
Verification of Selection and Heap Sort Using
Locales

Danijela Petrović

March 19, 2025

Abstract

Stepwise program refinement techniques can be used to simplify
program verification. Programs are better understood since their main
properties are clearly stated, and verification of rather complex algo-
rithms is reduced to proving simple statements connecting successive
program specifications. Additionally, it is easy to analyze similar al-
gorithms and to compare their properties within a single formaliza-
tion. Usually, formal analysis is not done in educational setting due
to complexity of verification and a lack of tools and procedures to
make comparison easy. Verification of an algorithm should not only
give correctness proof, but also better understanding of an algorithm.
If the verification is based on small step program refinement, it can
become simple enough to be demonstrated within the university-level
computer science curriculum. In this paper we demonstrate this and
give a formal analysis of two well known algorithms (Selection Sort and
Heap Sort) using proof assistant Isabelle/HOL and program refinement
techniques.

Contents
1 Introduction 2

2 Locale Sort 4

3 Defining data structure and
key function remove_max 5
3.1 Describing data structure . 5
3.2 Function remove_max . 6

4 Verification of functional Selection Sort 8
4.1 Defining data structure . 9
4.2 Defining function remove_max 9

1

5 Verification of Heap Sort 10
5.1 Defining tree and properties of heap 10

6 Verification of Functional Heap Sort 12

7 Verification of Imperative Heap Sort 13

8 Related work 16

9 Conclusions and Further Work 17

1 Introduction
Using program verification within computer science education.
Program verification is usually considered to be too hard and long process
that acquires good mathematical background. A verification of a program
is performed using mathematical logic. Having the specification of an algo-
rithm inside the logic, its correctness can be proved again by using the stan-
dard mathematical apparatus (mainly induction and equational reasoning).
These proofs are commonly complex and the reader must have some knowl-
edge about mathematical logic. The reader must be familiar with notions
such as satisfiability, validity, logical consequence, etc. Any misunderstand-
ing leads into a loss of accuracy of the verification. These formalizations have
common disadvantage, they are too complex to be understood by students,
and this discourage students most of the time. Therefore, programmers and
their educators rather use traditional (usually trial-and-error) methods.

However, many authors claim that nowadays education lacks the formal
approach and it is clear why many advocate in using proof assistants[9]. This
is also the case with computer science education. Students are presented
many algorithms, but without formal analysis, often omitting to mention
when algorithm would not work properly. Frequently, the center of a study
is implementation of an algorithm whereas understanding of its structure
and its properties is put aside. Software verification can bring more formal
approach into teaching of algorithms and can have some advantages over
traditional teaching methods.

• Verification helps to point out what are the requirements and condi-
tions that an algorithm satisfies (pre-conditions, post-conditions and
invariant conditions) and then to apply this knowledge during pro-
gramming. This would help both students and educators to better
understand input and output specification and the relations between
them.

• Though program works in general case, it can happen that it does
not work for some inputs and students must be able to detect these

2

situations and to create software that works properly for all inputs.

• It is suitable to separate abstract algorithm from its specific implemen-
tation. Students can compare properties of different implementations
of the same algorithms, to see the benefits of one approach or another.
Also, it is possible to compare different algorithms for same purpose
(for example, for searching element, sorting, etc.) and this could help
in overall understanding of algorithm construction techniques.

Therefore, lessons learned from formal verification of an algorithm can im-
prove someones style of programming.

Modularity and refinement. The most used languages today are those
who can easily be compiled into efficient code. Using heuristics and different
data types makes code more complex and seems to novices like perplex
mixture of many new notions, definitions, concepts. These techniques and
methods in programming makes programs more efficient but are rather hard
to be intuitively understood. On the other hand highly accepted principle
in nowadays programming is modularity. Adhering to this principle enables
programmer to easily maintain the code.

The best way to apply modularity on program verification and to make
verification flexible enough to add new capabilities to the program keeping
current verification intact is program refinement. Program refinement is the
verifiable transformation of an abstract (high-level) formal specification into
a concrete (low-level) executable program. It starts from the abstract level,
describing only the requirements for input and output. Implementation
is obtained at the end of the verification process (often by means of code
generation [5]). Stepwise refinement allows this process to be done in stages.
There are many benefits of using refinement techniques in verification.

• It gives a better understanding of programs that are verified.

• The algorithm can be analyzed and understood on different level of
abstraction.

• It is possible to verify different implementations for some part of the
program, discussing the benefits of one approach or another.

• It can be easily proved that these different implementation share some
same properties which are proved before splitting into two directions.

• It is easy to maintain the code and the verification. Usually, whenever
the implementation of the program changes, the correctness proofs
must be adapted to these changes, and if refinement is used, it is not
necessary to rewrite entire verification, just add or change small part
of it.

3

• Using refinement approach makes algorithm suitable for a case study
in teaching. Properties and specifications of the program are clearly
stated and it helps teachers and students better to teach or understand
them.

We claim that the full potential of refinement comes only when it is
applied stepwise, and in many small steps. If the program is refined in many
steps, and data structures and algorithms are introduced one-by-one, then
proving the correctness between the successive specifications becomes easy.
Abstracting and separating each algorithmic idea and each data-structure
that is used to give an efficient implementation of an algorithm is very
important task in programmer education.

As an example of using small step refinement, in this paper we analyze
two widely known algorithms, Selection Sort and Heap Sort. There are
many reasons why we decided to use them.

• They are largely studied in different contexts and they are studied in
almost all computer science curricula.

• They belong to the same family of algorithms and they are good exam-
ple for illustrating the refinement techniques. They are a nice example
of how one can improve on a same idea by introducing more efficient
underlying data-structures and more efficient algorithms.

• Their implementation uses different programming constructs: loops
(or recursion), arrays (or lists), trees, etc. We show how to analyze all
these constructs in a formal setting.

There are many formalizations of sorting algorithms that are done both
automatically or interactively and they undoubtedly proved that these al-
gorithms are correct. In this paper we are giving a new approach in their
verification, that insists on formally analyzing connections between them,
instead of only proving their correctness (which has been well established
many times). Our central motivation is that these connections contribute
to deeper algorithm understanding much more than separate verification of
each algorithm.

2 Locale Sort
theory Sort
imports Main

HOL−Library.Multiset
begin

First, we start from the definition of sorting algorithm. What are the basic
properties that any sorting algorithm must satisfy? There are two basic
features any sorting algorithm must satisfy:

4

• The elements of sorted array must be in some order, e.g. ascending or
descending order. In this paper we are sorting in ascending order.

sorted (sort l)

• The algorithm does not change or delete elements of the given array,
e.g. the sorted array is the permutation of the input array.

sort l <∼∼> l

locale Sort =
fixes sort :: ′a::linorder list ⇒ ′a list
assumes sorted: sorted (sort l)
assumes permutation: mset (sort l) = mset l

end

3 Defining data structure and
key function remove_max

theory RemoveMax
imports Sort
begin

3.1 Describing data structure

We have already said that we are going to formalize heap and selection
sort and to show connections between these two sorts. However, one can
immediately notice that selection sort is using list and heap sort is using heap
during its work. It would be very difficult to show equivalency between these
two sorts if it is continued straightforward and independently proved that
they satisfy conditions of locale Sort. They work with different objects.
Much better thing to do is to stay on the abstract level and to add the new
locale, one that describes characteristics of both list and heap.
locale Collection =

fixes empty :: ′b
— – Represents empty element of the object (for example, for list it is [])
fixes is-empty :: ′b ⇒ bool
— – Function that checks weather the object is empty or not
fixes of-list :: ′a list ⇒ ′b
— – Function transforms given list to desired object (for example, for heap sort,

function of_list transforms list to heap)
fixes multiset :: ′b ⇒ ′a multiset
— – Function makes a multiset from the given object. A multiset is a collection

without order.
assumes is-empty-inj: is-empty e =⇒ e = empty

5

— – It must be assured that the empty element is empty
assumes is-empty-empty: is-empty empty
— – Must be satisfied that function is_empty returns true for element empty
assumes multiset-empty: multiset empty = {#}
— – Multiset of an empty object is empty multiset.
assumes multiset-of-list: multiset (of-list i) = mset i
— – Multiset of an object gained by applying function of_list must be the same

as the multiset of the list. This, practically, means that function of_list does not
delete or change elements of the starting list.
begin

lemma is-empty-as-list: is-empty e =⇒ multiset e = {#}
〈proof 〉

definition set :: ′b ⇒ ′a set where
[simp]: set l = set-mset (multiset l)

end

3.2 Function remove_max

We wanted to emphasize that algorithms are same. Due to the complexity
of the implementation it usually happens that simple properties are omitted,
such as the connection between these two sorting algorithms. This is a key
feature that should be presented to students in order to understand these
algorithms. It is not unknown that students usually prefer selection sort for
its simplicity whereas avoid heap sort for its complexity. However, if we can
present them as the algorithms that are same they may hesitate less in using
the heap sort. This is why the refinement is important. Using this technique
we were able to notice these characteristics. Separate verification would not
bring anything new. Being on the abstract level does not only simplify the
verifications, but also helps us to notice and to show students important
features. Even further, we can prove them formally and completely justify
our observation.
locale RemoveMax = Collection empty is-empty of-list multiset for

empty :: ′b and
is-empty :: ′b ⇒ bool and
of-list :: ′a::linorder list ⇒ ′b and
multiset :: ′b ⇒ ′a::linorder multiset +
fixes remove-max :: ′b ⇒ ′a × ′b
— — Function that removes maximum element from the object of type ′b. It

returns maximum element and the object without that maximum element.
fixes inv :: ′b ⇒ bool
— — It checks weather the object is in required condition. For example, if we

expect to work with heap it checks weather the object is heap. This is called
invariant condition

assumes of-list-inv: inv (of-list x)
— — This condition assures that function of_list made a object with desired

property.

6

assumes remove-max-max:
[[¬ is-empty l; inv l; (m, l ′) = remove-max l]] =⇒ m = Max (set l)

— — First parameter of the return value of the function remove_max is the
maximum element

assumes remove-max-multiset:
[[¬ is-empty l; inv l; (m, l ′) = remove-max l]] =⇒
add-mset m (multiset l ′) = multiset l

— — Condition for multiset, ensures that nothing new is added or nothing is lost
after applying remove_max function.

assumes remove-max-inv:
[[¬ is-empty l; inv l; (m, l ′) = remove-max l]] =⇒ inv l ′

— — Ensures that invariant condition is true after removing maximum element.
Invariant condition must be true in each step of sorting algorithm, for example if
we are sorting using heap than in each iteration we must have heap and function
remove_max must not change that.
begin

lemma remove-max-multiset-size:
[[¬ is-empty l; inv l; (m, l ′) = remove-max l]] =⇒

size (multiset l) > size (multiset l ′)
〈proof 〉

lemma remove-max-set:
[[¬ is-empty l; inv l; (m, l ′) = remove-max l]] =⇒

set l ′ ∪ {m} = set l
〈proof 〉

As it is said before in each iteration invariant condition must be satisfied, so
the inv l is always true, e.g. before and after execution of any function. This
is also the reason why sort function must be defined as partial. This function
parameters stay the same in each step of iteration – list stays list, and heap
stays heap. As we said before, in Isabelle/HOL we can only define total
function, but there is a mechanism that enables total function to appear as
partial one:
partial-function (tailrec) ssort ′ where

ssort ′ l sl =
(if is-empty l then

sl
else

let
(m, l ′) = remove-max l

in
ssort ′ l ′ (m # sl))

declare ssort ′.simps[code]
definition ssort :: ′a list ⇒ ′a list where

ssort l = ssort ′ (of-list l) []

inductive ssort ′-dom where

7

step: [[
∧

m l ′. [[¬ is-empty l; (m, l ′) = remove-max l]] =⇒
ssort ′-dom (l ′, m # sl)]] =⇒ ssort ′-dom (l, sl)

lemma ssort ′-termination:
assumes inv (fst p)
shows ssort ′-dom p
〈proof 〉

lemma ssort ′Induct:
assumes inv l P l sl∧

l sl m l ′.
[[¬ is-empty l; inv l; (m, l ′) = remove-max l; P l sl]] =⇒ P l ′ (m # sl)

shows P empty (ssort ′ l sl)
〈proof 〉

lemma mset-ssort ′:
assumes inv l
shows mset (ssort ′ l sl) = multiset l + mset sl
〈proof 〉

lemma sorted-ssort ′:
assumes inv l sorted sl ∧ (∀ x ∈ set l. (∀ y ∈ List.set sl. x ≤ y))
shows sorted (ssort ′ l sl)
〈proof 〉

lemma sorted-ssort: sorted (ssort i)
〈proof 〉

lemma permutation-ssort: mset (ssort l) = mset l
〈proof 〉

end

Using assumptions given in the definitions of the locales Collection and
RemoveMax for the functions multiset, is_empty, of_list and remove_max
it is no difficulty to show:
sublocale RemoveMax < Sort ssort
〈proof 〉

end

4 Verification of functional Selection Sort
theory SelectionSort-Functional
imports RemoveMax
begin

8

4.1 Defining data structure

Selection sort works with list and that is the reason why Collection should
be interpreted as list.
interpretation Collection [] λ l. l = [] id mset
〈proof 〉

4.2 Defining function remove_max

The following is definition of remove_max function. The idea is very well
known – assume that the maximum element is the first one and then com-
pare with each element of the list. Function f is one step in iteration, it
compares current maximum m with one element x, if it is bigger then m
stays current maximum and x is added in the resulting list, otherwise x is
current maximum and m is added in the resulting list.
fun f where f (m, l) x = (if x ≥ m then (x, m#l) else (m, x#l))

definition remove-max where
remove-max l = foldl f (hd l, []) (tl l)

lemma max-Max-commute:
finite A =⇒ max (Max (insert m A)) x = max m (Max (insert x A))
〈proof 〉

The function really returned the maximum value.
lemma remove-max-max-lemma:

shows fst (foldl f (m, t) l) = Max (set (m # l))
〈proof 〉

lemma remove-max-max:
assumes l 6= [] (m, l ′) = remove-max l
shows m = Max (set l)
〈proof 〉

Nothing new is added in the list and noting is deleted from the list except
the maximum element.
lemma remove-max-mset-lemma:

assumes (m, l ′) = foldl f (m ′, t ′) l
shows mset (m # l ′) = mset (m ′ # t ′ @ l)
〈proof 〉

lemma remove-max-mset:
assumes l 6= [] (m, l ′) = remove-max l
shows add-mset m (mset l ′) = mset l
〈proof 〉

definition ssf-ssort ′ where

9

[simp, code del]: ssf-ssort ′ = RemoveMax.ssort ′ (λ l. l = []) remove-max
definition ssf-ssort where
[simp, code del]: ssf-ssort = RemoveMax.ssort (λ l. l = []) id remove-max

interpretation SSRemoveMax:
RemoveMax [] λ l. l = [] id mset remove-max λ -. True
rewrites

RemoveMax.ssort ′ (λ l. l = []) remove-max = ssf-ssort ′ and
RemoveMax.ssort (λ l. l = []) id remove-max = ssf-ssort
〈proof 〉

end

5 Verification of Heap Sort
theory Heap
imports RemoveMax
begin

5.1 Defining tree and properties of heap
datatype ′a Tree = E | T ′a ′a Tree ′a Tree

With E is represented empty tree and with T ’a ’a Tree ’a Tree is
represented a node whose root element is of type ’a and its left and right
branch is also a tree of type ’a.
primrec size :: ′a Tree ⇒ nat where

size E = 0
| size (T v l r) = 1 + size l + size r

Definition of the function that makes a multiset from the given tree:
primrec multiset where

multiset E = {#}
| multiset (T v l r) = multiset l + {#v#} + multiset r

primrec val where
val (T v - -) = v

Definition of the function that has the value True if the tree is heap, other-
wise it is False:
fun is-heap :: ′a::linorder Tree ⇒ bool where

is-heap E = True
| is-heap (T v E E) = True
| is-heap (T v E r) = (v ≥ val r ∧ is-heap r)
| is-heap (T v l E) = (v ≥ val l ∧ is-heap l)
| is-heap (T v l r) = (v ≥ val r ∧ is-heap r ∧ v ≥ val l ∧ is-heap l)

lemma heap-top-geq:

10

assumes a ∈# multiset t is-heap t
shows val t ≥ a
〈proof 〉

lemma heap-top-max:
assumes t 6= E is-heap t
shows val t = Max-mset (multiset t)
〈proof 〉

The next step is to define function remove_max, but the question is weather
implementation of remove_max depends on implementation of the functions
is_heap and multiset. The answer is negative. This suggests that another
step of refinement could be added before definition of function remove_max.
Additionally, there are other reasons why this should be done, for example,
function remove_max could be implemented in functional or in imperative
manner.
locale Heap = Collection empty is-empty of-list multiset for

empty :: ′b and
is-empty :: ′b ⇒ bool and
of-list :: ′a::linorder list ⇒ ′b and
multiset :: ′b ⇒ ′a::linorder multiset +
fixes as-tree :: ′b ⇒ ′a::linorder Tree
— This function is not very important, but it is needed in order to avoide problems

with types and to detect that observed object is a tree.
fixes remove-max :: ′b ⇒ ′a × ′b
assumes multiset: multiset l = Heap.multiset (as-tree l)
assumes is-heap-of-list: is-heap (as-tree (of-list i))
assumes as-tree-empty: as-tree t = E ←→ is-empty t
assumes remove-max-multiset ′:
[[¬ is-empty l; (m, l ′) = remove-max l]] =⇒ add-mset m (multiset l ′) = multiset l
assumes remove-max-is-heap:
[[¬ is-empty l; is-heap (as-tree l); (m, l ′) = remove-max l]] =⇒
is-heap (as-tree l ′)
assumes remove-max-val:
[[¬ is-empty t; (m, t ′) = remove-max t]] =⇒ m = val (as-tree t)

It is very easy to prove that locale Heap is sublocale of locale RemoveMax
sublocale Heap <

RemoveMax empty is-empty of-list multiset remove-max λ t. is-heap (as-tree t)
〈proof 〉

primrec in-tree where
in-tree v E = False
| in-tree v (T v ′ l r) ←→ v = v ′ ∨ in-tree v l ∨ in-tree v r

lemma is-heap-max:
assumes in-tree v t is-heap t
shows val t ≥ v

11

〈proof 〉

end

6 Verification of Functional Heap Sort
theory HeapFunctional
imports Heap
begin

As we said before, maximum element of the heap is its root. So, finding
maximum element is not difficulty. But, this element should also be removed
and remainder after deleting this element is two trees, left and right branch
of original heap. Those branches are also heaps by the definition of the
heap. To maintain consistency, branches should be combined into one tree
that satisfies heap condition:
function merge :: ′a::linorder Tree ⇒ ′a Tree ⇒ ′a Tree where

merge t1 E = t1
| merge E t2 = t2
| merge (T v1 l1 r1) (T v2 l2 r2) =

(if v1 ≥ v2 then T v1 (merge l1 (T v2 l2 r2)) r1
else T v2 (merge l2 (T v1 l1 r1)) r2)

〈proof 〉
termination
〈proof 〉

lemma merge-val:
val(merge l r) = val l ∨ val(merge l r) = val r
〈proof 〉

Function merge merges two heaps into one:
lemma merge-heap-is-heap:

assumes is-heap l is-heap r
shows is-heap (merge l r)
〈proof 〉

definition insert :: ′a::linorder ⇒ ′a Tree ⇒ ′a Tree where
insert v t = merge t (T v E E)

primrec hs-of-list where
hs-of-list [] = E
| hs-of-list (v # l) = insert v (hs-of-list l)

definition hs-is-empty where
[simp]: hs-is-empty t ←→ t = E

Definition of function remove_max:
fun hs-remove-max:: ′a::linorder Tree ⇒ ′a × ′a Tree where

12

hs-remove-max (T v l r) = (v, merge l r)

lemma merge-multiset:
multiset l + multiset g = multiset (merge l g)
〈proof 〉

Proof that defined functions are interpretation of abstract functions from
locale Collection:
interpretation HS : Collection E hs-is-empty hs-of-list multiset
〈proof 〉

Proof that defined functions are interpretation of abstract functions from
locale Heap:
interpretation Heap E hs-is-empty hs-of-list multiset id hs-remove-max
〈proof 〉

end

7 Verification of Imperative Heap Sort
theory HeapImperative
imports Heap
begin

primrec left :: ′a Tree ⇒ ′a Tree where
left (T v l r) = l

abbreviation left-val :: ′a Tree ⇒ ′a where
left-val t ≡ val (left t)

primrec right :: ′a Tree ⇒ ′a Tree where
right (T v l r) = r

abbreviation right-val :: ′a Tree ⇒ ′a where
right-val t ≡ val (right t)

abbreviation set-val :: ′a Tree ⇒ ′a ⇒ ′a Tree where
set-val t x ≡ T x (left t) (right t)

The first step is to implement function siftDown. If some node does not
satisfy heap property, this function moves it down the heap until it does.
For a node is checked weather it satisfies heap property or not. If it does
nothing is changed. If it does not, value of the root node becomes a value
of the larger child and the value of that child becomes the value of the root
node. This is the reason this function is called siftDown – value of the node
is places down in the heap. Now, the problem is that the child node may
not satisfy the heap property and that is the reason why function siftDown
is recursively applied.

13

fun siftDown :: ′a::linorder Tree ⇒ ′a Tree where
siftDown E = E

| siftDown (T v E E) = T v E E
| siftDown (T v l E) =

(if v ≥ val l then T v l E else T (val l) (siftDown (set-val l v)) E)
| siftDown (T v E r) =

(if v ≥ val r then T v E r else T (val r) E (siftDown (set-val r v)))
| siftDown (T v l r) =

(if val l ≥ val r then
if v ≥ val l then T v l r else T (val l) (siftDown (set-val l v)) r

else
if v ≥ val r then T v l r else T (val r) l (siftDown (set-val r v)))

lemma siftDown-Node:
assumes t = T v l r
shows ∃ l ′ v ′ r ′. siftDown t = T v ′ l ′ r ′ ∧ v ′ ≥ v
〈proof 〉

lemma siftDown-in-tree:
assumes t 6= E
shows in-tree (val (siftDown t)) t
〈proof 〉

lemma siftDown-in-tree-set:
shows in-tree v t ←→ in-tree v (siftDown t)
〈proof 〉

lemma siftDown-heap-is-heap:
assumes is-heap l is-heap r t = T v l r
shows is-heap (siftDown t)
〈proof 〉

Definition of the function heapify which makes a heap from any given binary
tree.
primrec heapify where

heapify E = E
| heapify (T v l r) = siftDown (T v (heapify l) (heapify r))

lemma heapify-heap-is-heap:
is-heap (heapify t)
〈proof 〉

Definition of removeLeaf function. Function returns two values. The first
one is the value of romoved leaf element. The second returned value is tree
without that leaf.
fun removeLeaf :: ′a::linorder Tree ⇒ ′a × ′a Tree where

removeLeaf (T v E E) = (v, E)
| removeLeaf (T v l E) = (fst (removeLeaf l), T v (snd (removeLeaf l)) E)
| removeLeaf (T v E r) = (fst (removeLeaf r), T v E (snd (removeLeaf r)))

14

| removeLeaf (T v l r) = (fst (removeLeaf l), T v (snd (removeLeaf l)) r)

Function of_list_tree makes a binary tree from any given list.
primrec of-list-tree:: ′a::linorder list ⇒ ′a Tree where

of-list-tree [] = E
| of-list-tree (v # tail) = T v (of-list-tree tail) E

By applying heapify binary tree is transformed into heap.
definition hs-of-list where

hs-of-list l = heapify (of-list-tree l)

Definition of function hs_remove_max. As it is already well established,
finding maximum is not a problem, since it is in the root element of the
heap. The root element is replaced with leaf of the heap and that leaf is
erased from its previous position. However, now the new root element may
not satisfy heap property and that is the reason to apply function siftDown.
definition hs-remove-max :: ′a::linorder Tree ⇒ ′a × ′a Tree where

hs-remove-max t ≡
(let v ′ = fst (removeLeaf t);

t ′ = snd (removeLeaf t) in
(if t ′ = E then (val t, E)
else (val t, siftDown (set-val t ′ v ′))))

definition hs-is-empty where
[simp]: hs-is-empty t ←→ t = E

lemma siftDown-multiset:
multiset (siftDown t) = multiset t
〈proof 〉

lemma mset-list-tree:
multiset (of-list-tree l) = mset l
〈proof 〉

lemma multiset-heapify:
multiset (heapify t) = multiset t
〈proof 〉

lemma multiset-heapify-of-list-tree:
multiset (heapify (of-list-tree l)) = mset l
〈proof 〉

lemma removeLeaf-val-val:
assumes snd (removeLeaf t) 6= E t 6= E
shows val t = val (snd (removeLeaf t))
〈proof 〉

15

lemma removeLeaf-heap-is-heap:
assumes is-heap t t 6= E
shows is-heap (snd (removeLeaf t))
〈proof 〉

Difined functions satisfy conditions of locale Collection and thus represent
interpretation of this locale.
interpretation HS : Collection E hs-is-empty hs-of-list multiset
〈proof 〉

lemma removeLeaf-multiset:
assumes (v ′, t ′) = removeLeaf t t 6= E
shows {#v ′#} + multiset t ′ = multiset t
〈proof 〉

lemma set-val-multiset:
assumes t 6= E
shows multiset (set-val t v ′) + {#val t#} = {#v ′#} + multiset t
〈proof 〉

lemma hs-remove-max-multiset:
assumes (m, t ′) = hs-remove-max t t 6= E
shows {#m#} + multiset t ′ = multiset t
〈proof 〉

Difined functions satisfy conditions of locale Heap and thus represent inter-
pretation of this locale.
interpretation Heap E hs-is-empty hs-of-list multiset id hs-remove-max
〈proof 〉

end

8 Related work

To study sorting algorithms from a top down was proposed in [7]. All sort-
ing algorithms are based on divide-and-conquer algorithm and all sorts are
divided into two groups: hard_split/easy_join and easy_split/hard_join.
Fallowing this idea in [8], authors described sorting algorithms using object-
oriented approach. They suggested that this approach could be used in
computer science education and that presenting sorting algorithms from top
down will help students to understand them better.
The paper [1] represent different recursion patterns — catamorphism, anamor-

16

phism, hylomorphism and paramorphisms. Selection, buble, merge, heap
and quick sort are expressed using these patterns of recursion and it is shown
that there is a little freedom left in implementation level. Also, connection
between different patterns are given and thus a conclusion about connection
between sorting algorithms can be easily conducted. Furthermore, in the
paper are generalized tree data types – list, binary trees and binary leaf
trees.
Satisfiability procedures for working with arrays was proposed in paper
“What is decidable about arrays?”[3]. This procedure is called SATA and
can give an answer if two arrays are equal or if array is sorted and so on.
Completeness and soundness for procedures are proved. There are, though,
several cases when procedures are unsatisfiable. They also studied theory
of maps. One of the application for these procedures is verification of sort-
ing algorithms and they gave an example that insertion sort returns sorted
array.
Tools for program verification are developed by different groups and with
different results. Some of them are automated and some are half-automated.
Ralph-Johan Back and Johannes Eriksson [6] developed SOCOS, tool for
program verification based on invariant diagrams. SOCOS environment
supports interactive and non-interactive checking of program correctness.
For each program tree types of verification conditions are generated: consis-
tency, completeness and termination conditions. They described invariant-
based programming in SOCOS. In [2] this tool was used to verify heap sort
algorithm.
There are many tools for Java program developers maid to automatically
prove program correctness. Krakatoa Modeling Language (KML) is de-
scribed in [10] with example of sorting algorithms. Refinement is not sup-
ported in KML and any refinement property could not automatically be
proved. The language KML is also not formally verified, but some parts
are proved by Alt-Ergo, Simplify and Yices. The paper proposed some im-
provements for working with permutation and arrays in KML. Why/Kraka-
toa/Caduceus[4] is a tool for deductive program verification for Java and
C. The approach is to use Krakatoa and Caduceus to translate Java/C pro-
grams into Why program. This language is suitable for program verification.
The idea is to generate verification conditions based on weakest precondition
calculus.

9 Conclusions and Further Work

In this paper we illustrated a proof management technology. The method-
ology that we use in this paper for the formalization is refinement: the
formalization begins with a most basic specification, which is then refined

17

by introducing more advanced techniques, while preserving the correctness.
This incremental approach proves to be a very natural approach in formal-
izing complex software systems. It simplifies understanding of the system
and reduces the overall verification effort.
Modularity is very popular in nowadays imperative languages. This ap-
proach could be used for software verification and Isabelle/HOL locales pro-
vide means for modular reasoning. They support multiple inheritance and
this means that locales can imitate connections between functions, proce-
dures or objects. It is possible to establish some general properties of an
algorithm or to compare these properties. So, it is possible to compare pro-
grams. And this is a great advantage in program verification, something
that is not done very often. This could help in better understanding of an
algorithm which is essential for computer science education. So apart from
being able to formalize verification in easier manner, this approach gives us
opportunity to compare different programs. This was showed on Selection
and Heap sort example and the connection between these two sorts was easy
to comprehend. The value of this approach is not so much in obtaining a
nice implementation of some algorithm, but in unraveling its structure. This
is very important for computer science education and this can help in better
teaching and understanding of an algorithms.
Using experience from this formalization, we came to conclusion that the
general principle for refinement in program verification should be: divide
program into small modules (functions, classes) and verify each modulo sep-
arately in order that corresponds to the order in entire program implemen-
tation. Someone may argue that this principle was not followed in each step
of formalization, for example when we implemented Selection sort or when
we defined is_heap and multiset in one step, but we feel that those function
were simple and deviations in their implementations are minimal.
The next step is to formally verify all sorting algorithms and using refinement
method to formally analyze and compare different sorting algorithms.

References

[1] L. Augusteijn. Sorting morphisms. In 3rd International Summer School
on Advanced Functional Programming, volume 1608 of LNCS, pages
1–27. Springer-Verlag, 1998.

[2] R.-J. Back and J. Eriksson. Correct-by-construction programming in
the socos environment. CTP Components for Educational Software,
page 16, 2011.

[3] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about
arrays? In Proceedings of the 7th international conference on Verifica-

18

tion, Model Checking, and Abstract Interpretation, VMCAI’06, pages
427–442, Berlin, Heidelberg, 2006. Springer-Verlag.

[4] J. christophe Filliâtre and C. Marché. The why/krakatoa/caduceus
platform for deductive program verification. In In CAV 07, pages
173–177, 2007.

[5] F. Haftmann and L. Bulwahn. Code generation from isabelle/hol the-
ories, 2007.

[6] R. johan Back, J. Eriksson, and M. Myreen. Verifying invariant based
programs in the socos environment. In In Teaching Formal Methods:
Practice and Experience (BCS Electronic Workshops in Computing).
BCS-FACS, 2006.

[7] S. M. Merritt. An inverted taxonomy of sorting algorithms. Commun.
ACM, 28(1):96–99, Jan. 1985.

[8] D. Z. Nguyen and S. B. Wong. Design patterns for sorting. SIGCSE
Bull., 33(1):263–267, Feb. 2001.

[9] T. Nipkow. Teaching semantics with a proof assistant: No more lsd trip
proofs. In Verification, Model Checking, and Abstract Interpretation,
pages 24–38. Springer, 2012.

[10] E. Tushkanova, A. Giorgetti, and O. Kouchnarenko. Specifying and
Proving a Sorting Algorithm. Research Report RR2009-03, LIFC - Lab-
oratoire d’Informatique de l’Université de Franche-Comté, Oct. 2009.
35 pages.

19

	Introduction
	Locale Sort
	Defining data structure and key function remove_max
	Describing data structure
	Function remove_max

	Verification of functional Selection Sort
	Defining data structure
	Defining function remove_max

	Verification of Heap Sort
	Defining tree and properties of heap

	Verification of Functional Heap Sort
	Verification of Imperative Heap Sort
	Related work
	Conclusions and Further Work

