'zyPzC have card ?yP’z < card ?zP’y
unfolding MMD-def by auto
}

moreover
{
assume yPkz: y (PR)= T and zR'ky: z (P’ k)j Yy
have card ?yP'z < card ?yPx
proof —
from klIs yPkr have kP: k € ?yPx by simp
from kIs xR'ky have knP": k ¢ ?yP'z
unfolding strict-pref-def by blast
from yP'zyPx kP knP’ have ?yP’z C ?yPx by blast
with finitels show ?thesis
by (blast intro: psubset-card-mono finite-subset)
qed
with tRSCFy xPyzP'yC have card ?yP’c < card ?zP’y
unfolding MMD-def by auto
}

moreover note kcond
ultimately show —(y (MMD Is P)= )

unfolding MMD-def by auto
qed
qed
qed

6.3 Everything satisfying May’s conditions is the Method of Majority De-
cision
Now show that MMD is the only SCF that satisfies these conditions.

Firstly develop some theory about exchanging alternatives x and y in profile P.

definition swapAlts :: 'a = 'a = 'a = 'a where
swapAlts a b v = if u = a then b else if u = b then a else u

lemma swapAlts-in-set-iff: {a, b} C A = swapAltsabu € A+— ue A
unfolding swapAlts-def by (simp split: if-split)

definition swapAltsP :: (‘a, i) Profile = 'a = 'a = (’a, i) Profile where
swapAltsP P a b = (M. { (u, v) . (swapAlts a b u, swapAlts a b v) € P i })

lemma swapAltsP-ab: a (P i)j be—b (swapAltsP P a b z')j ab (P i)j a<—a (swapAltsP P a b i)j
b
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unfolding swapAltsP-def swapAlts-def by simp-all

lemma profile-swapAltsP:
assumes profileP: profile A Is P
and abA: {a,b} C A
shows profile A Is (swapAltsP P a b)
proof (rule profilel)
from profileP show Is # {} by (rule profile-non-empty)
next
fix ¢ assume ils: i € Is
show rpr A (swapAltsP P a b i)
proof (rule rprl)
show refl-on A (swapAltsP P a b 7)
proof (rule refl-onI)
from profileP ils abA show swapAltsP Pabi C A x A
unfolding swapAltsP-def by (blast dest: swapAlts-in-set-iff)
from profileP ils abA show Az. z € A = z (swapAltsP P a b z’)j z
unfolding swapAltsP-def swapAlts-def by auto
qged
next
from profileP ils abA show complete A (swapAltsP P a b )
unfolding swapAltsP-def
by — (rule completel, simp, rule rpr-complete[where A=A],
auto iff: swapAlts-in-set-iff )
next
from profileP ils show trans (swapAltsP P a b )
unfolding swapAltsP-def by (blast dest: rpr-le-trans intro: transl)
qed
qed

lemma profile-bij-profile:
assumes profileP: profile A Is P
and bijf: biyj-betw f Is Is
shows profile A Is (P o f)
using bij-betw-onto| OF bijf] profileP
by — (rule, auto dest: profile-non-empty)

The locale keeps the conditions in scope for the next few lemmas. Note how weak the
constraints on the sets of alternatives and individuals are; clearly there needs to be at least
two alternatives and two individuals for conflict to occur, but it is pleasant that the proof
uniformly handles the degenerate cases.

locale May =
fixes A :: 'a set

fixes Is :: i set
assumes finitels: finite Is

fixes scf :: (‘a, i) SCF
assumes SCF: SCF scf A Is universal-domain
and anonymous: anonymous scf A Is
and neutral: neutral scf A Is
and positively-responsive: positively-responsive scf A Is
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begin

Anonymity implies that, for any pair of alternatives, the social choice rule can only depend
on the number of individuals who express any given preference between them. Note we also
need 4ia, implied by neutrality, to restrict attention to alternatives x and y.

lemma anonymous-card:
assumes profileP: profile A Is P
and profileP’: profile A Is P’
and zyA: hasw [z,y] A
and zytally: card { i € Is. x (PH=Y }=card {i€Is. x (P i)=Y }
and yatally: card { i € Is. y (Pi= }=card {i€lsy (P )= @ }
shows z (scfP)j TR e (scfP’)j Yy
proof —
let ?zPy ={ic€ls = py=<y}
let 2zP'y ={ i€ Is. (P’ )= Y }
let ?yPr = { i € Is. Yy (P~ T}
let ?yP'z = { i€ Is. y (P i)y= }
have disjPzy: (?xPy U ?yPz) — ?xPy = ?yPz
unfolding strict-pref-def by blast
have disjP’zy: (?2P'y U ?yP'z) — ?zP'y = ?yP'z
unfolding strict-pref-def by blast
from finitels zytally
obtain f where bijf: bij-betw [ ?zPy ?zP'y
by — (drule card-eq-bij, auto)
from finitels yxtally
obtain g where bijg: bij-betw g ?yPx ?yP'z
by — (drule card-eq-bij, auto)
from bijf bijg disjPzy disjP'zy
obtain &
where bijh: bij-betw h (?xPy U ?yPz) (?zP'y U 2yP'x)
and if: \j. j € 2Py = hj=fj
and hg: \j. j € (zPy U ?yPz) — ?2Py = hj=g}j
using bij-combine[where f=f and g=g and A=%2Py and B =%:Py U ?yPz and C=?%zP’'y and
D=%zP'y U ?yP'x]
by auto
from bijh finitels
obtain h’ where bijh’: bij-betw h' Is Is
and hh'’: N\j. j € (zPy U 2yPx) = h'j=hj
and hrest: \j. j € Is — (22Py U %yPz) = h' j € Is — (%zP'y U 2yP'x)
by — (drule bij-complete, auto)
from neutral-iia] OF neutral]
have z (sef (P'o h’))j Y (scfP)j Y
proof (rule iiaE)
from zyA show {z, y} C A by simp
next
fix 7 assume ils: 7 € Is
fix a b assume ab: a € {2, y} b € {z, y}
from profileP ils have completePi: complete A (P i) by (auto dest: rprD)
from completePi zyA
show ((l (P ’L)j b) — (a ((P/O h/) Z)j b)

proof(cases rule: complete-exh)
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case zPy with profileP profileP’ xyA ils ab hh' hf bijf show ?thesis
unfolding strict-pref-def bij-betw-def by (simp, blast)
next
case yPz with profileP profileP’ xzyA ils ab hh' hg bijg show ?thesis
unfolding strict-pref-def bij-betw-def by (simp, blast)
next
case zly with profileP profileP’ xyA ils ab hrestjwhere j=1i] show ?thesis
unfolding indifferent-pref-def strict-pref-def bij-betw-def
by (simp, blast dest: rpr-complete)
qed
qed (simp-all add: profileP profile-bij-profile| OF profileP’ bijh))
moreover
from anonymousD[OF anonymous profileP’ bijh'] zyA
have z (scfP')j YT (s¢f (Po h’))j y by simp
ultimately show ?thesis by simp
qed

Using the previous result and neutrality, it must be the case that if the tallies are tied
for alternatives x and y then the social choice function is indifferent between those two
alternatives.

lemma anonymous-neutral-indifference:
assumes profileP: profile A Is P
and zyA: hasw [z,y] A
and tallyP: card { i € Is. x PH=Y Y=card { i€ sy (Pi)= % }
shows z (sef Y=Y
proof —
— Neutrality insists the results for P are symmetrical to those for swapAltsP P.
from zyA
have symPP": (z (scf P)j Y <Y (scf (swapAltsP Pz y))j x)
Ay (scf P)j TS T (scf (swapAltsP P y))j v)
by — (rule neutralD]OF neutral profileP profile-swapAltsP[OF profileP]],
simp-all, (rule swapAltsP-ab)+)
— Anonymity and neutrality insist the results for P are identical to those for swapAltsP P.
from zyA tallyP have card {i € Is. © (P i)~ y}=card { i € Is. x (swapAltsP Pz y i)=Y }
and card {i € Is. y (P i)~ z}=card { i€ Is. y (swapAltsP Pz y i)~ ¥ }
unfolding swapAltsP-def swapAlts-def strict-pref-def by simp-all
with profileP ryA have idPP’ z (scf P)j Y < T (sef (swapAltsP P« y))j Yy
and y (scf P)j T Y (scf (swapAltsP P x y))j z
by — (rule anonymous-card]OF profileP profile-swapAltsP], clarsimp+)+
from zyA SCF-completeD[OF SCF] profileP symPP’ idPP’ show z (sef PYR Y by (simp, blast)
qed

Finally, if the tallies are not equal then the social choice function must lean towards the
one with the higher count due to positive responsiveness.

lemma positively-responsive-prefer-witness:
assumes profileP: profile A Is P
and zyA: hasw [z,y] A
and tallyP: card { { € Is. x (PH=Y Y >card { i€ sy (Pi= % }
obtains P’ k
where profile A Is P’
and Aid. [i € Is; z (P )= y =z (P=Y
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and Aid. [i € Is; (P )~ y = = (P z’)j Yy
andkEIs/\l’(P/k)%y/\a:(Pk)<y
andcard{iels.x(P/Z-)<y}:card{iels.y(P/i)<m}
proof —
from tallyP obtain C
where tallyP": card ({ i € Is. = PH=<Y }—C)=card {i€ sy (PiH= 2 }
and C: C #{} C C Is
and CzPy: C C{i€ls. z (P i)~ Y}
by — (drule card-greater|OF finitels], auto)
— Add (b,a) and close under transitivity.
let 2P' = Xi.ifi e C
then P iU { (y, z) }
UL () @ (p
U{ (u, 2) lu. u
u{(
else P i
have profile A Is ?P’
proof
fix ¢ assume ils: i € Is
show rpr A (2P’ 1)
proof
from profileP ils show complete A (?P' i)
unfolding complete-def by (simp, blast dest: rpr-complete)
from profileP ils zyA show refl-on A (?P’ i)
by — (rule refl-onl, auto)
show trans (2P’ 7)
proof(cases i € C)
case Fulse with profileP ils show ?thesis
by (simp, blast dest: rpr-le-trans intro: transl)
next
case True with profileP ils C CxPy xyA show ?thesis
unfolding strict-pref-def
by — (rule transl, simp, blast dest: rpr-le-trans rpr-complete)
qed
qed
next
from C show Is # {} by blast
qed
moreover
have A\i. [ i € Is; = (oP" i)~ y] == PH=Y

(
v, u) |u v

unfolding strict-pref-def by (simp split: if-split-asm)
moreover
from profileP C xzyA
have Ai. [i € Is; = (2P i)~ y =z (P Y

unfolding indifferent-pref-def by (simp split: if-split-asm)
moreover
from C CzPy obtain k where kC: k € C and zPky: z (PK)=Y by blast
hence z (2P K)® Y by auto
with C kC zPky have k € Is A\ x (2P K=Y AN (PK=Y by blast
moreover
have card { i € Is. T (2p’ ) <y}t=card { i€ . Y (2P i) <z}

43



proof —
have{iels.x(?P/i)<y}={i€Is.x(?P/i)<y}— C
proof —
from C’have/\i.[[iefs;x(?P/Z-)-<y]] =iecls—C
unfolding indifferent-pref-def strict-pref-def by auto
thus ?thesis by blast

ged

also have ... = {i € ls.x (p <y} — C by auto

finally have card { i € Is. x (ep' i)=Y }=card ({i€ sz (PH=Y }—0)
by simp

with tallyP’ have card { i € Is. x (ep' )= Y Y=card {i€ls y PH=7 }
by simp

also have ... = card { i € Is. y (2P’ )= T } (is card ?lhs = card ?rhs)

proof —

from profileP xyA have \i. [ i € Is; y (2P i)~ z] =y (PiH=*
unfolding strict-pref-def by (simp split: if-split-asm, blast dest: rpr-complete)
hence ?rhs C ?lhs by blast
moreover
from profileP xyA have Ai. [ i € Is; y (P i)~ r] =y (2P )= 7
unfolding strict-pref-def by simp
hence ?lhs C ?rhs by blast
ultimately show ?thesis by simp
qed
finally show ?thesis .
qed
ultimately show thesis ..
qed

lemma positively-responsive-prefer:
assumes profileP: profile A Is P
and zyA: hasw [z,y] A
and tallyP: card { i € Is. z PH=Y }>card{i€lsy (Pi)= % }
shows z (scf P)= Y
proof —
from assms obtain P’k
where profileP': profile A Is P’
and F: \i. [i € Is; (P )= y =z (Pi)= Y
and G: \i. [i € Is; z (P’ i)~ y] = 2 P a3y
and pivot: k € Is A z (P K=Y Az (PEK)=Y
and cardP’: card { i € Is. (P i)=Y Y=card {i€ls. y (P )= % }
by — (drule positively-responsive-prefer-witness, auto)
from profileP’ zyA cardP’ have z (sef PYE Y
by — (rule anonymous-neutral-indifference, auto)
with zyA F G pivot show ?thesis
by — (rule positively-responsive D|OF positively-responsive profileP’ profileP], auto)
qed

lemma MMD-r2l:
assumes profileP: profile A Is P
and zyA: hasw [z,y] A

44



shows = (;or pY2 ¥ <= & (yqMD s P)Z Y
proof(cases rule: linorder-cases)
assume card { i € Is. © (PH=Y Y=card {i€ls. y (P i)~ T}
with profileP tyA show #?thesis
using anonymous-neutral-indifference
unfolding indifferent-pref-def MMD-def by simp
next
assume card { i € Is. (P)= Y Y > card { i€ Is. y (P )= T}
with profileP zyA show ?thesis
using positively-responsive-prefer
unfolding strict-pref-def MMD-def by simp
next
assume card { i € Is. © (PH=Y Y<card {i€Is. y (P i)~ T}
with profileP tyA show #?thesis
using positively-responsive-prefer
unfolding strict-pref-def MMD-def by clarsimp
qed

end

May’s original paper [May52] goes on to show that the conditions are independent by
exhibiting choice rules that differ from MMD and satisfy the conditions remaining after any
particular one is removed. I leave this to future work.

May also wrote a later article [May53] where he shows that the conditions are completely
independent, i.e. for every partition of the conditions into two sets, there is a voting rule that
satisfies one and not the other.

There are many later papers that characterise MMD with different sets of conditions.

6.4 The Plurality Rule

Goodin and List [GL06] show that May’s original result can be generalised to characterise
plurality voting. The following shows that this result is a short step from Sen’s much earlier
generalisation.

Plurality voting is a choice function that returns the alternative that receives the most
votes, or the set of such alternatives in the case of a tie. Profiles are restricted to those where
each individual casts a vote in favour of a single alternative.

type-synonym (‘a, i) SVProfile = i = 'a

definition suprofile :: 'a set = i set = ('a, 'i) SVProfile = bool where
suprofile AIsF=Is£A{} NF‘Is C A

definition plurality-rule :: 'a set = i set = (‘a, 'i) SVProfile = 'a set where
plurality-rule A Is F
={recA. VyeA card{i€ls. Fi=z}>cad{icls. Fi=y}}

By translating single-vote profiles into RPRs in the obvious way, the choice function arising
from MMD coincides with traditional plurality voting.

definition MMD-plurality-rule :: 'a set = 'i set = (‘a, 'i) Profile = 'a set where
MMD-plurality-rule A Is P = choiceSet A (MMD Is P)

45



definition single-vote-to-RPR :: 'a set = 'a = 'a RPR where
single-vote-to-RPR A a = { (a, z) |[z. . € A} U (4 — {a}) x (A — {a})

lemma single-vote-to- RPR-iff:
[acAizediata] = (a (single-vote-to-RPR A b) ™ ) = (b=a)
unfolding single-vote-to-RPR-def strict-pref-def by auto

lemma plurality-rule-equiv:
plurality-rule A Is F = MMD-plurality-rule A Is (single-vote-to-RPR A o F)
proof —

{

fixxy

have [z € A;ye A] =
(card {i € Is. Fi =y} < card {i € Is. Fi=1x})=
(card {i € Is. y (single-vote-to-RPR A (F i))™ z}

< card {i € Is. x (single-vote-to-RPR A (F i)™ y})
by (cases x=y, auto iff: single-vote-to-RPR-iff)

thus ?thesis
unfolding plurality-rule-def MMD-plurality-rule-def choiceSet-def MMD-def
by auto
qed

Thus it is clear that Sen’s generalisation of May’s result applies to this case as well.

Their paper goes on to show how strengthening the anonymity condition gives rise to a
characterisation of approval voting that strictly generalises May’s original theorem. As this
requires some rearrangement of the proof I leave it to future work.
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